WO2015080463A1 - 무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품 - Google Patents

무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품 Download PDF

Info

Publication number
WO2015080463A1
WO2015080463A1 PCT/KR2014/011419 KR2014011419W WO2015080463A1 WO 2015080463 A1 WO2015080463 A1 WO 2015080463A1 KR 2014011419 W KR2014011419 W KR 2014011419W WO 2015080463 A1 WO2015080463 A1 WO 2015080463A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical steel
oriented electrical
steel sheet
composition
epoxy resin
Prior art date
Application number
PCT/KR2014/011419
Other languages
English (en)
French (fr)
Other versions
WO2015080463A8 (ko
Inventor
김정우
최헌조
김병철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2016555436A priority Critical patent/JP6336104B2/ja
Priority to EP14865105.2A priority patent/EP3075882B1/en
Priority to MX2016006813A priority patent/MX2016006813A/es
Priority to CN201480064814.XA priority patent/CN105765106B/zh
Priority to US15/100,021 priority patent/US10556404B2/en
Publication of WO2015080463A1 publication Critical patent/WO2015080463A1/ko
Publication of WO2015080463A8 publication Critical patent/WO2015080463A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/208Magnetic, paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • Non-oriented electrical steel sheet composition manufacturing method of non-oriented electrical steel sheet product and non-oriented electrical steel sheet product
  • a non-oriented electrical steel sheet composition a method for producing a non-oriented electrical steel sheet product, and a non-oriented electrical steel sheet product.
  • Non-oriented electrical steel sheet is a steel sheet with a uniform magnetic property in all directions on the rolled plate, and is widely used in motors, generator cores, electric motors, and small transformers.
  • the stress relief annealing (SRA) should be performed to improve the magnetic characteristics after punching, and the stress relief annealing is omitted when the cost loss due to heat treatment is greater than the magnetic properties effect due to the stress relief annealing. It can be divided into two types.
  • non-oriented electrical steel sheets are used for driving motors, home appliances, and large motors.
  • Insulation coating is a process that is a finishing process of the product.
  • it is a continuous punchability that suppresses abrasion of the mold when laminating a large number after punching into a predetermined shape.
  • excellent coating workability of coating solution and solution stability that can be used for a long time after blending are required.
  • the non-oriented insulating film mainly aims at the interlayer insulation between the steel plates to be laminated.
  • the coating performance which is advantageous in terms of workability, weldability, and corrosion resistance, as well as insulation properties, has been evaluated as the main physical property. Are asking to come.
  • non-oriented electrical steel sheet has high efficiency in keeping with the current government's low carbon policy. Due to the development of motors, the wave of advanced technology is being developed, and as the quality is advanced, the surface of electrical steel sheet is required to have high functionality (high insulation, high heat resistance, and high corrosion resistance).
  • the interlayer insulation property of the non-oriented electrical steel sheet which can maximize the motor performance by minimizing the Eddy Current Loss, is an essential item.
  • the method of increasing the coating thickness is the most common method.
  • the properties such as weldability, heat resistance, before and after SRA adhesion and stacking factor required by the non-oriented electrical steel sheet are inferior.
  • a non-oriented electrical steel sheet composition having improved properties a method for producing a non-oriented electrical steel sheet product, and a non-oriented electrical steel sheet product.
  • a first composition comprising a water-soluble epoxy resin and inorganic nanoparticles which are Si0 2 , Ti0 2 , ZnO, or a combination thereof; And an inorganic additive which is phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof; the inorganic nanoparticles are substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin has an epoxy group of 3
  • a non-oriented electrical steel sheet composition which is at least two polyfunctional epoxy resins.
  • the first composition may be about 100% by weight of the first composition, 1 to 60 parts by weight 0/0.
  • Si0 2 5 to 30% by weight of Ti0 2 , or 3 to 60% by weight of ZnO.
  • the composition, the water-soluble epoxy resin, and Si0 2, Ti0 2, or, contains ZnO, inorganic nanoparticles, the particle diameter of the inorganic nano-particles, the TK) 3 to 50nm of Si0 2, 20 to lOOnm 2, or ZnO, which is from 30 to 100 nm.
  • the epoxy resin may have a molecular weight of 1,000 to 50,000.
  • the epoxy resin may have a softening point (Tg) of 70 to 120.
  • the epoxy resin may have a content of solids of 10 to 50% by weight.
  • the content of the inorganic additives may be 1 to 50 parts by weight 0/0 to about 100% by weight of non-oriented electrical steel compositions.
  • the non-oriented electrical steel sheet composition is phosphoric acid (H 3 P0 4 ), or hydroxide
  • a first composition comprising a water-soluble epoxy resin and inorganic nanoparticles which are Si0 2 , Ti0 2 , ZnO, or a combination thereof; And an inorganic additive which is phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof; preparing a non-oriented electrical steel sheet composition comprising; Applying the non-oriented electrical steel sheet composition to one or both sides of the non-oriented electrical steel sheet; Curing the applied non-oriented electrical steel sheet composition to form a coating layer; And laminating another non-oriented electrical steel sheet on the coating layer, followed by thermal fusion, to provide a method for manufacturing a non-oriented electrical steel sheet product.
