WO2013098921A1 - 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置 - Google Patents

永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置 Download PDF

Info

Publication number
WO2013098921A1
WO2013098921A1 PCT/JP2011/080089 JP2011080089W WO2013098921A1 WO 2013098921 A1 WO2013098921 A1 WO 2013098921A1 JP 2011080089 W JP2011080089 W JP 2011080089W WO 2013098921 A1 WO2013098921 A1 WO 2013098921A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
circumferential
curved surface
permanent magnet
outer peripheral
Prior art date
Application number
PCT/JP2011/080089
Other languages
English (en)
French (fr)
Inventor
浩二 矢部
馬場 和彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/366,861 priority Critical patent/US9871419B2/en
Priority to CN201180075759.0A priority patent/CN103999329B/zh
Priority to JP2013551062A priority patent/JP5762569B2/ja
Priority to EP11878375.2A priority patent/EP2800243B8/en
Priority to PCT/JP2011/080089 priority patent/WO2013098921A1/ja
Publication of WO2013098921A1 publication Critical patent/WO2013098921A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotor of a permanent magnet embedded motor and a compressor, a blower, and a refrigeration air conditioner using the rotor.
  • the magnetic body has six divided outer peripheral surfaces in which the outer peripheral surface of the magnetic body is divided at equal angular intervals in the circumferential direction corresponding to the permanent magnets, and a nonmagnetic portion located between each of the six divided outer peripheral surfaces.
  • the nonmagnetic portion is configured as a recess in which air is interposed between each of the six divided outer peripheral surfaces and the stator, and the divided outer peripheral surface is a first arcuate surface formed at a central portion in the circumferential direction.
  • two second arcuate surfaces that are continuously connected to both ends of the first arcuate surface and have a smaller radius of curvature than the radius of curvature of the first arcuate surface.
  • the rotor core of the permanent magnet embedded motor is configured such that the nonmagnetic part is formed as a recess between each of the six divided outer peripheral surfaces and air is interposed between the stator and the stator. Since the width in the direction perpendicular to the radial direction of the permanent magnet embedded in the rotor core in the circumferential direction is determined depending on the depth of the recess, the width in the direction perpendicular to the radial direction of the permanent magnet is increased. There was a problem that restrictions were added and it was difficult to further strengthen the magnetic force.
  • the present invention has been made in view of the above, and it is possible to reduce torque ripple and to further enhance the magnetic force, as well as a rotor of an embedded permanent magnet motor, and a compressor using the rotor,
  • An object is to provide a blower and a refrigeration air conditioner.
  • the rotor of the permanent magnet embedded motor is a magnetic steel sheet in which a plurality of magnet insertion holes are provided at equiangular intervals along the circumferential outer periphery. And a plurality of permanent magnets that are inserted alternately into the adjacent magnet insertion holes with different polarities to form magnetic poles, and the plurality of magnet insertion holes are the permanent magnets.
  • the outer peripheral surface of the rotor core is divided into a plurality of divided portions at equal angular intervals in the circumferential direction corresponding to the permanent magnets.
  • the split outer peripheral surface has a radial distance from the axis of the rotor core at the circumferential center of the divided outer peripheral surface, and is formed from the circumferential center to the circumferential end.
  • a first curved surface and a circumferential end of the divided outer circumferential surface A radial distance from the axial center of the rotor core is minimized, and is formed by a second curved surface that extends from the circumferential end to the circumferential center and intersects the first curved surface.
  • the distance between both ends of the curved surface of 1 is smaller than the width in the direction perpendicular to the radial direction of the permanent magnet, and is the end on the circumferential center side of the divided outer peripheral surface of the gap formed in the magnet insertion hole It is characterized by being larger than the distance between them.
  • FIG. 1 is a cross-sectional view of a rotor and a stator of a permanent magnet embedded motor according to an embodiment.
  • FIG. 2 is an enlarged view of the magnetic pole part of the rotor of the permanent magnet embedded motor shown in FIG.
  • FIG. 3 is an enlarged view of a magnetic pole portion of a rotor of a conventional permanent magnet embedded motor.
  • FIG. 4 is a diagram for explaining the condition of the angle between both ends of the circular arc surface constituting the third curved surface.
  • FIG. 1 is a cross-sectional view of a rotor and a stator of a permanent magnet embedded motor according to an embodiment.
  • the permanent magnet embedded motor includes a stator 1 and a rotor 15.
  • the rotor 15 includes a rotor core 2, a plurality of permanent magnets 3, and a rotating shaft 4.
  • the stator 1 is arranged so as to surround the rotor 15 with the rotary shaft 4 as a central axis, and a plurality of teeth portions 5 around which stator windings are wound are equiangularly spaced via the slot portions 6.
  • the stator 1 has a concentrated winding structure in which the stator winding is wound around each tooth portion 5 and a distributed winding structure in which the stator winding is wound around the plurality of tooth portions 5. Although it may have, it is applicable to both.
  • the teeth part 5 and the slot part 6 have shown the example each comprised 9 pieces.
  • the number of the teeth portions 5 and the slot portions 6 is not limited to this, and may be less than 9 or 9 or more.
  • the rotor core 2 is a thin electromagnetic steel plate (for example, a thickness of about 0.1 to 1.0 mm, a non-oriented electrical steel plate (a crystal of each crystal so as not to exhibit magnetic properties in a specific direction of the steel plate).
  • the axial direction is randomly arranged as much as possible)) is punched into a predetermined shape with a mold, and a predetermined number (a plurality) is laminated.
  • a plurality of magnet insertion holes 7 are formed in the rotor core 2 at equiangular intervals along the circumferential outer periphery.
  • the magnet insertion hole 7 is formed such that a gap 9 is formed at both ends in the circumferential direction of the magnet insertion hole 7 when the permanent magnet 3 is inserted.
  • a shaft hole 8 into which the rotating shaft 4 is fitted is formed at the center of the rotor core 2.
  • the permanent magnet 3 for example, a rare earth mainly composed of neodymium, iron, or boron is formed in a flat plate shape, and both surfaces thereof are magnetized to an N pole and an S pole, respectively.
  • each magnet insertion hole 7 of the rotor core 2 permanent magnets 3 are respectively embedded so that N pole faces and S pole faces are alternated, thereby forming a rotor 15.
  • the number of magnetic poles of the rotor 15 may be any number as long as it is 2 or more. However, in the example shown in FIG. 1, the case where the number of magnetic poles of the rotor 15 is 6 is illustrated.
  • the outer peripheral surface of the rotor core 2 is constituted by a plurality of divided outer peripheral surfaces 10 that are divided at equal angular intervals in the circumferential direction corresponding to a plurality of permanent magnets 3 (here, six pieces).
  • Each part of the rotor 15 divided for each divided outer peripheral surface 10 is hereinafter referred to as a “magnetic pole part”.
  • FIG. 2 is an enlarged view of the magnetic pole part of the rotor of the permanent magnet embedded motor shown in FIG.
  • the divided outer peripheral surface 10 constituting the magnetic pole portion is configured by combining a plurality of curved surfaces. More specifically, the divided outer circumferential surface 10 has a radial distance r1 from the axial center of the rotor core 2 at the circumferential center (magnetic pole center portion) of the divided outer circumferential surface 10, and is the circumferential end from the circumferential center. The radial distance r2 from the axial center of the rotor core 2 is minimized at the circumferential end of the first curved surface 11 and the divided outer circumferential surface 10 formed across the portion (interpolar portion), and the circumferential end And a second curved surface 12 that extends from the center in the circumferential direction and intersects the first curved surface.
  • the first curved surface 11 includes a third curved surface 13 formed by an arc surface having a radius r3 and a third curved surface in a predetermined section formed from the circumferential center of the divided outer circumferential surface 10 to the circumferential end. And the fourth curved surface 14 in the section from the end of the curved surface 13 to the second curved surface 12.
  • the central axis of the arc surface forming the third curved surface 13 is the axis of the rotor core 2
  • the second curved surface 12 is formed by an arc surface having a radius r2 smaller than the radial distance r1 from the axis of the rotor core 2 (r1> r2).
