WO2013100354A1 - 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판 - Google Patents

무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판 Download PDF

Info

Publication number
WO2013100354A1
WO2013100354A1 PCT/KR2012/009662 KR2012009662W WO2013100354A1 WO 2013100354 A1 WO2013100354 A1 WO 2013100354A1 KR 2012009662 W KR2012009662 W KR 2012009662W WO 2013100354 A1 WO2013100354 A1 WO 2013100354A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
oriented electrical
phosphate
coating composition
Prior art date
Application number
PCT/KR2012/009662
Other languages
English (en)
French (fr)
Inventor
김정우
권민석
최헌조
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201280065218.4A priority Critical patent/CN104025207B/zh
Priority to US14/369,248 priority patent/US9455062B2/en
Priority to JP2014549959A priority patent/JP5877252B2/ja
Priority to EP12862247.9A priority patent/EP2800103B1/en
Priority to PL12862247T priority patent/PL2800103T3/pl
Publication of WO2013100354A1 publication Critical patent/WO2013100354A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/327Aluminium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal

Definitions

  • Insulating coating composition of non-oriented electrical steel sheet, manufacturing method thereof and non-oriented electrical steel sheet to which insulating coating composition is applied is applied
  • the present invention relates to a non-oriented electrical steel sheet, and more particularly to a non-oriented electrical steel sheet having an insulating coating composition excellent in insulating properties.
  • Non-oriented electrical steel sheet is a steel plate with uniform magnetic properties in all directions on the rolled plate. It is widely used in motors, generator cores, electric motors and small transformers. Stress relief annealing (SRA) to improve magnetic properties after punching In case of loss of cost due to heat treatment than the effect of magnetic characteristics due to stress removal annealing, stress relief annealing is omitted. Doing.
  • SRA Stress relief annealing
  • Insulating film formation is a process of finishing production of products, and in addition to the electrical properties that usually suppress the generation of eddy currents, continuous punchability that suppresses abrasion of mold when forming a core by laminating a large number after punching into a predetermined shape. After removing the annealing process to recover the magnetic properties by removing the processing force of steel sheet and steel sheet, it requires the tacking and surface adhesion that does not adhere to the steel core steel plate. In addition to these basic characteristics, excellent coating workability of coating solution and solution stability that can be used for a long time after blending are required.
  • the non-directional insulating film is mainly intended for the interlayer insulation between steel sheets to be laminated.
  • the coating performance which is advantageous not only for insulation but also for workability, weldability, and corrosion resistance, has been evaluated as a major physical property. It demands excellent electrical steel.
  • non-oriented electrical steel sheet is in the midst of advanced wave by developing high-efficiency motor in line with the government and low-carbon policy.
  • non-oriented electrical steel sheet requires high functionality (high insulation, high heat resistance, high corrosion resistance). Will be done.
  • the present invention has been made to solve the above problems, a mixed metal phosphate of aluminum phosphate and cobalt phosphate, sodium perborate (NaB0 3 ⁇ 43 ⁇ 40) as an oxidation promoter and Si3 ⁇ 4 in the basic composition of the emulsion resin of the epoxy-based Insulation coating solution prepared by mixing acid-type organic / inorganic composites in which the nanoparticles were modified by chemical reaction. Distribution is to provide non-oriented electrical steel sheet with excellent insulation characteristics before and after the SRA removal than conventional thin film products.
  • the insulating film composition may comprise a "heunhap the metal phosphate 30 ⁇ 70wt3 ⁇ 4, 30 ⁇ 70% the organic-inorganic clothing laminated material (composite).
  • the insulation coating composition may further include an oxidation promoter, and may include 0.1 to 1.0 wt% of the oxidation promoter.
  • the size of the silica nanoparticles may be 5 ⁇ 50nm.
  • the mixing bar ratio (aluminum phosphate / cobalt phosphate) of the aluminum phosphate and cobalt phosphate mixed in the mixed metal phosphate may be 0 ⁇ 05 ⁇ 0 ⁇ 2.
  • the solid content of the organic-inorganic composite (composite) is 30 ⁇ 70wt3 ⁇ 4, the ratio of silica (Si0 2 ) / resin in the solid content may be 0.30.6.
  • the oxidation promoter may be sodium perborate (NaB0 3 ⁇ 43 ⁇ 40).
  • a method for preparing an insulating coating composition of an electrical non-oriented electrical steel sheet may include providing a mixed metal phosphate 30 to 70 3 ⁇ 4> composed of aluminum phosphate and cobalt phosphate, and replacing silica nanoparticles with a functional group of an epoxy resin.
  • Providing 30 to 70% of an organic-inorganic composite, and said mixed metal phosphate provided Mixing the organic and inorganic composites followed by stirring.
  • the mixture of the mixed metal phosphate and the inorganic inorganic compound (composi te) may further include 0.1 to 1.0% of an oxidation promoter.
  • the aluminum phosphate is added 5 ⁇ 40g aluminum hydroxide (A1 (0H) 3 ) based on a water solution 100g consisting of 15wt water (3 ⁇ 40) and 85wt phosphoric acid (3 ⁇ 4P0 4 ) 6 ⁇ 10 at a temperature range of 80 ⁇ 90 ° C. It can be prepared by time reaction.
  • the amount of 3 PO 4 ) may be less than 40%.
  • the cobalt phosphate is added to the cobalt hydroxide (Co (0H) 2 ) 2 ⁇ 5g based on the aqueous solution consisting of 15w «water (3 ⁇ 40) and 85wt% phosphoric acid (H 3 P0 4 ) 80 ⁇ 90 ° C in
  • It can be prepared by reacting for 6 to 10 hours.
  • the mixing ratio of the aluminum phosphate and cobalt phosphate may be 0.05 to 0.2.
  • the solid content of the organic inorganic composite (composi te) is 30 to 70%, the ratio of silica (Si0 2 ) / resin in the solid content may be 0.3 ⁇ 0.6 '. '
  • the additive organic and inorganic composites may be modified by modifying silica (Si0 2 ) particles having a particle size of 10 to 50 nra in an acidic epoxy resin.
  • silica (Si0 2 ) particles having a particle size of 10 to 50 nra in an acidic epoxy resin.
  • an insulating coating layer is formed, and the insulating coating layer includes aluminum phosphate (A1 (3 ⁇ 4P0 4 ) X ⁇ 3 ) and cobalt phosphate.
  • the insulating coating composition may include 30 to 70 wtt of the mixed metal phosphate and 30 to 70 wort of the organic and inorganic composites.
  • the insulating coating composition may further include an oxidation promoter, and may include the oxidation promoter 0.1 to 1.0 ⁇ 3 ⁇ 4) in the insulating coating composition.
  • the size of the silica nanoparticles in the non-oriented electrical steel sheet may be 5 ⁇ 50nm.
  • the mixing ratio (aluminum phosphate / cobalt phosphate) of the aluminum phosphate and cobalt phosphate mixed in the mixed metal phosphate may be 0.05 to 0.2.
  • Solid content of the organic-inorganic composite (composite) is 30 ⁇ 70wt%, the ratio of silica (Si0 2 ) / resin in the solid content may be 0.3-0.6.
  • the oxidation promoter may be sodium perborate (NaB0 3 ⁇ 4H 2 0).
  • the ratio of the inorganic material in the insulating coating layer may be 0.55 ⁇ 0.95.
  • the distribution area of silica (Si0 2 ) distributed in the insulating coating layer may be 5-30%.
  • the electrical steel sheet method, the coating layer formed of the coating layer by the insulating coating composition, the thickness of the coating layer is less than I.
  • MII may have an insulation resistance property of 10.0 ⁇ or more.
  • the thickness of the coating layer is 1.0zm or less Insulation resistance may be 10.0 Qasf or more.
  • silica (Si0 2 ) particles are uniformly distributed in the coating layer.
  • a silica (Si0 2 ) nanocomposite can be applied to the production of the coating composition for non-oriented electrical steel sheet to provide a non-oriented electrical steel sheet having an excellent insulating coating.
  • the present, invention is to provide a non-oriented electrical steel sheet having excellent insulation properties before and after the high-to uniformly distribute nanoparticles in the insulating coating of the electrical steel sheet, the stress-relief annealing by controlling the size and dose of nanoparticles
  • FIG. 1 is a process flowchart of a method of manufacturing an insulating coating of an non-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating single and multiple bonds of aluminum phosphate with phosphoric acid in the mixed metal phosphate constituting the insulating coating composition of the electrical steel sheet according to the present invention.
  • Figure 4 is a view showing a cross-sectional view before the spring removal annealing coating layer of the electrical steel sheet dried after coating the insulating coating composition according to the present invention on the surface.
  • FIG. 5 is a view showing a cross-sectional view of the coating layer after the stress relief annealing of the electrical steel sheet dried after coating the insulating coating composition according to the present invention on the surface.
  • FIG. 6 is a view showing a cross section of a coating layer (insulation film) to which the insulation coating composition of the electrical steel sheet according to the present invention is applied.
  • An insulating film composition of the non-oriented electrical steel sheet according to ⁇ a preferred embodiment of the invention aluminum phosphate (Al (H 3 P0 4; - 3) and cobalt phosphate (heunhap metal phosphate consisting of Co (H 3 P0 4) 3 ) And organic / inorganic composites composed of epoxy resins and silica (Si0 2 ) nanoparticles substituted with functional groups of the epoxy resins.
  • composition of the insulating film is aluminum phosphate (AKHsP ⁇ 3 ) and cobalt phosphate
  • the insulating film composition further comprises 0.1 to 1.0% of an oxidation promoter.
  • the organic-inorganic composite comprises an epoxy resin and silica (Si02) nanoparticles substituted in the functional group of the epoxy resin, the size of the silica nanoparticles is characterized in that 5 ⁇ 50nm.
  • the mixing ratio (aluminum phosphate / cobalt phosphate) of the aluminum phosphate and cobalt phosphate mixed in the mixed metal phosphate is 0.05-0.2.
  • the organic solid content of the inorganic composite material (composite) is 30 ⁇ 70wt%, in the solid component
  • the ratio of silica (Si0 2 ) / resin is characterized by being 0 ⁇ 3 to 0.6.
  • the organic inorganic composite (composite) is characterized in that the silica (Si3 ⁇ 4) particles having a particle size of 10 ⁇ 50nm in the acidic epoxy resin.
  • the oxidation promoter is characterized in that sodium perborate (NaB0 3 ⁇ 43 ⁇ 40).
  • FIG. 1 is a process flowchart showing a manufacturing process of the insulating coating composition according to the present invention.
  • a method for preparing an insulating coating composition of an electrical non-oriented electrical steel sheet comprising providing 30 to 70 wt% of a mixed metal phosphate composed of aluminum phosphate and cobalt phosphate. and a substitution in which u ⁇ inorganic composite material (composite) step, and a step of stirring the common haphu heunhap metal phosphate and the organic-inorganic composite material is provided that provides 30 to 70%.
  • insulating coating composition according to the present invention can solve the problem of the insulating properties before and after the removal of annealing (SRA) of the steel sheet and the tacky problem caused by the introduction of phosphate.
  • SRA annealing
  • the metal phosphate used in the present invention may be prepared by mixing a high concentration of aluminum phosphate (AKHsPO n ⁇ 3 ) and cobalt phosphate ((Co (H 3 P0 4 ) 3 ).
  • Aluminum Phosphate (AKHgP rf ⁇ 3 ) is added at 10-40g of aluminum hydroxide (A1 (0H) 3 ) based on 100g of 15wt% water (3 ⁇ 40) and 85wt% free phosphoric acid (3 ⁇ 4P0 4 ) at 80 ⁇ 90 ° C.
  • Cobalt phosphate ((Co (H 3 P0 4 ) 3 ) is 15wt% water (0)
  • It can be prepared by adding 2-5 g of cobalt hydroxide (Co (0H) 2 ) to 100 g of an aqueous solution of 85 wt% phosphoric acid (H 3 P0 4 ) and reacting at 80-90 ° C. for 6-10 hours.
  • Co (0H) 2 cobalt hydroxide
  • H 3 P0 4 85 wt% phosphoric acid
  • the amount of aluminum hydroxide (AK0H) 3 ) was adjusted to 5-40 g based on 100 g of 15 wt 3 water (H 2 0) and 85 wt% phosphoric acid (H 3 P0 4 ). If the amount of aluminum hydroxide (AK0H) 3 ) is less than 10 g, surface hygroscopicity and powder development may be caused by high free phosphoric acid in the coating composition. If it is more than 40 g, metal phosphate may be recrystallized, resulting in inferior solution stability. ⁇
  • cobalt phosphate (Co (H 3 P0 4 ) 3
  • cobalt hydroxide (Co (0H) 2 2-5g) is injected into free phosphoric acid (cobalt hydroxide (Co (0H) 2 ) It exists in the form dissolved in cobalt hydroxide (Co (0H) divalent free phosphoric acid) without reacting with free phosphoric acid, so that the ratio of cobalt phosphate / aluminum phosphate is 0.050.2 in order to improve the coating workability of the insulating coating composition. It was set as.
  • the ratio of cobalt phosphate / shallow aluminum phosphate is less than 05, the coating workability is inferior, and if the ratio of cobalt phosphate / aluminum phosphate is greater than 0.2, hygroscopicity and powder development may occur.
  • the mixed metal phosphate may improve stickyness and precipitation of free phosphoric acid due to adhesion inferiority of the insulating film (coating layer) and the material (steel plate) and introduction of phosphate, and improve the cross-sectional characteristics before and after deflection annealing (SRA). It can be improved.
  • an organic / inorganic composite in which nanoparticles are replaced by chemical reactions is applied to a resin which is not a conventional colloidal sol form for uniform dispersion of nanoparticles in an insulating coating composition.
  • the average particle size of Si3 ⁇ 4 particles of the organic / inorganic composite modified by the chemical reaction is 5-50 nm, and the solid content of the Si0 2 nanoparticles in the organic / inorganic composite is 10-50%.
  • the average size of Si3 ⁇ 4 particles substituted in the Si0 2 nanocomposite is 5 nm or less, the overall surface area of the particles increases, so that the insulating properties are improved by maximizing the barrier effect, but the film composition and the price are expensive. have.
  • the average particle size is 50 nm or more, the total surface area of Si0 2 is reduced, resulting in inferior insulation properties.
  • the solid content of Si3 ⁇ 4 nanoparticles substituted in the epoxy resin is injected at 10% or less, the improvement of the insulating properties by the Si0 2 nanoparticles is not significant, and when the solid content is 50% or more, it is obtained by the high inorganic ratio in the coating layer. Inferiority problems may occur.
  • the ratio of the inorganic material composed of the mixed metal phosphate and silica (Si02) nanoparticles in the insulating coating composition except water is characterized in that 0.55 ⁇ 0.95. If the inorganic material is less than 0.55, the degree of improvement of the insulation properties is not large and there is a problem of poor adhesion after SRA. On the other hand, when the inorganic content exceeds 0.95, there is a problem of inferior corrosion resistance and punchability.
  • the presence or absence of modifying the silica (Si0 2 ) nanoparticles in the epoxy resin by chemical reaction The composite particles are applied.
  • the silica (Si0 2 ) average particle size of organic / inorganic composites modified by the above chemical reaction is 5 ⁇ 50nm and the solid content of nanoparticles in organic / inorganic composites is
  • the molecular weight of the epoxy resin contained in the organic / inorganic composite material is 1,000 ⁇ 4,000, Tg (glass transition temperature) is 40 ⁇ 60 ° C, solid content is 20-40%, the viscosity is 50 ⁇ 200cp.
  • the method for producing an insulating coating composition of the non-oriented electrical steel ⁇ is the mixed metal phosphate and oil. It is characterized by further mixing 0.1 to 1.0% of the oxidation promoter to the mixture of inorganic composites.
  • the introduction of phosphate may cause problems with hygroscopicity or adhesion during annealing due to trace amounts of free phosphoric acid remaining in the insulation coating.
  • the present invention focuses on the fact that sodium (Na) cation promotes reaction of free phosphoric acid remaining in the iron (Fe) -based oxide and coating solution.
  • the oxidation promoter may include sodium-based materials including sodium carbonate .
  • NaB0 cracks (NaB0 3 ⁇ 43 ⁇ 40) are easily dissociated in aqueous solution and do not adversely affect the solution stability when added to the insulating coating composition, and do not harm surface properties including corrosion resistance.
  • FIG. 3 is a view showing that sodium perborate used as an oxidation promoter is dissociated in an aqueous solution to promote reaction of free phosphoric acid and iron oxide.
  • the sodium (Na) cation dissociated in the aqueous solution serves as an oxidation promoter to induce a chemical bond with iron oxide at a high temperature (above 250 ° C.) of free phosphoric acid remaining in the coating layer. .
  • the injection amount of sodium perborate (NaB0 3 ⁇ 43 ⁇ 40) is based on 100 g of the insulating coating composition. Below lg, hygroscopicity and powder development occurred on the surface despite high drying temperature. Above Og, corrosion resistance and weather resistance are inferior.
  • the aluminum phosphate was added to 5 g of aluminum hydroxide (AK0H) 3 ) in 100 g of an aqueous solution consisting of 15 wt% water (3 ⁇ 40) and 85 wt% phosphoric acid (H 3 P0 4 ), and the temperature range was 80 to 90 ° C. It is characterized by the fact that it is prepared by reaction.
  • the cobalt phosphate is added to the cobalt hydroxide (Co (0H) 2 ) 2-5g in 100g aqueous solution consisting of 15wt% water (3 ⁇ 40) and 85wt% phosphoric acid (P0 4 ) 6 ⁇ in the temperature range 80 ⁇ 90 ° C It is characterized in that the reaction is prepared for 10 hours.
  • the mixing ratio of the aluminum phosphate and cobalt phosphate is characterized in that 0.05 ⁇ 0.2.
  • the solid content of the organic-inorganic composite (composite) is 30 ⁇ 70wt%, characterized in that the ratio of silica (Si0 2 ) / resin in the solid content is 0.3-0.6.
  • the organic / inorganic composite is characterized in that the silica (Si02) particles having a particle size of 10 to 50nm in the acidic epoxy resin.
  • the non-oriented electrical steel sheet is characterized in that the ratio of the inorganic in the insulating coating layer is 0.55 ⁇ 0.95.
  • the distribution area of silica (Si0 2 ) distributed in the insulating coating layer is characterized in that 5 ⁇ 30%.
  • the coating solution composition containing the nanoparticles on the test specimen 0.5 ⁇ 1.0 coating thickness per side, 30 (750 ° C. heat treatment for 10-30 seconds in the basic range of non-oriented electrical steel sheet It can provide non-oriented electrical steel sheet with excellent corrosion resistance, weather resistance, heat resistance and adhesion before and after SRA as well as excellent insulation.
  • a test specimen containing silicon (Si) in a weight ratio of 3.15 wt> and a sheet thickness of 0.35 mm high quality non-oriented electrical steel sheet (150 * 50 mm) was prepared, and the solution prepared as shown in Table 1 on the bar coater ( Each prepared disclosure using a bar coater and a roll coater After applying to a certain thickness (0.6 ⁇ 0.8 ⁇ ) on the piece and kept in a drying furnace of temperature range 300 ⁇ 750 ° C for 10-30 seconds and then cooled slowly in the air.
  • Table 1 15wt% water (0) and 85wt% free phosphoric acid (H 3 P0 4) aqueous solution 100g hydroxide, aluminum (A1 (0H) 3) aluminum to the amount of remaining free acid Al after the solution stability and the reaction according to the injection amount of the
  • the binding amounts of (A1) and phosphorus (P) are shown.
  • an injection amount of aluminum hydroxide (AI (0H) 3) it is preferable to select an injection amount of aluminum hydroxide (AI (0H) 3) to 10 to 40 g.
  • AI (0H) 3 aluminum hydroxide
  • 30-4OT which minimizes the amount of free phosphoric acid after reaction and excellent solution stability is preferable.
  • Table 2 shows cobalt phosphate ((Co (3 ⁇ 4P0 4 ) 3 ) and aluminum phosphate (A1 (H 3 ) substituted with 30 g of cobalt hydroxide (Co (0H) 2 and 30 g of aluminum hydroxide (AK0H) 3 ) based on 100 g of free phosphoric acid, respectively.
  • P0 4 ) X 3 fixed the mixing ratio of cobalt phosphate / aluminum phosphate to 0.1
  • the solution stability, coating workability, surface condition, corrosion resistance, and insulation properties of the mixed metal phosphate and silica (Si0 2 ) nanocomposites were shown.
  • the particle size of the silica nanocomposite used here was 10 nm, and the solid content of silica was 30%. Solution stability and coating workability were very good in the ratio of composites and metal phosphates from 8: 2 to 4: 6. Surface state was also obtained when the ratio of composites and metal phosphates was 8: 2 to 3: 7.
  • the corrosion resistance was very good when the ratio of composite to metal phosphate was 7: 3 to 4: 6.
  • Insulation measurement method is to place one test specimen on the plate to make contact with the electrode contact and pressurize to 300psi (20.4atm) by pressurizing device. When the test pressure is reached, adjust the sliding resistor and read the ammeter reading under a voltage of 0.5V.
  • the injection ratio of cobalt phosphate / aluminum phosphate does not affect the insulation properties, but the higher the cobalt phosphate / aluminum phosphate ratio, the better the improvement in waterability of the coating composition.
  • Corrosion resistance is evaluated by 5 3 ⁇ 4>, 35 ° C, NaCl solution for 8 hours. It is very excellent when the rust area is below 2%, excellent when below 5%, and below 20%. If good, less than 3OT usually, 50% or more was marked as bad.
  • the SRA pre-adhesiveness is shown by the minimum arc diameter without film peeling when the test specimen is bent 180 ° in contact with an arc of 5, 10, 20, 30-100 mmf.
  • the minimum arc diameter was 5 ⁇ or less, which is very good, 10 ⁇ or less, which is excellent, and 20 ⁇ or less.
  • the adhesiveness after SRA was heat treated at 80CTC for 2 hours in dry 100% nitrogen gas made a scratch on the surface with Cross Cut Tester, and the adhesion of the film peeling powder appeared when the adhesive tape of a certain size was attached and detached.
  • the degree of contamination was quantified.
  • the cross cut tester made 100 scratches in the horizontal and vertical direction at intervals of 1 ⁇ , and then stuck a certain size of adhesive tape.
  • the presence and absence of tape contamination was quantified (3 ⁇ 4).
  • 0 means that there is no film peeling from the surface of the film after SRA
  • 100 means that the entire tape area is contaminated with film peeling.
  • Film hardness was measured by the semi-automatic pencil hardness tester. The test was carried out by applying a pencil core defined in KSG 2603 (pencil) at about 45 degrees with respect to the drawings, and scraping the surface of the material with a load of about lkgf (9.8N) to measure the surface change of the material (ASTM D2197). ). When pencil hardness is 9H, very good, 8H is excellent, 6 ⁇ 7H is usually, 4 ⁇ 5H is very inferior.
  • FIGS. 4 and 5 are photographs observed by scanning electron microscopy (SEM) of the cross-section of the coating layer before and after the stress relief annealing (SRA) of the electrical steel sheet by processing with a focused ion beam (RIB). As can be seen from the picture, it can be seen that there is no bubble or crack in the coating layer.
  • FIG. 6 is a photograph of TEM and EPMA mapping after processing Si0 2 nanoparticles distribution in FIB on the cross section of the coating layer. As can be seen in Figure 6 Si0 2 nanoparticles in the coating layer is uniformly distributed on the surface, Si3 ⁇ 4 nanoparticles in the coating layer is bonded in the coating layer
  • the silica nanoindenters distributed in the coating layer in FIG. 6 have an average particle size of lOnra, and those represented by light (white) color represent nanoparticles.
  • the uniform distribution of these particles induces a series of electrostatic series micro-dielectric effects, improving the insulation resistance.
  • the free volume is not affected by the increase in pressure at the interface, so porosity inside the coating layer as in the existing coating layer. If it is included, the phenomenon such as the reduction of free volume does not occur, so the insulation is not affected by free volume reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

