WO2013105301A1 - 電子部品のコア部材のバリ取り処理方法及びその装置 - Google Patents

電子部品のコア部材のバリ取り処理方法及びその装置 Download PDF

Info

Publication number
WO2013105301A1
WO2013105301A1 PCT/JP2012/072855 JP2012072855W WO2013105301A1 WO 2013105301 A1 WO2013105301 A1 WO 2013105301A1 JP 2012072855 W JP2012072855 W JP 2012072855W WO 2013105301 A1 WO2013105301 A1 WO 2013105301A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumbler
deburring
nozzle
injection
core member
Prior art date
Application number
PCT/JP2012/072855
Other languages
English (en)
French (fr)
Inventor
境 茂和
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to KR1020147011875A priority Critical patent/KR101959052B1/ko
Priority to JP2013553194A priority patent/JP6112017B2/ja
Priority to CN201280055520.1A priority patent/CN103958126B/zh
Publication of WO2013105301A1 publication Critical patent/WO2013105301A1/ja
Priority to IN3417CHN2014 priority patent/IN2014CN03417A/en
Priority to PH12014501084A priority patent/PH12014501084A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/083Deburring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/322Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for electrical components

Definitions

  • the present invention relates to a method and apparatus for surface-treating a small amount of electronic parts such as capacitors, inductors, semiconductor ICs and sensor devices at once. More particularly, the present invention relates to a deburring method and apparatus for a core member of an electronic component.
  • These electronic components include chip-type electronic component members such as chip resistors, chip capacitors, and chip coils.
  • parts for portable DC-DC converters (voltage converters) used for liquid crystal displays, etc. are manufactured, molded, deburred, wound, wound, and resin molded on the exterior.
  • the external electrode was attached.
  • the deburring is a step performed in order to prevent the winding from being cut by the remaining burr in the step of winding the winding in the next step.
  • Patent Document 1 a permanent magnet having a surface-treated film on a magnet surface is applied to a tumbler drum part of a tumbling blast machine or an apron drum part of an apron blast machine.
  • the surface treatment film on the magnet surface is peeled off by inserting and injecting steel shots onto the permanent magnet while rotating the drum portion.
  • the number of revolutions of the drum portion is 2 to 15 rpm
  • the average particle size of the steel shot is 0.18 mm to 0.50 mm
  • the average hardness of the steel shot is 40 to 50 HRC
  • R The projection angle of the steel shot with respect to the —Fe—B permanent magnet is 40 ° to 90 °
  • the projection speed is 50 m / sec to 80 m / sec.
  • Patent Document 1 when the method using the drum-type deburring disclosed in Patent Document 1 is applied to a large number of small electronic component members, the members frequently collide with each other with a strong impact force. Therefore, many cracks and chips are generated in the part to be processed.
  • the steel shot disclosed in Patent Document 1 has an average particle size of 0.18 mm to 0.50 mm, and the shot is larger than the gap between the flanges, so that the shot cannot enter the gap between the flanges. Therefore, there is a problem that deburring cannot be performed.
  • Patent Document 2 uses a cylindrical barrel formed of a mesh, so that only members larger than the mesh can be processed.
  • the mesh opening of Example 1 of Patent Document 2 is a square with a side of 5.1 mm and a wire diameter of 1.0 mm, a member smaller than 5 mm square cannot be processed.
  • each projection nozzle has an appropriate swing angle in the longitudinal direction of the cylindrical barrel. Therefore, in order to project the spray material uniformly and efficiently on all workpieces in the cylindrical barrel longer than the diameter of the projection range in the longitudinal direction, a plurality of projection nozzles are provided for one cylindrical barrel. It is assumed that. Otherwise, the projection outside the projection range will be insufficient.
  • Patent Document 2 aims at removal of an oxide layer generated on the surface of a permanent magnet, surface cleaning, and shot peening for a surface treatment film, and does not assume deburring of small electronic component members.
  • an object of the present invention is to provide a method and an apparatus for deburring a member of a small electronic component securely and in a large amount so as not to crack and chip the member at once.
  • the first invention provides: A deburring method for removing convex burrs generated in gaps between the plurality of flanges of a core member made of a bulk ceramic having a plurality of flanges and a winding core, A step of introducing a number of core members into a bottomed cylindrical tumbler having an opening at one end and the other end closed; Rotating the tumbler and stirring the multiple core members; A step of injecting a gas jet mixed with an injection material smaller than the gap of the flange toward the burr of the convex portion generated in the gap of the plurality of flanges of the core member made of the bulk ceramic through the opening.
  • the spray material injected toward the inside of the tumbler is discharged to the outside of the tumbler through a through hole provided in the wall surface after deburring.
  • the specific gravity of the injection material is 1.0 to 3.0
  • the average diameter of the injection material is 0.02 to 0.08 mm
  • the injection pressure of the jet is 0.03 MPa or more and 0.15 MPa or less.
  • the specific gravity and the average diameter of the injection material are small and the injection pressure is also low, there is no occurrence of cracking or chipping in the member of the electronic component.
  • the distance from the opening at the tip of the nozzle that emits a jet of gas mixed with the propellant to the core member made of bulk ceramic is 200 mm or more and 500 mm or less. According to the present invention, efficient deburring can be performed without the diffusion of the jet airflow being too large. Further, no crack or chipping occurs in the electronic component member.
  • the rotational speed difference between the injection center and the injection outer peripheral portion in the injection range of the gas jet mixed with the injection material at the position of the core member made of the bulk ceramics is 32 mm / s or more and 64 mm / s or less.
  • the core member is tumbled so that According to the present invention, the core members do not collide with each other, so that cracks and chips do not occur. On the other hand, efficient deburring is possible.
  • the core member made of the bulk ceramic has an inductive member or a coil member of an electronic component manufactured by firing after molding with a flange gap of 0.3 mm to 0.8 mm
  • the injection material is made of alumina or silicon carbide having a polygonal shape and having an average diameter of 0.02 to 0.08 mm. According to the present invention, since an injection material having a suitable size can be injected into the gap between the flanges of the inductor member or the coil member of the electronic component, efficient deburring can be performed.
  • the injection amount of the injection material is 0.2 to 0.8 Kg / min, and the distance from the opening of the nozzle tip that emits the gas jet mixed with the injection material to the core member made of bulk ceramics is It is 200 mm or more and 300 mm or less. According to the present invention, it is possible to deburr a core member made of bulk ceramic more efficiently.
  • an eighth invention of the present invention is a deburring device used for a deburring method of a core member, wherein the plurality of tumblers, At least one rotation mechanism for rotating the plurality of tumblers; A plurality of nozzle assemblies for injecting a jet of gas mixed with an injection material,
  • the deburring device is characterized in that a plurality of through holes are provided in a wall surface forming an outer periphery of the tumbler, and a stirring promoting member is provided in the cylindrical inner wall. According to the present invention, it is possible to reliably deburr a small electronic component member in a large amount at once and to prevent the member from being cracked.
  • the opening portion of the tumbler and the nozzle assembly are opposed to each other, and the injection of the injection material is performed from the opening portion of the tumbler to the cylindrical tumbler with the bottom. This is performed toward the burr of the convex portion generated in the gaps between the plurality of flanges of the core member that has been introduced. According to the present invention, deburring of a member of a small electronic component can be more reliably performed in a large amount at a time and so as not to crack and crack the member.
  • the tenth invention of the present invention is characterized in that the tumbler is installed at an angle of 20 ° to 40 °. According to the present invention, by rotating the tumbler at an angle of 20 ° to 40 °, the parts to be processed in the tumbler can be efficiently stirred. That is, according to the present invention, it is possible to deburr a member of a small electronic component more reliably and in large quantities at a time and so as not to crack or chip the member.
  • the tumbler is a polygonal box-shaped object having an opening at the top or a cylindrical object with a bottom. According to the present invention, a large number of core members are easily stirred by the rotation of the tumbler, and deburring can be performed efficiently.
  • the nozzle assembly is moved in a bulk shape from an opening at the tip of the nozzle that emits a jet of gas mixed with the spray material by the nozzle assembly installation member that enables movement of the spray material during spraying.
  • the distance to the core member made of ceramics is controlled within a predetermined range. According to the present invention, it is possible to control the distance from the opening at the tip of the nozzle that emits a jet of gas mixed with the spray material to the core member made of bulk ceramics, and therefore, it is possible to deburr with the optimal spray strength. Further, when the injection strength is too strong, it is possible to increase the injection distance.
  • the thirteenth aspect of the present invention is characterized in that the nozzle assembly is moved by the nozzle assembly installation member and the tumbler is exchanged after the injection is finished.
  • the tumbler when replacing the tumbler, the tumbler can be easily replaced without removing the nozzle assembly by moving the position of the nozzle assembly by the nozzle assembly installation means.
  • the setup change time can be shortened. That is, it is possible to prepare for the next batch of processing with an unprocessed tumbler.
  • the nozzle assembly generates compressed air in the nozzle holder and generates a negative pressure in the nozzle holder, and is generated in the nozzle assembly.
  • a nozzle holder having a path through which the injection material sucked by the negative pressure passes, a mixing chamber for mixing the injection material with the compressed air, and the compressed air and the injection material mixed in the mixing chamber to the core member
  • at least one of a connection portion between the nozzle holder and the air nozzle and a connection portion between the nozzle holder and the injection nozzle is a sealing member. It is characterized by having.
  • the present invention unlike the system (so-called pressurization type) in which the propellant is put into the pressurized tank and the inside of the pressurized tank is pressurized to send the propellant to the nozzle assembly (so-called pressurization type), there is no need for a large incidental facility. Yes, downsizing of the entire device can be realized. Further, the injection amount of the injection material is stabilized by providing a sealing member in at least one of the connection portion between the nozzle holder and the air nozzle and the connection portion between the nozzle holder and the injection nozzle. Can be made.
  • FIG. 2 is an explanatory view showing a method of installing a tumbler on a rotation mechanism in the deburring device of FIG. 1.
  • FIG. 2 is an explanatory diagram showing a method for installing a drive transmission member in the deburring device of FIG. 1.
  • FIG. 5A is a side view of the tumbler
  • FIG. 5B is a sectional view taken along line BB in FIG. 5A
  • FIG. 5B is a sectional view taken along line BB in FIG. 5A, and FIG.
  • FIG. 5C is a perspective view of the tumbler in FIG. 5A. It is explanatory drawing which shows an example of the tumbler which has a polygonal longitudinal cross section which can be used for the deburring apparatus in this invention.
  • 6A is a side view of the tumbler
  • FIG. 6B is a view taken in the direction of the arrow B in FIG. 6A
  • FIG. 6C is a cross-sectional view taken along the line CC in FIG.
  • FIG. 5C is a perspective view of the tumbler in FIG. 5A. It is explanatory drawing which shows an example of the tumbler which has a polygonal longitudinal cross section which can be used for the deburring apparatus in this invention.
  • 6A is a side view of the tumbler
  • FIG. 6B is a view taken in the direction of the
  • FIG. 9A is an explanatory diagram showing an example of driving the nozzle assembly installation member
  • FIG. 9B is an explanatory diagram showing an example of the configuration of the installation member.
  • It is explanatory drawing which shows the classification apparatus in the deburring apparatus of FIG. 10A is a side view of the classifier
  • FIG. 10B is a view taken in the direction of the arrow B in FIG. 10A
  • FIG. 10C is a cross-sectional view taken along the line CC in FIG. 10B
  • 10 (D) is a cross-sectional view taken along the line DD in FIG. 10 (A).
  • FIG. 13A is an external view showing a deburring device for opening and closing the door by mechanical power
  • FIG. 13B is an external view showing a deburring device for opening and closing the door by human power.
  • FIG. 1 shows a front view (right side of FIG. 1) and a left side view (left side of FIG. 1) of the blasting apparatus 1 of the present invention.
  • the blasting apparatus 1 includes a blasting chamber 10 having a door 10a for loading and unloading a workpiece W, and a collection device (collection means) 30, which are moving members. For example, it is installed on a base 50 having a roller 51.
  • a classifier (separating means) 20 connected to a reservoir (storage means) 21 for storing the injection material is connected to the blast processing chamber 10.
  • a hollow tumbler 11, a rotation mechanism (rotation means) 12, a nozzle assembly 13, and a nozzle assembly installation member (nozzle assembly installation means) 14 are installed in the blast processing chamber 10. Yes.
  • the number of tumblers 11 installed can be arbitrarily set according to the processing amount of the workpiece W. In this embodiment, four tumblers 11 are installed.
  • the tumbler 11 is a polygonal box-shaped body having an opening at the top or a cylindrical body with a bottom, and details will be described later.
  • the tumbler 11 is inserted and held in the tumbler holder 11a.
  • a bolt or the like may be used, and an engaging means such as a thread portion may be provided on both, and the method is not particularly limited.
  • a convex hook (not shown) is formed on the tumbler holder 11a, and the outer wall of the tumbler 11 is engaged with the hook, so that the structure can be attached and detached with one touch.
  • a rotating shaft 11b is provided at the center of the bottom surface of the tumbler holder 11a, and a first drive transmission tool 11c is attached to the rotating shaft 11b.
  • a sprocket is used as the first drive transmission tool 11c.
  • the rotation mechanism (rotation means) 12 includes a motor (rotation generation means) 12a and a base 12d.
  • a motor rotation generation means
  • base 12d The rotation mechanism (rotation means) 12 includes a motor (rotation generation means) 12a and a base 12d.
  • two bearings 12e are provided in the rotating mechanism (rotating means) 12 for the rotating shaft 11b of one tumbler holder 11a, and the tumbler 11 is held via the bearings 12e.
  • the tumbler holder 11a is held by a rotating mechanism (rotating means) 12.
  • only one motor 12a is used, and the motor 12a is installed on the base 12d.
  • the 2nd drive transmission tool 12c is attached to the rotating shaft 12b of the motor (rotation generating means) 12a.
  • the 2nd drive transmission tool 12c is made into the shape which operates the 1st drive transmission tool 11c in synchronization.
  • the first drive transmission tool 11c is a sprocket as in the present embodiment
  • the second drive transmission tool 12c has a height of a mountain and an interval between the peaks.
  • the sprocket is the same as Alternatively, when a pulley (not shown) is used as the first drive transmission tool 11c, the second drive transmission tool 12c is a pulley having the same groove shape and groove depth as the first drive transmission tool 11c. . Therefore, in the present embodiment, the second drive transmission tool 12c is a sprocket having the same height of the crest of the sprocket of the first drive transmission tool 11c and the distance between the peaks.
  • the second drive transmission tool 12c and all the first drive transmission tools 11c are coupled by the drive transmission member 12f so that the rotational force of the motor (drive transmission means) 12a is transmitted to all the tumblers 11.
  • a chain is used as the drive transmission member 12f, and this chain 12f applies the rotational force of the sprocket (second drive transmission tool) 12c of the rotary shaft 12b of the motor (rotation generating means) 12a to the tumbler holder 11a ( It is connected so that it may transmit to the sprocket (1st drive transmission tool) 11c of the rotating shaft 11b of FIG. Accordingly, all the tumbler holders 11a rotate in accordance with the rotation of the rotating shaft 12b of the motor (drive transmission means) 12a, and consequently all the tumblers 11 rotate.
  • the tumbler 11 is substantially a hollow body, and has an opening 11d for injecting and discharging the component W to be processed and for injecting an injection material toward the component W to be processed at the upper end, and the bottom end is closed. is doing.
  • the wall surface forming the outer periphery of the tumbler 11 has a plurality of through holes 11i.
  • the shape of the cross section of the tumbler 11 parallel to the opening 11d is preferably a polygonal shape or a circular shape.
  • a stirring promoting member 11e on the inner wall of the tumbler 11 (see FIG. 5).
  • the stirring promoting member 11e may have a well-known structure that promotes stirring of the component W to be processed in the tumbler 11, such as a plate protruding from the inner surface or a rod-shaped member.
  • the inner diameter ( It is preferable to provide an agitation promoting surface 11h having a continuously reduced cross-sectional area. According to the experiment, the effect of the inclination angle ⁇ 1 of the stirring promoting surface 11h is remarkable when it is in the range of 115 ° to 135 °.
  • the through hole 11i is provided so that the propellant does not stay inside the tumbler, and the diameter thereof is such that the propellant can pass through but the component to be processed does not leak from the through hole.
  • a convex ring 11j is preferably attached to the inner surface of the opening 11d of the tumbler 11.
  • the height (11k) of the protrusion protruding from the inner surface is preferably 1 to 8 mm, more preferably 3 to 6 mm, which does not prevent the injection material from entering from the opening.
  • the stirring is performed more effectively by inclining and installing the tumbler 11.
  • the inclination angle ⁇ (see FIG. 2) of the tumbler 11 for that purpose is preferably in the range of 20 ° to 40 °, more preferably in the range of 27 ° to 32 °, according to experiments.
  • the diameter (cross-sectional area) is continuous in the vicinity of the opening of the tumbler 11 toward the opening 11d so that the workpiece W does not leak out from the tumbler 11 during deburring by tilting the tumbler 11. It is preferable to provide a leakage prevention surface 11f that is small.
  • the leakage prevention surface 11f that forms approximately 90 ° with respect to the sidewall surface 11g of the tumbler 11
  • the corner formed by the sidewall surface 11g of the tumbler 11 and the leakage prevention surface 11f regardless of the installation angle of the nozzle assembly 13. It is not possible to inject the injection material to the processed part W at the corner.
  • the angle ⁇ 2 formed by the leakage preventing surface 11f and the side wall surface 11g of the tumbler 11 is determined by experiments. For example, a range of 115 ° to 135 ° is preferable.
  • Tumbler 11 hollow and bottom used in this embodiment is closed, as shown in FIG. 6, the shape of the cross section parallel to the opening 11d is octagonal, the inclined angle theta 1 is at 118 ° 11 h of stirring promotion surfaces and the leakage prevention surface 11f whose said inclination-angle (theta) 2 is 132 degrees.
  • the rotating mechanism 12 that holds and rotates the tumbler 11 via the tumbler holder 11a is arranged so that the inclination angle ⁇ of the tumbler 11 is 30 ° as described above.
  • the nozzle assembly 13 includes a nozzle holder 13a, an air nozzle 13b, and an injection nozzle 13c.
  • the nozzle holder 13a has an injection material supply port 13d for introducing the injection material, and the inside of the nozzle holder 13a has a path 13e through which the injection material introduced from the injection material supply port 13d passes, And a mixing chamber 13f. In the mixing chamber 13f, the compressed air introduced through the air nozzle 13b and the spray material coming from the path 13e are mixed.
  • Air nozzle 13b has a compressed air injection ports 13b o for injecting compressed air into one end, a cylindrical inner diameter toward the injection port 13b o becomes thinner.
  • the proximal end of the nozzle holder 13a (inlet side of the compressed air) communicates with the compressed air supply source (not shown) via a hose (not shown) through the supply port 13b i of the air nozzle 13b.
  • the compressed air introduced from the compressed air supply source is injected into the nozzle holder 13a.
  • a negative pressure is generated inside the nozzle holder 13a.
  • the propellant is sucked and introduced into the nozzle holder 13a from the propellant supply port 13d.
  • the injection material introduced from the injection material supply port 13d passes through the injection material passage 13e, is guided to the mixing chamber 13f, and is mixed with the compressed air introduced into the nozzle holder 13a.
  • the injection material supply port 13d as described below, communicate with each other through the reservoir 21 and the hose H 2, which sucks the injection material which is stored inside the reservoir 21 for storing.
  • Injection nozzle 13c is a hollow structure with both ends released, the cross-sectional area S 13Ci of the supply port 13c i side of the solid-gas two-phase flow of compressed air and the injection material is, on the opposite side of the solid-gas two-phase flow It is larger than the cross-sectional area S 13CO jets 13c o side.
  • the cross-sectional shape of the supply port 13c i and the injection port 13c o circular may be any of polygons including a rectangle. In the present embodiment, the cross-sectional shape of the supply port 13c i and the injection port 13c o is circular.
  • Injection nozzle 13c as the longitudinal center line of the air nozzle 13b is positioned to the injection nozzle 13c of the supply port 13c i and the injection openings 13c connecting it centerline the center point of the o and on approximately the same line, and the mixing chamber 13f and the supply port 13c i is provided so as to communicate.
  • the solid-gas two-phase flow generated in the mixing chamber 13f is passed through the inside of the supply port 13c i from the ejection nozzle 13c, is injected from the injection port 13c o.
  • a sealing member 13g is provided on at least one of the connecting portion between the nozzle holder 13a and the air nozzle 13b and the connecting portion between the nozzle holder 13a and the injection nozzle 13c, more preferably both. Is desirable. When the compressed air introduced into the nozzle holder 13a leaks from the gap between the connecting portions, the negative pressure generated inside the nozzle holder 13 is reduced and the suction force of the injection material is reduced. It can suppress by providing.
  • grooves are provided on the outer circumferences of the air nozzle 13b and the injection nozzle 13c, and an O-ring is fitted as a sealing member 13g in the grooves.
  • nozzle assemblies 13 are installed.
  • the nozzle assembly 13 is attached to the blasting chamber 10 by a nozzle assembly installation member 14 as shown in FIG. Since the tumbler 11 of this embodiment is inclined and has the leakage prevention surface 11f, the nozzle assembly 13 is attached in accordance with this form.
  • the installation member 14 is formed by an arm having at least one or more movable members from the attachment location in the blasting chamber 10 to the nozzle installation portion. For example, in FIG. 9A, the nozzle assembly 13 is moved up and down with respect to the tumbler 11 by forming a rotatable nozzle assembly installation member 14 by engaging a plurality of prismatic members and a plurality of cylindrical members.
  • the place where the nozzle assembly installation member 14 is installed in the blasting chamber 10 is not particularly limited, but in the present embodiment, the nozzle assembly installation member 14 is arranged on the base 12d (see FIG. 3) of the rotation mechanism 12. Specifically, as shown in FIG. 9B, the first and second engaged with the base 12d (not shown in FIG. 9B) to constitute the nozzle assembly installation member 14
  • the second, third, fourth, and fifth arms 14a, 14b, 14c, 14d, and 14e are as follows.
  • Base 12d Cylindrical members are provided at positions suitable for installing the respective nozzle assemblies 13.
  • First arm 14a formed of a prismatic member, and has a first hole having the same diameter as that of the cylindrical member in the longitudinal direction (perpendicular to the paper surface of FIG. 9B). Is fitted with a cylindrical member of the base 12d. In addition, a second hole having the same diameter as that of the second arm 14b is provided in the height direction (the vertical direction of the drawing).
  • 2nd arm 14b It is formed with the cylindrical member, The lower end is inserted in the 2nd hole of the 1st arm 14a, and is engaged.
