WO2013100082A1 - レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 - Google Patents

レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 Download PDF

Info

Publication number
WO2013100082A1
WO2013100082A1 PCT/JP2012/083950 JP2012083950W WO2013100082A1 WO 2013100082 A1 WO2013100082 A1 WO 2013100082A1 JP 2012083950 W JP2012083950 W JP 2012083950W WO 2013100082 A1 WO2013100082 A1 WO 2013100082A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
redox flow
secondary battery
electrolyte membrane
resin
Prior art date
Application number
PCT/JP2012/083950
Other languages
English (en)
French (fr)
Inventor
明宏 加藤
三宅 直人
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201280063955.0A priority Critical patent/CN104011922B/zh
Priority to EP12863252.8A priority patent/EP2800193B1/en
Priority to US14/368,017 priority patent/US20140342268A1/en
Priority to JP2013551829A priority patent/JP5972286B2/ja
Priority to KR1020147014520A priority patent/KR20140097255A/ko
Publication of WO2013100082A1 publication Critical patent/WO2013100082A1/ja
Priority to US15/617,676 priority patent/US10211474B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow secondary battery and an electrolyte membrane for a redox flow secondary battery.
  • a redox flow secondary battery stores and discharges electricity, and belongs to a large stationary battery used for leveling electricity usage.
  • a redox flow secondary battery separates an electrolyte solution (positive electrode cell) containing a positive electrode and a positive electrode active material and a negative electrode electrolyte solution (negative electrode cell) containing a negative electrode and a negative electrode active material with a diaphragm, and oxidizes both active materials. Charging and discharging is performed using a reduction reaction, and an electrolytic solution containing both the active materials is circulated from a storage tank to an electrolytic cell to be used.
  • an iron-chromium system for example, an iron-chromium system, a chromium-bromine system, a zinc-bromine system, or a vanadium system utilizing a difference in charge is used.
  • vanadium-based secondary batteries have the advantages of high electromotive force, fast electrode reaction of vanadium ions, small amount of hydrogen generation as a side reaction, high output, and so on. .
  • the diaphragm is devised so as not to mix the electrolyte containing the active material of both electrodes.
  • the conventional diaphragm has a problem that it is easily oxidized and the electric resistance must be sufficiently low.
  • the permeation of each active material ion contained in each cell electrolyte (contamination of the electrolyte in the bipolar electrolyte) is prevented as much as possible, and protons (H + ) that carry charges are sufficient.
  • An ion exchange membrane that is easy to permeate and excellent in ion selective permeability is required.
  • the vanadium bivalent (V 2+ ) / 3 valent (V 3+ ) redox reaction in the negative electrode cell and the vanadium tetravalent (V 4+ ) / 5 valent (V 5+ ) in the positive electrode cell The redox reaction is used. Therefore, since the electrolyte solution of the positive electrode cell and the negative electrode cell has the same kind of metal ion species, even if the electrolyte solution is mixed through the diaphragm, it is normally regenerated by charging, so compared to other types of metal species Hard to be a big problem. However, since active materials that are wasted increase and current efficiency decreases, active material ions should not permeate freely as much as possible.
  • Electrode membranes a porous material that freely passes ionic differential pressure and osmotic pressure of an electrolyte as a driving force.
  • Batteries using membranes have been reported.
  • a porous film a polytetrafluoroethylene (hereinafter also referred to as “PTFE”) porous film, a polyolefin (hereinafter also referred to as “PO”)-based porous film, a PO-based nonwoven fabric, and the like.
  • PTFE polytetrafluoroethylene
  • PO polyolefin
  • Patent Document 2 discloses a composite membrane combining a porous membrane and a hydrous polymer so that both electrolytes do not move due to a pressure difference between cells.
  • Patent Document 3 discloses that a cellulose or ethylene-vinyl alcohol copolymer film is used as a nonporous hydrophilic polymer film having a hydrophilic hydroxyl group.
  • Patent Document 4 by using a polysulfone membrane (anion exchange membrane) as a hydrocarbon ion exchange resin, the current efficiency is 80% to 88.5%, and the radical oxidation resistance is also excellent. Are listed.
  • Patent Document 5 discloses a method of using a fluorine-based or polysulfone-based ion exchange membrane as a diaphragm and increasing the reaction efficiency by supporting expensive platinum on porous carbon of the positive electrode in order to increase the current efficiency.
  • Patent Document 6 discloses an iron-chromium redox flow battery in which a hydrophilic resin is applied to pores of a porous film such as polypropylene (hereinafter also referred to as “PP”).
  • a hydrophilic resin is applied to pores of a porous film such as polypropylene (hereinafter also referred to as “PP”).
  • Examples of the document include an example of a membrane in which both surfaces of a 100 ⁇ m-thick PP porous membrane are coated with a fluorine ion exchange resin (manufactured by DuPont, registered trademark “Nafion”) with a thickness of several ⁇ m. is there.
  • Patent Document 7 discloses an example of a vanadium type battery that uses a two-layer liquid-permeable porous carbon electrode having a specific surface lattice to reduce cell electrical resistance as much as possible and improve efficiency by devising the electrode side. Has been.
  • Patent Document 8 discloses an anion exchange type having a low resistance, excellent proton permeability, having a pyridinium group (using cation N + ), and a crosslinked type copolymerized with a styrene monomer and divinylbenzene.
  • An example of a vanadium redox flow battery using a diaphragm containing a polymer is disclosed.
  • Patent Document 9 uses a membrane having a structure in which a cation exchange membrane (fluorine polymer or other hydrocarbon polymer) and an anion exchange membrane (polysulfone polymer) are alternately stacked, and uses positive electrode electrolysis.
  • a cation exchange membrane fluorine polymer or other hydrocarbon polymer
  • an anion exchange membrane polysulfone polymer
  • Patent Document 10 discloses that a vinyl heterocyclic compound having two or more hydrophilic groups on a porous substrate made of a porous PTFE resin as a membrane having excellent chemical resistance, low resistance and excellent ion selective permeability.
  • An example of use of an anion exchange membrane formed by combining a crosslinked polymer having a repeating unit (such as vinylpyrrolidone having an amino group) is disclosed.
  • a metal cation with a large ion diameter and charge amount is subjected to a potential difference, the cations on the surface of each diaphragm are electrically repelled and the metal cation permeates through the membrane, but the ion diameter is also small. It is described that the monovalent proton (H +) can easily diffuse and permeate a diaphragm having a cation, so that the electric resistance is reduced.
  • Patent Document 1 simply thinning the diaphragm is insufficient for improving the ion selective permeability, lowering the electrical resistance derived from the diaphragm, and improving the current efficiency.
  • the composite membrane disclosed in Patent Document 2 has a high electrical resistance, and there is a problem that each ion is diffused freely although not as much as a porous membrane.
  • the film disclosed in Patent Document 3 also has the same problem as described above and is inferior in oxidation resistance.
  • the battery disclosed in Patent Document 4 still has insufficient current efficiency, and is inferior in oxidation resistance deterioration resistance in a sulfuric acid electrolyte over a long period of time.
  • the battery disclosed in Patent Document 8 has insufficient current efficiency and also has problems with long-term use because of oxidative degradation.
  • the film disclosed in Patent Document 9 has a problem that electric resistance is increased. According to the results shown in the examples of Patent Document 10, it cannot be said that the internal resistance (electrical resistance) of the film is sufficiently low, and oxidation resistance deterioration becomes a problem in long-term use.
  • Conventional vanadium-based redox flow battery electrolyte (separation) membranes consist of a cell (negative electrode side) in which the majority of the vanadium ion ions, which are the active materials of the electrolyte solution of both electrodes, and a high-valence battery.
  • each cell (positive electrode side) having a large number of ion groups the diffusion transfer of the active material to the counter electrode (cell) is suppressed, and with the intended charge / discharge operation, protons (H + ) It is used for the purpose of selectively transmitting.
  • protons H +
  • the performance is not sufficient.
  • membrane base materials mainly composed of hydrocarbon resins simple porous membranes that do not have ion-selective permeation by simply isolating the electrolyte containing the main electrolyte of both cells, or those that do not have ion-selective permeation (non-porous) (Iii)
  • a hydrophilic membrane substrate, a porous membrane in which a hydrophilic membrane substrate is embedded or coated is used.
  • a so-called cation exchange membrane having various anion groups or a composite membrane in which a cation exchange resin is coated or embedded in pores of a porous membrane substrate, similarly, an anion exchange membrane in which the membrane itself has a cation group, Similarly, a composite membrane in which an anion exchange resin is coated or embedded on a porous membrane base material, a laminated type of the two, and the like are used as a diaphragm, and researches that make use of the respective characteristics are being conducted.
  • An ion-exchange resin diaphragm that sufficiently satisfies the two contradicting properties of electrical resistance (mainly dependent on proton permeability) and blocking of metal ion (polyvalent cation) permeability, which is the main active material.
  • Fluorine ion exchange resins also have excellent proton (H + ) permeability and have not been fully studied for contradictory properties of suppressing the permeation of active material ions.
  • An electrolyte membrane for a redox flow battery that sufficiently satisfies oxidation resistance (hydroxy radical resistance) has not been developed.
  • the present invention has excellent ion selective permeability that can suppress the ion selective permeability of the active material without deteriorating proton (H + ) permeability, and has low electrical resistance.
  • An object of the present invention is to provide a redox flow secondary battery electrolyte membrane excellent in current efficiency and a redox flow secondary battery using the same.
  • the present inventors include a perfluorocarbon sulfonic acid resin (hereinafter also referred to as “PFSA resin”) having a specific structure and an equivalent mass EW, and further, An electrolyte membrane for a redox flow secondary battery having excellent ion selective permeability, low electrical resistance, and excellent current efficiency by adjusting ionic conductivity to a specific range, and redox using the same
  • PFSA resin perfluorocarbon sulfonic acid resin
  • An electrolyte membrane for a redox flow secondary battery having excellent ion selective permeability, low electrical resistance, and excellent current efficiency by adjusting ionic conductivity to a specific range, and redox using the same
  • the present inventors have found that a flow secondary battery can be achieved and completed the present invention.
  • a positive electrode cell chamber including a positive electrode made of a carbon electrode;
  • a negative electrode cell chamber including a negative electrode made of a carbon electrode;
  • An electrolyte membrane as a diaphragm for separating and separating the positive electrode cell chamber and the negative electrode cell chamber; Having an electrolytic cell containing
  • the positive electrode cell chamber includes a positive electrode electrolyte containing a positive electrode active material;
  • the negative electrode cell chamber includes a negative electrode electrolyte containing a negative electrode active material;
  • a redox flow secondary battery that charges and discharges based on a change in valence of the positive electrode active material and the negative electrode active material in the electrolyte solution
  • the electrolyte membrane includes an ion exchange resin composition containing a perfluorocarbon sulfonic acid resin having a structure represented by the following formula (1):
  • the perfluorocarbon sulfonic acid resin has an equivalent mass EW (dry mass in grams per equivalent of ion exchange groups) of 250 to 1500
  • Redox flow secondary battery -[CF 2 -CF 2 ] a- [CF 2 -CF (-O- (CF 2 ) m -SO 3 H)] g- (1)
  • EW equivalent mass in grams per equivalent of ion-exchange groups
  • An ion exchange resin composition comprising a perfluorocarbon sulfonic acid resin having a structure represented by the following formula (1):
  • the perfluorocarbon sulfonic acid resin has an equivalent mass EW (dry mass in grams per equivalent of ion exchange groups) of 250 to 1500 g / eq,
  • the ionic conductivity at 110 ° C. and relative humidity 50% RH is 0.05 S / cm or more.
  • the electrolyte membrane for a redox flow secondary battery of the present invention has excellent ion selective permeability. Therefore, it has high proton (hydrogen ion) permeability, low electrical resistance, can suppress the permeation of active material ions in the electrolytic solution, and further exhibits high current efficiency.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following this embodiment.
  • the redox flow secondary battery in this embodiment is A positive electrode cell chamber including a positive electrode made of a carbon electrode; A negative electrode cell chamber including a negative electrode made of a carbon electrode; An electrolyte membrane as a diaphragm for separating and separating the positive electrode cell chamber and the negative electrode cell chamber; Having an electrolytic cell containing
  • the positive electrode cell chamber includes a positive electrode electrolyte containing a positive electrode active material; the negative electrode cell chamber includes a negative electrode electrolyte containing a negative electrode active material;
  • a redox flow secondary battery that charges and discharges based on a change in valence of the positive electrode active material and the negative electrode active material in the electrolyte solution,
  • the electrolyte membrane includes an ion exchange resin composition containing a PFSA resin having a structure represented by the following formula (1):
  • the equivalent mass EW (dry mass in grams per equivalent of ion-exchange group) of the PFSA resin is 250 to 1500 g / eq, The
  • a relative humidity of 50% RH is 0.05 S / cm or more.
  • FIG. 1 shows an example of a schematic diagram of a redox flow secondary battery in the present embodiment.
  • the redox flow secondary battery 10 in this embodiment includes a positive electrode cell chamber 2 including a positive electrode 1 made of a carbon electrode, a negative electrode cell chamber 4 including a negative electrode 3 made of a carbon electrode, the positive electrode cell chamber 2, and the negative electrode cell.
  • An electrolytic cell 6 including an electrolyte membrane 5 as a diaphragm that separates and separates the chamber 4 from the chamber 4, the positive electrode cell chamber 2 containing a positive electrode electrolyte containing an active material, and the negative electrode cell chamber 4 containing an active material. Includes negative electrode electrolyte.
  • the positive electrode electrolyte and the negative electrode electrolyte containing the active material are stored, for example, by the positive electrode electrolyte tank 7 and the negative electrode electrolyte tank 8, and are supplied to each cell chamber by a pump or the like (arrows A and B).
  • the current generated by the Redox flow secondary battery may be converted from direct current to alternating current via the AC / DC converter 9.
  • the redox flow secondary battery according to the present embodiment has a liquid-permeable porous collector electrode (for negative electrode and positive electrode) arranged on both sides of the diaphragm, sandwiched by pressing, and partitioned by the diaphragm. Is a positive electrode cell chamber and the other is a negative electrode cell chamber, and the thickness of both cell chambers is secured by a spacer.
  • the positive electrode cell chamber contains a positive electrode electrolyte composed of a sulfuric acid electrolyte containing vanadium tetravalent (V 4+ ) and pentavalent (V 5+ ), and the negative electrode cell chamber contains vanadium.
  • the battery is charged and discharged by circulating a negative electrode electrolyte containing trivalent (V 3+ ) and divalent (V 2+ ).
  • V 4+ is oxidized to V 5+ in the positive electrode cell chamber because the vanadium ions emit electrons
  • V 3+ is reduced to V 2+ by the electrons returning through the outer path.
  • protons (H + ) are excessive in the positive electrode cell chamber, while protons (H + ) are insufficient in the negative electrode cell chamber.
  • the diaphragm selectively moves excess protons in the positive electrode cell chamber to the negative electrode chamber, thereby maintaining electrical neutrality.
  • the reverse reaction proceeds during discharge.
  • the battery efficiency (%) at this time is expressed as a ratio (%) obtained by dividing the discharge power amount by the charge power amount. Both power amounts are related to the internal resistance of the battery cell, the ion selective permeability of the diaphragm, and other current losses. Dependent. A reduction in internal resistance improves voltage efficiency, and an improvement in ion selective permeability and other reductions in current loss improve current efficiency, and thus are important indicators for redox flow secondary batteries.
  • the electrolyte membrane for a redox flow secondary battery in the present embodiment includes an ion exchange resin composition including a PFSA resin having a specific structure and an equivalent mass EW, and has a specific ionic conductivity.
  • the ion exchange resin composition in the present embodiment includes a perfluorocarbon sulfonic acid resin (PFSA resin) having a structure represented by the following formula (1).
  • the PFSA resin used in the present embodiment is not particularly limited as long as it has a structure represented by the following formula (1), and may include other repeating units.
  • PFSA resin perfluorocarbon sulfonic acid resin
  • the PFSA resin used in the present embodiment is not particularly limited as long as it has a structure represented by the following formula (1), and may include other repeating units.
  • the PFSA resin in this embodiment is a general fluorine-based polymer, for example, a repeating unit represented by — (CF 2 —CF 2 ) —, and — (CF 2 —CF (—O— (CF 2 CFXO). ) N- (CF 2 ) m -SO 3 H))-(wherein X represents F or CF 3 , n represents an integer of 1 to 5, and m represents 0 to 12 However, n and m do not simultaneously become 0.), the current efficiency tends to be higher than in the case where n in the repeating unit is 1 or more.
  • the PFSA resin in the present embodiment can be obtained, for example, by producing a polymer electrolyte polymer precursor (hereinafter also referred to as “PFSA resin precursor”) and then hydrolyzing it.
  • PFSA resin precursor a polymer electrolyte polymer precursor
  • a PFSA resin precursor comprising a copolymer of a fluorinated vinyl ether compound represented by the following formula (2), (3) or (4) and a fluorinated olefin monomer represented by the following formula (5): Obtained by hydrolysis.
  • the fluorinated vinyl ether compounds represented by the following formula (2), (3) or (4) may be used alone or in combination of two or more.
  • X represents F or a perfluoroalkyl group having 1 to 3 carbon atoms
  • n represents an integer of 0 to 5
  • A represents (CF 2 ) m -W
  • m represents Represents an integer from 0 to 6, and n and m are not 0 at the same time.
  • X represents a perfluoroalkyl group having 1 to 3 carbon atoms
  • p represents an integer of 0 to 12
  • m represents an integer of 0 to 6, and k represents 1)
  • And represents an integer of 1 to 5
  • W represents
  • the W shown a functional group capable of conversion to SO 3 H by hydrolysis in, but are not limited to, SO 2 F, SO 2 Cl , SO 2 Br is preferable.
  • X CF 3
  • W SO 2 F
  • Z F.
  • PFSA resin precursor in the present embodiment can be synthesized by a known means.
  • a polymerization solvent such as a fluorinated hydrocarbon
  • TFE fluorinated olefin gas
  • a method in which an aqueous solution of a co-emulsifier is filled with a gas of a vinyl fluoride compound and a fluorinated olefin, and emulsified and reacted to react (emulsion polymerization , And methods of polymerizing (suspension) and the like are known by reacting filled suspending fluoride vinyl compound and the fluorinated olefin gas in an aqueous solution of a suspension stabilizer.
  • PFSA resin precursor produced by any of the above-described polymerization methods can be used.
  • the PFSA resin precursor may be a block-like or tapered polymer obtained by adjusting polymerization conditions such as the amount of TFE gas supplied.
  • the PFSA resin precursor is obtained by treating an impurity terminal generated in a resin molecular structure during a polymerization reaction or a structurally oxidizable portion (CO group, H bond portion, etc.) under a fluorine gas by a known method.
  • the portion may be fluorinated.
  • the molecular weight of the PFSA resin precursor is 0.05 to 50 in terms of the melt flow index (MFI) measured based on ASTM: D1238 (measurement conditions: temperature 270 ° C., load 2160 g). (G / 10 min) is preferable.
  • MFI melt flow index
  • a more preferable range of MFI of the precursor resin is 0.1 to 30 (g / 10 minutes), and a further preferable range is 0.5 to 20 (g / 10 minutes).
  • the PFSA resin precursor is extruded with a nozzle or die using an extruder, and then subjected to hydrolysis treatment, or is a product produced when polymerized, that is, a dispersed liquid, or a powder that is precipitated and filtered. After making it into a product, a hydrolysis treatment is performed.
  • the shape of the PFSA resin precursor is not particularly limited, but from the viewpoint of increasing the treatment speed in the hydrolysis treatment and acid treatment described later, it is in the form of pellets of 0.5 cm 3 or less, dispersed liquid, powder particles In particular, it is preferable to use a powdered product after polymerization. From the viewpoint of cost, an extruded film-like resin precursor may be used.
  • the resin precursor obtained as described above and molded as necessary is subsequently immersed in a basic reaction liquid and hydrolyzed.
  • the basic reaction solution used for the hydrolysis treatment is not particularly limited, but is an aqueous solution of an amine compound such as dimethylamine, diethylamine, monomethylamine and monoethylamine, or hydroxide of an alkali metal or alkaline earth metal.
  • An aqueous solution of the product is preferable, and an aqueous solution of sodium hydroxide and potassium hydroxide is more preferable.
  • an alkali metal or alkaline earth metal hydroxide is used, its content is not particularly limited, but it is preferably 10 to 30% by mass with respect to the entire reaction solution.
  • the reaction solution further preferably contains a swellable organic compound such as methyl alcohol, ethyl alcohol, acetone, and dimethyl sulfoxide (DMSO).
  • a swellable organic compound such as methyl alcohol, ethyl alcohol, acetone, and dimethyl sulfoxide (DMSO).
  • the content of the swellable organic compound is preferably 1 to 30% by mass with respect to the entire reaction solution.
  • the PFSA resin precursor is hydrolyzed in the basic reaction liquid, sufficiently washed with warm water, and then acid-treated.
  • the acid used for the acid treatment is not particularly limited, but preferred are mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as oxalic acid, acetic acid, formic acid and trifluoroacetic acid, and a mixture of these acids and water. Is more preferable. Moreover, the said acids may be used independently or may use 2 or more types together.
  • the basic reaction solution used in the hydrolysis treatment may be removed in advance before the acid treatment, for example, by treatment with a cation exchange resin.
  • the PFSA resin precursor is protonated to generate ion exchange groups.
  • W of the PFSA resin precursor is protonated by acid treatment and becomes SO 3 H.
  • the PFSA resin obtained by hydrolysis and acid treatment can be dispersed or dissolved in a protic organic solvent, water, or a mixed solvent of both.
  • the equivalent mass EW of the PFSA resin (the dry mass in grams of the PFSA resin per equivalent of ion-exchange groups) is 250 to 1500 (g / eq).
  • the upper limit of EW is preferably 700 (g / eq), more preferably 600 (g / eq), and even more preferably 550 (g / eq).
  • the lower limit of EW is preferably 300 (g / eq), more preferably 350 (g / eq), and still more preferably 400 (g / eq).
  • the equivalent mass EW of the PFSA resin By adjusting the equivalent mass EW of the PFSA resin to the above range, it is possible to impart excellent hydrophilicity to the ion exchange resin composition containing it, and the electrolyte membrane obtained using the resin composition has a low electrical property. Resistance and high hydrophilicity, many smaller clusters (small parts where ion exchange groups coordinate and / or adsorb water molecules), high oxidation resistance (hydroxy radical resistance), low electrical resistance, and good Tend to exhibit excellent ion selective permeability.
  • the equivalent mass EW of the PFSA resin is preferably 250 (g / eq) or more from the viewpoint of hydrophilicity and water resistance of the film, and is 700 (g / eq) or less from the viewpoint of hydrophilicity and electric resistance of the film. It is preferable. Further, when the EW of the PFSA resin is near the lower limit, the resin is modified by partially or indirectly partially cross-linking ion exchange groups on the side chain of the resin between the molecules, You may control solubility and excessive swelling property.
  • Examples of the partial cross-linking reaction include a reaction between an ion exchange group and a functional group or main chain of another molecule, a reaction between ion exchange groups, an oxidation-resistant low molecular compound, an oligomer, or a high molecular substance. In some cases, it may be a reaction with a salt (including an ionic bond with a SO 3 H group) forming substance.
  • Examples of the oxidation-resistant low molecular weight compound, oligomer or polymer substance include polyhydric alcohols and organic diamines.
  • the EW of the PFSA resin may be low. That is, the water solubility should be reduced (water resistance improved) without sacrificing the ion exchange group (in other words, EW).
  • EW ion exchange group
  • the functional group (for example, SO 2 F group) before hydrolysis of the PFSA resin may be partially imidized (including alkylimidation) partially (including intermolecular).
  • the equivalent mass EW of the PFSA resin can be measured by salt-substituting the PFSA resin and back titrating the solution with an alkaline solution.
  • the equivalent mass EW of the PFSA resin can be adjusted by the copolymerization ratio of the fluorine-based monomer, the selection of the monomer type, and the like.
  • the hydrophilicity is insufficient, the electric resistance is high, the ion selective permeability and the current efficiency tend to deteriorate.
  • the ionic conductivity of the electrolyte membrane in this embodiment at 110 ° C. and 50% RH is 0.05 S / cm or more, and preferably 0.10 S / cm or more.
  • the electrolyte membrane in this embodiment preferably has an ionic conductivity at 40% RH of 0.05 S / cm or more, more preferably an ionic conductivity at 30% RH of 0.05 S / cm or more, and even more preferably.
  • the ionic conductivity at 20% RH is 0.05 S / cm or more.
  • the electrolyte membrane in the present embodiment preferably has an ionic conductivity at 40% RH of 0.10 S / cm or more, more preferably an ionic conductivity at 30% RH of 0.10 S / cm or more, more preferably 20%.
  • the ion conductivity in RH is 0.10 S / cm or more. The higher the ionic conductivity of the electrolyte membrane, the better. However, even if the ionic conductivity at 110 ° C. and relative humidity of 50% RH is 1.0 S / cm or less, usually sufficient performance is exhibited. When the ionic conductivity of the electrolyte membrane is within the above range, the electrical resistance is lowered and excellent current efficiency is exhibited.
  • the content of the PFSA resin contained in the ion exchange resin composition forming the electrolyte membrane in the present embodiment is preferably about 33.3 to 100% by mass, more preferably 40 to 100% by mass, and still more preferably 50%. To 99.5% by mass.
  • the ion-exchangeable resin composition in the present embodiment contains a basic polymer (including a low molecular weight substance such as an oligomer) in addition to the above-described PFSA resin, thereby providing chemical stability as a resin composition ( Mainly oxidation resistance etc.) tend to increase. These compounds partially form an ion complex in the form of fine particles or close to molecular dispersion in the resin composition to form an ion cross-linked structure.
  • the EW of the PFSA resin is low (300 to 500), it is preferable from the viewpoint of balance between water resistance and electric resistance.
  • the PFSA resin is a partial salt (about 0.01 to 5 equivalent% of the total ion exchange group equivalent) with alkali metals, alkaline earth metals, and other radical-degradable transition metals (Ce compounds, Mn compounds, etc.). ) Alone or in combination with a basic polymer.
  • the ion exchange resin composition comprises 0.1 to 20 parts by mass of polyphenylene ether resin (hereinafter also referred to as “PPE resin”) and / or polyphenylene sulfide resin (hereinafter referred to as “PPE resin”) with respect to 100 parts by mass of the PFSA resin used in the present embodiment.
  • PPE resin polyphenylene ether resin
  • PPS resin polyphenylene sulfide resin
  • PPE resin and / or PPS resin are mixed by extrusion method, or an aqueous solvent dispersion of PPE resin and / or PPS resin is mixed with a stock solution dispersion of a resin composition mainly composed of PFSA resin. do it.
  • the PPS resin in the present embodiment preferably contains 70 mol% or more, more preferably 90 mol% or more of the paraphenylene sulfide skeleton.
  • the method for producing the PPS resin is not particularly limited.
  • a halogen-substituted aromatic compound for example, p-dichlorobenzene is polymerized in the presence of sulfur and sodium carbonate, and sulfurized in a polar solvent.
  • Examples thereof include a polymerization method in the presence of sodium or sodium hydrogen sulfide and sodium hydroxide or hydrogen sulfide and sodium hydroxide or sodium aminoalkanoate, and self-condensation of p-chlorothiophenol.
  • an acidic functional group into a PPS resin can also be suitably used.
  • the acidic functional group to be introduced is not particularly limited.
  • sulfonic acid group, phosphoric acid group, carboxylic acid group, maleic acid group, maleic anhydride group, fumaric acid group, itaconic acid group, acrylic acid group, methacrylic acid Group is preferred, and sulfonic acid group is more preferred.
  • the method for introducing the acidic functional group is not particularly limited, and a general method is used.
  • the introduction of a sulfonic acid group can be carried out under a known condition using a sulfonating agent such as sulfuric anhydride or fuming sulfuric acid.
  • a sulfonating agent such as sulfuric anhydride or fuming sulfuric acid.
  • the metal salt is preferably an alkali metal salt such as sodium salt or potassium salt, or an alkaline earth metal salt such as calcium salt.
  • the PPE resin is not particularly limited.
  • poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2- Methyl-6-phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like and 2,6-dimethylphenol and other phenols (for example, 2 , 3,6-trimethylphenol and 2-methyl-6-butylphenol) and other polyphenylene ether copolymers.
  • poly (2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable, and poly (2,6-dimethyl-1 , 4-phenylene ether).
  • the method for producing PPE is not particularly limited.
  • oxidative polymerization of 2,6-xylenol is carried out using, for example, a complex of cuprous salt and amine described in US Pat. No. 3,306,874 as a catalyst.
  • polystyrene having atactic and syndiotactic stereoregularity is used in an amount of 1 to 400 with respect to 100 parts by mass of the PPE component. What was mix
  • blended in the range of the mass part can also be used suitably.
  • reactive functional groups include epoxy groups, oxazonyl groups, amino groups, isocyanate groups, carbodiimide groups, and other acidic functional groups.
  • acidic functional groups are more preferably used.
  • the acidic functional group to be introduced is preferably a sulfonic acid group, a phosphoric acid group, a carboxylic acid group, a maleic acid group, a maleic anhydride group, a fumaric acid group, an itaconic acid group, an acrylic acid group, or a methacrylic acid group. Is more preferable.
  • the weight average molecular weight of the PPE resin is preferably 1,000 or more and 5,000,000 or less, more preferably 1,500 or more and 1,000,000 or less.
  • PFSA resin other than PFSA resin used in this embodiment As the ion exchange resin composition in the present embodiment, not only the PFSA resin used in the present embodiment, but also a fluororesin other than the PFSA resin used in the present embodiment (resin containing carboxylic acid, phosphoric acid, etc. Resin). When two or more of these resins are used, they may be mixed in a solvent or dispersed in a medium, or resin precursors may be extruded and mixed.
  • the fluororesin is preferably contained in an amount of 0 to 50 parts by mass, more preferably 0 to 30 parts by mass, and further preferably 0 to 10 parts by mass with respect to 100 parts by mass of the PFSA resin used in the present embodiment. preferable.
  • the equilibrium moisture content of the electrolyte membrane is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. Moreover, as an upper limit, Preferably it is 80 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less.
  • the equilibrium water content of the electrolyte membrane is 5% by mass or more, the electric resistance, current efficiency, oxidation resistance, and ion selective permeability of the membrane tend to be good.
  • the equilibrium moisture content is 80% by mass or less, the dimensional stability and strength of the membrane are improved, and the increase in water-soluble components tends to be suppressed.
  • the equilibrium moisture content of the electrolyte membrane is based on a membrane obtained by forming a resin composition from a dispersion of water and an alcohol-based solvent and drying at 160 ° C. or lower, and the equilibrium is 23 ° C. and 50% relative humidity (RH). (24 hours left) expressed in saturated water absorption (Wc).
  • the equilibrium moisture content of the electrolyte membrane can be adjusted by the same method as that for EW described above.
  • the electrolyte membrane in the present embodiment may have a reinforcing material from the viewpoint of membrane strength.
  • the reinforcing material is not particularly limited, and examples thereof include a general nonwoven fabric, a woven fabric, and a porous film made of various materials.
  • the porous membrane is not particularly limited, but preferably has a good affinity with the fluorine-based polymer electrolyte polymer.
  • a reinforced electrolyte membrane in which the ion-exchange resin composition containing the fluorine-based polymer electrolyte polymer in the present embodiment is embedded in a stretched and porous PTFE-based membrane with substantially no gap is preferable. If it is such an electrolyte membrane, it exists in the tendency which is excellent by the intensity
  • the reinforced electrolyte membrane can be obtained by immersing an appropriate amount of a dispersion of an ion exchange resin composition in an organic solvent or alcohol and water in a porous membrane and drying it.
  • a solvent used for producing the reinforced electrolyte membrane is not particularly limited, but a solvent having a boiling point of 250 ° C. or lower is preferable, a solvent having a boiling point of 200 ° C. or lower is more preferable, and a boiling point of 120 ° C. is more preferable.
  • the following solvents include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol.
  • the said solvent may be used individually by 1 type, or may use 2 or more types together.
  • the manufacturing method (film forming method) of the electrolyte membrane in the present embodiment is not particularly limited, and a known extrusion method or cast film forming method can be used.
  • the electrolyte membrane may be a single layer or a multilayer (2 to 5 layers). In the case of a multilayer, it is possible to improve the performance of the electrolyte membrane by laminating films having different properties (for example, EW and resins having different functional groups). it can. In the case of a multilayer, it may be laminated at the time of extrusion film formation or casting, or the obtained respective films may be laminated.
  • the electrolyte membrane formed by the above method is thoroughly washed with water (or treated with a dilute aqueous acidic solution such as hydrochloric acid, nitric acid, sulfuric acid or the like before washing with water if necessary) to remove impurities.
  • the film is preferably heat-treated in air (preferably in an inert gas) at 130 to 200 ° C., more preferably 140 to 180 ° C., and even more preferably 150 to 170 ° C. for 1 to 60 minutes.
  • the heat treatment time is more preferably 1 to 30 minutes, further preferably 2 to 20 minutes, still more preferably 3 to 15 minutes, and even more preferably about 5 to 10 minutes.
  • the resin is not sufficiently entangled between the particles derived from the raw material (between the primary particles and the secondary particles) and between the molecules in the state as it is at the time of film formation. This is because, for the purpose of intertwining the resin between molecules, it is particularly useful for generating water-resistant (especially lowering the hot water-dissolved component ratio), stabilizing the saturated water absorption rate of water, and generating stable clusters. It is also useful from the viewpoint of improving the film strength. This is particularly useful when the cast film forming method is used.
  • Another reason is that by forming minute intermolecular bridges between the molecules of the PFSA resin, it contributes to excellent water resistance and stable cluster formation, and further, the effect of making the cluster diameter uniform and small. Because it is assumed that there is.
  • the ion exchange group of the PFSA resin in the ion exchange resin composition reacts with an active reaction site (such as an aromatic ring) of other additive (including resin) components, and thereby, It is presumed that minute crosslinks are generated and stabilized (by reaction of ion exchange groups existing in the vicinity of other resin components that are dispersed additives in particular).
  • the degree of crosslinking is preferably 0.001 to 5%, more preferably 0.1 to 3%, and still more preferably 0.2 to 0.2% in terms of EW (degree of EW reduction before and after heat treatment). About 2%.
  • the electrolyte membrane in the present embodiment has excellent ion selective permeability, low electrical resistance, excellent durability (mainly hydroxyl radical oxidation resistance), and excellent performance as a diaphragm for redox flow secondary batteries. To demonstrate. In addition, each physical property in this specification can be measured according to the method described in the following Examples, unless otherwise specified.
  • Charging / discharging test Redox flow secondary batteries have liquid-permeable porous collector electrodes (for negative electrode and positive electrode) arranged on both sides of the diaphragm on both sides of the diaphragm. One was sandwiched and separated by a diaphragm, the positive electrode cell chamber, the other was the negative electrode cell chamber, and the thickness of both cell chambers was secured with a spacer.
  • the positive electrode cell chamber is composed of a sulfuric acid electrolyte containing vanadium tetravalent (V 4+ ) and pentavalent (V 5+ ), and the negative electrode cell chamber is composed of vanadium trivalent (V 3+ ) and divalent (
  • the negative electrode electrolyte containing V 2+ ) was circulated to charge and discharge the battery. At this time, in charging, V 4+ is oxidized to V 5+ in the positive electrode cell chamber because the vanadium ions emit electrons, and in the negative cell chamber, V 3+ is reduced to V 2+ by the electrons returning through the outer path. It was.
  • protons (H + ) are excessive in the positive electrode cell chamber, while protons (H + ) are insufficient in the negative electrode cell chamber, but the diaphragm selectively removes excess protons in the positive electrode cell chamber. It was moved to the room and the electrical neutrality was maintained. The reverse reaction progressed during the discharge.
  • the battery efficiency (energy efficiency) at this time is expressed as a ratio (%) obtained by dividing the discharge power amount by the charge power amount. Both power amounts are the internal resistance of the battery cell, the ion selective permeability of the diaphragm, and other current losses. Depends on.
  • the current efficiency (%) is expressed as a ratio (%) obtained by dividing the amount of discharged electricity by the amount of charged electricity, and both the amounts of electricity depend on the ion selective permeability of the diaphragm and other current losses.
  • Battery efficiency is expressed as the product of current efficiency and voltage efficiency. A decrease in internal resistance, ie, cell electrical resistivity, improves voltage efficiency, and an improvement in ion selective permeability and other reductions in current loss improve current efficiency, and thus are important indicators in redox flow secondary batteries.
  • the charge / discharge experiment was performed using the battery obtained as described above.
  • An aqueous electrolyte solution having a total vanadium concentration of 2 M / L and a total sulfuric acid concentration of 4 M / L is used, and the thickness of the installed positive and negative electrode cell chambers is 5 mm, respectively, between the porous electrodes and the diaphragm.
  • the charge / discharge experiment was conducted at a current density of 80 mA / cm 2 .
  • the cell electrical resistivity was determined by measuring the DC resistance value at an AC voltage of 10 mV and a frequency of 20 kHz at the start of discharge using the AC impedance method, and multiplying this by the electrode area.
  • the MFI of the obtained PFSA resin precursor powder is 1.0 (g / 10 min) for A1, 0.5 (g / 10 min) for A2, 1.5 (g / 10 min) for A3, A4 was 1.5 (g / 10 minutes), A5 was 1.8 (g / 10 minutes), and A6 was 2.0 (g / 10 minutes).
  • PFSA resin having a sulfonic acid group (SO 3 H) and a structure represented by the formula (1) was obtained.
  • the EW of the obtained PFSA resin was 527 (g / eq) for A1, 578 (g / eq) for A2, 650 (g / eq) for A3, 910 (g / eq) for A4, and 1100 for A5, respectively.
  • (G / eq) and A6 were 1500 (g / eq).
  • the obtained PFSA resin dispersion was dispersed in the same order as described above in the order of dispersion (ASF1), dispersion (ASF2), dispersion (ASF3), dispersion (ASF4), dispersion (ASF5), and dispersion (ASF6). did.
  • the equilibrium water content of the obtained electrolyte membrane was ASF1 (23 mass%), ASF2 (19 mass%), ASF3 (12 mass%), ASF4 (12 mass%), ASF5 (11 mass%), ASF6 (9 mass%). %)Met.
  • the maximum water content of each electrolyte membrane in water at 25 ° C. for 3 hours is ASF1 (50 mass%), ASF2 (27 mass%), ASF3 (23 mass%), ASF4 (23 mass%), and ASF5 (20 mass), respectively. %) And ASF6 (18% by mass).
  • the maximum moisture content indicates the maximum value observed when measuring the equilibrium moisture content.
  • the ionic conductivity of the electrolyte membrane is ASF1 (0.14 S / cm), ASF2 (0.12 S / cm), ASF3 (0.1 S / cm), ASF4 (0.06 S / cm), and ASF5 (0. 06 S / cm) and ASF6 (0.05 S / cm).
  • Example 7 Instead of 20% PFSA resin dispersion (ASF1) used in Example 1, PFSA resin dispersion (ASF3) and Nafion DE2021 (DuPont, 20% solution, EW1050) were mixed at 50:50 (mass ratio). An electrolyte membrane was obtained in the same manner as in Example 1 except that the mixed dispersion was used. The equilibrium water content of this membrane was 12% by mass.
  • the ionic conductivity was measured by the same method as in the example and found to be 0.06 S / cm.
  • the current efficiency (%) / cell electrical resistivity ( ⁇ ⁇ cm 2 ) was 96.0 / 0.95.
  • Example 8 Instead of the 20% PFSA resin dispersion (ASF1) used in Example 1, PFSA resin dispersion (ASF3) and Nafion DE2021 (DuPont, 20% solution, EW1050) were mixed at 10:90 (mass ratio). An electrolyte membrane was obtained in the same manner as in Example 1 except that the mixed dispersion was used. The equilibrium water content of this membrane was 10% by mass.
  • the ionic conductivity was measured by the same method as in the example and found to be 0.05 S / cm. Moreover, as a result of performing the charging / discharging test by the method similar to Example 1, current efficiency (%) / cell electrical resistivity ((omega
  • Example 9 A polyphenylene sulfide powder (manufactured by Chevron Phillips, model number P-4) dispersed in an alkaline aqueous solution (KOH 10% aqueous solution) in the PFSA resin dispersion (ASF3) is stirred while being uniformly mixed and dispersed.
  • the solid component was uniformly mixed so as to be 5 parts by mass with respect to 100 parts by mass of the PFSA resin component.
  • these were passed through a column packed with particulate cation exchange resin particles, and the alkali ion component was almost completely removed to obtain a PFSA resin dispersion (ASF7).
  • the obtained PFSA resin dispersion (ASF7) was cast on a polyimide film as a carrier sheet by a known ordinary method, and hot air at 120 ° C. (20 minutes) was applied to almost completely remove the solvent. The film was obtained by drying. This was further heat-treated in a hot air atmosphere at 160 ° C. for 10 minutes to obtain an electrolyte membrane having a thickness of 50 ⁇ m. The change rate of EW before and after the heat treatment of the obtained electrolyte membrane was about 0.2 to 0.3%. The obtained electrolyte membrane had an equilibrium water content of 12% by mass. The maximum water content of the electrolyte membrane in 25 ° C. water for 3 hours was 18% by mass. Moreover, as a result of performing the charging / discharging test by the method similar to Example 1, current efficiency (%) / cell electrical resistivity (ohm * cm ⁇ 2 >) was 98.5 / 0.97.
  • Example 1 An electrolyte membrane was obtained in the same manner as in Example 1 except that Nafion DE2021 (manufactured by DuPont, 20% solution, EW1050) was used instead of the 20% PFSA resin dispersion (ASF1) used in Example 1. The equilibrium water content of this membrane was 6% by mass.
  • Nafion DE2021 manufactured by DuPont, 20% solution, EW1050
  • ASF1 20% PFSA resin dispersion
  • the ionic conductivity was measured by the same method as the Example using the obtained electrolyte membrane, it was 0.04 S / cm, the ionic conductivity was small, and it was inferior to the membrane of the Example.
  • the current efficiency (%) / cell electrical resistivity ( ⁇ ⁇ cm 2 ) was 94.5 / 1.20. The level was considerably lower than the example.
  • Table 1 shows the results of Examples 1 to 9 and Comparative Examples 1 and 2 described above.
  • the electrolyte membrane of the present invention has excellent ion selective permeability, low electrical resistance, and excellent durability (mainly hydroxyl radical oxidation resistance), and is industrially used as a diaphragm for redox flow secondary batteries. Has availability.

Abstract

 レドックスフロー二次電池用電解質膜として、プロトン(H+)透過性を悪化させることなく活物質のイオン透過性を抑制することのできる、優れたイオン選択透過性を有し、且つ電気抵抗が低く、電流効率にも優れるような電解質膜を得ることが課題である。 本発明は、レドックスフロー二次電池用電解質膜を、特定の構造及び当量質量EWを有するパーフルオロカーボンスルホン酸樹脂を含み、イオン伝導度を特定の範囲に調整することにより、上記課題の解決を図ったものである。

Description

レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
 本発明は、レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜に関する。
 レドックスフロー二次電池とは、電気を備蓄及び放電するものであり、電気使用量の平準化のために使用される大型の据え置き型電池に属する。レドックスフロー二次電池は、正極と正極活物質を含む電解液(正極セル)と、負極と負極活物質を含む負極電解液(負極セル)とを、隔膜で隔離して、両活物質の酸化還元反応を利用して充放電し、該両活物質を含む電解液を、備蓄タンクから電解槽に流通させて電流を取り出し利用される。
 電解液に含まれる活物質としては、例えば、鉄-クロム系、クロム-臭素系、亜鉛-臭素系や、電荷の違いを利用するバナジウム系などが用いられている。
 特に、バナジウム系二次電池は起電力が高く、バナジウムイオンの電極反応が速く、副反応である水素発生量が少なく、出力が高い等の利点を有するため、開発が本格的にすすめられている。
 また、隔膜については、両極の活物質を含む電解液が混ざらないように工夫されている。しかしながら、従来の隔膜は、酸化されやすく、電気抵抗を充分低くしなければいけない等の問題点がある。電流効率を上げるためには、それぞれのセル電解液に含まれるそれぞれの活物質イオンの透過(両極電解液中の電解質のコンタミ)をお互いにできるだけ防ぎ、かつ電荷を運ぶプロトン(H)は充分透過しやすい、イオン選択透過性に優れたイオン交換膜が要求される。
 このバナジウム系二次電池では、負極セルにおけるバナジウムの2価(V2+)/3価(V3+)の酸化還元反応と、正極セルにおけるバナジウムの4価(V4+)/5価(V5+)の酸化還元反応を利用している。従って、正極セルと負極セルの電解液が同種の金属イオン種を有するため、隔膜を透して電解液が混合されても、充電により正常に再生されるので、他種の金属種に比べて大きな問題にはなり難い。とはいえ、無駄になる活物質が増え、電流効率が低下するので、できるだけ活物質イオンは自由に透過しないほうがよい。
 従来、様々なタイプの隔膜(以下、「電解質膜」又は単に「膜」ともいう。)を利用した電池があり、例えば、電解液のイオン差圧及び浸透圧をドライビングフォースとして自由に通過させる多孔膜を用いた電池が報告されている。例えば、特許文献1には、そのような多孔膜としてポリテトラフルオロエチレン(以下、「PTFE」ともいう。)多孔膜、ポリオレフィン(以下、「PO」ともいう。)系多孔膜、PO系不織布などが開示されている。
 特許文献2には、セル間の圧力差で両電解液が移動しないように、多孔膜と含水性ポリマーを組み合わせた複合膜が開示されている。
 特許文献3には、親水性の水酸基を有する無孔の親水性ポリマー膜として、セルロース又はエチレンービニルアルコール共重合体の膜を利用することが開示されている。
 特許文献4には、炭化水素系イオン交換樹脂としてポリスルホン系膜(陰イオン交換膜)を利用することにより、その電流効率が80%~88.5%となり、耐ラジカル酸化性にも優れることが記載されている。
 特許文献5には、フッ素系又はポリスルホン系イオン交換膜を隔膜として使用し、電流効率を上げるために正極の多孔性炭素に高価な白金を担持させて反応効率を上げる方法が開示されている。
 特許文献6には、ポリプロピレン(以下、「PP」ともいう。)などの多孔膜の孔に親水性樹脂を塗布した、鉄-クロム系レドックスフロー電池が開示されている。当該文献の実施例には100μmの厚さのPP製多孔膜の両表面に、数μmの厚さでフッ素系イオン交換樹脂(デュポン社製、登録商標「ナフィオン」)を被覆した膜の例がある。ここで、ナフィオンとは、-(CF-CF)-で表される繰り返し単位と、-(CF-CF(-O-(CFCFXO)-(CF-SOH))-で表される繰り返し単位と、を含む共重合体において、X=CF、n=1、m=2のときの共重合体である。
 特許文献7には、特定の面格子を有する2層の液透過性多孔質炭素電極を用いて、電極側の工夫で、セル電気抵抗をできるだけ下げ、効率を上げたバナジウム型電池の例が開示されている。
 特許文献8には、抵抗が低く、プロトン透過性に優れ、ピリジニウム基(陽イオンのNを利用)を有する陰イオン交換型であり、スチレン系単量体及びジビニルベンゼンと共重合した架橋型重合体を含む、隔膜を用いたバナジウム系レドックスフロー電池の例が開示されている。
 特許文献9には、カチオン交換膜(フッ素系高分子又は他の炭化水素系高分子)とアニオン交換膜(ポリスルホン系高分子)膜とを交互に積層した構造を有する膜を利用し、正極電解液側にカチオン交換膜を配することにより、イオン選択透過性を改良した例が開示されている。
 特許文献10には、耐薬品性に優れ、低抵抗でイオン選択透過性に優れた膜として、多孔質PTFE系樹脂からなる多孔質基材に、2個以上の親水基を有するビニル複素環化合物(アミノ基を有するビニルピロリドン等)の繰り返し単位を有する架橋重合体を複合してなるアニオン交換膜の使用例が開示されている。その原理については、イオン径及び電荷量の多い金属カチオンが電位差をかけられた時は、各隔膜表面のカチオンにより電気的反発を受けて金属カチオンの膜透過が阻害されるが、イオン径も小さく、1価であるプロトン(H+)は陽イオンを有する隔膜を容易に拡散透過できるので電気抵抗が小さくなると記載されている。
特開2005-158383号公報 特公平6-105615号公報 特開昭62-226580号公報 特開平6-188005号公報 特開平5-242905号公報 特開平6-260183号公報 特開平9-92321号公報 特開平10-208767号公報 特開平11-260390号公報 特開2000-235849号公報
 しかしながら、特許文献1のように、単に隔膜を薄くするのみでは、イオン選択透過性の向上、隔膜に由来する電気抵抗の低下、電流効率の向上には不十分である。
 特許文献2に開示された複合膜は、電気抵抗が高く、また、各イオンは多孔膜ほどではないが、自由に拡散してしまうという問題がある。特許文献3に開示された膜についても、上記と同様の問題があり、耐酸化耐久性にも劣る。
 特許文献4に開示された電池は、電流効率が未だ不十分であり、長期にわたる硫酸電解液中での耐酸化劣化性にも劣る。また、同文献の比較例に、テフロン(登録商標)系イオン交換膜としての電流効率が64.8~78.6%であることが記載されており、性能的にも問題を有する。
 特許文献5についても、上記と同様の問題点を解決できておらず、また、大型設備では、価格的にも高価となってしまうという問題がある。
 特許文献6に開示された膜は、塗布膜の厚みを極薄(数μm)にしないと、内部抵抗が増加すると記載されている。また、イオン選択透過性を向上させる工夫については一切記載されていない。
 特許文献7のように、電極の工夫では、イオン選択透過性の向上、隔膜に由来する電気抵抗の増加、電流効率の低下を解決することはできない。
 特許文献8に開示された電池は、電流効率が不十分であり、また、酸化劣化するため長期使用に関しても問題点を有している。
 特許文献9に開示された膜は、電気抵抗が高くなるという問題点を有している。
 特許文献10の実施例に示された結果では、膜の内部抵抗(電気抵抗)が十分低いとは言えず、また、長期使用では耐酸化劣化が問題となる。
 従来のバナジウム系レドックスフロー電池用の電解質(隔)膜は、両電極の電解液の活物質であるバナジウムイオンの低電価グループのイオンを大多数とするセル(負極側)と、高電価のイオングループを大多数とするセル(正極側)それぞれにおいて、対極(セル)への、活物質の拡散移動透過を抑えて、尚且つ、目的の充放電の操作に伴い、プロトン(H)を選択的に透過させることを目的として使用されている。しかしながら、現在、その性能は十分であると言えない。
 炭化水素系樹脂を主とした膜基材としては、両セルの主役の電解質を含む電解液を単に隔離しただけのイオン選択透過性のない単なる多孔膜や、イオン選択透過性のない(無孔の)親水性膜基材、多孔膜に親水性膜基材を埋め込むか又は被覆したもの等が用いられている。また、膜自身が各種アニオン基を有する所謂カチオン交換膜、又は多孔質膜基材の孔に、カチオン交換性樹脂を被覆又は埋め込んだ複合膜、同様に膜自身がカチオン基を有するアニオン交換膜、同様に多孔膜基材に、アニオン交換性樹脂を被覆又は埋め込んだ複合膜、両者の積層型等が隔膜として用いられており、それぞれの特徴を生かした研究が行われている。
 隔膜としての、電気抵抗(プロトン透過性に主に依存)と、主役の活物質である、金属イオン(多価カチオン)透過性阻止という、相反する2つの性能を十分に満足するイオン交換樹脂隔膜は、これまで開発されていない。フッ素系イオン交換樹脂に関しても、プロトン(H)透過性に優れ、且つ、活物質イオンの透過を抑制するという相矛盾する性質に対する工夫が十分に検討されておらず、低電気抵抗、長期にわたる耐酸化劣化性(耐ヒドロキシラジカル性)などを充分に満足するレドックスフロー電池用電解質膜は開発されていない。
 上記事情に鑑み、本発明は、プロトン(H)透過性を悪化させることなく活物質のイオン選択透過性を抑制することのできる優れたイオン選択透過性を有し、且つ電気抵抗も低く、電流効率にも優れたレドックスフロー二次電池用電解質膜及びそれを用いたレドックスフロー二次電池を提供することを目的とする。
 上記課題を解決するために鋭意検討した結果、本発明者らは、特定の構造及び当量質量EWを有するパーフルオロカーボンスルホン酸樹脂(以下、「PFSA樹脂」ともいう。)を含み、さらに、膜のイオン伝導度を特定の範囲に調整することにより、優れたイオン選択透過性を有し、且つ電気抵抗も低く、電流効率にも優れた、レドックスフロー二次電池用電解質膜及びそれを用いたレドックスフロー二次電池を達成できることを見出し、本発明を完成させた。
 即ち、本発明は以下のとおりである。
〔1〕
 炭素電極からなる正極を含む正極セル室と、
 炭素電極からなる負極を含む負極セル室と、
 前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、
を含む電解槽を有し、
 前記正極セル室は正極活物質を含む正極電解液を含み、前記負極セル室は負極活物質を含む負極電解液を含み、
 前記電解液中の前記正極活物質及び前記負極活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
 前記電解質膜が、下記式(1)で表される構造を有するパーフルオロカーボンスルホン酸樹脂を含む、イオン交換樹脂組成物を含み、
 前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~1500g/eqであり、
 前記電解質膜の110℃、相対湿度50%RHにおけるイオン伝導度が、0.05S/cm以上である、
 レドックスフロー二次電池。
-[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
(式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
〔2〕
 前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~700g/eqである、前項〔1〕に記載のレドックスフロー二次電池。
〔3〕
 前記正極電解液及び前記負極電解液が、バナジウムを含む硫酸電解液である、前項〔1〕又は〔2〕に記載のレドックスフロー二次電池。
〔4〕
 前記電解質膜の平衡含水率が、5~80質量%である、前項〔1〕~〔3〕のいずれか1項に記載のレドックスフロー二次電池。
〔5〕
 前記イオン交換樹脂組成物が、前記パーフルオロカーボンスルホン酸樹脂100質量部に対して0.1~20質量部のポリフェニレンエーテル樹脂及び/又はポリフェニレンスルフィド樹脂を含む、前項〔1〕~〔4〕のいずれか1項に記載のレドックスフロー二次電池。
〔6〕
 下記式(1)で表される構造を有するパーフルオロカーボンスルホン酸樹脂を含む、イオン交換樹脂組成物を含み、
 前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~1500g/eqであり、
 110℃、相対湿度50%RHにおけるイオン伝導度が、0.05S/cm以上である、
 レドックスフロー二次電池用電解質膜。
-[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
(式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
〔7〕
 前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~700g/eqである、前項〔6〕に記載のレドックスフロー二次電池用電解質膜。
〔8〕
 平衡含水率が5~80質量%である、前項〔6〕又は〔7〕に記載のレドックスフロー二次電池用電解質膜。
〔9〕
 前記イオン交換樹脂組成物が、前記パーフルオロカーボンスルホン酸樹脂100質量部に対して0.1~20質量部のポリフェニレンエーテル樹脂及び/又はポリフェニレンスルフィド樹脂を含む、前項〔6〕~〔8〕のいずれか1項に記載のレドックスフロー二次電池用電解質膜。
〔10〕
 前記イオン交換樹脂組成物を、130~200℃にて1~60分間加熱処理したものである、前項〔6〕~〔9〕のいずれか1項に記載のレドックスフロー二次電池用電解質膜。
 本発明のレドックスフロー二次電池用電解質膜は、優れたイオン選択透過性を有している。従って、高いプロトン(水素イオン)透過性を有し、低電気抵抗であり、また電解液中の活物質イオンの透過を抑制でき、さらには、高い電流効率を発揮する。
本実施形態におけるレドックスフロー二次電池の概要図の一例を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではない。
〔レドックスフロー二次電池〕
 本実施形態におけるレドックスフロー二次電池は、
 炭素電極からなる正極を含む正極セル室と、
 炭素電極からなる負極を含む負極セル室と、
 前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、
を含む電解槽を有し、
 前記正極セル室は正極活物質を含む正極電解液を含み、前記負極セル室は負極活物質を含む負極電解液を含み、
 前記電解液中の前記正極活物質及び前記負極活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
 前記電解質膜が、下記式(1)で表される構造を有するPFSA樹脂を含む、イオン交換樹脂組成物を含み、
 前記PFSA樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~1500g/eqであり、
 前記電解質膜の110℃、相対湿度50%RHにおけるイオン伝導度が、0.05S/cm以上である。
-[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
(式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
 図1は、本実施形態におけるレドックスフロー二次電池の概要図の一例を示す。本実施形態におけるレドックスフロー二次電池10は、炭素電極からなる正極1を含む正極セル室2と、炭素電極からなる負極3を含む負極セル室4と、前記正極セル室2と、前記負極セル室4とを隔離分離させる、隔膜としての電解質膜5と、を含む電解槽6を有し、前記正極セル室2は活物質を含む正極電解液を、前記負極セル室4は活物質を含む負極電解液を含む。活物質を含む正極電解液及び負極電解液は、例えば、正極電解液タンク7及び負極電解液タンク8によって貯蔵され、ポンプ等によって各セル室に供給される(矢印A,B)。また、レッドクスフロー二次電池によって生じた電流は、交直変換装置9を介して、直流から交流に変換されてもよい。
 本実施形態におけるレドックスフロー二次電池は、液透過性で多孔質の集電体電極(負極用、正極用)を隔膜の両側にそれぞれ配置し、押圧でそれらを挟み、隔膜で仕切られた一方を正極セル室、他方を負極セル室とし、スペーサーで両セル室の厚みを確保した構造を有する。
 バナジウム系レドックスフロー二次電池の場合、正極セル室には、バナジウム4価(V4+)及び同5価(V5+)を含む硫酸電解液からなる正極電解液を、負極セル室には、バナジウム3価(V3+)及び同2価(V2+)を含む負極電解液を流通させることにより、電池の充電及び放電が行われる。このとき、充電時には、正極セル室においては、バナジウムイオンが電子を放出するためV4+がV5+に酸化され、負極セル室では外路を通じて戻って来た電子によりV3+がV2+に還元される。この酸化還元反応では、正極セル室ではプロトン(H)が過剰になり、一方負極セル室では、プロトン(H)が不足する。隔膜は正極セル室の過剰なプロトンを選択的に負極室に移動させ電気的中性が保たれる。放電時には、この逆の反応が進む。この時の電池効率(%)は、放電電力量を充電電力量で除した比率(%)で表され、両電力量は、電池セルの内部抵抗と隔膜のイオン選択透過性及びその他電流損失に依存する。内部抵抗の減少は電圧効率を向上させ、イオン選択透過性の向上及びその他電流損失の低減は、電流効率を向上させるので、レドックスフロー二次電池においては、重要な指標となる。
〔レドックスフロー二次電池用電解質膜〕
 本実施形態におけるレドックスフロー二次電池用電解質膜は、特定の構造及び当量質量EWを有するPFSA樹脂を含む、イオン交換樹脂組成物を含み、且つ、特定のイオン伝導度を有するものである。
〔イオン交換樹脂組成物〕
(PFSA樹脂)
 本実施形態におけるイオン交換樹脂組成物は、下記式(1)で表される構造を有するパーフルオロカーボンスルホン酸樹脂(PFSA樹脂)を含む。本実施形態で用いるPFSA樹脂は、下記式(1)で表される構造を有するものであれば特に制限されず、他の繰り返し単位を含むものであってもよい。
-[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
(式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
 本実施形態におけるPFSA樹脂は、一般的なフッ素系高分子ポリマー、例えば、-(CF-CF)-で表される繰り返し単位と、-(CF-CF(-O-(CFCFXO)-(CF-SOH))-で表される繰り返し単位(式中、Xは、F又はCFを示し、nは1~5の整数を示し、mは0~12の整数を示す。ただし、nとmは同時に0にならない。)とを含む共重合体において、繰り返し単位中のnが1以上の場合に比べて、電流効率が高い傾向にある。この理由は明らかではないが、本実施形態におけるPFSA樹脂は、電子吸引性の強い-(CFCFXO)-基が少なく、SO 基上の電子吸引性が弱くなることで、SO 基と電解液中のバナジウムイオンとの結合が弱くなるため、充放電に寄与するバナジウムイオンの濃度が減少しないからではないかと考えられる。
 本実施形態におけるPFSA樹脂は、例えば、高分子電解質ポリマー前駆体(以下、「PFSA樹脂前駆体」ともいう。)を製造した後、それを加水分解処理することにより得ることができる。
 例えば、下記式(2)、(3)又は(4)で表されるフッ化ビニルエーテル化合物と、下記式(5)で表されるフッ化オレフィンモノマーとの共重合体からなるPFSA樹脂前駆体を加水分解することにより得られる。下記式(2)で表されるフッ化ビニルエーテル化合物は、n=0のものを含むものであれば特に制限されず、nが1~5のものを含んでもよい。下記式(2)、(3)又は(4)で表されるフッ化ビニルエーテル化合物は1種単独で用いても、2種類以上を併用してもよい。
 CF=CF-O-(CFCFXO)-[A]      (2)
(式(2)中、Xは、F又は炭素数1~3のパーフルオロアルキル基を示し、nは0~5の整数を示し、Aは、(CF-Wを示し、mは0~6の整数を示し、nとmは同時に0にならない。)
 CF=CF-O-(CF-CFX(-O-(CF-W) (3)
 CF=CF-O-(CF-CFX(-(CF-O-(CF-W) (4)
(式(3)、(4)中、Xは、炭素数1~3のパーフルオロアルキル基を示し、pは0~12の整数を示し、mは0~6の整数を示し、kは1~5の整数を示し、Lは1~5の整数を示し、Wは加水分解によりSOHに転換し得る官能基を示す。)
 CF=CFZ   (5)
(式中、Zは、H、Cl、F、炭素数1~3のパーフルオロアルキル基、又は酸素を含んでいてもよい環状パーフルオロアルキル基を示す。)
 上記式(2)、(3)及び(4)中の加水分解によりSOHに転換しうる官能基を示すWとしては、特に限定されないが、SOF、SOCl、SOBrが好ましい。また、上記式において、X=CF、W=SOF、Z=Fであることがより好ましい。中でも、n=0、m=0~6の整数(ただし、nとmは同時に0にならない。)であり、X=CF、W=SOF、Z=Fであることが、高い親水性及び高い樹脂濃度の溶液が得られる傾向にあるため、さらに好ましい。
 本実施形態におけるPFSA樹脂前駆体は、公知の手段により合成することができる。例えば、ラジカル発生剤の過酸化物を利用した重合法等にて、含フッ素炭化水素等の重合溶剤を使用し、上記イオン交換基前駆体(W)を有するフッ化ビニル化合物と、テトラフルオロエチレン(TFE)などのフッ化オレフィンのガスと、を充填溶解して反応させることにより重合する方法(溶液重合)、含フッ素炭化水素等の溶媒を使用せずフッ化ビニル化合物そのものを重合溶剤として重合する方法(塊状重合)、界面活性剤の水溶液を媒体として、フッ化ビニル化合物とフッ化オレフィンのガスとを充填して反応させることにより重合する方法(乳化重合)、界面活性剤及びアルコール等の助乳化剤の水溶液に、フッ化ビニル化合物とフッ化オレフィンのガスを充填、乳化して反応させることにより重合する方法(エマルジョン重合)、及び懸濁安定剤の水溶液にフッ化ビニル化合物とフッ化オレフィンのガスを充填懸濁して反応させることにより重合する方法(懸濁重合)等が知られている。
 本実施形態においては上述したいずれの重合方法で作製されたPFSA樹脂前駆体でも使用することができる。また、PFSA樹脂前駆体は、TFEガスの供給量等の重合条件を調整することにより得られる、ブロック状やテーパー状の重合体でもよい。
 また、PFSA樹脂前駆体は、重合反応中に樹脂分子構造中に生成した不純末端や、構造上酸化されやすい部分(CO基、H結合部分等)を、公知の方法によりフッ素ガス下で処理し、該部分をフッ化してもよい。
 また、PFSA樹脂前駆体の分子量は、該前駆体を、ASTM:D1238に準拠して(測定条件:温度270℃、荷重2160g)測定されたメルトフローインデックス(MFI)の値で0.05~50(g/10分)であることが好ましい。前駆体樹脂のMFIのより好ましい範囲は0.1~30(g/10分)であり、さらに好ましい範囲は0.5~20(g/10分)である。
 PFSA樹脂前駆体は、押し出し機を用いてノズル又はダイ等で押し出し成型した後、加水分解処理を行うか、重合した時の産出物のまま、即ち分散液状、又は沈殿、ろ過させた粉末状の物とした後、加水分解処理を行う。PFSA樹脂前駆体の形状は特に限定されるものではないが、後述の加水分解処理及び酸処理における処理速度を速める観点から、0.5cm以下のペレット状であるか、分散液状、粉末粒子状であることが好ましく、中でも、重合後の粉末状体のものを用いることが好ましい。コストの観点からは、押し出し成型したフィルム状の樹脂前駆体を用いてもよい。
 上記のようにして得られ、必要に応じて成型された樹脂前駆体は、引き続き塩基性反応液体中に浸漬し、加水分解処理される。加水分解処理に使用する塩基性反応液としては、特に限定されるものではないが、ジメチルアミン、ジエチルアミン、モノメチルアミン及びモノエチルアミン等のアミン化合物の水溶液や、アルカリ金属又はアルカリ土類金属の水酸化物の水溶液が好ましく、水酸化ナトリウム及び水酸化カリウムの水溶液がより好ましい。アルカリ金属又はアルカリ土類金属の水酸化物を用いる場合、その含有量は特に限定されないが、反応液全体に対して10~30質量%であることが好ましい。上記反応液は、さらにメチルアルコール、エチルアルコール、アセトン及びジメチルスルホキシド(DMSO)等の膨潤性有機化合物を含有することがより好ましい。膨潤性の有機化合物の含有量は、反応液全体に対して1~30質量%であることが好ましい。
 PFSA樹脂前駆体は、前記塩基性反応液体中で加水分解処理された後、温水等で十分に水洗し、その後、酸処理が行なわれる。酸処理に使用する酸としては、特に限定されないが、塩酸、硫酸及び硝酸等の鉱酸類や、シュウ酸、酢酸、ギ酸及びトリフルオロ酢酸等の有機酸類が好ましく、これらの酸と水との混合物がより好ましい。また、上記酸類は単独で用いても2種以上を併用してもよい。また、加水分解処理で用いた塩基性反応液は、カチオン交換樹脂で処理すること等により、酸処理の前に予め除去してもよい。
 酸処理によってPFSA樹脂前駆体はプロトン化されてイオン交換基が生成する。例えば、PFSA樹脂前駆体のWは酸処理によってプロトン化され、SOHとなる。加水分解及び酸処理することによって得られたPFSA樹脂は、プロトン性有機溶媒、水、又は両者の混合溶媒に分散又は溶解することが可能となる。
(当量質量EW)
 本実施形態におけるPFSA樹脂の当量質量EW(イオン交換基1当量あたりのPFSA樹脂の乾燥質量グラム数)は、250~1500(g/eq)である。EWの上限は、好ましくは700(g/eq)であり、より好ましくは600(g/eq)であり、さらに好ましくは550(g/eq)である。EWの下限は、好ましくは300(g/eq)であり、より好ましくは350(g/eq)であり、さらに好ましくは400(g/eq)である。EWが小さい方が、イオン伝導度が高くなる反面、熱水への溶解性が大きくなる場合があるため、上記のような適切な範囲内に調整されていることが好ましい。
 PFSA樹脂の当量質量EWを上記範囲に調整することによって、それを含むイオン交換樹脂組成物に優れた親水性を付与することができ、その樹脂組成物を用いて得られた電解質膜は低い電気抵抗及び高い親水性、より小さなクラスター(イオン交換基が水分子を配位及び/又は吸着した微小部分)を数多く有するようになり、高い耐酸化性(耐ヒドロキシラジカル)、低い電気抵抗、及び良好なイオン選択透過性を発揮する傾向にある。
 PFSA樹脂の当量質量EWは、親水性、膜の耐水性の観点から250(g/eq)以上であることが好ましく、親水性、膜の電気抵抗の観点から700(g/eq)以下であることが好ましい。また、PFSA樹脂のEWが下限値近くである場合には、樹脂の側鎖のイオン交換基の一部を、分子間で直接的に又は間接的に部分架橋反応させることにより樹脂を変性し、溶解性や過剰膨潤性を制御してもよい。
 上記部分架橋反応としては、例えば、イオン交換基と他分子の官能基又は主鎖との反応、又はイオン交換基同士の反応、耐酸化性の低分子化合物、オリゴマー又は高分子物質等を介しての架橋反応(共有結合)等が挙げられ、場合により、塩(SOH基とのイオン結合を含む)形成物質との反応であってもよい。耐酸化性の低分子化合物、オリゴマー又は高分子物質としては、例えば、多価アルコール類や有機ジアミン類等が挙げられる。
 部分架橋反応を行う場合は、PFSA樹脂のEWが低くてもよい場合がある。即ち、イオン交換基(言い換えればEW)をあまり犠牲にせずとも、水溶性が低下(耐水性が向上)すればよい。また、PFSA樹脂が低メルトフロー領域(高分子領域)であり、分子間絡みが多い場合なども同様である。
 また、PFSA樹脂の加水分解前の官能基(例えば、SOF基)は、その一部が、部分的(分子間を含む)にイミド化(アルキルイミド化など)されていてよい。
 PFSA樹脂の当量質量EWは、PFSA樹脂を塩置換し、その溶液をアルカリ溶液で逆滴定することにより測定することができる。
 PFSA樹脂の当量質量EWは、フッ素系モノマーの共重合比、モノマー種の選定等により調整することができる。
 上述した特許文献に記載されたフッ素系樹脂であるナフィオン(Nafion:デュポン社の登録商標)は、-(CF-CF)-で表される繰り返し単位と、-(CF-CF(-O-(CFCFXO)-(CF-SOH))-で表される繰り返し単位と、を含む共重合体において、X=CF、n=1、m=2であり、EWが893~1030である化合物であることが知られている。しかしながらナフィオンをレドックスフロー二次電池の電解質膜の材料として用いた場合は、親水性が不足し、電気抵抗も高く、イオン選択透過性、電流効率も悪化する傾向にある。
(イオン伝導度)
 本実施形態における電解質膜の110℃、相対湿度50%RHにおけるイオン伝導度は0.05S/cm以上であり、好ましくは0.10S/cm以上である。本実施形態における電解質膜は、好ましくは40%RHにおけるイオン伝導度が0.05S/cm以上であり、より好ましくは30%RHにおけるイオン伝導度が0.05S/cm以上であり、さらに好ましくは20%RHにおけるイオン伝導度が0.05S/cm以上である。また、本実施形態における電解質膜は、好ましくは40%RHにおけるイオン伝導度が0.10S/cm以上、より好ましくは30%RHにおけるイオン伝導度が0.10S/cm以上、さらに好ましくは20%RHにおけるイオン伝導度が0.10S/cm以上である。電解質膜のイオン伝導度は高いほどよいが、例えば、110℃、相対湿度50%RHにおけるイオン伝導度が1.0S/cm以下であっても、通常は、十分な性能を発揮する。電解質膜のイオン伝導度が上記範囲であると、電気抵抗が低くなり、優れた電流効率を発揮する。
 本実施形態における電解質膜を形成するイオン交換樹脂組成物中に含まれるPFSA樹脂の含有量としては、好ましくは約33.3~100質量%、より好ましくは40~100質量%、さらに好ましくは50~99.5質量%である。
 本実施形態におけるイオン交換性樹脂組成物は、上述したPFSA樹脂の他に、塩基性重合体(オリゴマーなどの低分子量物質を含む)を含有することにより、樹脂組成物としての化学的安定性(主に耐酸化性等)が増加する傾向にある。これらの化合物は、樹脂組成物中で微細粒子状又は分子分散に近い形でイオンコンプレックスを部分的に作りイオン架橋構造を形成する。特に、PFSA樹脂のEWが低い場合(300~500)の場合には、耐水性と電気抵抗等のバランス面の観点から好ましい。
 また、PFSA樹脂は、アルカリ金属、アルカリ土類金属、その他、ラジカル分解性の遷移金属(Ce化合物、Mn化合物等)との、部分塩(全イオン交換基当量の0.01~5当量%程度)を単独で又は塩基性重合体と併用してもよい。
(ポリフェニレンエーテル樹脂及び/又はポリフェニレンスルフィド樹脂)
 イオン交換樹脂組成物は、本実施形態で用いるPFSA樹脂100質量部に対して0.1~20質量部のポリフェニレンエーテル樹脂(以下、「PPE樹脂」ともいう。)及び/又はポリフェニレンスルフィド樹脂(以下、「PPS樹脂」ともいう。)を含むことが好ましく、0.5~10質量部含むことがより好ましく、1~5質量部含むことがさらに好ましい。PPE及び/又はPPSが上記範囲内であることにより、膜強度により優れる傾向にある。
 PPE樹脂及び/又はPPS樹脂の添加法としては、押し出し法により混合するか、又はPPE樹脂及び/又はPPS樹脂の水性溶媒分散体を、PFSA樹脂を主体とする樹脂組成物の原液分散体に混合すればよい。
 本実施形態におけるPPS樹脂は、パラフェニレンスルフィド骨格を70モル%以上含むことが好ましく、90モル%以上含むことがより好ましい。PPS樹脂の製造方法としては、特に限定されるものではなく、通常、ハロゲン置換芳香族化合物、例えば、p-ジクロルベンゼンを、硫黄と炭酸ソーダの存在下で重合させる方法、極性溶媒中で硫化ナトリウムあるいは硫化水素ナトリウムと水酸化ナトリウムまたは硫化水素と水酸化ナトリウムあるいはナトリウムアミノアルカノエートの存在下で重合させる方法、p-クロルチオフェノールの自己縮合等が挙げられる。このなかでも、N-メチルピロリドン、ジメチルアセトアミド等のアミド系溶媒やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp-ジクロルベンゼンを反応させる方法が適当である。具体的には、例えば、米国特許第2513188号明細書、特公昭44-27671号公報、特公昭45-3368号公報、特公昭52-12240号公報、特開昭61-225217号公報および米国特許第3274165号明細書、英国特許第1160660号明細書、さらに特公昭46-27255号公報、ベルギー特許第29437号明細書、特開平5-222196号公報等に記載された方法やこれら特許等に例示された先行技術の方法で得ることができる。
 PPS樹脂は、320℃における溶融粘度(フローテスターを用いて、300℃、荷重196N、L/D(L:オリフィス長、D:オリフィス内径)=10/1で6分間保持した値)は、好ましくは1~10,000ポイズであり、より好ましくは100~10,000ポイズである。
 さらに、PPS樹脂に酸性官能基を導入したものも好適に用いることができる。導入する酸性官能基としては、特に限定されないが、例えば、スルホン酸基、リン酸基、カルボン酸基、マレイン酸基、無水マレイン酸基、フマル酸基、イタコン酸基、アクリル酸基、メタクリル酸基が好ましく、スルホン酸基がより好ましい。
 酸性官能基の導入方法は特に限定されず、一般的な方法を用いて実施される。例えばスルホン酸基の導入については、無水硫酸、発煙硫酸などのスルホン化剤を用いて公知の条件で実施することができ、例えば、K.Hu, T.Xu, W.Yang, Y.Fu, Journal of Applied Polymer Science, Vol.91,や、 E.Montoneri, Journal of Polymer Science: Part A: Polymer Chemistry, Vol.27, 3043-3051(1989)に記載の条件で実施できる。
 また、導入した酸性官能基を金属塩またはアミン塩に置換したものも好適に用いられる。金属塩としてはナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩等のアルカリ土類金属塩が好ましい。
 PPE樹脂としては、特に限定されないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられ、さらに2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール)との共重合体のようなポリフェニレンエーテル共重合体も挙げられる。中でも、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)がより好ましい。
 PPEの製造方法としては、特に限定されるものではなく、例えば、米国特許第3306874号明細書記載の第一銅塩とアミンのコンプレックスを触媒として用い、例えば2,6-キシレノールを酸化重合することにより容易に製造でき、そのほかにも米国特許第3306875号明細書、同第3257357号明細書、同第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報及び特開昭63-152628号公報等に記載された方法で容易に製造できる。
 PPE樹脂は、上記したPPE単独のほかに、アタクチック、シンジオタクチックの立体規則性を有するポリスチレン(アタクチック型のハイインパクトポリスチレンも含む)を、上記したPPE成分100質量部に対して、1~400質量部の範囲で配合したものも好適に用いることができる。
 さらにPPE樹脂は、上記に挙げた各種ポリフェニレンエーテルに反応性の官能基を導入したものも好適に用いることができる。反応性の官能基としては、エポキシ基、オキサゾニル基、アミノ基、イソシアネート基、カルボジイミド基、その他酸性官能基が挙げられる。このなかでも、酸性官能基はより好適に用いられる。導入する酸性官能基としては、スルホン酸基、リン酸基、カルボン酸基、マレイン酸基、無水マレイン酸基、フマル酸基、イタコン酸基、アクリル酸基、メタクリル酸基が好ましく、スルホン酸基がより好ましい。
 PPE樹脂の重量平均分子量は、1,000以上5,000,000以下であることが好ましく、より好ましくは1,500以上1,000,000以下である。
(本実施形態で用いるPFSA樹脂以外のフッ素系樹脂)
 本実施形態におけるイオン交換樹脂組成物としては、本実施形態で用いるPFSA樹脂だけでなく、本実施形態で用いるPFSA樹脂以外のフッ素系樹脂(カルボン酸、リン酸等を含む樹脂やその他公知のフッ素系樹脂)を用いることができる。これらの樹脂を2種以上用いる場合は、溶媒に溶解又は媒体に分散させて混合してもよく、樹脂前駆体同士を押し出し混合してもよい。上記フッ素系樹脂としては、本実施形態で用いるPFSA樹脂100質量部に対して0~50質量部含むことが好ましく、0~30質量部含むことがより好ましく、0~10質量部含むことがさらに好ましい。
(平衡含水率)
 電解質膜の平衡含水率は、好ましくは5質量%以上であり、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。また、上限としては、好ましくは80質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。電解質膜の平衡含水率が5質量%以上であると、膜の電気抵抗や電流効率、耐酸化性、イオン選択透過性が良好となる傾向にある。一方、平衡含水率が80質量%以下であると、膜の寸法安定性や強度が良好となり、また水溶解性成分の増加を抑制できる傾向にある。電解質膜の平衡含水率は、樹脂組成物を水とアルコール系溶媒での分散液から成膜し、160℃以下で乾燥した膜を基準とし、23℃、50%関係湿度(RH)での平衡(24Hr放置)飽和吸水率(Wc)で表す。
 電解質膜の平衡含水率は、上述したEWと同様の方法により調整することができる。
(補強材)
 本実施形態における電解質膜は、膜強度の観点から、補強材を有してもよい。補強材としては、特に限定されず、一般的な不織布や織布、各種素材からなる多孔膜が挙げられる。
 前記多孔膜としては、特に限定されないが、フッ素系高分子電解質ポリマーとの親和性が良好なものが好ましい。この中でも、延伸されて多孔化したPTFE系膜に、本実施形態におけるフッ素系高分子電解質ポリマーを含有するイオン交換樹脂組成物を実質的に隙間無く埋め込んだ補強電解質膜が好ましい。このような電解質膜であれば、薄膜の強度により優れる傾向にあり、及び面(縦横)方向の寸法変化をより抑えることができる傾向にある。
 前記補強電解質膜は、有機溶媒又はアルコール及び水を溶媒とした、適度な濃度のイオン交換樹脂組成物の分散液を、適量多孔膜に含浸漬させて、乾燥させることにより得ることができる。
 前記補強電解質膜を作製する際に用いられる溶媒としては、特に限定されないが、沸点が250℃以下の溶媒が好ましく、より好ましくは沸点が200℃以下の溶媒であり、さらに好ましくは沸点が120℃以下の溶媒である。中でも、水と脂肪族アルコール類が好ましく、具体的には、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール及びtert-ブチルアルコール等が挙げられる。上記溶媒は、1種単独で用いても、2種以上を併用してもよい。
〔電解質膜の製造方法〕
 本実施形態における電解質膜の製造方法(成膜法)としては、特に限定されず、公知の、押し出し方法、キャスト成膜方法を用いることができる。電解質膜は単層でも多層(2~5層)でもよく、多層の場合は性質の異なる膜(例えば、EWや官能基の異なる樹脂)を積層することにより、電解質膜の性能を改善することができる。多層の場合は、押し出し製膜時、キャスト時に積層させるか、又は得られたそれぞれの膜を積層させればよい。
 また、上記方法で成膜された電解質膜は、充分水洗浄し(又は必要に応じて、水洗前に、希薄な、塩酸、硝酸、硫酸等の水性酸性液で処理し)不純物を除去して、膜を空気中(好ましくは不活性ガス中)で、好ましくは130~200℃、より好ましくは140~180℃、さらに好ましくは150~170℃で、1~60分間熱処理することが好ましい。熱処理の時間は、より好ましくは1~30分であり、さらに好ましくは2~20分であり、よりさらに好ましくは3~15分、さらにより好ましくは5~10分程度である。
 上記熱処理を行う理由の一つは、成膜時のままの状態では、原料由来の粒子間(一次粒子及び二次粒子間)及び分子間で樹脂が充分に絡み合っていないため、その粒子間及び分子間で樹脂を絡み合わせる目的で、特に耐水性(特に熱水溶解成分比率を下げ)、水の飽和吸水率を安定させ、安定なクラスターを生成させるために有用だからである。また、膜強度向上の観点からも有用である。特にキャスト成膜法を用いた場合には有用である。
 また、他の理由としては、PFSA樹脂の分子間で、微小な分子間架橋を生成させることにより、耐水性に優れ且つ安定なクラスター生成に寄与し、さらに、クラスター径を均一に且つ小さくする効果があると推測されるからである。
 さらには、イオン交換樹脂組成物中のPFSA樹脂のイオン交換基の少なくとも一部分が、その他の添加物(樹脂を含む)成分の活性反応部位(芳香環など)と、反応し、それを介して、(特に分散している添加物であるその他樹脂成分の近くに存在するイオン交換基の反応により)微小な架橋が生成して安定化するものと推測される。この架橋の程度は、EW(熱処理前後のEW低下の程度)に換算して、0.001~5%であることが好ましく、より好ましくは0.1~3%、さらに好ましくは0.2~2%程度である。
 また、上記処理条件(時間、温度)の上限以下であることにより、脱フッ素、脱フッ酸、脱スルホン酸、熱酸化部位などの発生が抑制され、それに由来する分子構造の欠陥が抑制されるため、電解膜の耐酸化劣化性が向上する傾向にある。一方、処理条件の下限以上であることにより、上述した本処理の効果が十分となる傾向にある。
 本実施形態における電解質膜は、イオン選択透過性に優れ、電気抵抗も低く、耐久性(主に、ヒドロキシラジカル耐酸化性)にも優れており、レドックスフロー二次電池用の隔膜として優れた性能を発揮する。なお、本明細書中の各物性は、特に明記しない限り、以下の実施例に記載された方法に準じて測定することができる。
 次に、実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。
[測定方法]
(1) PFSA樹脂前駆体のメルトフローインデックス
 ASTM:D1238に準拠して、測定条件:温度270℃、荷重2160gで測定を行った。
(2) PFSA樹脂の当量質量EWの測定
 PFSA樹脂0.3gを、25℃、飽和NaCl水溶液30mLに浸漬し、攪拌しながら30分間放置した。次いで、飽和NaCl水溶液中の遊離プロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和滴定の終点をpH7とし、中和滴定後に得られた、イオン交換基の対イオンがナトリウムイオンの状態となっているPFSA樹脂分を純水ですすぎ、さらに上皿乾燥機により160℃で乾燥し、秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンの状態となっているPFSA樹脂の質量をW(mg)とし、下記式より当量質量EW(g/eq)を求めた。
 EW=(W/M)-22
 以上の操作を5回繰り返した後、算出された5つのEW値の最大値および最小値を除き、3つの値を相加平均して測定結果とした。
(3) イオン伝導度の測定
 日本ベル株式会社製高分子膜水分量試験装置MSB-AD-V-FCを用いて以下のとおり測定した。
 50μmの厚みで製膜した高分子電解質膜を幅1cm、長さ3cmに切り出し、伝導度測定用セルにセットした。次いで、伝導度測定用セルを上記試験装置のチャンバー内にセットし、チャンバー内を110℃、1%RH未満に調整した。次いで、チャンバー内にイオン交換水を用いて生成した水蒸気を導入し、50%RHでチャンバー内を加湿しながら上記各湿度でのイオン伝導度を測定した。
(4) 平衡含水率の測定
 PFSA樹脂の分散液を清澄なガラス板上に塗布し、150℃で約10分間乾燥し、剥離して約30μmの膜を形成させ、これを23℃の水中に約3時間放置し、その後23℃、関係湿度(RH)50%の部屋に24時間放置した時の平衡含水率を測定した。基準の乾燥膜としては、80℃真空乾燥膜を用いた。平衡含水率は、膜の質量変化から算出した。
(5) 充放電試験
 レドックスフロー二次電池は、隔膜の両側にて、液透過性で多孔質の集電体電極(負極用、正極用)を隔膜の両側にそれぞれ配置し、押圧でそれらを挟み、隔膜で仕切られた一方を正極セル室、他方を負極セル室とし、スペーサーで両セル室の厚みを確保した。正極セル室には、バナジウム4価(V4+)及び同5価(V5+)を含む硫酸電解液からなる正極電解液を、負極セル室にはバナジウム3価(V3+)及び同2価(V2+)を含む負極電解液を流通させ、電池の充電及び放電を行った。このとき、充電時には、正極セル室においては、バナジウムイオンが電子を放出するためV4+がV5+に酸化され、負極セル室では外路を通じて戻って来た電子によりV3+がV2+に還元された。この酸化還元反応では、正極セル室ではプロトン(H)が過剰になり、一方負極セル室では、プロトン(H)が不足するが、隔膜は正極セル室の過剰なプロトンを選択的に負極室に移動させ電気的中性が保たれた。放電時には、この逆の反応が進んだ。
 この時の電池効率(エネルギー効率)は、放電電力量を充電電力量で除した比率(%)で表され、両電力量は、電池セルの内部抵抗と隔膜のイオン選択透過性及びその他電流損失に依存する。
 また、電流効率(%)は、放電電気量を充電電気量で除した比率(%)で表され、両電気量は、隔膜のイオン選択透過性及びその他電流損失に依存する。電池効率は、電流効率と電圧効率の積で表される。内部抵抗すなわちセル電気抵抗率の減少は電圧効率を向上させ、イオン選択透過性の向上及びその他電流損失の低減は、電流効率を向上させるので、レドックスフロー二次電池において、重要な指標となる。
 充放電実験は、上述のようにして得られた電池を用いて行った。全バナジウム濃度が2M/Lで、全硫酸濃度が4M/Lでの水系電解液を使用し、また、設置した正極及び負極セル室の厚みがそれぞれ5mmで、両多孔質電極と隔膜の間には炭素繊維からなる厚み5mmで嵩密度が約0.1g/cmの多孔質状のフエルトを挟んで用いた。充放電実験は電流密度80mA/cmで実施した。
 セル電気抵抗率は、ACインピーダンス法を用いて、放電開始時においてAC電圧10mV,周波数20kHzでの直流抵抗値を測定し、それに電極面積を掛けることによって求めた。
(実施例1~6)
(1)PFSA樹脂前駆体の作製
 ステンレス製攪拌式オートクレーブに、C15COONHの10%水溶液と純水とを仕込み、十分に真空、窒素置換を行った後、テトラフルオロエチレン(CF=CF)ガスを導入してケージ圧力で0.7MPaまで昇圧した。引き続いて、過硫酸アンモニウム水溶液を注入して重合を開始した。重合により消費されたTFEを補給するため、連続的にTFEガスを供給してオートクレーブの圧力を0.7MPaに保つようにして、供給したTFEに対して、質量比で0.70倍に相当する量のCF=CFO(CF-SOFを連続的に供給して重合を行い、それぞれ重合条件を最適な範囲に調整して、各種のパーフルオロカーボンスルホン酸樹脂前駆体粉末を得た。得られたPFSA樹脂前駆体粉末のMFIは、それぞれ、A1が1.0(g/10分)、A2が0.5(g/10分)、A3が1.5(g/10分)、A4が1.5(g/10分)、A5が1.8(g/10分)、A6が2.0(g/10分)であった。
(2)パーフルオロカーボンスルホン酸樹脂、及びその分散溶液の作製
 得られたPFSA樹脂前駆体粉末を、水酸化カリウム(15質量%)とメチルアルコール(50質量%)を溶解した水溶液中に、80℃で20時間接触させて、加水分解処理を行った。その後、60℃水中に5時間浸漬した。次に、60℃の2N塩酸水溶液に1時間浸漬させる処理を、毎回塩酸水溶液を更新して5回繰り返した後、イオン交換水で水洗、乾燥した。これにより、スルホン酸基(SOH)を有し、式(1)で表される構造を有するPFSA樹脂を得た。得られたPFSA樹脂のEWは、それぞれ、A1が527(g/eq)、A2が578(g/eq)、A3が650(g/eq)、A4が910(g/eq)、A5が1100(g/eq)、A6が1500(g/eq)であった。
 得られたPFSA樹脂を、エタノール水溶液(水:エタノール=50:50(質量比))と共に5Lオートクレーブ中に入れて密閉し、翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一なPFSA樹脂分散液を作製した。次に、これらの100gのPFSA樹脂分散液に純水100gを添加、攪拌した後、この液を80℃に加熱、攪拌しながら、固形分濃度が20質量%になるまで濃縮した。
 得られたPFSA樹脂分散液を、上記同様の順に、分散液(ASF1)、分散液(ASF2)、分散液(ASF3)、分散液(ASF4)、分散液(ASF5)、分散液(ASF6)とした。
(3)電解質膜の作製
 得られた分散液(ASF1~ASF6)を、公知の通常の方法にて、担体シートであるポリイミド製フィルム上にキャストし、120℃(20分)の熱風を当てて、溶媒をほぼ完全に飛ばし、乾燥させることにより膜を得た。これをさらに、160℃10分の条件下における熱風空気雰囲気下で、熱処理することにより膜厚50μmの電解質膜を得た。得られた電解質膜の上記熱処理前後のEWは、その変化率が0.2~0.3%程度であった。
 得られた電解質膜の平衡含水率は、ASF1(23質量%)、ASF2(19質量%)、ASF3(12質量%)、ASF4(12質量%)、ASF5(11質量%)、ASF6(9質量%)であった。
 25℃水中3時間におけるそれぞれの電解質膜の最大含水率は、それぞれ、ASF1(50質量%)、ASF2(27質量%)、ASF3(23質量%)、ASF4(23質量%)、ASF5(20質量%)、ASF6(18質量%)であった。ここで、最大含水率は、平衡含水率測定時に観測される最大値を示す。
 電解質膜のイオン伝導度は、それぞれ、ASF1(0.14S/cm)、ASF2(0.12S/cm)、ASF3(0.1S/cm)、ASF4(0.06S/cm)、ASF5(0.06S/cm)、ASF6(0.05S/cm)であった。
 次に各電解質膜を、バナジウムレドックスフロー二次電池の隔膜として用いて充放電試験を行った。ASF1~6を、電解液中で充分平衡にしてから充放電実験を行い、その後安定な状態にしてから、セル電気抵抗率及び電流効率を測定した、各膜のセル電気抵抗率/電流効率は、それぞれ、ASF1(98.5/0.65)、ASF2(98.0/0.70)、ASF3(97.5/0.90)、ASF4(96.5/0.90)、ASF5(96.0/0.95)、ASF6(95.5/1.05)であり、実施例1~3においては、特に優れた傾向が見られた。
(実施例7)
 実施例1で用いた20%PFSA樹脂分散液(ASF1)の代わりに、PFSA樹脂分散液(ASF3)とナフィオンDE2021(デュポン社製、20%溶液、EW1050)を50:50(質量比)で混合した混合分散液を用いたこと以外は実施例1と同様にして電解質膜を得た。この膜の平衡含水率は12質量%であった。
 得られた電解質膜を用いて、実施例と同様の方法によりイオン伝導度を測定したところ0.06S/cmであった。また、実施例1と同様の方法により充放電試験を行った結果、電流効率(%)/セル電気抵抗率(Ω・cm)は96.0/0.95であった。
(実施例8)
 実施例1で用いた20%PFSA樹脂分散液(ASF1)の代わりに、PFSA樹脂分散液(ASF3)とナフィオンDE2021(デュポン社製、20%溶液、EW1050)を10:90(質量比)で混合した混合分散液を用いたこと以外は実施例1と同様にして電解質膜を得た。この膜の平衡含水率は10質量%であった。
 得られた電解質膜を用いて、実施例と同様の方法によりイオン伝導度を測定したところ0.05S/cmであった。また、実施例1と同様の方法により充放電試験を行った結果、電流効率(%)/セル電気抵抗率(Ω・cm)は95.5/1.00であった。
(実施例9)
 上記PFSA樹脂分散液(ASF3)に、アルカリ水溶液(KOH10%水溶液)に分散させたポリフェニレンスルフィド粉末(シェブロン・フィリップス社製、型番P-4)を、均一に混合分散しながら攪拌し、最終的に、固形成分で、PFSA樹脂成分100質量部に対して5質量部となるように均一に混合した。次にこれらを、粒子状カチオン交換樹脂粒子を充填したカラムに通して、アルカリイオン成分をほぼ完全に除去し、PFSA樹脂分散液(ASF7)とした。
 得られたPFSA樹脂分散液(ASF7)を、公知の通常の方法にて、担体シートであるポリイミド製フィルム上にキャストし、120℃(20分)の熱風を当てて、溶媒をほぼ完全に飛ばし、乾燥させることにより膜を得た。これを更に、160℃10分の条件下における熱風空気雰囲気下で、熱処理することにより膜厚50μmの電解質膜を得た。得られた電解質膜の上記熱処理前後のEWは、その変化率が0.2~0.3%程度であった。得られた電解質膜の平衡含水率は12質量%であった。25℃水中3時間における電解質膜の最大含水率は18質量%であった。また、実施例1と同様の方法により充放電試験を行った結果、電流効率(%)/セル電気抵抗率(Ω・cm2)は、98.5/0.97であった。
(比較例1)
 実施例1で用いた20%PFSA樹脂分散液(ASF1)の代わりにナフィオンDE2021(デュポン社製、20%溶液、EW1050)を用いたこと以外は実施例1と同様にして電解質膜を得た。この膜の平衡含水率は6質量%であった。
 得られた電解質膜を用いて、実施例と同様の方法によりイオン伝導度を測定したところ0.04S/cmであり、イオン伝導度が小さく、実施例の膜よりも劣っていた。また、実施例と同様の方法により充放電試験を行った結果、電流効率(%)/セル電気抵抗率(Ω・cm)は94.5/1.20であり、電流効率についても、実施例よりもかなり低いレベルであった。
(比較例2)
 ナフィオン112(膜厚50μm)を用いて実施例1と同様の方法により充放電試験を行った結果、電流効率(%)/セル電気抵抗率(Ω・cm)は94.0/1.20であった。
 表1に、上記実施例1~9及び比較例1~2の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 本出願は、2011年12月28日に日本国特許庁へ出願された日本特許出願(特願2011-290033)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の電解質膜は、イオンの選択透過性に優れ、電気抵抗も低く、耐久性(主に、ヒドロキシラジカル耐酸化性)にも優れており、レドックスフロー二次電池用の隔膜としての産業上利用可能性を有する。
1 正極
2 正極セル室
3 負極
4 負極セル室
5 電解質膜
6 電解槽
7 正極電解液タンク
8 負極電解液タンク
9 交直変換装置
10 レドックスフロー二次電池

Claims (10)

  1.  炭素電極からなる正極を含む正極セル室と、
     炭素電極からなる負極を含む負極セル室と、
     前記正極セル室と、前記負極セル室とを隔離分離させる、隔膜としての電解質膜と、
    を含む電解槽を有し、
     前記正極セル室は正極活物質を含む正極電解液を含み、前記負極セル室は負極活物質を含む負極電解液を含み、
     前記電解液中の前記正極活物質及び前記負極活物質の価数変化に基づき充放電するレドックスフロー二次電池であって、
     前記電解質膜が、下記式(1)で表される構造を有するパーフルオロカーボンスルホン酸樹脂を含む、イオン交換樹脂組成物を含み、
     前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~1500g/eqであり、
     前記電解質膜の110℃、相対湿度50%RHにおけるイオン伝導度が、0.05S/cm以上である、
     レドックスフロー二次電池。
    -[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
    (式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
  2.  前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~700g/eqである、請求項1に記載のレドックスフロー二次電池。
  3.  前記正極電解液及び前記負極電解液が、バナジウムを含む硫酸電解液である、請求項1又は2に記載のレドックスフロー二次電池。
  4.  前記電解質膜の平衡含水率が、5~80質量%である、請求項1~3のいずれか1項に記載のレドックスフロー二次電池。
  5.  前記イオン交換樹脂組成物が、前記パーフルオロカーボンスルホン酸樹脂100質量部に対して0.1~20質量部のポリフェニレンエーテル樹脂及び/又はポリフェニレンスルフィド樹脂を含む、請求項1~4のいずれか1項に記載のレドックスフロー二次電池。
  6.  下記式(1)で表される構造を有するパーフルオロカーボンスルホン酸樹脂を含む、イオン交換樹脂組成物を含み、
     前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~1500g/eqであり、
     110℃、相対湿度50%RHにおけるイオン伝導度が、0.05S/cm以上である、
     レドックスフロー二次電池用電解質膜。
    -[CF-CF-[CF-CF(-O-(CF-SOH)]- (1)
    (式(1)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示す。)
  7.  前記パーフルオロカーボンスルホン酸樹脂の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が、250~700g/eqである、請求項6に記載のレドックスフロー二次電池用電解質膜。
  8.  平衡含水率が5~80質量%である、請求項6又は7に記載のレドックスフロー二次電池用電解質膜。
  9.  前記イオン交換樹脂組成物が、前記パーフルオロカーボンスルホン酸樹脂100質量部に対して0.1~20質量部のポリフェニレンエーテル樹脂及び/又はポリフェニレンスルフィド樹脂を含む、請求項6~8のいずれか1項に記載のレドックスフロー二次電池用電解質膜。
  10.  前記イオン交換樹脂組成物を、130~200℃にて1~60分間加熱処理したものである、請求項6~9のいずれか1項に記載のレドックスフロー二次電池用電解質膜。
PCT/JP2012/083950 2011-12-28 2012-12-27 レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 WO2013100082A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280063955.0A CN104011922B (zh) 2011-12-28 2012-12-27 氧化还原液流二次电池和氧化还原液流二次电池用电解质膜
EP12863252.8A EP2800193B1 (en) 2011-12-28 2012-12-27 Redox flow secondary battery
US14/368,017 US20140342268A1 (en) 2011-12-28 2012-12-27 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
JP2013551829A JP5972286B2 (ja) 2011-12-28 2012-12-27 レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
KR1020147014520A KR20140097255A (ko) 2011-12-28 2012-12-27 레독스 플로우 이차 전지 및 레독스 플로우 이차 전지용 전해질막
US15/617,676 US10211474B2 (en) 2011-12-28 2017-06-08 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-290033 2011-12-28
JP2011290033 2011-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/368,017 A-371-Of-International US20140342268A1 (en) 2011-12-28 2012-12-27 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
US15/617,676 Division US10211474B2 (en) 2011-12-28 2017-06-08 Redox flow secondary battery and electrolyte membrane for redox flow secondary battery

Publications (1)

Publication Number Publication Date
WO2013100082A1 true WO2013100082A1 (ja) 2013-07-04

Family

ID=48697561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083950 WO2013100082A1 (ja) 2011-12-28 2012-12-27 レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜

Country Status (6)

Country Link
US (2) US20140342268A1 (ja)
EP (1) EP2800193B1 (ja)
JP (1) JP5972286B2 (ja)
KR (1) KR20140097255A (ja)
CN (1) CN104011922B (ja)
WO (1) WO2013100082A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099874A1 (en) * 2012-12-17 2014-06-26 E. I. Du Pont De Nemours And Company Flow battery having a separator membrane comprising an ionomer
CN104377371A (zh) * 2013-08-13 2015-02-25 旭化成电子材料株式会社 氧化还原液流二次电池用电解质膜
CN106252683A (zh) * 2016-08-31 2016-12-21 安徽远东船舶有限公司 一种船用全钒液流电池电堆模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102320017B1 (ko) 2018-04-20 2021-11-02 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US11025072B2 (en) * 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE529437A (ja) 1953-06-11
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
GB1160660A (en) 1967-07-26 1969-08-06 Fouquet Werk Frauz & Planck Apparatus for Removing Incidental Fibrous Fluff from Knitting Machines
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5212240A (en) 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS5222196A (en) 1975-08-12 1977-02-19 Kobe Steel Ltd Hob
JPS53141187A (en) * 1977-05-16 1978-12-08 Tokuyama Soda Co Ltd Process for fabricating cation exchange film
JPS586988A (ja) * 1981-06-26 1983-01-14 エルテック・システムズ・コ−ポレ−ション 親水性フツ素共重合物で接着した固体重合物電解質および電極
JPS61225217A (ja) 1985-03-29 1986-10-07 Toto Kasei Kk ポリフエニレンサルフアイド樹脂からの不純物の除去方法
JPS62226580A (ja) 1986-03-26 1987-10-05 Sumitomo Electric Ind Ltd レドツクスフロ−電池
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH053368A (ja) 1991-06-25 1993-01-08 Sanyo Electric Co Ltd 半導体レーザの製造方法
JPH05242905A (ja) 1991-06-06 1993-09-21 Agency Of Ind Science & Technol レドックス電池
JPH06188005A (ja) 1992-01-13 1994-07-08 Kashimakita Kyodo Hatsuden Kk レドックス電池
JPH06260183A (ja) 1993-03-04 1994-09-16 Sumitomo Electric Ind Ltd 水溶媒系電気化学装置用隔膜およびそれを用いた水溶媒系電池
JPH06105615B2 (ja) 1986-03-25 1994-12-21 住友電気工業株式会社 レドツクスフロ−電池
JPH0992321A (ja) 1995-09-27 1997-04-04 Kashimakita Kyodo Hatsuden Kk レドックス電池
JPH10208767A (ja) 1996-11-22 1998-08-07 Tokuyama Corp バナジウム系レドックスフロー電池用隔膜及びその製造方法
JPH11260390A (ja) 1998-03-05 1999-09-24 Kashimakita Kyodo Hatsuden Kk レドックスフロー電池
JP2000235849A (ja) 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
JP2005158383A (ja) 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd レドックス電池
JP2006059560A (ja) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp ポリフェニレンスルフィド樹脂含有高分子電解質組成物
JP2008544444A (ja) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
JP2011054315A (ja) * 2009-08-31 2011-03-17 Toyobo Co Ltd 高分子電解質膜とその製造方法、及び高分子電解質膜積層体とその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275108A (ja) 1992-03-13 1993-10-22 Hitachi Ltd 電 池
JP3487869B2 (ja) 1992-09-25 2004-01-19 株式会社タカキタ ロールベーラ
JPH09223513A (ja) 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
US7045044B2 (en) 2000-09-27 2006-05-16 Asahi Kasei Chemicals Corporation Dispersion composition containing perfluorocarbon-based copolymer
JP4067315B2 (ja) * 2001-02-07 2008-03-26 旭化成ケミカルズ株式会社 フッ素系イオン交換樹脂膜
JP4649094B2 (ja) 2003-03-07 2011-03-09 旭化成イーマテリアルズ株式会社 燃料電池用膜電極接合体の製造方法
JP4871591B2 (ja) 2003-05-13 2012-02-08 旭硝子株式会社 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP4904667B2 (ja) 2004-04-02 2012-03-28 トヨタ自動車株式会社 固体高分子電解質の製造方法
CA2563788C (en) 2004-04-23 2010-09-07 Asahi Kasei Chemicals Corporation Polymer electrolyte composition containing aromatic hydrocarbon-based resin
US7662498B2 (en) 2004-04-23 2010-02-16 Asahi Kasei Chemicals Corporation Polymer electrolyte composition containing aromatic hydrocarbon-based resin
CN101048434B (zh) 2004-10-27 2011-04-13 旭硝子株式会社 电解质材料、电解质膜及固体高分子型燃料电池用膜电极接合体
JP5189394B2 (ja) * 2008-03-31 2013-04-24 旭化成イーマテリアルズ株式会社 高分子電解質膜
JP2010086935A (ja) * 2008-09-03 2010-04-15 Sharp Corp レドックスフロー電池
WO2010101195A1 (ja) 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
CN102804470B (zh) * 2009-06-09 2015-04-15 夏普株式会社 氧化还原液流电池
US9133316B2 (en) 2009-09-18 2015-09-15 Asahi Kasei E-Materials Corporation Electrolyte emulsion and process for producing same
US8288030B2 (en) 2010-03-12 2012-10-16 Sumitomo Electric Industries, Ltd. Redox flow battery
WO2011111717A1 (ja) 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
BE529437A (ja) 1953-06-11
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3274165A (en) 1965-05-10 1966-09-20 Dow Chemical Co Method for preparing linear polyarylene sulfide
GB1160660A (en) 1967-07-26 1969-08-06 Fouquet Werk Frauz & Planck Apparatus for Removing Incidental Fibrous Fluff from Knitting Machines
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5212240A (en) 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
JPS5222196A (en) 1975-08-12 1977-02-19 Kobe Steel Ltd Hob
JPS53141187A (en) * 1977-05-16 1978-12-08 Tokuyama Soda Co Ltd Process for fabricating cation exchange film
JPS586988A (ja) * 1981-06-26 1983-01-14 エルテック・システムズ・コ−ポレ−ション 親水性フツ素共重合物で接着した固体重合物電解質および電極
JPS61225217A (ja) 1985-03-29 1986-10-07 Toto Kasei Kk ポリフエニレンサルフアイド樹脂からの不純物の除去方法
JPH06105615B2 (ja) 1986-03-25 1994-12-21 住友電気工業株式会社 レドツクスフロ−電池
JPS62226580A (ja) 1986-03-26 1987-10-05 Sumitomo Electric Ind Ltd レドツクスフロ−電池
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH05242905A (ja) 1991-06-06 1993-09-21 Agency Of Ind Science & Technol レドックス電池
JPH053368A (ja) 1991-06-25 1993-01-08 Sanyo Electric Co Ltd 半導体レーザの製造方法
JPH06188005A (ja) 1992-01-13 1994-07-08 Kashimakita Kyodo Hatsuden Kk レドックス電池
JPH06260183A (ja) 1993-03-04 1994-09-16 Sumitomo Electric Ind Ltd 水溶媒系電気化学装置用隔膜およびそれを用いた水溶媒系電池
JPH0992321A (ja) 1995-09-27 1997-04-04 Kashimakita Kyodo Hatsuden Kk レドックス電池
JPH10208767A (ja) 1996-11-22 1998-08-07 Tokuyama Corp バナジウム系レドックスフロー電池用隔膜及びその製造方法
JPH11260390A (ja) 1998-03-05 1999-09-24 Kashimakita Kyodo Hatsuden Kk レドックスフロー電池
JP2000235849A (ja) 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
JP2005158383A (ja) 2003-11-25 2005-06-16 Sumitomo Electric Ind Ltd レドックス電池
JP2006059560A (ja) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp ポリフェニレンスルフィド樹脂含有高分子電解質組成物
JP2008544444A (ja) * 2005-06-20 2008-12-04 ヴィ−フューエル ピーティワイ リミテッド レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
JP2011054315A (ja) * 2009-08-31 2011-03-17 Toyobo Co Ltd 高分子電解質膜とその製造方法、及び高分子電解質膜積層体とその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. MONTONERI, JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 27, 1989, pages 3043 - 3051
K. HU; T. XU; W. YANG; Y. FU, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 91
See also references of EP2800193A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099874A1 (en) * 2012-12-17 2014-06-26 E. I. Du Pont De Nemours And Company Flow battery having a separator membrane comprising an ionomer
US10868324B2 (en) 2012-12-17 2020-12-15 The Chemours Company Fc, Llc Flow battery having a separator membrane comprising an ionomer
CN104377371A (zh) * 2013-08-13 2015-02-25 旭化成电子材料株式会社 氧化还原液流二次电池用电解质膜
CN106252683A (zh) * 2016-08-31 2016-12-21 安徽远东船舶有限公司 一种船用全钒液流电池电堆模块

Also Published As

Publication number Publication date
JP5972286B2 (ja) 2016-08-17
EP2800193B1 (en) 2016-09-28
CN104011922B (zh) 2016-06-22
US20170271698A1 (en) 2017-09-21
US20140342268A1 (en) 2014-11-20
EP2800193A1 (en) 2014-11-05
KR20140097255A (ko) 2014-08-06
US10211474B2 (en) 2019-02-19
JPWO2013100082A1 (ja) 2015-05-11
EP2800193A4 (en) 2015-06-03
CN104011922A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
JP6002685B2 (ja) レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
JP6005065B2 (ja) レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
JP6034200B2 (ja) レドックスフロー二次電池
US10211474B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR101758237B1 (ko) 이온 교환막 및 그 제조방법
JP6131051B2 (ja) レドックスフロー二次電池用電解質膜及びそれを用いたレドックスフロー二次電池
JP4815759B2 (ja) 高分子電解質複合膜、その製造方法及びその用途
WO2008004643A1 (fr) Procédé de production d'une émulsion d'électrolyte polymère
JP2009021233A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP5614891B2 (ja) 膜電極複合体、及び固体高分子電解質型燃料電池
US20180277873A1 (en) Ion conductor, method for preparing same, and ion-exchange membrane, membrane-electrode assembly and fuel cell comprising same
JP2008311146A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子型燃料電池
JP6101494B2 (ja) レドックスフロー二次電池用電解質膜
JP4437663B2 (ja) プロトン伝導性高分子電解質、プロトン伝導性高分子電解質膜及び膜−電極接合体、並びに固体高分子形燃料電池
JP2019102330A (ja) 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池
WO2015076641A1 (ko) 이온 교환막 및 그 제조방법
JP6158377B2 (ja) 固体高分子電解質型燃料電池
JP2014222666A (ja) 膜電極複合体、及び固体高分子電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014520

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013551829

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012863252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012863252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14368017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE