WO2013094189A1 - インパルス電圧発生装置 - Google Patents

インパルス電圧発生装置 Download PDF

Info

Publication number
WO2013094189A1
WO2013094189A1 PCT/JP2012/008099 JP2012008099W WO2013094189A1 WO 2013094189 A1 WO2013094189 A1 WO 2013094189A1 JP 2012008099 W JP2012008099 W JP 2012008099W WO 2013094189 A1 WO2013094189 A1 WO 2013094189A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
impulse
high voltage
value
voltage generator
Prior art date
Application number
PCT/JP2012/008099
Other languages
English (en)
French (fr)
Inventor
弘之 小川
孝幸 櫻井
哲夫 吉満
廣瀬 達也
聡 廣島
政幸 匹田
雅裕 小迫
崇寿 上野
Original Assignee
東芝三菱電機産業システム株式会社
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社, 株式会社 東芝 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201280062993.4A priority Critical patent/CN103999347B/zh
Priority to CA2859754A priority patent/CA2859754C/en
Priority to KR1020147019880A priority patent/KR101625780B1/ko
Priority to EP12858999.1A priority patent/EP2797218A4/en
Publication of WO2013094189A1 publication Critical patent/WO2013094189A1/ja
Priority to US14/294,237 priority patent/US9197201B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/64Generators producing trains of pulses, i.e. finite sequences of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/013Modifications of generator to prevent operation by noise or interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention relates to an impulse voltage generator.
  • the impulse voltage generator is applied to, for example, an inverter drive system including a motor, an inverter, and a cable.
  • the inverter converts a DC voltage into a pulse voltage by a switching operation, and supplies the pulse voltage to the motor via a cable.
  • the motor is driven by this pulse voltage.
  • the impulse voltage generator includes a high voltage generator, a capacitive element, a first output terminal, a second output terminal, a first electrode, and a second electrode.
  • a high voltage generator is provided between the first node and the second node.
  • a capacitive element is provided in parallel with the high voltage generator between the first node and the second node.
  • the connection portion is provided between the first output terminal and the second output terminal as a load for supplying an impulse voltage.
  • a first electrode and a second electrode are provided between the first node and the first output terminal.
  • the first electrode and the second electrode are, for example, spherical metal electrodes (such as tungsten), and the first electrode and the second electrode are provided apart from each other.
  • the high voltage generator generates a high voltage, and charges are accumulated in the capacitive element due to the high voltage from the high voltage generator. At this time, when the voltage between the first electrode and the second electrode reaches the spark discharge start voltage, a spark discharge is generated, and an impulse voltage is generated between the first output terminal and the second output terminal. .
  • the peak value of the impulse voltage is determined by the spark discharge in the atmosphere and is smaller than the high voltage supplied by the high voltage generator.
  • an impulse voltage is generated by spark discharge. For this reason, parameters such as the voltage value of the impulse voltage, the rise time, the fall time, and the impulse repetition frequency are often not constant.
  • Non-Patent Document 1 describes a circuit that generates a high voltage pulse using a semiconductor switch. However, it is not a configuration for realizing a test in which a period in which an impulse voltage is repeatedly generated and a period in which the impulse voltage is not generated are alternately performed.
  • the problem to be solved by the present invention is to realize a test in which a period in which a stable impulse voltage is repeatedly generated and a period in which the impulse voltage is not generated are alternately performed.
  • the impulse voltage generator of the present invention includes a high voltage generator that generates a high voltage, a capacitive element, a period setting signal in which one cycle includes a pulse supply period and a pulse pause period after the pulse supply period,
  • the pulse signal is supplied with the pulse by superimposing a pulse signal whose frequency is an impulse repetition frequency higher than the frequency of the period setting signal and whose amplitude value is lower than the high voltage value.
  • a signal generator that generates a combined signal that is generated only during a period; and when the voltage value of the combined signal is lower than a preset gate setting voltage value, the high voltage from the high voltage generator causes the capacitive element to When charge is accumulated and the voltage value of the combined signal is equal to or higher than the gate setting voltage value, the charge accumulated in the capacitor element is released and released from the capacitor element.
  • FIG. 3 is a diagram illustrating a ramp wave as a waveform different from that in FIG. 2 in the impulse voltage generator according to the first embodiment of the present invention.
  • the impulse voltage generator according to the first embodiment of the present invention it is a diagram showing a waveform when a pulse wave or a ramp wave is combined as a waveform different from those in FIGS.
  • FIG. 6 is a diagram showing an impulse voltage when an X portion in FIG. 5 is enlarged in the impulse voltage generator according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the rise of the impulse voltage when the Y portion in FIG. 6 is enlarged in the impulse voltage generator according to the first embodiment of the present invention. It is a figure which shows the structure of the system with which the impulse voltage generator which concerns on 1st Embodiment of this invention is applied. As an example different from FIG.
  • FIG. 8 it is a figure which shows the structure of the system by which the impulse voltage generator which concerns on 1st Embodiment of this invention is applied. It is a circuit diagram which shows the structure of the impulse voltage generator which concerns on 2nd Embodiment of this invention.
  • the impulse voltage generator according to the first embodiment of the present invention when the inductance component is included in the load, it is a diagram showing the impulse voltage when the portion X in FIG. 5 is enlarged.
  • the impulse voltage generator according to the second embodiment of the present invention when an inductance component is included in a load, it is a diagram showing an impulse voltage when the portion X in FIG. 5 is enlarged.
  • the impulse voltage generator according to the first embodiment of the present invention is applied to a system as shown in FIG. 8, for example.
  • the system includes a rotating electrical machine 1, an inverter 2, and a cable 3.
  • Cable 3 connects the inverter 2 and the rotating electrical machine 1.
  • the rotating electrical machine 1 include an electric motor (motor) and a generator.
  • the inverter 2 converts a DC voltage into a pulse voltage by a switching operation, and supplies the pulse voltage to the rotating electrical machine 1 via the cable 3.
  • the rotating electrical machine 1 is driven by a pulse voltage.
  • a reflected wave is generated due to impedance mismatch between the inverter 2, the cable 3, and the rotating electrical machine 1.
  • an inverter surge may occur at the connection portion 4 between the cable 3 and the rotating electrical machine 1.
  • This inverter surge has a very short rise time (for example, 50 ns to 2 ⁇ s), and its fall time is longer than the rise time.
  • the frequency when the inverter surge repeatedly occurs is, for example, 1 kHz to 20 kHz.
  • the impulse voltage generator according to the first embodiment of the present invention realizes the above test.
  • FIG. 1 is a circuit diagram showing a configuration of an impulse voltage generator according to a first embodiment of the present invention.
  • the impulse voltage generator of the first embodiment includes a DC power supply 10, a high voltage generator (HVDC) 13, a capacitive element 16, a charging resistance element 21, and a load resistance element 22.
  • the adjustment resistor element 23, the first output terminal 31, the second output terminal 32, the signal generator 33, the switching reverse voltage protection diode 34, and the semiconductor switch 40 are provided.
  • the output of the high voltage generator 13 is connected to the first electrode (positive electrode) 11 of the capacitive element 16.
  • the second electrode (negative electrode) 12 of the capacitive element 16 has the same potential as that of the second output terminal 32. Specifically, the second output terminal 32 is grounded.
  • the high voltage generator 13 outputs a high voltage HVDC described later.
  • the high voltage HVDC represents a potential difference from the first potential to the second potential of the high voltage generator 13.
  • the first potential of the high voltage generator 13 is set to 0 [V] and the second potential of the high voltage generator 13 is set to the high voltage HVDC.
  • the potential side wiring (not shown) and the casing (not shown) are grounded.
  • the DC power supply 10 includes an input DC power supply 14 and a control DC power supply 15.
  • the output of the input DC power supply 14 is connected to an input port (not shown) of the high voltage generator 13.
  • the input DC power supply 14 outputs a DC voltage VDC described later.
  • the DC voltage VDC represents a potential difference from the first potential to the second potential of the input DC power supply 14.
  • the first potential of the input DC power source 14 is set to 0 [V] and the second potential of the input DC power source 14 is set to the DC voltage VDC.
  • the potential side wiring (not shown) and the casing (not shown) are grounded.
  • the output of the control DC power supply 15 is connected to an input port (not shown) of the high voltage generator 13, and the control DC power supply 15 controls the value of the current that can be passed through the high voltage generator 13 by the input port.
  • a voltage (a control signal described later) is output.
  • the voltage represents a potential difference from the first potential to the second potential of the control DC power supply 15.