  • Third arm 14c It is formed of a prism member, and has a third hole having the same diameter as that of the second arm 14b in the height direction at one end (right side of FIG. 9B).
  • the other end has a fourth hole having the same diameter as that of the fifth arm 14e in a direction perpendicular to the paper surface.
  • One end of the fifth arm 14e is fitted into and engaged with this hole.
  • Fourth arm 14d It is formed of a prism member, and a fifth hole having the same diameter as that of the columnar member of the fifth arm 14e is formed in a direction perpendicular to the paper surface of one end (right side of FIG. 9B). And a cylindrical member of the fifth arm 14e is inserted into and engaged with this hole.
  • a holding tool (not shown) for holding the nozzle assembly 13 is provided near the other end.
  • Fifth arm 14e It is formed of a cylindrical member, and one end (the back of the paper surface of FIG. 9B) is fitted into the fourth hole of the third arm 14c to be engaged. The end is inserted into and engaged with the fifth hole of the fourth arm 14d.
  • the holder of the nozzle assembly 13 is not particularly limited.
  • the fourth arm 14d may be fixed with a bolt or the like, or may be held by a clamp mechanism. Moreover, you may improve the freedom degree of installation of this nozzle assembly 13 by comprising this holder itself rotatably.
  • the deburring device in the present embodiment has a structure in which the installation member 14 of the nozzle assembly 13 moves in conjunction with opening and closing of the door 10a. That is, the nozzle assembly 13 moves so that the tumbler 11 can be easily attached and detached when the door 10a is opened, and the spray material can be injected into the tumbler 11 when the door 10a is closed. did.
  • the classification device 20 for taking out the available propellant will be described.
  • the classification device 20 has a first cylindrical body 20a whose upper surface is closed by a ceiling having a suction member 20c, has a continuous cross-sectional area, and has an input member 20d on a side surface, and a diameter continuously from the upper side to the lower side.
  • the second cylindrical body 20b having a small (cross-sectional area) is connected to be configured.
  • a reservoir 21 is connected to the lower surface of the classifier 20.
  • the input member 20d is connected to the blasting chamber 10 through a duct D 1 (FIG. 1).
  • the suction member 20c is connected to the recovery device 30 via a duct D 2 (FIG. 1). That is, the space in the blast processing chamber 10, the space in the classification device 20, the space in the reservoir 21, and the collection device 30 form a continuous space.
  • the reservoir 21 for storing the reusable injection material taken out by the classifying device 20 has a third cylindrical body 21a connected to the bottom of the classifying device 20, and a downward direction.
  • the fourth cylindrical body 21b having a continuously reduced diameter (cross-sectional area) is connected to the fourth cylindrical body 21b.
  • the diameter (cross-sectional area) continuously decreases not only the diameter (cross-sectional area) decreases uniformly downward, but also the reduction rate of the diameter (cross-sectional area) may vary stepwise.
  • the sidewalls of the fourth cylindrical body 21b is set such that the angle theta 3 which makes with the horizontal plane is in the range of 87 ° from 73 °.
  • this angle is smaller than 73 °, a phenomenon that the injection material in the reservoir 21 cannot be taken out due to a blitching phenomenon (shelf hanging) is likely to occur.
  • the angle is large.
  • a discharge assisting tool 21d described later is enlarged. Therefore, in order to efficiently take out the injection material from the reservoir 21 and to reduce the discharge assisting tool 21d, it is preferable to set the angle ⁇ 3 in the range of 73 ° to 87 °.
  • An injection material takeout tool 21 c for supplying the injection material stored in the reservoir 21 to the nozzle assembly 13 is installed near the lowermost surface.
  • the injection material take-out tool 21c is connected to the injection material supply port 13d of the nozzle assembly 13 via the hose H 2 (FIG. 2).
  • a discharge assisting tool 21d is provided on the lowermost surface of the fourth cylindrical body 21b in order to discharge the injection material stored in the reservoir 21 for replacement or the like.
  • a butterfly valve is used in this embodiment, but a ball valve or a gate valve may be used instead.
  • the cylindrical bodies 21a and 21b of the reservoir 21 may be cylindrical bodies or cylindrical bodies having a polygonal cross section. In the present embodiment, a cylindrical body having a rectangular cross section is used.
  • the classifier 20 and the reservoir 21 are installed so that at least the injection material takeout tool 21c of the reservoir 21 is disposed in the blast processing chamber 10, but supplies the injection material to the nozzle assembly 13. If there is no inconvenience, the installation location is not particularly limited.
  • the collection device 30 for collecting the dust used a dust collector including a filter cloth for separating solid (dust) and gas from a solid-gas two-phase flow.
  • a pulse jet method in which compressed air is intermittently blown onto the filter cloth was used.
  • the method is not particularly limited, and for example, a mechanical method of removing by mechanical means may be used.
  • the collection device 30 is provided with a discharge tool 31 for discharging dust that has been wiped off from the filter cloth and stored at the bottom of the collection device 30 to the outside of the collection device 30. ing.
  • the discharge tool 31 uses a ball valve.
  • a gate valve or a rotary valve may be used.
  • the deburring device of this embodiment Next, deburring by the deburring device of this embodiment will be described.
  • a process for roughening a 0.8 ⁇ 1.6 mm ceramic member as the workpiece W will be described.
  • the term “small component to be processed” refers to a component to be processed having a diameter or side of approximately 30 mm or less, particularly for a component to be processed having a diameter or side of approximately 2 mm or less.
  • the deburring device of the invention can be preferably used.
  • the door 10a of the blasting chamber 10 is opened, the four tumblers 11 are taken out from the blasting chamber 10, and approximately the same amount of the workpieces W are put into the tumblers 11 respectively. Thereafter, the tumbler 11 is again engaged with the tumbler holder 11 a and set in the blasting chamber 10. Further, a required amount of the injection material (in this embodiment, zirconia) is put into the blasting chamber 10 and the door 10a is closed.
  • the door 10a may be opened and closed manually, but may be performed by a mechanical operation such as an air cylinder.
  • the spray material is transferred into the classification device 20 by the suction force generated by the recovery device 30, and then stored in the reservoir 21.
  • the four tumblers 11 rotate by operating the motor 12a.
  • the workpiece W in the tumbler 11 is agitated by this rotation.
  • the compressed air generation source is operated, and negative pressure is generated inside the nozzle assembly 13 by, for example, injecting compressed air having a pressure of 0.7 MPa from the air nozzle 13b. Abrasives This negative pressure is supplied to the nozzle assembly 13, it is injected together with the compressed air from the injection port 13c o. Deburring is performed when the sprayed spray material collides with the surface of the workpiece W. Further, since the parts to be processed W are agitated by the rotation of the tumbler 11, all the parts to be processed W are sequentially exposed to the spray material, and all the parts to be processed W can be deburred.
  • the dust transferred to the collection device 30 accumulates on the surface of the filter cloth inside the collection device 30. Dust accumulated on the surface of the filter cloth is removed by a pulse jet and stored at the bottom. The stored dust is discharged to the outside of the collection device 30 by opening the discharge tool 31.
  • the operation of the compressed air supply source is stopped. At that time, the rotation of the motor 12a is still continued. This is because the spray material remaining in the tumbler 11 is discharged to the outside through the through hole 11i on the wall surface. Similarly, the operation of the collection device 30 is still continued. This is because the inside of the blasting chamber 10 is filled with the spray material and dust, so that these are stored (collected) in the reservoir 21 via the classifier 20, or the dust is collected by the recovery device 30. It is to do.
  • the discharge auxiliary tool 21d is opened. By doing so, the propellant can be easily taken out.
  • the nozzle assembly installation member 14 is driven to adjust the position of the nozzle assembly 13 to replace the tumbler 11. It can be done easily.
  • FIG. 13A shows a blasting device that opens and closes the door 10a by mechanical power (in this case, an air cylinder), and
  • FIG. 13B shows a blasting device that opens and closes the door 10a by human power (manually).
  • the specific gravity of the spray material is too small, a sufficient deburring effect cannot be obtained. If the specific gravity is too large, cracks and chips of the parts to be processed by the spray material are caused. When the average diameter of the spray material is smaller than 0.02 mm, a sufficient deburring effect cannot be obtained, and when it is larger than 0.08 mm, the collision of the spray material with the portion to be deburred becomes insufficient. If the injection pressure is too low, a sufficient deburring effect cannot be obtained, and if it is too high, cracks and chips occur in the parts to be processed.
  • the specific gravity of the injection material is 1.0 to 3.0
  • the average diameter of the injection material is 0.02 to 0.08 mm
  • the distance from the opening of the nozzle tip that emits a jet of gas mixed with the propellant to the core member made of bulk ceramic that is the component to be processed W is shorter than 200 mm, the bulk in which the propellant is the component to be processed is sufficient. Injected material that is not sufficiently diffused to reach the core member made of the ceramic is wasted. On the other hand, if it is larger than 500 mm, the spray material collides with the part to be processed only sparsely, and deburring becomes insufficient. In order to perform efficient deburring without excessively spreading the jet airflow, it is preferable that the distance from the opening of the nozzle tip to the component to be processed is 200 mm or more and 500 mm or less. Furthermore, it is more preferable to set it to 200 mm or more and 300 mm or less. This moderate distance does not cause cracks or chipping in the parts to be processed.
  • the core member has a rotational speed difference between the injection center and the injection outer peripheral portion of 32 mm / s or more and 64 mm / s or less in the injection range of the gas jet mixed with the injection material at the position of the core member made of bulk ceramics. It is good to tumbl. If the rotational speed difference is small, the deburring efficiency decreases. If the rotational speed difference is large, the core members collide with each other and cracks and chips occur. It is preferable to set the rotational speed difference to 32 mm / s or more and 64 mm / s or less for efficient deburring without causing the core member to collide with each other without cracking or chipping.
  • the hardness of the spray material is too low, a sufficient deburring effect cannot be obtained, and if it is too high, the parts to be processed will be cracked or chipped.
  • the core member made of bulk ceramic is an inductor member or a coil member of an electronic component manufactured by baking after molding and having a flange gap of 0.3 mm to 0.8 mm, and has a polygonal shape. Often made of alumina or silicon carbide. Therefore, an injection material having an average diameter of 0.02 to 0.08 mm is injected at least toward the gap between the plurality of flanges and the connection edge of the core part or the outer periphery of the core part. Thereby, since the injection material of a suitable magnitude
  • the nozzle assembly 13 may use a so-called direct pressure type as long as a space for installing auxiliary equipment such as a pressurized tank can be secured.
  • the tumbler holder 11a is used to rotate and hold the tumbler 11.
  • an embodiment using the tumbler 11 having the drive shaft at the bottom by omitting the tumbler holder 11a can be configured. Please note that.
  • the spray material is generally a deburring jet, such as a cut wire, ceramics, resin, plant, etc., cut from iron or iron-based shots or grit or thin lines (or rounded corners after cutting). Any material used as a material can be suitably applied.
  • the deburring for the workpiece W formed from a hard and brittle material has been described.
  • the deburring apparatus of the present invention does not depend on whether the workpiece W is a metal material or a non-metal material. It can be applied to the entire collection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Cleaning In General (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

