WO2013099901A1 - 細胞接着防止剤 - Google Patents

細胞接着防止剤 Download PDF

Info

Publication number
WO2013099901A1
WO2013099901A1 PCT/JP2012/083568 JP2012083568W WO2013099901A1 WO 2013099901 A1 WO2013099901 A1 WO 2013099901A1 JP 2012083568 W JP2012083568 W JP 2012083568W WO 2013099901 A1 WO2013099901 A1 WO 2013099901A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
repeating unit
polymer
cell adhesion
side chain
Prior art date
Application number
PCT/JP2012/083568
Other languages
English (en)
French (fr)
Inventor
林 直樹
慧 日向寺
小川 俊博
秀俊 宮本
岩永 伸一郎
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US14/369,692 priority Critical patent/US9320836B2/en
Priority to JP2013551718A priority patent/JP6070573B2/ja
Priority to EP12863715.4A priority patent/EP2799536B1/en
Priority to CN201280064778.8A priority patent/CN104039949B/zh
Publication of WO2013099901A1 publication Critical patent/WO2013099901A1/ja
Priority to US15/050,258 priority patent/US10214607B2/en
Priority to US16/163,522 priority patent/US20190048113A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M39/00Means for cleaning the apparatus or avoiding unwanted deposits of microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the present invention relates to a cell adhesion inhibitor, a device and an apparatus having a modified surface on which the cell adhesion agent is applied, a method for manufacturing the device and the apparatus, an in vivo medical structure and a method for manufacturing the same, a microchannel device, and a method for manufacturing the microchannel device. .
  • Adherent cells such as macrophages and fibroblasts are called anchorage-dependent cells because they become active and proliferate only when attached to a surface or substrate. This cell adhesion is triggered through a family of proteins (adhesion molecules and proteins) such as vitronectin and fibronectin found in the extracellular matrix. This cell adhesion is a problem in various fields including medical treatment.
  • fibroblasts added to the medium adhere to the tissue culture plate via extracellular matrix proteins.
  • bacterial cells adhere to the catheter wall
  • platelets adhere to the tip of the catheter, and in contact lenses, the cells cover the lens surface via proteins. It becomes.
  • cell adhesion occurs in a medical instrument or device, it becomes a serious problem because it not only becomes dirty but also clogs and analysis accuracy and sensitivity decrease. Therefore, as a technique for preventing nonspecific adhesion of mouse fibroblasts to a container, a coating with a polymer derived from 2-methacryloylphosphorylcholine, methacryloyl hydrazide, etc. has been proposed (Patent Document 1).
  • Patent Document a protein adsorption inhibitor containing a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl (meth) acrylate, methyl (meth) acrylate or styrene is known (Patent Document). 2).
  • anti-adhesion membranes that prevent adhesion include, for example, anti-adhesion materials composed of human-derived natural collagen membranes (Patent Document 3), anti-adhesion materials composed of specific hyaluronic acid compounds (Patent Document 4), polyanionic properties
  • An adhesion preventing material (Patent Document 5) made of a dry film of a polyion complex formed from a substance and a polycationic substance is known.
  • the end group is hydrophilic on the metal layer surface of the microchannel. It has been proposed to form a sulfur compound layer having a functional group (Patent Document 6). Further, surface modification of the inner wall of the microchannel with a fluororesin or the like (Patent Document 7), or surface coating treatment with a polymer having polyethylene glycol, eval, poval, or phosphorylcholine group (Patent Document 8) has been proposed. ing.
  • JP 2005-080579 A Japanese Patent Application Laid-Open No. 07-083923 Japanese Patent Laid-Open No. 9-2225018 JP 2006-296916 A JP 2000-116765 A JP 2001-252896 A JP 2005-125280 A JP 2008-82961 A
  • the present invention relates to a cell adhesion inhibitor having low cytotoxicity and an excellent cell adhesion prevention effect, a device and apparatus having a modified surface to which the agent is applied, and a device and apparatus having a modified surface.
  • the present invention relates to a manufacturing method, an in-vivo medical structure and a manufacturing method thereof, and a microchannel device and a manufacturing method thereof.
  • the present inventors have found that a polymer having a repeating unit having a sulfinyl group in the side chain exhibits low cytotoxicity and an excellent cell adhesion preventing effect, and has completed the present invention.
  • the present invention provides a cell adhesion inhibitor comprising as an active ingredient a polymer having a repeating unit having a sulfinyl group in the side chain.
  • the present invention provides a device having a modified surface having a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the surface.
  • the present invention provides a method for producing a device having a modified surface, comprising the step of coating a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the device surface. It is to provide.
  • the present invention provides an apparatus having a modified surface having a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the surface.
  • the present invention provides a method for producing a device with a modified surface, comprising the step of coating a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the device surface. It is to provide.
  • the present invention provides an in vivo medical structure having a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the surface.
  • the present invention provides a method for producing an in vivo medical structure, comprising a step of coating a polymer having a repeating unit having a sulfinyl group in a side chain on at least a part of the surface of the structure. It is.
  • the present invention provides a microchannel device having a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the inner surface of the microchannel.
  • the present invention provides a method for producing a microchannel device, comprising a step of coating a polymer having a repeating unit having a sulfinyl group in the side chain on at least a part of the inner surface of the microchannel. Is.
  • the cell adhesion inhibitor of the present invention has low cytotoxicity and exhibits an excellent cell adhesion prevention effect. Therefore, according to the production method of the present invention, it is possible to provide an instrument and an apparatus having a modified surface, in which cells are difficult to die when used and cells are difficult to adhere.
  • the living tissue is less likely to adhere to the surface, and the influence on the living tissue is low. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an in-vivo medical structure that is less likely to adhere to the surface of the living tissue and has a low influence on the living tissue.
  • the microchannel device of the present invention the biological sample is unlikely to adhere to the inner surface of the microchannel, and the influence on the biological sample is low. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture a microchannel device that hardly adheres to the inner surface of the microchannel and has a low influence on the biological sample.
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a view showing the cell adhesion preventing effect of copolymers (N-1-4), (N-1-5) and (N-2).
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a graph showing the cell adhesion preventing effect of copolymers
  • FIG. 3 is a view showing the cell adhesion preventing effect of copolymers (N-1-4), (N-1-5) and (N-2).
  • FIG. 3 is a view showing low toxicity of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a view showing low toxicity of copolymers (N-1-1) to (N-1-5) and (N-2).
  • FIG. 3 is a view showing low toxicity of copolymers (N-1-4), (N-1-5) and (N-2).
  • FIG. 3 is a view showing low toxicity of copolymers (N-1-4), (N-1-5) and (N-2).
  • FIG. 3 is a view showing low toxicity of copolymers (N-1-1) to (N-1-5).
  • the cell adhesion inhibitor of the present invention comprises a polymer having a repeating unit having a sulfinyl group in the side chain (hereinafter also referred to as a repeating unit (A)) as an active ingredient.
  • hydrophilic means that it has a property with strong affinity with water.
  • a homopolymer consisting of only one type of repeating unit (having a number average molecular weight of about 10,000 to 100,000 by the measurement method of the example) is 1 g or more per 100 g of pure water at room temperature (25 ° C.).
  • the repeating unit is hydrophilic.
  • the repeating unit (A) preferably has a Hydrophile-Lipophile Balance (HLB value) of 10 or more, which indicates a measure of hydrophilicity / hydrophobicity.
  • the HLB value is more preferably 15 or more, and further preferably 20 to 40.
  • the HLB value means a value calculated from the ratio of the organic value and the inorganic value of the compound (Oda equation), and “Formation Design with Organic Concept Diagram” [1998, NIHON]. EMULSION CO. , LTD].
  • the repeating unit (A) is not particularly limited, but nonionic ones are preferred.
  • the repeating unit (A) may have a hydrophilic group such as a hydroxy group, a carboxy group, an amino group, a sulfo group, a thiol group, a phosphoric acid group, or an aldehyde group.
  • a hydrophilic group such as a hydroxy group, a carboxy group, an amino group, a sulfo group, a thiol group, a phosphoric acid group, or an aldehyde group.
  • the position and the number of such hydrophilic groups are arbitrary, but the position is preferably a side chain of the polymer.
  • the number of hydrophilic groups other than the sulfinyl group is preferably 0 to 12 per repeating unit from the viewpoint of cell adhesion prevention effect, biological tissue adhesion prevention effect, and biological sample adhesion prevention effect.
  • hydrophilic groups a hydroxy group is preferable from the viewpoint of cell adhesion prevention effect, biological tissue adhesion prevention effect, and biological sample adhesion prevention effect.
  • some sulfinyl groups contained in a polymer may be a sulfonyl group and a sulfide group.
  • repeating unit (A) a repeating unit containing at least one structure represented by the following formula (1) in the side chain may be mentioned.
  • the polymer species to be a repeating unit having the structure represented by the formula (1) in the side chain known polymers can be used, among which (meth) acrylate polymer species and (meth) acrylamide polymer species Styrene-based polymer species are preferred. More specifically, a repeating unit represented by the following formula (2) is exemplified.
  • R 3 represents a direct bond or a divalent organic group having 1 to 24 carbon atoms
  • R 4 represents an organic group having 1 to 10 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a group —O—, a group * — (C ⁇ O) —O—, a group * — (C ⁇ O) —NR. 5 —, group * —NR 5 — (C ⁇ O) —
  • R 5 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • * represents R 1 in Formula (2) bonded thereto.
  • R represents a position bonded to a carbon atom) or a phenylene group
  • R 3 and R 4 are as defined above.
  • R 1 represents a hydrogen atom or a methyl group, preferably a methyl group.
  • R 2 represents a group —O—, a group * — (C ⁇ O) —O—, a group * — (C ⁇ O) —NR 5 —, a group * —NR 5 — (C ⁇ O) — or phenylene. Indicates a group. Examples of such a phenylene group include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
  • the carbon number of the organic group represented by R 5 is preferably 1 to 10, more preferably 2 to 8, and still more preferably 2 to 6.
  • Examples of the organic group include hydrocarbon groups.
  • Such a hydrocarbon group is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group in R 5 may be linear or branched, and specifically includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl. Group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group and other alkyl groups.
  • the alicyclic hydrocarbon group is roughly classified into a monocyclic alicyclic hydrocarbon group and a bridged ring hydrocarbon group.
  • Examples of the monocyclic alicyclic hydrocarbon group include cycloalkyl groups such as a cyclopropyl group and a cyclohexyl group.
  • Examples of the bridged ring hydrocarbon group include an isobornyl group.
  • Examples of the aromatic hydrocarbon group include aryl groups such as a phenyl group.
  • the group * — (C ⁇ O) —O— and the phenylene group are preferable from the viewpoint of the cell adhesion preventing effect, the living tissue adhesion preventing effect, and the biological sample adhesion preventing effect, and the group * — ( C ⁇ O) —O— is particularly preferred.
  • R 3 represents a direct bond or a divalent organic group having 1 to 24 carbon atoms. Such direct bonds include single bonds.
  • a divalent organic group having 1 to 24 carbon atoms is preferable.
  • the carbon number of such a divalent organic group is preferably 2 to 18, more preferably 2 to 10, still more preferably 2 to 9, and particularly preferably 3 to 6.
  • the divalent organic group includes a divalent hydrocarbon group.
  • the divalent hydrocarbon group is preferably a divalent aliphatic hydrocarbon group and may be linear or branched. Specifically, methane-1,1-diyl group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,1-diyl group, propane-1,2-diyl group, Propane-1,3-diyl group, propane-2,2-diyl group, butane-1,2-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,4 -Diyl group, pentane-1,5-diyl group, hexane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-
  • the divalent hydrocarbon group may have a substituent and may contain an ether bond between carbon-carbon bonds.
  • substituent that the divalent hydrocarbon group may have include the hydrophilic group.
  • the number of the substituents is preferably 1 to 5, more preferably 1 to 3, and further preferably 1 or 2.
  • the number of ether bonds that the divalent hydrocarbon group may contain is preferably 0 to 5, and more preferably 0 to 3.
  • divalent organic group examples include a linking group represented by the following formula (3) and an alkanediyl group having 1 to 24 carbon atoms, and more preferably represented by the formula (3).
  • a linking group represented by the following formula (3) and an alkanediyl group having 1 to 24 carbon atoms, and more preferably represented by the formula (3).
  • R 6 is a single bond, a group —R 8 —O— (R 8 represents an alkanediyl group having 1 to 4 carbon atoms) or a linking group represented by the following formula (4)
  • R 7 represents an alkanediyl group having 1 to 4 carbon atoms
  • n represents 1 or 2
  • ** represents a position bonded to a sulfur atom in the formulas (1) and (2).
  • R 9 represents an alkanediyl group having 1 to 4 carbon atoms
  • R 10 represents an alkanediyl group having 2 or 3 carbon atoms
  • m 1 represents 1 or 2
  • m 2 Represents an integer of 1 to 3.
  • R 6 is preferably a single bond or a group —R 8 —O—, particularly preferably a single bond, from the viewpoint of cell adhesion prevention effect, biological tissue adhesion prevention effect, and biological sample adhesion prevention effect.
  • the alkanediyl group represented by R 7 , R 8 and R 9 has 1 to 4 carbon atoms, preferably 1 or 2.
  • the alkanediyl group may be linear or branched, and examples thereof include the same alkanediyl groups as described above.
  • the carbon number of the alkanediyl group represented by R 10 is preferably 2.
  • Examples of the alkanediyl group include the same as those represented by R 7 .
  • m 2 R 10 may be the same or different.
  • 1 is preferable as n and m 1, 1 or 2 is preferable as m 2.
  • R 4 represents an organic group having 1 to 10 carbon atoms. Examples of such an organic group include the same groups as those represented by R 5 .
  • R 4 is a hydrocarbon group, such a hydrocarbon group may have a substituent, and the substituent and the number thereof may be the divalent hydrocarbon group. The thing similar to a good thing is mentioned. From the viewpoint of hydrophilicity, R 4 preferably does not contain a ring structure such as a cycloalkyl group, an aryl group, or an aralkyl group.
  • R 4 as described above include organic groups having 1 to 10 carbon atoms having the hydrophilic group, more preferably a monovalent group represented by the following formula (5), carbon An alkyl group having a number of 1 to 10, more preferably a monovalent group represented by the formula (5).
  • k 1 represents an integer of 1 to 4
  • k 2 represents an integer of 0 to 4
  • *** is bonded to a sulfur atom in Formulas (1) and (2). Indicates the position to perform.
  • k 1 is preferably 1 or 2.
  • K 2 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the lower limit of the total content of the repeating unit (A) is from the viewpoint of imparting water solubility, and from the viewpoint of achieving both cell adhesion prevention effect, biological tissue adhesion prevention effect, biological sample adhesion prevention effect and low toxicity.
  • 10 mol% or more is preferable, 40 mol% or more is more preferable, 50 mol% or more is more preferable, 60 mol% or more is further preferable, and 65 mol% or more is particularly preferable.
  • the upper limit is preferably 99 mol% or less, more preferably 90 mol% or less, still more preferably 85 mol% or less, and still more preferably 80 mol% or less, from the viewpoint of adsorption with the substrate.
  • the viewpoint of imparting water solubility, the cell adhesion preventing effect, the biological tissue adhesion preventing effect, the biological sample adhesion preventing effect and the low toxicity are compatible. From the viewpoint, in all repeating units, 20% by mass or more is preferable, 35% by mass or more is more preferable, 50% by mass or more is further preferable, 60% by mass or more is further preferable, 70% by mass or more is further preferable, and 75% by mass. The above is more preferable, and 80% by mass or more is particularly preferable.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 95% by mass or less, and particularly preferably 90% by mass or less from the viewpoint of adsorption with the substrate.
  • the content of the repeating unit (A) can be measured by 13 C-NMR or the like.
  • the polymer used in the present invention preferably further has a hydrophobic repeating unit (hereinafter also referred to as a repeating unit (B)).
  • “hydrophobic” means having a property of low affinity with water. Specifically, a homopolymer consisting of only one type of repeating unit (having a number average molecular weight of about 10,000 to 100,000 by the measurement method of the example) is dissolved in 100 g of pure water at room temperature (25 ° C.). If the amount is less than 1 g, the repeating unit is hydrophobic. Further, the HLB value of the repeating unit (B) is preferably less than 20, more preferably less than 15, more preferably less than 10, and still more preferably 0.1 or more and less than 10 in order to obtain high hydrophobicity.
  • the repeating unit (B) includes known ones exhibiting hydrophobicity, and is not particularly limited, but is derived from one or more monomers selected from styrenes, (meth) acrylates and (meth) acrylamides. Are preferred.
  • repeating unit derived from styrenes a repeating unit represented by the following formula (6) is preferable.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents an organic group having 1 to 10 carbon atoms
  • p represents an integer of 0 to 5.
  • examples of the organic group represented by R 12 include the same groups as those represented by R 5 , and the carbon number thereof is preferably 1 to 6, more preferably 1 to 3. It is. Moreover, the thing without a hydrophilic group is preferable. Note that such an organic group may be substituted with an alkoxy group having 1 to 3 carbon atoms. When p is an integer of 2 to 5, p R 12 s may be the same or different.
  • P represents an integer of 0 to 5, preferably 0 to 3, and more preferably 0.
  • repeating unit derived from styrenes include styrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, 4-ethylstyrene, 4-isopropylstyrene, 4-tert -Repeating units derived from butyl styrene, ⁇ -methyl styrene and the like.
  • Examples of the (meth) acrylates include (meth) acrylic acid C such as methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the C 1-10 alkyl group is preferably a C 1-8 alkyl group
  • the C 6-10 cycloalkyl group is preferably a C 6-8 cycloalkyl group.
  • the 1-10 alkoxy group is preferably a C 1-6 alkoxy group
  • the bridged ring hydrocarbon group having 8 to 16 carbon atoms is preferably a bridged ring hydrocarbon group having 8 to 12 carbon atoms.
  • (meth) acrylic acid ester having a bridged cyclic hydrocarbon group having 8 to 16 carbon atoms (meth) acrylic acid C 1-10 alkoxy C 1-10 alkyl, (meth C1-10 alkyl acrylate, a macromonomer having a (meth) acryloyloxy group at the terminal is preferable, and a (meth) acrylic acid ester having a bridged cyclic hydrocarbon group having 8 to 16 carbon atoms, (meth) acrylic acid C 1-10 alkoxy C 1-10 alkyl, (meth) acrylic acid C 1-10 alkyl are more preferable, and (meth) acrylic acid ester having a bridged cyclic hydrocarbon group having 8 to 16 carbon atoms, (meth) acrylic Acid C 1-10 alkyl is more preferable, and (meth) acrylic acid C 1-10 alkyl is particularly preferable.