  • r1> r2 an example in which the central axis of the arc surface forming the second curved surface 12 is the axis of the rotor core 2 is shown.
  • the radial distance a between the arc surface forming the second curved surface 12 and the inner peripheral surface 1 a of the stator 1 is the arc forming the third curved surface 13. It is formed to be larger than the radial distance b between the surface and the inner peripheral surface 1 a of the stator 1.
  • the magnet insertion hole 7 has gaps 9 formed at both ends in the circumferential direction of the magnet insertion hole 7 when the permanent magnet 3 is inserted. Since the air gap 9 acts as a magnetic resistance, the magnetic flux near the thin portion 16 is reduced. Thereby, it also has the function to reduce the leakage magnetic flux between adjacent magnetic pole parts.
  • FIG. 3 is an enlarged view of a magnetic pole portion of a rotor of a conventional permanent magnet embedded motor. As shown in FIG.
  • the divided outer peripheral surface 10a of the rotor core 2a is larger than the radius r1 of the arc surface forming the third arc surface 13 shown in FIG. It is formed by a single circular arc surface having a small radius r1 ′.
  • the radial distance b ′ from the inner peripheral surface 1a of the stator 1 at the center in the circumferential direction of the divided outer peripheral surface 10a is the smallest, and the inner peripheral surface 1a of the stator 1 at both circumferential ends of the divided outer peripheral surface 10a.
  • the radial distance a ′ is the largest.
  • the magnetic flux density at the circumferential center of the divided outer circumferential surface 10a having the smallest radial distance is large, and the magnetic flux density decreases as the radial distance increases toward the circumferential end of the divided outer circumferential surface 10a.
  • the magnetic flux density on the outer periphery of the rotor core 2a approaches a sine wave shape, and torque ripple can be reduced.
  • the radial distance a ′ between the divided outer peripheral surface 10 of the rotor core 2 and the inner peripheral surface 1a of the stator 1 is increased. Restriction is imposed on increasing the width in the direction orthogonal to the direction, and it is difficult to further strengthen the magnetic force.
  • the first curved surface 11 having the maximum radial distance r1 from the axis of the rotor core 2 and the radial distance r2 from the axis of the rotor core 2.
  • the divided outer peripheral surface 10 is formed by the second curved surface 12 in which is minimized.
  • the curvature of the circumferential end of the divided outer circumferential surface 10 (that is, the curvature of the second curved surface 12) is larger than the curvature of the circumferential center of the divided outer circumferential surface 10 (that is, the curvature of the first curved surface 11).
  • the amount of change in the magnetic flux density is the smallest near the center in the circumferential direction of the divided outer circumferential surface 10 and increases as it goes toward the circumferential end of the divided outer circumferential surface 10.
  • the distance A between both ends (XY) of the first curved surface 11 is made shorter than the width L in the direction perpendicular to the radial direction of the permanent magnet 3, so that the first curved surface 11 Is made larger than the distance B between the ends on the center side in the circumferential direction of the divided outer peripheral surface 10 of the gap 9 formed in the magnet insertion hole 7 (L> A> B).
  • the magnetic flux density at the center in the circumferential direction of the divided outer peripheral surface 10 becomes larger, the magnetic flux density near the circumferential end of the divided outer peripheral surface 10 becomes smaller, and the magnetic flux density at the outer periphery of the rotor core 2 is made sinusoidal. Can be approached.
  • the permanent magnet 3 is V-shaped, or other than the flat plate shape (rectangular, trapezoidal) as shown in FIGS. It is applicable even when using.
  • the linear distance between both end portions of the permanent magnet 3 closest to the circumferential end portion of the divided outer peripheral surface 10 may be set to “L” described above.
  • the fourth curved surface 14 forming the first curved surface 11 exists to continuously connect the third curved surface 13 and the second curved surface 12. Since the torque ripple increases when the fourth curved surface 14 approaches a straight line, the fourth curved surface 14 is preferably formed by an arc surface. It is more preferable that the third curved surface 13 and the second curved surface 12 are connected as continuously as possible. Therefore, in the present embodiment, the radius of the arc surface forming the fourth curved surface 14 is made smaller than the arc surface forming the second curved surface 12 and the arc surface forming the third curved surface 13. . In this way, the magnetic flux density generated from the rotor core 2 approaches a sine wave shape, and the torque ripple can be reduced.
  • the radius of the arc surface constituting the fourth curved surface 14 is set to be equal to or less than 1 ⁇ 2 of the radial distance r1 from the axial center of the rotor core 2 at the circumferential center on the first curved surface 11.
  • the curvature of the fourth curved surface 14 is larger than the curvature of the third curved surface 13 near the center in the circumferential direction of the divided outer circumferential surface 10, so that the magnetic flux density can be made more sinusoidal and torque ripple And the generation of noise due to torque ripple can be further suppressed.
  • FIG. 4 is a diagram for explaining the condition of the angle between both ends of the circular arc surface constituting the third curved surface.
  • the width of the arcuate surface constituting the third curved surface 13 on the divided outer peripheral surface 10, that is, the radial distance between the stator 1 and the rotor core 2 is kept constant in the vicinity of the center in the circumferential direction of the divided outer peripheral surface 10.
  • the predetermined section becomes large, there may be a section where the magnetic flux flowing into the teeth portion 5 formed in the stator 1 does not change even when the rotor core 2 rotates. In this case, the induced voltage is less likely to be generated, and the induced voltage includes many harmonics, so that the torque ripple increases.
  • the angle ⁇ 1 between both ends of the arc surface constituting the third curved surface 13 is ( ⁇ 1 ⁇ 360) when the number of slots formed in the stator 1 is S, as shown in FIG. (° / S) is satisfied, there is no section in which the radial distance between the rotor core 2 and the stator 1 does not change with respect to the teeth portion 5 of the stator 1, and harmonics included in the induced voltage are reduced. Torque ripple can be reduced.
  • the magnetic flux flowing into the tooth portion 5 depends on the angle ⁇ 2 between the tips of the teeth portion 5 of the inner peripheral surface 1a of the stator 1. Therefore, it is more desirable to satisfy ( ⁇ 1 ⁇ 2) (see FIG. 4).
  • the central axis of the arc surface forming the second curved surface 12 is the axis of the rotor core 2
  • the harmonic component of the induced voltage is shown.
  • the magnetic flux density on the outer periphery of the rotor core 2 is desirably sinusoidal, and the magnetic flux density near the center in the circumferential direction of the divided outer peripheral surface 10 is desirable. It is desirable that the amount of change in the magnetic flux density increases as it goes toward the circumferential end of the divided outer peripheral surface 10.
  • the radial distance a between the circular arc surface forming the second curved surface 12 and the inner peripheral surface 1a of the stator 1 is changed from a position at a predetermined angle from the circumferential end of the divided outer peripheral surface 10 to the circumferential end. If it is made larger as it goes, the magnetic flux density entering the teeth portion 5 formed in the stator 1 can be increased, so that the magnetic flux density on the outer periphery of the rotor core 2 becomes more sinusoidal and torque ripple is reduced. Can be small.
  • the predetermined angle from the circumferential end of the divided outer circumferential surface 10 on the second curved surface 12 is at least (360 ° / S / 4), for example, where S is the number of slots formed in the stator 1.
  • the radial distance a between the circular arc surface forming the second curved surface 12 and the inner peripheral surface 1a of the stator 1 is at least an angle from the circumferential end of the divided outer peripheral surface 10 (360 ° / What is necessary is just to make it become large as it goes to the circumferential direction edge part from the position used as S / 4).
  • the section from the circumferential end of the divided outer circumferential surface 10 to the position at the predetermined angle described above has a convex shape in the centrifugal direction, so that the magnetic flux density on the outer circumference of the rotor core 2 is reduced. It can be made more sinusoidal.
  • each curved surface (that is, the 3rd curved surface 13 and the 4th curved surface 14 which form the 1st curved surface 11, and the 2nd curved surface 12) which comprises the division