小さい電子部品の部材のバリ取りを大量に一度に確実にかつ、部材の割れ欠けがないようにバリ取りする方法及びその装置を提供する。複数のフランジを備えたバルク状セラミックスからなるコア部材の前記複数のフランジの隙間に生じる凸状のバリを取り除くバリ取り処理方法である。まず、一端に開口部を有し他端が閉鎖されている有底の筒状のタンブラに多数のコア部材を投入する。次いで、タンブラを回転させて、多数のコア部材を攪拌する。そして、開口部を貫通して、少なくともコア部材の複数のフランジの隙間に生じた凸部のバリに向って、フランジの隙間より小さい噴射材が混在した気体の噴流を噴射する。その後、噴射材は該タンブラの壁面に設けられた貫通穴よりタンブラの外部へ排出される。

Description

電子部品のコア部材のバリ取り処理方法及びその装置
 本発明は、コンデンサ、インダクタ、半導体IC、センサデバイスなど小さい電子部品の部材を大量に一度に表面処理する方法及びその装置に関する。より詳しくは、電子部品のコア部材のバリ取り処理方法及びその装置に関する。この電子部品の中には、チップ抵抗やチップコンデンサやチップコイルなどのチップ型電子部品の部材も含まれる。
 従来、液晶ディスプレイ等に使われる携帯用DC-DCコンバータ(電圧変換機器)の部品の製造は、造型後、型成形を行い、バリ取りを行い、巻き線を巻いて、外装部に樹脂モールドして外部電極を付けていた。前記バリ取りは、次工程の巻き線を巻く工程において、残っているバリによって巻き線が切断されないために行う工程である。
 このバリ取りのために、電子部品のコア部材の表面にバレル研磨を行なうことは公知である。しかし、バレル研磨は、回転バレル内に被処理部品とメディアを投入し、場合によっては、水、砥粒、および助剤を更に投入し、回転バレル内部を流動状態にさせることで被処理部品の表面処理を行う。
 しかし、バレル研磨装置では、研磨終了後に被処理部品とメディアを手作業で分別する必要などがあり、大量に一度に処理が出来ないという問題があった。また、水を用いる場合には研磨後の水処理設備が必要であるという問題があった。更に、部材の隙間が小さくバリが取れないという問題があった。
 そこで、ブラスト装置を採用するということが考えられる。特開平11-347941号公報(特許文献1)に開示された方法発明は、磁石表面に表面処理被膜を有する永久磁石を、タンブリングブラスト機のタンブラ型ドラム部またはエプロンブラスト機のエプロン型ドラム部に挿入し、該ドラム部を回転させながら永久磁石にスチールショットを噴射することによって、磁石表面の表面処理被膜を剥離する。
 また、特許文献1の発明は、ドラム部の回転数が2~15rpmであり、スチールショットの平均粒度が0.18mm~0.50mmであり、スチールショットの平均硬度が40~50HRCであり、R-Fe-B系永久磁石に対するスチールショットの投射角度が40°~90°であり、投射速度が50m/sec~80m/secである。
 しかし、特許文献1に開示されたドラム型のバリ取りを用いた方法を多数の小さい電子部品の部材に適用すると、部材が頻繁に、或いは、強い衝撃力で互いに、衝突する。よって、被処理部品に割れや欠けを多数発生させてしまう。
 また、特許文献1に開示されたスチールショットは、平均粒度が0.18mm~0.50mmであり、かつ、ショットがフランジの隙間より大きくなるので、ショットはフランジの隙間に進入できない。よって、バリ取りができないという問題がある。
 更に、特開2001-341075号公報(特許文献2)のブラスト処理装置では、メッシュで形成された筒型バレルを使用していることから、メッシュより大きな部材しか処理できない。例えば、特許文献2の実施例1のメシュの目開きは、一辺が5.1mmの正方形で、線径が1.0mmであるため、5mm角より小さな部材は処理できない。小さな電子部品の部材を処理するため、メッシュの目開きを小さくするということも考えられるが、噴射材がメッシュに当たる確率が高くなり効率的な処理が出来ないという問題がある。
 また、特許文献2のブラスト処理装置では、個々の投射ノズルは、円筒形バレルの長手方向に適当な首振り角度を有している。したがって、長手方向に投射範囲の直径よりも長い円筒バレル内のすべての被処理物に対して均一に効率よく噴射材を投射するには、1つの円筒形バレルに対して複数の投射ノズルを有することが前提になっている。そうでなければ、投射範囲から外れた部分の投射は不十分になる。
 さらに、特許文献2では永久磁石の表面に生成した酸化層の除去、表面清浄、表面処理被膜のためのショットピーニングを目的としており、小さな電子部品の部材のバリ取りを想定していない。
 そこで、本発明は、小さい電子部品の部材のバリ取りを大量に一度に確実にかつ、部材の割れ欠けがないようにバリ取りする方法及びその装置を提供することを目的とする。
 本発明の目的を達成するために、第1の発明は、
 複数のフランジと巻芯部を備えたバルク状セラミックスからなるコア部材の前記複数のフランジの隙間に生じる凸状のバリを取り除くバリ取り処理方法であって、
 一端に開口部を有し他端が閉鎖されている有底の筒状のタンブラに多数のコア部材を投入する工程と、
 前記タンブラを回転させ、前記多数のコア部材を攪拌する工程と、
 前記開口部を貫通して前記バルク状セラミックスからなるコア部材の複数のフランジの隙間に生じた凸部のバリに向って、前記フランジの隙間より小さい噴射材が混在した気体の噴流を噴射する工程と、
 前記噴射された噴射材を前記タンブラの壁面に設けられた貫通穴より該タンブラの外部へ排出する工程と、を有する。
 本発明によれば、小さい電子部品の部材のバリ取りを大量に一度に確実にかつ、部材の割れ欠けがないようにバリ取りすることができる。また、該タンブラ内部に向けて噴射された噴射材は、バリ取り後に壁面に設けられた貫通穴より該タンブラの外部へ排出される。
 第2の発明では、前記噴射材の比重が1.0~3.0、噴射材の平均径が0.02~0.08mm、前記噴流の噴射圧力が0.03MPa以上0.15MPa以下である。
 本発明によれば、噴射材の比重及び平均径が小さく、噴射圧力も低いので、電子部品の部材に、割れや欠けが発生することはない。
 第3の発明では、前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材の距離が200mm以上500mm以下であることを特徴とする。
 本発明によれば、噴射気流の拡散が大きすぎることなく、効率的なバリ取りができる。また、電子部品の部材に、割れや欠けが発生することはない。
 第4の発明では、前記バルク状セラミックスからなるコア部材の位置での前記噴射材が混在した気体の噴流の噴射範囲における噴射中心と噴射外周部の回転速度差が32mm/s以上64mm/s以下となるようにコア部材をタンブリングすることを特徴とする。
 本発明によれば、コア部材が互いに衝突することにより、割れや欠けが発生することはない。一方、効率的なバリ取りができる。
 第5の発明では、噴射材の硬さがHV1000~2500であることを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
 本発明によれば、バルク状セラミックスのコア部材を効率的にバリ取りができる。
 第6の発明では、前記バルク状セラミックスからなるコア部材は、フランジの隙間が0.3mm~0.8mmであって、かつ、造型成形後焼成されて製造された電子部品のインダクタ部材又はコイル部材であって、多角形状でアルミナ若しくは炭化ケイ素からなり、平均径0.02~0.08mmの噴射材を噴射することを特徴とする。
 本発明によれば、電子部品のインダクタ部材又はコイル部材のフランジの隙間に対し好適な大きさの噴射材を噴射できるので、効率的なバリ取りができる。
 第7の発明では、前記噴射材の噴射量が0.2~0.8Kg/分、前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離が200mm以上300mm以下であることを特徴とする。
 本発明によれば、より効率よくバルク状セラミックスからなるコア部材のバリ取りを行うことができる。
 また、本発明の第8の発明は、コア部材のバリ取り処理方法に用いるバリ取り装置であって、前記複数のタンブラと、
 該複数のタンブラを回転させる少なくとも1以上の回転機構と、
 噴射材が混在した気体の噴流を噴射する複数のノズル・アセンブリと、を備え、
 前記タンブラの外周を形成する壁面に多数の貫通穴が設けられており、前記筒状の内壁には攪拌促進部材が設けられたことを特徴とするバリ取り装置である。
 本発明によれば、小さい電子部品の部材のバリ取りを大量に一度に確実にかつ、部材の割れ欠けがないようにバリ取りすることができる。
 さらに、本発明の第9の発明では、前記タンブラの開口部と、前記ノズル・アセンブリは、対向しており、前記噴射材の噴射は前記タンブラの開口部から前記有底の筒状のタンブラに投入された前記コア部材の複数のフランジの隙間に生じた凸部のバリに向かって行なわれる。
 本発明によれば、小さい電子部品の部材のバリ取りをより確実に大量に一度に、かつ、部材の割れ欠けがないようにバリ取りすることができる。
 さらに、本発明の第10の発明では、前記タンブラは20°~40°の角度で傾けられて設置されていることを特徴とする。
 本発明によれば、タンブラを20°~40°の角度で傾けて回転させることで、該タンブラ内の被処理部品の攪拌を効率よく行うことができる。即ち、本発明によれば、小さい電子部品の部材のバリ取りをより確実に大量に一度に、かつ、部材の割れ欠けがないようにバリ取りすることができる。
 また、本発明の第11の発明では、第10の発明において、前記タンブラが上部に開口部を有する多角形の箱状物もしくは有底の円筒状物であることを特徴とする。
 本発明によれば、タンブラの回転により多数のコア部材が撹拌され易く、効率よくバリ取りを行うことができる。
 本発明の第12の発明では、前記ノズル・アセンブリが噴射材の噴射時の移動を可能とするノズル・アセンブリ設置部材により、前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離を所定の範囲内に制御することを特徴とする。
 本発明によれば、噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離を制御できるので、最適の噴射強度でバリ取りが可能になる。また、噴射強度が強すぎる場合には噴射距離を長くする事も可能である。
 本発明の第13の発明では、前記ノズル・アセンブリ設置部材により、噴射を終えた後に前記ノズル・アセンブリを移動させてタンブラを交換することを特徴とする。