  • Examples of the (meth) acrylamides include N, N-diC 1-10 alkyl (meth) acrylamide; N—C 1-10 alkyl (meth) acrylamide such as N-isopropyl (meth) acrylamide; N
  • N—C 1-10 alkanoyl C 1-10 alkyl (meth) acrylamide such as — (1,1-dimethyl-2-acetylethyl) (meth) acrylamide, (meth) acryloylpiperidine and the like can be mentioned.
  • the C 1-10 alkyl group is preferably a C 3-10 alkyl group
  • the C 1-10 alkanoyl group is preferably a C 1-6 alkanoyl group.
  • the lower limit of the total content of the repeating unit (B) is preferably 1 mol% or more, more preferably 10 mol% or more, and more preferably 15 mol% or more in all repeating units from the viewpoint of adsorption with the substrate. More preferably, it is more preferably 20 mol% or more, and particularly preferably 30 mol% or more.
  • the upper limit is preferably 90 mol% or less in all repeating units from the viewpoint of imparting water solubility, and from the viewpoint of achieving both cell adhesion prevention effect, biological tissue adhesion prevention effect, biological sample adhesion prevention effect and low toxicity.
  • the repeating unit (B) As a minimum of the total content of the repeating unit (B) as mass%, 1 mass% or more is preferable in all repeating units from a viewpoint of adsorption
  • the upper limit is preferably 80% by mass or less in all repeating units from the viewpoints of imparting water solubility and achieving both cell adhesion prevention effect, biological tissue adhesion prevention effect, biological sample adhesion prevention effect and low toxicity.
  • 65 mass% or less is more preferable, 50 mass% or less is further more preferable, 40 mass% or less is further more preferable, 30 mass% or less is further more preferable, 20 mass% or less is further more preferable, and 18 mass% or less is especially preferable.
  • what is necessary is just to measure content of a repeating unit (B) similarly to content of a repeating unit (A).
  • the molar ratio [(A) :( B)] of the repeating unit (A) and the repeating unit (B) contained in the polymer includes cell adhesion prevention effect, biological tissue adhesion prevention effect, biological sample adhesion prevention effect.
  • 10:30 to 99: 1 are preferable, 10:20 to 99: 1 are more preferable, 10:15 to 50: 1 are still more preferable, and 10:10 to 10: 1 are more preferable.
  • 10: 1 is more preferable, and 10: 8 to 10: 3 is particularly preferable.
  • the polymer used in the present invention may have a hydrophilic repeating unit (C) other than the repeating units (A) and (B).
  • Such hydrophilic repeating unit (C) includes an anionic monomer (anionic monomer), a cationic monomer (cationic monomer), or a nonionic monomer (nonionic monomer). What is induced
  • derived is mentioned, These may contain 1 type, or 2 or more types.
  • anionic monomer examples include unsaturated carboxylic acid monomers such as vinyl benzoic acid and (meth) acrylic acid; and unsaturated sulfonic acid monomers such as styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and isoprene sulfonic acid. Can be mentioned.
  • cationic monomer examples include those having an unsaturated bond with a primary to quaternary amino group such as allylamine, aminostyrene, N, N-dimethylaminopropyl (meth) acrylamide methyl chloride quaternary salt and the like.
  • Nonionic monomers include unsaturated carboxylic acid ester monomers having a hydroxy group such as hydroxyethyl (meth) acrylate, glyceryl (meth) acrylate, polyoxyethylene (meth) acrylate; N- (2-hydroxy And (meth) acrylamide monomers having a hydroxy group such as ethyl) (meth) acrylamide.
  • the total content of the repeating unit (C) is preferably 0 to 49 mol%, more preferably 0 to 20 mol%, still more preferably 0 to 10 mol%, and more preferably 0 to 1 mol% in all repeating units. Particularly preferred.
  • the mass% is preferably from 0 to 49 mass%, more preferably from 0 to 20 mass%, further preferably from 0 to 10 mass%, particularly preferably from 0 to 1 mass%.
  • the arrangement of the repeating units is not particularly limited, and the copolymer may be a block copolymer, a graft copolymer, a random copolymer, an alternating copolymer, or the like. Any of copolymers may be used.
  • a hydrogen atom, an alkyl group, a hydroxy group, and a RAFT agent residue are preferable.
  • the number average molecular weight (M n ) of the polymer used in the present invention is preferably from 5,000 to 1,000,000, more preferably from 7,000 to 200,000, and particularly preferably from 10,000 to 150,000.
  • the weight average molecular weight (M w ) of the polymer used in the present invention is preferably 10,000 to 2,000,000, more preferably 15,000 to 400,000, and particularly preferably 20,000 to 300,000.
  • the molecular weight distribution (M w / M n ) is preferably 1.0 to 5.0, more preferably 1.0 to 4.0, still more preferably 1.0 to 3.0, and 1.5 to 2.5 is particularly preferred.
  • what is necessary is just to measure the said number average molecular weight, a weight average molecular weight, and molecular weight distribution according to the method as described in the Example mentioned later.
  • a water-soluble thing is preferable from a viewpoint of a cell adhesion prevention effect, a biological tissue adhesion prevention effect, and a biological sample adhesion prevention effect.
  • water-soluble means that the polymer becomes transparent when added to and mixed with water (25 ° C.) so that the polymer solid content is 1% by mass.
  • a nonionic thing is preferable.
  • the polymer used in the present invention is preferably a polymer having an HLB value in the range of 10 to 22 from the viewpoint of imparting water solubility, cell adhesion prevention effect, biological tissue adhesion prevention effect, and biological sample adhesion prevention effect. Those in the range of 13-22 are more preferred.
  • the above-mentioned polymer has (1) introduction of a sulfide group into the side chain of a known polymer and conversion of the sulfide group into a sulfinyl group, and (2) a sulfide in a portion that becomes a side chain when polymerized.
  • a monomer having a group is polymerized or copolymerized with another monomer, and the sulfide group of the obtained (co) polymer is converted into a sulfinyl group, or (3) or a portion that becomes a side chain when polymerized.
  • a monomer having a sulfinyl group can be produced by polymerization or copolymerization with other monomers.
  • the above production method will be specifically described by taking the production method of the following copolymer (N-1) as an example. That is, the copolymer (S-1) is obtained by the step 1-A-1 and the step 1-A-2, or by the step 1-B or the step 1-C, and the copolymer (G- The copolymer (N-1) is obtained through 1).
  • Step 1-A-1 is a step of polymerizing compound (A-1-1) and compound (B-1) in the presence of a polymerization initiator to obtain a copolymer (M-1).
  • the compound (A-1-1) include (meth) acrylic acid and the like, and these can be used alone or in combination of two or more.
  • examples of the compound (B-1) include the above styrenes, and the total amount used is preferably 0.001 to 1.5 molar equivalents relative to the compound (A-1-1). 005 to 1.5 molar equivalents are more preferable, 0.02 to 1.5 molar equivalents are preferable, and 0.1 to 0.8 molar equivalents are more preferable.
  • polymerization initiator examples include 2,2′-azobis (isobutyronitrile), dimethyl 2,2′-azobis (2-methylpropionate), and 2,2′-azobis (4-methoxy).
  • 2,2′-azobis isobutyronitrile
  • 2,2′-azobis (4-methoxy) examples include 2,2′-azobis (isobutyronitrile), dimethyl 2,2′-azobis (2-methylpropionate), and 2,2′-azobis (4-methoxy).
  • -2,4-dimethylvaleronitrile 2,2'-azobis-2,4-dimethylvaleronitrile
  • other azo initiators di (3,5,5-trimethylhexanoyl) peroxide, benzoyl peroxide, etc.
  • the total amount of the polymerization initiator used is usually about 0.0002 to 0.2 mass times with respect to the compound (A-1-1).
  • a solvent or a chain transfer agent may be used.
  • Solvents include amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; ester solvents such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; aromatics such as toluene and benzene System solvents; ether solvents such as 1,4-dioxane and diethyl ether; and nitrile solvents such as acetonitrile. These solvents may be used alone or in combination of two or more.
  • the total amount of these solvents used is usually about 0.5 to 15 times by mass with respect to compound (A-1-1).
  • chain transfer agent examples include mercaptoethanol, thioglycerol, tert-dodecyl mercaptan, and the like.
  • the reaction time in step 1-A-1 is not particularly limited, but is usually about 0.5 to 24 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 0 to 120 ° C. is there.
  • Step 1-A-2 is a ring-opening addition of —R 2 of the copolymer (M-1) obtained in Step 1-A-1 to the glycidyl group or oxetanyl group of the compound (C-1). This is a step of obtaining a copolymer (S-1).
  • the compound (C-1) used in Step 1-A-2 include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether and the like, and the total use amount thereof is in the copolymer (M-1).
  • the amount of the repeating unit derived from the compound (A-1-1) is preferably 1.5 to 10 molar equivalents, more preferably 2 to 5 molar equivalents.
  • Step 1-A-2 is preferably performed in the presence of a catalyst.
  • the catalyst include quaternary ammonium salts such as tetrabutylammonium bromide; quaternary phosphonium salts such as tetrabutylphosphonium bromide and tetrabutylphosphonium chloride. These catalysts are used singly or in combination of two or more. it can.
  • the total amount of the catalyst used is usually about 0.01 to 0.2 molar equivalents relative to the repeating unit derived from the compound (A-1-1) in the copolymer (M-1).
  • the solvent suitably used in Step 1-A-2 include the same solvents as in Step 1-A-1.
  • the reaction time in step 1-A-2 is not particularly limited, but is usually about 1 to 24 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 40 to 200 ° C. .
  • step 1-B and step 1-C compound (A-1-2) or compound (A-1-3) and compound (B-1) are polymerized in the presence of a polymerization initiator, This is a step of obtaining a coalescence (S-1).
  • the compound (A-1-2) include glycidyl (meth) acrylate and oxetanyl (meth) acrylate
  • examples of the compound (A-1-3) include vinylbenzyl glycidyl ether, 4-hydroxybutyl (meta) ) Acrylate glycidyl ether and the like. In addition, these can be used individually by 1 type or in combination of 2 or more types.
  • Step 1-B and Step 1-C may be performed in the same manner as Step 1-A-1.
  • a block copolymer is synthesized by reacting one of the monomers with a RAFT agent. it can.
  • Step 2 -SR 4 is subjected to ring-opening addition to the glycidyl group or oxetanyl group of the copolymer (S-1) obtained in Step 1-A-2, Step 1-B or Step 1-C.
  • a polymer (G-1) is obtained.
  • the compound represented by R 4 SH used in Step 2 include thioglycerol and mercaptoethanol. From the viewpoint of improving the cell adhesion prevention effect, the biological tissue adhesion prevention effect, and the biological sample adhesion prevention effect, thioglycerol is used. preferable.
  • the total amount of the compound used is usually 0.1 to 20 molar equivalents relative to the repeating unit derived from the compound (A-1-1), (A-1-2) or (A-1-3). Yes, preferably 1 to 10 molar equivalents.
  • Step 2 is preferably performed in the presence of a catalyst.
  • the catalyst include basic catalysts such as triethylamine and N, N-dimethyl-4-aminopyridine. These catalysts can be used alone or in combination of two or more.
  • the total amount of the catalyst used is usually 0.01 to 32 molar equivalents relative to the repeating unit derived from the compound (A-1-1), (A-1-2) or (A-1-3). is there.
  • step 2 it is preferable to perform step 2 in the presence of a solvent.
  • the solvent include solvents that can be used in Steps 1-A-1 to 1-C, alcohol solvents such as ethanol and methanol, and mixed solvents thereof. -1) is usually about 0.5 to 20 times mass.
  • the reaction time in step 2 is not particularly limited, but is usually about 1 to 8 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 40 to 100 ° C.
  • step 2 may be performed before step 1-B or step 1-C, and then polymerization of step 1-B or step 1-C may be performed.
  • Step 3 is a step of obtaining a copolymer (N-1) by converting the sulfide group of the copolymer (G-1) obtained in Step 2 into a sulfinyl group using an oxidizing agent.
  • some sulfinyl groups contained in a copolymer may become a sulfide group and a sulfonyl group.
  • the oxidizing agent is roughly classified into an organic oxidizing agent and an inorganic oxidizing agent, and examples of the organic oxidizing agent include peracetic acid, perbenzoic acid, and metachloroperbenzoic acid.
  • examples of the inorganic oxidizing agent include hydrogen peroxide, chromic acid, permanganate and the like.
  • these oxidizing agents can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the oxidizing agent used is usually 1.0 to 10.0 with respect to the repeating unit derived from the compound (A-1-1), (A-1-2) or (A-1-3).
  • the molar equivalent is about 1.0 to 2.0 molar equivalent.
  • Step 3 is preferably performed in the presence of a solvent.
  • a solvent examples include water; amide solvents such as dimethylformamide and dimethylacetamide; alcohol solvents such as methanol and ethanol, and the like. These solvents can be used alone or in combination of two or more. Water and alcohol solvents are preferred.
  • the total amount of the solvent used is usually about 1 to 20 times by mass, preferably 1 to 15 times by mass with respect to the copolymer (G-1).
  • the reaction time in step 3 is not particularly limited, but is usually about 1 to 24 hours, and the reaction temperature may be appropriately selected below the boiling point of the solvent, but is usually about 25 to 70 ° C.
  • isolation of each reaction product may be performed by filtration, washing, drying, recrystallization, reprecipitation, dialysis, centrifugation, extraction with various solvents, neutralization, chromatography, etc., if necessary. Ordinary means may be combined as appropriate.
  • the cell adhesion inhibitor of the present invention may contain a solvent, a bactericidal agent, a preservative and the like in addition to the polymer obtained as described above.
  • the solvent include water; alcohol solvents such as methanol, ethanol and isopropyl alcohol. These solvents may be contained singly or in combination of two or more.
  • the content of the polymer is preferably 0.00001 to 15% by mass, more preferably 0.0001 to 10% by mass in the cell adhesion inhibitor from the viewpoint of the amount adsorbed on the substrate surface and cytotoxicity. Preferably, 0.001 to 10% by mass is more preferable, and 0.01 to 10% by mass is more preferable.
  • the content of the solvent is preferably 0 to 50% by mass and more preferably 0 to 10% by mass in the cell adhesion inhibitor.
  • the polymer (including random copolymer, alternating copolymer, block copolymer, and graft copolymer) has low cytotoxicity and excellent cell adhesion prevention, as shown in Examples below. Show the effect. Prevention of cell adhesion refers to prevention of adhesion between adherent cells such as anchorage-dependent cells and various surfaces, base materials and the like that come into contact with such cells. The reason why the above effect is achieved is not necessarily clear, but the polymer is adsorbed on the wall surface of the container, the instrument, etc. by the repeating unit (B), while the wall surface is hydrophilic by the repeating unit (A). It is presumed that adsorption of proteins, lipids and the like is further prevented and cell adhesion can be suppressed.
  • the polymer can be used as it is as a cell adhesion inhibitor, and can also be used as a material for producing a cell adhesion inhibitor. Furthermore, according to such a cell adhesion inhibitor, not only cell adhesion but also adsorption of biological substances such as proteins, lipids, and nucleic acids can be suppressed.
  • Examples of the cells include anchorage-dependent cells and floating cells (for example, blood cells such as leukocytes, erythrocytes, and platelets).
  • anchorage-dependent cells include cancer cells such as HeLa cells and F9 cells; fibroblasts such as 3T3 cells; stem cells such as ES cells, iPS cells and mesenchymal stem cells; kidney cells such as HEK293 cells; NT2 cells and the like Neurons; endothelial cells such as UV 2 cells and HMEC-1 cells; cardiomyocytes such as H9c2 cells; epithelial cells such as Caco-2 cells and the like.
  • the cells include mammalian tissues and non-mammalian tissues (including hard tissues such as bones and soft tissues such as mucous membranes and non-mucosal tissues), mammalian and non-mammalian cells. Adhere to materials composed of (including eukaryotes and prokaryotes). By using the cell adhesion inhibitor of the present invention, it is possible to prevent such a cell (base material) from adhering to the cells.
  • the inorganic material examples include glass such as borosilicate glass; metals such as titanium and stainless steel and alloys such as cobalt chromium alloy; ceramics such as pyrolytic carbon, alumina, zirconia, and calcium phosphate, and titanium oxide. 1 type or 2 types or more may be contained.
  • organic material examples include styrene polymers such as polystyrene and ABS resins; olefin polymers such as polyethylene and polypropylene (including cyclic olefin resins); polyvinyl acetate, polyvinyl chloride, polyvinyl carbazole, polyvinyl pyrrolidone, and polybutadiene.
  • Vinyl polymers vinylidene halide polymers such as polyvinylidene chloride and polyvinylidene fluoride; amide polymers such as polyamide, polyacrylamide and nylon; imide polymers such as polyimide and polyethyleneimide; silicones such as polysiloxane and polydimethylsiloxane -Based polymers; nitrile polymers such as polyacetonitrile and polyacrylonitrile; vinylphenol-based polymers such as polyvinylphenol; polyvinyl alcohol Vinyl alcohol polymers such as polyurethane; urethane polymers such as polyurethane; carbonate polymers such as polycarbonate; benzimidazole polymers such as polybenzimidazole; polyether ether ketone polymers such as polyether ether ketone; aniline polymers such as polyaniline Poly (meth) acrylates such as polyacrylates; polyesters such as polycaprolactone (aromatic polyesters such as polyethylene terephthalate; and hydroxycarboxylic
  • sugar chain polymer examples include polysaccharides such as agarose or a derivative thereof, cellulose or a derivative thereof (such as cellulose acetate), chitin, oxidized cellulose, chondroitin, heparin, and hyaluronic acid.
  • the protein examples include collagen or a derivative thereof, fibroin, fibronectin, and gelatin.
  • a peptide and a polyamino acid may be sufficient.
  • the cell adhesion inhibitor can be widely used in the medical / bio field (clinical testing / diagnostics), for example, clinical diagnostics, clinical diagnostic devices, biochips, cell culture substrates, biomaterials, etc. Especially useful as a coating agent for materials (solid phase, containers, instruments, etc.) that come into contact with biological substances, etc .; a conditioning agent for measuring cells for fully automated analyzers used for diagnostics such as blood tests; and a cell adhesion control agent .
  • the cell adhesion inhibitor of the present invention on at least a part of a substrate, instrument, or device, the surface is modified such that the cells are difficult to die and the cells are difficult to adhere when used. Instruments and devices can be provided.
  • the surface-modified device and the surface-modified apparatus of the present invention have the polymer having the repeating unit (A) on at least a part of the surface. Specifically, the polymer having the repeating unit (A) is applied to at least a part thereof, and a cell adhesion preventing layer is formed on the surface thereof, whereby the surface of the instrument or device (the inner wall surface, the outer wall surface Any of these may be modified.
  • Such an instrument or apparatus is not particularly limited as long as a part or all of the surface thereof comes into contact with cells when the instrument or apparatus is used, but those for medical use and culture are preferable.
  • an instrument for collecting or feeding a biological substance / tissue or the like for example, a blood glucose level measuring instrument, an injection needle, a catheter, etc.
  • a biological substance or the like for example, a blood glucose level measuring instrument, an injection needle, a catheter, etc.
  • Containers blood bags, test tubes, etc.
  • peripheral instruments such as carriers and cover glasses, microchannel devices, microwell plates, assay chips, biochips, fully automatic Measuring cells for analyzers
  • instruments for bioprocessing reaction vessels, transfer tubes, transfer pipes, purification instruments, cell culture plates, etc.