  • the amount of change in the magnetic flux density on the outer periphery of the rotor core 2 becomes larger at the center in the circumferential direction of the divided outer peripheral surface 10, and the circumferential direction of the divided outer peripheral surface 10. It becomes smaller at the end.
  • the angle from the circumferential end of the divided outer peripheral surface 10 on the second curved surface 12 is at least (360 ° / S / 4). Since the magnetic flux density increases from 0T, it is important that the magnetic flux density in this section is a sine wave. Therefore, the section up to a position where the angle from the circumferential end of the divided outer circumferential surface 10 is at least (360 ° / S / 4) on the second curved surface 12 exhibits a convex shape in the centrifugal direction, whereby the rotor The magnetic flux density on the outer periphery of the iron core 2 can be made close to a sine wave shape.
  • each curved surface constituting the divided outer peripheral surface 10 of the rotor core 2 has a convex shape in the centrifugal direction, the magnetic flux density on the outer periphery of the rotor core 2 can be made closer to a sinusoidal shape.
  • the magnet insertion hole 7 has gaps 9 formed at both ends in the circumferential direction of the magnet insertion hole 7 when the permanent magnet 3 is inserted.
  • the gap 9 also has a function of preventing the permanent magnet 3 from hitting the thin portion 16 even if the permanent magnet 3 moves in the magnet insertion hole 7.
  • the harmonic component of the induced voltage can be reduced by reducing the radial width of the thin wall portion 16 from the circumferential center side of the divided outer peripheral surface 10 toward the circumferential end portion, and the torque ripple can be reduced. Reduction and generation of noise due to torque ripple can be suppressed.
  • the magnetic flux density passing through the thin portion 16 becomes smaller as the radial width of the thin portion 16 is smaller. Therefore, the magnetic flux density on the outer periphery of the rotor core 2 can be made closer to a sinusoidal shape by reducing the radial width of the thin portion 16 from the circumferential center side of the divided outer peripheral surface 10 toward the circumferential end. Torque ripple due to harmonic components of the induced voltage can be reduced, and noise generation due to torque ripple can be suppressed.
  • the outer peripheral surface of the core is constituted by a plurality of divided outer peripheral surfaces that are divided at equal angular intervals in the circumferential direction corresponding to the permanent magnet, and the divided outer peripheral surface is the axis of the rotor core at the circumferential center of the divided outer peripheral surface.
  • the radial distance from the center is the maximum, the first curved surface formed from the circumferential center to both ends in the circumferential direction, and the radial distance from the axis of the rotor core at the circumferential ends of the divided outer circumferential surface is the minimum.
  • the width in the direction in which the distance between both ends of the first curved surface is perpendicular to the radial direction of the permanent magnet is formed by the second curved surface formed from the circumferential end to the circumferential center and intersecting the first curved surface.
  • the arrangement interval of the permanent magnets is expanded in the radial direction, and in the direction orthogonal to the radial direction at the circumferential center of the divided outer peripheral surface.
  • the width of the permanent magnet can be increased, and it is possible to further enhance the magnetic force of the embedded permanent magnet motor while reducing torque ripple.
  • a predetermined section formed from the circumferential center of the divided outer circumferential surface to the circumferential end on the first curved surface, that is, the third curved surface is a circular arc surface having the axis of the rotor core as the central axis.
  • the radial distance from the axial center of the rotor core at the circumferential center of the divided outer peripheral surface becomes equal, so that the equivalent gap is reduced and the divided outer peripheral surface Since the magnetic flux density near the center in the circumferential direction is increased, the magnetic force of the permanent magnet embedded motor is further strengthened, and high efficiency can be achieved.
  • a predetermined section of the first curved surface that is, a section from the end of the arc surface forming the third curved surface to the second curved surface, that is, the fourth curved surface is formed by the arc surface, and the arc Since the radius of the surface is made smaller than the radius of the circular arc surface forming the second curved surface, the magnetic flux density generated from the rotor approaches a sine wave shape, and torque ripple can be reduced.
  • the radius of the arc surface constituting the fourth curved surface is set to be equal to or less than 1 ⁇ 2 of the radial distance from the axis of the rotor core at the circumferential center on the first curved surface, Since the curvature of the curved surface becomes larger than the curvature of the third curved surface near the center in the circumferential direction of the divided outer peripheral surface, the magnetic flux density can be made closer to a sine wave shape, torque ripple can be further reduced, and torque ripple It is possible to further suppress the generation of noise due to the noise.
  • the radial distance between the rotor and the stator is relative to the teeth portion of the stator.
  • the angle between both ends of the arc surface constituting the third curved surface is set to the tip of the teeth portion 5. It is more preferable that the angle be less than the angle.
  • the radial distance between the circular arc surface forming the second curved surface and the inner peripheral surface of the stator is increased from the position at a predetermined angle from the circumferential end of the divided outer peripheral surface toward the circumferential end.
  • the angle from the circumferential end of the divided outer peripheral surface on the second curved surface is at least (360 ° / S / 4),
  • the radial distance between the stator and the rotor may be gradually increased toward the circumferential end.
  • each curved surface (that is, the third curved surface, the fourth curved surface, and the second curved surface forming the first curved surface) constituting the divided outer peripheral surface of the rotor core is concave in the centrifugal direction.
  • the amount of change in the magnetic flux density on the outer periphery of the rotor is large at the center in the circumferential direction of the divided outer peripheral surface, and is small at the circumferential end portion of the divided outer peripheral surface. That is, it is not preferable because the magnetic flux density on the outer periphery of the rotor core cannot be made close to a sine wave shape.
  • the section to the position where the angle from the circumferential end of the divided outer peripheral surface is at least (360 ° / S / 4) on the second curved surface is Since the magnetic flux density increases from 0T, it is important to make the magnetic flux density in this section sinusoidal. Therefore, the section up to the position where the angle from the circumferential end of the divided outer circumferential surface is at least (360 ° / S / 4) on the second curved surface has a convex shape in the centrifugal direction, so that the rotor core It becomes possible to make the magnetic flux density on the outer periphery close to a sine wave.
  • each phase constituting the divided outer peripheral surface of the rotor has a convex shape in the centrifugal direction, the magnetic flux density on the outer periphery of the rotor core can be made closer to a sine wave.
  • a gap is formed at both ends in the circumferential direction of the magnet insertion hole, thereby reducing leakage magnetic flux between adjacent magnetic pole portions and allowing the permanent magnet to be inserted into the magnet insertion hole. Can be prevented from hitting the thin portion formed between the outer peripheral surface of the rotor core and the air gap.
  • the amount of change in the magnetic flux density on the outer periphery of the rotor core can be made closer to a sinusoidal shape by reducing the radial width of the thin wall portion from the circumferential center side of the divided outer peripheral surface toward the circumferential end portion. Torque ripple due to harmonic components of the induced voltage can be reduced, and noise generation due to torque ripple can be suppressed.
  • the permanent magnet embedded motor of the present embodiment is suitable for use in a compressor or a blower, and the compressor and the blower can be reduced in size and increased in efficiency.
  • the refrigeration air conditioner can be reduced in size and efficiency.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 永久磁石埋込型モータのトルクリップルの低減を図ると共に、更なる磁力強化を図ることが可能な永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置を得ること。回転子鉄心2の外周面を永久磁石3に対応して周方向に等角度間隔に分割された複数の分割外周面10を、分割外周面10の周方向中心において回転子鉄心2の軸心からの径方向距離が最大となり、周方向中心から周方向端部に渡って形成される第1の曲面11と、分割外周面10の周方向端部において回転子鉄心2の軸心からの径方向距離が最小となり、周方向端部から周方向中心に渡って形成され第1の曲面11に交わる第2の曲面12とにより形成し、第1の曲面11の両端間距離が永久磁石3の径方向に直交する方向の幅よりも小さく、且つ、磁石挿入孔7の両端部に形成された空隙9の分割外周面10の周方向中心側の端部間の距離よりも大きくなるようにした。