 本発明によれば、タンブラを交換するにあたり、ノズル・アセンブリ設置手段によってノズル・アセンブリの位置を移動させることによって、ノズル・アセンブリを取り外すことなく該タンブラを容易に交換できる。
 また、タンブラを交換できるので、段取り変え時間をはやくすることができる。すなわち、処理をしていないタンブラで次のバッチの処理の準備が可能である。
 本発明の第14の発明では、前記ノズル・アセンブリは、圧縮空気を前記ノズルホルダ内部に導入し、前記ノズルホルダ内部に負圧を発生させるための空気ノズルと、前記ノズル・アセンブリの内部で発生した負圧により吸引された噴射材が通過する経路と、前記圧縮空気に噴射材を混合する混合室とを有するノズルホルダと、前記混合室で混合された圧縮空気と噴射材を前記コア部材に向かって噴射するための噴射ノズルと、を備え、前記ノズルホルダと前記空気ノズルとの間の接続部と、前記ノズルホルダと前記噴射ノズルとの間の接続部とのうちの少なくとも一方は密封部材を有していることを特徴とする。
 本発明によれば、噴射材を加圧タンクに投入し、加圧タンク内を加圧することで噴射材をノズル・アセンブリに送る方式(いわゆる加圧式)とは異なり、大型の付随設備が不要であり、装置全体の小型化を実現できる。また、前記ノズルホルダと前記空気ノズルとの間の接続部と、前記ノズルホルダと前記噴射ノズルとの間の接続部とのうちの少なくとも一方に密封部材を設けることにより噴射材の噴射量を安定させることができる。
 この出願は、日本国で2012年1月12日に出願された特願2012-004284号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
本発明のバリ取り装置の構成を概略的に示す正面図及び側面図である。 図1のバリ取り装置におけるブラスト加工室の内部構成を示す説明図である。 図1のバリ取り装置において、タンブラを回転機構に設置する方法を示す説明図である。 図1のバリ取り装置において、駆動伝達部材の設置方法を示す説明図である。 本発明のバリ取り装置に使用可能な円形の縦断面を有するタンブラの一例を示す説明図である。図5(A)はタンブラの側面図、図5(B)は図5(A)におけるB-B線断面図、図5(C)は図5(A)のタンブラの斜視図である。 本発明におけるバリ取り装置に使用可能な多角形の縦断面を有するタンブラの一例を示す説明図である。図6(A)はタンブラの側面図、図6(B)は図6(A)におけるB方向矢視図、図6(C)は図6(A)におけるC-C線断面図である。 図1のバリ取り装置におけるノズル・アセンブリを示す説明図である。 図7のノズル・アセンブリにおける噴射ノズルの断面の形状を示す断面図である。 本発明におけるバリ取り装置に使用可能なノズル・アセンブリ設置部材を示す説明図である。図9(A)はノズル・アセンブリ設置部材の駆動例を示す説明図、図9(B)は同設置部材の構成の一例を示す説明図である。 図1のバリ取り装置における分級装置を示す説明図である。図10(A)は分級装置の側面図、図10(B)は図10(A)におけるB方向矢視図、図10(C)は図10(B)におけるC-C線断面図、図10(D)は図10(A)におけるD-D線断面図である。 図1のバリ取り装置における貯留器を示す側面図である。 図1のバリ取り装置における回収装置を示す説明図である。 本発明におけるバリ取り装置の実施例を示す参考図である。図13(A)は扉の開閉を機械的動力によってなすためのバリ取り装置、図13(B)は扉の開閉を人力によってなすためのバリ取り装置をそれぞれ示す外観図である。
 本発明のバリ取り方法の実施形態の一例を、添付図面を参照して説明する。なお、本発
明は本実施形態の構成に限られず、必要に応じて適宜変更することができる。
 図1は本発明のブラスト加工装置1の正面図(図1の右側)及び左側面図(図1の左側)を示す。図1に示すようにブラスト加工装置1は被処理部品Wの投入および排出を行うための扉10aを備えるブラスト加工室10、および回収装置(回収手段)30により構成されており、これらが移動部材、例えばローラ51を有する基台50上に設置されている。また、噴射材を貯留するための貯留器(貯留手段)21が連接された分級装置(分離手段)20はブラスト加工室10に連接されている。
図2に示すようにブラスト加工室10内には、中空のタンブラ11、回転機構(回転手段)12、ノズル・アセンブリ13、及びノズル・アセンブリ設置部材(ノズル・アセンブリ設置手段)14が設置されている。タンブラ11の設置台数は、被処理部品Wの加工量により任意に設定することができる。本実施形態では4台のタンブラ11を設置した。タンブラ11は、上部に開口部を有する多角形の箱状体もしくは有底の円筒体であるが、詳細は後述する。
 図3に示すようにタンブラ11はタンブラホルダ11aに挿入されて保持されている。挿入されたタンブラ11をタンブラホルダ11a内に保持するためには、ボルト等を用いてもよく、両者にねじ部等の係合手段を設けてもよく、その方式は特に限定されない。本実施形態ではタンブラホルダ11aに凸状のフック(図示せず)を形成し、該フックにタンブラ11の外壁を係合させることで、ワンタッチで着脱可能な構造とした。タンブラホルダ11aの底面の中心には、回転軸11bが備えられており、この回転軸11bには第1の駆動伝達具11cが取り付けられている。本実施形態では、第1の駆動伝達具11cとしてスプロケットを使用した。
 回転機構(回転手段)12は、モータ(回転発生手段)12a、ベース12dを備えて構成されている。本実施形態では、図3の如く1台のタンブラホルダ11aの回転軸11bにつき2台の軸受け12eが回転機構(回転手段)12に設けられており、該軸受け12eを介してタンブラ11が保持された前記タンブラホルダ11aが、回転機構(回転手段)12に保持されている。また、本実施形態では1台のみのモータ12aを使用し、該モータ12aはベース12dに設置されている。
 図4に示すように、モータ(回転発生手段)12aの回転軸12bには、第2の駆動伝達具12cが取り付けられている。第2の駆動伝達具12cは、第1の駆動伝達具11cを同調して作動させる形状とする。例えば、本実施形態のように第1の駆動伝達具11cがスプロケットである場合、第2の駆動伝達具12cは、その山の高さおよび山と山との間隔が第1の駆動伝達具11cと同じであるスプロケットとする。
或いは第1の駆動伝達具11cとしてプーリ(図示せず)を用いる場合、第2の駆動伝達具12cは第1の駆動伝達具11cの溝の形状および溝の深さが同じであるプーリとする。
そこで、本実施形態では、第2の駆動伝達具12cは第1の駆動伝達具11cのスプロケットの山の高さおよび山と山との間隔が同じであるスプロケットを使用した。
 モータ(駆動伝達手段)12aの回転力が全てのタンブラ11に伝達されるように、駆動伝達部材12fによって第2の駆動伝達具12cおよびすべての第1の駆動伝達具11cを連結させる。
本実施形態では、駆動伝達部材12fとしてチェーンを使用し、このチェーン12fがモータ(回転発生手段)12aの回転軸12bのスプロケット(第2の駆動伝達具)12cの回転力を、タンブラホルダ11a(図4には図示せず)の回転軸11bのスプロケット(第1の駆動伝達具)11cへ伝達するように連結している。従ってモータ(駆動伝達手段)12aの回転軸12bの回転に合わせて全てのタンブラホルダ11aが回転し、ひいては全てのタンブラ11が回転する。
 次に、タンブラ11の形状について図5および図6を用いて説明する。タンブラ11は、実質的に中空体であり、その上端に被処理部品Wの投入および排出や、噴射材を被処理部品Wに向けて噴射するための開口部11dを有し、底端は閉止している。該タンブラ11の外周を形成する壁面には複数の貫通穴11iを有している。バリ取りを行う際にはタンブラ11を回転させるが、これはタンブラ内部に投入された複数の被処理部品Wを流動状態にして攪拌するためである。すなわち、全ての被処理部品Wをタンブラ11の底部や壁部に滞留することなく開口部側に出現させることで、全ての被処理部品Wに対してバリ取りを行うためである。この攪拌を効率よく行うためには、タンブラ11の前記開口部11dに平行な断面の形状は多角形状または円形状であることが好ましい。円形状断面の場合には、タンブラ11の内壁に攪拌促進部材11eを設けることが好ましい(図5参照)。攪拌促進部材11eは、内面に突起した板あるいは棒状の部材等、タンブラ11内の被処理部品Wの撹拌を促進する周知の構造でよい。
さらに、タンブラ11の前記開口部11dに平行な断面形状に依らず、タンブラ11の底部に被処理部品Wが滞留するのを防ぐために、タンブラ11の底部付近に底部に向かってタンブラ11の内径(断面積)が連続的に小さくなる攪拌促進面11hを設けることが好ましい。この攪拌促進面11hの傾斜角度θ1は、実験によれば、115°から135°の範囲であると効果が顕著である。また、貫通穴11iは、タンブラ内部に噴射材が滞留しないように設けてあり、その径は、噴射材は通過できるが、被処理部品が該貫通穴より漏出しない程度の大きさである。
 さらに、前記攪拌がより効果的に行われると噴射中の被処理部品Wがタンブラ11より漏出するためタンブラ11の開口部11d内面部に凸部形状のリング11jを取り付けるのがよい。内面に突き出る凸部の高さ(11k)は開口部より噴射材の進入を妨げない1~8mmが好ましく、より好ましくは3~6mmである。
 さらに、タンブラ11を傾けて設置することで、前記攪拌がより効果的に行われる。その目的のためのタンブラ11の傾斜角度θ(図2参照)は、実験によれば、20°から40°の範囲が好ましく、より好ましくは27°から32°の範囲である。その際、タンブラ11を傾けたことによりバリ取り中に被処理部品Wがタンブラ11より外部へ漏出しないように、タンブラ11の開口部付近に開口部11dに向かって径(断面積)が連続的に小さくなる漏出防止面11fを設けることが好ましい。しかしながら、タンブラ11の側壁面11gに対し略90°をなす漏出防止面11fを設けた場合、ノズル・アセンブリ13の設置角度にかかわらずタンブラ11の側壁面11gと該漏出防止面11fとが成す隅角部の被処理部品Wに対して噴射材を噴射することができない。被処理部品Wがタンブラ11の外部に漏出せず、かつバリ取りに影響を及ぼさないようにするためには、漏出防止面11fとタンブラ11の側壁面11gが成す角度θは、実験によれば、115°から135°の範囲が好ましい。
 本実施形態に用いた中空かつ底部が閉止したタンブラ11は、図6に示すように、前記開口部11dに平行な断面の形状が8角形状であり、前記傾斜角度θが118°である攪拌促進面11hおよび前記傾斜角度θが132°である漏出防止面11fを有する。