  • instruments for implantation in living bodies for example, implants, bone fixation materials, sutures
  • thread anti-adhesion membrane, artificial blood vessel, etc.
  • drug delivery media such as vesicles, microparticles, nanoparticles, gastric cameras, microfibers, nanofibers, magnetic particles, etc.
  • kits for treating neurological disorders.
  • bioreactors for evaluating the apparatus as described above include medical devices (clinical diagnostic apparatuses, biosensors, cardiac pacemakers, implantable biochips), fermentation units, bioreactors, and the like.
  • the polymer having the repeating unit (A) is applied in such a manner that a cell adhesion preventing layer is formed at a site where the device or the device and the cell come into contact when the device or the device is used. Is preferred. Thereby, contact and adhesion
  • the surface-modified device and the surface-modified device of the present invention can be produced by coating at least a part of the surface of the device and the device with the polymer having the repeating unit (A).
  • the polymer having the repeating unit (A) and an instrument or device are prepared, and at least a part of the instrument or device (preferably, the instrument or device when the instrument or device is used) What is necessary is just to apply
  • it can also harden
  • coating should just contact the site
  • the polymer which has the said repeating unit (A) has a low influence with respect to a biological tissue or a biological sample, as shown in the postscript Example. Therefore, preferred examples of the instrument and apparatus include in vivo medical structures and microchannel devices.
  • the in-vivo medical structure of the present invention is one having the polymer having the repeating unit (A) on at least a part of its surface (for example, one coated with the polymer).
  • the repeating unit (A) By the repeating unit (A), the surface of the structure is hydrophilized, and the living tissue becomes difficult to adhere to the surface.
  • the in-vivo medical structure refers to a medical structure used in a living body, and such a structure is used by being implanted in the body and used in the body. Broadly divided.
  • the size and length of the in-vivo medical structure are not particularly limited, and include those having a fine circuit and detecting a small amount of sample.
  • the coating in addition to adsorption, the polymer may be film-coated, or the adsorbed polymer may be cross-linked so as to be insoluble in water and impart durability.
  • Examples of the structure used by being implanted in the body include a function assisting device for supplementing the function of a living body in which a disease such as a cardiac pacemaker has occurred; a device for detecting abnormalities in a living body such as an implantable biochip Medical devices such as implants, bone anchors, sutures, and artificial blood vessels.
  • examples of structures used in the body include drug delivery media such as vesicles, microparticles, and nanoparticles, as well as catheters, stomach cameras, microfibers, and nanofibers.
  • the material on the surface of the in vivo medical structure is roughly divided into inorganic materials and organic materials.
  • inorganic materials and organic materials are the same as described above.
  • an organic material is preferable, a polymer material is more preferable, and a styrene polymer and an epoxy resin are further preferable.
  • the in vivo medical structure of the present invention may be coated with a sugar chain polymer, protein, peptide, or polyamino acid, and may have a polymer used in the present invention on such a coating.
  • sugar chain polymer and protein include those described above.
  • the coating of the polymer used in the present invention may be carried out by mixing such a polymer with a solvent as necessary and coating it on at least a part of the structure surface (including the inner wall and outer wall) by a known method. Good. Specific examples include spray coating, dip coating, flow coating, brush coating, sponge coating, and the like.
  • the coating can be performed simply by immersing the surface of the structure in the polymer solution and bringing the polymer and the structure into contact with each other.
  • the application is preferably performed in the body at a site where the in vivo medical structure and the living tissue come into contact. In addition, it can also harden
  • examples of the solvent include water; alcohol solvents such as methanol, ethanol, and isopropyl alcohol. These solvents may be used alone or in combination of two or more.
  • the living tissue is difficult to adhere to the surface, and the influence on the living tissue is low.
  • a living tissue is composed of cells, proteins, lipids, nucleic acids, and the like.
  • the in vivo medical structure of the present invention is unlikely to cause cell adhesion.
  • the cells include anchorage-dependent cells and floating cells. Examples of the anchorage-dependent cells and floating cells include those described above.
  • the microchannel device of the present invention is one having the polymer having the repeating unit (A) on at least a part of the inner surface of the microchannel (for example, one coated with the polymer).
  • the repeating unit (A) the inner surface of the flow path is hydrophilized and the biological sample is less likely to adhere to the surface.
  • microchannel device examples include a microreaction device (specifically, a microreactor and a microplant), a microanalysis device such as an integrated nucleic acid analysis device, a microelectrophoresis device, and a microchromatography device; Micro devices for sample preparation such as liquid chromatography; physicochemical processing devices used for extraction, membrane separation, dialysis, etc .; environmental analysis chip, clinical analysis chip, gene analysis chip (DNA chip), protein analysis chip (proteome chip) And microchannel chips such as sugar chain chips, chromatographic chips, cell analysis chips, and pharmaceutical screening chips. Among these, a microchannel chip is preferable.
  • the microchannel provided in the device is a portion through which a small amount of sample (preferably a liquid sample) flows, and the channel width and depth are not particularly limited. It is about 1 mm, preferably 10 ⁇ m to 800 ⁇ m. Note that the channel width and depth of the microchannel may be the same over the entire length of the channel, or may be partially different in size and shape.
  • the material of the inner surface of the microchannel is roughly divided into inorganic materials and organic materials.
  • these inorganic materials and organic materials are the same as described above.
  • an organic material is preferable, a polymer material is more preferable, and a styrene polymer is still more preferable.
  • the microchannel device of the present invention may be one in which the inside of the channel is coated with a sugar chain polymer, protein, peptide, or polyamino acid, and the polymer used in the present invention is provided on such coating.
  • a sugar chain polymer, protein, peptide, or polyamino acid examples include those described above.
  • the microchannel device can be manufactured, for example, by coating the polymer used in the present invention on at least a part of the inner surface of the microchannel.
  • the coating may be performed by mixing the polymer with a solvent as necessary and applying it to at least a part of the inner surface of the flow path by a known method. Specific examples include spray coating, dip coating, flow coating, brush coating, sponge coating, and the like.
  • coating can be carried out simply by immersing the inner surface of the channel in the polymer solution and bringing the polymer into contact with the inner surface of the channel.
  • the application is preferably performed on substantially the entire surface (including the entire surface) of the flow path. In addition, it can also harden
  • examples of the solvent include water; alcohol solvents such as methanol, ethanol, and isopropyl alcohol. These solvents may be used alone or in combination of two or more.
  • the biological sample is difficult to adhere to the inner surface of the microchannel, and the influence (cytotoxicity) on the biological sample is low.
  • a biological sample for example, blood
  • the microchannel device of the present invention is less likely to cause cell adhesion and protein adsorption.
  • the cells include anchorage-dependent cells and floating cells. Examples of the anchorage-dependent cells and floating cells include those described above.
  • Synthesis Example 2 Synthesis of Copolymer (N-1-2) 170 g of glycidyl methacrylate and 56.8 g of styrene, 6.8 g of 2,2′-azobis (isobutyronitrile) as a polymerization initiator, N, N— Dimethylformamide (475 g) was mixed and placed in a flask. Nitrogen was blown into this, the temperature was raised to 70 ° C., polymerized for 6 hours, and then cooled to room temperature. This solution was purified by reprecipitation with methanol and dried under reduced pressure to obtain a copolymer (S-1-2).
  • Synthesis Example 3 Synthesis of Copolymer (N-1-3) 170 g of glycidyl methacrylate and 56.8 g of styrene, 2.27 g of 2,2′-azobis (isobutyronitrile) as a polymerization initiator, 450 g of ethyl acetate, Were mixed and placed in a flask. Nitrogen was blown into this, the temperature was raised to 70 ° C., polymerized for 8 hours, and then cooled to room temperature. This solution was purified by reprecipitation with methanol and dried under reduced pressure to obtain a copolymer (S-1-3).
  • Synthesis Example 4 Synthesis of Copolymers (N-1-4) and (N-1-5) The amount of 2,2′-azobis (isobutyronitrile) used was 0.686 g (N-1-4), respectively.
  • the copolymers (N-1-4) and (N-1-5) were prepared in the same manner as the copolymer (N-1-3) except that the amount was changed to 2.06 g (N-1-5). Synthesized. In these copolymers, the content of repeating units derived from glycidyl methacrylate and the content of repeating units derived from styrene were both the same as those of copolymer (N-1-3).
  • the copolymers (N-1-4) and (N-1-5) were mixed with water and the concentration was adjusted to 1% by mass, both of these copolymers were dissolved in water. It was.
  • the number average molecular weight of the obtained copolymer (N-1-4) was 110730, the weight average molecular weight was 232057, and the molecular weight distribution was 2.10.
  • the obtained copolymer (N-1-5) had a number average molecular weight of 54953, a weight average molecular weight of 115909, and a molecular weight distribution of 2.11.
  • the structures of the copolymers (N-1-4) and (N-1-5) were confirmed by 13 C-NMR.
  • the copolymer (N-2) obtained had a number average molecular weight of 21179, a weight average molecular weight of 47906, and a molecular weight distribution of 2.26.
  • the structure of the copolymer (N-2) was confirmed by 13 C-NMR.
  • the HLB values (Oda formula) of the copolymers (N-1-1) to (N-1-5) and (N-2) obtained in Synthesis Examples 1 to 5 are shown in Table 1 below.
  • a homopolymer composed of one type of each of the repeating units (A) contained in the copolymers (N-1-1) to (N-1-5) and (N-2) was synthesized, and 1 g was added to 100 g of pure water. When added, it was dissolved at room temperature (25 ° C.). Further, a homopolymer composed of one type of each of the repeating units (B) of the copolymers (N-1-1) to (N-1-5) and (N-2) was synthesized, and 1 g was added to 100 g of pure water. When added, it was not completely dissolved at room temperature (25 ° C.).
  • Test Example 1 Cell adhesion test (1) To each well of a 6-well plate whose surface is made of polystyrene, add 1 mL of each of the samples of Examples 1 to 6 shown in Table 2 below, let stand for 2 hours, and then wash with ultrapure water three times to remove unadsorbed polymer. Was removed. Subsequently, 1.5 mL of liquid medium (10% volume FBS) containing HeLa cells (human cervical cancer cells) prepared to 6.7 ⁇ 10 4 cells / mL was added to each well, and the mixture was incubated at 37 ° C., 5% CO 2. Cultured for 4 hours under the conditions. Thereafter, the non-adherent cells were removed by exchanging the medium.
  • liquid medium (10% volume FBS) containing HeLa cells (human cervical cancer cells) prepared to 6.7 ⁇ 10 4 cells / mL was added to each well, and the mixture was incubated at 37 ° C., 5% CO 2. Cultured for 4 hours under the conditions. Thereafter, the non-ad
  • Adherent cell density (%) [(number of adherent cells) / (number of cells at confluence)] ⁇ 100 As a control, the density of adherent cells was confirmed in the same manner as above except that no sample was added. The test results are shown in FIG. In FIG. 1, the cell density is 0% immediately after exchanging the medium used with N-1-1, N-1-2, N-1-4, and N-1-5 and using N-2.
  • Test Example 2 Cell adhesion test (2) Adherent cell density was confirmed in the same manner as in Test Example 1, except that the HeLa cells were changed to 3T3 cells (mouse fibroblasts). The test results are shown in FIG. In addition, the cell density in N-2 use in FIG. 2 is 0%.
  • Test Example 3 Cell adhesion test (3) The adherent cell density was confirmed in the same manner as in Test Example 1 except that the samples of Examples 4 to 6 shown in Table 2 were used as samples and the HeLa cells were changed to UV 2 cells (mouse endothelial cells). The test results are shown in FIG. It should be noted that the cell density in the culture immediately after the N-2 medium replacement in FIG.
  • Test Example 4 Cell adhesion test (4) After adding 1 mL each of the samples of Examples 1 to 6 shown in Table 2 and Comparative Examples 1 and 2 shown in Table 3 below to wells of a 6-well plate whose surface is made of polystyrene, the sample was allowed to stand for 2 hours. The polymer was washed 3 times with pure water to remove unadsorbed polymer. Next, 1.5 mL of a liquid medium containing HeLa cells (FBS-free) prepared to 6.7 ⁇ 10 4 cells / mL was added to each well and cultured at 37 ° C. under 5% CO 2 for 4 hours. Thereafter, unadherent cells were removed by washing with PBS and replaced with 10% by volume FBS medium.
  • FBS-free HeLa cells
  • Copolymer N101 blocking reagent N101 for immunological measurement (Nippon Yushi)
  • Copolymer N102 blocking reagent for immunological measurement N102 (Nippon Yushi)
  • Test Example 5 Cell adhesion test (5) Adherent cell density was confirmed in the same manner as in Test Example 4 except that HeLa cells were changed to 3T3 cells. The test results are shown in FIG. In FIG. 5, the cell density is 0% immediately after the medium change using N-1-2 and N-1-4 and when N-2 is used.
  • Test Example 6 Cell adhesion test (6) The adherent cell density was confirmed in the same manner as in Test Example 4 except that the samples of Examples 4 to 6 shown in Table 2 were used as samples, and the HeLa cells were changed to UV 2 cells (mouse endothelial cells). The test results are shown in FIG. In addition, the cell density in N-2 use in FIG. 6 is 0%.
  • Test Example 7 Antibody Adsorption Amount Measurement A 1% by mass aqueous solution of the copolymer obtained in Examples 1 to 5 was filled in a polystyrene 96-well plate, incubated at room temperature for 5 minutes, and then washed with ultrapure water three times. Next, an aqueous solution of horseradish peroxidase-labeled mouse IgG antibody (AP124P: manufactured by Millipore) was filled in the 96-well plate, incubated at room temperature for 1 hour, washed 3 times with PBS buffer, and TMB (3, 3 ', 5 , 5′-tetramethylbenzidine) / hydrogen peroxide solution / sulfuric acid, and the absorbance at 450 nm was measured.
  • a 1% by mass aqueous solution of the copolymer obtained in Examples 1 to 5 was filled in a polystyrene 96-well plate, incubated at room temperature for 5 minutes, and then washed with ultrapure water three times. Next,
  • the amount of antibody adsorption was calculated from the absorbance by a calibration curve method. As a control, the amount of adsorbed antibody was calculated in the same manner as above except that the plate was not treated with a 1% by mass aqueous solution of the copolymer obtained in Examples 1 to 5. The test results are shown in Table 4.
  • Test Example 8 Cytotoxicity test (1) To a well of a commercially available 48-well plate (manufactured by IWAKI) hydrophilized for cell culture, 200 ⁇ L of a liquid medium (10 vol% FBS) containing HeLa cells prepared to 25 ⁇ 10 4 cells / mL was added 37 times. ° C., and 12 hours prior to incubation with 5% CO 2 condition. On the other hand, a medium was prepared so that each of the copolymers shown in Table 2 contained 0.10% by mass and the aqueous copolymer solution was 10% by mass. Next, the precultured HeLa cell medium was replaced with the above-mentioned copolymer-containing medium, and cultured under conditions of 37 ° C. and 5% CO 2 for 24 hours.
  • a liquid medium (10 vol% FBS) containing HeLa cells prepared to 25 ⁇ 10 4 cells / mL was added 37 times. ° C., and 12 hours prior to incubation with 5% CO 2 condition.
  • a medium was prepared so
  • the cytotoxicity of the copolymer was confirmed by MTT assay using as a control a culture cultured in the same manner as above except that the aqueous copolymer solution was changed to ultrapure water.
  • An MTT assay kit (MTT Cell Proliferation Assay Kit 10009365: manufactured by Cayman Chemical Company) was used for the MTT assay, and the test was performed according to the instruction manual. The test results are shown in FIG.
  • Test Example 9 Cytotoxicity test (2) Cytotoxicity was confirmed in the same manner as in Test Example 8 except that the HeLa cells were changed to 3T3 cells. The test results of the MTT assay are shown in FIG.
  • Test Example 10 Cytotoxicity test (3) Copolymers (N-1-4), (N-1-5), (N-2), and reagent N101 were used as the copolymer, and the HeLa cells were changed to UV ⁇ 2 cells (mouse endothelial cells). Cytotoxicity was confirmed in the same manner as in Test Example 8 except that. The test results of the MTT assay are shown in FIG.
  • Test Example 11 Cytotoxicity test (4) As the copolymer, Test Example 8 was used except that the copolymers (N-1-4), (N-1-5), (N-2), the reagent N101 were used, and the HeLa cells were changed to F9 cells. Cytotoxicity was confirmed in the same manner. The test results of the MTT assay are shown in FIG.
  • Test Example 12 Cytotoxicity test (5) To a well of a commercially available 48-well plate (manufactured by IWAKI) hydrophilized for cell culture, 200 ⁇ L of a liquid medium (10 vol% FBS) containing HeLa cells prepared to 25 ⁇ 10 4 cells / mL was added 37 times. ° C., and 12 hours prior to incubation with 5% CO 2 condition. On the other hand, the epoxy resin coated with the samples of Examples 1 to 5 was immersed in a medium at 37 ° C. and 5% CO 2 for 12 hours in the same manner as in Test Example 13 described later. Subsequently, the precultured HeLa cell medium was replaced with a medium in which epoxy resin was immersed, and cultured at 37 ° C.
  • a liquid medium (10 vol% FBS) containing HeLa cells prepared to 25 ⁇ 10 4 cells / mL was added 37 times. ° C., and 12 hours prior to incubation with 5% CO 2 condition.
  • Test Example 13 Adhesion Test A 10 mm square epoxy resin film was immersed in the samples of Examples 1 to 5 shown in Table 2 and allowed to stand for 2 hours, and then washed with ultrapure water three times to remove unadsorbed polymer. Then, 6 groups of 6 male SD rats were prepared (average body weight 250 g), and the rats of Group 1 to Group 5 were used for the tests using the samples of Examples 1 to 5, respectively. Rats were used as a reference (control).
  • the serosa of the cecum of the first to sixth group rats prepared above was rubbed with gauze to peel about 1/2 of them, and among these rats, the first to fifth group rats
  • the cecum surface from which the serosa was peeled was coated with an epoxy resin film coated with the sample of Examples 1 to 5, and for the rats in the 6th group, an epoxy resin film uncoated with a sample per rat.
  • One sheet was attached.
  • the muscle layer of the incision was continuously sutured, and then the skin was sutured with 4 to 5 needles.
  • necropsy was performed, the intraperitoneal adhesion state was observed with the naked eye, scored according to the evaluation criteria shown below, and an average value of 6 animals was taken.
  • the test results are shown in Table 5.
  • Test Example 14 Blood Liquid Delivery Test
  • a polystyrene resin flow path substrate having a groove having a width of 150 ⁇ m, a depth of 100 ⁇ m, and a length of 5 cm and a through-hole having a diameter of 1 mm provided at the end of the groove was formed by injection molding.
  • a flat plate substrate of polystyrene resin having the same size as this substrate was formed. Both the channel substrate having a groove and the flat substrate were immersed in the samples of Examples 1 to 5 shown in Table 2 and allowed to stand for 2 hours, and then washed with ultrapure water three times to remove unadsorbed polymer.
  • the microchannel device of the present invention does not accumulate dirt on the surface of the channel and does not decrease the flow rate even when a fluid containing a biological sample is fed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