  • the first potential of the control DC power supply 15 is set in order to set the first potential of the control DC power supply 15 to 0 [V] and the second potential of the control DC power supply 15 to the above voltage.
  • the side wiring (not shown) and the casing (not shown) are grounded.
  • a charging resistance element 21 which is a resistance element is provided between the output of the high voltage generator 13 and the first electrode 11 of the capacitive element 16.
  • a load resistance element 22 which is a resistance element is provided between the first output terminal 31 and the second output terminal 32.
  • the connection portion 4 between the cable 3 and the rotating electrical machine 1 described above is provided as a load for supplying an impulse voltage.
  • the semiconductor switch 40 includes a first terminal 41 connected to the first electrode 11 of the capacitive element 16, a second terminal 42 connected to the first output terminal 31, and a gate terminal 43.
  • a resistance element is provided between the first terminal 41 and the second terminal 42.
  • the semiconductor switch 40 is turned on when the voltage value supplied to the gate terminal 43 is equal to or higher than a preset gate setting voltage value, and connects the first terminal 41 and the second terminal 42.
  • an adjustment resistance element 23 that is a resistance element is provided.
  • the reverse voltage protection diode 34 for switch has a cathode connected to the first terminal 41 of the semiconductor switch 40 and an anode connected to the second terminal 42 of the semiconductor switch 40. That is, the switch reverse voltage protection diode 34 is provided in parallel with the semiconductor switch 40 and is used as a rectifier diode.
  • the output of the signal generator 33 is connected to the gate terminal 43 of the semiconductor switch 40.
  • the input DC power supply 14 generates a DC voltage VDC and supplies the DC voltage VDC to the high voltage generator 13.
  • the high voltage generator 13 generates a high voltage HVDC (HVDC >> VDC) proportional to the DC voltage VDC supplied from the input DC power supply 14 and higher than the DC voltage VDC, and the high voltage HVDC has a capacity.
  • the high voltage HVDC is a voltage that assumes a peak voltage of the above-described inverter surge or a value obtained by multiplying the peak voltage by a safety factor.
  • the safety factor is also called an enhancement factor, and a predetermined numerical value such as 1.3 is used when the above-mentioned system or a coil component of the rotating electrical machine 1 in the system is strictly evaluated by a test. .
  • the high voltage generator 13 generates a voltage 3000 times as high voltage HVDC as the DC voltage VDC supplied from the input DC power supply 14.
  • the high voltage generator 13 outputs the high voltage HVDC in the range of 0V to 30 kV when the DC voltage VDC is in the range of 0V to 10V. That is, when the DC voltage VDC is 10 V, the high voltage generator 13 generates 30 kV, which is 3000 times the voltage of 10 V of the DC voltage VDC, as the high voltage HVDC.
  • FIG. 2 is a diagram showing a pulse wave as the waveform of the high voltage HVDC that can be generated by the input DC power supply 14 in the high voltage generator 13.
  • FIG. 3 is a diagram illustrating a ramp wave as a waveform different from that in FIG. 2.
  • FIG. 4 is a diagram showing a waveform when a pulse wave or a ramp wave is combined as a waveform different from those in FIGS. 2 and 3.
  • the control DC power supply 15 outputs a control signal for designating the voltage value, the rise time, and the fall time of the DC voltage VDC to the input DC power supply 14. As shown in FIGS. 3 to 5, the control DC power supply 15 adjusts the voltage value, the rise time, and the fall time of the DC voltage VDC by a control signal, so that, in addition to the constant high voltage HVDC, It is also possible to transform the waveform of the high voltage HVDC into a pulse wave, a ramp wave, and a waveform when a pulse wave or a ramp wave is combined.
  • control DC power supply 15 can set the maximum value of the current flowing through the high voltage generator 13.
  • FIG. 5 shows a period setting signal 50 and a pulse signal 53 generated by the signal generator 33 of the impulse voltage generator according to the first embodiment of the present invention, a combined signal 54 generated by the signal generator 33, and the semiconductor switch 40. Is a diagram showing an impulse voltage 55 generated based on a synthesized signal 54.
  • FIG. 5 shows a period setting signal 50 and a pulse signal 53 generated by the signal generator 33 of the impulse voltage generator according to the first embodiment of the present invention, a combined signal 54 generated by the signal generator 33, and the semiconductor switch 40.
  • the set frequency f1 is preset as the first frequency
  • the first voltage value V1 is preset as the first amplitude value.
  • the signal generator 33 generates a period setting signal 50 represented by a waveform (function) as shown in FIG. 5 when the set frequency f1 is set.
  • the period setting signal 50 has a frequency of the set frequency f1 and an amplitude of the first voltage value V1.
  • One period of the period setting signal 50 includes a pulse supply period 51 and a pulse pause period 52 after the pulse supply period 51.
  • the pulse supply period 51 is a period representing the first voltage value V1 that is the amplitude value of the period setting signal 50
  • the pulse pause period 52 is a period without an amplitude value. It is.
  • the waveform of the period setting signal 50 is not limited to a square wave but may be a sine wave or a triangular wave.
  • the signal generator 33 is preset with an impulse repetition frequency f2 (f2> f1) set higher than the set frequency f1 as a second frequency, and a second voltage value V2 as a second amplitude value in advance. Is set.
  • the impulse repetition frequency f2 is a frequency assuming a case where the aforementioned inverter surge repeatedly occurs (for example, 1 kHz to 20 kHz).
  • the signal generator 33 generates a pulse signal 53 as shown in FIG. 5 when the impulse repetition frequency f2 and the second voltage value V2 are set.
  • the frequency of the pulse signal 53 is the impulse repetition frequency f2, and the amplitude thereof is the second voltage value V2.
  • the impulse repetition frequency f2 is 10 kHz.
  • the signal generator 33 When generating the pulse signal 53, the signal generator 33 superimposes the period setting signal 50 and the pulse signal 53 so that the pulse signal 53 is generated only in the pulse supply period 51 as shown in FIG. A signal 54 is generated and supplied to the gate terminal 43 of the semiconductor switch 40.
  • This third voltage value V3 is determined by a combination of the gate setting voltage value Vg (for example, 5V) for turning on the semiconductor switch 40 and the specification of the signal generator 33, and is significantly lower than the value of the high voltage HVDC. It is higher than the gate setting voltage value Vg (Vg ⁇ V3 ⁇ HVDC).
  • the first control signal is generated from the input DC power supply 14.
  • the first control signal causes the high voltage generator 13 to generate a first high voltage (for example, 10 kV) that is the high voltage HVDC during the first pulse supply period that is the pulse supply period 51. That is, the first control signal generated from the input DC power supply 14 causes the first DC voltage (3.3 V) corresponding to the specified voltage value, rise time, and fall time to be supplied to the high voltage generator 13.
  • the high voltage generator 13 When supplied, the high voltage generator 13 generates a voltage 3000 times as high as the first high voltage (10 kV) with respect to the first DC voltage (3.3 V).
  • the control DC power supply 15 causes the first high voltage (10 kV), which is the high voltage HVDC. Does not occur.
  • the semiconductor switch 40 is turned off when the third voltage value V3 that is the voltage value of the combined signal 54 supplied to the gate terminal 43 is lower than the gate setting voltage value Vg, and the first terminal 41 and the second terminal 42 are turned off. Do not connect.
  • the high voltage HVDC applied from the high voltage generator 13 to the capacitive element 16 (in this case, the first high voltage (10 kV)) causes a gap between the first electrode 11 and the second electrode 12 of the capacitive element 16. Charge is accumulated. That is, the semiconductor switch 40 charges the capacitive element 16.
  • the semiconductor switch 40 is turned on when the third voltage value V3 of the composite signal 54 supplied to the gate terminal 43 is equal to or higher than the gate setting voltage value Vg, and connects the first terminal 41 and the second terminal 42.
  • the first electrode 11 of the capacitive element 16 is connected to the first output terminal 31 via the semiconductor switch 40 and the adjustment resistance element 23.
  • the charge accumulated in the capacitive element 16 is released. That is, the semiconductor switch 40 discharges the capacitive element 16.
  • the semiconductor switch 40 generates an impulse voltage 55 having a peak value of the high voltage HVDC ⁇ first high voltage (10 kV) ⁇ as shown in FIG.
  • the generated impulse voltage 55 is output between the first output terminal 31 and the second output terminal 32.
  • FIG. 6 is a diagram showing the impulse voltage 55 when the portion X in FIG. 5 is enlarged.
  • FIG. 7 is a diagram showing the rise of the impulse voltage 55 when the Y portion in FIG. 6 is enlarged.
  • the impulse voltage 55 has a very short rise time (for example, 20 ns to 200 ns) and a long fall time compared to the rise time (for example, 20 ⁇ s).
  • the impulse width (the width from the end of the rise of the impulse voltage to the start of the fall) is 1 ⁇ s to 10 ⁇ s, and the impulse repetition frequency f2 is 1 kHz to 20 kHz (10 kHz in the above example).
  • the impulse voltage generator of the first embodiment a test is performed in which the pulse supply period 51 in which the stable impulse voltage 55 is repeatedly generated and the pulse pause period 52 in which the impulse voltage 55 is not generated are alternately performed. Can be realized. Further, according to the impulse voltage generator of the first embodiment, the above-described system can be accurately evaluated by repeatedly generating the above-described impulse voltage 55.