Description

永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置
 本発明は、永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置に関する。
 従来、例えば、永久磁石に対応して磁性体の外周面が周方向で等角度間隔に分割された6つの分割外周面と、6つの分割外周面の各間に位置する非磁性部とを備え、非磁性部は、6つの分割外周面の各間に、固定子との間に空気が介在する凹部として構成され、分割外周面は、周方向の中央部に形成された第1の円弧面と、第1の円弧面の両端部に連続して連なり、第1の円弧面の曲率半径に比して曲率半径が小さい2つの第2の円弧面とを備えることにより、永久磁石埋込型モータのトルクリップルを低減させる技術が開示されている(例えば、特許文献1)。
特開2007-295708号公報
 しかしながら、上記従来技術では、永久磁石埋込型モータの回転子鉄心は、非磁性部が6つの分割外周面の各間に、固定子との間に空気が介在する凹部として構成されているため、回転子鉄心に周方向に埋設する永久磁石の径方向に直交する方向の幅がその凹部の深さに依存して決まるため、永久磁石の径方向に直交する方向の幅を大きくすることに制限が加わり、更なる磁力強化を図ることが難しい、という問題があった。
 本発明は、上記に鑑みてなされたものであって、トルクリップルの低減を図ると共に、更なる磁力強化を図ることが可能な永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる永久磁石埋込型モータの回転子は、複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、を備え、複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が形成され、前記回転子鉄心の外周面は、前記永久磁石に対応して周方向に等角度間隔に分割された複数の分割外周面からなり、前記分割外周面は、前記分割外周面の周方向中心において前記回転子鉄心の軸心からの径方向距離が最大となり、当該周方向中心から周方向端部に渡って形成される第1の曲面と、前記分割外周面の周方向端部において前記回転子鉄心の軸心からの径方向距離が最小となり、当該周方向端部から周方向中心に渡って形成され前記第1の曲面に交わる第2の曲面と、により形成され、前記第1の曲面の両端間距離は、前記永久磁石の径方向に直交する方向の幅よりも小さく、且つ、前記磁石挿入孔に形成された前記空隙の前記分割外周面の周方向中心側の端部間の距離よりも大きいことを特徴とする。
 本発明によれば、永久磁石埋込型モータのトルクリップルの低減を図ると共に、更なる磁力強化を図ることができる、という効果を奏する。
図1は、実施の形態にかかる永久磁石埋込型モータの回転子および固定子の横断面図である。 図2は、図1に示す永久磁石埋込型モータの回転子の磁極部の拡大図である。 図3は、従来の永久磁石埋込型モータの回転子の磁極部の拡大図である。 図4は、第3の曲面を構成する円弧面の両端間角度の条件を説明するための図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態.
 図1は、実施の形態にかかる永久磁石埋込型モータの回転子および固定子の横断面図である。図1に示すように、永久磁石埋込型モータは、固定子1および回転子15を備えている。また、回転子15は、回転子鉄心2と、複数の永久磁石3と、回転軸4とを備えている。
 固定子1は、回転軸4を中心軸として回転子15を囲うように配置され、その内周に固定子巻線が巻回される複数のティース部5がスロット部6を介して等角度間隔に周方向に配置されている。ここで、固定子1は、固定子巻線が各ティース部5毎に巻回された集中巻き構造を有する場合と、固定子巻線が複数のティース部5に巻回された分布巻き構造を有する場合とあるが、いずれにも適用可能である。また、図1に示す例では、ティース部5およびスロット部6は、それぞれ9個ずつ構成された例を示している。これらティース部5およびスロット部6の構成数は、これに限らず、9個未満であっても9個以上であってもよい。
 回転子鉄心2は、薄板の電磁鋼板(例えば、0.1~1.0mm程度の板厚で、無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定数(複数枚)積層して形成される。
 また、回転子鉄心2には、複数の磁石挿入孔7が周方向外周部に沿って等角度間隔に形成されている。磁石挿入孔7は、永久磁石3を挿入した際に、磁石挿入孔7の周方向両端部に空隙9が生じるように形成されている。また、回転子鉄心2の中心部に回転軸4が嵌合する軸孔8が形成されている。永久磁石3としては、例えば、ネオジウム、鉄、ボロンを主成分とする希土類などが平板形状に形成され、その両面がそれぞれN極、S極に着磁されている。回転子鉄心2の各磁石挿入孔7には、N極面とS極面とが交互になるように、永久磁石3がそれぞれ埋設され、回転子15を形成している。なお、回転子15の磁極数は、2以上であればいくつでもよいが、図1に示す例では、回転子15の磁極数が6の場合を例示してある。
 回転子鉄心2の外周面は、複数の永久磁石3(ここでは6個)にそれぞれに対応して周方向に等角度間隔に分割された複数の分割外周面10により構成されている。この各分割外周面10毎に分割された回転子15の各部位を、以下「磁極部」という。
 つぎに、実施の形態にかかる永久磁石埋込型モータの回転子15の磁極部の構造について、図2を参照して説明する。図2は、図1に示す永久磁石埋込型モータの回転子の磁極部の拡大図である。
 図2に示すように、磁極部を構成する分割外周面10は、複数の曲面が組み合わされ構成される。より具体的には、分割外周面10は、分割外周面10の周方向中心(磁極中心部)において回転子鉄心2の軸心からの径方向距離r1が最大となり、周方向中心から周方向端部(極間部)に渡って形成される第1の曲面11と、分割外周面10の周方向端部において回転子鉄心2の軸心からの径方向距離r2が最小となり、周方向端部から周方向中心に渡って形成され第1の曲面に交わる第2の曲面12とにより形成される。なお、第1の曲面11は、分割外周面10の周方向中心から周方向端部に渡って形成される所定区間において、半径r3の円弧面により形成される第3の曲面13と、第3の曲面13端から第2の曲面12に交わるまでの区間の第4の曲面14とから構成される。なお、図2に示す例では、第3の曲面13を形成する円弧面の中心軸を回転子鉄心2の軸心とし、第3の曲面13の半径r3と回転子鉄心2の軸心からの径方向距離r1とが等しい場合(r3=r1)の例を示している。
 第2の曲面12は、回転子鉄心2の軸心からの径方向距離r1よりも小さい半径r2の円弧面により形成される(r1>r2)。なお、図2に示す例では、第2の曲面12を形成する円弧面の中心軸を回転子鉄心2の軸心とした例を示している。このように形成すれば、図2に示すように、第2の曲面12を形成する円弧面と固定子1の内周面1aとの径方向距離aは、第3の曲面13を形成する円弧面と固定子1の内周面1aとの径方向距離bよりも大きくなるように形成される。
 また、図2に示すように、磁石挿入孔7は、永久磁石3を挿入した際に、磁石挿入孔7の周方向両端部に空隙9が形成されている。この空隙9は、磁気抵抗として作用するため、薄肉部16付近の磁束は減少する。これにより、隣接する磁極部間の漏洩磁束を低減させる機能も有している。