 細胞毒性が低く、且つ、優れた細胞接着防止効果を有する細胞接着防止剤、これが塗布された、表面が改質された器具および装置、該表面が改質された器具および装置の製造方法、生体内医療構造体およびその製造方法、並びにマイクロ流路デバイスおよびその製造方法の提供。 スルフィニル基を側鎖に有する繰り返し単位を有する重合体を有効成分とする細胞接着防止剤。

Description

細胞接着防止剤
 本発明は、細胞接着防止剤、これが塗布された表面が改質された器具および装置、該器具および装置の製造方法、生体内医療構造体およびその製造方法、マイクロ流路デバイスおよびその製造方法に関する。
 マクロファージや繊維芽細胞のような接着細胞は、表面や基材に付着した場合にのみ活性となり増殖するため、足場依存性細胞と呼ばれる。この細胞による接着は、細胞外マトリクス中に見出されるビトロネクチンやフィブロネクチン等のタンパク質のファミリー(付着分子やタンパク質)を介して引き起こされる。この細胞の接着が、医療をはじめとする種々の分野で問題となっている。
 例えば、培地に添加した繊維芽細胞は、細胞外マトリクスタンパク質を介して組織培養プレートに付着する。これと同様に、泌尿器用カテーテル中では、細菌細胞がカテーテル壁に付着し、動脈カテーテル中では、血小板がカテーテルの先端に付着し、更に、コンタクトレンズではタンパク質を介して細胞がレンズ表面を覆う状態となる。特に、医療用器具や装置等において斯様な細胞接着が生じた場合、それが単に汚れとなるばかりでなく、目詰まりや分析の精度や感度の低下が生じるため大きな問題となる。
 そのため、容器へのマウス線維芽細胞の非特異的な接着を防ぐための技術として、2-メタクリロイルホスホリルコリンおよびメタクリロイルヒドラジド等から誘導されるポリマーでのコーティングが提案されている(特許文献1)。
 また、タンパク質吸着防止剤として、2-メタクリロイルオキシエチルホスホリルコリンと、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸メチルまたはスチレンとの共重合体等を含むものが知られている(特許文献2)。
 ところで、生体組織が損傷を受けた場合に、損傷を受けた組織同士や損傷を受けた組織と他の生体組織との間で癒着が生じ、種々の機能不全を起こすことがあり、この癒着を防止するための癒着防止膜を形成するものとして、例えば、ヒト由来の天然コラーゲン膜からなる癒着防止材(特許文献3)、特定のヒアルロン酸化合物からなる癒着防止材(特許文献4)、ポリアニオン性物質とポリカチオン性物質から形成されるポリイオンコンプレックスの乾燥フィルムからなる癒着防止用材料(特許文献5)が知られている。
 また、マイクロ流路の水に対する濡れ性を改善し、マイクロポンプ中の薬液の残留を防ぎ、定量精度又は検出精度を安定させることを目的として、マイクロ流路の金属層表面に、末端基に親水性基を有する硫黄化合物層を形成することが提案されている(特許文献6)。また、マイクロ流路内壁をフッ素系樹脂等で表面修飾すること(特許文献7)や、ポリエチレングリコール、エバール、ポバール、またはホスホリルコリン基を有するポリマーで表面コート処理すること(特許文献8)が提案されている。
特開2005-080579号公報 特開平07-083923号公報 特開平9-225018号公報 特開2006-296916号公報 特開2000-116765号公報 特開2001-252896号公報 特開2005-125280号公報 特開2008-82961号公報
 本発明は、細胞毒性が低く、且つ、優れた細胞接着防止効果を有する細胞接着防止剤、これが塗布された、表面が改質された器具および装置、該表面が改質された器具および装置の製造方法、生体内医療構造体およびその製造方法、並びにマイクロ流路デバイスおよびその製造方法に関する。
 そこで、本発明者は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体が、細胞毒性が低く、且つ、優れた細胞接着防止効果を示すことを見出し、本発明を完成した。
 すなわち、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を有効成分とする細胞接着防止剤を提供するものである。
 また、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する、表面が改質された器具を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、器具表面の少なくとも一部にコーティングする工程を含むことを特徴とする、表面が改質された器具の製造方法を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する、表面が改質された装置を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、装置表面の少なくとも一部にコーティングする工程を含むことを特徴とする、表面が改質された装置の製造方法を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する生体内医療構造体を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を構造体表面の少なくとも一部にコーティングする工程を含むことを特徴とする生体内医療構造体の製造方法を提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、マイクロ流路内表面の少なくとも一部に有するマイクロ流路デバイスを提供するものである。
 更に、本発明は、スルフィニル基を側鎖に有する繰り返し単位を有する重合体をマイクロ流路内表面の少なくとも一部にコーティングする工程を含むことを特徴とするマイクロ流路デバイスの製造方法を提供するものである。
 本発明の細胞接着防止剤は、細胞毒性が低く、且つ、優れた細胞接着防止効果を示す。したがって、本発明の製造方法によれば、使用するときに細胞が死滅しにくく、且つ、細胞が接着しにくい、表面が改質された器具および装置を提供できる。
 本発明の生体内医療構造体は、生体組織が表面に付着しにくく、且つ生体組織に対する影響が低い。したがって、本発明の製造方法によれば、生体組織が表面に付着しにくく、且つ生体組織に対する影響が低い生体内医療構造体を製造できる。
 本発明のマイクロ流路デバイスは、マイクロ流路内表面に生体試料が付着しにくく、且つ生体試料に対する影響が低い。したがって、本発明の製造方法によれば、マイクロ流路内表面に生体試料が付着しにくく、且つ生体試料に対する影響が低いマイクロ流路デバイスを製造できる。
共重合体(N-1-1)~(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-1)~(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-4)、(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-1)~(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-1)~(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-4)、(N-1-5)および(N-2)の細胞接着防止効果を示す図である。 共重合体(N-1-1)~(N-1-5)および(N-2)の低毒性を示す図である。 共重合体(N-1-1)~(N-1-5)および(N-2)の低毒性を示す図である。 共重合体(N-1-4)、(N-1-5)および(N-2)の低毒性を示す図である。 共重合体(N-1-4)、(N-1-5)および(N-2)の低毒性を示す図である。 共重合体(N-1-1)~(N-1-5)の低毒性を示す図である。
 <細胞接着防止剤>
 本発明の細胞接着防止剤は、スルフィニル基を側鎖に有する繰り返し単位(以下、繰り返し単位(A)とも称する)を有する重合体を有効成分とするものである。
 次に、上記本発明で用いる重合体について詳細に説明する。
 上記繰り返し単位(A)としては親水性を示すものが好ましい。ここで、本明細書において、親水性とは、水との親和力が強い性質を持つことを意味する。具体的には1種の繰り返し単位のみからなるホモポリマー(実施例の測定法による数平均分子量が1万~10万程度のもの)が、常温(25℃)において純水100gに対して1g以上溶解する場合にはその繰り返し単位は親水性である。
 また、上記繰り返し単位(A)としては、親水疎水の尺度を示すHydrophile-Lipophile Balance(HLB値)が10以上のものが好ましい。高い親水性を得る場合には、HLB値は15以上がより好ましく、20~40がさらに好ましい。
 また、本明細書において、HLB値は、化合物の有機性の値と無機性の値の比率から算出されるもの(小田式)を意味し、「Formulation Design with Organic Conception Diagram」[1998年、NIHON EMULSION CO.,LTD]に記載の計算方法により算出できる。例えば、後述する実施例に記載のN-1-1の共重合体に含まれる親水性繰り返し単位のHLB値は、(100×3+60×1+140)/(40-10×3+20×10)=24である。
 また、繰り返し単位(A)は特に限定されないが、ノニオン性のものが好ましい。
 また、繰り返し単位(A)は、スルフィニル基の他に、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、チオール基、リン酸基、アルデヒド基等の親水性基を有していてもよい。また、斯かる親水性基の位置および個数は任意であるが、その位置は好ましくは重合体の側鎖である。一方、スルフィニル基以外の親水性基の個数としては、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、繰り返し単位1個中に、0~12個が好ましく、0~10個がより好ましく、1~10個が更に好ましく、2~5個が更に好ましく、2または3個が特に好ましい。また、上記親水性基の中でも、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、ヒドロキシ基が好ましい。なお、本発明の効果が失われない範囲で、重合体に含まれる複数のスルフィニル基の一部がスルホニル基、スルフィド基となっていてもよい。
 また、上記繰り返し単位(A)の好適な具体例としては、下記式(1)で表される構造を側鎖中に少なくとも1つ含む繰り返し単位が挙げられる。式(1)で表される構造を側鎖中に有する繰り返し単位となるポリマー種としては公知のものを用いることができ、中でも(メタ)アクリレート系のポリマー種、(メタ)アクリルアミド系のポリマー種、スチレン系のポリマー種等が好ましい。より具体的には、下記式(2)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
〔式(1)中、R3は、直接結合または炭素数1~24の2価の有機基を示し、R4は、炭素数1~10の有機基を示す。〕
Figure JPOXMLDOC01-appb-C000005
〔式(2)中、R1は、水素原子またはメチル基を示し、R2は、基-O-、基*-(C=O)-O-、基*-(C=O)-NR5-、基*-NR5-(C=O)-(R5は、水素原子または炭素数1~10の有機基を示し、*は、式(2)中のR1が結合している炭素原子と結合する位置を示す)またはフェニレン基を示し、R3およびR4は前記と同義である。〕
 ここで、式(1)および(2)中の各記号について詳細に説明する。
 R1は、水素原子またはメチル基を示すが、メチル基が好ましい。
 また、R2は、基-O-、基*-(C=O)-O-、基*-(C=O)-NR5-、基*-NR5-(C=O)-またはフェニレン基を示す。斯かるフェニレン基としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基が挙げられる。
 また、上記R5で示される有機基の炭素数は、好ましくは1~10であり、より好ましくは2~8であり、更に好ましくは2~6である。上記有機基としては、炭化水素基が挙げられる。斯かる炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基および芳香族炭化水素基を包含する概念である。
 上記R5における脂肪族炭化水素基は直鎖状でも分岐鎖状でもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等のアルキル基が挙げられる。
 また、上記脂環式炭化水素基は、単環の脂環式炭化水素基と橋かけ環炭化水素基に大別される。上記単環の脂環式炭化水素基としては、シクロプロピル基、シクロヘキシル基等のシクロアルキル基が挙げられる。また、橋かけ環炭化水素基としては、イソボルニル基等が挙げられる。
 また、上記芳香族炭化水素基としては、フェニル基等のアリール基が挙げられる。
 上述のようなR2の中でも、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、基*-(C=O)-O-、フェニレン基が好ましく、基*-(C=O)-O-が特に好ましい。
 R3は、直接結合または炭素数1~24の2価の有機基を示す。斯かる直接結合としては、単結合が挙げられる。
 斯様なR3の中でも、炭素数1~24の2価の有機基が好ましい。斯かる2価の有機基の炭素数は、好ましくは2~18であり、より好ましくは2~10であり、更に好ましくは2~9であり、特に好ましくは3~6である。
 上記2価の有機基としては、2価の炭化水素基が挙げられる。2価の炭化水素基は、好ましくは2価の脂肪族炭化水素基であり、直鎖状でも分岐鎖状でもよい。具体的には、メタン-1,1-ジイル基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基等のアルカンジイル基が挙げられる。
 また、上記2価の炭化水素基は、置換基を有していてもよく、炭素-炭素結合間にエーテル結合を含んでいてもよい。
 上記2価の炭化水素基が有していてもよい置換基としては、前記親水性基が挙げられる。該置換基の個数は、好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1または2である。
 また、上記2価の炭化水素基が含んでいてもよいエーテル結合の個数としては、0~5が好ましく、0~3がより好ましい。
 また、2価の有機基の好適な具体例としては、下記式(3)で表される連結基、炭素数1~24のアルカンジイル基が挙げられ、より好ましくは式(3)で表される連結基である。
Figure JPOXMLDOC01-appb-C000006
〔式(3)中、R6は、単結合、基-R8-O-(R8は、炭素数1~4のアルカンジイル基を示す)または下記式(4)で表される連結基を示し、R7は、炭素数1~4のアルカンジイル基を示し、nは1または2を示し、**は、式(1)、(2)中のイオウ原子と結合する位置を示す。〕
Figure JPOXMLDOC01-appb-C000007
〔式(4)中、R9は、炭素数1~4のアルカンジイル基を示し、R10は、炭素数2または3のアルカンジイル基を示し、m1は1または2を示し、m2は1~3の整数を示す。〕
 上記R6としては、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、単結合、基-R8-O-が好ましく、単結合が特に好ましい。
 また、上記R7、R8およびR9で示されるアルカンジイル基の炭素数は1~4であるが、1または2が好ましい。
 また、上記アルカンジイル基は直鎖状でも分岐鎖状でもよく、前述のアルカンジイル基と同様のものが挙げられる。
 また、上記R10で示されるアルカンジイル基の炭素数は、好ましくは2である。また、該アルカンジイル基としては、R7で示されるものと同様のものが挙げられる。なお、m2が2または3の場合、m2個のR10は同一であっても異なっていてもよい。
 また、nおよびm1としては1が好ましく、m2としては1または2が好ましい。
 また、R4は、炭素数1~10の有機基を示す。斯かる有機基としては、R5で示されるものと同様のものが挙げられる。また、R4が炭化水素基である場合、斯かる炭化水素基は置換基を有していてもよく、該置換基およびその個数としては、前記2価の炭化水素基が有していてもよいものと同様のものが挙げられる。また、親水性の観点から、Rとしては、シクロアルキル基、アリール基、アラルキル基等の環構造を含まないものが好ましい。
 上述のようなR4の好適な具体例としては、前記親水性基を有する炭素数1~10の有機基が挙げられ、より好ましくは下記式(5)で表される1価の基、炭素数1~10のアルキル基であり、更に好ましくは式(5)で表される1価の基である。
Figure JPOXMLDOC01-appb-C000008
〔式(5)中、k1は、1~4の整数を示し、k2は、0~4の整数を示し、***は、式(1)、(2)中のイオウ原子と結合する位置を示す。〕
 式(5)中、k1としては、1または2が好ましい。また、k2としては、0~2の整数が好ましく、0または1がより好ましい。
 また、繰り返し単位(A)の合計含有量の下限としては、水溶性の付与の観点、および細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点から、全繰り返し単位中、10モル%以上が好ましく、40モル%以上がより好ましく、50モル%以上が更に好ましく、60モル%以上が更に好ましく、65モル%以上が特に好ましい。一方、上限としては、基材との吸着の観点から、全繰り返し単位中、99モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましく、80モル%以下が更に好ましく、70モル%以下が特に好ましい。
 また、質量%としての繰り返し単位(A)の合計含有量の下限としては、水溶性の付与の観点、および細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点から、全繰り返し単位中、20質量%以上が好ましく、35質量%以上がより好ましく、50質量%以上が更に好ましく、60質量%以上が更に好ましく、70質量%以上が更に好ましく、75質量%以上が更に好ましく、80質量%以上が特に好ましい。一方、上限としては、基材との吸着の観点から、全繰り返し単位中、99質量%以下が好ましく、98質量%以下がより好ましく、95質量%以下が更に好ましく、90質量%以下が特に好ましい。