このタンブラ11をタンブラホルダ11aを介して保持し回転する回転機構12は、該タンブラ11の傾斜角度θが前述の通り30°となるように配置した。
 次に図7を参照して、バリ取りのためのノズル・アセンブリ13について説明する。ノズル・アセンブリ13はノズルホルダ13aと、空気ノズル13bと、噴射ノズル13cと、で構成される。ノズルホルダ13aは、噴射材を投入するための噴射材供給口13dを有しており、またノズルホルダ13aの内部は噴射材供給口13dから導入された噴射材が通過するための経路13eと、混合室13fとを有している。混合室13fでは、空気ノズル13bを介して導入された圧縮空気と経路13eから到来する前記噴射材とが混合される。
 空気ノズル13bは、一端に圧縮空気を噴射するための圧縮空気噴射口13bを有しており、この噴射口13bに向かって内径が細くなる円筒形状である。この空気ノズル13bは、前記圧縮空気噴射口13bに対向する圧縮空気供給口13b側がノズルホルダ13aの基端から突出するように、ノズルホルダ13aに挿入されている。ノズルホルダ13aの基端(圧縮空気の導入側)は、空気ノズル13bの供給口13bを通じてホース(図示せず)を介して圧縮空気供給源(図示せず)と連通している。圧縮空気供給源より導入された圧縮空気は、ノズルホルダ13a内に噴射される。この際、ノズルホルダ13aの内部で負圧が発生する。この負圧を利用し、噴射材を噴射材供給口13dよりノズルホルダ13aの内部に吸引し導入する。噴射材供給口13dより導入された噴射材は噴射材通過経路13eを通過し、混合室13fへ導かれ、ノズルホルダ13a内に導入された圧縮空気と混合される。本実施形態では、噴射材供給口13dは後述のように、貯留器21とホースHを介して連通されており、貯留する貯留器21内部に貯留されている噴射材を吸引している。
 噴射ノズル13cは、両端が解放された中空構造であり、圧縮空気と噴射材との固気二相流の供給口13c側の断面積S13ciが、その反対側の固気二相流の噴射口13c側の断面積S13coに比べ大きくなっている。前記供給口13cおよび前記噴射口13cの断面形状は円形、長方形を含む多角形のいずれでもよい。本実施形態では、前記供給口13cおよび前記噴射口13cの断面形状を円形とした。噴射ノズル13cは、空気ノズル13bの長手方向の中心線が噴射ノズル13cの供給口13cおよび噴射口13cの中心点を結んだ中心線と略同一線上に位置するように、かつ前記混合室13fと前記供給口13cが連通するように設置されている。前記混合室13fにて発生した固気二相流は、前記供給口13cより噴射ノズル13cの内部を通過し、前記噴射口13cより噴射される。
 また、ノズルホルダ13aと空気ノズル13bとの間の接続部と、ノズルホルダ13aと噴射ノズル13cとの間の接続部とのうちの少なくとも一方、より好ましくは両方には、密封部材13gを設けることが望ましい。ノズルホルダ13aの内部に導入した圧縮空気が前記接続部の隙間より漏出すると、ノズルホルダ13内部で発生する負圧が小さくなり噴射材の吸引力が低下するが、この低下は該密封部材13gを設けることで抑制できる。本実施形態では、空気ノズル13bおよび噴射ノズル13cの外周に溝を設け、その溝に密封部材13gとしてOリングを嵌め込んだ。
 なお、空気ノズル13bおよび噴射ノズル13cにおいて、それぞれの供給口13bまたは13cからそれぞれの噴射口13bまたは13cに向かって内径が細くなる形状は、連続的に細くなる形状(図8(C)参照)、段階的に細くなる形状、同一径が連続した空間を含む形状(図8(B)参照)、連続的または段階的に細くなった後に太くなる形状(図8(D)参照)、またはそれらを組み合わせた形状(例えば連続的に細くなった後に、同一の径が連続している形状(図8(A)参照))のうちのいずれを選択してもよい。
 本実施形態では、タンブラ11を4台設置しているので、4台のノズル・アセンブリ13を設置した。ノズル・アセンブリ13は、図9(A)に示すようにノズル・アセンブリ設置部材14によってブラスト加工室10内にそれぞれ取り付けられる。本実施形態のタンブラ11は傾斜しており、かつ漏出防止面11fを有することから、この形態に合わせてノズル・アセンブリ13を取り付ける。設置部材14は、ブラスト加工室10における取り付け箇所からノズル設置部にかけて、少なくとも一つ以上の可動部材を有したアームによって形成されている。
例えば、図9(A)では複数の角柱部材と複数の円柱部材とを係合させて回動自在なノズル・アセンブリ設置部材14を形成することで、ノズル・アセンブリ13をタンブラ11に対して上下左右方向に自由な位置に設定することができる。ノズル・アセンブリ設置部材14をブラスト加工室10内に設置する場所は特に限定されないが、本実施形態では、回転機構12のベース12d(図3参照)に配置した。具体的には、図9(B)に示すようにベース12d(図9(B)には図示せず)に対してノズル・アセンブリ設置部材14を構成するのに係合される第1、第2、第3、第4、および第5のアーム14a、14b、14c、14d、および14eは下記の通りである。
ベース12d   :それぞれのノズル・アセンブリ13を設置するのに適した位置に円柱部材を設けている。
第1のアーム14a:角柱部材で形成されており、長手方向(図9(B)の紙面の垂直方向)に前記円柱部材と同径の第1の穴を有し、この第1の穴にはベース12dの円柱部材が嵌入されている。また、高さ方向(紙面の上下方向)には第2のアーム14bと同径の第2の穴を有する。
第2のアーム14b:円柱部材で形成されており、その下端が第1のアーム14aの第2の穴に嵌入されて係合する。
第3のアーム14c:角柱部材で形成されており、その一端(図9(B)の右側)の高さ方向に第2のアーム14bと同径の第3の穴を有し、この穴には第2のアーム14bの上端が嵌入されて係合する。また、他端には紙面に対して垂直方向に第5のアーム14eと同径の第4の穴を有し、この穴には第5のアーム14eの一端が嵌入されて係合する。
第4のアーム14d:角柱部材で形成されており、その一端(図9(B)の右側)の紙面に対して垂直方向に第5のアーム14eの円柱部材と同径の第5の穴を有し、この穴には第5のアーム14eの円柱部材が嵌入されて係合する。また、他端付近にはノズル・アセンブリ13を保持する保持具(図示せず)を有する。
第5のアーム14e:円柱部材で形成されており、その一端(図9(B)の紙面に対して奥)は、第3のアーム14cの第4の穴に嵌入されて係合し、その他端は、第4のアーム14dの第5の穴に嵌入されて係合する。
 ここで、ノズル・アセンブリ13の保持具は特に限定されない。例えば、第4のアーム14dにボルト等で固定してもよく、クランプ機構によって保持してもよい。また、該保持具自体を回転可能に構成することで、該ノズル・アセンブリ13の設置の自由度を向上させてもよい。
 本実施形態におけるバリ取り装置では、扉10aの開閉に連動して、ノズル・アセンブリ13の設置部材14が移動する構造としている。すなわち、扉10aを開とした場合はタンブラ11の着脱が容易となるように、扉10aを閉とした場合はタンブラ11内部に噴射材を噴射できるように、ノズル・アセンブリ13が移動するようにした。
 図10を参照して、前記ノズル・アセンブリ13より噴射された噴射材およびバリ取りによって生じた粉塵を分級し、再利用できない噴射材および前記粉塵(以降、「ダスト」と記す)を取り除くと共に再利用可能な噴射材を取り出す分級装置(分離手段)20について説明する。分級装置20は、上面が吸引部材20cを有する天井によって閉止され、かつ連続した断面積を持ち側面に投入部材20dを有する第1の筒状体20aと、上方から下方に向かって連続的に径(断面積)が小さくなる第2の筒状体20bとを連接させて構成される。分級装置20の下面には貯留器21が連接されている。投入部材20dはダクトD(図1)を介してブラスト加工室10に連接されている。また、吸引部材20cはダクトD(図1)を介して回収装置30に連接されている。すなわち、ブラスト加工室10内の空間と、分級装置20内の空間と、貯留器21内の空間と、回収装置30とは連続した空間を形成している。
 分級装置20により取り出された再利用可能な噴射材を貯留するための貯留器21は、図11に示すように、分級装置20の底部に連接した第3の筒状体21aと、下方に向かって連続的に径(断面積)が小さくなる第4の筒状体21bとを連接させて構成される。なお、連続的に径(断面積)が小さくなるとは、下方に向かって一律に径(断面積)が減少するのみならず、径(断面積)の減少率が段階的に異なってもよく、また同一の径(断面積)が連続する区間を含んでもよい。すなわち、下方に向かって径(断面積)が大きくなる区間を含まなければよい。この場合、第4の筒状体21bの側壁が水平面に対して成す角度θが73°から87°の範囲となるように設定する。
この角度が73°より小さいと、貯留器21内部の噴射材がブリッチング現象(棚吊り)により取り出せなくなる現象が生じ易い。この現象を防ぐためには、該角度は大きい方がよいが、該角度が87°よりも大きくなると、後述の排出補助具21dが大型化してしまう。そこで、貯留器21から噴射材を効率よく取り出せ、かつ排出補助具21dを小さくするためには、該角度θは73°から87°の範囲で設定することが好ましい。そして、最下面付近には、貯留器21の内部に貯留されている噴射材をノズル・アセンブリ13に供給するための噴射材取り出し具21cが設置されている。噴射材取り出し具21cはホースH(図2)を介し、ノズル・アセンブリ13の噴射材供給口13dと連接されている。さらに、第4の筒状体21bの最下面には、貯留器21に貯留された噴射材を交換等のために排出するために、排出補助具21dが設けられている。この排出補助具21dとしては、本実施形態ではバタフライバルブを使用したが、これに代えてボールバルブやゲートバルブを用いてもよい。なお、貯留器21の筒状体21aおよび21bは、円筒体でもよく、横断面が多角形の筒状体でもよい。本実施形態では横断面が四角形の筒状体を用いた。
 本実施形態では、分級装置20および貯留器21は、少なくとも貯留器21の噴射材取り出し具21cがブラスト加工室10内に配置されるように設置したが、噴射材をノズル・アセンブリ13へ供給するのに不都合が生じなければ設置場所は特に限定されない。
 本実施形態において、前記ダストを回収するための回収装置30は、固気二相流より固体(ダスト)と気体を分離するための濾布を内包する集塵機を使用した。
また、回収時に濾布上に堆積したダストの除去(払い落とす)方式としては、圧縮空気を間欠的に濾布に吹き付けるパルスジェット方式を使用した。しかし、その方式は特に限定されるものではなく、例えば機械的手段によって払い落とす機械方式を用いてもよい。
図12に示すように、回収装置30には、濾布上から払い落とされて、回収装置30の底部に貯留されたダストを回収装置30の外部に排出するために、排出具31が設けられている。この排出具31は、本実施形態ではボールバルブを用いたが、これに代えて、例えばゲートバルブやロータリーバルブ等を用いてもよい。
(実施例)
 次に、本実施形態のバリ取り装置によるバリ取りについて説明する。本実施例では、被処理部品Wとして0.8×1.6mmのセラミックス系部材を粗面化するための加工について説明する。なお、本明細書において「小型の被処理部品」とは、径または辺が概ね30mm以下程度の大きさの被処理部品を称し、特に径または辺が2mm以下程度の被処理部品に対して本発明のバリ取り装置を好適に用いることができる。
 ブラスト加工室10の扉10aを開け、4つのタンブラ11をブラスト加工室10内部から取り出し、各々のタンブラ11にそれぞれ被処理部品Wを略同量投入する。その後再び該タンブラ11をタンブラホルダ11aに係合させ、ブラスト加工室10内にセットする。また、噴射材(本実施例はジルコニア質)を必要量ブラスト加工室10内に投入し、扉10aを閉める。なお、前記扉10aの開閉は手動でもよいが、例えばエアシリンダ等の機械的動作によりなしてもよい。
 次に、回収装置30を稼働させることで、前記噴射材は回収装置30より発生した吸引力により分級装置20内に移送され、その後貯留器21内に貯留される。
 次に、モータ12aを稼働させることで、4つのタンブラ11が回転する。この回転によってタンブラ11内の被処理部品Wが攪拌される。
 次に圧縮空気発生源を稼働させ、例えば圧力が0.7MPaの圧縮空気を空気ノズル13bより噴射することによってノズル・アセンブリ13内部に負圧が発生する。この負圧によって噴射材がノズル・アセンブリ13に供給され、噴射口13cから圧縮空気と共に噴射される。噴射された噴射材が被処理部品Wの表面に衝突することでバリ取りが行われる。また、タンブラ11の回転により被処理部品Wが攪拌されているので、全ての被処理部品Wが順次噴射材に晒され、全ての被処理部品Wのバリ取りを行うことができる。
 噴射された噴射材とバリ取りによって生じた粉塵との混合体は、回収装置30より発生した吸引力により、ダクトDを介して分級装置20に移送される。分級装置20の内部には、前記回収装置30によって発生した吸引力により、渦状の気流が発生している。すなわち、吸引力は分級装置20の上方より生じているため、分級装置20に投入された前記噴射材および前記粉塵は、この渦状の気流によって重量の重い粉体は下方に、軽い粉体は上方に移動する。すなわち、再利用が可能な噴射材はダストに比べ重いので下方に移動し、貯留器21に貯留され、ホースHを介して再びノズル・アセンブリ13より噴射され、ダストは軽いので上方に移動し、ダクトDを介して回収装置30へ移送される。回収装置30へ移送されたダストは回収装置30内部の濾布の表面に堆積する。濾布の表面に堆積したダストはパルスジェットにより払い落とされて底部に貯留される。貯留されたダストは、排出具31を開放することにより回収装置30の外部に排出される。
 被処理部品Wが目的の形状まで加工された場合、圧縮空気供給源の稼働を停止する。その際、モータ12aの回転は依然として継続している。これはタンブラ11内に残留した噴射材を壁面の貫通穴11iを介して外部に排出するためである。同様に、回収装置30の稼働も依然として継続している。これはブラスト加工室10の内部は噴射材および粉塵で充満しているので、これらを分級装置20を介して、噴射材を貯留器21に貯留(回収)、またはダストを回収装置30にて回収するためである。
 タンブラ11内部の噴射材が排出され、かつブラスト加工室10の内部の噴射材およびダストの回収が完了したら、モータ12aおよび回収装置30の稼働を停止し、ブラスト加工室10の扉10aを開放して被処理部品Wを取り出し、バリ取りが完了する。
 また、被処理部品Wを変えたり、加工目的を変えたりする理由から噴射材を交換するために、貯留器21に貯留された噴射材を排出する必要がある場合は、排出補助具21dを開放することで該噴射材を容易に取り出すことができる。
 また、被処理部品Wが変わる場合などでタンブラ11を別の形状に交換する必要がある場合、ノズル・アセンブリ設置部材14を駆動させノズル・アセンブリ13の位置を調整して、タンブラ11の交換を容易に行うことができる。
 本実施例におけるバリ取り装置1の一例を図13に示す。図13(A)は扉10aの開閉を機械的動力(この場合はエアシリンダ)によってなし、図13(B)は扉10aの開閉を人力(手動)によってなすブラスト装置である。
 なお、噴射材の比重が小さすぎると十分なバリ取りの効果が得られず、大きすぎると噴射材による被処理部品の割れや欠けに繋がる。噴射材の平均径が0.02mmより小さいと十分なバリ取りの効果が得られず、0.08mmより大きいとバリ取りをする箇所への噴射材の衝突が不十分となる。噴射圧力が低すぎると十分なバリ取り効果が得られず、高すぎると、被処理部品に、割れや欠けが発生する。
 すなわち、被処理製品に割れや欠けが発生することなくバリ取りを行うには、噴射材の比重が1.0~3.0、噴射材の平均径が0.02~0.08mm、前記噴流の噴射圧力が0.03MPa以上0.15MPa以下に設定するのが好ましい。
 また、噴射材が混在した気体の噴流を発するノズル先端の開口から被処理部品Wであるバルク状セラミックスからなるコア部材までの距離が、200mmより短いと十分に噴射材が被処理部品であるバルク状セラミックスからなるコア部材に到達するまでに十分拡散せず噴射された噴射材が無駄になる。また500mmより大きいと噴射材が被処理部品に対し疎らにしか衝突せずバリ取りが不十分となる。噴射気流の拡散が大きすぎることなく、効率的なバリ取りをするためには、ノズル先端の開口から被処理部品の距離を200mm以上500mm以下にすることが好ましい。さらに、200mm以上300mm以下とするとより好適である。この適度な距離により、被処理部品に、割れや欠けが発生することはない。
 また、バルク状セラミックスからなるコア部材の位置での噴射材が混在した気体の噴流の噴射範囲における噴射中心と噴射外周部の回転速度差が32mm/s以上64mm/s以下となるようにコア部材をタンブリングするとよい。
 回転速度差が小さいとバリ取りの効率が下がる。回転速度差が大きいとコア部材が互いに衝突して割れや欠けが発生する。
 コア部材が互いに衝突することにより、割れや欠けが発生することなく、効率的なバリ取りをするには回転速度差を32mm/s以上64mm/s以下にするのが好ましい。
 また、噴射材の硬さが低すぎると十分なバリ取り効果が得られず、高すぎると被処理部品に割れや欠けが発生することになる。噴射材の硬さがHV1000~2500にすることで、バルク状セラミックスのコア部材の効率的なバリ取りができる。
 バルク状セラミックスからなるコア部材は、フランジの隙間が0.3mm~0.8mmであって、かつ、造型成形後焼成されて製造された電子部品のインダクタ部材又はコイル部材であって、多角形状でアルミナ若しくは炭化ケイ素からなっていることが多い。そこで、平均径0.02~0.08mmの噴射材を、少なくとも前記複数のフランジの隙間と巻芯部の接続縁又は巻芯部の外周に向かって噴射する。
 これにより、電子部品のインダクタ部材又はコイル部材のフランジの隙間に対し好適な大きさの噴射材を噴射できるので、効率的なバリ取りができる。
 本発明について特定の実施例について説明したが、幾多の変更例および修正例が可能である。例えば、ノズル・アセンブリ13は、加圧タンク等の付帯設備を設置するためのスペースが確保できるのであれば、いわゆる直圧式を用いても良い。
 上述の実施例では、タンブラ11を回転保持するために、タンブラホルダ11aを用いたが、このタンブラホルダ11aを省いて、底部に駆動軸を有したタンブラ11を用いた実施例も構成可能であることに留意されたい。
 噴射材は、鉄系または被鉄系のショットまたはグリットまたは細い線を切断(あるいは切断後角部を丸め加工)した、いわゆるカットワイヤー、セラミックス系、樹脂系、植物系など、一般にバリ取りの噴射材として用いるものであれば好適に適用することができる。
 以下に、本明細書あるいは図面で用いた主な符号をまとめて示す。
1     バリ取り装置
10    ブラスト加工室
10a   扉
11    タンブラ
11a   タンブラホルダ
11b   回転軸
11c   第1の駆動伝達具(スプロケット)
11d   開口部
11e   攪拌促進部材
11f   漏出防止面
11g   側壁面
11h   攪拌促進面
11i   貫通穴
11j   凸部形状のリング
11k   凸部の高さ
12    回転機構(回転手段)
12a   モータ(回転発生手段)
12b   回転軸
12c   第2の駆動伝達具(スプロケット)
12d   ベース
12e   軸受け
12f   駆動伝達手段(チェーン)
13    ノズル・アセンブリ
13a   ノズルホルダ
13b   空気ノズル
13b   空気ノズルの圧縮空気供給口
13b   空気ノズルの圧縮空気噴射口
13c   噴射ノズル
13c   固気二相流の供給口
13c   固気二相流の噴射口
13d   噴射材供給口
13e   噴射材通過経路
13f   混合室
13g   密封部材
14    ノズル・アセンブリ設置部材(ノズル・アセンブリ設置手段)
14a   第1のアーム
14b   第2のアーム
14c   第3のアーム
14d   第4のアーム
14e   第5のアーム
20    分級装置(分離手段)
20a   第1の筒状体
20b   第2の筒状体
20c   吸引部材
20d   投入部材
21    貯留手段
21a   第3の筒状体
21b   第4の筒状体
21c   噴射材取り出し手段
21d   排出補助具
30    回収手段
31    排出具
50    基台
51    移動部材(ローラ)
     ホース(圧縮空気導入用)
     ホース(噴射材供給用)
     分級装置用ダクト
     回収装置用ダクト
W     被処理部品
 上述の実施例では、硬脆材料から形成された被処理部品Wに対するバリ取りについて説明したが、本発明のバリ取り装置は、被処理部品Wが金属材料か非金属材料かを問わず、バリ取り全般に適用することができる。

Claims (14)

  1.  複数のフランジと巻芯部を備えたバルク状セラミックスからなるコア部材の前記複数のフランジの隙間に生じる凸状のバリを取り除くバリ取り処理方法であって、
     一端に開口部を有し他端が閉鎖されている有底の筒状のタンブラに多数のコア部材を投入する工程と、
     前記タンブラを回転させ、前記多数のコア部材を攪拌する工程と、
     前記開口部を貫通して前記バルク状セラミックスからなるコア部材の複数のフランジの隙間に生じた凸部のバリに向って、前記フランジの隙間より小さい噴射材が混在した気体の噴流を噴射する工程と、
     噴射された噴射材を該タンブラの壁面に設けられた貫通穴より該タンブラの外部へ排出する工程と、
    を有することを特徴とするバルク状セラミックスからなるコア部材のバリ取り処理方法。
  2.  前記噴射材の比重が1.0~3.0、噴射材の平均径が0.02~0.08mm、前記噴流の噴射圧力が0.03MPa以上0.15MPa以下であることを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  3.  前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離が200mm以上500mm以下であることを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  4.  前記バルク状セラミックスからなるコア部材の位置での前記噴射材が混在した気体の噴流の噴射範囲における噴射中心と噴射外周部の回転速度差が32mm/s以上64mm/s以下となるようにコア部材をタンブリングすることを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  5.  前記噴射材の硬さがHV1000~2500であることを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  6. 6. 前記バルク状セラミックスからなるコア部材は、フランジの隙間が0.3mm~0.8mmであって、かつ、造型成形後焼成されて製造された電子部品のインダクタ部材又はコイル部材であって、多角形状でアルミナ若しくは炭化ケイ素からなり、平均径0.02~0.08mmの噴射材を噴射することを特徴とする請求項1に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  7.  前記噴射材の噴射量が0.2~0.8Kg/分、前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離が200mm以上300mm以下であることを特徴とする請求項2に記載のバルク状セラミックスからなるコア部材のバリ取り処理方法。
  8.  請求項1から請求項7のいずれかに記載のコア部材のバリ取り処理方法に用いるバリ取り装置であって、前記複数のタンブラと、該複数のタンブラを回転させる少なくとも1以上の回転機構と、噴射材が混在した気体の噴流を噴射する複数のノズル・アセンブリを備え、前記タンブラの外周を形成する壁面に多数の貫通穴が設けられており、前記筒状の内壁には攪拌促進部材が設けられたことを特徴とする電子部品の部材のバリ取り装置。
  9.  前記タンブラの開口部と、前記ノズル・アセンブリは、対向しており、前記噴射材の噴射は前記タンブラの開口部から前記有底の筒状のタンブラに投入された前記複数のコア部材の複数のフランジの隙間に生じた凸部のバリに向かって行なわれることを特徴とする請求項8に記載の電子部品の部材のバリ取り装置。
  10.  前記タンブラは20°~40°の角度で傾けられて設置されていることを特徴とする請求項9に記載の電子部品の部材のバリ取り装置。
  11.  前記タンブラが上部に開口部を有する多角形の箱状物もしくは有底の円筒状物であることを特徴とする請求項10に記載の電子部品の部材のバリ取り装置。
  12.  前記ノズル・アセンブリが噴射材の噴射時の移動を可能とするノズル・アセンブリ設置部材により、前記噴射材が混在した気体の噴流を発するノズル先端の開口からバルク状セラミックスからなるコア部材までの距離を所定の範囲内に制御することを特徴とする請求項11に記載の電子部品の部材のバリ取り装置。
  13.  前記ノズル・アセンブリ設置部材により、噴射を終えた後に前記ノズル・アセンブリを移動させてタンブラを交換することを特徴とする請求項12に記載の電子部品の部材のバリ取り装置。
  14.  前記ノズル・アセンブリは、圧縮空気を前記ノズルホルダ内部に導入し、前記ノズルホルダ内部に負圧を発生させる空気ノズルと、
     前記ノズル・アセンブリの内部で発生した負圧により吸引された噴射材が通過する経路と、前記圧縮空気に噴射材を混合する混合室とを有するノズルホルダと、
     前記混合室で混合された圧縮空気と噴射材を前記コア部材に向かって噴射するための噴射ノズルと、を備え、
     前記ノズルホルダと前記空気ノズルとの間の接続部と、前記ノズルホルダと前記噴射ノズルとの間の接続部とのうちの少なくとも一方は密封部材を有していることを特徴とする請求項13に記載の電子部品の部材のバリ取り装置。
PCT/JP2012/072855 2012-01-12 2012-09-07 電子部品のコア部材のバリ取り処理方法及びその装置 WO2013105301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147011875A KR101959052B1 (ko) 2012-01-12 2012-09-07 전자 부품의 코어 부재의 버(burr) 제거 처리 방법 및 그 장치
JP2013553194A JP6112017B2 (ja) 2012-01-12 2012-09-07 電子部品のコア部材のバリ取り処理方法及びその装置
CN201280055520.1A CN103958126B (zh) 2012-01-12 2012-09-07 电子器件的芯部件的去毛刺处理方法及其装置
IN3417CHN2014 IN2014CN03417A (ja) 2012-01-12 2014-05-06
PH12014501084A PH12014501084A1 (en) 2012-01-12 2014-05-14 Method for deburring core members of electronic components, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012004284 2012-01-12
JP2012-004284 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013105301A1 true WO2013105301A1 (ja) 2013-07-18

Family

ID=48781266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072855 WO2013105301A1 (ja) 2012-01-12 2012-09-07 電子部品のコア部材のバリ取り処理方法及びその装置

Country Status (7)

Country Link
JP (1) JP6112017B2 (ja)
KR (1) KR101959052B1 (ja)
CN (1) CN103958126B (ja)
IN (1) IN2014CN03417A (ja)
PH (1) PH12014501084A1 (ja)
TW (1) TWI598181B (ja)
WO (1) WO2013105301A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019661A1 (ja) * 2013-08-09 2015-02-12 新東工業株式会社 研磨装置および研磨方法
JP2015062964A (ja) * 2013-09-24 2015-04-09 昭和電工ガスプロダクツ株式会社 ショットブラスト装置
CN115383613A (zh) * 2022-10-10 2022-11-25 苏州安洁科技股份有限公司 一种金属内孔毛刺处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269593B2 (ja) * 2015-06-23 2018-01-31 株式会社村田製作所 ワイヤ巻回方法およびワイヤ巻回装置
KR102240178B1 (ko) * 2020-11-25 2021-04-13 윤용집 수지재 성형물 분리장치
TWD220872S (zh) 2021-09-30 2022-09-01 冠欣機械有限公司 離心式噴砂機之部分機殼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176564A (ja) * 1990-11-08 1992-06-24 Nippon Sangyo Kikai Hanbai Kk ショットブラスト装置
JP2003080459A (ja) * 2001-09-10 2003-03-18 Macoho Co Ltd 板状ワークの表面処理装置
JP2004209604A (ja) * 2003-01-06 2004-07-29 Fuji Heavy Ind Ltd サンドブラスト装置
JP2007260874A (ja) * 2006-03-29 2007-10-11 Tdk Corp ブラスト強度の評価方法とブラスト装置の制御方法
JP2010149204A (ja) * 2008-12-24 2010-07-08 Ihi Amtec Co Ltd ブラストノズル及びブラスト方法
WO2011024613A1 (ja) * 2009-08-31 2011-03-03 新東工業株式会社 ブラスト加工用噴射ノズル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277946A (ja) * 1992-04-01 1993-10-26 Showa Tansan Kk ショットブラスト装置
JP3086784B2 (ja) * 1996-08-19 2000-09-11 株式会社不二製作所 ブラスト加工方法及び装置
MY128139A (en) * 2000-03-31 2007-01-31 Neomax Co Ltd Blasting apparatus
CN1583365A (zh) * 2003-08-22 2005-02-23 董禹全 竖装斜射滚筒抛丸机
CN1748940A (zh) * 2005-09-22 2006-03-22 刘毅 一种轴向吸入式无尘喷砂枪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176564A (ja) * 1990-11-08 1992-06-24 Nippon Sangyo Kikai Hanbai Kk ショットブラスト装置
JP2003080459A (ja) * 2001-09-10 2003-03-18 Macoho Co Ltd 板状ワークの表面処理装置
JP2004209604A (ja) * 2003-01-06 2004-07-29 Fuji Heavy Ind Ltd サンドブラスト装置
JP2007260874A (ja) * 2006-03-29 2007-10-11 Tdk Corp ブラスト強度の評価方法とブラスト装置の制御方法
JP2010149204A (ja) * 2008-12-24 2010-07-08 Ihi Amtec Co Ltd ブラストノズル及びブラスト方法
WO2011024613A1 (ja) * 2009-08-31 2011-03-03 新東工業株式会社 ブラスト加工用噴射ノズル

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019661A1 (ja) * 2013-08-09 2015-02-12 新東工業株式会社 研磨装置および研磨方法
JP5737486B1 (ja) * 2013-08-09 2015-06-17 新東工業株式会社 研磨装置および研磨方法
KR20160040678A (ko) * 2013-08-09 2016-04-14 신토고교 가부시키가이샤 연마 장치 및 연마 방법
US9925636B2 (en) 2013-08-09 2018-03-27 Sintokogio, Ltd. Polishing device and polishing method
KR102108604B1 (ko) 2013-08-09 2020-05-07 신토고교 가부시키가이샤 연마 장치 및 연마 방법
JP2015062964A (ja) * 2013-09-24 2015-04-09 昭和電工ガスプロダクツ株式会社 ショットブラスト装置
CN115383613A (zh) * 2022-10-10 2022-11-25 苏州安洁科技股份有限公司 一种金属内孔毛刺处理方法

Also Published As

Publication number Publication date
JP6112017B2 (ja) 2017-04-12
IN2014CN03417A (ja) 2015-10-09
TW201330976A (zh) 2013-08-01
KR101959052B1 (ko) 2019-03-15
CN103958126B (zh) 2017-10-24
PH12014501084B1 (en) 2014-07-28
KR20140112005A (ko) 2014-09-22
JPWO2013105301A1 (ja) 2015-05-11
CN103958126A (zh) 2014-07-30
TWI598181B (zh) 2017-09-11
PH12014501084A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5569529B2 (ja) ブラスト加工装置
JP6112017B2 (ja) 電子部品のコア部材のバリ取り処理方法及びその装置
KR101196526B1 (ko) 블라스트 가공 장치
TWI680835B (zh) 噴嘴組立體及使用該噴嘴組立體的表面處理方法
EP1974861A1 (en) Projector and blasting machine
JP6431661B2 (ja) ショットブラスト装置
JP4893875B1 (ja) ブラスト加工装置
JP6196516B2 (ja) ショットブラスト装置
JP4171539B2 (ja) 直圧式連続研磨材供給・噴射方法及び装置
WO2015194478A1 (ja) ブラスト加工装置及びブラスト加工方法
KR200451727Y1 (ko) 복합식 블라스트 기계
TW201511889A (zh) 拋丸裝置
JP4388268B2 (ja) 連続微粉研磨材供給・噴射方法及び装置
JP4721085B2 (ja) 補助タンブラー及び補助タンブラーによるセラミックス部品のバリ取り方法
JP4936123B2 (ja) 溝部を有する被処理製品のショットブラスト方法および装置
CN217072036U (zh) 一种回转式喷砂打磨设备
CN213106349U (zh) 一种钛宝石表面磨砂装置
CN212071627U (zh) 一种具备不停机移动功能的加砂喷砂机
JP3193434U (ja) ブラスト装置
KR101199890B1 (ko) 커팅 스테인레스 스크랩을 이용한 연마재의 가공장치
JP2014050914A (ja) ショットブラスト装置
JP2002254313A (ja) 液体ホーニング加工方法及び液体ホーニング装置
JP2003165054A (ja) 氷粒ブラスト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553194

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147011875

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12014501084

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865347

Country of ref document: EP

Kind code of ref document: A1