 ここで、誘起電圧の高調波成分によるトルクリップルを低減させ、トルクリップルによる騒音の発生を抑制するためには、分割外周面10の周方向中心で磁束密度が最も大きく、磁束密度の変化量が分割外周面10上の周方向中心から周方向端部にかけて徐々に大きくなり、周方向端部で磁束密度が0Tに近い値となるような正弦波状であるのが望ましい。図3は、従来の永久磁石埋込型モータの回転子の磁極部の拡大図である。図3に示すように、従来の永久磁石埋込型モータでは、一般に、回転子鉄心2aの分割外周面10aは、図2に示す第3の円弧面13を形成する円弧面の半径r1よりも小さい半径r1’の単一の円弧面により形成される。この場合、分割外周面10aの周方向中心における固定子1の内周面1aとの径方向距離b’が最も小さく、分割外周面10aの周方向両端における固定子1の内周面1aとの径方向距離a’が最も大きくなる。このような場合、径方向距離が最も小さい分割外周面10aの周方向中心の磁束密度が大きく、分割外周面10aの周方向端部に向かって径方向距離が大きくなるに従って磁束密度が小さくなるため、回転子鉄心2a外周の磁束密度が正弦波状に近づき、トルクリップルの低減が可能となる。
 一方、分割外周面10aの周方向端部付近では、回転子鉄心2の分割外周面10と固定子1の内周面1aとの径方向距離a’が大きくなるため、永久磁石3の径方向に直交する方向の幅を大きくすることに制限が加わり、更なる磁力強化を図ることが難しい。
 したがって、本実施の形態では、上述したように、回転子鉄心2の軸心からの径方向距離r1が最大となる第1の曲面11と、回転子鉄心2の軸心からの径方向距離r2が最小となる第2の曲面12とにより分割外周面10を形成している。これにより、分割外周面10の周方向中心の曲率(つまり、第1の曲面11の曲率)よりも分割外周面10の周方向端部の曲率(つまり、第2の曲面12の曲率)が大きくなり、磁束密度の変化量は、分割外周面10の周方向中心付近で最も小さく、分割外周面10の周方向端部に向かうに従い大きくなる。
 また、図2に示すように、第1の曲面11の両端間(X-Y間)距離Aを、永久磁石3の径方向に直交する方向の幅Lよりも短くし、第1の曲面11の両端間距離Aを磁石挿入孔7に形成された空隙9の分割外周面10の周方向中心側の端部間の距離Bよりも大きくする(L>A>B)。これにより、分割外周面10の周方向中心の磁束密度がより大きくなり、分割外周面10の周方向端部付近の磁束密度がより小さくなると共に、回転子鉄心2の外周の磁束密度を正弦波状に近づけることができる。
 つまり、本実施の形態の構成では、図3に示す例と同様に、トルクリップルの低減を図りつつ、更なる磁力強化を図ることが可能となる。
 なお、上述した構成は、永久磁石3をV字配置する場合や、図1および図2に示したような平板形状(長方形、台形)以外、例えば、円弧形状や瓦型形状等の永久磁石3を用いた場合であっても適用可能である。いずれの場合でも、分割外周面10の周方向端部に最も近い永久磁石3の両端部間の直線距離を上述した「L」とすればよい。
 また、図3に示す従来の永久磁石埋込型モータの回転子鉄心2aでは、分割外周面10の周方向中心から周方向端部に向かうに従い、回転子鉄心2aの分割外周面10aと固定子1の内周面1aとの間の径方向距離b´が径方向距離a´へと大きくなるため、磁束密度を正弦波状に近づけることができる半面、等価的なギャップが大きくなり分割外周面10の周方向中心付近の磁束密度が低下する。
 本実施の形態では、上述したように、第3の曲面13を形成する円弧面の半径r3と、第1の曲面11上の周方向中心における回転子鉄心2の軸心からの径方向距離r1とを等しくする(r3=r1)ことにより、第3の曲面13と固定子1の内周面1aとの径方向距離bが一定に保たれる。これにより、等価的なギャップが小さくなり分割外周面10の周方向中心付近の磁束密度が増加するため、永久磁石埋込型モータの磁力がより強化され、高効率化を図ることが可能となる。
 また、第1の曲面11を形成する第4の曲面14は、第3の曲面13と第2の曲面12との間を連続的に接続するために存在する。第4の曲面14が直線に近づくと、トルクリップルが増加するため、第4の曲面14を円弧面により形成するのが好ましい。また、第3の曲面13と第2の曲面12との間が出来るだけ連続的に接続されるのがより好ましい。したがって、本実施の形態では、第2の曲面12を形成する円弧面、第3の曲面13を形成する円弧面よりも、第4の曲面14を形成する円弧面の半径を小さくすることとする。このようにすれば、回転子鉄心2から発生する磁束密度が正弦波状に近づき、トルクリップルを低下させることができる。なお、第3の曲面13を構成する円弧面の半径r3(=r1)は、上述したように第2の曲面12を構成する円弧面の半径r2よりも大きい。したがって、第4の曲面14を構成する円弧面の半径を第2の曲面12を構成する円弧面の半径r2よりも小さくすれば、上記した条件を満たすこととなる。
 さらに、第4の曲面14を構成する円弧面の半径を、第1の曲面11上の周方向中心における回転子鉄心2の軸心からの径方向距離r1の1/2以下となるようにすれば、第4の曲面14の曲率が分割外周面10の周方向中心付近の第3の曲面13の曲率に対してより大きくなるため、磁束密度をより正弦波状に近くすることができ、トルクリップルをより低減させ、トルクリップルによる騒音の発生をより抑制することが可能となる。
 図4は、第3の曲面を構成する円弧面の両端間角度の条件を説明するための図である。第3の曲面13を構成する円弧面の分割外周面10上の幅、つまり、分割外周面10の周方向中心付近において固定子1と回転子鉄心2との径方向距離が一定に保たれる所定区間が大きくなると、回転子鉄心2が回転しても固定子1に形成されたティース部5に流れ込む磁束が変化しない区間が生じる場合がある。この場合、誘起電圧が発生し難くなり、誘起電圧に高調波を多く含むようになるため、トルクリップルが増加する。
 したがって、第3の曲面13を構成する円弧面の両端間角度θ1(図2参照)は、図4に示すように、固定子1に形成されたスロット数をSとしたとき、(θ1<360°/S)を満たすようにすれば、回転子鉄心2と固定子1との径方向距離が固定子1のティース部5に対して変化しない区間がなくなり、誘起電圧に含まれる高調波を低減することができ、トルクリップルの低下が可能である。
 また、ティース部5に流れ込む磁束は、固定子1の内周面1aのティース部5の先端間角度θ2に依存する。したがって、(θ1<θ2)を満たすことがより望ましい(図4参照)。
 また、図2に示す例では、第2の曲面12を形成する円弧面の中心軸を回転子鉄心2の軸心とした例を示しているが、上述したように、誘起電圧の高調波成分によるトルクリップルを低減させ、トルクリップルによる騒音の発生を抑制するためには、回転子鉄心2の外周の磁束密度が正弦波状となるのが望ましく、分割外周面10の周方向中心付近の磁束密度の変化量は小さく、分割外周面10の周方向端部に向かうに従い磁束密度の変化量が大きくなるのが望ましい。したがって、第2の曲面12を形成する円弧面と固定子1の内周面1aとの径方向距離aが、分割外周面10の周方向端部から所定角度となる位置から周方向端部に向かうに従い大きくなるようにすれば、固定子1に形成されるティース部5に入り込む磁束密度を大きくすることができるので、回転子鉄心2の外周の磁束密度がより正弦波状に近づき、トルクリップルを小さくすることができる。
 なお、第2の曲面12上における分割外周面10の周方向端部からの所定角度は、例えば、固定子1に形成されたスロット数をSとしたとき、少なくとも(360°/S/4)とすればよく、第2の曲面12を形成する円弧面と固定子1の内周面1aとの径方向距離aが、分割外周面10の周方向端部からの角度が少なくとも(360°/S/4)となる位置から周方向端部に向かうに従い大きくなるようにすればよい。
 また、第2の曲面12上において分割外周面10の周方向端部から上述した所定角度となる位置までの区間が遠心方向に凸形状を呈することにより、回転子鉄心2の外周の磁束密度をより正弦波状に近づけることができる。
 なお、回転子鉄心2の分割外周面10を構成する各曲面(つまり、第1の曲面11を形成する第3の曲面13および第4の曲面14、ならびに第2の曲面12)が遠心方向に凹形状となるようにすることも可能であるが、この場合、回転子鉄心2の外周の磁束密度の変化量は、分割外周面10の周方向中心では大きくなり、分割外周面10の周方向端部では小さくなる。つまり、回転子鉄心2の外周面を構成する各曲面を遠心方向に凹形状とすると、回転子鉄心2の外周の磁束密度を正弦波状に近づけることができず好ましくない。
 特に、固定子1に形成されたスロット数をSとしたとき、第2の曲面12上において分割外周面10の周方向端部からの角度が少なくとも(360°/S/4)となる位置までの区間は、磁束密度が0Tから増加する区間であるため、この区間の磁束密度を正弦波状にすることが重要となる。したがって、第2の曲面12上において分割外周面10の周方向端部からの角度が少なくとも(360°/S/4)となる位置までの区間が遠心方向に凸形状を呈することにより、回転子鉄心2の外周の磁束密度を正弦波状に近づけることが可能となる。
 さらに、回転子鉄心2の分割外周面10を構成する各曲面が遠心方向に凸形状を呈することにより、回転子鉄心2の外周の磁束密度をより正弦波状に近づけることができる。
 また、上述したように、磁石挿入孔7は、永久磁石3を挿入した際に、磁石挿入孔7の周方向両端部に空隙9が形成されている。
 回転子鉄心2の外周面と空隙9との間に生じる薄肉部16は、回転子鉄心2の他の部位よりも強度が弱いため、永久磁石3が磁石挿入孔7内で動いた場合に、永久磁石3が薄肉部16に接触しないようにする必要がある。空隙9は、永久磁石3が磁石挿入孔7内で動いても永久磁石3が薄肉部16に当たることを防ぐ機能も有している。
 なお、この薄肉部16の径方向の幅を分割外周面10の周方向中心側から周方向端部に向かうに従い小さくすることでも、誘起電圧の高調波成分を低減させることができ、トルクリップルの低減およびトルクリップルによる騒音の発生を抑制することができる。
 この薄肉部16の径方向の幅がより小さい方が、薄肉部16を通過する磁束密度が小さくなる。したがって、薄肉部16の径方向の幅を分割外周面10の周方向中心側から周方向端部に向かうに従い小さくすることにより、回転子鉄心2の外周の磁束密度をより正弦波状に近づけることができ、誘起電圧の高調波成分によるトルクリップルを低減させ、トルクリップルによる騒音の発生を抑制することができる。
 以上説明したように、実施の形態の永久磁石埋込型モータの回転子によれば、永久磁石を磁石挿入孔に挿入した際に、磁石挿入孔の周方向両端部に空隙を形成し、回転子鉄心の外周面を永久磁石に対応して周方向に等角度間隔に分割された複数の分割外周面により構成し、その分割外周面を、分割外周面の周方向中心において回転子鉄心の軸心からの径方向距離が最大となり、周方向中心から周方向両端に渡って形成される第1の曲面と、分割外周面の周方向両端において回転子鉄心の軸心からの径方向距離が最小となり、周方向端部から周方向中心に渡って形成され第1の曲面に交わる第2の曲面とにより形成し、第1の曲面の両端間距離が永久磁石の径方向に直交する方向の幅よりも小さく、且つ、磁石挿入孔に形成された空隙の分割外周面の周方向中心側の端部間の距離よりも大きくなるようにしたので、永久磁石の配置間隔を径方向に広げ、且つ、分割外周面の周方向中心において径方向に直交する方向に、永久磁石の幅を大きくすることができ、トルクリップルの低減を図りつつ、永久磁石埋込型モータの更なる磁力強化を図ることが可能となる。
 また、第1の曲面上において分割外周面の周方向中心から周方向端部に渡って形成される所定区間、つまり、第3の曲面を、回転子鉄心の軸心を中心軸とする円弧面により形成し、その円弧面の半径と、分割外周面の周方向中心における回転子鉄心の軸心からの径方向距離とが等しくなるようにしたので、等価的なギャップが小さくなり分割外周面の周方向中心付近の磁束密度が増加するため、永久磁石埋込型モータの磁力がより強化され、高効率化を図ることが可能となる。
 また、第1の曲面の所定区間、つまり、第3の曲面を形成する円弧面の端から前記第2の曲面に交わるまでの区間、つまり、第4の曲面を円弧面により形成し、その円弧面の半径が第2の曲面を形成する円弧面の半径よりも小さくなるようにしたので、回転子から発生する磁束密度が正弦波状に近づき、トルクリップルを低減させることができる。
 さらに、第4の曲面を構成する円弧面の半径を、第1の曲面上の周方向中心における回転子鉄心の軸心からの径方向距離の1/2以下となるようにすれば、第4の曲面の曲率が分割外周面の周方向中心付近の第3の曲面の曲率に対してより大きくなるため、磁束密度をより正弦波状に近くすることができ、トルクリップルをより低減させ、トルクリップルによる騒音の発生をより抑制することが可能となる。
 また、第3の曲面を構成する円弧面の両端間角度が(360°/スロット数)未満となるようにすることにより、回転子と固定子との径方向距離が固定子のティース部に対して変化しない区間がなくなり、誘起電圧に含まれる高調波を低減することができ、トルクリップルの更なる低減が可能である。
 なお、ティース部5に流れ込む磁束は、固定子1の内周面1aのティース部5の先端間角度に依存するため、第3の曲面を構成する円弧面の両端間角度をティース部5の先端間角度未満とするのがより好ましい。
 また、第2の曲面を形成する円弧面と固定子の内周面との径方向距離が、分割外周面の周方向端部から所定角度となる位置から周方向端部に向かうに従い大きくなるようにすれば、固定子1に形成されるティース部5に入り込む磁束密度を大きくすることができるので、回転子鉄心の外周の磁束密度がより正弦波状に近づき、トルクリップルを小さくすることができる。
 より好ましくは、固定子に形成されたスロット数をSとしたとき、第2の曲面上における分割外周面の周方向端部からの角度が少なくとも(360°/S/4)となる位置から、周方向端部に向けて、固定子と回転子との径方向距離が徐々に大きくなるようにすればよい。
 また、回転子鉄心の分割外周面を構成する各曲面(つまり、第1の曲面を形成する第3の曲面および第4の曲面、ならびに第2の曲面)が遠心方向に凹形状となるようにした場合、回転子の外周における磁束密度の変化量は、分割外周面の周方向中心では大きくなり、分割外周面の周方向端部では小さくなる。つまり、回転子鉄心の外周における磁束密度を正弦波状に近づけることができず好ましくない。
 特に、固定子に形成されたスロット数をSとしたとき、第2の曲面上において分割外周面の周方向端部からの角度が少なくとも(360°/S/4)となる位置まで区間は、磁束密度が0Tから増加する区間であるため、この区間の磁束密度を正弦波状にすることが重要となる。したがって、第2の曲面上において分割外周面の周方向端部からの角度が少なくとも(360°/S/4)となる位置までの区間が遠心方向に凸形状を呈することにより、回転子鉄心の外周における磁束密度を正弦波に近づけることが可能となる。
 さらに、回転子の分割外周面を構成する各局面が遠心方向に凸形状を呈することにより、回転子鉄心の外周における磁束密度をより正弦波に近づけることが可能となる。
 また、磁石挿入孔に永久磁石を挿入した際に、磁石挿入孔の周方向両端部に空隙を形成することにより、隣接する磁極部間の漏洩磁束を低減させると共に、永久磁石が磁石挿入孔内で動いて回転子鉄心の外周面と空隙との間に生じる薄肉部に当たることを防ぐことができる。
 また、薄肉部の径方向の幅を分割外周面の周方向中心側から周方向端部に向かうに従い小さくすることでも、回転子鉄心の外周の磁束密度の変化量をより正弦波状に近づけることができ、誘起電圧の高調波成分によるトルクリップルを低減させ、トルクリップルによる騒音の発生を抑制することができる。
 また、本実施の形態の永久磁石埋込型モータは、圧縮機あるいは送風機に用いて好適であり、これら圧縮機や送風機の小型化、高効率化を図ることができる。
 さらに、本実施の形態の永久磁石埋込型モータを適用した圧縮機あるいは送風機を冷凍空調装置に用いることにより、冷凍空調装置の小型化、高効率化を図ることができる。
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 1 固定子
 1a 固定子内周面
 2,2a 回転子鉄心
 3 永久磁石
 4 回転軸
 5 ティース部
 6 スロット部
 7 磁石挿入孔
 8 軸孔
 9 空隙
 10,10a 分割外周面
 11 第1の曲面
 12 第2の曲面
 13 第3の曲面
 14 第4の曲面
 15 回転子
 16 薄肉部

Claims (17)

  1.  複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、
     隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、
     を備え、
     複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が形成され、
     前記回転子鉄心の外周面は、
     前記永久磁石に対応して周方向に等角度間隔に分割された複数の分割外周面からなり、
     前記分割外周面は、
     前記分割外周面の周方向中心において前記回転子鉄心の軸心からの径方向距離が最大となり、当該周方向中心から周方向端部に渡って形成される第1の曲面と、
     前記分割外周面の周方向端部において前記回転子鉄心の軸心からの径方向距離が最小となり、当該周方向端部から周方向中心に渡って形成され前記第1の曲面に交わる第2の曲面と、
     により形成され、
     前記第1の曲面の両端間距離は、前記永久磁石の径方向に直交する方向の幅よりも小さく、且つ、前記磁石挿入孔に形成された前記空隙の前記分割外周面の周方向中心側の端部間の距離よりも大きい
     ことを特徴とする永久磁石埋込型モータの回転子。
  2.  前記第1の曲面は、前記分割外周面の周方向中心から周方向端部に渡って形成される所定区間において、前記回転子鉄心の軸心を中心軸とし、前記分割外周面の周方向中心における前記回転子鉄心の軸心からの径方向距離を半径とする円弧面により形成されることを特徴とする請求項1に記載の永久磁石埋込型モータの回転子。
  3.  前記第2の曲面は、半径が前記第1の曲面の前記所定区間における円弧面の半径よりも小さい円弧面により形成されることを特徴とする請求項2に記載の永久磁石埋込型モータの回転子。
  4.  前記第1の曲面は、前記所定区間の端部から前記第2の曲面に交わるまでの区間において、半径が前記第2の曲面を形成する円弧面よりも小さい円弧面により形成されることを特徴とする請求項2に記載の永久磁石埋込型モータの回転子。
  5.  前記第1の曲面は、前記所定区間の端部から前記第2の曲面に交わるまでの区間において、半径が前記第1の曲面上の周方向中心における前記回転子鉄心の軸心からの径方向距離の1/2以下である円弧面により形成されることを特徴とする請求項2に記載の永久磁石埋込型モータの回転子。
  6.  前記所定区間の両端間角度は、(360°/固定子のスロット数)未満であることを特徴とする請求項4に記載の永久磁石埋込型モータの回転子。
  7.  前記所定区間の両端間角度は、固定子のティース部の先端間角度未満であることを特徴とする請求項4に記載の永久磁石埋込型モータの回転子。
  8.  前記第2の曲面を形成する円弧面と固定子の内周面との径方向距離は、前記分割外周面の周方向端部から所定角度となる位置から前記分割外周面の周方向端部に向かうに従い大きくなることを特徴とする請求項1に記載の永久磁石埋込型モータの回転子。
  9.  前記所定角度は、少なくとも(360°/固定子のスロット数/4)であることを特徴とする請求項8に記載の永久磁石埋込型モータの回転子。
  10.  前記第2の曲面は、前記分割外周面の周方向端部から所定角度となる位置までの区間において遠心方向に凸形状を呈することを特徴とする請求項1に記載の永久磁石埋込型モータの回転子。
  11.  前記所定角度は、少なくとも(360°/固定子のスロット数/4)であることを特徴とする請求項10に記載の永久磁石埋込型モータの回転子。
  12.  前記第1の曲面および前記第2の曲面は、遠心方向に凸形状を呈することを特徴とする請求項1に記載の永久磁石埋込型モータの回転子。
  13.  前記回転子鉄心の外周面と前記空隙との間に生じる薄肉部の径方向の幅は、前記分割外周面の周方向中心側から周方向端部側に向かうに従い小さくなることを特徴とする請求項8に記載の永久磁石埋込型モータの回転子。
  14.  請求項1~13のいずれか一項に記載の永久磁石埋込型モータの回転子を適用したことを特徴とする圧縮機。
  15.  請求項1~13のいずれか一項に記載の永久磁石埋込型モータの回転子を適用したことを特徴とする送風機。
  16.  請求項14に記載の圧縮機を搭載したことを特徴とする冷凍空調装置。
  17.  請求項15に記載の送風機を搭載したことを特徴とする冷凍空調装置。
PCT/JP2011/080089 2011-12-26 2011-12-26 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置 WO2013098921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/366,861 US9871419B2 (en) 2011-12-26 2011-12-26 Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor
CN201180075759.0A CN103999329B (zh) 2011-12-26 2011-12-26 永久磁铁嵌入式电动机的转子及使用其的压缩机、鼓风机和制冷空调装置
JP2013551062A JP5762569B2 (ja) 2011-12-26 2011-12-26 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置
EP11878375.2A EP2800243B8 (en) 2011-12-26 2011-12-26 Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor
PCT/JP2011/080089 WO2013098921A1 (ja) 2011-12-26 2011-12-26 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080089 WO2013098921A1 (ja) 2011-12-26 2011-12-26 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2013098921A1 true WO2013098921A1 (ja) 2013-07-04

Family

ID=48696491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080089 WO2013098921A1 (ja) 2011-12-26 2011-12-26 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置

Country Status (5)

Country Link
US (1) US9871419B2 (ja)
EP (1) EP2800243B8 (ja)
JP (1) JP5762569B2 (ja)
CN (1) CN103999329B (ja)
WO (1) WO2013098921A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233381A (ja) * 2014-06-10 2015-12-24 多摩川精機株式会社 Ipmモータ及びそのコギングトルクの抑制方法
EP3010126A3 (en) * 2014-10-16 2016-04-27 Aisin Seiki Kabushiki Kaisha Embedded magnet motor and rotor of embedded magnet motor
WO2017195263A1 (ja) * 2016-05-10 2017-11-16 三菱電機株式会社 永久磁石型モータ
JP2018026976A (ja) * 2016-08-12 2018-02-15 日本精工株式会社 モータ及びそのモータを搭載した電動パワーステアリング装置
WO2018062447A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 ロータ、及びモータ
US20190214889A1 (en) * 2016-09-30 2019-07-11 Nidec Corporation Rotor core, rotor, motor, manufacturing method of rotor core, and manufacturing method of rotor
JP2020054157A (ja) * 2018-09-27 2020-04-02 株式会社デンソー 界磁巻線型回転電機
WO2020110191A1 (ja) * 2018-11-27 2020-06-04 三菱電機株式会社 回転電機
JP2020102911A (ja) * 2018-12-20 2020-07-02 サンデンホールディングス株式会社 電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法
CN113014006A (zh) * 2019-12-19 2021-06-22 法雷奥电机设备公司 具有最小化噪声的尺寸比例的旋转电机
CN114614587A (zh) * 2016-07-12 2022-06-10 Lg伊诺特有限公司 马达

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972653A (zh) * 2016-01-14 2017-07-21 德昌电机(深圳)有限公司 电机及其外磁芯、内磁芯
JP6638135B2 (ja) * 2016-06-22 2020-01-29 本田技研工業株式会社 電動機
CN109792179B (zh) * 2016-09-30 2021-05-04 日本电产株式会社 转子铁芯、转子以及马达
DE112017004955T5 (de) 2016-09-30 2019-06-13 Nidec Corporation Herstellungsverfahren eines Motorkerns, Herstellungsverfahren eines Rotorkerns und Herstellungsverfahren eines Rotors
KR102632774B1 (ko) * 2016-12-14 2024-02-05 에이치엘만도 주식회사 계자 권선형 모터용 로터 및 이를 구비한 계자 권선형 모터
US10978923B2 (en) 2017-01-31 2021-04-13 Mitsubishi Electric Corporation Electric motor, compressor, air blower, and air conditioner
DE102017205021A1 (de) * 2017-03-24 2018-09-27 Bayerische Motoren Werke Aktiengesellschaft Polschuh, elektrische maschine und fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084693A (ja) * 2000-07-07 2002-03-22 Koyo Seiko Co Ltd ブラシレスdcモータ
JP2004320989A (ja) * 2003-04-02 2004-11-11 Sankyo Seiki Mfg Co Ltd 永久磁石埋込型モータ
JP2006238667A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 電動機
JP2007295708A (ja) 2006-04-24 2007-11-08 Nidec Sankyo Corp 永久磁石埋め込み型モータ
JP2007312591A (ja) * 2006-04-20 2007-11-29 Toyota Industries Corp 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
JP2008099418A (ja) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd 永久磁石埋込型電動機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144812A (en) * 1991-06-03 1992-09-08 Carrier Corporation Outdoor fan control for variable speed heat pump
JP3513467B2 (ja) 2000-06-16 2004-03-31 ファナック株式会社 同期電動機のロータ
US6774521B2 (en) * 2001-05-16 2004-08-10 Koyo Seiko Co., Ltd. Brushless DC motor
JP3996417B2 (ja) 2002-03-26 2007-10-24 アイチエレック株式会社 永久磁石電動機
JP3852930B2 (ja) 2003-02-27 2006-12-06 アイチエレック株式会社 永久磁石回転機
US7042127B2 (en) * 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
JP4452488B2 (ja) 2003-12-03 2010-04-21 アイチエレック株式会社 永久磁石型電動機
JP3768502B2 (ja) 2003-12-17 2006-04-19 財団法人工業技術研究院 モータ内に永久磁石を設置したロータ機構
JP2006014457A (ja) * 2004-06-24 2006-01-12 Fanuc Ltd 同期電動機
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
JP4793027B2 (ja) 2006-02-28 2011-10-12 株式会社豊田自動織機 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
JP5321451B2 (ja) * 2007-05-07 2013-10-23 パナソニック株式会社 永久磁石埋設型電動機
CN101330231A (zh) * 2007-06-19 2008-12-24 上海海立(集团)股份有限公司 压缩机用永磁电机定转子
TW200926559A (en) * 2007-12-04 2009-06-16 Ind Tech Res Inst A rotating electric machine with a permanent magnet type pole core structure to monimizing cogging torque
CN102593984B (zh) * 2008-03-27 2014-03-12 松下电器产业株式会社 永久磁铁埋入式转子以及使用它的电动机及电气设备
MX2011001263A (es) * 2008-07-30 2011-04-21 Smith Corp A O Motor de imán permanente interior que incluye un rotor con polos desiguales.
KR101578424B1 (ko) * 2009-02-05 2015-12-17 엘지전자 주식회사 영구자석 삽입식 비엘디시 모터 및 이를 구비한 압축기
JP2012120326A (ja) * 2010-11-30 2012-06-21 Fujitsu General Ltd 磁石埋め込み型回転子、電動機及び電動機の組立方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084693A (ja) * 2000-07-07 2002-03-22 Koyo Seiko Co Ltd ブラシレスdcモータ
JP2004320989A (ja) * 2003-04-02 2004-11-11 Sankyo Seiki Mfg Co Ltd 永久磁石埋込型モータ
JP2006238667A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 電動機
JP2007312591A (ja) * 2006-04-20 2007-11-29 Toyota Industries Corp 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
JP2007295708A (ja) 2006-04-24 2007-11-08 Nidec Sankyo Corp 永久磁石埋め込み型モータ
JP2008099418A (ja) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd 永久磁石埋込型電動機

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233381A (ja) * 2014-06-10 2015-12-24 多摩川精機株式会社 Ipmモータ及びそのコギングトルクの抑制方法
EP3010126A3 (en) * 2014-10-16 2016-04-27 Aisin Seiki Kabushiki Kaisha Embedded magnet motor and rotor of embedded magnet motor
US9997969B2 (en) 2014-10-16 2018-06-12 Aisin Sieki Kabushiki Kaisha Embedded magnet motor and rotor of embedded magnet motor
WO2017195263A1 (ja) * 2016-05-10 2017-11-16 三菱電機株式会社 永久磁石型モータ
US10916983B2 (en) 2016-05-10 2021-02-09 Mitsubishi Electric Corporation Permanent-magnet motor
JPWO2017195263A1 (ja) * 2016-05-10 2018-09-27 三菱電機株式会社 永久磁石型モータ
CN114614587A (zh) * 2016-07-12 2022-06-10 Lg伊诺特有限公司 马达
JP2018026976A (ja) * 2016-08-12 2018-02-15 日本精工株式会社 モータ及びそのモータを搭載した電動パワーステアリング装置
US20190214866A1 (en) * 2016-09-30 2019-07-11 Nidec Corporation Rotor and motor
JPWO2018062447A1 (ja) * 2016-09-30 2019-07-18 日本電産株式会社 ロータ、及びモータ
US20190214889A1 (en) * 2016-09-30 2019-07-11 Nidec Corporation Rotor core, rotor, motor, manufacturing method of rotor core, and manufacturing method of rotor
WO2018062447A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 ロータ、及びモータ
JP7014172B2 (ja) 2016-09-30 2022-02-01 日本電産株式会社 ロータ、及びモータ
US10833569B2 (en) * 2016-09-30 2020-11-10 Nidec Corporation Rotor core, rotor, motor, manufacturing method of rotor core, and manufacturing method of rotor
US11056938B2 (en) * 2016-09-30 2021-07-06 Nidec Corporation Rotor and motor
JP2020054157A (ja) * 2018-09-27 2020-04-02 株式会社デンソー 界磁巻線型回転電機
JP7095532B2 (ja) 2018-09-27 2022-07-05 株式会社デンソー 界磁巻線型回転電機
JPWO2020110191A1 (ja) * 2018-11-27 2021-09-27 三菱電機株式会社 回転電機
JP7055220B2 (ja) 2018-11-27 2022-04-15 三菱電機株式会社 回転電機
WO2020110191A1 (ja) * 2018-11-27 2020-06-04 三菱電機株式会社 回転電機
JP2020102911A (ja) * 2018-12-20 2020-07-02 サンデンホールディングス株式会社 電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法
CN113014006A (zh) * 2019-12-19 2021-06-22 法雷奥电机设备公司 具有最小化噪声的尺寸比例的旋转电机

Also Published As

Publication number Publication date
EP2800243A1 (en) 2014-11-05
CN103999329B (zh) 2016-08-24
JP5762569B2 (ja) 2015-08-12
EP2800243A4 (en) 2016-04-20
EP2800243B1 (en) 2018-01-24
JPWO2013098921A1 (ja) 2015-04-30
US20140368081A1 (en) 2014-12-18
US9871419B2 (en) 2018-01-16
EP2800243B8 (en) 2018-02-28
CN103999329A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2013098921A1 (ja) 永久磁石埋込型モータの回転子ならびにこれを用いた圧縮機、送風機および冷凍空調装置
JP6422595B2 (ja) 電動機および空気調和機
JP5714189B2 (ja) 回転子およびその回転子を備えた回転電機
JP5805191B2 (ja) 永久磁石埋込型モータならびにこれを用いた圧縮機、送風機および冷凍空調装置
JP5709907B2 (ja) 車両用永久磁石埋込型回転電機
JP5677584B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
JP2017077044A (ja) 回転電機、回転子鉄心の製造方法
WO2014091579A1 (ja) 電動機の回転子
JPWO2008105049A1 (ja) 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP5202492B2 (ja) 永久磁石埋込型モータの回転子及び送風機及び圧縮機
WO2014050154A1 (ja) ロータおよび回転電気機械
JPWO2014115436A1 (ja) 永久磁石式回転電機
JP4964291B2 (ja) 永久磁石埋込型モータの回転子及び送風機及び圧縮機
WO2018235145A1 (ja) 回転電機の回転子
CN204304642U (zh) 旋转电机
JP2017055560A (ja) 永久磁石式回転電機
JP5959616B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
JP6104335B2 (ja) 電動機を搭載した電気機器
JP2023082880A (ja) 埋込磁石形同期電動機の回転子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551062

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14366861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011878375

Country of ref document: EP