 なお、繰り返し単位(A)の含有量は13C-NMR等により測定可能である。
 また、本発明で用いる重合体としては、更に疎水性繰り返し単位(以下、繰り返し単位(B)とも称する)を有するものが好ましい。ここで、疎水性とは、水との親和性が低い性質を持つことを意味する。具体的には、1種の繰り返し単位のみからなるホモポリマー(実施例の測定法による数平均分子量が1万~10万程度のもの)が、常温(25℃)において純水100gに対して溶解する量が1g未満である場合にはその繰り返し単位は疎水性である。
 また、上記繰り返し単位(B)のHLB値としては、高い疎水性を得る場合には、20未満が好ましく、15未満がより好ましく、10未満が更に好ましく、0.1以上10未満が更に好ましい。
 繰り返し単位(B)としては、疎水性を示す公知のものが挙げられ、特に限定されないが、スチレン類、(メタ)アクリレート類および(メタ)アクリルアミド類から選ばれる1種以上の単量体から誘導されるものが好ましい。
 上記スチレン類から誘導される繰り返し単位としては、下記式(6)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000009
〔式(6)中、R11は、水素原子またはメチル基を示し、R12は、炭素数1~10の有機基を示し、pは0~5の整数を示す。〕
 式(6)中、R12で示される有機基としては、R5で示されるものと同様のものが挙げられるが、その炭素数は、好ましくは1~6であり、より好ましくは1~3である。また、親水性基がないものが好ましい。なお、斯かる有機基は、炭素数1~3のアルコキシ基等が置換していてもよい。また、pが2~5の整数の場合、p個のR12は同一であっても異なっていてもよい。
 また、pは0~5の整数を示すが、0~3が好ましく、0がより好ましい。
 スチレン類から誘導される繰り返し単位の具体例としては、スチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、4-エチルスチレン、4-イソプロピルスチレン、4-tert-ブチルスチレン、α―メチルスチレン等に由来する繰り返し単位が挙げられる。
 また、上記(メタ)アクリレート類としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸C1-10アルキル;(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸C6-10シクロアルキル;(メタ)アクリル酸1-メトキシエチル、(メタ)アクリル酸2-メトキシエチル等の(メタ)アクリル酸C1-10アルコキシC1-10アルキル;(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸1-メチル-(1-アダマンチルエチル)、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル等の炭素数8~16の橋かけ環炭化水素基を有する(メタ)アクリル酸エステル等が挙げられる。また、これら(メタ)アクリレート類において、上記C1-10アルキル基としてはC1-8アルキル基が好ましく、上記C6-10シクロアルキル基としてはC6-8シクロアルキル基が好ましく、上記C1-10アルコキシ基としてはC1-6アルコキシ基が好ましく、炭素数8~16の橋かけ環炭化水素基としては、炭素数8~12の橋かけ環炭化水素基が好ましい。
 また、上記(メタ)アクリレート類の中でも、炭素数8~16の橋かけ環炭化水素基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸C1-10アルコキシC1-10アルキル、(メタ)アクリル酸C1-10アルキル、末端に(メタ)アクリロイルオキシ基を有するマクロモノマーが好ましく、炭素数8~16の橋かけ環炭化水素基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸C1-10アルコキシC1-10アルキル、(メタ)アクリル酸C1-10アルキルがより好ましく、炭素数8~16の橋かけ環炭化水素基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸C1-10アルキルが更に好ましく、(メタ)アクリル酸C1-10アルキルが特に好ましい。
 また、上記(メタ)アクリルアミド類としては、例えば、N,N-ジC1-10アルキル(メタ)アクリルアミド;N-イソプロピル(メタ)アクリルアミド等のN-C1-10アルキル(メタ)アクリルアミド;N-(1,1-ジメチル-2-アセチルエチル)(メタ)アクリルアミド等のN-C1-10アルカノイルC1-10アルキル(メタ)アクリルアミドの他、(メタ)アクリロイルピペリジン等が挙げられる。また、これら(メタ)アクリルアミド類において、上記C1-10アルキル基としては、C3-10アルキル基が好ましく、上記C1-10アルカノイル基としては、C1-6アルカノイル基が好ましい。
 また、繰り返し単位(B)の合計含有量の下限としては、基材との吸着の観点から、全繰り返し単位中、1モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましく、20モル%以上が更に好ましく、30モル%以上が特に好ましい。一方、上限としては、水溶性の付与の観点、および細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点から、全繰り返し単位中、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下が更に好ましく、60モル%以下が更に好ましく、50モル%以下が更に好ましく、40モル%以下が更に好ましく、35モル%以下が特に好ましい。
 また、質量%としての繰り返し単位(B)の合計含有量の下限としては、基材との吸着の観点から、全繰り返し単位中、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上が更に好ましく、10質量%以上が特に好ましい。一方、上限としては、水溶性の付与の観点、および細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点から、全繰り返し単位中、80質量%以下が好ましく、65質量%以下がより好ましく、50質量%以下が更に好ましく、40質量%以下が更に好ましく、30質量%以下が更に好ましく、20質量%以下が更に好ましく、18質量%以下が特に好ましい。
 なお、繰り返し単位(B)の含有量は、繰り返し単位(A)の含有量と同様にして測定すればよい。
 また、重合体に含まれる繰り返し単位(A)と繰り返し単位(B)とのモル比〔(A):(B)〕としては、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点およびコーティング性の観点から、10:30~99:1が好ましく、10:20~99:1がより好ましく、10:15~50:1が更に好ましく、10:10~10:1が更に好ましく、10:8~10:3が特に好ましい。また、上記繰り返し単位(A)と繰り返し単位(B)との質量比<(A):(B)>としては、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果と低毒性を両立する観点およびコーティング性の観点から、40:60~99:1が好ましく、55:45~99:1がより好ましく、60:40~99:1が更に好ましく、70:30~98:2が更に好ましく、75:25~90:10が特に好ましい。
 また、本発明で用いる重合体は、前記繰り返し単位(A)および(B)以外の親水性繰り返し単位(C)を有していてもよい。斯様な親水性繰り返し単位(C)としては、アニオン性の単量体(アニオン性モノマー)、カチオン性の単量体(カチオン性モノマー)、またはノニオン性の単量体(ノニオン性モノマー)から誘導されるものが挙げられ、これらを1種または2種以上含んでいてもよい。
 上記アニオン性モノマーとしては、ビニル安息香酸、(メタ)アクリル酸等の不飽和カルボン酸モノマー;スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、イソプレンスルホン酸等の不飽和スルホン酸モノマーが挙げられる。
 また、カチオン性モノマーとしては、アリルアミン、アミノスチレン、N,N-ジメチルアミノプロピル(メタ)アクリルアミド塩化メチル4級塩等の1~4級アミノ基と不飽和結合を有するものが挙げられる。
 また、ノニオン性モノマーとしては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸グリセリル、(メタ)アクリル酸ポリオキシエチレン等のヒドロキシ基を有する不飽和カルボン酸エステルモノマー;N-(2-ヒドロキシエチル)(メタ)アクリルアミド等のヒドロキシ基を有する(メタ)アクリルアミドモノマーが挙げられる。
 上記繰り返し単位(C)の合計含有量としては、全繰り返し単位中、0~49モル%が好ましく、0~20モル%がより好ましく、0~10モル%が更に好ましく、0~1モル%が特に好ましい。また、質量%として0~49質量%が好ましく、0~20質量%がより好ましく、0~10質量%が更に好ましく、0~1質量%が特に好ましい。
 また、本発明で用いる重合体が共重合体である場合、その繰り返し単位の配列の態様は特に限定されず、共重合体は、ブロック共重合体、グラフト共重合体、ランダム共重合体、交互共重合体のいずれであってもよい。
 また、本発明で用いる重合体の両末端としては、水素原子、アルキル基、ヒドロキシ基、RAFT剤残基が好ましい。
 また、本発明で用いる重合体の数平均分子量(Mn)としては、5000~100万が好ましく、7000~20万がより好ましく、1万~15万が特に好ましい。数平均分子量を5000以上とすることにより、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果が向上し、一方、100万以下とすることにより、コーティング性やハンドリング性が向上する。
 また、本発明で用いる重合体の重量平均分子量(Mw)としては、10000~200万が好ましく、15000~40万がより好ましく、2万~30万が特に好ましい。
 また、分子量分布(Mw/Mn)としては、1.0~5.0が好ましく、1.0~4.0がより好ましく、1.0~3.0が更に好ましく、1.5~2.5が特に好ましい。
 なお、上記数平均分子量、重量平均分子量および分子量分布は、後述する実施例に記載の方法に従い測定すればよい。
 また、本発明で用いる重合体としては、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、水溶性のものが好ましい。ここで、本明細書において、水溶性とは、1質量%のポリマー固形分となるように重合体を水(25℃)に添加・混合したときに、目視で透明となることをいう。
 また、本発明で用いる重合体としては、ノニオン性のものが好ましい。
 また、本発明で用いる重合体としては、水溶性の付与、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果の観点から、HLB値が10~22の範囲であるものが好ましく、13~22の範囲であるものがより好ましい。
 次に、本発明で用いる重合体の合成方法について説明する。
 上記重合体は、(1)公知の重合体の側鎖中にスルフィド基を導入し、斯かるスルフィド基をスルフィニル基に変換すること、(2)重合させたときに側鎖となる部分にスルフィド基を有するモノマーを、重合または他のモノマーと共重合させ、得られた(共)重合体のスルフィド基をスルフィニル基に変換すること、(3)或いは重合させたときに側鎖となる部分にスルフィニル基を有するモノマーを、重合または他のモノマーと共重合させること等により製造できる。
 上記製造方法を、下記共重合体(N-1)の製造方法を例に挙げて具体的に説明する。
 すなわち、工程1-A-1および工程1-A-2により、或いは工程1-Bまたは工程1-Cにより、共重合体(S-1)を得、これを用いて共重合体(G-1)を経て共重合体(N-1)を得る。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 (式中の各記号は前記と同義である。)
 <工程1-A-1>
 工程1-A-1は、化合物(A-1-1)と化合物(B-1)とを重合開始剤の存在下で重合させ、共重合体(M-1)を得る工程である。
 化合物(A-1-1)としては、例えば、(メタ)アクリル酸等が挙げられ、これらは1種を単独でまたは2種以上を組み合わせて使用できる。
 また、化合物(B-1)としては、前記スチレン類が挙げられ、その合計使用量としては、化合物(A-1-1)に対し、0.001~1.5モル当量が好ましく、0.005~1.5モル当量がより好ましく、0.02~1.5モル当量が好ましく、0.1~0.8モル当量がより好ましい。
 また、上記重合開始剤としては、例えば、2,2'-アゾビス(イソブチロニトリル)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス-2,4-ジメチルバレロニトリル等のアゾ系開始剤;ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、過酸化ベンゾイル等の過酸化物が挙げられ、これら重合開始剤は1種を単独でまたは2種以上を組み合わせて使用できる。
 重合開始剤の合計使用量は、化合物(A-1-1)に対し、通常0.0002~0.2質量倍程度である。
 また、工程1-A-1には溶媒、連鎖移動剤を使用してもよい。溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル系溶媒;トルエン、ベンゼン等の芳香族系溶媒;1、4-ジオキサン、ジエチルエーテル等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒が挙げられ、これら溶媒は1種を単独でまたは2種以上を組み合わせて使用できる。これら溶媒の合計使用量は、化合物(A-1-1)に対し、通常0.5~15質量倍程度である。
 また、上記連鎖移動剤としては、メルカプトエタノール、チオグリセロール、tert-ドデシルメルカプタン等が挙げられる。
 また、工程1-A-1の反応時間は特に限定されないが、通常0.5~24時間程度であり、反応温度は溶媒の沸点以下で適宜選択すればよいが、通常0~120℃程度である。
 <工程1-A-2>
 工程1-A-2は、工程1-A-1で得た共重合体(M-1)の-R2を、化合物(C-1)のグリシジル基またはオキセタニル基に対し開環付加させ、共重合体(S-1)を得る工程である。
 工程1-A-2で用いる化合物(C-1)としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等が挙げられ、その合計使用量としては、共重合体(M-1)中の化合物(A-1-1)から誘導される繰り返し単位に対し、1.5~10モル当量が好ましく、2~5モル当量がより好ましい。
 また、工程1-A-2は、触媒存在下で行うのが好ましい。触媒としては、テトラブチルアンモニウムブロマイド等の四級アンモニウム塩;テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド等の四級ホスホニウム塩が挙げられ、これら触媒は1種を単独でまたは2種以上を組み合わせて使用できる。
 上記触媒の合計使用量は、共重合体(M-1)中の化合物(A-1-1)から誘導される繰り返し単位に対し、通常0.01~0.2モル当量程度である。
 また、工程1-A-2で好適に使用される溶媒としては、工程1-A-1と同様のものが挙げられる。
 また、工程1-A-2の反応時間は特に限定されないが、通常1~24時間程度であり、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常40~200℃程度である。
 <工程1-Bおよび工程1-C>
 工程1-Bおよび工程1-Cは、化合物(A-1-2)または化合物(A-1-3)と、化合物(B-1)とを重合開始剤の存在下で重合させ、共重合体(S-1)を得る工程である。
 化合物(A-1-2)としては、例えば、グリシジル(メタ)アクリレート、オキセタニル(メタ)アクリレートが挙げられ、化合物(A-1-3)としては、ビニルベンジルグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が挙げられる。なお、これらは1種を単独でまたは2種以上を組み合わせて使用できる。
 工程1-Bおよび工程1-Cは、上記工程1-A-1と同様にして行えばよい。
 なお、上記工程1-A-1、1-A-2、工程1-B、工程1-Cに先立ち、単量体のうち一方にRAFT剤を反応させておくことによりブロック共重合体を合成できる。
 <工程2>
 工程2は、工程1-A-2、工程1-Bまたは工程1-Cで得た共重合体(S-1)のグリシジル基またはオキセタニル基に対し、-SR4を開環付加させ、共重合体(G-1)を得る工程である。
 工程2で用いるR4SHで表される化合物としては、チオグリセロール、メルカプトエタノールが挙げられるが、細胞接着防止効果、生体組織付着防止効果、生体試料付着防止効果を向上させる観点から、チオグリセロールが好ましい。
 上記化合物の合計使用量は、化合物(A-1-1)、(A-1-2)または(A-1-3)から誘導される繰り返し単位に対し、通常0.1~20モル当量であり、好ましくは1~10モル当量である。
 また、工程2は、触媒存在下で行うのが好ましい。触媒としては、トリエチルアミン、N,N-ジメチル-4-アミノピリジン等の塩基性触媒が挙げられ、これら触媒は1種を単独でまたは2種以上を組み合わせて使用できる。
 上記触媒の合計使用量は、化合物(A-1-1)、(A-1-2)または(A-1-3)から誘導される繰り返し単位に対し、通常0.01~32モル当量である。
 また、工程2は、溶媒存在下で行うのが好ましい。溶媒としては、工程1-A-1~1-Cで使用できる溶媒の他、エタノール、メタノール等のアルコール系溶媒、またはこれらの混合溶媒が挙げられ、その合計使用量は、共重合体(S-1)に対し、通常0.5~20質量倍程度である。
 また、工程2の反応時間は特に限定されないが、通常1~8時間程度であり、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常40~100℃程度である。
 なお、工程2を工程1-Bまたは工程1-Cの前に実施し、その後工程1-Bまたは工程1-Cの重合を実施してもよい。
 <工程3>
 工程3は、酸化剤を用いて、工程2で得た共重合体(G-1)のスルフィド基をスルフィニル基に変換し、共重合体(N-1)を得る工程である。なお、本発明の効果が失われない範囲で、共重合体中に含まれる複数のスルフィニル基の一部がスルフィド基、スルホニル基となってもよい。
 上記酸化剤は、有機酸化剤と無機酸化剤とに大別され、有機酸化剤としては、例えば、過酢酸、過安息香酸、メタクロロ過安息香酸等が挙げられる。一方、無機酸化剤としては、例えば、過酸化水素、クロム酸、過マンガン酸塩等が挙げられる。なお、これら酸化剤は1種を単独でまたは2種以上を組み合わせて使用できる。
 また、酸化剤の使用量は、化合物(A-1-1)、(A-1-2)または(A-1-3)から誘導される繰り返し単位に対し、通常1.0~10.0モル当量程度であるが、好ましくは1.0~2.0モル当量である。
 工程3は、溶媒存在下で行うのが好ましい。斯かる溶媒としては、水;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;メタノール、エタノール等のアルコール系溶媒等が挙げられ、これら溶媒は1種を単独でまたは2種以上を組み合わせて使用できるが、水、アルコール系溶媒が好ましい。
 上記溶媒の合計使用量は、共重合体(G-1)に対し、通常1~20質量倍程度であるが、好ましくは1~15質量倍である。
 また、工程3の反応時間は特に限定されないが、通常1~24時間程度であり、反応温度は、溶媒の沸点以下で適宜選択すればよいが、通常25~70℃程度である。
 なお、前記各工程において、各反応生成物の単離は、必要に応じて、ろ過、洗浄、乾燥、再結晶、再沈殿、透析、遠心分離、各種溶媒による抽出、中和、クロマトグラフィー等の通常の手段を適宜組み合わせて行えばよい。
 また、本発明の細胞接着防止剤は、上記のようにして得られる重合体の他に、溶剤、殺菌剤、防腐剤等を含んでいてもよい。
 上記溶剤としては、水;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤等が挙げられる。これら溶剤は1種を単独でまたは2種以上を組み合わせて含まれていてもよい。
 また、上記重合体の含有量としては、基材表面への吸着量と細胞毒性の観点から、細胞接着防止剤中、0.00001~15質量%が好ましく、0.0001~10質量%がより好ましく、0.001~10質量%が更に好ましく、0.01~10質量%が更に好ましい。
 一方、上記溶剤の含有量としては、細胞接着防止剤中、0~50質量%が好ましく、0~10質量%がより好ましい。
 そして、上記重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体を含む)は、後記実施例に示すように、細胞毒性が低く、且つ、優れた細胞接着防止効果を示す。細胞接着防止とは、足場依存性細胞のような接着細胞と、斯かる細胞が接触する種々の表面や基材等との接着を防止することをいう。
 上記効果が奏される理由は必ずしも明らかではないが、繰り返し単位(B)によって、重合体が、容器、器具等の壁面に吸着し、その一方で、繰り返し単位(A)によって、前記壁面が親水化され、更にタンパク質、脂質等の吸着が防止され、細胞の接着を抑制することができるものと推察される。
 したがって、上記重合体は、細胞接着防止剤としてそのまま用いることができ、また、細胞接着防止剤を製造するための素材として使用することができる。更に、斯かる細胞接着防止剤によれば、細胞接着のみならずタンパク質、脂質、核酸等生体物質の吸着も抑制できる。
 また、上記細胞としては、足場依存性細胞、浮遊細胞(例えば、白血球、赤血球、血小板等の血液細胞)が挙げられる。足場依存性細胞としては、HeLa細胞、F9細胞等のガン細胞;3T3細胞等の線維芽細胞;ES細胞、iPS細胞、間葉系幹細胞等の幹細胞;HEK293細胞等の腎細胞;NT2細胞等の神経細胞;UV♀2細胞、HMEC-1細胞等の内皮細胞;H9c2細胞等の心筋細胞;Caco-2細胞等の上皮細胞等が挙げられる。
 また、上記細胞は、無機材料、有機材料の他、哺乳動物組織や非哺乳動物組織(骨等の硬い組織および粘膜や非粘膜組織等の軟らかい組織を含む)、哺乳動物や非哺乳動物の細胞(真核生物および原核生物を含む)等から構成されているものに接着する。本発明の細胞接着防止剤を用いることにより、斯様なもの(基材)と上記細胞との接着を防止できる。
 上記無機材料としては、ホウケイ酸ガラス等のガラス;チタン、ステンレス等の金属やコバルトクロム合金等の合金;熱分解カーボン、アルミナ、ジルコニア、リン酸カルシウム等のセラミックスの他、酸化チタン等が挙げられ、これらが1種または2種以上含まれていてよい。
 また、上記有機材料としては、ポリスチレン、ABS樹脂等のスチレン系ポリマー;ポリエチレン、ポリプロピレン等のオレフィン系ポリマー(環状オレフィン樹脂を含む);ポリビニルアセテート、ポリ塩化ビニル、ポリビニルカルバゾール、ポリビニルピロリドン、ポリブタジエン等のビニル系ポリマー;ポリ塩化ビニリデン、ポリフッ化ビニリデン等のハロゲン化ビニリデン系ポリマー;ポリアミド、ポリアクリルアミド、ナイロン等のアミド系ポリマー;ポリイミド、ポリエチレンイミド等のイミド系ポリマー;ポリシロキサン、ポリジメチルシロキサン等のシリコーン系ポリマー;ポリアセトニトリル、ポリアクリロニトリル等のニトリル系ポリマー;ポリビニルフェノール等のビニルフェノール系ポリマー;ポリビニルアルコール等のビニルアルコール系ポリマー;ポリウレタン等のウレタン系ポリマー;ポリカーボネート等のカーボネート系ポリマー;ポリベンゾイミダゾール等のベンゾイミダゾール系ポリマー;ポリエーテルエーテルケトン等のポリエーテルエーテルケトン系ポリマー;ポリアニリン等のアニリン系ポリマー;ポリアクリレート等のポリ(メタ)アクリレート類;ポリカプロラクトン等のポリエステル(ポリエチレンテレフタレート等の芳香族ポリエステル;ポリグリコール酸、ポリ乳酸、ポリ乳酸・グリコール酸等のヒドロキシカルボン酸系ポリエステルを含む);エポキシ樹脂(SU-8等を含む);フェノール樹脂;メラミン樹脂;テフロン(登録商標)等のフッ素樹脂の他、糖鎖高分子、タンパク質等が挙げられ、これらが1種または2種以上含まれていてよい。
 また、上記糖鎖高分子としては、アガロースまたはその誘導体、セルロースまたはその誘導体(酢酸セルロース等)、キチン、酸化セルロース、コンドロイチン、ヘパリン、ヒアルロン酸等の等の多糖類が挙げられる。また、上記タンパク質としては、コラーゲンまたはその誘導体、フィブロイン、フィブロネクチン、ゼラチン等が挙げられる。また、ペプチドやポリアミノ酸であってもよい。
 そして、上記細胞接着防止剤は、医療・バイオ分野(臨床検査・診断薬)等で広く利用することができ、例えば、臨床診断薬、臨床診断装置、バイオチップ、細胞培養基材、生体材料等生体物質等に接触する材料(固相、容器・器具等)のコーティング剤;血液検査等の診断に使用される全自動分析機用測定セルのコンディショニング剤;細胞接着コントロール剤等として特に有用である。また、本発明の細胞接着防止剤を基材や器具、装置の少なくとも一部にコーティングすることにより、使用するときに細胞が死滅しにくく、且つ、細胞が接着しにくい、表面が改質された器具および装置を提供できる。
 <表面が改質された器具および装置>
 次に、本発明の表面が改質された器具および表面が改質された装置について説明する。
 本発明の表面が改質された器具および表面が改質された装置は、上記繰り返し単位(A)を有する重合体を、表面の少なくとも一部に有するものである。具体的には、上記繰り返し単位(A)を有する重合体が少なくとも一部に塗布され、その表面上に細胞接着防止層が形成されることによって、器具、装置の表面(内壁表面、外壁表面のいずれであってもよい)が改質されたものである。
 斯様な器具や装置は、その器具や装置を使用するときにその表面の一部または全部が細胞と接触するものであれば特に限定されないが、医療用、培養用のものが好ましい。
 また、上述のような器具の具体例としては、生体物質・生体組織等を採取または送液するための器具(例えば、血糖値測定器、注射針、カテーテル等)、上記生体物質等を保存するための容器(血液バッグ、試験管等)、上記生体物質等を分析するための器具(キャリア、カバーガラス等の顕微鏡周辺器具、マイクロ流路デバイス、マイクロウェルプレート、アッセイチップ、バイオチップ、全自動分析機用測定セル)、バイオ処理用器具(反応槽、移送管、移送パイプ、精製用器具、細胞培養プレート等)、生体内に埋入するための器具(例えば、インプラント、骨固定材、縫合糸、癒着防止膜、人工血管等)の他、小胞、マイクロ粒子、ナノ粒子等の薬物送達媒体や、胃カメラ、マイクロファイバー、ナノファイバー、磁性粒子等が挙げられる。
 また、上述のような装置の具体例としては、医療用デバイス(臨床診断装置、バイオセンサー、心臓ペースメーカー、埋入型バイオチップ)、発酵用ユニット、バイオリアクター等が挙げられる。
 また、上記繰り返し単位(A)を有する重合体の塗布は、上記器具、装置を使用するときに該器具や装置と細胞とが接触する部位に細胞接着防止層を形成するようにして塗布するのが好ましい。これにより、斯かる器具や装置と細胞との接触および接着を防止できる。
 また、本発明の表面が改質された器具および表面が改質された装置は、上記繰り返し単位(A)を有する重合体を、器具、装置表面の少なくとも一部にコーティングすることにより製造できる。
 具体的には、上記繰り返し単位(A)を有する重合体と器具または装置とを準備し、該器具または装置の少なくとも一部(好ましくは、その器具や装置を使用するときに該器具や装置と細胞とが接触する部位)に上記繰り返し単位(A)を有する重合体を塗布させればよい。なお、架橋剤、架橋モノマーを使用して硬化することもできる。
 斯かる塗布は、上記繰り返し単位(A)を有する重合体を含むポリマー溶液(細胞接着防止剤)をコーティングしたい部位に接触させればよい。例えば、ポリマー水溶液を基材に5分程度接触させた後、水により洗浄し、乾燥する方法が挙げられる。
 また、上記繰り返し単位(A)を有する重合体は、後記実施例に示すように、生体組織や生体試料に対する影響が低い。
 したがって、上記器具、装置として、生体内医療構造体、マイクロ流路デバイスが好適な具体例として挙げられる。
 <生体内医療構造体>
 本発明の生体内医療構造体は、上記繰り返し単位(A)を有する重合体を、表面の少なくとも一部に有するもの(例えば、上記重合体でコーティングされているもの)である。繰り返し単位(A)によって、構造体表面が親水化され、生体組織が表面に付着しにくくなる。
 ここで、生体内医療構造体とは、生体内で使用される医療用の構造体のことをいい、斯様な構造体は、体内へ埋め込んで使用するものと、体内で使用するものとに大別される。なお、生体内医療構造体の大きさや長さは特に限定されるものではなく、微細な回路を有するものや、微量の試料を検出するものも包含される。なお、コーティングに関しては吸着の他、重合体をフィルムコーティングさせてもよく、また、吸着させた重合体を架橋することで水に不溶化し、耐久性をもたせてもよい。
 上記体内へ埋め込んで使用する構造体としては、例えば、心臓ペースメーカー等の疾患が生じている生体の機能を補うための機能補助装置;埋入型バイオチップ等の生体の異常を検出するための装置;インプラント、骨固定材、縫合糸、人工血管等の医療用器具が挙げられる。
 また、体内で使用する構造体としては、小胞、マイクロ粒子、ナノ粒子等の薬物送達媒体の他、カテーテル、胃カメラ、マイクロファイバー、ナノファイバー等が挙げられる。
 また、生体内医療構造体表面の材質は無機材料と有機材料に大別される。これら無機材料、有機材料としては上記と同様のものが挙げられる。この中でも、有機材料が好ましく、高分子材料がより好ましく、スチレン系ポリマー、エポキシ樹脂が更に好ましい。
 なお、本発明の生体内医療構造体は、糖鎖高分子やタンパク質、ペプチド、ポリアミノ酸でコーティングされ、斯かるコーティング上に本発明で用いる重合体を有するものであってもよい。糖鎖高分子、タンパク質としては上記と同様のものが挙げられる。
 また、本発明で用いる重合体のコーティングは、斯かる重合体を必要に応じて溶剤と混合し、これを構造体表面(内壁及び外壁を含む)の少なくとも一部に公知の方法でコーティングすればよい。具体的には、スプレーコーティング法、ディップコーティング法、フローコーティング法、刷毛塗り、スポンジ塗り等の方法が挙げられる。加えて、重合体溶液中に構造体表面を浸漬させ、重合体と構造体を接触させるだけでコーティングすることもできる。
 上記塗布は、体内において、生体内医療構造体と生体組織とが接触する部位に行うのが好ましい。なお、架橋剤、架橋モノマーを使用して硬化することもできる。
 なお、上記溶剤としては、水;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤等が挙げられる。これら溶剤は1種を単独でまたは2種以上を組み合わせて使用してもよい。
 そして、本発明の生体内医療構造体は、生体組織が表面に付着しにくく、且つ生体組織に対する影響が低い。生体組織は、細胞、タンパク質、脂質、核酸等によって構成されるものである。特に、本発明の生体内医療構造体は細胞の付着が生じにくい。
 また、上記細胞としては、足場依存性細胞、浮遊細胞が挙げられ、足場依存性細胞、浮遊細胞は上記と同様のものが挙げられる。
 <マイクロ流路デバイス>
 本発明のマイクロ流路デバイスは、上記繰り返し単位(A)を有する重合体を、マイクロ流路内表面の少なくとも一部に有するもの(例えば、上記重合体でコーティングされているもの)である。繰り返し単位(A)によって、流路内表面が親水化され、生体試料が表面に付着しにくくなる。
 上記マイクロ流路デバイスとしては、例えば、微小反応デバイス(具体的にはマイクロリアクターやマイクロプラント等)、集積型核酸分析デバイス、微小電気泳動デバイス、微小クロマトグラフィーデバイス等の微小分析デバイス;質量スペクトルや液体クロマトグラフィー等の分析試料調製用微小デバイス;抽出、膜分離、透析などに用いる物理化学的処理デバイス;環境分析チップ、臨床分析チップ、遺伝子分析チップ(DNAチップ)、タンパク質分析チップ(プロテオームチップ)、糖鎖チップ、クロマトグラフチップ、細胞解析チップ、製薬スクリーニングチップ等のマイクロ流路チップが挙げられる。これらの中でも、マイクロ流路チップが好ましい。
 また、上記デバイスに設けられているマイクロ流路は微量の試料(好ましくは液体試料)が流れる部位であり、その流路幅および深さは特に限定されないが、いずれも、通常、0.1μm~1mm程度であり、好ましくは10μm~800μmである。
 なお、マイクロ流路の流路幅や深さは、流路全長にわたって同じであってもよく、部分的に異なる大きさや形状であってもよい。
 また、マイクロ流路内表面の材質は無機材料と有機材料に大別される。これら無機材料、有機材料としては上記と同様のものが挙げられる。この中でも、有機材料が好ましく、高分子材料がより好ましく、スチレン系ポリマーが更に好ましい。
 なお、本発明のマイクロ流路デバイスは、その流路内が糖鎖高分子やタンパク質、ペプチド、ポリアミノ酸でコーティングされ、斯かるコーティング上に本発明で用いる重合体を有するものであってもよい。糖鎖高分子、タンパク質としては上記と同様のものが挙げられる。
 また、上記マイクロ流路デバイスは、例えば、本発明で用いる重合体をマイクロ流路内表面の少なくとも一部にコーティングすることにより製造できる。該コーティングは、上記重合体を必要に応じて溶剤と混合し、これを流路内表面の少なくとも一部に公知の方法で塗布すればよい。具体的には、スプレーコーティング法、ディップコーティング法、フローコーティング法、刷毛塗り、スポンジ塗り等の方法が挙げられる。加えて、重合体溶液中に流路内表面を浸漬させ、重合体と流路内表面を接触させるだけでコーティングすることもできる。
 上記塗布は、流路の略全面(全面を含む)に行うのが好ましい。なお、架橋剤、架橋モノマーを使用して硬化することもできる。
 なお、上記溶剤としては、水;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤等が挙げられる。これら溶剤は1種を単独でまたは2種以上を組み合わせて使用してもよい。
 そして、本発明のマイクロ流路デバイスは、マイクロ流路内表面に生体試料が付着しにくく、且つ生体試料に対する影響(細胞毒性)が低い。生体試料(例えば、血液等)は、細胞、タンパク質、脂質、核酸等によって構成されるものである。特に、本発明のマイクロ流路デバイスは細胞の付着が生じにくく、且つタンパク質が吸着しにくい。
 また、上記細胞としては、足場依存性細胞、浮遊細胞が挙げられ、足場依存性細胞、浮遊細胞は上記と同様のものが挙げられる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例における各分析条件は以下に示すとおりである。
<分子量測定>
 重量平均分子量(Mw)および数平均分子量(Mn)は、東ソー社製 TSKgel α-Mカラムを用い、流量:0.5ミリリットル/分、溶出溶媒:NMP溶媒(H3PO4:0.016M、LiBr:0.030M)、カラム温度:40℃の分析条件で、ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
<NMRスペクトル>
 13C-NMRスペクトルは、溶媒および内部標準物質としてd6-DMSOを用いて、BRUKER製モデルAVANCE500(500MHz)により測定した。
 合成例1 共重合体(N-1-1)の合成
 以下の合成経路に従い、共重合体(N-1-1)を得た。
Figure JPOXMLDOC01-appb-C000012
 グリシジルメタクリレート113gおよびスチレン113gと、重合開始剤として2,2'-アゾビス(イソブチロニトリル)6.8gと、N,N-ジメチルホルムアミド475gとを混合しフラスコに入れた。これに窒素を吹き込み、70℃まで昇温し、6時間重合させ、その後室温に冷却した。この溶液をメタノールによる再沈殿で精製し、減圧乾燥することで共重合体(S-1-1)を得た。
 得られた共重合体(S-1-1)において、グリシジルメタクリレートから誘導された繰り返し単位の含有量は48モル%であり、スチレンから誘導された繰り返し単位の含有量は52モル%であった。なお、これら含有量は13C-NMRにより測定した。