  • the impulse voltage generator of the first embodiment it is possible to realize a test in which the high voltage HVDC is gradually increased every pulse supply period 51.
  • the second control signal is generated after the first control signal from the input DC power supply 14.
  • the second control signal may be a second high voltage ⁇ e.g., a first high voltage that is a high voltage HVDC different from the first high voltage during the second pulse supply period, which is the next pulse supply period 51 of the first pulse supply period.
  • the high voltage generator 13 generates 12 kV ⁇ higher than the voltage (10 kV). That is, the second control signal generated from the input DC power supply 14 causes the second DC voltage (4.0 V) corresponding to the specified voltage value, rise time, and fall time to be supplied to the high voltage generator 13.
  • the high voltage generator 13 When supplied, the high voltage generator 13 generates a voltage 3000 times as high as the second high voltage (12 kV) with respect to the second DC voltage (4.0 V). However, when the value of the current flowing through the high voltage generator 13 exceeds the current value defined by the control DC power supply 15, the control DC power supply 15 causes the second high voltage (12 kV), which is the high voltage HVDC. Does not occur.
  • the semiconductor switch 40 is turned off when the third voltage value V3 that is the voltage value of the combined signal 54 supplied to the gate terminal 43 is lower than the gate setting voltage value Vg, and the first terminal 41 and the second terminal 42 are turned off. Do not connect.
  • the high voltage HVDC applied from the high voltage generator 13 to the capacitive element 16 (in this case, the second high voltage (12 kV)) causes a gap between the first electrode 11 and the second electrode 12 of the capacitive element 16. Charge is accumulated. That is, the semiconductor switch 40 charges the capacitive element 16.
  • the semiconductor switch 40 is turned on when the third voltage value V3 of the composite signal 54 supplied to the gate terminal 43 is equal to or higher than the gate setting voltage value Vg, and connects the first terminal 41 and the second terminal 42.
  • the first electrode 11 of the capacitive element 16 is connected to the first output terminal 31 via the semiconductor switch 40 and the adjustment resistance element 23. At this time, the charge accumulated in the capacitive element 16 is released.
  • the semiconductor switch 40 generates an impulse voltage 55 whose peak value is the value of the high voltage HVDC ⁇ second high voltage (12 kV) ⁇ by the electric charge discharged from the capacitive element 16, and the impulse voltage 55 Is output between the first output terminal 31 and the second output terminal 32.
  • the input DC power supply 14 has, for example, first to sixth pulse supply periods 51.
  • the first to sixth high voltages (10 kV, 12 kV, 14 kV, 16 kV, 18 kV, 20 kV) ⁇ are generated in the high voltage generator 13 as the high voltage HVDC that gradually increases.
  • the semiconductor switch 40 repeatedly generates the above-described impulse voltage 55 during the first to sixth pulse supply periods 51 by the switching operation based on the synthesized signal 54 generated by the signal generator 33.
  • the high voltage HVDC is gradually increased every pulse supply period 51, and then the high voltage HVDC is gradually increased every pulse supply period 51 at a predetermined timing or at an arbitrary timing. It is also possible to achieve a test that reduces the In this case, for example, the input DC power supply 14 uses the first to sixth high voltages (10 kV, 12 kV, 14 kV, 16 kV, 18 kV, 20 kV) as the high voltage HVDC that gradually increases during the first to sixth pulse supply periods 51. ) Is generated in the high voltage generator 13.
  • the seventh to eleventh high voltages (18 kV, 16 kV, 14 kV, 12 kV, 10 kV) are generated in the high voltage generator 13 as the high voltage HVDC that is gradually decreased during the seventh to eleventh pulse supply periods 51.
  • the semiconductor switch 40 repeatedly generates the impulse voltage 55 described above during the first to eleventh pulse supply periods 51 by the switching operation based on the combined signal 54 generated by the signal generator 33.
  • the high voltage HVDC is gradually increased for each pulse supply period 51, and the high voltage HVDC for each pulse supply period 51 is made constant at a predetermined timing or at an arbitrary timing.
  • the input DC power supply 14 uses the first to sixth high voltages (10 kV, 12 kV, 14 kV, 16 kV, 18 kV, 20 kV) as the high voltage HVDC that gradually increases during the first to sixth pulse supply periods 51. ) Is generated in the high voltage generator 13.
  • the sixth high voltage (20 kV) is generated in the high voltage generator 13 as a constant high voltage HVDC during the seventh to eleventh pulse supply periods 51.
  • the semiconductor switch 40 repeatedly generates the impulse voltage 55 described above during the first to eleventh pulse supply periods 51 by the switching operation based on the combined signal 54 generated by the signal generator 33.
  • the high voltage HVDC is gradually decreased every pulse supply period 51, and the high voltage HVDC for each pulse supply period 51 is made constant at a predetermined timing or at an arbitrary timing.
  • the input DC power supply 14 uses the first to sixth high voltages (20 kV, 18 kV, 16 kV, 14 kV, 12 kV, 10 kV) as the high voltage HVDC that gradually increases during the first to sixth pulse supply periods 51. ) Is generated in the high voltage generator 13.
  • the sixth high voltage (10 kV) is generated in the high voltage generator 13 as the constant high voltage HVDC during the seventh to eleventh pulse supply periods 51.
  • the semiconductor switch 40 repeatedly generates the impulse voltage 55 described above during the first to eleventh pulse supply periods 51 by the switching operation based on the combined signal 54 generated by the signal generator 33.
  • the impulse voltage generator of the first embodiment a test is performed in which the pulse supply period 51 in which the stable impulse voltage 55 is repeatedly generated and the pulse pause period 52 in which the impulse voltage 55 is not generated are alternately performed.
  • a plurality of types of impulse voltages 55 can be generated for each pulse supply period 51.
  • the impulse voltage generator according to the first embodiment of the present invention can be applied to a system as shown in FIG. 9, for example, in addition to the above-described system (see FIG. 8).
  • FIG. 9 is a diagram showing a configuration of a system to which the impulse voltage generator according to the first embodiment of the present invention is applied as an example different from FIG.
  • a linear motor 5 is provided in place of the rotary electric machine 1 described above.
  • the linear motor 5 is used for, for example, a magnetically levitated linear motor car and other applications.
  • the cable 3 connects the inverter 2 and the linear motor 5 or its coil component.
  • the inverter 2 converts the DC voltage into a pulse voltage by a switching operation, and supplies the pulse voltage to the linear motor 5 via the cable 3.
  • the linear motor 5 is driven by a pulse voltage.
  • FIG. 10 is a circuit diagram showing a configuration of an impulse voltage generator according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing the impulse voltage when the portion X in FIG. 5 is enlarged when the inductance component is included in the load in the impulse voltage generator according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing the impulse voltage when the portion X in FIG. 5 is enlarged when the inductance component is included in the load in the impulse voltage generator according to the second embodiment of the present invention.
  • the impulse voltage generator of the second embodiment includes a load reverse voltage protection diode 44 in addition to the configuration of the first embodiment.
  • the reverse voltage protection diode for load 44 has a cathode connected to the first output terminal 31 and an anode connected to the second output terminal 32. That is, the load reverse voltage protection diode 44 is provided in parallel to the load resistance element 22 and the load, and is used as a rectifier diode.
  • the impulse voltage generator when an inductance component is included in the load between the first output terminal 31 and the second output terminal 32, a back electromotive force is generated by the inductance component. .
  • the first wave having the positive high voltage HVDC as a peak value is generated, and then stable to 0 [V].
  • the voltage after the second wave is generated.
  • a back electromotive force generated by an inductance component generates a second wave having a negative voltage peak value after the first wave. That is, a reverse voltage is generated.
  • the reverse voltage generates a third wave having a positive voltage peak value after the second wave, and a fourth wave having a negative voltage peak value after the third wave.
  • the component necessary as the impulse voltage 55 is the first wave.
  • the reverse voltage protection diode 44 for the load causes the above reverse voltage. Prevent voltage.
  • the impulse voltage 55 is generated in the pulse supply period 51, the first wave having the positive high voltage HVDC as the peak value even if the load includes an inductance component. Only occurs. Therefore, according to the impulse voltage generator of the second embodiment, only a component necessary as the impulse voltage 55 can be obtained.
  • Reverse voltage protection diode 50 for load ... Period setting signal 51 ... Pulse supply period 52 ... Pulse pause period 53 ... Pulse signal 54 ... Composite signal 55 ... Impulse voltage f1 ... Set frequency f2 ... Impulse repetition frequency HVDC ... High voltage V1 ... First voltage value V2 ... Second voltage value V3 ... Third voltage value VDC ... DC voltage Vg... Gate setting voltage value