  • Curing the applied non-oriented electrical steel sheet composition to form a coating layer may be performed at a temperature of 200 to 600 ° C.
  • Curing the applied non-oriented electrical steel sheet composition to form a coating layer may be performed for 5 to 40 seconds.
  • the thickness of the coating layer may be 0.5 to 10.
  • Laminating another non-oriented electrical steel sheet on the coating layer and then heat-sealing may be performed at 1 to 1000 N pressure.
  • Laminating another non-oriented electrical steel sheet on the coating layer and then thermally fusion may be performed at 120 to 300 ° C.
  • Laminating another non-oriented electrical steel sheet on the coating layer and then heat-sealing may be performed for 5 to 180 minutes.
  • the ratio of the inorganic material in the coating layer may be 0 to 0.6 weight 0 /.
  • the inorganic nanoparticles may be substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin may be a polyfunctional epoxy resin having three or more epoxy groups.
  • a plurality of non-oriented electrical steel sheet comprising a first composition comprising an inorganic nanoparticle, which is a water-soluble epoxy resin and Si0 2 , Ti0 2 , ZnO, or a combination thereof. ; And an inorganic additive which is phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof, wherein the inorganic nanoparticles are substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin has an epoxy group of 3
  • a non-oriented electrical steel sheet product which is at least two polyfunctional epoxy resins.
  • thermoplastic adhesive resin e.g., epoxy resin
  • Example 1 is a cross-sectional view of the coating layer according to Example 1 after processing with FIB (Focus Ion Beam), is a photograph taken by TEM.
  • FIB Fluorine Beam
  • Figure 2 is a TEM photograph showing the distribution of the inorganic additive dissolved in the coating layer according to Example 1.
  • a first composition comprising a water-soluble epoxy resin and inorganic nanoparticles which are Si0 2 , Ti0 2 , ZnO, or a combination thereof; And an inorganic additive which is phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof, wherein the inorganic nanoparticles are substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin has an epoxy group of 3
  • a non-oriented electrical steel sheet composition which is at least two polyfunctional epoxy resins.
  • composition according to the embodiment of the present invention has excellent oil resistance, adhesion, corrosion resistance, insulation, adhesion between sheet cores, scratch resistance, weather resistance, weldability, and / or high temperature oil resistance when formed into a film.
  • the inorganic nanoparticles may be substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin may have a molecular weight of 1,000 to 50,000. In relation to the range of the molecular weight and molecular weight of the curable epoxy it may decrease if 'is less than 1,000, the coating film may be deteriorated physical properties such as strength. In addition, when the molecular weight of the epoxy resin exceeds 50,000, phase separation in the epoxy resin may occur, and compatibility with the inorganic nanoparticles may be inferior.
  • the epoxy resin may have a 5,000 to 30,000 molecular weight.
  • the softening point (Tg) of the epoxy resin may be 70 to 120 ° C
  • the solid fraction (content of solids) may be 10 to 50% by weight.
  • the epoxy resin is composed of a bisphenol and epoxide combination form, but a part of the structural formula may be substituted with a polar group in order to exist in the water dispersion state, and in a water dispersion state, a stable form without phase separation such as precipitation and precipitation may be obtained.
  • the inorganic resin nanoparticles in the colloidal state may be replaced with the thermoplastic resin and modified in the form of an organic / inorganic composite composition.
  • the colloidal inorganic nanoparticles may be Si0 2 , Ti0 2 , ZnO, or a combination thereof.
  • Particle diameter of the inorganic nanoparticles may be 3 to 100nm.
  • the particle diameter of the inorganic nanoparticles may be Si0 2 of 3 to 50 nm, TiO of 20 to 100 nm, or ZnO of 30 to 100 m (more specifically, ZnO of 10 to 60 nm). If the above range is satisfied, it may be advantageous in terms of minimizing a weak boundary layer that may occur with time, cost and particle size.
  • the amount of the first composition of the inorganic nano-particles may be increased for the first 100 0/1 composition, 1 to 60% by weight. More specifically, the amount of the inorganic nano-particles is the amount of the inorganic nano-particles are the first composition 100 parts by weight for the 0 /., 1 to 40% by weight of Si0 2, 5 to 30 increase 0 /. Of Ti0 2, or 3 to 60% by weight of ZnO (more specifically, 20 to 60% by weight of ZnO). When the above range is satisfied, the balance of heat resistance and / or adhesiveness can be maintained.
  • a good solubility inorganic additive may be dissolved in the composition.
  • the inorganic additive may be phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof.
  • the amount of the inorganic additives may be for a non-oriented electrical steel sheet composition 100 parts by weight 0/0, 1 to 50 parts by weight 0 /. More specifically, for example, the content of the inorganic additive may be 3 to 50% by weight phosphoric acid or 1 to 10% by weight sodium hydroxide based on 100% by weight of the non-oriented electrical steel sheet composition. When satisfying the above range, it may be advantageous in terms of precipitation problems, heat resistance and / or oil resistance of the inorganic additives.
  • composition according to the embodiment of the present invention is not only excellent in solution stability, coating workability, etc., but also can improve surface properties (eg, corrosion resistance, insulation, adhesion, etc.) when forming into a coating, Resistance and high temperature oil resistance can be improved.
  • the first composition comprising a water-soluble epoxy resin and inorganic nanoparticles which are Si0 2 , Ti0 2 , ZnO, or a combination thereof; And phosphoric acid (H 3 P0 4 ), Preparing a non-oriented electrical steel sheet composition including sodium hydroxide (NaOH), or a combination thereof; Applying the non-oriented electrical steel sheet composition to one or both sides of the non-oriented electrical steel sheet; Curing the applied non-oriented electrical steel sheet composition to form a coating layer; And laminating another non-oriented electrical steel sheet on the coating layer, followed by thermal fusion.
  • a water-soluble epoxy resin and inorganic nanoparticles which are Si0 2 , Ti0 2 , ZnO, or a combination thereof
  • phosphoric acid H 3 P0 4
  • Preparing a non-oriented electrical steel sheet composition including sodium hydroxide (NaOH), or a combination thereof Applying the non-oriented electrical steel sheet composition to one or both sides of the non-oriented electrical steel sheet; Curing the applied non
  • non-oriented electrical steel sheet composition is the same as the embodiment of the present invention described above, the description thereof will be omitted.
  • Curing the applied non-oriented electrical steel sheet composition to form a coating layer may be performed at a temperature of 200 to 600 ° C.
  • curing the applied non-oriented electrical steel sheet composition to form a coating layer may be performed for 5 to 40 seconds.
  • the thickness of the coating layer may be 0.5 to 10 /. When satisfying such a range, it may have excellent surface properties (eg, insulation, corrosion resistance, adhesion, etc.) of the coating layer.
  • the step of laminating another non-oriented electrical steel sheet on the coating layer and then heat-sealed may be performed at 1 to 1000 N pressure.
  • the step of laminating another non-oriented electrical steel sheet on the coating layer may be performed at 120 to 300 ° C.
  • the step of laminating another non-oriented electrical steel sheet on the coating layer and then heat-sealed may be performed for 5 to 180 minutes.
  • heat resistance can be improved by uniform distribution of inorganic nanoparticles and / or inorganic additives in the coating layer, and high temperature adhesion between laminated layers and high temperature (about 150 ° C) oil resistance are improved.
  • the ratio of the inorganic material in the coating layer may be 0 to 0.6 increase 0 /.
  • desired heat resistance and / or oil resistance can be obtained.
  • an inorganic additive which is phosphoric acid (H 3 P0 4 ), sodium hydroxide (NaOH), or a combination thereof, wherein the inorganic nanoparticles are substituted with terminal substituents of the water-soluble epoxy resin, and the epoxy resin has an epoxy group of 3
  • a non-oriented electrical steel sheet product which is at least two polyfunctional epoxy resins.
  • Example 1 is only preferred examples of the present invention and the present invention is not limited to the following examples.
  • Example 1 is only preferred examples of the present invention and the present invention is not limited to the following examples.
  • Figure 1 is a photograph taken with a TEM after processing the cross section of the coating layer according to Example 1 with a focus ion beam (FIB).
  • Figure 1 prepared a non-oriented electrical steel sheet composition as follows.
  • Epoxy adhesive resin used was about 20,000, S i0 2 substituted in Epoxy adhesive resin, the particle size was 10 nm each, and the weight% of the particles was 10 weight 0 /. It was dissolved in a phosphoric acid (H 3 P0 4) and sodium hydroxide (NaOH) coming Epoxy-Si0 2 type organic / inorganic composite Composite weight 100 0/0 3 each by weight 0/0 and 5 parts by weight 0/0 compared.
  • H 3 P0 4 phosphoric acid
  • NaOH sodium hydroxide
  • a non-oriented electrical steel sheet (50 X 50 mm) was used as a blank specimen, and the above-described composition was applied to each prepared blank specimen with a predetermined thickness of about 5.0 ⁇ , and then the applied non-oriented electrical steel sheet composition was cured at 500 ° C for 15 seconds. I was.
  • the inorganic nanoparticles are uniformly distributed in the coating layer, and the inorganic nanoparticles are uniformly distributed throughout the coating layer without cohesion or aggregation in the coating layer. Can be.
  • Example 2 is an inorganic additive dissolved in the coating layer according to Example 1 TEM photograph showing the distribution. It can be seen that the components (Na, P) contained in the inorganic material are also uniformly distributed in the coating layer.
  • the surface state and room temperature and high temperature adhesive strength of the organic / inorganic composite non-oriented electrical steel sheet were measured after coating according to the molecular weight before replacing the inorganic nanoparticles.
  • the coated specimens were cut to a certain size (50 mm ⁇ 50 mm) and laminated to a height of 30 mm to maintain the thermal fusion temperature and time at 200 ° C. for 30 minutes under a pressing force of 200 N, respectively.
  • the adhesive strength of the samples heat-sealed under the above conditions was measured using a tensile force measuring device.
  • the tensile force measuring device used is an apparatus for measuring tensile force at phase silver and high temperature after fixing the sample prepared above with JIG after heat fusion. In this case, the measured value causes the interface having the smallest adhesion to drop out of the interface of the laminated sample. Under the same conditions as above, the same experiment was repeated for the silver to determine the degree of adhesion.
  • the surface of the coated coating layer showed a tendency to generate defects such as spots and plaques on the surface as the molecular weight was higher, and in general, the adhesion strength increased as the molecular weight of the adhesive resin increased.
  • the high temperature adhesion at 150 ° C was inferior, the adhesion was very inferior at low molecular weight.
  • Table 2 below measured the stability, room temperature / high temperature adhesion and high temperature oil resistance of the composition according to the type, size and substitution amount of the inorganic nanoparticles substituted in the epoxy-based organic / inorganic composite composition solution.
  • Epoxy-Based Inorganic / Inorganic Composite ⁇ J 7r ⁇ ⁇ - ⁇ . ⁇ - ⁇ — ⁇ — à ⁇ Adhesive Resin Particle Type and Amount Solution Normal Temperature
  • the high temperature oil resistance was generally inferior, and in particular, the larger the size of the inorganic nanoparticles, and / or the larger the amount of the substituted inorganic nanoparticles tends to be inferior.
  • the epoxy -Ti0 2 -based composition and the epoxy -ZnO-based composition have a slightly inferior solution stability and room temperature adhesion compared to the epoxy -Si0 2 -based composition, but generally have excellent talkability.
  • high temperature adhesion and high silver oil resistance tend to be more inferior to epoxy-Si0 2 based compositions with relatively large inorganic nanoparticle size and large amount of substitution.
  • Table 3 shows the amount of sodium hydroxide (3) in order to maximize the high silver adhesion and high temperature oil resistance of the three organic / inorganic composite compositions (Epoxy-Si0 2 -based, Epoxy-Ti0 2 -based, Epoxy-ZnO-based). NaOH) and / or phosphoric acid (H 3 P0 4 ) is the result of evaluation of properties after 3 ⁇ 4 when dissolved in the composition. [Table 3]
  • Sodium oxide (NaOH) or phosphoric acid (H 3 P0 4 ) was added to the composition according to Table 2 by the respective amounts of Table 3, respectively, relative to 100% by weight of the total composition.
  • the molecular weight of the epoxy resin used was about 30,000, and the particle sizes of the Si0 2 , Ti0 2 and ZnO substituted in the epoxy resin were 25 nm, 20 nm and 10 nm, respectively. 20 wt% 0 /., 15 wt% 0 /. And 30 wt% relative to weight%.
  • the basic surface properties (insulation, corrosion resistance, adhesion, etc.) of the non-oriented electrical steel sheet were excellent, and also the workability (slitting or punchability) was excellent.
  • the adhesion at room temperature was excellent regardless of the type and size of the substituted inorganic particles, but as the amount of dissolved sodium hydroxide (NaOH) or phosphoric acid (H 3 P0 4 ) increased, There is a tendency to heat up. This is because the amount of the adhesive resin in the coating layer is relatively small compared to the inorganic nanoparticles and the inorganic additives.
  • the high temperature adhesion and high temperature oil resistance show similar characteristics, and in case of epoxy-Si0 2 composition, when the amount of dissolved sodium hydroxide (NaOH) or phosphoric acid (H 3 P0 4 ) is 1 to 15% by weight 0 /. All of the characteristics were excellent.
  • both properties were excellent when the amount of dissolved sodium hydroxide (NaOH) or phosphoric acid (H 3 P0 4 ) was an appropriate level. This is related to the size and amount of dissolved inorganic nanoparticles (NaOH) or phosphoric acid (H 3 P0 4 ) as well as substituted inorganic nanoparticles.
  • the proportion of the adhesive resin contained in the solution is relatively low heat resistance may be inferior to high heat adhesion and high temperature oil resistance.
  • inorganic materials inorganic nanoparticles, inorganic additives
  • the heat resistance is improved by the inorganic material, but the ratio of the adhesive resin contained in the solution may be relatively low, resulting in inferior high temperature adhesion and high temperature oil resistance.
  • the content of the inorganic material in the total composition is 0.05 to 0.6 weight 0 /. However, it is not limited thereto. "The solution stability is maintained for 30 minutes, the solution was heunhap inorganic nanoparticles are substituted with the organic / inorganic hybrid composition and inorganic additives are stirred vigorously for 30 minutes by the dissolved organic / inorganic composite composition on a stirrer. Then, it was judged by presence or absence of precipitation or gel ( ⁇ 3 ⁇ 41) phenomenon in the coating composition.
  • the room temperature and high temperature adhesive strength was measured by an adhesive force measuring device at room temperature and high temperature (150 ° C) after heat-sealing under a constant condition after laminating a sample coated with a predetermined thickness per one side.
  • the measured value at room temperature is very good when the adhesive strength is 2.0 MPa or more, it is excellent when l.OMPa or more, and when it is 0.5 MPa or more, it is usually above the heat level when 0.5 MPa or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품에 관한 것으로, 수용성 에폭시 수지 및 SiO2, TiO2, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제1 조성물; 및 인산(H3PO4), 수산화 나트륨(NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하고, 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 조성물을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품
【기술분야】
무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품에 관한 것이다. 【배경기술】
무방향성 전기 강판은 압연판 상의 모든 방향으로 자기적 성질이 균일한 강판으로 모터, 발전기의 철심, 전동기, 소형변압기 등에 널리 사용되고 있다. 무방향성 전기 강판은 타발 가공 후 자기적 특성의 향상을 위해 웅력제거 소둔 (SRA)을 실시하여야 하는 것과 응력제거 소둔에 의한 자기적 특성 효과보다 열처리에 따른 경비 손실이 클 경우 응력제거 소둔을 생략하는 두 가지 형태로 구분될 수 있다. 또한, 무방향성 전기 강판은 구동모터, 가전, 대형모터
수요처에서 구분하여 사용되고 있다.
절연피막 형성은 제품의 마무리 제조공정에 해당하는 과정으로서 통상 와전류의 발생을 억제시키는 전기적 특성 이외에 소정의 형상으로 타발가공 후 다수를 적층하여 철심으로 만들 때, 금형의 마모를 억제하는 연속타발 가공성과 강판의 가공응력을 제거하여 자기적 특성을 회복시키는 웅력제거 소둔 과정 후 철심강판간 밀착하지 않는 내 점착 (sticking)성 및 표면 밀착성 둥을 요구한다. 이러한 기본적인 특성 외에 코팅용액의 우수한 도포 작업성과 배합 후 장시간 사용 가능한 용액 안정성 등도 요구된다.
무방향성 절연피막은 적층되는 철판 사이의 층간 절연을 주목적으로 하고 있다. 그러나 소형 전동기기의 사용이 확대되면서 절연성뿐만 아니라, 가공성, 용접성, 내식성에 유리한 피막 성능을 주요한 물성으로 평가하게 되었으며, 최근 들어서는 강판 표면의 품질 또한 사용 특성에 영향을 미치면서 표면품질이 우수한 전기 강판올 요구하고 있다.
또한, 무방향성 전기 강판은 현재 정부의 저탄소 정책에 발 맞추어 고효율 모터 개발에 의한 고급화 물결을 타고 있으며, 고급화로 나아갈수록 전기 강판 표면은 고기능성 (고절연성, 고내열성, 고내식성)을 요구 받고 있다.
보다 구체적으로, 와전류 손실 (Eddy Current Loss)을 최소화함으로써 모터의 성능을 극대화 할 수 있는 무방향성 전기 강판의 충간 절연성은 필수 항목이다. 무방향성 전기 강판에 우수한 절연성을 확보하기 위해서는 코팅 두께를 증가시키는 방법이 가장 일반적인 방법이다. 그러나 코팅두께가 증가할 경우, 무방향성 전기 강판에서 요구하는 용접성, 내열성, SRA 전 /후 밀착성 및 점적율 (Stacking Factor) 등의 특성이 열위해지는 단점이 있다. 【발명의 상세한 설명】
【기술적 과제】
개선된 특성을 가지는 무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법, 및 무방향성 전기 강판 제품을 제공하는 것이다. 【기술적 해결방법】
본 발명의 일 구현예에서는, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;올 포함하고, 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 조성물을 제공한다.
상기 제 1 조성물 내 무기 나노 입자의 함량은 제 1 조성물 100 중량 %에 대해, 1 내지 60 중량0 /0 일 수 있다.
상기 제 1 조성물은, 수용성 에폭시 수지 및 Si02, Ti02, 또는 ZnO인 무기 나노 입자를 포함하고, 상기 무기 나노 입자의 함량은 제 1 조성물 100 중량 %에 대해, 1 내지 40증량0 /。인 Si02, 5 내지 30증량%인 Ti02, 또는 3 내지 60중량 %인 ZnO 일 수 있다.
상기 제】 조성물은, 수용성 에폭시 수지 및 Si02, Ti02, 또는 ZnO인 무기 나노 입자를 포함하고, 상기 무기 나노 입자의 입경은, 3 내지 50nm인 Si02, 20 내지 lOOnm인 TK)2, 또는 30 내지 lOOnm인 ZnO 일 수 있다. 상기 에폭시 수지는 분자량이 1,000 내지 50,000 일 수 있다.
상기 에폭시 수지는 연화점 (Tg)이 70 내지 120 일 수 있다.
상기 에폭시 수지는 고형분의 함량이 10 내지 50 중량% 일 수 있다. 상기 무기 첨가물의 함량은 무방향성 전기 강판 조성물 100 중량 %에 대해 1 내지 50 중량0 /0 일 수 있다.
7] 무방향성 전기 강판조성물은, 인산 (H3P04), 또는 수산화
나트륨 (NaOH) 인 무기 첨가물;을 포함하고, 상기 무기 첨가물의 함량은 무방향성 전기 강판조성물 100 중량0 /。에 대해, 3 내지 50 증량0 /0인 인산, 또는 1 내지 10 증량0 /0인 수산화 나트륨일 수 있다.
본 발명의 다른 일 구현예에서는, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하는 무방향성 전기 강판 조성물을 준비하는 단계; 상기 무방향성 전기 강판 조성물을 무방향성 전기 강판의 일면 또는 양면에 도포하는 단계; 상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계; 및 상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;를 포함하는 무방향성 전기 강판 제품의 제조 방법올 제공한다.
상기 도포된 무방향성 전기 강판조성물을 경화시켜 코팅층을 형성시키는 단계;는, 200 내지 600 °C의 온도에서 수행될 수 있다.
상기 도포된 무방향성 전기 강판조성물을 경화시켜 코팅층을 형성시키는 단계;는, 5 내지 40초간수행될 수 있다.
상기 도포된 무방향성 전기 강판조성물을 경화시켜 코팅층을 형성시키는 단계;에서, 코팅층의 두께는 0.5 내지 10 일 수 있다.
상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 1 내지 1000 N 압력에서 수행될 수 있다.
상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 120 내지 300 °C에서 수행될 수 있다.
상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 5 내지 180 분 동안 수행될 수 있다.
상기 도포된 무방향성 전기 강판 조성물올 경화시켜 코팅층을 형성시키는 단계;에서, 상기 코팅층 내 무기물의 비율은 으 05 내지 0.6 중량0 /。 일 수 있다. 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지일 수 있다.
본 발명의 또 다른 일 구현예에서는, 복수의 무방향성 전기 강판; 및 상기 복수의 무방향성 전기 강판 사이에 위치하는 절연층;을 포함하고, 상기 절연층은, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하고, 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 제품을 제공한다.
【유리한 효과】
열가소성 접착 수지 (예를 들어 , 에폭시 수지)에 무기 나노 입자를 치환하고 여기에 무기물을 용해시켜 우수한 고온 접착성과 고온 내 오일 (oil)성을 갖는 조성물 및 이를 이용한 무방향성 전기 강판 제품을 제조할 수 있다.
이를 통해 기존 체결 방법 (예를 들어, 용접, 크램핑, 인터락킹, 알루미늄 다이 캐스팅 또는 리벳팅)을 생략함으로써 구동 모터의 효율을 향상시킬 뿐만 아니라, 기존의 모터가 가지고 있는 진동과 소음의 문제를 개선할 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1에 따른 코팅층의 단면을 FIB(Focus Ion Beam)으로 가공한 후, TEM으로 찍은 사진이다.
도 2는 실시예 1에 따른 코팅층 내에 용해되어 있는 무기 첨가물의 분포를 나타낸 TEM사진이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하고, 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 조성물을 제공한다.
상기 본 발명의 일 구현예에 따른 조성물은 막으로 형성할 시 피막의 내유성, 밀착성, 내식성, 절연성, 낱장 코어 간의 접착력, 내 스크래치성, 내후성, 용접성, 및 /또는 고온 내유성이 우수하다.
상기 무기 나노 입자는 상가수용성 에폭시 수지의 말단 치환기에 치환될 수 있으며, 또한, 상기 에폭시 수지는 분자량이 1,000 내지 50,000 일 수 있다. 상기 분자량의 범위와 관련하여 에폭시 분자량이' 1,000 미만인 경우 경화성이 떨어질 수 있으며, 강도와 같은 도막물성이 떨어질 수 있다. 또한 에폭시 수지의 분자량이 50,000 초과하는 경우 에폭시 수지 내 상 (phase) 분리가 일어날 수 있으며, 무기 나노 입자와의 상용성이 떨어질 수 있다.
'보다 구체적으로, 상기 에폭시 수지는 5,000 내지 30,000 분자량을 가질 수 있다.
또한, 상기 에폭시 수지의 연화점 (Tg)는 70 내지 120 °C 일 수 있으며, 고체 분율 (고형분의 함량)은 10 내지 50중량% 일 수 있다.
상기 에폭시 수지는 비스페놀과 에폭사이드 조합형태로 구성되어 있으나 수분산 상태로 존재하기 위해 구조식의 한 부분이 극성그룹으로 치환될 수 있으며, 수분산 상태에서 석출, 침전과 같은 상 분리가 없는 안정적인 형태를 가질 수 있다. 보다 구체적으로, 상기 에폭시 수지는 비스페놀 A(BPA)와 에피크를히드린 (ECH)의 비율을 변화시키면서 분자량을 조절하였으며 내열 접착성을 향상시키기 위해 에폭시기가 3개 이상인 다관능성을 갖는 형태를 사용할 수 있다.
상기에서 언급한 열가소성 수지에 고온 접착성과 고온 내유성을 확보하기 위해, 상기 열가소성 수지에 콜로이달 상태의 무기 나노 입자를 치환시켜 유 /무기 복합 조성물 형태로 개질시킬 수 있다. 상기 콜로이달 상태의 무기 나노 입자는 Si02, Ti02, ZnO, 또는 이들의 조합일 수 있다. 상기 무기 나노 입자의 입경은 3 내지 lOOnm 일 수 있다.
상기 무기 나노 입자의 입경은 , 3 내지 50nm인 Si02, 20 내지 lOOnm인 TiO: 또는 30 내지 lOOmn인 ZnO (보다 구체적으로, 10 내지 60nm인 ZnO) 일 수 있다. 상기 범위를 만족하는 경우, 시간, 비용 및 입자 크기로 발생할 수 있는 취약 경계층을 최소화 측면에서 유리할 수 있다.
또한, 상기 제 1 조성물 내 무기 나노 입자의 함량은 제 1 조성물 100 증량0 /。에 대해, 1 내지 60 중량 %일 수 있다. 보다 구체적으로, 상기 무기 나노 입자의 함량은 상기 무기 나노 입자의 함량은 제 1 조성물 100 중량0 /。에 대해, 1 내지 40중량 %인 Si02, 5 내지 30증량0 /。인 Ti02, 또는 3 내지 60중량%인 ZnO (보다 구체적으로, 20 내지 60중량 %인 ZnO) 일 수 있다. 상기 범위를 만족하는 경우, 내열성 및 /또는 접착성의 균형을 유지할 수 있다.
전술한 유 /무기 복합 조성물 형태로 개질된 수지 조성물의 고온 접착성 및 고온 내유성을 극대화하기 위해서, 용해성이 좋은 무기 첨가물을 상기 조성물에 용해시킬 수 있다ᅳ
상기 무기 첨가물은 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합일 수 있다.
보다 구체적으로, 상기 무기 첨가물의 함량은 무방향성 전기 강판 조성물 100 중량0 /0에 대해, 1 내지 50 중량0 /。 일 수 있다. 보다 구체적인 예를 들어, 상기 무기 첨가물의 함량은 무방향성 전기 강판 조성물 100 증량%에 대해, 3 내지 50 증량%인 인산, 또는 1 내지 10 중량 %인 수산화 나트륨일 수 있다. 상기 범위를 만족시키는 경우, 무기 첨가물의 석출 문제, 내열성 및 /또는 내유성의 측면에서 유리할 수 있다.
상기 본 발명의 일 구현예에 따른 조성물은 용액 안정성, 코팅 작업성 등이 뛰어날 뿐만 아니라, 피막으로의 형성 시 표면 특성 (예를 들어, 내식성, 절연성, 밀착성 등)이 개선될 수 있으며, 고온 접착성 및 고온 내유성이 개선될 수 있다. 본 발명의 다른 일 구현예에서는, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하는 무방향성 전기 강판조성물올 준비하는 단계; 상기 무방향성 전기 강판 조성물을 무방향성 전기 강판의 일면 또는 양면에 도포하는 단계; 상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계; 및상기 코팅층 상에 또 다른 무방향성 전기 강판올 적층시킨 후 열융착하는 단계;를 포함하는 무방향성 전기 강판 제품의 제조 방법을 제공한다.
상기 무방향성 전기 강판조성물에 대해서는 전술한 본 발명의 일 구현예와 동일하기 때문에 그 설명을 생략하도록 한다.
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;는, 200 내지 600 °C의 온도에서 수행될 수 있다.
보다 구체적으로, 상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;는, 5 내지 40초간 수행될 수 있다.
보다 구체적으로, 상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;에서, 코팅층의 두께는 0.5 내지 10 / 일 수 있다. 이러한 범위를 만족하는 경우, 상기 코팅층의 우수한 표면 특성 (예를 들어, 절연성, 내식성, 밀착성 등)올 가질 수 있다.
또한, 상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 1 내지 1000 N 압력에서 수행될 수 있다.
보다 구체적으로, 상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 120 내지 300 °C에서 수행될 수 있다.
보다 구체적으로, 상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 5 내지 180 분 동안 수행될 수 있다.
상기 범위를 만족하는 경우, 코팅층 내에 무기 나노 입자 및 /또는 무기 첨가물의 균일한 분포에 의해 내열성이 개선될 수 있^며, 적층된 층간의 고온 접착력과 고온 (약, 150 °C) 내유성이 개선될 수 있다ᅳ
또한, 보다 구체적으로, 상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅충을 형성시키는 단계;에서, 상기 코팅층 내 무기물의 비율은 으 05 내지 0.6 증량0 /。 일 수 있다. 이러한 경우, 목적하는 내열성 및 /또는 내유성을 얻을 수 있다. 본 발명의 또 다른 일 구현예에서는, 복수의 무방향성 전기 강판; 및 상기 복수의 무방향성 전기 강판 사이에 위치하는 절연층;을 포함하고, 상기 절연층은, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하고, 상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 제품을 제공한다.
【발명의 실시를 위한 형태】
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. 실시예 1
도 1은 실시예 1에 따른 코팅층의 단면을 FIB(Focus Ion Beam)으로 가공한 후, TEM으로 찍은 사진이다. 도 1은 하기와 같은 무방향성 전기 강판 조성물을 준비하였다.
Epoxy-S i02계 유 /무기 복합 Composite에 인산 (¾P04) 및 수산화
나트륨 (NaOH)을 용해시켰다. 사용된 Epoxy 접착 수지의 분자량은 약 2만이고, Epoxy 접착 수지에 치환된 S i02이고 입자크기는 각각 10nm이며 입자의 중량 %는 10중량0 /。이다. 용해시킨 인산 (H3P04) 및 수산화 나트륨 (NaOH)올 Epoxy-Si02계 유 /무기 복합 Composite 100중량0 /0 대비 각각 3중량0 /0 및 5중량0 /0이다.
무방향성 전기 강판 (50 X 50 mm)을 공 시편으로 하고, 전술한 조성물을 각 준비된 공 시편에 일정한 두께 약 5.0 μια 도포한 후, 상기 도포된 무방향성 전기 강판 조성물을 500 °C에서 15초간 경화시켰다.
도 1에서 알 수 있듯이 코팅층 내에 무기 나노 입자가 균일하게 분포되어 있으며, 코팅 층 내에 무기 나노 입자가 코팅층 내에서 결합 (cohesion) 또는 웅집 (aggregation) 현상 없이 코팅층 전체에 걸쳐 일정하게 분포하고 있음을 알 수 있다.
도 2는 실시예 1에 따른 코팅층 내에 용해되어 있는 무기 첨가물의 분포를 나타낸 TEM사진이다. 무기물 내에 포함된 성분 (Na, P) 또한 코팅층 내에 균일하게 분포하고 있음을 알 수 있다.
상기에서 언급한 무기 나노 입자와 무기 첨가물의 코팅층 내에 균일한 분포는 접착 수지의 내열성 (Heat Resistance)을 향상시켜, 이로 인해 접착 용액의 고온 접착력을 친환경 자동차 (HEV, EV) 구동 모터에서 요구하는 수준 이상으로 만족시킬 수 있다. 실시예 2
하기 표 1와 같이 유 /무기 복합 무방향성 전기 강판조성물에 무기 나노 입자를 치환시키기 이전의 분자량에 따른 코팅 후 표면상태와상온 및 고온 접착력을 측정하였다.
【표 1】
Figure imgf000010_0001
[물성판정 / 매우 우수: Θ, 우수: o, 보통: Δ, 열위 : x] 바 코터 (Bar Coater)를 이용하여 준비된 무방향성 전기 강파늬 양면에 상기 표 1에서 준비한 조성물을 약 5;圆 두께로 도포하였으며 건조 온도 600 0C 에서 15 초간 경화후 상은에서 천천히 냉각하였다.
코팅된 시편을 일정크기 (50mm X 50mm)로 절단 후 높이 30mm로 적층하여 가압력 200N 하에서 열융착 온도 및 시간을 각각 200 °C, 30 분간 유지시켰다. 상기의 조건으로 열융착된 샘플을 인장력 측정 장치를 이용하여 접착력을 측정하였다. 사용한 인장력 측정 장치는 상기에서 준비된 셈플을 열융착후 JIG로 고정후 상은 및 고온에서 인장력을 측정하는 장치이다. 이때 측정된 값은 적층된 샘플의 계면 중에서 최소 접착력을 가진 계면이 탈락하게 된다. 상기와 같은 조건에서 상은에서도 동일한 실험을 반복하여 접착력의 정도를 판단하였다.
상기 표 1에서 알 수 있듯이 도포된 코팅층의 표면은 분자량이 높을수록 표면에 반점 및 즐무늬 등의 결함이 발생하는 경향을 보이고 있으며, 일반적으로 접착 수지의 분자량이 증가할수록 접착력은 증가하였다. 150°C에서의 고온 접착력은 열위하였으며, 분자량이 낮은 경우 접착력은 매우 열위 하였다. 하기 표 2는 에폭시계 유 /무기 복합 조성물 용액에 치환되어 있는 무기 나노 입자의 종류, 크기 및 치환량에 따른 조성물의 안정성, 상온 /고온 접착력 및 고온 내유성을 측정하였다.
【표 2】
에폭시계 유 /무기 복합 조성물 ᄆ J 7r ^Ί- Μ.Λ- < —ι Η — ᄀ ᄋ 접착 수지 입자종류 및 치환 량 용액 상오 고온 고온 조 Ξ
"0" ΤΓ 크기 (nm) (wt%) 안정성 접착력 접착력 내 Oil성
(25 °C) (150°C) 비교 에폭시 접착 수지 (분자량 Θ Θ X X 예 30,000)
에폭시 Si02 3 Θ Θ Δ Δ 접착 수지 (3nm) (분자량 ^
30,000)
실시
20 Θ Θ Δ Δ X X V o οε
Figure imgf000012_0001
X X V Θ £ 0UZ
X X V O 09
X X o o οε
(uj"oe)
V o Θ Θ £ 0U2
V V O o 09
V o O o οε
(uraoO
o o Θ ® ε 0"Z
X X V o οε
V V V o 51 o V V 0 ζ z0\l
X X V 0 οε
X o o o S1
V V o Θ ς z0\l
V o o o Οί
V o ® Θ 51
(^oz)
o V ® Θ ς
X o V O
V o V o
(uiu0S)
V V o o £ S0!S
X o o o
V V Θ Θ SZ)
o V ® ® £ zO\S
V o o © Ot7
6l^nO/MOZaM/X3d £9 )80/SI0Z O W
Figure imgf000013_0001
비교예로 분자량이 약 3만인 수용성 에폭시 접착 수지를 사용하였으며, 100% 에폭시 접착 수지의 경우 접착 용액의 안정성과 상온 접착력은 우수하나 고온 접착력과 고온 내유성이 매우 열위 함을 알 수 있다.
에폭시 접착 수지가 가지고 있는 고온 접착성과 고온 내유성 열위의 한계점을 극복하기 위해 본 발명의 일 구현예는 콜로이달 상태의 무기 나노 입자를 '치환시킨 조성물 형태의 접착 용액을 제안한 것이다.
상기 표 2에서 알 수 있듯이 에폭시 -Si02계 조성물의 경우, 무기 나노 입자 크기와 치환 량에 상관없이 용액 안정성과 상온 접착력이 우수하지만, 고온 접착력의 경우 무기 나노 입자가 클수록 및 /또는 치환시킨 Si02의 량이 많을수록 열위 해지는 경향을 보이고 있다.
또한 고온 내유성은 전반적으로 열위 하였으며, 특히 무기 나노 입자의 크기가 클수록, 및 /또는 치환시킨 무기 나노 입자의 양이 많을수록 더욱 열위 해지는 경향을 보이고 있다.
이는 무기 나노 입자의 크기가 클수록 시편과 시편 사이의 경계면에 상대적으로 큰 입자로 인해 취약 경계층을 형성하여 이 취약 경계충을 통해 고온 (약 150 내지 170°C)시 계면에 오일 (oil)이 침투하여 계면간의 접착성을 현저히 열위 시키는 이유 때문인 것으로 보인다.
에폭시 -Ti02계 조성물 및 에폭시 -ZnO계 조성물은 에폭시 -Si02계 조성물에 비해 용액 안정성과 상온 접착력이 다소 열위 하지만 전반적으로 우수한 톡성을 가지고 있다. 그러나 고온 접착력 및 고은 내유성은 상대적으로 큰 무기 나노 입자 크기와 많은 치환량으로 에폭시 -Si02계 조성물 에 비해 더욱 열위한 경향을 보이고 있다. 하기 표 3은 상기에서 언급한 3종류의 유 /무기 복합 조성물 (Epoxy-Si02계, Epoxy-Ti02계, Epoxy-ZnO계)의 고은 접착성 및 고온 내유성을 극대화하기 위해서 일정량의 수산화 나트륨 (NaOH) 및 /또는 인산 (H3P04)을 상기 조성물에 용해시 ¾ 후의 특성올 평가한 결과이다. 【표 3]
Figure imgf000014_0001
Figure imgf000015_0001
상기 표 2에 따른 조성물에 산화 나트륨 (NaOH) 또는 인산 (H3P04)을 상기 전체 조성물 100중량 % 대비 각각상기 표 3의 각각의 함량만큼 투입하였다.
사용된 에폭시 수지의 분자량은 약 3만이고, 상기 에폭시 수지에 치환된 Si02, Ti02 및 ZnO의 입자크기는 각각 25nm, 20nm 및 10nm이며 입자의 함량은 무기 첨가물을 투입하기 전의 전체 에폭시 수지 100중량 %에 대해 각각 20증량0 /。, 15증량0 /。 및 30증량 %이다.
코팅 이후에 무방향성 전기 강판의 기본 표면 특성 (절연성, 내식성, 밀착성 등)은 우수하였으며, 또한 가공성 (슬리팅성 또는 타발성)도 우수하였다.
상기 표 3에서 알 수 있듯이, 용액 안정성은 수산화 나트륨 (NaOH) 또는 인산 (H3P04)의 용해량이 많을수록 열위 해지는 경향을 보이고 있다.
상온 접착력은 치환된 무기입자의 종류 및 크기에 상관없이 전반적으로 우수하였으나, 수산화 나트륨 (NaOH) 또는 인산 (H3P04)의 용해량이 증가할수록 열위해진 경향을 보이고 있다. 이는 코팅층 내에 접착 수지의 양이 무기 나노 입자 및 무기 첨가물에 비해 상대적으로 작기 때문이다.
고온 접착력과 고온 내유성은 비슷한 특성을 보이고 있으며, 에폭시- Si02계 조성물의 경우, 용해시킨 수산화 나트륨 (NaOH) 또는 인산 (H3P04)의 량이 1 내지 15중량0 /。일 때, 두 가지 특성이 모두 우수하였다.
또한 에폭시 -Ti02계 조성물과 에폭시 -ZnO계 조성물의 경우도 마찬가지로, 용해시킨 수산화 나트륨 (NaOH) 또는 인산 (H3P04)의 양이 적정 수준일 때, 두 가지 특성이 모두 우수하였다. 이는 용해시킨 수산화 나트륨 (NaOH) 또는 인산 (H3P04)뿐만 아니라, 치환시킨 무기 나노 입자의 크기 및 양과도 관련이 있음을 알 수 있다ᅳ
일반적으로 전체 치환 및 용해시킨 무기물 (무기 나노 입자, 무기 첨가물)의 양이 너무 작으면 용액 내에 포함된 접착 수지의 비율이 상대적으로 낮아 내열성이 열위하여 고온 접착력과 고온 내유성이 열위해질 수 있다.
반면 무기물 (무기 나노 입자, 무기 첨가물)의 양이 너무 많으면 무기물에 의해 내열성은 좋아지지만 용액 내에 포함된 접착 수지의 비율이 상대적으로 낮아 고온 접착력과 고온 내유성이 열위해질 수 있다.
전체 조성물 내 무기물의 함량은 0.05 내지 0.6 중량0 /。인 경우가 적합할 수 있다. 다만, 이에 제한되는 것은 아니다. ' 상기 용액 안정성은 무기 나노 입자가 치환된 유 /무기 복합 조성물 또는 무기 첨가물이 용해된 유 /무기 복합 조성물을 교반기에 의해 30분 동안 강하게 교반 시킨 후 흔합된 용액을 30분 동안 유지한다. 그 다음에 피막 조성물 내에 침전이나 겔 (<¾1)현상 유 /무로 판단하였다. 상기 상온 및 고온 접착력은 편면당 일정 두께로 도포한 샘플을 적층 후 일정 조건하에서 열융착을 한 후 상온 및 고온 (150°C)에서 접착력 측정 장치에 의해 측정하였다. 상온에서의 측정한 값이 접착력이 2.0MPa 이상일 때 매우 우수, l.OMPa이상일 때 우수, 0.5MPa 이상일 때 보통 0.5MPa 이하일 때 열위로
표현하였다. 반면 고온에서의 접착력은 l .OMPa 이상일 때 매우 우수,
0.5MPa이상일 때 우수, 0.3MPa 이상일 때 보통 0.3MPa 이하일 때 열위로 표현하였다. 상기 고온 내유성은 열융착된 샘플을 고온 (17CTC)의 ATF( Automatic TAansmission Fluid) 오일 (oil)에 3시간이상 유지시킨 후, 천천히 냉각시켜 상온에서의 표면상태 및 접착력을 측정하였다. 표면상태를 관찰하였을 때, 오일이 낱장 코어 (coAe) 사이의 계면으로 침투하거나, 접착 코팅층이 ATF 오일에 의해 녹아나지 않아야 한다. 내유성의 판단기준으로 고온 ATF 실험을 거친 샘플의 접착력이 l.OMPa 이상일 때 매우 우수, 0.5MPa이상일 때 우수 , 0.3MPa 이상일 때 보통, 0.3MPa 이하일 때 열위로 표현하였다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【청구의 범위】
【청구항 1】
수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및
인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;
을 포함하고,
상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 조성물.
【청구항 2】
제 1항에 있어서,
상기 제 1 조성물 내 무기 나노 입자의 함량은 제 1 조성물 100 중량0 /。에 대해, 1 내지 60 중량%인 것인 무방향성 전기 강판 조성물.
【청구항 3】
제 1항에 있어서,
상기 제 1 조성물은,
수용성 에폭시 수지 및 Si02, Ti02, 또는 ZnO인 무기 나노 입자를 포함하고, 상기 무기 나노 입자의 함량은 제 1 조성물 100 증량 %에 대해,
1 내지 40증량 0/。인 Si02, 5 내지 30증량0 /。인 Ti02, 또는 3 내지 60중량0 /。인 ZnO인 것인 무방향성 전기 강판 조성물.
【청구항 4】
게 1항에 있어서,
상기 제 1 조성물은,
수용성 에폭시 수지 및 Si02, Ti02, 또는 ZnO인 무기 나노 입자를 포함하고, 상기 무기 나노 입자의 입경은,
3 내지 50nm인 Si02, 20 내지 lOOnm인 Ti02, 또는 30 내지 100nm인 ZnO인 것인 무방향성 전기 강판 조성물ᅳ
【청구항 5】
제 1항에 있어서,
상기 에폭시 수지는 분자량이 1,000 내지 50,000인 것인 무방향성 전기 강판 조성물.
【청구항 6】
저 U항에 있어서,
상기 에폭시 수지는 연화점 (Tg)이 70 내지 120 °C인 것인 무방향성 전기 강판 조성물.
【청구항 7】
제 1항에 있어서,
상기 에폭시 수지는 고형분의 함량이 10 내지 50 중량 %인 것인 무방향성 전기 강판 조성물.
【청구항 81
제 1항에 있어서,
상기 무기 첨가물의 함량은 무방향성 전기 강판 조성물 100 증량%에 대해, 1 내지 50 중량%인 것인 무방향성 전기 강판 조성물.
【청구항 9】
제 1항에 있어서,
상기 무방향성 전기 강판 조성물은, 인산 (H3P04), 또는 수산화 나트륨 (NaOH)인 무기 첨가물;을 포함하고,
상기 무기 첨가물의 함량은 무방향성 전기 강판 조성물 100 중량0 /0에 대해,
3 내지 50 중량0 /。인 인산, 또는 1 내지 10 중량0 /。인 수산화 나트륨인 것인 무방향성 전기 강판 조성물.
【청구항 10】 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하는 무방향성 전기 강판 조성물을 준비하는 단계; 상기 무방향성 전기 강판 조성물을 무방향성 전기 강판의 일면 또는 양면에 도포하는 단계;
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계; 및
상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계; 를 포함하는 무방향성 전기 강판 제품의 제조 방법.
【청구항 1 1】
제 10항에 있어서,
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;는,
200 내지 600 °C의 온도에서 수행되는 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 12】
제 10항에 있어서,
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;는, 5 내지 40초간 수행되는 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 13
제 10항에 있어서,
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;에서,
코팅층의 두께는 0.5 내지 10 인 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 14】
제 10항에 있어서,
상기 코팅충 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 1 내지 1000 N 압력에서 수행되는 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 15】
제 10항에 있어서, ' 상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 120 내지 300 °C에서 수행되는 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 16]
제 10항에 있어서,
상기 코팅층 상에 또 다른 무방향성 전기 강판을 적층시킨 후 열융착하는 단계;는, 5 내지 180 분 동안 수행되는 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 17】
제 10항에 있어서,
상기 도포된 무방향성 전기 강판 조성물을 경화시켜 코팅층을 형성시키는 단계;에서,
상기 코팅층 내 무기물의 비율은 0.05 내지 0.6 중량 %인 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 18】
제 10항에 있어서,
상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 제품의 제조 방법.
【청구항 19】
복수의 무방향성 전기 강판; 및
상기 복수의 무방향성 전기 강판 사이에 위치하는 절연층;을 포함하고,
상기 절연층은, 수용성 에폭시 수지 및 Si02, Ti02, ZnO, 또는 이들의 조합인 무기 나노 입자를 포함하는 제 1 조성물; 및 인산 (H3P04), 수산화 나트륨 (NaOH), 또는 이들의 조합인 무기 첨가물;을 포함하고,
상기 무기 나노 입자는 상기 수용성 에폭시 수지의 말단 치환기에 치환되고, 상기 에폭시 수지는 에폭시기가 3개 이상인 다관능성 에폭시 수지인 것인 무방향성 전기 강판 제품.
PCT/KR2014/011419 2013-11-27 2014-11-26 무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품 WO2015080463A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016555436A JP6336104B2 (ja) 2013-11-27 2014-11-26 無方向性電磁鋼板組成物、無方向性電磁鋼板製品の製造方法および無方向性電磁鋼板製品
EP14865105.2A EP3075882B1 (en) 2013-11-27 2014-11-26 Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
MX2016006813A MX2016006813A (es) 2013-11-27 2014-11-26 Composicion para placa electrica de acero no orientado, metodo para fabricar producto de placa electrica de acero no orientado y producto de placa electrica de acero no orientado.
CN201480064814.XA CN105765106B (zh) 2013-11-27 2014-11-26 无取向性电工钢板组合物、无取向性电工钢板产品及其制造方法
US15/100,021 US10556404B2 (en) 2013-11-27 2014-11-26 Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130145660A KR101561280B1 (ko) 2013-11-27 2013-11-27 무방향성 전기 강판 코팅 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품
KR10-2013-0145660 2013-11-27

Publications (2)

Publication Number Publication Date
WO2015080463A1 true WO2015080463A1 (ko) 2015-06-04
WO2015080463A8 WO2015080463A8 (ko) 2015-07-16

Family

ID=53199354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011419 WO2015080463A1 (ko) 2013-11-27 2014-11-26 무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품

Country Status (7)

Country Link
US (1) US10556404B2 (ko)
EP (1) EP3075882B1 (ko)
JP (1) JP6336104B2 (ko)
KR (1) KR101561280B1 (ko)
CN (1) CN105765106B (ko)
MX (1) MX2016006813A (ko)
WO (1) WO2015080463A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036591A (ja) * 2016-12-23 2021-03-04 ポスコPosco 電磁鋼板製品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797129B1 (ko) * 2015-12-21 2017-11-13 주식회사 포스코 무방향성 전기강판 접착 코팅 조성물, 무방향성 전기강판 제품, 및 이의 제조 방법
KR101904306B1 (ko) * 2016-12-23 2018-10-04 주식회사 포스코 무방향성 전기강판 접착 코팅 조성물 및 무방향성 전기강판 제품의 제조 방법
KR102033029B1 (ko) * 2017-12-26 2019-10-16 주식회사 포스코 전기강판 적층체, 및 이의 제조 방법
KR102112171B1 (ko) 2017-12-26 2020-05-18 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR102114810B1 (ko) * 2017-12-26 2020-05-25 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 적층체 및 전기강판 제품의 제조 방법
KR102223865B1 (ko) * 2018-09-27 2021-03-04 주식회사 포스코 전기강판 적층체
KR102176342B1 (ko) * 2018-09-28 2020-11-09 주식회사 포스코 전기강판 제품의 제조 방법
KR20210083569A (ko) * 2019-12-27 2021-07-07 엘지전자 주식회사 무방향성 전기강판 및 그 제조 방법
EP4169713A4 (en) 2020-06-17 2023-12-13 Nippon Steel Corporation COATING COMPOSITION FOR ELECTROMAGNETIC STEEL SHEET, SURFACE COATED ELECTROMAGNETIC STEEL SHEET FOR ADHESION AND LAMINATED IRON CORE
MX2023007352A (es) * 2020-12-21 2023-09-04 Posco Co Ltd Chapa de acero eléctrico autoadhesiva y laminado que comprende la misma.
KR102513318B1 (ko) * 2020-12-22 2023-03-22 주식회사 포스코 전기강판 및 이의 적층체
EP4361230A1 (en) 2021-06-21 2024-05-01 Sika Japan Ltd. Adhesive composition for laminating electrical steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201551A (ja) * 1993-12-29 1995-08-04 Nkk Corp 積層型電磁鋼板
JPH1150260A (ja) * 1997-08-06 1999-02-23 Toyobo Co Ltd クロムフリー金属表面処理用組成液及び表面処理金属材料
JP2002019016A (ja) * 2000-07-05 2002-01-22 Nisshin Steel Co Ltd リサイクル性に優れた熱可塑性樹脂被覆金属板、それを熱融着した金属板接合物及び金属板接合物の分離方法
KR20110072848A (ko) * 2009-12-23 2011-06-29 주식회사 포스코 절연성이 우수한 절연피막 형성용 피복조성물, 이를 이용한 무방향성 전기강판 및 무방향성 전기강판의 절연피막 형성방법
KR20110076374A (ko) * 2009-12-29 2011-07-06 주식회사 노루홀딩스 무 방향성 전기 강판용 절연코팅제, 절연코팅제 제조방법 및 절연피막 형성방법
KR20130076642A (ko) * 2011-12-28 2013-07-08 주식회사 포스코 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609686A (en) * 1985-04-19 1986-09-02 The Standard Oil Company 100 percent solids epoxy, nitrile coating compositions and method of making same
CN1333019C (zh) * 1997-12-12 2007-08-22 杰富意钢铁株式会社 能消除应力退火、耐溶剂性优良的电工钢板
JP3312589B2 (ja) * 1997-12-26 2002-08-12 日本鋼管株式会社 接着強度、耐食性及び耐ブロッキング性に優れた接着鉄芯用電磁鋼板の製造方法
JP2000034580A (ja) * 1998-04-22 2000-02-02 Toyobo Co Ltd 表面処理金属材料
JP4474714B2 (ja) 2000-02-04 2010-06-09 Jfeスチール株式会社 絶縁被膜付き電磁鋼板の製造方法
EP1580235A4 (en) * 2002-12-27 2007-05-30 Tdk Corp RESIN COMPOSITION, CURED RESIN, CURED RESIN SHEET, LAMINATE, PREIMPREGNE, ELECTRONIC COMPONENT, AND MULTILAYER SUBSTRATE
CN100506929C (zh) * 2004-04-28 2009-07-01 宝山钢铁股份有限公司 电工钢用水性自粘接涂料
KR100886236B1 (ko) 2004-10-18 2009-03-02 신닛뽄세이테쯔 카부시키카이샤 내열 접착성 절연 피막
US20070087201A1 (en) * 2005-10-13 2007-04-19 Michael Wimmer Self-bonding coating composition
JP5471081B2 (ja) * 2009-06-30 2014-04-16 Jfeスチール株式会社 半有機絶縁被膜付き電磁鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201551A (ja) * 1993-12-29 1995-08-04 Nkk Corp 積層型電磁鋼板
JPH1150260A (ja) * 1997-08-06 1999-02-23 Toyobo Co Ltd クロムフリー金属表面処理用組成液及び表面処理金属材料
JP2002019016A (ja) * 2000-07-05 2002-01-22 Nisshin Steel Co Ltd リサイクル性に優れた熱可塑性樹脂被覆金属板、それを熱融着した金属板接合物及び金属板接合物の分離方法
KR20110072848A (ko) * 2009-12-23 2011-06-29 주식회사 포스코 절연성이 우수한 절연피막 형성용 피복조성물, 이를 이용한 무방향성 전기강판 및 무방향성 전기강판의 절연피막 형성방법
KR20110076374A (ko) * 2009-12-29 2011-07-06 주식회사 노루홀딩스 무 방향성 전기 강판용 절연코팅제, 절연코팅제 제조방법 및 절연피막 형성방법
KR20130076642A (ko) * 2011-12-28 2013-07-08 주식회사 포스코 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075882A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036591A (ja) * 2016-12-23 2021-03-04 ポスコPosco 電磁鋼板製品
JP7324183B2 (ja) 2016-12-23 2023-08-09 ポスコ カンパニー リミテッド 電磁鋼板製品
US11807922B2 (en) 2016-12-23 2023-11-07 Posco Co., Ltd Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor

Also Published As

Publication number Publication date
CN105765106A (zh) 2016-07-13
EP3075882A1 (en) 2016-10-05
JP2016540901A (ja) 2016-12-28
KR20150061472A (ko) 2015-06-04
EP3075882B1 (en) 2021-03-03
KR101561280B1 (ko) 2015-10-16
US20160375658A1 (en) 2016-12-29
CN105765106B (zh) 2018-05-15
WO2015080463A8 (ko) 2015-07-16
JP6336104B2 (ja) 2018-06-06
MX2016006813A (es) 2016-09-07
US10556404B2 (en) 2020-02-11
EP3075882A4 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2015080463A1 (ko) 무방향성 전기 강판 조성물, 무방향성 전기 강판 제품의 제조 방법 및 무방향성 전기 강판 제품
CN108473819B (zh) 电工钢板粘接涂料组合物、形成有粘接涂层的电工钢板、电工钢板产品及其制造方法
CN113165331B (zh) 电工钢板制品的制造方法
EP2800103B1 (en) Insulation coating composition for non-oriented electrical steel sheet, method for manufacturing same, and non-oriented electrical steel sheet upon which the insulation coating composition is applied
KR101904306B1 (ko) 무방향성 전기강판 접착 코팅 조성물 및 무방향성 전기강판 제품의 제조 방법
KR101540373B1 (ko) 무방향성 전기강판 접착 코팅 조성물, 무방향성 전기강판 제품, 및 이의 제조 방법
KR102114810B1 (ko) 전기강판 접착 코팅 조성물, 전기강판 적층체 및 전기강판 제품의 제조 방법
WO2018117670A2 (ko) 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR20190077985A (ko) 전기강판 적층체, 및 이의 제조 방법
KR102112171B1 (ko) 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
KR101448598B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101481127B1 (ko) 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR102223865B1 (ko) 전기강판 적층체
JP6222206B2 (ja) 絶縁被膜付き電磁鋼板および積層電磁鋼板ならびにそれらの製造方法
CN116761715A (zh) 电工钢板层叠体
CN116685463A (zh) 自粘接用电工钢板以及包含其的层叠体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865105

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014865105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016555436

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006813

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15100021

Country of ref document: US