 次いで、得られた共重合体(S-1-1)10gおよびチオグリセロール32.1gと、N,N-ジメチルホルムアミド95gとを混合してフラスコに入れた。これに窒素を吹き込みながら60℃まで昇温し、触媒としてトリエチルアミン120gを添加した後4時間反応させ、その後室温に冷却した。この溶液を水による再沈殿で精製し、凍結乾燥することで共重合体(G-1-1)を得た。
 次いで、得られた共重合体(G-1-1)10gを85.5gの水に分散させ、フラスコへ入れた。これに、30%過酸化水素水溶液を4.5g添加し、室温で18時間反応させた。得られた水溶液を透析することで、共重合体(N-1-1)を得た(収率:13%)。この共重合体(N-1-1)と水を混合し、濃度を1質量%に調整したところ、共重合体(N-1-1)は水に溶解していた。
 また、得られた共重合体(N-1-1)の数平均分子量は18755であり、重量平均分子量は30234であり、分子量分布は1.61であった。
 共重合体(N-1-1)の構造は13C-NMRで確認した。
 合成例2 共重合体(N-1-2)の合成
 グリシジルメタクリレート170gおよびスチレン56.8gと、重合開始剤として2,2'-アゾビス(イソブチロニトリル)6.8gと、N,N-ジメチルホルムアミド475gとを混合しフラスコに入れた。これに窒素を吹き込み、70℃まで昇温し、6時間重合させ、その後室温に冷却した。この溶液をメタノールによる再沈殿で精製し、減圧乾燥することで共重合体(S-1-2)を得た。
 得られた共重合体(S-1-2)において、グリシジルメタクリレートから誘導された繰り返し単位の含有量は67モル%であり、スチレンから誘導された繰り返し単位の含有量は33モル%であった。なお、これら含有量は合成例1と同様にして測定した。
 次いで、得られた共重合体(S-1-2)10gおよびチオグリセロール44.7gと、N,N-ジメチルホルムアミド95gとを混合してフラスコに入れた。これに窒素を吹き込みながら60℃まで昇温し、触媒としてトリエチルアミン167gを添加した後4時間反応させ、その後室温に冷却した。この溶液を水による再沈殿で精製し、凍結乾燥することで共重合体(G-1-2)を得た。
 次いで、得られた共重合体(G-1-2)10gを84.4gの水に分散させ、フラスコへ入れた。これに、30%過酸化水素水溶液を5.6g添加し、室温で18時間反応させた。得られた水溶液を透析することで、共重合体(N-1-2)を得た(収率:18%)。この共重合体(N-1-2)と水を混合し、濃度を1質量%に調整したところ、共重合体(N-1-2)は水に溶解していた。
 また、得られた共重合体(N-1-2)の数平均分子量は30983であり、重量平均分子量は55661であり、分子量分布は1.80であった。
 共重合体(N-1-2)の構造は13C-NMRで確認した。
 合成例3 共重合体(N-1-3)の合成
 グリシジルメタクリレート170gおよびスチレン56.8gと、重合開始剤として2,2'-アゾビス(イソブチロニトリル)2.27gと、酢酸エチル450gとを混合しフラスコに入れた。これに窒素を吹き込み、70℃まで昇温し、8時間重合させ、その後室温に冷却した。この溶液をメタノールによる再沈殿で精製し、減圧乾燥することで共重合体(S-1-3)を得た。
 得られた共重合体(S-1-3)において、グリシジルメタクリレートから誘導された繰り返し単位の含有量は67モル%であり、スチレンから誘導された繰り返し単位の含有量は33モル%であった。なお、これら含有量は合成例1と同様にして測定した。
 次いで、得られた共重合体(S-1-3)10gおよびチオグリセロール44.7gと、N,N-ジメチルホルムアミド95gとを混合してフラスコに入れた。これに窒素を吹き込みながら60℃まで昇温し、触媒としてトリエチルアミン167gを添加した後4時間反応させ、その後室温に冷却した。この溶液を水による再沈殿で精製し、凍結乾燥することで共重合体(G-1-3)を得た。
 次いで、得られた共重合体(G-1-3)10gを84.4gの水に分散させ、フラスコへ入れた。これに、30%過酸化水素水溶液を5.6g添加し、室温で18時間反応させた。得られた水溶液を透析することで、共重合体(N-1-3)を得た(収率:15%)。この共重合体(N-1-3)と水を混合し、濃度を1質量%に調整したところ、共重合体(N-1-3)は水に溶解していた。
 また、得られた共重合体(N-1-3)の数平均分子量は32808であり、重量平均分子量は59834であり、分子量分布は1.82であった。
 共重合体(N-1-3)の構造は13C-NMRで確認した。
 合成例4 共重合体(N-1-4)および(N-1-5)の合成
 2,2'-アゾビス(イソブチロニトリル)の使用量をそれぞれ0.686g(N-1-4)、2.06g(N-1-5)に換えた以外は、共重合体(N-1-3)と同様にして共重合体(N-1-4)と(N-1-5)を合成した。
 これら共重合体のグリシジルメタクリレートから誘導された繰り返し単位の含有量とスチレンから誘導された繰り返し単位の含有量はいずれも共重合体(N-1-3)と同様であった。また、この共重合体(N-1-4)と(N-1-5)を、それぞれ水と混合し、濃度を1質量%に調整したところ、これら共重合体はいずれも水に溶解していた。
 得られた共重合体(N-1-4)の数平均分子量は110730であり、重量平均分子量は232057であり、分子量分布は2.10であった。
 また、得られた共重合体(N-1-5)の数平均分子量は54953であり、重量平均分子量は115909であり、分子量分布は2.11であった。
 共重合体(N-1-4)と(N-1-5)の構造は13C-NMRで確認した。
 合成例5 共重合体(N-2)の合成
 以下の合成経路に従い、共重合体(N-2)を得た。
Figure JPOXMLDOC01-appb-C000013
 グリシジルメタクリレート236.7gおよびダイアセトンアクリルアミド140gと、重合開始剤として2,2'-アゾビス(イソブチロニトリル)3.1gと、アセトニトリル465gとを混合しフラスコに入れた。これに窒素を吹き込み、75℃まで昇温し、8時間重合させ、その後室温に冷却して、共重合体(S-2)を含む溶液を得た。
 次いで、上記共重合体(S-2)溶液400gおよびチオグリセロール426gと、アセトニトリル534gとを混合してフラスコに入れた。これに窒素を吹き込みながら60℃まで昇温し、触媒としてトリエチルアミン15.9gを添加した後2時間反応させ、その後室温に冷却した。この溶液を酢酸-n-ブチルによる再沈殿で精製して共重合体(G-2)を得た。
 得られた共重合体(G-2)において、グリシジルメタクリレートから誘導された繰り返し単位の含有量は67モル%であり、ダイアセトンアクリルアミドから誘導された繰り返し単位の含有量は33モル%であった。なお、これら含有量は合成例1と同様にして測定した。
 次いで、得られた共重合体(G-2)574gをメタノール734gと水245gの混合溶媒に分散させ、フラスコへ入れた。これに、30%過酸化水素水溶液を166g添加し、40℃で2時間反応させた。得られた水溶液を透析することで、共重合体(N-2)を得た。この共重合体(N-2)と水を混合し、濃度を1質量%に調整したところ、共重合体(N-2)は水に溶解していた。
 また、得られた共重合体(N-2)の数平均分子量は21179であり、重量平均分子量は47906であり、分子量分布は2.26であった。
 共重合体(N-2)の構造は13C-NMRで確認した。
 上記合成例1~5で得た共重合体(N-1-1)~(N-1-5)および(N-2)のHLB値(小田式)を以下の表1に示す。なお、共重合体(N-1-1)~(N-1-5)および(N-2)が有する繰り返し単位(A)それぞれ1種からなるホモポリマーを合成し、1gを純水100gに添加したところ常温(25℃)で溶解した。また、共重合体(N-1-1)~(N-1-5)および(N-2)が有する繰り返し単位(B)それぞれ1種からなるホモポリマーを合成し、1gを純水100gに添加したところ常温(25℃)で溶解しきらなかった。
Figure JPOXMLDOC01-appb-T000014
 試験例1 細胞接着試験(1)
 表面がポリスチレンで構成されている6ウェルプレートのウェルに、以下の表2に示す実施例1~6のサンプルを1mLずつ加え2時間静置した後、超純水で3回洗浄し未吸着ポリマーを除去した。
 次いで、6.7×104cell/mLに調製したHeLa細胞(ヒト子宮頸ガン細胞)を含む液体培地(10%体積FBS)を1.5mLずつウェルに添加し、37℃、5%CO2条件で4時間培養した。
 その後、培地交換で未接着細胞を除去し、培地交換直後、交換後20時間培養(37℃、5%CO2条件)後、および交換後44時間培養(37℃、5%CO2条件)後、それぞれの接着細胞をトリプシン-EDTAで剥離し、ヘモサイトメーターにより細胞数を計数し、以下の式により接着細胞密度を算出した。
 接着細胞密度(%)=〔(接着細胞数)/(コンフルエント時の細胞数)〕×100
 また、コントロールとして、サンプルを加えない以外は上記と同様にして接着細胞密度を確認した。
 試験結果を図1に示す。なお、図1中のN-1-1、N-1-2、N-1-4、N-1-5使用培地交換直後およびN-2使用における細胞密度は0%である。
Figure JPOXMLDOC01-appb-T000015
 試験例2 細胞接着試験(2)
 HeLa細胞を3T3細胞(マウス線維芽細胞)に変更した以外は試験例1と同様にして接着細胞密度を確認した。試験結果を図2に示す。なお、図2中のN-2使用における細胞密度は0%である。
 試験例3 細胞接着試験(3)
 サンプルとして表2に示す実施例4~6のサンプルを用い、且つHeLa細胞をUV♀2細胞(マウス内皮細胞)に変更した以外は試験例1と同様にして接着細胞密度を確認した。試験結果を図3に示す。なお、図3中のN-2使用培地交換直後、N-2使用交換後20時間培養における細胞密度は0%である。
 試験例4 細胞接着試験(4)
 表面がポリスチレンで構成されている6ウェルプレートのウェルに、表2に示す実施例1~6、以下の表3に示す比較例1~2のサンプルを1mLずつ加え2時間静置した後、超純水で3回洗浄し未吸着ポリマーを除去した。
 次いで、6.7×104cell/mLに調製したHeLa細胞を含む液体培地(FBSフリー)を1.5mLずつウェルに添加し、37℃、5%CO2条件で4時間培養した。その後、PBSによる洗浄で未接着細胞を除去し、10体積%FBS培地に交換した。培地交換直後、交換後20時間培養(37℃、5%CO2条件)後、および交換後44時間培養(37℃、5%CO2条件)後、それぞれの接着細胞をトリプシン-EDTAで剥離し、ヘモサイトメーターにより細胞数を計数し、試験例1と同様の式により接着細胞密度を算出した。
 また、コントロールとして、上記サンプルを加えない以外は上記と同様にして接着細胞密度を確認した。
 試験結果を図4に示す。なお、図4中のN-1-1、N-1-2、N-1-4使用培地交換直後およびN-2使用における細胞密度は0%である。
 下記表3中、共重合体N101およびN102は、2-メタクリロイルオキシエチルホスホリルコリン(MPC)と、n-ブチルメタクリレート(n-BMA)の共重合体である。
Figure JPOXMLDOC01-appb-T000016
共重合体N101:免疫学的測定用ブロッキング試薬N101(日本油脂)
共重合体N102:免疫学的測定用ブロッキング試薬N102(日本油脂)
 試験例5 細胞接着試験(5)
 HeLa細胞を3T3細胞に変更した以外は試験例4と同様にして接着細胞密度を確認した。試験結果を図5に示す。なお、図5中のN-1-2、N-1-4使用培地交換直後およびN-2使用における細胞密度は0%である。
 試験例6 細胞接着試験(6)
 サンプルとして表2に示す実施例4~6のサンプルを用い、且つHeLa細胞をUV♀2細胞(マウス内皮細胞)に変更した以外は試験例4と同様にして接着細胞密度を確認した。試験結果を図6に示す。なお、図6中のN-2使用における細胞密度は0%である。
 試験例7 抗体吸着量測定
 実施例1~5で得られた共重合体の1質量%水溶液をポリスチレン製96穴プレートに満たし、室温で5分間インキュベートした後、超純水で3回洗浄した。次いで、西洋ワサビパーオキシダーゼ標識マウスIgG抗体(AP124P:ミリポア社製)水溶液を上記96穴プレートに満たし、室温で1時間インキュベートした後、PBSバッファーで3回洗浄し、TMB(3,3',5,5'-テトラメチルベンジジン)/過酸化水素水/硫酸で発色させて450nmの吸光度を測定し、この吸光度から検量線法により抗体吸着量を算出した。
 また、コントロールとして、実施例1~5で得られた共重合体の1質量%水溶液でプレートを処理しない以外は上記と同様にして抗体吸着量を算出した。試験結果を表4に示す。
Figure JPOXMLDOC01-appb-T000017
 上記試験例1~7の結果から、共重合体(N-1-1)~(N-1-5)及び(N-2)が優れた細胞接着防止効果を有することがわかる。
 試験例8 細胞毒性試験(1)
 細胞培養用に親水化処理された市販の48ウェルプレート(IWAKI製)のウェルに、25×104cell/mLに調製したHeLa細胞を含む液体培地(10体積%FBS)を200μLずつ添加し37℃、5%CO2条件で12時間前培養した。
 一方、表2に示す共重合体をそれぞれ0.10質量%含み、かつ共重合体水溶液が10質量%となるよう培地を調製した。
 次いで、前培養したHeLa細胞の培地を上記共重合体含有培地に交換し、37℃、5%CO2条件で24時間培養した。
 共重合体水溶液を超純水に変更した以外は上記と同様にして培養したものをコントロールとして、MTTアッセイにて共重合体の細胞毒性を確認した。MTTアッセイにはMTTアッセイキット(MTT Cell Proliferation Assay Kit 10009365:Cayman Chemical Company製)を使用し、使用説明書に従って試験した。試験結果を図7に示す。
 試験例9 細胞毒性試験(2)
 HeLa細胞を3T3細胞に変更した以外は試験例8と同様にして細胞毒性を確認した。MTTアッセイの試験結果を図8に示す。
 試験例10 細胞毒性試験(3)
 共重合体として、共重合体(N-1-4)、(N-1-5)、(N-2)、試薬N101を用い、且つHeLa細胞をUV♀2細胞(マウス内皮細胞)に変更した以外は試験例8と同様にして細胞毒性を確認した。MTTアッセイの試験結果を図9に示す。
 試験例11 細胞毒性試験(4)
 共重合体として、共重合体(N-1-4)、(N-1-5)、(N-2)、試薬N101を用い、且つHeLa細胞をF9細胞に変更した以外は試験例8と同様にして細胞毒性を確認した。MTTアッセイの試験結果を図10に示す。
 試験例12 細胞毒性試験(5)
 細胞培養用に親水化処理された市販の48ウェルプレート(IWAKI製)のウェルに、25×104cell/mLに調製したHeLa細胞を含む液体培地(10体積%FBS)を200μLずつ添加し37℃、5%CO2条件で12時間前培養した。
 一方、実施例1~5のサンプルを、後述する試験例13と同様にしてコーティングしたエポキシ樹脂を培地へ37℃、5%CO2条件で12時間浸漬させた。
 次いで、前培養したHeLa細胞の培地を、エポキシ樹脂を浸漬した培地に交換し、37℃、5%CO2条件で24時間培養した。
 エポキシ樹脂を浸漬していない培地を使用した以外は上記と同様にして培養したものをコントロールとして、エポキシ樹脂にコーティングされた共重合体の細胞毒性を試験例8と同様にして評価した。MTTアッセイの試験結果を図11に示す。
 試験例8~12の結果から、共重合体(N-1-1)~(N-1-5)及び(N-2)は細胞毒性が低いことがわかる。
 したがって、斯かる共重合体が塗布された本発明の生体内医療構造体は、生体組織に対する影響が低い。
 試験例13 癒着試験
 10mm四方のエポキシ樹脂フィルムを、表2に示す実施例1~5のサンプルに浸漬させ2時間静置した後、超純水で3回洗浄し未吸着ポリマーを除去した。
 次いで、雄SDラットを各群6匹ずつ6群準備し(平均体重250g)、第1群~第5群のラットはそれぞれ実施例1~5のサンプルを用いた試験に使用し、第6群のラットは基準(コントロール)として使用した。
 すなわち、上記で準備した第1群~第6群のラットの盲腸の漿膜をガーゼで摩擦して、その約1/2を剥離し、これらラットのうち、第1群~第5群のラットについては、漿膜を剥離した盲腸の表面に、実施例1~5のサンプルをコーティングしたエポキシ樹脂フィルムを、第6郡のラットについては、サンプルをコーティングしていないエポキシ樹脂フィルムを、それぞれラット1匹当たり1枚ずつ貼付した。
 次いで、切開部の筋層を連続縫合した後、皮膚を4~5針縫合した。縫合後1週間後に剖検し、腹腔内癒着状態を肉眼で観察し、下記に示す評価基準にしたがって点数評価し、6匹の平均値を採った。試験結果を表5に示す。
<点数表>
0点:癒着が認められない状態
1点:細くて容易に分離できる程度の癒着
2点:狭い範囲ではあるが、軽度の牽引に耐えられ得る程度の弱い癒着
3点:かなりしっかりとした癒着あるいは少なくとも2 箇所に癒着が認められる状態
4点:3箇所以上に癒着が認められる状態
Figure JPOXMLDOC01-appb-T000018
 上記試験例13の結果から、共重合体(N-1-1)~(N-1-5)を表面に有する構造体は、生体組織が表面に付着しにくいことがわかる。
 試験例14 血液送液試験
 射出成形により、幅150μm、深さ100μm、長さ5cmの溝と、溝の末端に設けられた直径1mmの貫通孔とを有するポリスチレン樹脂の流路基板を成形した。また、この基板と同じ大きさのポリスチレン樹脂の平板基板を成形した。
 溝を有する流路基板と平板基板を、ともに上記表2に示す実施例1~5のサンプルに浸漬し2時間静置した後、超純水で3回洗浄し未吸着ポリマーを除去した。
 次いで、平板基板の樹脂コート層と溝側を合わせ、超音波溶着により基板同士を貼り合わせ、流体が流通できる基板(マイクロ流路デバイス)を作製した。溝の末端に設けられた孔から、血液検体を一定圧力下、2μL/minのスピードで6分間送液し、送液直後から1分後と、送液開始5分後から6分後の液量をそれぞれ計量し、その時の平均流量を計算した。試験結果を表6に示す。
Figure JPOXMLDOC01-appb-T000019
 試験例14の結果から、本発明のマイクロ流路デバイスは、生体試料を含む流体を送液しても、流路表面に汚れが堆積せず、流量が衰えないことがわかる。
 