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)
  • Inverter Devices (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

 高電圧発生器(13)は高電圧HVDCを発生する。信号発生器(33)は、1周期がパルス供給期間およびパルス休止期間を含む期間設定信号と、その周波数が期間設定信号の周波数よりも高いインパルス繰り返し周波数であり、かつ、その振幅値が高電圧HVDCの値よりも低い電圧値を表すパルス信号とを重ね合わせて、パルス信号がパルス供給期間にのみ発生する合成信号を生成する。半導体スイッチ(40)は、合成信号の電圧値がゲート設定電圧値よりも低いときに高電圧発生器(13)からの高電圧HVDCにより容量素子(16)に電荷を蓄積させ、合成信号の電圧値がゲート設定電圧値以上であるときに、容量素子(16)から放出される電荷により高電圧HVDCの値をピーク値とするインパルス電圧を発生する。安定したインパルス電圧を繰り返し発生させる期間と、インパルス電圧を発生させない期間とを交互に行う試験を実現できる。

Description

インパルス電圧発生装置
 本発明は、インパルス電圧発生装置に関する。
 インパルス電圧発生装置は、たとえば、モーターとインバータとケーブルとを具備するインバータ駆動システムに適用される。そのインバータ駆動システムにおいて、インバータは、スイッチング動作により直流電圧からパルス電圧に変換し、そのパルス電圧を、ケーブルを介してモーターに供給する。モーターは、このパルス電圧により駆動する。
 しかし、インバータ駆動システムでは、インバータとケーブルとモーターとのインピーダンス不整合により、反射波が発生する。その反射波がパルス電圧に重畳することにより、ケーブルとモーターとの間の部分、特に、ケーブルとモーターとの接続部で、高電圧ノイズが発生する可能性がある。この高電圧ノイズを雷サージと区別するために、ここではインバータサージと呼ぶ。
 そこで、インバータ駆動システムを評価する試験の1つとして、インバータサージを模擬的に発生させて、たとえば負荷として上記接続部に印加する試験がある。特に、模擬的なインバータサージとしてインパルス電圧を繰り返し発生させて、そのインパルス電圧を負荷に印加する期間と、そのインパルス電圧を発生させない期間とを交互に行う試験がある。この試験を実現するために、放電ギャップを用いたインパルス電圧発生装置が開発されている。
 そのインパルス電圧発生装置は、高電圧発生器と、容量素子と、第1出力端子と、第2出力端子と、第1電極と、第2電極と、を具備している。
 第1ノードと第2ノードとの間には高電圧発生器が設けられている。また、第1ノードと第2ノードとの間には、高電圧発生器に対して並列に容量素子が設けられている。たとえば、第1出力端子と第2出力端子との間には、インパルス電圧を供給する負荷として上記接続部が設けられる。
 第1ノードと第1出力端子との間には第1電極および第2電極が設けられている。第1電極および第2電極はたとえば球状の金属電極(タングステンなど)であり、第1電極と第2電極は離れて設けられている。
 高電圧発生器は高電圧を発生し、容量素子には、高電圧発生器からの高電圧により電荷が蓄積される。このとき、第1電極と第2電極との間の電圧がスパーク放電開始電圧に達したときに、スパーク放電が発生し、第1出力端子と第2出力端子との間にインパルス電圧が発生する。このインパルス電圧のピーク値は、大気中のスパーク放電により決まり、高電圧発生器が供給する高電圧よりも小さい。
Li Ming等「EFFECTS OF REPETITIVE PULSE VOLTAGES ON SURFACE TEMPERATURE INCREASE AT END CORONA PROTECTION REGION OF HIGH VOLTAGE MOTORS」、10th Insucon International Conference Birmingham 2006.
 放電ギャップを用いたインパルス電圧発生装置では、スパーク放電によりインパルス電圧を発生させる。このため、インパルス電圧の電圧値、立ち上がり時間、立ち下がり時間、および、インパルス繰り返し周波数などのパラメータが一定にならないことが多い。
 スパーク放電は大気中で発生する。このため、上記パラメータが一定になるように、一定の圧力(空気)を第1電極と第2電極との間に供給する必要がある。それでも上記パラメータが一定にならない理由がある。
 その理由として、第1電極および第2電極の表面はスパーク放電により放電痕が生じる。このため、上記パラメータが一定になるように、第1電極および第2電極の表面を定期的に清掃または交換する必要がある。
 また、インパルス電圧のピーク値を調整する度に、第1電極と第2電極との間の距離、すなわち、放電ギャップを調整する必要がある。放電ギャップはわずかな距離の変化でも上記パラメータが変わるため、放電ギャップを調整することは多大な時間を要する。
 このように、放電ギャップを用いたインパルス電圧発生装置では、上記試験において、安定したインパルス電圧を繰り返し発生させることが困難である。
 また、非特許文献1では、半導体スイッチを用いて高電圧パルスを発生させる回路が記載されている。しかし、インパルス電圧を繰り返し発生させる期間と、そのインパルス電圧を発生させない期間とを交互に行う試験を実現する構成ではない。
 本発明が解決しようとする課題は、安定したインパルス電圧を繰り返し発生させる期間と、そのインパルス電圧を発生させない期間とを交互に行う試験を実現することにある。
 本発明のインパルス電圧発生装置は、高電圧を発生する高電圧発生器と、容量素子と、その1周期がパルス供給期間および前記パルス供給期間の後のパルス休止期間を含む期間設定信号と、その周波数が前記期間設定信号の周波数よりも高いインパルス繰り返し周波数であり、かつ、その振幅値が前記高電圧の値よりも低い電圧値を表すパルス信号とを重ね合わせて、前記パルス信号が前記パルス供給期間にのみ発生する合成信号を生成する信号発生器と、前記合成信号の電圧値が予め設定されたゲート設定電圧値よりも低いときに前記高電圧発生器からの前記高電圧により前記容量素子に電荷を蓄積させ、前記合成信号の電圧値が前記ゲート設定電圧値以上であるときに、前記容量素子に蓄積された電荷を放出させ、前記容量素子から放出される電荷により前記高電圧の値をピーク値とするインパルス電圧を発生し、負荷が設けられた第1出力端子と第2出力端子との間に前記インパルス電圧を供給する半導体スイッチと、を具備することを特徴とする。
 本発明によれば、安定したインパルス電圧を繰り返し発生させる期間と、そのインパルス電圧を発生させない期間とを交互に行う試験を実現することができる。
本発明の第1実施形態に係るインパルス電圧発生装置の構成を示す回路図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、入力用直流電源および制御用直流電源が高電圧発生器に発生させることが可能な高電圧の波形として、パルス波を示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、図2とは異なる波形として、ランプ波を示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、図2および図3とは異なる波形として、パルス波やランプ波を組み合わせたときの波形を示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置の信号発生器が発生する期間設定信号およびパルス信号と、信号発生器が生成する合成信号と、半導体スイッチが合成信号に基づいて発生するインパルス電圧とを示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、図5のX部分を拡大したときのインパルス電圧を示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、図6のY部分を拡大したときのインパルス電圧の立ち上がりを示す図である。 本発明の第1実施形態に係るインパルス電圧発生装置が適用されるシステムの構成を示す図である。 図8とは異なる例として、本発明の第1実施形態に係るインパルス電圧発生装置が適用されるシステムの構成を示す図である。 本発明の第2実施形態に係るインパルス電圧発生装置の構成を示す回路図である。 本発明の第1実施形態に係るインパルス電圧発生装置において、負荷にインダクタンス成分が含まれている場合、図5のX部分を拡大したときのインパルス電圧を示す図である。 本発明の第2実施形態に係るインパルス電圧発生装置において、負荷にインダクタンス成分が含まれている場合、図5のX部分を拡大したときのインパルス電圧を示す図である。
 以下、本発明に係るインパルス電圧発生装置の実施形態について、図面を参照して説明する。
  [第1実施形態]
 本発明の第1実施形態に係るインパルス電圧発生装置は、たとえば図8に示されるようなシステムに適用される。そのシステムは、回転電機1と、インバータ2と、ケーブル3とを具備している。
 ケーブル3は、インバータ2と回転電機1とを接続する。回転電機1としては、電動機(モーター)や発電機が例示される。インバータ2は、スイッチング動作により直流電圧からパルス電圧に変換し、そのパルス電圧を、ケーブル3を介して回転電機1に供給する。回転電機1は、パルス電圧により駆動する。
 しかし、上述のシステムでは、インバータ2とケーブル3と回転電機1とのインピーダンス不整合により、反射波が発生する。その反射波がパルス電圧に重畳することにより、ケーブル3と回転電機1との接続部4で、インバータサージが発生する可能性がある。
 このインバータサージは、その立ち上がり時間が非常に短く(たとえば50ns~2μs)、その立ち下がり時間が立ち上がり時間に比べて長い。インバータサージが繰り返し発生するときの周波数は、たとえば1kHz~20kHzである。
 そこで、上述のシステム、または、そのシステムにおける回転電機1のコイル部品を評価する試験の1つとして、インバータサージを模擬的に発生させて、たとえば負荷として上記接続部に印加する試験がある。この試験では、模擬的なインバータサージとしてインパルス電圧を繰り返し発生させて、そのインパルス電圧を負荷に印加する期間と、そのインパルス電圧を発生させない期間とを交互に行う。
 本発明の第1実施形態に係るインパルス電圧発生装置では、上記試験を実現する。
 図1は、本発明の第1実施形態に係るインパルス電圧発生装置の構成を示す回路図である。
 図1に示されるように、第1実施形態のインパルス電圧発生装置は、直流電源10と、高電圧発生器(HVDC)13と、容量素子16と、充電抵抗素子21と、負荷抵抗素子22と、調整抵抗素子23と、第1出力端子31と、第2出力端子32と、信号発生器33と、スイッチ用逆電圧保護ダイオード34と、半導体スイッチ40と、を具備している。
 高電圧発生器13の出力は容量素子16の第1電極(正電極)11に接続されている。容量素子16の第2電極(負電極)12は第2出力端子32の電位と同電位である。具体的には、第2出力端子32は接地されている。高電圧発生器13は、後述の高電圧HVDCを出力する。高電圧HVDCは、高電圧発生器13の第1電位から第2電位までの電位差を表している。本実施形態では、高電圧発生器13の第1電位を0[V]に設定し、高電圧発生器13の第2電位を高電圧HVDCに設定するために、高電圧発生器13の第1電位側の配線(図示しない)および筐体(図示しない)は接地されている。
 直流電源10は、入力用直流電源14と、制御用直流電源15とを含んでいる。
 入力用直流電源14の出力は高電圧発生器13の入力ポート(図示しない)に接続されている。入力用直流電源14は、後述の直流電圧VDCを出力する。直流電圧VDCは、入力用直流電源14の第1電位から第2電位までの電位差を表している。本実施形態では、入力用直流電源14の第1電位を0[V]に設定し、入力用直流電源14の第2電位を直流電圧VDCに設定するために、入力用直流電源14の第1電位側の配線(図示しない)および筐体(図示しない)は接地されている。
 制御用直流電源15の出力は高電圧発生器13の入力ポート(図示しない)に接続され、制御用直流電源15は、入力ポートにより高電圧発生器13に流すことができる電流の値を制御する電圧(後述の制御信号)を出力する。その電圧は、制御用直流電源15の第1電位から第2電位までの電位差を表している。本実施形態では、制御用直流電源15の第1電位を0[V]に設定し、制御用直流電源15の第2電位を上記電圧に設定するために、制御用直流電源15の第1電位側の配線(図示しない)および筐体(図示しない)は接地されている。
 高電圧発生器13の出力と容量素子16の第1電極11との間には抵抗素子である充電抵抗素子21が設けられている。第1出力端子31と第2出力端子32との間には抵抗素子である負荷抵抗素子22が設けられている。たとえば、第1出力端子31と第2出力端子32との間には、インパルス電圧を供給する負荷として、前述したケーブル3と回転電機1との接続部4が設けられる。
 半導体スイッチ40は、容量素子16の第1電極11に接続された第1端子41と、第1出力端子31に接続された第2端子42と、ゲート端子43とを備えている。第1端子41と第2端子42との間には抵抗素子が設けられている。半導体スイッチ40は、ゲート端子43に供給される電圧値が、予め設定されたゲート設定電圧値以上であるときにオンし、第1端子41と第2端子42とを接続する。
 半導体スイッチ40の第2端子42と第1出力端子31との間には抵抗素子である調整抵抗素子23が設けられている。
 スイッチ用逆電圧保護ダイオード34は、半導体スイッチ40の第1端子41にカソードが接続され、半導体スイッチ40の第2端子42にアノードが接続されている。すなわち、スイッチ用逆電圧保護ダイオード34は、半導体スイッチ40に対して並列に設けられ、整流ダイオードとして使われる。
 信号発生器33の出力は、半導体スイッチ40のゲート端子43に接続されている。
 次に、本発明の第1実施形態に係るインパルス電圧発生装置の動作として、高電圧発生器13、入力用直流電源14、および、制御用直流電源15の動作について説明する。
 入力用直流電源14は、直流電圧VDCを発生し、その直流電圧VDCを高電圧発生器13に供給する。
 高電圧発生器13は、入力用直流電源14から供給される直流電圧VDCに比例し、かつ、直流電圧VDCよりも高い高電圧HVDC(HVDC>>VDC)を発生し、その高電圧HVDCを容量素子16に印加する。この高電圧HVDCは、前述のインバータサージのピーク電圧、または、そのピーク電圧に安全係数を乗じた値を想定した電圧である。安全係数は、エンハンスメントファクター(Enhancement factor)とも呼ばれ、上述のシステムまたはそのシステムにおける回転電機1のコイル部品を試験により厳しく評価する場合に、たとえば1.3などの予め決められた数値が用いられる。
 たとえば、高電圧発生器13は、入力用直流電源14から供給される直流電圧VDCに対して3000倍の電圧を上記高電圧HVDCとして発生する。ここで、高電圧発生器13は、直流電圧VDCが0V~10Vの範囲であるときに、高電圧HVDCを0V~30kVの範囲で出力する。すなわち、直流電圧VDCが10Vであるとき、高電圧発生器13は、直流電圧VDCの10Vに対して3000倍の電圧である30kVを上記高電圧HVDCとして発生する。
 図2は、入力用直流電源14が高電圧発生器13に発生させることが可能な高電圧HVDCの波形として、パルス波を示す図である。図3は、図2とは異なる波形として、ランプ波を示す図である。図4は、図2および図3とは異なる波形として、パルス波やランプ波を組み合わせたときの波形を示す図である。
 制御用直流電源15は、直流電圧VDCの電圧値、立ち上がり時間、および、立ち下がり時間を指定するための制御信号を入力用直流電源14に出力する。図3~図5に示されるように、制御用直流電源15は、制御信号により直流電圧VDCの電圧値、立ち上がり時間、および、立ち下がり時間を調整することにより、一定の高電圧HVDCの他に、高電圧HVDCの波形をパルス波、ランプ波、および、パルス波やランプ波を組み合わせたときの波形に変形することも可能である。
 本実施形態では、制御用直流電源15は、高電圧発生器13に流れる電流の最大値を設定できる。
 次に、本発明の第1実施形態に係るインパルス電圧発生装置の動作として、信号発生器33および半導体スイッチ40の動作について説明する。
 まず、信号発生器33の動作について説明する。
 図5は、本発明の第1実施形態に係るインパルス電圧発生装置の信号発生器33が発生する期間設定信号50およびパルス信号53と、信号発生器33が生成する合成信号54と、半導体スイッチ40が合成信号54に基づいて発生するインパルス電圧55とを示す図である。
 信号発生器33には、第1の周波数として設定周波数f1が予め設定され、第1の振幅値として第1電圧値V1が予め設定される。信号発生器33は、設定周波数f1が設定されたときに、図5に示されるような波形(関数)で表される期間設定信号50を発生する。
 期間設定信号50は、その周波数が設定周波数f1であり、その振幅が第1電圧値V1である。期間設定信号50の1周期は、パルス供給期間51と、パルス供給期間51の後のパルス休止期間52とを含んでいる。
 期間設定信号50の波形が方形波である場合、パルス供給期間51は、期間設定信号50の振幅値である第1電圧値V1を表す期間であり、パルス休止期間52は、振幅値がない期間である。期間設定信号50の1周期をパルス供給期間51とパルス休止期間52とに分けることが可能である場合、期間設定信号50の波形は、方形波に限らず、正弦波、三角波でもよい。
 また、信号発生器33には、第2の周波数として設定周波数f1よりも高く設定されたインパルス繰り返し周波数f2(f2>f1)が予め設定され、第2の振幅値として第2電圧値V2が予め設定される。インパルス繰り返し周波数f2は、前述のインバータサージが繰り返し発生する場合(たとえば1kHz~20kHz)を想定した周波数である。信号発生器33は、インパルス繰り返し周波数f2および第2電圧値V2が設定されたときに、図5に示されるようなパルス信号53を発生する。
 パルス信号53は、その周波数がインパルス繰り返し周波数f2であり、その振幅が第2電圧値V2である。たとえば、設定周波数f1が500Hzである場合、インパルス繰り返し周波数f2は10kHzである。
 信号発生器33は、パルス信号53を発生したときに、期間設定信号50とパルス信号53とを重ね合わせて、図5に示されるように、パルス信号53がパルス供給期間51にのみ発生する合成信号54を生成し、半導体スイッチ40のゲート端子43に供給する。
 ここで、合成信号54の電圧値である第3電圧値V3は、パルス信号53の第2電圧値V2を表している(V3=V2)。または、第3電圧値V3は、期間設定信号50の第1電圧値V1とパルス信号53の第2電圧値V2との論理積を表している(V3=V1 And V2)。この第3電圧値V3は、半導体スイッチ40をオンするためのゲート設定電圧値Vg(たとえば5V)と信号発生器33の仕様との組み合わせによって決定され、高電圧HVDCの値よりも大幅に低く、ゲート設定電圧値Vgよりも高い(Vg<V3<<HVDC)。
 次に、半導体スイッチ40の動作について説明する。
 いま、入力用直流電源14から第1制御信号が発生されたものとする。この第1制御信号は、パルス供給期間51である第1パルス供給期間中に高電圧HVDCである第1高電圧(たとえば10kV)を高電圧発生器13に発生させる。すなわち、入力用直流電源14から発生される第1制御信号により、指定された電圧値、立ち上がり時間、および、立ち下がり時間に応じた第1直流電圧(3.3V)が高電圧発生器13に供給された場合、高電圧発生器13は、第1直流電圧(3.3V)に対して3000倍の電圧を第1高電圧(10kV)として発生する。ただし、高電圧発生器13に流れる電流の値が制御用直流電源15で規定されている電流値を超える場合には、制御用直流電源15によって、高電圧HVDCである第1高電圧(10kV)は発生しない。
 半導体スイッチ40は、ゲート端子43に供給される合成信号54の電圧値である第3電圧値V3がゲート設定電圧値Vgよりも低いときにオフし、第1端子41と第2端子42とを接続しない。このとき、高電圧発生器13から容量素子16に印加された高電圧HVDC{この場合、第1高電圧(10kV)}により、容量素子16の第1電極11と第2電極12との間には電荷が蓄積される。すなわち、半導体スイッチ40は、容量素子16を充電する。
 半導体スイッチ40は、ゲート端子43に供給される合成信号54の第3電圧値V3がゲート設定電圧値Vg以上であるときにオンし、第1端子41と第2端子42とを接続する。この場合、容量素子16の第1電極11は半導体スイッチ40および調整抵抗素子23を介して第1出力端子31に接続される。このとき、容量素子16に蓄積された電荷が放出される。すなわち、半導体スイッチ40は、容量素子16を放電する。
 その結果、半導体スイッチ40は、容量素子16から放出される電荷により、図5に示されるように、上記高電圧HVDC{第1高電圧(10kV)}の値をピーク値とするインパルス電圧55を発生して、そのインパルス電圧55を第1出力端子31と第2出力端子32との間に出力する。
 図6は、図5のX部分を拡大したときのインパルス電圧55を示す図である。図7は、図6のY部分を拡大したときのインパルス電圧55の立ち上がりを示す図である。
 図6および図7に示されるように、インパルス電圧55は、その立ち上がり時間が非常に短く(たとえば20ns~200ns)、その立ち下がり時間が立ち上がり時間に比べて長い(たとえば20μs)。インパルス幅(インパルス電圧が立ち上がり終わってから立ち下がり始めるまでの幅)は1μs~10μsであり、インパルス繰り返し周波数f2は1kHz~20kHz(上述の例では10kHz)である。
 このように、第1実施形態のインパルス電圧発生装置によれば、安定したインパルス電圧55を繰り返し発生させるパルス供給期間51と、そのインパルス電圧55を発生させないパルス休止期間52とを交互に行う試験を実現することができる。また、第1実施形態のインパルス電圧発生装置によれば、上述のインパルス電圧55を繰り返し発生させることにより、上述のシステムを正確に評価することができる。
 また、第1実施形態のインパルス電圧発生装置では、パルス供給期間51毎に高電圧HVDCを徐々に増加させる試験を実現することもできる。
 たとえば、入力用直流電源14から、第1制御信号の後に第2制御信号が発生されたものとする。たとえば、第2制御信号は、第1パルス供給期間の次のパルス供給期間51である第2パルス供給期間中に第1高電圧とは異なる高電圧HVDCである第2高電圧{たとえば第1高電圧(10kV)よりも高い12kV}を高電圧発生器13に発生させる。すなわち、入力用直流電源14から発生される第2制御信号により、指定された電圧値、立ち上がり時間、および、立ち下がり時間に応じた第2直流電圧(4.0V)が高電圧発生器13に供給された場合、高電圧発生器13は、第2直流電圧(4.0V)に対して3000倍の電圧を第2高電圧(12kV)として発生する。ただし、高電圧発生器13に流れる電流の値が制御用直流電源15で規定されている電流値を超える場合には、制御用直流電源15によって、高電圧HVDCである第2高電圧(12kV)は発生しない。
 半導体スイッチ40は、ゲート端子43に供給される合成信号54の電圧値である第3電圧値V3がゲート設定電圧値Vgよりも低いときにオフし、第1端子41と第2端子42とを接続しない。このとき、高電圧発生器13から容量素子16に印加された高電圧HVDC{この場合、第2高電圧(12kV)}により、容量素子16の第1電極11と第2電極12との間には電荷が蓄積される。すなわち、半導体スイッチ40は、容量素子16を充電する。
 半導体スイッチ40は、ゲート端子43に供給される合成信号54の第3電圧値V3がゲート設定電圧値Vg以上であるときにオンし、第1端子41と第2端子42とを接続する。この場合、容量素子16の第1電極11は半導体スイッチ40および調整抵抗素子23を介して第1出力端子31に接続される。このとき、容量素子16に蓄積された電荷が放出される。
 その結果、半導体スイッチ40は、容量素子16から放出される電荷により、上記高電圧HVDC{第2高電圧(12kV)}の値をピーク値とするインパルス電圧55を発生して、そのインパルス電圧55を第1出力端子31と第2出力端子32との間に出力する。
 第1実施形態のインパルス電圧発生装置では、パルス供給期間51毎に高電圧HVDCを徐々に増加させる試験を実現するために、入力用直流電源14は、たとえば、第1~第6パルス供給期間51中に徐々に増加する高電圧HVDCとして第1~第6高電圧(10kV、12kV、14kV、16kV、18kV、20kV)}を高電圧発生器13に発生させる。その結果、半導体スイッチ40が、信号発生器33により生成される合成信号54に基づいて、スイッチング動作により第1~第6パルス供給期間51中に上述のインパルス電圧55を繰り返し発生させる。
 また、第1実施形態のインパルス電圧発生装置では、パルス供給期間51毎に高電圧HVDCを徐々に増加させ、その後、所定のタイミングあるいは任意のタイミングで、パルス供給期間51毎に高電圧HVDCを徐々に減少させる試験を実現することもできる。この場合、入力用直流電源14は、たとえば、第1~第6パルス供給期間51中に徐々に増加する高電圧HVDCとして第1~第6高電圧(10kV、12kV、14kV、16kV、18kV、20kV)を高電圧発生器13に発生させる。次に、第7~第11パルス供給期間51中に徐々に減少させる高電圧HVDCとして第7~第11高電圧(18kV、16kV、14kV、12kV、10kV)を高電圧発生器13に発生させる。その結果、半導体スイッチ40が、信号発生器33により生成される合成信号54に基づいて、スイッチング動作により第1~第11パルス供給期間51中に上述のインパルス電圧55を繰り返し発生させる。
 また、第1実施形態のインパルス電圧発生装置では、パルス供給期間51毎に高電圧HVDCを徐々に増加させ、所定のタイミングあるいは任意のタイミングで、パルス供給期間51毎の高電圧HVDCを一定にする試験を実現することもできる。この場合、入力用直流電源14は、たとえば、第1~第6パルス供給期間51中に徐々に増加する高電圧HVDCとして第1~第6高電圧(10kV、12kV、14kV、16kV、18kV、20kV)を高電圧発生器13に発生させる。次に、第7~第11パルス供給期間51中に一定の高電圧HVDCとして第6高電圧(20kV)を高電圧発生器13に発生させる。その結果、半導体スイッチ40が、信号発生器33により生成される合成信号54に基づいて、スイッチング動作により第1~第11パルス供給期間51中に上述のインパルス電圧55を繰り返し発生させる。
 また、第1実施形態のインパルス電圧発生装置では、パルス供給期間51毎に高電圧HVDCを徐々に減少させ、所定のタイミングあるいは任意のタイミングで、パルス供給期間51毎の高電圧HVDCを一定にする試験を実現することもできる。この場合、入力用直流電源14は、たとえば、第1~第6パルス供給期間51中に徐々に増加する高電圧HVDCとして第1~第6高電圧(20kV、18kV、16kV、14kV、12kV、10kV)を高電圧発生器13に発生させる。次に、第7~第11パルス供給期間51中に一定の高電圧HVDCとして第6高電圧(10kV)を高電圧発生器13に発生させる。その結果、半導体スイッチ40が、信号発生器33により生成される合成信号54に基づいて、スイッチング動作により第1~第11パルス供給期間51中に上述のインパルス電圧55を繰り返し発生させる。
 このように、第1実施形態のインパルス電圧発生装置によれば、安定したインパルス電圧55を繰り返し発生させるパルス供給期間51と、そのインパルス電圧55を発生させないパルス休止期間52とを交互に行う試験を実現することができる上に、複数種類のインパルス電圧55をパルス供給期間51毎に発生させることができる。
 なお、本発明の第1実施形態に係るインパルス電圧発生装置では、上述のシステム(図8参照)の他に、たとえば図9に示されるようなシステムにも適用可能である。
 図9は、図8とは異なる例として、本発明の第1実施形態に係るインパルス電圧発生装置が適用されるシステムの構成を示す図である。
 このシステムでは、上述の回転電機1に代えて、リニアモーター5を具備している。リニアモーター5は、たとえば、磁気浮上式リニアモーターカーやその他の用途に利用されている。この場合、ケーブル3は、インバータ2とリニアモーター5またはそのコイル部品とを接続する。インバータ2は、スイッチング動作により直流電圧からパルス電圧に変換し、そのパルス電圧を、ケーブル3を介してリニアモーター5に供給する。リニアモーター5は、パルス電圧により駆動する。
  [第2実施形態]
 第2実施形態について、第1実施形態の変更点のみ説明する。
 図10は、本発明の第2実施形態に係るインパルス電圧発生装置の構成を示す回路図である。図11は、本発明の第1実施形態に係るインパルス電圧発生装置において、負荷にインダクタンス成分が含まれている場合、図5のX部分を拡大したときのインパルス電圧を示す図である。図12は、本発明の第2実施形態に係るインパルス電圧発生装置において、負荷にインダクタンス成分が含まれている場合、図5のX部分を拡大したときのインパルス電圧を示す図である。
 図10に示されるように、第2実施形態のインパルス電圧発生装置は、第1実施形態の構成に加えて、負荷用逆電圧保護ダイオード44を具備している。負荷用逆電圧保護ダイオード44は、第1出力端子31にカソードが接続され、第2出力端子32にアノードが接続されている。すなわち、負荷用逆電圧保護ダイオード44は、負荷抵抗素子22および負荷に対して並列に設けられ、整流ダイオードとして使われる。
 前述の第1実施形態に係るインパルス電圧発生装置では、第1出力端子31と第2出力端子32との間の負荷にインダクタンス成分が含まれている場合、そのインダクタンス成分により逆起電力が発生する。このため、図11に示されるように、パルス供給期間51にインパルス電圧55を発生させるときに、正極性の高電圧HVDCをピーク値とする第1波が発生した後に、0[V]に安定するまで第2波以降の電圧が発生する。たとえば、インダクタンス成分で発生する逆起電力によって、第1波の後に負極性の電圧をピーク値とする第2波が発生する。すなわち、逆電圧が発生する。その逆電圧により、第2波の後に正極性の電圧をピーク値とする第3波が発生し、第3波の後に負極性の電圧をピーク値とする第4波が発生する。インパルス電圧55として必要な成分は第1波である。
 一方、第2実施形態のインパルス電圧発生装置では、第1出力端子31と第2出力端子32との間の負荷にインダクタンス成分が含まれている場合、負荷用逆電圧保護ダイオード44により上述の逆電圧を防止する。このため、図12に示されるように、パルス供給期間51にインパルス電圧55を発生させるときに、負荷にインダクタンス成分が含まれていても、正極性の高電圧HVDCをピーク値とする第1波だけが発生する。したがって、第2実施形態のインパルス電圧発生装置によれば、インパルス電圧55として必要な成分だけを得ることができる。
 以上、本発明の一実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更することができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1 … 回転電機
 2 … インバータ
 3 … ケーブル
 4 … 接続部
 5 … リニアモーター
10 … 直流電源
11 … 第1電極(正電極)
12 … 第2電極(負電極)
13 … 高電圧発生器
14 … 入力用直流電源
15 … 制御用直流電源
16 … 容量素子
21 … 充電抵抗素子
22 … 負荷抵抗素子
23 … 調整抵抗素子
31 … 第1出力端子
32 … 第2出力端子
33 … 信号発生器
34 … スイッチ用逆電圧保護ダイオード
40 … 半導体スイッチ
41 … 第1端子
42 … 第2端子
43 … ゲート端子
44 … 負荷用逆電圧保護ダイオード
50 … 期間設定信号
51 … パルス供給期間
52 … パルス休止期間
53 … パルス信号
54 … 合成信号
55 … インパルス電圧
f1 … 設定周波数
f2 … インパルス繰り返し周波数
HVDC … 高電圧
V1 … 第1電圧値
V2 … 第2電圧値
V3 … 第3電圧値
VDC … 直流電圧
Vg … ゲート設定電圧値

Claims (10)

  1.  高電圧を発生する高電圧発生器と、
     容量素子と、
     その1周期がパルス供給期間および前記パルス供給期間の後のパルス休止期間を含む期間設定信号と、その周波数が前記期間設定信号の周波数よりも高いインパルス繰り返し周波数であり、かつ、その振幅値が前記高電圧の値よりも低い電圧値を表すパルス信号とを重ね合わせて、前記パルス信号が前記パルス供給期間にのみ発生する合成信号を生成する信号発生器と、
     前記合成信号の電圧値が予め設定されたゲート設定電圧値よりも低いときに前記高電圧発生器からの前記高電圧により前記容量素子に電荷を蓄積させ、前記合成信号の電圧値が前記ゲート設定電圧値以上であるときに、前記容量素子に蓄積された電荷を放出させ、前記容量素子から放出される電荷により前記高電圧の値をピーク値とするインパルス電圧を発生し、負荷が設けられた第1出力端子と第2出力端子との間に前記インパルス電圧を供給する半導体スイッチと、
     を具備することを特徴とするインパルス電圧発生装置。
  2.  前記高電圧発生器の出力は前記容量素子の第1電極に接続され、
     前記半導体スイッチは、前記容量素子の第1電極に接続された第1端子と、前記第1出力端子に接続された第2端子と、前記信号発生器の出力に接続されたゲート端子とを備え、
     前記半導体スイッチは、
     前記ゲート端子に供給される前記合成信号の電圧値が前記ゲート設定電圧値よりも低いときに、前記半導体スイッチを介して前記容量素子の第1電極と前記第1出力端子とを接続しないで、前記高電圧発生器からの前記高電圧により前記容量素子の第1電極と第2電極との間に電荷を蓄積させ、
     前記ゲート端子に供給される前記合成信号の電圧値が前記ゲート設定電圧値以上であるときに、前記半導体スイッチを介して前記容量素子の第1電極と前記第1出力端子とを接続して、前記容量素子に蓄積された電荷を放出させ、前記容量素子から放出される電荷により前記高電圧の値をピーク値とする前記インパルス電圧を発生し、前記第1出力端子と、前記容量素子の第2電極の電位と同電位の前記第2出力端子との間に前記インパルス電圧を供給する、
     ことを特徴とする請求項1に記載のインパルス電圧発生装置。
  3.  前記高電圧発生器の出力と前記容量素子の第1電極との間に設けられた抵抗素子である充電抵抗素子と、
     前記第1出力端子と前記第2出力端子との間に設けられた抵抗素子である負荷抵抗素子と、
     前記半導体スイッチの前記第2端子と前記第1出力端子との間に設けられた抵抗素子である調整抵抗素子と、
     をさらに具備することを特徴とする請求項2に記載のインパルス電圧発生装置。
  4.  前記半導体スイッチの前記第1端子にカソードが接続され、前記半導体スイッチの前記第2端子にアノードが接続されたスイッチ用逆電圧保護ダイオード、
     をさらに具備することを特徴とする請求項2または請求項3に記載のインパルス電圧発生装置。
  5.  直流電圧を発生する直流電源をさらに具備し、
     前記高電圧発生器は、前記直流電源から供給される前記直流電圧に比例し、かつ、前記直流電圧よりも高い前記高電圧を発生する、
     ことを特徴とする請求項1ないし請求項4のいずれか一項に記載のインパルス電圧発生装置。
  6.  前記直流電源は、前記高電圧を制御するために予め指定された電圧値、立ち上がり時間、および、立ち下がり時間に応じて前記直流電圧を前記高電圧発生器に供給する、
     ことを特徴とする請求項5に記載のインパルス電圧発生装置。
  7.  前記直流電源は、
     前記パルス供給期間である第1パルス供給期間中に前記高電圧である第1高電圧を前記高電圧発生器に発生させるために、前記第1高電圧に比例した前記直流電圧である第1直流電圧を前記高電圧発生器に供給し、
     前記第1パルス供給期間の次の第2パルス供給期間中に前記第1高電圧とは異なる第2高電圧を前記高電圧発生器に発生させるために、前記第2高電圧に比例した前記直流電圧である第2直流電圧を前記高電圧発生器に供給する、
     ことを特徴とする請求項6に記載のインパルス電圧発生装置。
  8.  前記インパルス電圧発生装置は、回転電機と、前記回転電機を駆動するためのパルス電圧を出力するインバータと、前記インバータと前記回転電機とを接続するケーブルと、を具備するシステム、または、そのシステムにおける前記回転電機のコイル部品を評価するときに用いられ、
     前記高電圧は、前記ケーブルと前記回転電機との接続部に発生する可能性があるインバータサージのピーク電圧、または、そのピーク電圧に安全係数を乗じた値を想定した電圧であり、
     前記インパルス繰り返し周波数は、前記インバータサージが繰り返し発生する場合を想定した周波数である、
     ことを特徴とする請求項1ないし請求項7のいずれか一項に記載のインパルス電圧発生装置。
  9.  前記インパルス電圧発生装置は、リニアモーターと、前記リニアモーターを駆動するためのパルス電圧を出力するインバータと、前記インバータと前記リニアモーターまたはそのコイル部品とを接続するケーブルと、を具備するシステムを評価するときに用いられ、
     前記高電圧は、前記ケーブルと前記リニアモーターとの接続部に発生する可能性があるインバータサージのピーク電圧、または、そのピーク電圧に安全係数を乗じた値を想定した電圧であり、
     前記インパルス繰り返し周波数は、前記インバータサージが繰り返し発生する場合を想定した周波数である、
     ことを特徴とする請求項1ないし請求項7のいずれか一項に記載のインパルス電圧発生装置。
  10.  前記第1出力端子にカソードが接続され、前記第2出力端子にアノードが接続され、前記負荷に対して並列に設けられた負荷用逆電圧保護ダイオード、
     をさらに具備することを特徴とする請求項1ないし請求項9のいずれか一項に記載のインパルス電圧発生装置。
PCT/JP2012/008099 2011-12-20 2012-12-19 インパルス電圧発生装置 WO2013094189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280062993.4A CN103999347B (zh) 2011-12-20 2012-12-19 脉冲电压发生装置
CA2859754A CA2859754C (en) 2011-12-20 2012-12-19 Impulse voltage generation device
KR1020147019880A KR101625780B1 (ko) 2011-12-20 2012-12-19 임펄스 전압 발생 장치
EP12858999.1A EP2797218A4 (en) 2011-12-20 2012-12-19 PULSE POWER GENERATOR
US14/294,237 US9197201B2 (en) 2011-12-20 2014-06-03 Impulse voltage generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278820 2011-12-20
JP2011278820A JP5941669B2 (ja) 2011-12-20 2011-12-20 インパルス電圧発生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/294,237 Continuation US9197201B2 (en) 2011-12-20 2014-06-03 Impulse voltage generation device

Publications (1)

Publication Number Publication Date
WO2013094189A1 true WO2013094189A1 (ja) 2013-06-27

Family

ID=48668107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008099 WO2013094189A1 (ja) 2011-12-20 2012-12-19 インパルス電圧発生装置

Country Status (7)

Country Link
US (1) US9197201B2 (ja)
EP (1) EP2797218A4 (ja)
JP (1) JP5941669B2 (ja)
KR (1) KR101625780B1 (ja)
CN (1) CN103999347B (ja)
CA (1) CA2859754C (ja)
WO (1) WO2013094189A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020170339A1 (ja) * 2019-02-19 2020-08-27
JP2021510830A (ja) * 2018-03-13 2021-04-30 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 電気手術用発電機のための試験装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646172B (zh) * 2016-12-02 2020-09-01 国网四川省电力公司电力科学研究院 一种产生直流叠加冲击电压的试验电路
CN106787927B (zh) * 2016-12-28 2019-02-05 中科益盛科技有限公司 一种脉冲电压发生装置
US10784807B2 (en) * 2017-05-11 2020-09-22 Siemens Aktiengesellschaft Methods and systems for controlling an electrical machine
CN107576828B (zh) * 2017-10-16 2023-10-27 云南电网有限责任公司电力科学研究院 冲击电压发生器多开关同步触发装置及方法
CN107803581A (zh) * 2017-10-31 2018-03-16 安徽景隆金属材料有限公司 一种异种材质钢材的连接工艺方法
CN111434039A (zh) * 2017-12-07 2020-07-17 朗姆研究公司 用于半导体rf等离子体处理的脉冲内的rf脉冲
CN108233897A (zh) * 2018-02-05 2018-06-29 电子科技大学 一种基于阴极短路栅控晶闸管的脉冲形成网络
US11427177B2 (en) 2019-11-20 2022-08-30 Tula eTechnology, Inc. Pulsed electric machine control using tables
US11133767B2 (en) 2018-03-19 2021-09-28 Tula eTechnology, Inc. Pulsed electric machine control using tables
US11167648B1 (en) 2020-04-21 2021-11-09 Tula eTechnology, Inc. Pulse modulated control with field weakening for improved motor efficiency
US10944352B2 (en) 2018-03-19 2021-03-09 Tula eTechnology, Inc. Boosted converter for pulsed electric machine control
US11623529B2 (en) 2018-03-19 2023-04-11 Tula eTechnology, Inc. Pulse modulated control with field weakening for improved motor efficiency
EP3852265A1 (en) 2018-03-19 2021-07-21 Tula Technology, Inc. Pulsed electric machine control
TWI661209B (zh) * 2018-06-26 2019-06-01 東元電機股份有限公司 電力電子元件之電壓響應測試方法
EP4122093A1 (en) 2020-04-30 2023-01-25 TULA Etechnology, Inc. Magnetically de-coupled, separately controlled, multiple electric machine assembly for driving a common shaft
US20210351733A1 (en) 2020-05-05 2021-11-11 Tula eTechnology, Inc. Pulsed electric machine control
US11628730B2 (en) 2021-01-26 2023-04-18 Tula eTechnology, Inc. Pulsed electric machine control
JP2024510092A (ja) 2021-03-15 2024-03-06 トゥラ イーテクノロジー,インコーポレイテッド 電気モータのための波形最適化方法
CN117426049A (zh) 2021-06-14 2024-01-19 图拉E技术公司 具有高效扭矩转换的电机
US11973447B2 (en) 2021-06-28 2024-04-30 Tula eTechnology, Inc. Selective phase control of an electric machine
US11557996B1 (en) 2021-07-08 2023-01-17 Tula eTechnology, Inc. Methods of reducing vibrations for electric motors
US11345241B1 (en) 2021-08-12 2022-05-31 Tula eTechnology, Inc. Method of optimizing system efficiency for battery powered electric motors
CN117957760A (zh) 2021-09-08 2024-04-30 图拉技术公司 基于波形整数倍的电动机扭矩调整
WO2023069131A1 (en) 2021-10-18 2023-04-27 Tula eTechnology, Inc. Mechanical and electromechanical arrangements for field-weakening of an electric machine that utilizes permanent magnets
CN114034952B (zh) * 2021-11-04 2023-09-22 西南科技大学 一种波形便捷切换的强电磁脉冲模拟器及其配置方法
US11888424B1 (en) 2022-07-18 2024-01-30 Tula eTechnology, Inc. Methods for improving rate of rise of torque in electric machines with stator current biasing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335089A (ja) * 1997-06-03 1998-12-18 Rohm Co Ltd バックライト照明装置の調光用バーストパルス発生回路
JP2006038471A (ja) * 2004-07-22 2006-02-09 Kyushu Institute Of Technology 部分放電開始電圧計測方法及びその装置
JP2006098170A (ja) * 2004-09-29 2006-04-13 Soken Denki Kk 部分放電測定システム
JP2009115505A (ja) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp 巻線の検査装置及び検査方法
JP2011002313A (ja) * 2009-06-18 2011-01-06 Hitachi Ltd 部分放電検査方法および回転電機
JP2011244639A (ja) * 2010-05-20 2011-12-01 Mitsubishi Heavy Ind Ltd 電流発生装置
JP2013002871A (ja) * 2011-06-14 2013-01-07 Toshiba Corp 繰り返しインパルス電圧による部分放電計測システムおよび部分放電計測方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009604B (zh) * 1986-01-16 1990-09-12 中国科学院等离子体物理研究所 电感储能式大功率高压脉冲调制器
JPH0943302A (ja) * 1995-08-02 1997-02-14 Matsushita Electric Ind Co Ltd 絶縁試験方法およびその装置
US5648725A (en) * 1995-09-12 1997-07-15 Emerson Electric Co. Pulse width modulation simulator for testing insulating materials
CN1919520A (zh) * 2000-01-10 2007-02-28 电子科学工业公司 激光切断集成电路中导电性链路的激光器系统及方法
DE10226615B4 (de) * 2002-06-14 2007-06-14 Siemens Ag Teilentladungsmessvorrichtung und Verfahren zur Messung von Teilentladungen an Motorwicklungen mit einer Pulsspannung variabler Amplitude und variabler Anstiegszeit
JP2004048952A (ja) 2002-07-15 2004-02-12 Totoku Electric Co Ltd 高圧電源装置
JP4418320B2 (ja) * 2004-07-28 2010-02-17 株式会社日立産機システム モータ巻線ターン間部分放電計測方法
CN100359332C (zh) * 2004-10-09 2008-01-02 西安交通大学 一种绝缘脉冲耐电强度测试装置
CN201315550Y (zh) * 2008-12-19 2009-09-23 东北农业大学 基于三极点火开关的高电压脉冲发生器
CN101710814B (zh) * 2009-12-25 2011-12-14 青岛朗讯科技通讯设备有限公司 产生任意频率脉冲的方法以及步进电机的升降速控制方法
JP6134101B2 (ja) * 2012-03-14 2017-05-24 東芝三菱電機産業システム株式会社 繰り返しインパルス電圧による部分放電計測システムおよび部分放電計測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335089A (ja) * 1997-06-03 1998-12-18 Rohm Co Ltd バックライト照明装置の調光用バーストパルス発生回路
JP2006038471A (ja) * 2004-07-22 2006-02-09 Kyushu Institute Of Technology 部分放電開始電圧計測方法及びその装置
JP2006098170A (ja) * 2004-09-29 2006-04-13 Soken Denki Kk 部分放電測定システム
JP2009115505A (ja) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp 巻線の検査装置及び検査方法
JP2011002313A (ja) * 2009-06-18 2011-01-06 Hitachi Ltd 部分放電検査方法および回転電機
JP2011244639A (ja) * 2010-05-20 2011-12-01 Mitsubishi Heavy Ind Ltd 電流発生装置
JP2013002871A (ja) * 2011-06-14 2013-01-07 Toshiba Corp 繰り返しインパルス電圧による部分放電計測システムおよび部分放電計測方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI MING ET AL.: "EFFECTS OF REPETITIVE PULSE VOLTAGES ON SURFACE TEMPERATURE INCREASE AT END CORONA FPROTECTION REGION OF HIGH VOLTAGE MOTORS", 10TH INSUCON INTERNATIONAL CONFERENCE BIRMINGHAM, 2006
See also references of EP2797218A4
YOSHINOBU MURAKAMI ET AL.: "Kurikaeshi Impulse Den'atsuka ni Okeru Bubun Hoden Kaishi Den'atsu Sokutei no Dai Ichiji Kyodo Jikken", HEISEI 22 NEN NATIONAL CONVENTION RECORD I.E.E. JAPAN, vol. 1, no. 2-9, 5 March 2010 (2010-03-05), pages 33 - 36, XP008174667 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510830A (ja) * 2018-03-13 2021-04-30 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 電気手術用発電機のための試験装置
JPWO2020170339A1 (ja) * 2019-02-19 2020-08-27
WO2020170339A1 (ja) * 2019-02-19 2020-08-27 東芝三菱電機産業システム株式会社 インパルス電圧発生装置および電力用半導体スイッチの保護方法
CN111837046A (zh) * 2019-02-19 2020-10-27 东芝三菱电机产业系统株式会社 脉冲电压产生装置及电力用半导体开关的保护方法
CN111837046B (zh) * 2019-02-19 2023-06-09 东芝三菱电机产业系统株式会社 脉冲电压产生装置及电力用半导体开关的保护方法
JP7356908B2 (ja) 2019-02-19 2023-10-05 東芝三菱電機産業システム株式会社 インパルス電圧発生装置および電力用半導体スイッチの保護方法

Also Published As

Publication number Publication date
CN103999347A (zh) 2014-08-20
JP2013132109A (ja) 2013-07-04
JP5941669B2 (ja) 2016-06-29
EP2797218A4 (en) 2015-12-09
CA2859754C (en) 2016-11-22
US9197201B2 (en) 2015-11-24
KR101625780B1 (ko) 2016-05-30
EP2797218A1 (en) 2014-10-29
KR20140103344A (ko) 2014-08-26
US20140292382A1 (en) 2014-10-02
CN103999347B (zh) 2017-04-12
CA2859754A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5941669B2 (ja) インパルス電圧発生装置
US7759654B2 (en) Apparatus for generating corona discharges
JP5508302B2 (ja) 除電器
JP4519333B2 (ja) パルスac式除電装置
KR101937755B1 (ko) 이오나이저
KR101054244B1 (ko) 임펄스발생기용 트리거장치 및 그 구동방법
JP4770953B2 (ja) 除電装置
JP2016164407A (ja) 内燃機関用の点火装置
JP4157359B2 (ja) 除電装置
JP2005198462A (ja) 圧電トランスを用いた電源装置
JP2011009167A (ja) 除電器用パルスコントロール電源装置
JP2010092671A (ja) イオン生成装置
WO2010044304A1 (ja) イオン発生器
JP5794061B2 (ja) 除電装置
JP4245761B2 (ja) 静電応用機器用パルス重畳型高電圧発生装置及び静電応用機器
KR20160110745A (ko) 마이크로 펄스 하전 방식의 집진기용 전원장치
KR102236487B1 (ko) 이오나이저 모듈
JP6275182B2 (ja) 電源装置及び除電装置
KR102270685B1 (ko) 전기 집진기용 직류 펄스 전원 공급 장치
JP2009059591A (ja) 除電装置
WO2013072908A1 (en) Method and converter for converting high voltage dc to pulsating ac voltage
JP5437931B2 (ja) 交流電圧発生器
JP5344255B2 (ja) 電力変換装置
CN117895924A (zh) 一种用于静电消除器的高压脉冲发生装置
JP2012089327A (ja) 高電圧発生回路、イオン発生装置及び静電霧化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2859754

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012858999

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019880

Country of ref document: KR

Kind code of ref document: A