무방향성 전기강판의 절연피막 조성물이 개시된다. 본 발명에 의한 무방향성 전기강판의 절연피막 조성물은 알루미늄 인산염(Al(H3PO4)x=1~3)과 코발트 인산염(Co(H3PO4)3)으로 이루어진 혼합 금속인산염, 및 에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카(SiO2) 나노입자로 이루어진 유・무기 복합재(composite)를 포함한다.

Description

【명세서】
【발명의 명칭】
무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판
【기술분야】
본 발명은 무방향성 전기강판에 관한 것으로, 보다 상세하게는 절연특성 이 우수한 절연 피막 조성물이 형성된 무방향성 전기강판에 관한 것이다 .
【배경기술]
무방향성 전기강판은 압연판 상의 모든 방향으로 자기적 성질이 균일한 강판 으로 모터, 발전기의 철심, 전동기 , 소형 변압기 등에 널리 사용되는데, 타발 가공 후 자기적 특성의 향상을 위해 응력제거 소둔 (SRA)을 실시하여 야 하는 것과 응력 제 거 소둔에 의한 자기 적 특성 효과보다 열처리에 따른 경 비 손실이 클 경우 응력 제 거 소둔을 생략하는 두 가지 형 태로 구동모터, 가전, 대형모터 수요처에서 구분하 여 사용하고 있다 .
절연피막 형성은 제품의 마무리 제조공정에 해당하는 과정으로서 통상 와전 류의 발생을 억제시키는 전기적 특성 이외에 소정의 형상으로 타발가공 후 다수를 적층하여 철심으로 만들 때, 금형의 마모를 억제하는 연속타발 가공성과 강판의 가 공웅력올 제거하여 자기적 특성을 회복시키는 웅력제거 소둔 과정 후 철심강판간 밀착하지 않는 내 점착 (st icking)성 및 표면 밀착성 등을 요구한다. 이 러한 기본적 인 특성 외에 코팅용액의 우수한 도포 작업성과 배합 후 장시간 사용 가능한 용액 안정성 등도 요구된다 .
한편, 무방향성 절연피막은 적층되는 철판 사이의 층간 절연훌 주목적으로 하고 있다 . 그러나 소형 전동기기의 사용이 확대되면서 절연성뿐만 아니라, 가공 성, 용접성, 내식성에 유리한 피막 성능을 주요한 물성으로 평가하게 되 었으며, 최 근 들어서는 강판 표면의 품질 또한 사용 특성에 영향을 미치면서 표면품질이 우수 한 전기강판을 요구하고 있다 . ,
또한, 무방향성 전기강판은 현재 정부와 저탄소 정 책에 발 맞추어 고효율 모 터 개발에 의한 고급화 물결을 타고 있으며, 고급화로 나아갈수록 전기강판 표면은 고기능성 (고절연성, 고내열성, 고내식성 )을 요구하게 된다 .
특히 와전류 손실 (Eddy Current Loss)을 최소화함으로써 모터의 성능을 극대 화 할 수 있는 무방향성 전기강판 층간 우수한 절연성은 필수 항목이다.
무방향성 전기강판에 우수한 절연성을 확보하기 위해서는 코팅 두께를 증가 시키는 방법 이 가장 일반적 인 방법 이다 . 그러나 코팅두께가 증가할 경우, 무방향성 전기강판에서 요구하는 용접성, 내열성, SRA 전 /후 밀착성 및 점적율 (Stacking Factor) 등의 특성이 열위해지는 단점이 있다.
【발명의 상세한설명】
【기술적 과제】
본 발명은 상기와 같은 문제점올 해결하기 위해 안출된 것으로, 알루미늄 인 산염과 코발트 인산염의 흔합 금속인산염, 산화촉진제로 과붕산나트륨 (NaB03 · 4¾0) 및 에폭시계 계통의 에멀젼 수지의 기본 조성에 Si¾ 나노입자를 화학적인 반응에 의해 개질시킨 산성 타입의 유 /무기 복합재를 흔합하여 제조한 절연코팅 용액올 무 방향성 전기강판에 박막 두께로 도포함에도 불구하고 코팅층 내에 나노입자 크기, 주입량 및 나노 입자의 균일 분포에 의해 기존 박막 제품보다 웅력제거 소둔 (SRA) 전 /후월등히 우수한 절연 특성을 가진 무방향성 전기강판을 제공하는데 있다. 【기술적 해결방법】
상기 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 무방향성 전기강 판의 절연피막의 조성물은 알루미늄 인산염 (Α1(¾Ρ04)χ=1-3)과 코발트 인산염
(Co(H3P04)3)으로 이루어진 혼합 금속인산염, 및 에폭시 수지와 상기 에폭시 수지의 기능기쎄 치환된 실리카 (Si ) 나노입자로 이루어진 유ᅳ무기 복합재 (composite)를 포함한다.
상기 절연 피막조성물은'상기 흔합금속인산염 30~70wt¾, 상기 유 ·무기 복 합재 (composite) 30~70 %을 포함할 수 있다.
상기 절연피막 조성물은 산화촉진제를 더 포함하며, 상기 산화촉진제 0.1~1.0wt%이 포함될 수 있다.
상기 실리카 나노입자의 크기는 5~50nm일 수 있다.
상기 혼합 금속인산염 내에 흔합된 상기 알루미늄 인산염과코발트 인산염의 흔합바율 (알루미늄 인산염 /코발트 인산염)은 0·05~0·2일 수 있다.
상기 유 ·무기 복합재 (composite)의 고형분은 30~70wt¾이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.30.6일 수 있다.
상기 산화촉진제는 과붕산나트륨 (NaB03 · 4¾0)일 수 있다.
본 발명의 일 실시예에 의한무방향성 전기강판의 절연피막조성물 제조방법 은 알루미늄 인산염과 코발트 인산염으로 구성된 혼합 금속인산염 30~70 ¾>를 제공 하는 단계, 에폭시 수지의 기능기에 실리카 나노입자를 치환시킨 유ᅳ무기 복합재 (composite) 30~70 %를 제공하는 단계, 및 제공된 상기 흔합 금속인산염과 상기 유 ᅳ 무기 복합재를 혼합 후 교반하는 단계를 포함한다.
상기 흔합 금속인산염 및 유 ᅳ 무기 복합재 (composi te)의 흔합물에 산화촉진 제 0. 1~1.0 %를 더 포함할 수 있다 .
상기 알루미늄 인산염은 15wt 물 (¾0)과 85wt 인산 (¾P04)으로 이루어진 수 용액 lOOg을 기준으로 수산화 알루미늄 (A1 (0H)3) 5~40g을 넣고 온도범위 80~90°C에 서 6~10시간 반응시켜 제조될 수 있다.
상기 알루미늄 인산염 제조시, 수산화 알루미늄과 인산의 화학결합에 의해 알루미늄과 인은 단일 (A1-P)결합, 이중결합 (A1=P) 및 삼중결합 (A1≡P)을 형성하고, 자유인산 (H3P04)의 양은 40% 미만일 수 있다.
상기 코발트 인산염은 15w« 물 (¾0)과 85wt% 인산 (H3P04)으로 이루어진 수용 액 lOOg을 기준으로 수산화 코발트 (Co(0H)2) 2~5g을 넣고 온 £범위 80~90°C에서
6~10시간 반응시켜 제조될 수 있다 .
'상기 알루미늄 인산염과 코발트 인산염의 혼합비율 (알루미늄 인산염 /코발트 인산염 )은 0.05-0.2일 수 있다 .
상기 유 ᅳ 무기 복합재 (composi te)의 고형분은 30~70 %이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.3~0.6일 수 '있다. '
상가 유,무기 복합재는 산성 계 에폭시 수지에 입자크기가 10~50nra인 실리카 (Si02) 입자를 개질시 킨 것일 수 있다 . · 본 발명의—바람직한 다른 실시 예에 의한 무방향성 전기강판은 절연 코팅층이 형성되며, 상기 절연 코팅층은, 알루미늄 인산염 (A1 (¾P04)X3)과 코발트 인산염
(Co(¾P04)3)으로 이루어진 흔합 금속인산염 ; 및 에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카 (Si02) 나노입자로 이루어진 유 ᅳ 무기 복합재 (composi te)를 포함하는 절연피막 조성물을 상기 전기강판의 표면에 도포한 후 건조시 켜 형성된 것을 특징으로 한다.
상기 절연 피막 조성물은, 상기 혼합 금속인산염 30~70wt¾, 상기 유 · 무기 복합재 (composi te) 30~70wrt을 포함할 수 있다 .
상기 절연피막 조성물은 산화촉진제를 더 포함하며, 상기 절연피막 조성물 내에 상기 산화촉진제 0. 1~1.0^¾)을 포함할 수 있다 .
상기 무방향성 전기강판에서 상기 실리카 나노입자의 크기는 5~50nm일 수 있 다. 상기 무방향성 전기강판의 절연 피막조성물에서 상기 흔합금속인산염 내에 혼합된 상기 알루미늄 인산염과 코발트 인산염의 혼합비율 (알루미늄 인산염 /코발트 인산염)은 0.05~0.2일 수 있다.
상기 유 ·무기 복합재 (composite)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.3-0.6일 수 있다.
상기 무방향성 전기강판의 절연 피막 조성물에서 상기 산화촉진제는 과붕산 나트륨 (NaB03 · 4H20)일 수 있다.
상기 절연 코팅층내 무기질의 비율이 0.55~0.95일 수 있다.
상기 절연 코팅층내에 분포된 실리카 (Si02)의 분포 면적이 5~30%일 수 있다. 상기 절연 피막 조성물에 의해 코팅층이 형성된 전기강판메서, 코팅층의 두 께가 I. MII 이하에서 절연 저항특성이 10.0 Ωαιί 이상일 수 있다.
상기 절연 파막 조성물을 도포한 후, 온도범위 700~85(TC, 100% 질소 (N2)분 위기에서 웅력제거소둔 (SRA) 공정 후에도 코팅층의 소실이 거의 없으며, 코팅층의 두께가 1.0zm 이하에서 절연저항 특성이 10.0 Qasf 이상일 수 있다.
상기 절연 피막 조성물에 의해 코팅층이 형성된 전기강판에서, 코팅층 내에 실리카 (Si02) 입자들이 매우 균일하게 분포하고 있다.
【유리한 효과】
본 발명에 의하면, 실리카 (Si02)나노 복합재 (composite)를 무방향성 전기강 판용 피막 조성물 제조에 적용하여 우수한 절연 피막을 가지는 무방향성 전기강판 을 제공할수 있다.
., 또한, 본,발명은 전기강판의 절연 코팅층 내에 나노입자를 균일하게분포시키 고, 나노입자의 크기 및 주입량을 제어함으로써 응력제거 소둔 전후에 우수한 절연 특성을 가진 무방향성 전기강판을 제공할 수 있다ᅳ
【도면의 간단한 설명】
도 1은 본 발명의 일 실시예에 의한 무방향성 전기강판의 절연 피막의 제조 방법의 공정 순서도이다.
도 2는 본 발명에 의한 전기강판의 절연 피막 조성물을 구성하는 흔합 금속 인산염내의 알루미늄 인산염이 인산과 이루는 단일 및 다중결합을 도시한 도면이 다.
도 3은 본 발명에 의한 전기강판의 절연 피막 조성물을 구성하는 유 '무기 복합재를 구성하는 나트륨 양이온이 자유인산과 철산화물과의 반응을 촉진시키는 것을 도시한도면이다.
도 4는 본 발명에 의한 절연 피막 조성물을 표면에 도포후 건조시킨 전기강 판의 웅력제거 소둔전 코팅층 단면을도시한도면이다. ,
도 5는 본 발명에 의한 절연 피막 조성물을 표면에 도포후 건조시킨 전기강 판의 응력제거 소둔후 코팅층 단면을 도시한도면이다.
도 6은 본 발명에 의한 전기강판의 절연 피막 조성물이 도포된 코팅층 (절연 피막)의 단면을 도시한도면이다.
【발명의 실시를 위한 최선의 형태】
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형 태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하 게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이 다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하, 본 발명의 바람작한 실시예에 의한 무방향성 전기강판의 절연피막 조 성물에 대하여 설명하기로 한다.
본 발명의 바람직한 실시예에 의한 무방향성 전기강판의 절연피막조성물은 알루미늄 인산염 (Al(H3P04; -3)과 코발트 인산염 (Co(H3P04)3)으로 이루어진 흔합 금 속인산염, 및 에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카 (Si02) 나 노입자로 이루어진 유 ·무기 복합재 (composite)를포함한다.
상기 절연피막의 조성물은 알루미늄 인산염 (AKHsP ᅳ 3)과 코발트 인산염
(Co(¾P04)3)으로 구성된 흔합 금속인산염 30~70wt¾>, 및 유 '무기 복합재
(composite) 30~70wt )를 포함한다.
상기 절연피막조성물은산화촉진제 0.1~1.0 %를 더 포함한다.
상기 유 ·무기 복합재 (composite)는 에폭시 수지와상기 에폭시 수지의 기능 기에 치환되어진 실리카 (Si02) 나노입자를 포함하며, 상기 실리카 나노입자의 크기 는 5~50nm인 것을특징으로 한다.
상기 혼합 금속인산염 내에 흔합된 상기 알루미늄 인산염과코발트 인산염의 흔합비율 (알루미늄 인산염 /코발트 인산염)은 0.05-0.2인 것을 특징으로 한다.
상기 유무기 복합재 (composite)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0·3~0.6인 것을 특징으로 한다.
상기 유ᅳ무기 복합재 (composite)는 산성계 에폭시 수지에 입자크기가 10~50nm인 실리카 (Si¾) 입자를 개질시킨 것을 특징으로 한다.
상기 산화촉진제는 과붕산나트륨 (NaB03 · 4¾0)인 것을 특징으로 한다.
도 1은 본 발명에 의한 절연 피막조성물의 제조 공정을 도시한 공정 순서도 이다.
본 발명의 바람직한 다른 실시예에 의한무방향성 전기강판의 절연 피막 조 성물의 제조방법은 알루미늄 인산염과 코발트 인산염으로 구성된 흔합 금속인산염 30~70wt%를 제공하는 단계, 에폭시 수지의 기능기에 실리카 나노입자를 치환시킨 유무기 복합재 (composite) 30~70 %를 제공하는 단계, 및 제공된 상기 흔합 금속 인산염과상기 유 ·무기 복합재를 흔합후 교반하는 단계를 포함한다.
본 발명에 의한 절연 피막 조성물을 적용하면, 강판의 옹력제거 소둔 (SRA) 전 /후의 절연특성과 인산염 도입에 의해 발생하는 흡습성 (tacky) 문제를 해결할 수 있다.
먼저, 본 발명에서 사용된 금속인산염은 고농도의 알루미늄 인산염 (AKHsPO nᅳ 3)과코발트 인산염 ((Co(H3P04)3)의 흔합하여 제조할수 있다.
알루미늄 인산염 (AKHgP rfᅳ 3)은 15wt% 물 (¾0)와 85wt% 자유인산 (¾P04)의 수용액 100g을 기준으로 수산화 알루미늄 (A1(0H)3)을 10~40g 넣고 80~90°C에서 6~10 시간 반웅시켜 제조할 수 있으며, 코발트 인산염 ((Co(H3P04)3)는 15wt% 물 ( 0)와
85wt% 인산 (H3P04)의 수용액 100g에 수산화 코발트 (Co(0H)2)를 2~5g 넣고 80~90°C 에서 6~10시간 반응시켜 제조할 수 있다.
일반적으로, 금속인산염을 다량 포함한 '절연피막 조성물을 사용하여 무방향 성 전기강판 표면에 코팅한 후 시간이 지나면 미반웅된 자유인산이 석출되어 자유 인산에 의한 흡습성 또는 표면 발분 현상이 나타날 수 있다. 따라서 , 자유인산에 의한 표면결함을 줄이기 위해서는 인산과 금속 수산화물이 적당한 비율로 제조되어 야할 뿐만 아니라코팅용액 내에 인산이 차지하는 성분비도 매우 중요하다.
보다 구체적으로, 소재 표면과 인산염이 일정온도 이상에서 반웅올 할 때, 반웅에 참여하지 못한 인산염은 자유인산으로 석출된다. 알루미늄 인산염 (AlOfePC x a)은 자유인산 (H3P04)을 고농도 수산화 알루미늄 (Al (0H)3)으로 고온에 서 반웅시킬 경우 알루미늄 (A1)과 인산 (¾P04)이 수산화 알루미늄 (A1(0H)3)의 주입 량에 따라 단일결합 (Al-P), 이중결합 (A1=P) 및 삼중결합 (A1=P) 결합을 20~70% 형성 한다.
도 2는 자유인산 (H3P04)을 수산화 알루미늄 (A1(0H)3)과고은에서 반웅시킬 경 우, 알루미늄 (A1)과 인 (P)이 반웅하여 단일 (A1-P), 이중 (A1=P) 및 삼중 (A1=P) 결 합을 형성하는 것올 도시한 것이다.
반응을 위하여, 15wt¾ 물 (H20)와 85wt% 인산 (H3P04) 100g 기준으로 수산화 알루미늄 (AK0H)3)의 주입량은 5~40g으로 조절한다. 수산화 알루미늄 (AK0H)3)의 주 입량이 10g 이하일 경우 피막조성물 내의 높은 자유인산에 의해 표면 흡습성과 발 분현상이 나타나고, 40g이상일 경우, 금속 인산염이 재결정화되어 용액 안정성이 열위할수 있다. ―
한편, 코발트 인산염 ((Co(H3P04)3)의 경우, 수산화 코발트 (Co(0H)2 2~5g을 자 유인산 ( 에 주입후 고온에서 반응시키면 수산화 코발트 (Co(0H)2는 자유인산과 의 반응없이 수산화코발트 (Co(0H)2가자유인산에 용해되어 있는 형태로 존재한다. 그러므로 절연피막 조성물의 코팅 작업성을 향상시켜 주기 위하여, 코발트 인산염 /알루미늄 인산염의 비율을 0.050.2로 하였다.
만일, 코발트 인산염 /얕루미늄 인산염의 비율이 으 05 미만일 경우 코팅 작업 성이 열위해지고, 코발트 인산염 /알루미늄 인산염의 비율이 0.2 초과일 경우 표면 의 흡습성 및 발분현상이 발생할수 있다.
또한, 15wt¾ 물 (H20)과 85wt% 자유인산 (¾P04) 100g 기준에 주입된 수산화 코발트 (Co(0H)2의 양을 2g이하로 주입했을 경우, 코팅 작업성인 젖음성
(waterability) 향상을 기대할 수 없고, 5g 초과하여 주입할 경우, 수산화 코발드 (Co(0H)2)가 인산에 잘 용해되지 않으며, 금속 인산염이 쉽게 재결정화되는 안정성 열위 문제가 발생할 수 있다.
상기 흔합 금속인산염은 절연 피막 (코팅층)과 소재 (강판)의 밀착성 열위 및 인산염 도입에 의한 자유인산의 흡습성 (sticky) 및 석출 현상을 개선할 수 있으며 웅력제거 소둔 (SRA) 전 /후의 절면특성을 개선할수 있다.
따라서, 흔합되는 코발트 인산염 ((Co(H3P04)3)/알루미늄 인산염
(Al(H3P04)x=1-3)의 흔합비율은 0.05~0.2이다.
자유인산과 치환된 수산화 알루미늄 (AK0H)3)의 양이 많을수록 알루미늄 인 산염 (A1(H3P04)뷔 내에 자유인산 (H3P04)의 양을 최소화할수 있어, 자유인산에 의해 발생하는 표면 흡습성 (tacky) 및 석출 현상을 해결할수 있다.
또한, 치환된 알루미늄 인산염 (AKftPC ^ᅳ 3)의 양이 많을수록 유기 /무기 복 합재 (composite)와의 상용성이 향상되어, 피복 조성물 내에 흔합 금속인산염의 비 율을 높일 수 있다. 따라서, 피복조성물 내에 높은 무기물 비율에 의해 절연 특성 이 우수해지고, 또한, SRA후에도 피막 층의 손상이나 깨짐 (Crack) 현상이 없어 절 연 특성과 내열성이 우수해질 수 있다. '
한편, 본 발명에서는 절연피막 조성물에 나노입자의 균일 분산을 위해 종래 의 콜로이달 졸 (colloidal sol) 형태가 아닌 수지에 나노입자가 화학적인 반웅에 의해 치환된 유기 /무기 복합재 (composite)를 적용한다.
상기 유기 /무기 복합재^ 수지의 기능기에 나노입자를 화학적으로 치환된 복 합체 형태로 많은 양의 나노입자를 치환시켜도 입자간 웅집이나 침적 현상이 전혀 발생하지 않는다. '
상기의 화학적 반웅에 의해 개질시킨 유기 /무기 복합재의 Si¾입자의 평균 입자크기가 5~50nm이고 유 /무기 복합재에서 Si02나노입자의 고형분은 10~50%이다. 여기서 Si02나노 복합재에 치환되어 있는 Si¾입자의 평균크기가 5nm이하의 경우, 입자의 전체 표면적이 증가하여 장벽효과 (barrier effect)의 극대화로 절연특성은 향상되지만, 피막조성물와가격이 비싸지는 단점을 가지고 있다.
한편, 평균입자의 크기가 50nm이상일 경우, Si02의 전체 표면적이 감소하여 절연 특성이 열위하게 된다. 또한, 에폭시계 수지에 치환된 Si¾나노입자의 고형분 을 10%이하로 주입하였을 때, Si02 나노입자에 의한 절연특성 향상이 크지 않으며, 고형분을 50%이상일 경우, 코팅층 내에 높은 무기물 비율에 의해 타발성이 열위 문 제가 발생할수 있다.
한편, 물을 제외한 절연피막 조성물 내에서 흔합금속인산염과실리카 (Si02) 나노입자로 구성된 무기물의 비율이 0.55~0.95인 것을 특징으로 한다. 무기물이 0.55 미만일 경우, 절연 특성의 향상 정도가 크지 않으며 SRA후 밀착성이 열위해지 는 문제가 발생한다. 한편, 무기물의 0.95 초과인 경우는 내식성과 타발성이 열위 해지는 문제가 발생한다.
본 발명에서는 무방향성 전기강판 표면에 우수한 절연 특성을부여하기 위하 여 에폭시계 수지에 실리카 (Si02)나노 입자를 화학적인 반웅에 의해 개질시킨 유 /무 기 복합재 적용한다ᅳ 상기의 화학적 반웅에 의해 개질시 킨 유기 /무기 복합재의 실 리카 (Si02) 평균 입자크기가 5~50nm이고 유 /무기 복합재에서 나노입자의 고형분은
10~50¾이다.
또한 , 유 /무기 복합재에 함유된 에폭시계 수지의 분자량은 1,000~4, 000이고 Tg (유리전이온도)가 40~60°C 이고 , 고형분비가 20-40%이며, 점도는 50~200cp이다. 상기 무방향성 전기강 ^의 절연피막 조성물 제조방법은 상기 흔합 금속인산 염 및 유 . 무기 복합재 (composite)의 흔합물에 산화촉진제 0. 1~1.0 %를 더 혼합하 는 것을 특징으로 한다.
인산염 도입에 의해 절연피막 증에 잔존하는 미량의 자유인산에 의 한 흡습성 이나 소둔시의 접착성의 문제가 발생할 수 있다 . 이를 해결하기 위해서 본 발명에 서는 나트륨 (Na) 양이온이 철 (Fe)계 산화물과 코팅용액 내에 잔존하는 자유인산의 반웅을 촉진시 킨다는 점에 착안하여, 과붕산나트륨 (NaB03 · 4¾0)올 적용하였다 . 상 기 산화촉진제는 과붕산나트륨 이외에 탄산나트륨 등을 포함하여 나트륨 계통의 물 질이 사용될 수 있다 .
과붕산나트틈 (NaB03 4¾0)은 수용액에서 쉽 게 해리가 되면서도, 절연피막 조성물에 첨가시, 용액 안정성에 악영향을 미치지 않을 뿐만 아니라, 내식성을 비 롯한 표면특성올 해치지 않는다.
도 3은 산화 촉진제로 사용된 과붕산나트륨이 수용액에서 해리되어 나트륨 양이은이 자유인산과 철산화물의 반웅을 촉진시키는 것을 도시한 도면이다.
수용액에서 해리된 나트륨 (Na) 양이온은 도 .3에 도시된 바와 같이, 피막층에 일부 남아 있는 자유 인산을 고온 (250°C 이상)에서 철산화물과 화학적 인 결합을 유도하는 산화촉진제 역할을 하고 있다.
절연피막 조성물 100g 기준 과붕산나트륨 (NaB03 · 4¾0)의 주입량을 O . lg이하 일 경우 높은 건조온도에도 불구하고 표면에 흡습성 과 발분현상이 발생하였으며 , l . Og 이상의 경우 내식성과 내후성 이 열위하게 되다 .
상기 알루미늄 인산염은 15wt% 물 (¾0)과 85wt% 인산 (H3P04)으로 이루어진 수 용액 100g에 수산화 알루미늄 (AK0H)3) 5~40g을 넣고 온도범위 80~90°C에서 6~10시 간 반웅시켜 제조되는 것을 특징으로 한다 .
상기 알루미늄 인산염 제조시 , 수산화 알루미늄과 인산의 화학결합에 의해 알루미늄과 인은 단일 (A1-P)결합, 이증결합 (A1=P) 및 삼증결합 (A1≡P)을 형성하고, 자유인산 (¾P04)의 양은 40% 미만인 것을 특징으로 한다. 한편, 상기 코발트 인산염은 15wt% 물 (¾0)과 85wt% 인산 ( P04)으로 이루어 진 수용액 100g에 수산화 코발트 (Co(0H)2) 2~5g을 넣고 온도범위 80~90°C에서 6~10 시간 반응사켜 제조되는 것을 특징으로 한다.
상기 알루미늄 인산염과 코발트 인산염의 흔합비율 (알루미늄 인산염 /코발트 인산염)은 0.05~0.2인 것을 특징으로 한다.
상기 유 .무기 복합재 (composite)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.3-0.6인 것을 특징으로 한다.
상기 유ᅳ무기 복합재는 산성계 에폭시 수지에 입자크기가 10~50nm인 실리카 (Si02) 입자를 개질시킨 것을 특징으로 한다.
본 발명의 다른 실시예에 의한 무방향성 전기강판은 절연 코팅층이 형성되 며, 상기 절연 코팅층은, 알루미늄 인산염 (Al(H3P04)x=1-3)과 코발트 인산염
(Co(H3P04)3)으로 이루어진 혼합 금속인산염; 및 에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카 (Si02) 나노입자로 이루어진 유 '무기 복합재 (composite)를 포함하는 절연피막 조성물을 상기 전기강판의 표면에 도포한 후 건조시켜 형성된 것을 특징으로 한다. '
상기 무방향성 전기강판은 절연 코팅층내 무기질의 비율이 0.55~0.95인 것을 특징으로 한다.
상기 절연 코팅층내에 분포된 실리카 (Si02)의 분포 면적이 5~30%인 것을 특 징으로 한다.
본 발명에서는 나노입자가 내포된 코팅용액 조성물을 공시편에 코팅두께가 편면당 0.5~1.0 도포한 후, 30( 750°C의 온도 범위에서 10-30 초간 가열 처리하 면 무방향성 전기강판의 기본 특성인 내식성, 내후성, 내열성 및 SRA전 /후 밀착성 이 우수할 뿐만 아니라, 절연성이 매우 우수한 무방향성 전기강판을 제공할 수 있 다. .
이하, 실시예를 통해 본 발명에 따른 무방향성 전기강판의 절연피막의 제조 방법에 대하여 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 1>
중량비로 3.15wt >의 실리콘 (Si)을 함유하고, 판 두께 0.35mm 고급 무방향성 전기강판 (150*50 mm)을 공시편으로 하고, 그 위에 표 1에 나타낸 바와 같이 제조 된 용액을 바코터 (bar coater) 및 를코터 (roll coater)를 이용하여 각 준비된 공시 편에 일정한 두께 (0.6~0.8μπι)로 도포한 후 온도범위 300~750°C의 건조로에서 10~30 초간유지한후 공기 중에서 천천히 냉각하였다.
표 1은 15wt%물 ( 0)과 85wt%자유인산 (H3P04)의 수용액 100g에 수산화 알 루미늄 (A1(0H)3)의 주입량에 따른 용액 안정성과 반응 후 남은 자유인산의 양과 알 루미늄 (A1)과 인 (P)의 형태 (단일 (A1-P), 이중 (A1=P) 및 삼중 (A1=P)) 결합량을 나 타내었다.
. 【표 1】
금속 인산염 종류에 른 용액 안정성 및 SRA후 밀착성
Figure imgf000012_0001
[물성판정 -석출없음: O,석출 小: Δ, 석출大: X
표 1에서 알 수 있듯이, 수산화 알루미늄 (A1(0H)3)의 주입량이 40g이상일 경 우 용액 안정성이 열위해지는 문제를.가지고 있었다. 여기서 용액 안정성은 교반 없이 용액올 대기상태에서 120시간 동안 유지할 때, 수산화 알루미늄 (A1(0H)3)이 석 출되는 정도를 가지고 판단하였다. 그리고 수산화 알루미늄 (AK0H)3)의 주입량이 10g 이하일 경우 반웅 후 자유인산의 양이 높아 피막 조성물 내의 높은 자유인산에 의해 표면 흡습성과 발분 현상이 발생할 가능성이 높다.
그래서 본 발명에서는 수산화 알루미늄 (AI(0H)3)의 주입량을 10~40g으로 선 정하는 것이 바람직하다. 특히 우수한 용액 안정성과 반응 후 자유인산의 양을 최 소화한 30~4OT의 경우가 바람직하다.
<실시예 2>
표 2는 자유인산 100g 기준으로 각각 수산화 코발트 (Co(0H)2 3g과 수산화 알 루미늄 (AK0H)3) 30g을 치환시킨 코발트 인산염 ((Co(¾P04)3)과 알루미늄 인산염 (A1(H3P04)X 3)의 코발트 인산염 /알루미늄 인산염의 혼합 비을을 0.1로 고정시키고 혼합 금속인산염과 실리카 (Si02) 나노 복합재의 비율에 따른 용액 안정성, 코팅 작 업성, 표면상태, 내식성 및 절연성을 나타내었다.
여기서 사용된 실리카 나노 복합재의 입자크기는 10nm이고, 실리카의 고형분 은 30%를 사용하였다. 용액 안정성과 코팅 작업성은 복합재와 금속인산염의 비율이 8:2에서 4:6까지 매우 우수하였다. 표면상태 또한 복합재와 금속인산염의 비율이 8:2에서 3:7일 때, 결합이 없이 매우 미려한표면을 얻을 수 있었다.
내식성은 복합재와 금속인산염의 비율이 7:3에서 4:6일 때 매우 우수함을 알 수 있었다.
【표 2】
금속인산염과 복합재의 비율에 따른 용액 안정성, 코팅 작업성, 표면상태, 내식성 및 절연성 비교결과
Figure imgf000013_0001
[물성판정 - 매우 우수: ©, 우수: O, 보통: Δ, 열위: X
<실시예 3>
상기 실시예 1 및 2의 결과를 바탕으로 복합재와 금속인산염의 비율이 6:4에 서 5:5일 때 코발트 인산염 /알루미늄 인산염의 주입비, 실리카 나노 복합재내의 유 기물인 에폭시 수지와 실리카 입자의 조성비에 따른 절연 및 표면 특성을 나타내었 다. 여기서 사용된 실리카 나노 복합재의 입자크기는 10nm를 사용하였다 각각의 피막조성물의 비중을 물로 1.1로 조정하여 바코터 (bar coater) 3번으로 코팅두께를 0.6~0.8 로 도포하고 500~750 °C의 온도 범위에서 10-30 초간 가열 처리한 후 코 팅층의 응력제거소둔 (SRA) 전 /후 절연 및 표면 특성을 비교하였다. 그리고 비교예
1, 2는 크롬 (chrome)계 및 무크롬계 (chrome-free)계 박막 제품의 표면 특성을 나타 내었다:
【표 3】
코발트 인산염 /알루미늄 인산염의 주입비, 실리카 나노 복합재내의 유기물인 에폭시 수지와 실리카 입자의 조성비에 따른 절연 및 표면 특성 비교
Figure imgf000014_0001
[물성판정 - 매우 우수: ©, 우수: O, 보통: Δ, 열위: X ] 절연성은 Franklin Insulation Tester에 의해 측정되었으며, 이 측정기는 단 판 시험법 장치로 일정 압력과 일정 전압 하에서 전기강판의 표면 절연 저항 측정、 을 측정하는 장치이다.
전류의 범위는 0~1.000 Amp이며, 절연 측정방법은 측정 시험편 1매를 전 전 극의 접촉자가 접촉되도록 풀레이트 (plate) 위에 놓은 후 가압장치에 의해 300psi (20.4atm) 되도록 압력을 가한다. 시험압력이 되었을 때, 미끄럼 저항기를 조정하 고 전압 0.5V하에서 전류계의 눈금을 읽는다.
각각의 시험용액에 대해서 10매의 절연치를 측정하여 평균치를 나타내었다. 발명예 전체가 비교예 1, 2 대비 절연 특성이 매우 우수하였다ᅳ
코발트 인산염 /알루미늄 인산염의 주입비는 절연특성에 영향을 미치지 않으 며, 다만 코발트 인산염 /알루미늄 인산염의 비가 높을수록 피막 조성물의 젖음성 (waterability) 향상 정도가 다소 개선되었다.
복합재와 금속인산염의 비가 5:5일 경우가 6:4보다 다소 절연특성이 우수하 였으며, 실리카 나노 복합재 내에 치환된 02의 비가 높을수록 절연특성이 향상되 었다.
내식성은 5¾>, 35 °C, NaCl 용액에 8시간동안 시편의 녹 발생 유무를 평가하 는 것으로써 본 시험에서는 녹 발생면적이 2%이하일 경우 매우 우수, 5% 이하일 경 우 우수, 20% 이하일 경우 양호, 3OT이하일 경우 보통, 50% 이상에서는 불량으로 표시하였다.
한편, SRA 전 밀착성은 시험된 시편을 5, 10, 20, 30-100 mmf인 원호에 접하 여 180Ο 구부릴 때 피막박리가 없는 최소 원호직경으로 나타낸 것이다. 여기서 최소 원호 직경이 5 醒 Φ이하일 때 매우 우수, 10 隨 Φ이하일 때 우수, 20 隱 Φ이하일 때 보통으로 구분하였다.
또한 SRA후의 밀착성은 건조한 100% 질소 가스에 80CTC에서 2시간 열처리하 고, Cross Cut Tester로 표면에 스크래치를 만든 후 일정크기의 점착테이프를 부쳤 다 떼었을 때 나타나는 피막박리 분의 부착 유무 및 테이프의 오염 정도를 정량화 한 것으로, Cross Cut Tester에 의해 1隱간격으로 가로 및 세로 방향으로 100개의 칸으로 표면에 Scratch를 만든 후 일정크기의 점착테이프를 부쳤다 떼었을 때, 나 타나는 피막박리 분의 부착유무 및 테이프의 오염 정도를 정량화 (¾)하였다.
예를 들어 0이면 SRA후 피막표면으로부터 피막박리 분이 없다는 것을 의미하 며, 100이면 테이프 면적의 전체가 피막박리 분으로 오염되어 있다는 것을 의미한 다. 여기서 박리되는 면적이 이하일 때 매우 우수, 5%이하일 때 우수 10%이하일 ' 때 보통, 2 이하일 때 열위로 표현하였다.
피막 경도는 반 자동식 연필경도 측정기에 의해서 측정하였다. 시험은 도면 에 대하여 약 45 각도로 KSG 2603(연필)에 규정된 연필의 심을 대고, 하중 약 lkgf(9.8N)으로 소재의 표면을 긁어서 소재의 표면 변화를 측정하여 표면 경도를 측정하였다 (ASTM D2197) . 연필경도가 9H일 때, 매우 우수, 8H일 때 우수, 6~7H일 때 보통, 4~5H일 때 매우 열위로 구분하였다.
<실시예 4>
유기 /무기 복합재와 과붕산나트륨 (NaB03 · 4¾0)올 알루미늄 인산염
(Al(H3P04)X=1-3)과 코발트 인산염 ((Co(¾P04)3)의 흔합 금속인산염 100g 기준에' 각각
50~150g, 0.1~1.0g첨가하여 교반에 의해 층분히 흔합 후 편면당 0.5-1. OJ I 두께로 도포하였다. 상기 조성물로 도포된 피막을 350~750 °C의 은도 범위에서 10~30 초간 가열한 다음 Franklin insulation tester로 절연을 측정했을 때, 코팅층 내의 균일 한 나노 입자의 분포와 치밀한 피막 층과 미려한 표면올 형성하여 우수한 절연 특 성을 가진 무방향성 전기강판을 얻을 수 있었다.
도 4 및 5는 각각 전기강판의 응력제거소둔 (SRA) 전과 후의 코팅층 단면을 RIB(Focused Ion Beam)로 가공하여 주사전자현미경 (SEM)으로 관찰한 사진이다. 사 진에서 볼 수 있듯이, 코팅층 내에 기포 (porosity)나 깨짐 (Crack) 현상이 발생하지 않음을 알수 있다.
또한, 질소 (N2) 100% 분위기, 온도 80CTC에서 2시간의 응력제거소둔 (SRA) 공 정 후에도코팅층의 손상이 거의 없었다.
도 6은 코팅층의 단면에 Si02나노입자 분포를 FIB로 가공 후, TEM 및 EPMA mapping 한사진이다. 도 6에서 알수 있듯이 코팅층 내에 Si02 나노 입자가 표면에 균일하게 분포되어 있으며, 코팅 층 내에 Si¾ 나노입자가 코팅층 내에서 결합
(Cohesion) 또는 응집 (Aggregat ion) 현상 없이 코팅층 전체에 걸쳐 일정하게 분포 하고 있음을 알수 있다. 、
도 6에 코팅층에 분포된 실리카 나노압자는 평균 입자크기가 lOnra이며, 밝은 (흰)색으로 표시된 것이 나노입자를 나타낸다.
이러한 입자의 균일한 분포가 정전기적인 연속적인 미소 방전 (Series Micro- Dielectric) 효과를 유발하여 절연 저항을 향상시키고 있다. 또한 코팅층 내에 무 기질 나노 입자가 치밀하게 내포되어 있을 경우 계면에 압력 상승에 따른 자유 체 적의 감소의 영향을 받지 않아 기존 코팅층과 같이 코팅층 내부에 기공 (porosity) 를 포함할 경우 자유 체적의 감소와 같은 현상이 발생하지 않아 자유 체적 감소에 의한 절연 영향은 받지 않는다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수 적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것아며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개 념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것 으로 해석되어야 한다:

Claims

【청구의 범위】
【청구항 1】
알루미늄 인산염 (AK¾P04)x3)과 코발트 인산염 (Co(¾P04)3)으로 이루어진 흔합 금속인산염; 및
에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카 (Si¾) 나노입자 로 이루어진 유 * 무기 복합재 (compos i te)를 포함하는 무방향성 전기강판의 절연피 막 조성물 .
[청구항 2】
제 1 항에 있어서 , '
상기 흔합 금속인산염 30~70wt%, 상기 유 · 무기 복합재 (composite) 30~70wt% 을 포함하는 무방향성 전기강판의 절연피막 조성물 .
【청구항 3]
제 1 항에 있어서,
상기 절연피막 조성물은 산화촉진제를 더 포함하며,
상기 산화촉진제 0. 1~1.0 %을 포함하는 무방향성 전기강판의 절연피막 조성
【청구항 4】
제 1 항에 있어서,
상기 실리카 나노입자의 크기는 5~50nm인 것을 특징으로 하는 무방향성 전기 강판의 절연피막 조성물 .
【청구항 5】
제 1 항에 있어서,
상기 흔합 금속인산염 내에 흔합된 상기 알루미늄 인산염과 코발트 인산염의 혼합비율 (알루미늄 인산염 /코발트 인산염 )은 0.05~0.2인 것을 특징으로 하는 무방 향성 전기강판의 절연피막 조성물 .
【청구항 6】
제 1 항에 있어서, ' .
상기 유 · 무기 복합재 (composi te)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.3-0.6인 것올 특징으로 하는 무방향성 전기강판의 절연피막 조성물 .
【청구항 7】
제 3 항에 있어서, ' 상기 산화촉진제는 과붕산나트륨 (NaB03 4¾0)인 것을 특징으로 하는 무방향 성 전기강판의 절연피막 조성물 .
[청구항 8】
알루미늄 인산염과 코발트 인산염으로 구성된 혼합 금속인산염 30~70 %를 제공하는 단계 ; '
에폭시 수지의 기능기에 실리카 나노입자를 치환시킨 유 ᅳ 무기 복합재 (composite) 30~70wt¾>를 제공하는 단계 ; 및
제공된 상기 혼합 금속인산염과 상기 유 · 무기 복합재를 혼합 후 교반하는 단계를 포함하는 무방향성 전기강판의 절연피막 조성물 제조방법 .
【청구항 9】
제 8 항에 있어서,
상기 혼합 금속인산염 및 유 " 무기 복합재 (composi te)의 흔합물에 산화촉진 제 0. 1~1.0 %를 더 흔합하는 것을 특장으로 하는 무방향성 전기강판의 절연피막 조성물 제조방법 .
【청구항 10】
제 8 항에 있어서 ,
상기 알루미늄 인산염은 15wt% 물 (¾0)과 85wt% 인산 (H3P04)으로 이루어진 수 용액 100g을 기준으로 수산화 알루미늄 (A1 (0H)3) 5~40g을 넣고 온도범위 80~90°C에 서 6~10시간 반웅시켜. 제조되는 것을 특징으로 하는 무방향성 전기강판의 절연피막 조성물의 제조방법 .
【청구항 11】
제 10 항에 있어서,
상기 알투미늄 인산염 제조시, 수산화 알루미늄과 인산의 화학결합에 의해 알루미늄과 인은 단일 (A1-P)결합, 이중결합 (A1=P) 및 삼중결합 (A1≡P)을 형성하고, 자유인산 (¾P04)의 양은 40% 미만인 것을 특징으로 하는 무방향성 전기강판의 절연 피막 조성물의 제조방법 .
【청구항 12】
제 8 항에 있어서,
상기 코발트 인산염은 15wt% 물 (¾0)과 85wt¾ 인산 (¾P04)으로 이루어진 수용 액 100g을 기준으로 수산화 코발트 (Co(0H)2) 2~5g을 넣고 은도범위 80~90°C에서 6~10시간 반응시켜 제조되는 것을 특징으로 하는 무방향성 전기강판와 절연피막 조 성물의 제조방법 .
【청구항 13】
제 8 항에 있어서,
상기 알루미늄 인산염과 코발트 인산염의 흔합비율 (알루미늄 인산염 /코발트 인산염 )은 0.05-0.2인 것을 특징으로 하는 무방향성 전기강판의 절연피막 조성물의 제조방법 .
【청구항 14】
' 제 8 항에 있어서
상기 유 ᅳ 무기 복합재 (composi te)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si¾)/수지의 비율은 0.3~0.6인 것을 특징으로 하는 무방향성 전기강판의 절연피막 조성물의 제조방법 .
[청구항 15】
제 8 항에 있어서,
상기 유 · 무기 복합재는 산성계 에폭시 수지에 입자크기가 10~50nm인 실리카 (Si02) 입자를 개질시 킨 것을 특징으로 하는 무방향성 전기강판의 절연피막 조성물 의 제조방법 .
【청구항 16】
절연 코팅층이 형성된 무방향성 전기강판에 있어서,
상기 절연 코팅층은,
알루미늄 인산염 (AKHgPO rf3)과 코발트 인산염 (Co(¾P04)3)으로 이루어진 흔합 금속인산염 ; 및 ᅳ
에폭시 수지와 상기 에폭시 수지의 기능기에 치환된 실리카 (Si02) 나노입자 로 이루어진 유 ᅳ 무기 복합재 (composi te)를 포함하는 절연피막 조성물을 상기 전기 강판의 표면에 도포한 후 건조시켜 형성된 것을 특징으로 하는 무방향성 전기강판.
【청구항 17】
제 16 항에 있어서,
상기 절연 피막 조성물은,
상기 흔합 금속인산염 30~70wt¾, 상기 유 · 무기 복합재 (composi te) 30~70wt% 을 포함하는 것을 특징으로 하는 무방향성 전기강판.
【청구항 18】
제 Γ7 항에 있어서,
상기 절연피막 조성물은 산화촉진제를 더 포함하며, 상기 절연피막 조성물 내에 상기 산화촉진제 0. 1~1. (½«을 포함하는 무방향 성 전기강판.
【청구항 19】 '
제 16 항에 있어서,
상기 실리카 나노입자의 크기는 5~50nm인 것을 특징으로 하는 무방향성 전기 강판.
【청구항 20]
제 16 항에 있어서,
상기 흔합 금속인산염 내에 흔합된 상기 알루미늄 인산염과 코발트 인산염의 흔합비율 (알루미늄 인산염 /코발트 인산염 )은 0.05~0.2인 것을 특징으로 하는 무방 향성 전기강판 ᅳ
【청구항 21】 1
제 16 항에 있어서,
상기 유 무기 복합재 (composite)의 고형분은 30~70wt%이며, 상기 고형분 내 의 실리카 (Si02)/수지의 비율은 0.3~0.6인 것을 특징오로 하는 무방향성 전기강판 .
【청구항 22】
제 18 항에 있어서,
상기 산화촉진제는 과붕산나트륨 (NaB03 · 4¾0)인 것을 특징으로 하는 무방향 성 전기강판.
【청구항 23】
제 16 항에 있어서,
상기 절연 코팅층내 무기질의 비율이 0.55-0.95인 것을 특징으로하는 무방향 성 전기강판 .
【청구항 24】
제 16 항에 있어서,
상기 ' 절연 코팅층내에 분포된 실리카 (Si )의 분포 면적 이 5~30%인 것을 특 징으로 하는 무방향성 전기강판.
【청구항 25】
제 16 항에 있어서,
상기 절연 피막 조성물에 의해 코팅층이 형성된 전기강판에서, 코팅층의 두 께가 1.0 이하에서 절연저항 특성이 10.0 Ω αί 이상인 것을 특징으로 하는 무방향 성 전기강판 .
[청구항 26】
제 16 항에 있어서,
상기 절연 피막 조성물을 도포한 후, 온도범위 700~850°C , 100% 질소 (N2)분 위기에서 웅력제거소둔 (SRA) 공정 후에도 코팅층의 소실이 거의 없으며 , 코팅층의 두께가 1.0 이하에서 절연저항 특성 이 10.0 Ωαη! 이상인 것을 특징으로 하는 무 방향성 전기강판 .
【청구항 27】
제 16 항에 있어서,
상기 절연 피막 조성물에 의해 코팅층이 형성된 전기강판에서, 코팅층 내에 실리카 (Si02) 입자들이 매우 균일하게 분포하고 있는 것을 특징으로 하는 무방향성 전기강판 .
PCT/KR2012/009662 2011-12-28 2012-11-15 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판 WO2013100354A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280065218.4A CN104025207B (zh) 2011-12-28 2012-11-15 无取向电工钢板的绝缘覆膜组合物、其制造方法及施用绝缘覆膜组合物的无取向电工钢板
US14/369,248 US9455062B2 (en) 2011-12-28 2012-11-15 Insulation coating composition for non-oriented electrical sheet, method for manufacturing the same, and non-oriented electrical sheet to which insulation coating composition is applied
JP2014549959A JP5877252B2 (ja) 2011-12-28 2012-11-15 無方向性電磁鋼板の絶縁被膜組成物、その製造方法および絶縁被膜組成物が適用された無方向性電磁鋼板
EP12862247.9A EP2800103B1 (en) 2011-12-28 2012-11-15 Insulation coating composition for non-oriented electrical steel sheet, method for manufacturing same, and non-oriented electrical steel sheet upon which the insulation coating composition is applied
PL12862247T PL2800103T3 (pl) 2011-12-28 2012-11-15 Kompozycja powłoki izolacyjnej do blachy cienkiej z niezorientowanej stali elektrotechnicznej, sposób jej wytwarzania oraz blacha cienka z niezorientowanej stali elektrotechnicznej, na którą nakłada się tę kompozycję powłoki izolacyjnej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0145306 2011-12-28
KR1020110145306A KR101324260B1 (ko) 2011-12-28 2011-12-28 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판

Publications (1)

Publication Number Publication Date
WO2013100354A1 true WO2013100354A1 (ko) 2013-07-04

Family

ID=48697770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009662 WO2013100354A1 (ko) 2011-12-28 2012-11-15 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판

Country Status (7)

Country Link
US (1) US9455062B2 (ko)
EP (1) EP2800103B1 (ko)
JP (1) JP5877252B2 (ko)
KR (1) KR101324260B1 (ko)
CN (1) CN104025207B (ko)
PL (1) PL2800103T3 (ko)
WO (1) WO2013100354A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765106A (zh) * 2013-11-27 2016-07-13 Posco公司 无取向性电工钢板组合物、无取向性电工钢板产品及其制造方法
CN105980584A (zh) * 2014-01-30 2016-09-28 蒂森克虏伯电工钢有限公司 含绝缘涂层的晶粒取向电工钢扁平材

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177038B1 (ko) * 2014-11-14 2020-11-10 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
EP3072936A1 (de) * 2015-03-24 2016-09-28 Voestalpine Stahl GmbH Coil und Elektroband oder -blech
US10526672B2 (en) 2015-04-07 2020-01-07 Jfe Steel Corporation Electrical steel sheet with insulating coating
KR101797129B1 (ko) 2015-12-21 2017-11-13 주식회사 포스코 무방향성 전기강판 접착 코팅 조성물, 무방향성 전기강판 제품, 및 이의 제조 방법
KR101796234B1 (ko) * 2015-12-22 2017-11-09 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법, 및 방향성 전기강판
KR102444224B1 (ko) * 2015-12-23 2022-09-16 주식회사 포스코 무방향성 전기강판 접착 코팅 조성물, 무방향성 전기강판 제품, 및 이의 제조 방법
CN109563626B (zh) * 2016-09-13 2021-04-13 杰富意钢铁株式会社 带无铬绝缘张力被膜的取向性电磁钢板及其制造方法
WO2018117670A2 (ko) * 2016-12-23 2018-06-28 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR101904306B1 (ko) * 2016-12-23 2018-10-04 주식회사 포스코 무방향성 전기강판 접착 코팅 조성물 및 무방향성 전기강판 제품의 제조 방법
KR102112171B1 (ko) * 2017-12-26 2020-05-18 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR102114810B1 (ko) * 2017-12-26 2020-05-25 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 적층체 및 전기강판 제품의 제조 방법
CN112204170B (zh) * 2018-05-30 2022-04-19 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
KR102176342B1 (ko) * 2018-09-28 2020-11-09 주식회사 포스코 전기강판 제품의 제조 방법
US20220106689A1 (en) 2019-02-14 2022-04-07 Jfe Steel Corporation Electrical steel sheet having insulating coating
JP7156579B2 (ja) * 2020-06-17 2022-10-19 日本製鉄株式会社 電磁鋼板、積層コア、及び積層コア製造方法
KR20230092608A (ko) * 2021-12-17 2023-06-26 주식회사 포스코 전기강판용 절연 피막 조성물, 전기강판, 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762466B1 (ko) * 2006-08-02 2007-10-04 주식회사 포스코 크롬이 배제된 응력제거소둔 전후 피막밀착성 및피막강도가 우수한 절연피막 형성용 피복조성물 및 이를이용한 무방향성 전기강판의 절연피막 형성방법
JP2009545674A (ja) * 2006-08-02 2009-12-24 ポスコ 耐食性、皮膜密着性および皮膜強度に優れた絶縁皮膜形成用クロムを含まない被覆液、並びにこれを用いて無方向性電気鋼板に絶縁皮膜を形成する方法
KR20110072848A (ko) * 2009-12-23 2011-06-29 주식회사 포스코 절연성이 우수한 절연피막 형성용 피복조성물, 이를 이용한 무방향성 전기강판 및 무방향성 전기강판의 절연피막 형성방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370235B2 (ja) 1996-07-30 2003-01-27 川崎製鉄株式会社 耐食性に優れた歪取り焼鈍が可能なクロム化合物を含まない絶縁被膜を電磁鋼板の表面に形成する方法
JP2000169973A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP4264362B2 (ja) * 2004-01-15 2009-05-13 新日本製鐵株式会社 クロムを含まない方向性電磁鋼板用絶縁皮膜剤及びクロムを含まない絶縁皮膜を有する方向性電磁鋼板
KR100625116B1 (ko) * 2004-09-23 2006-09-20 주식회사 대하맨텍 올리고머/실리카 나노복합체를 포함하여 이루어지는난반사 코팅제
KR100762465B1 (ko) 2006-08-02 2007-10-04 주식회사 포스코 크롬이 배제된 내식성과 응력제거소둔후 피막밀착성이우수한 절연피막 형성용 피복조성물 및 이를 이용한무방향성 전기강판의 절연피막 형성방법
CN103923510A (zh) * 2006-08-11 2014-07-16 鲍吉肥料公司 磷酸铝或多聚磷酸铝颗粒的制备
TWI457433B (zh) * 2008-01-30 2014-10-21 Chemetall Gmbh 將金屬表面施以一磷酸鹽層然後施以一潤滑劑層的方法
KR100991012B1 (ko) * 2008-07-14 2010-10-29 한국화학연구원 저온영역에서 탄소섬유 제조가 가능한코발트/알루미늄포스페이트 촉매 및 이의 제조방법
KR100966819B1 (ko) 2008-08-08 2010-06-29 주식회사 포스코 방향성 전기강판용 비크롬계 코팅제와 그 제조방법 및 이를이용한 전기강판과 그 제조방법
CN102459696B (zh) * 2009-06-17 2013-10-16 新日铁住金株式会社 具有绝缘覆盖膜的电磁钢板及其制造方法
JP5494240B2 (ja) * 2010-05-28 2014-05-14 Jfeスチール株式会社 無機質絶縁被膜付き電磁鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762466B1 (ko) * 2006-08-02 2007-10-04 주식회사 포스코 크롬이 배제된 응력제거소둔 전후 피막밀착성 및피막강도가 우수한 절연피막 형성용 피복조성물 및 이를이용한 무방향성 전기강판의 절연피막 형성방법
JP2009545674A (ja) * 2006-08-02 2009-12-24 ポスコ 耐食性、皮膜密着性および皮膜強度に優れた絶縁皮膜形成用クロムを含まない被覆液、並びにこれを用いて無方向性電気鋼板に絶縁皮膜を形成する方法
KR20110072848A (ko) * 2009-12-23 2011-06-29 주식회사 포스코 절연성이 우수한 절연피막 형성용 피복조성물, 이를 이용한 무방향성 전기강판 및 무방향성 전기강판의 절연피막 형성방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800103A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765106A (zh) * 2013-11-27 2016-07-13 Posco公司 无取向性电工钢板组合物、无取向性电工钢板产品及其制造方法
JP2016540901A (ja) * 2013-11-27 2016-12-28 ポスコPosco 無方向性電磁鋼板組成物、無方向性電磁鋼板製品の製造方法および無方向性電磁鋼板製品
US20160375658A1 (en) * 2013-11-27 2016-12-29 Posco Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
EP3075882A4 (en) * 2013-11-27 2017-06-28 Posco Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
CN105765106B (zh) * 2013-11-27 2018-05-15 Posco公司 无取向性电工钢板组合物、无取向性电工钢板产品及其制造方法
US10556404B2 (en) 2013-11-27 2020-02-11 Posco Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
CN105980584A (zh) * 2014-01-30 2016-09-28 蒂森克虏伯电工钢有限公司 含绝缘涂层的晶粒取向电工钢扁平材

Also Published As

Publication number Publication date
KR101324260B1 (ko) 2013-11-01
US20150017428A1 (en) 2015-01-15
JP5877252B2 (ja) 2016-03-02
CN104025207B (zh) 2016-09-21
US9455062B2 (en) 2016-09-27
EP2800103A1 (en) 2014-11-05
EP2800103B1 (en) 2022-02-16
EP2800103A4 (en) 2015-07-29
KR20130076642A (ko) 2013-07-08
JP2015509994A (ja) 2015-04-02
PL2800103T3 (pl) 2022-05-09
CN104025207A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013100354A1 (ko) 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판
JP5236077B2 (ja) 方向性電気鋼板用非クロム系コーティング剤およびこれを用いた電気鋼板とその製造方法
KR101264231B1 (ko) 절연성이 우수한 절연피막 형성용 피복조성물, 이를 이용한 무방향성 전기강판 및 무방향성 전기강판의 절연피막 형성방법
EP3395923B1 (en) Adhesive coating composition for non-oriented electrical steel sheet, non-oriented electrical steel sheet product, and manufacturing method therefor
JP2009545674A (ja) 耐食性、皮膜密着性および皮膜強度に優れた絶縁皮膜形成用クロムを含まない被覆液、並びにこれを用いて無方向性電気鋼板に絶縁皮膜を形成する方法
KR20180074438A (ko) 무방향성 전기강판 접착 코팅 조성물 및 무방향성 전기강판 제품의 제조 방법
KR101448598B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
JP5232246B2 (ja) 無方向性電気鋼板用のコーティング溶液,これを用いた無方向性電気鋼板のコーティング方法及び無方向性電気鋼板のコーティング層
KR101286248B1 (ko) 방향성 전기강판의 절연피막 조성물 및 그 제조방법, 절연피막 조성물을 이용한 방향성 전기강판의 절연피막 형성방법 및 이에 의해 절연피막이 형성된 방향성 전기강판
KR20140060717A (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101481127B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR100817157B1 (ko) 용액 안정성이 우수한 무방향성 전기강판용 Cr-free코팅제 제조방법
KR101110255B1 (ko) 피막특성이 우수한 전기강판 절연피막 형성용 피복조성물과 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 피복조성물로 절연피막이 형성된 방향성 전기강판
KR101419473B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101448599B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101448600B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101308731B1 (ko) 장력부여가 우수하며 타발성 및 가공성이 우수한 비크롬계 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 그 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
KR102371375B1 (ko) 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법
KR100779575B1 (ko) 크롬이 배제된 무방향성 칼라강판용 절연피막 조성물 및 그제조방법
KR100762466B1 (ko) 크롬이 배제된 응력제거소둔 전후 피막밀착성 및피막강도가 우수한 절연피막 형성용 피복조성물 및 이를이용한 무방향성 전기강판의 절연피막 형성방법
KR101507941B1 (ko) 전기강판의 절연피막 조성물, 이를 이용한 절연피막 형성방법 및 이에 의해 제조되는 방향성 전기강판
KR20230095279A (ko) 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법
KR20230094868A (ko) 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369248

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012862247

Country of ref document: EP