Claims (22)

  1.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を有効成分とする細胞接着防止剤。
  2.  スルフィニル基を側鎖に有する繰り返し単位が、親水性である請求項1に記載の細胞接着防止剤。
  3.  スルフィニル基を側鎖に有する繰り返し単位が、下記式(2)で表されるものである請求項1または2に記載の細胞接着防止剤。
    Figure JPOXMLDOC01-appb-C000001
    〔式(2)中、R1は、水素原子またはメチル基を示し、R2は、基-O-、基*-(C=O)-O-、基*-(C=O)-NR5-、基*-NR5-(C=O)-(R5は、水素原子または炭素数1~10の有機基を示し、*は、式(2)中のR1が結合している炭素原子と結合する位置を示す)またはフェニレン基を示し、R3は、直接結合または炭素数1~24の2価の有機基を示し、R4は、炭素数1~10の有機基を示す。〕
  4.  重合体が、更に疎水性繰り返し単位を有する請求項1~3のいずれか1項に記載の細胞接着防止剤。
  5.  疎水性繰り返し単位が、スチレン類、(メタ)アクリレート類および(メタ)アクリルアミド類から選ばれる1種以上の単量体から誘導される繰り返し単位である請求項4に記載の細胞接着防止剤。
  6.  スルフィニル基を側鎖に有する繰り返し単位が、ノニオン性である請求項1~5のいずれか1項に記載の細胞接着防止剤。
  7.  重合体が、水溶性である請求項1~6のいずれか1項に記載の細胞接着防止剤。
  8.  重合体のHLB値が、10~22である請求項1~7のいずれか1項に記載の細胞接着防止剤。
  9.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する、表面が改質された器具。
  10.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、器具表面の少なくとも一部にコーティングする工程を含むことを特徴とする、表面が改質された器具の製造方法。
  11.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する、表面が改質された装置。
  12.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、装置表面の少なくとも一部にコーティングする工程を含むことを特徴とする、表面が改質された装置の製造方法。
  13.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、表面の少なくとも一部に有する生体内医療構造体。
  14.  スルフィニル基を側鎖に有する繰り返し単位が、親水性である請求項13に記載の生体内医療構造体。
  15.  スルフィニル基を側鎖に有する繰り返し単位が、下記式(2)で表されるものである請求項13または14に記載の生体内医療構造体。
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、R1は、水素原子またはメチル基を示し、R2は、基-O-、基*-(C=O)-O-、基*-(C=O)-NR5-、基*-NR5-(C=O)-(R5は、水素原子または炭素数1~10の有機基を示し、*は、式(2)中のR1が結合している炭素原子と結合する位置を示す)またはフェニレン基を示し、R3は、直接結合または炭素数1~24の2価の有機基を示し、R4は、炭素数1~10の有機基を示す。〕
  16.  重合体が、更に疎水性繰り返し単位を有する請求項13~15のいずれか1項に記載の生体内医療構造体。
  17.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を構造体表面の少なくとも一部にコーティングする工程を含むことを特徴とする生体内医療構造体の製造方法。
  18.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体を、マイクロ流路内表面の少なくとも一部に有するマイクロ流路デバイス。
  19.  スルフィニル基を側鎖に有する繰り返し単位が、親水性である請求項18に記載のマイクロ流路デバイス。
  20.  スルフィニル基を側鎖に有する繰り返し単位が、下記式(2)で表されるものである請求項18または19に記載のマイクロ流路デバイス。
    Figure JPOXMLDOC01-appb-C000003
    〔式(2)中、R1は、水素原子またはメチル基を示し、R2は、基-O-、基*-(C=O)-O-、基*-(C=O)-NR5-、基*-NR5-(C=O)-(R5は、水素原子または炭素数1~10の有機基を示し、*は、式(2)中のR1が結合している炭素原子と結合する位置を示す)またはフェニレン基を示し、R3は、直接結合または炭素数1~24の2価の有機基を示し、R4は、炭素数1~10の有機基を示す。〕
  21.  重合体が、更に疎水性繰り返し単位を有する請求項18~20のいずれか1項に記載のマイクロ流路デバイス。
  22.  スルフィニル基を側鎖に有する繰り返し単位を有する重合体をマイクロ流路内表面の少なくとも一部にコーティングする工程を含むことを特徴とするマイクロ流路デバイスの製造方法。
PCT/JP2012/083568 2011-12-28 2012-12-26 細胞接着防止剤 WO2013099901A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/369,692 US9320836B2 (en) 2011-12-28 2012-12-26 Cell adhesion inhibitor
JP2013551718A JP6070573B2 (ja) 2011-12-28 2012-12-26 細胞接着防止剤
EP12863715.4A EP2799536B1 (en) 2011-12-28 2012-12-26 Cell adhesion inhibitor
CN201280064778.8A CN104039949B (zh) 2011-12-28 2012-12-26 细胞粘附抑制剂
US15/050,258 US10214607B2 (en) 2011-12-28 2016-02-22 Cell adhesion inhibitor
US16/163,522 US20190048113A1 (en) 2011-12-28 2018-10-17 Cell Adhesion Inhibitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-289436 2011-12-28
JP2011289436 2011-12-28
JP2012-006879 2012-01-17
JP2012006880 2012-01-17
JP2012006879 2012-01-17
JP2012-006880 2012-03-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/369,692 A-371-Of-International US9320836B2 (en) 2011-12-28 2012-12-26 Cell adhesion inhibitor
US15/050,258 Division US10214607B2 (en) 2011-12-28 2016-02-22 Cell adhesion inhibitor

Publications (1)

Publication Number Publication Date
WO2013099901A1 true WO2013099901A1 (ja) 2013-07-04

Family

ID=48697385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083568 WO2013099901A1 (ja) 2011-12-28 2012-12-26 細胞接着防止剤

Country Status (5)

Country Link
US (3) US9320836B2 (ja)
EP (1) EP2799536B1 (ja)
JP (2) JP6070573B2 (ja)
CN (1) CN104039949B (ja)
WO (1) WO2013099901A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004939A (ja) * 2016-07-01 2018-01-11 Jsr株式会社 感光性樹脂組成物、細胞培養基板およびその製造方法、ならびに細胞培養基材用処理剤
JP2018512875A (ja) * 2015-04-22 2018-05-24 バークレー ライツ,インコーポレイテッド マイクロ流体デバイスにおける細胞の凍結及び保管
KR20180070577A (ko) 2015-10-16 2018-06-26 닛산 가가쿠 고교 가부시키 가이샤 유로용 코팅제
JPWO2017104821A1 (ja) * 2015-12-18 2018-10-04 日本ゼオン株式会社 浮遊培養馴化接着型細胞の調製方法、接着型上皮細胞の上皮間葉転換誘導方法、及びそれらの利用
JP2020118661A (ja) * 2019-01-24 2020-08-06 住友ゴム工業株式会社 特定細胞の分画方法及び捕捉方法
US11470841B2 (en) 2016-06-15 2022-10-18 Nissan Chemical Corporation Cryopreservation vessel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743280B1 (en) * 2011-08-10 2018-10-10 JSR Corporation Polymer, surface hydrophilizing agent containing said polymer, and manufacturing method for substrate having hydrophilic surface
JP6070573B2 (ja) * 2011-12-28 2017-02-01 Jsr株式会社 細胞接着防止剤
CN104926976B (zh) * 2015-04-27 2018-06-05 苏州大学 糖胺聚糖类似物及其合成方法及其在体外胚胎干细胞增殖及定向神经分化中的应用方法
KR20180023886A (ko) * 2015-07-03 2018-03-07 닛산 가가쿠 고교 가부시키 가이샤 생체 물질의 부착 억제능을 갖는 이온 콤플렉스 재료 및 그 제조 방법
EP3438662A4 (en) * 2016-03-31 2020-01-22 Furukawa Electric Co., Ltd. CELL RECORDING CHIP AND SCREENING METHOD USING A CELL RECORDING CHIP
JP6779483B2 (ja) 2016-09-29 2020-11-04 住友ゴム工業株式会社 医療用検査装置及び細胞検査方法
JP7109719B2 (ja) 2018-02-14 2022-08-01 住友ゴム工業株式会社 特定細胞捕捉方法
US11614440B2 (en) 2019-01-24 2023-03-28 Sumitomo Rubber Industries, Ltd. Specific cell fractionating and capturing methods

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783923A (ja) 1993-09-14 1995-03-31 Nippon Oil & Fats Co Ltd タンパク質吸着防止剤
JPH09225018A (ja) 1995-12-21 1997-09-02 Yoshihiko Shimizu ヒト由来の天然コラーゲン膜からなる医用材料
JP2000116765A (ja) 1998-10-15 2000-04-25 Kuraray Co Ltd 癒着防止用材料
JP2001252896A (ja) 2000-03-06 2001-09-18 Hitachi Ltd マイクロ流路及びそれを用いたマイクロポンプ
JP2005080579A (ja) 2003-09-09 2005-03-31 Nof Corp 動物細胞固定化材及び動物細胞固定化方法
JP2005125280A (ja) 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology 微粒子製造装置および微粒子製造方法
JP2006265541A (ja) * 2005-02-25 2006-10-05 Mitsui Chemicals Inc オレフィンの重合方法及び該重合方法で得られる重合体
JP2006296916A (ja) 2005-04-25 2006-11-02 Teijin Ltd 癒着防止材
JP2007126681A (ja) * 2007-01-09 2007-05-24 Japan Polypropylene Corp 極性基含有プロピレン系共重合体の製造方法
JP2008082961A (ja) 2006-09-28 2008-04-10 Sumitomo Bakelite Co Ltd マイクロ流路デバイス
JP2009086309A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
JP2010250074A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法
JP2010250075A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434550A1 (de) * 1973-07-20 1975-02-06 Boehringer Sohn Ingelheim Verwendung von so-haltigen monomeren und polymeren als resorptionsvermittler
JP3372551B2 (ja) * 1995-11-21 2003-02-04 ノバルティス アクチエンゲゼルシャフト 多価ポリマー、その製造方法、および生物学的に活性な化合物の製造におけるその使用
JP4330268B2 (ja) * 1997-09-03 2009-09-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 新規な生体模倣ヒドロゲル材料
JP2000119246A (ja) * 1998-10-13 2000-04-25 Daicel Chem Ind Ltd 新規なアクリル酸エステル及びポリアクリル酸エステル並びにその製造方法
US6886936B2 (en) * 2000-07-28 2005-05-03 Ocular Sciences, Inc. Contact lenses with blended microchannels
EP2743280B1 (en) * 2011-08-10 2018-10-10 JSR Corporation Polymer, surface hydrophilizing agent containing said polymer, and manufacturing method for substrate having hydrophilic surface
JP6070573B2 (ja) * 2011-12-28 2017-02-01 Jsr株式会社 細胞接着防止剤

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783923A (ja) 1993-09-14 1995-03-31 Nippon Oil & Fats Co Ltd タンパク質吸着防止剤
JPH09225018A (ja) 1995-12-21 1997-09-02 Yoshihiko Shimizu ヒト由来の天然コラーゲン膜からなる医用材料
JP2000116765A (ja) 1998-10-15 2000-04-25 Kuraray Co Ltd 癒着防止用材料
JP2001252896A (ja) 2000-03-06 2001-09-18 Hitachi Ltd マイクロ流路及びそれを用いたマイクロポンプ
JP2005080579A (ja) 2003-09-09 2005-03-31 Nof Corp 動物細胞固定化材及び動物細胞固定化方法
JP2005125280A (ja) 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology 微粒子製造装置および微粒子製造方法
JP2006265541A (ja) * 2005-02-25 2006-10-05 Mitsui Chemicals Inc オレフィンの重合方法及び該重合方法で得られる重合体
JP2006296916A (ja) 2005-04-25 2006-11-02 Teijin Ltd 癒着防止材
JP2008082961A (ja) 2006-09-28 2008-04-10 Sumitomo Bakelite Co Ltd マイクロ流路デバイス
JP2007126681A (ja) * 2007-01-09 2007-05-24 Japan Polypropylene Corp 極性基含有プロピレン系共重合体の製造方法
JP2009086309A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
JP2010250074A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法
JP2010250075A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、及びそれを用いたパターン形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Formulation Design with Organic Conception Diagram", 1998, NIHON EMULSION CO., LTD
See also references of EP2799536A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512875A (ja) * 2015-04-22 2018-05-24 バークレー ライツ,インコーポレイテッド マイクロ流体デバイスにおける細胞の凍結及び保管
KR20180070577A (ko) 2015-10-16 2018-06-26 닛산 가가쿠 고교 가부시키 가이샤 유로용 코팅제
US10889791B2 (en) 2015-10-16 2021-01-12 Nissan Chemical Industries, Ltd. Coating agent for flow passage
JPWO2017104821A1 (ja) * 2015-12-18 2018-10-04 日本ゼオン株式会社 浮遊培養馴化接着型細胞の調製方法、接着型上皮細胞の上皮間葉転換誘導方法、及びそれらの利用
US11470841B2 (en) 2016-06-15 2022-10-18 Nissan Chemical Corporation Cryopreservation vessel
JP2018004939A (ja) * 2016-07-01 2018-01-11 Jsr株式会社 感光性樹脂組成物、細胞培養基板およびその製造方法、ならびに細胞培養基材用処理剤
JP2020118661A (ja) * 2019-01-24 2020-08-06 住友ゴム工業株式会社 特定細胞の分画方法及び捕捉方法

Also Published As

Publication number Publication date
EP2799536A1 (en) 2014-11-05
JP6070573B2 (ja) 2017-02-01
CN104039949B (zh) 2020-09-08
JPWO2013099901A1 (ja) 2015-05-07
US20160168294A1 (en) 2016-06-16
US20190048113A1 (en) 2019-02-14
US9320836B2 (en) 2016-04-26
JP2017012928A (ja) 2017-01-19
CN104039949A (zh) 2014-09-10
US20150017221A1 (en) 2015-01-15
US10214607B2 (en) 2019-02-26
EP2799536A4 (en) 2016-02-24
JP6372544B2 (ja) 2018-08-15
EP2799536B1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6372544B2 (ja) 細胞接着防止剤
US10774165B2 (en) Polymer composition, article, medical device, article production method, and cell cluster production method
Kwon et al. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property
JP2011518907A (ja) 改質されたハロゲン化ポリマー表面
JP5874859B1 (ja) 体液接触用医療用具および生体適合性重合体
US11672884B2 (en) Silicone polyurea block copolymer coating compositions and methods
US20230399538A1 (en) Polyurea copolymer coating compositions and methods
JP2023027114A (ja) 蛋白質、細胞又は微生物の接着抑制剤、並びにその用途
Yang et al. Thermally stable bioinert zwitterionic sulfobetaine interfaces tolerated in the medical sterilization process
Yao et al. Strongly adhesive zwitterionic composite hydrogel paints for surgical sutures and blood-contacting devices
JP2018123275A (ja) 細胞接着防止剤
WO2015133461A1 (ja) 生体物質の付着抑制能を有するイオンコンプレックス材料
WO2023190383A1 (ja) ポリマー組成物
US20220135806A1 (en) Method for producing polymer compatible with biomaterials
Tanaka Design of multifunctional soft biomaterials: Based on the intermediate water concept
WO2023013410A1 (ja) 高分子組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551718

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012863715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14369692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE