JP2005198462A - 圧電トランスを用いた電源装置 - Google Patents

圧電トランスを用いた電源装置 Download PDF

Info

Publication number
JP2005198462A
JP2005198462A JP2004004432A JP2004004432A JP2005198462A JP 2005198462 A JP2005198462 A JP 2005198462A JP 2004004432 A JP2004004432 A JP 2004004432A JP 2004004432 A JP2004004432 A JP 2004004432A JP 2005198462 A JP2005198462 A JP 2005198462A
Authority
JP
Japan
Prior art keywords
voltage
output voltage
frequency
output
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004004432A
Other languages
English (en)
Inventor
Hiroaki Onitsuka
博明 鬼束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2004004432A priority Critical patent/JP2005198462A/ja
Publication of JP2005198462A publication Critical patent/JP2005198462A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】 3kV程度の高電圧から数10Vの低電圧までが得られ、かつ100倍程度の電力的可変幅が得られ、しかも効率を向上できる、圧電トランスを用いた電源装置を提供する。
【解決手段】 電源装置10は、印加された駆動電圧Vdを変圧して出力電圧Voとして負荷Lへ供給する圧電トランス20と、圧電トランス20の出力電圧Voを検出する出力検出部12と、出力検出部12で検出された出力電圧Vo(以下「検出出力電圧Vo」という。)が設定された出力電圧Vs(以下「設定出力電圧Vs」という。)に等しくなるように駆動電圧Vdの周波数F及びデューティ比Duを同時に制御する駆動電圧制御部14と、駆動電圧制御部14で制御された周波数F及びデューティ比Duによって駆動電圧Vdを圧電トランス20に印加する駆動部16とを備えたものである。
【選択図】 図1

Description

本発明は、圧電振動子の共振現象を利用して交流電圧を変圧する圧電トランスに関し、詳しくはこれを用いた電源装置に関する。
複写機やプリンタ等の電子写真装置には、帯電器等に直流高電圧を印加するための直流バイアス電源が用いられている。この直流バイアス電源は、例えば、出力電圧が数10Vから3kV程度まで変化し、負荷が数10MΩから10GΩ程度まで変化する特性が要求され、主に巻線式トランスが使用されてきた。
しかし、巻線式トランスは、絶縁体として有機物が使用されているので、可燃性の点で問題があった。また、直流バイアス電源は出力電流値が数μAという極めて微小な値であることにより、巻線式トランスは漏れ電流を極力少なくするために実装や構造での工夫が必要であった。
これらの欠点を補うために、圧電トランスを用いて直流バイアス電源を構成することが考えられている。圧電トランスは、セラミックスからなることにより有機絶縁物を必要としないので燃焼の危険性がなく、しかも小型化及び軽量化が容易である、という優れた特徴を有する。
この圧電トランスを用いて出力電圧を変えるには、駆動電圧の周波数を変える方法(以下「周波数制御」という。)と、駆動電圧のデューティ比を変える方法(以下「デューティ比制御」という。)とが知られている。また、特許文献1には、周波数制御とデューティ比制御とを、消費電力に応じてどちら一方に切り替える技術が開示されている。
特開2003−235255号公報
しかしながら、周波数制御では次のような問題があった。
圧電トランスには複数の共振点が存在する。そして、その共振周波数を基準にして駆動電圧の周波数を上げても下げても、出力電圧が低下する。しかし、共振周波数から周波数を変化させても、出力電圧の最大値を数kVに設定すると数100V以下にはならない。なぜなら、周波数を大きく変化させると、次の共振周波数が近くなるため、却って出力電圧が上昇してしまうからである。
更に、駆動電圧の周波数には、共振周波数近傍等の効率の良い範囲が存在する。しかし、出力電圧の可変幅を大きくするために、効率の悪い範囲の周波数も使用しなければならないので、全体としての効率が良くなかった。
一方、デューティ比制御では次のような問題があった。
一般に、デューディ比は、50%のときに出力電圧が最大値となり、これよりも小さくするにつれて出力電圧も低下する。また、デューディ比制御では、駆動電圧の周波数が例えば100kHzを越える場合、駆動電圧の1周期が10μsec以下となる。しかし、一般的なICやスイッチング素子では数μsecを制御することが困難であることにより、デューティ比を10%未満に精度良く制御できないので、出力電圧の最大値を数kVに設定すると数10Vの低電圧を得ることができなかった。
更に、駆動電圧のデューティ比には、例えば50%近傍等の効率の良い範囲が存在する。しかし、出力電圧の可変幅を大きくするために、効率の悪い範囲のデューティ比も使用しなければならないので、全体としての効率が良くなかった。
このように、周波数制御でもデューディ制御でも数10Vの低電圧が得られないので、圧電トランスを用いて電子写真装置用の直流バイアス電源を作製することが困難であった。また、出力電圧が低いことは、出力電圧と出力電流との積である出力電力の可変幅も狭いことを意味する。これに加え、周波数制御でもデューディ制御でも、出力電圧の可変幅を広げようとすると効率が大きく低下していた。
そこで、本発明の目的は、3kV程度の高電圧から数10Vの低電圧までが得られ、かつ100倍程度の電力的可変幅が得られ、しかも効率を向上できる、圧電トランスを用いた電源装置を提供することにある。
本発明者は、上記目的を達成すべく研究を重ねた結果、周波数制御とデューティ比制御とを同時に実行すること(以下「周波数及びデューティ比同時制御」という。)により、これらが相乗的に作用するので、予想もしなかったような極めて低い出力電圧及び極めて広い電力的可変幅が容易に得られることを見出した。つまり、出力電圧が最小値となる周波数と出力電圧が最小値となるデューティ比とを組み合わせると、周波数制御又はデューティ比制御の単独では得られなかった低い出力電圧が容易に得られるのである。本発明は、この知見に基づきなされたものである。なお、ここでいうデューティ比とは、(オン時間)/(オン時間+オフ時間)である。
すなわち、本発明に係る電源装置(請求項1)は、印加された駆動電圧を変圧して出力電圧として負荷へ供給する圧電トランスと、この圧電トランスの出力電圧を検出する出力検出部と、この出力検出部で検出された出力電圧が設定された出力電圧に等しくなるように周波数及びデューティ比を同時に制御する駆動電圧制御部と、この駆動電圧制御部で制御された周波数及びデューティ比によって駆動電圧を圧電トランスに印加する駆動部と、を備えたものである。
駆動部は、制御された周波数及びデューティ比を用いて、駆動電圧を圧電トランスに印加する。圧電トランスは、印加された駆動電圧を変圧して、出力電圧として負荷へ供給する。出力検出部は、圧電トランスの出力電圧を検出して、駆動電圧制御部へフィードバックする。駆動電圧制御部は、検出された出力電圧(以下「検出出力電圧」という。)が設定された出力電圧(以下「設定出力電圧」という。)に等しくなるように、周波数及びデューティ比を同時に制御する。これにより、出力電圧は、負荷変動等に伴って変動しても、直ちに設定された値に戻る。このとき、周波数及びデューティ比同時制御によって、低い出力電圧及び広い電力的可変幅が容易に得られる。したがって、負荷が激しく変動しても、出力電圧の安定性が容易に保たれる定電圧電源が得られる。
また、駆動電圧の印加に使用する周波数及びデューティ比の効率の良い範囲同士を組み合わせることにより、効率の悪い周波数及びデューティ比を使わなくても出力電圧の可変幅を広げることができるので、効率が向上する。
請求項2記載の電源装置は、請求項1記載の電源装置において、任意の出力電圧を設定する出力設定部を更に備えている。そして、駆動電圧制御部は、出力検出部で検出された出力電圧が出力設定部で設定された出力電圧に等しくなるように、周波数及びデューティ比を同時に制御する。
周波数及びデューティ比同時制御によって、低い出力電圧及び広い電力的可変幅が容易に得られる。したがって、極めて広い範囲に渡って出力電圧を変えられる可変電圧電源が得られる。
請求項3記載の電源装置は、請求項1又は2記載の電源装置において、出力電圧が最大値となる周波数及びデューティ比をそれぞれF1,D1とし、出力電圧が最小値となる周波数及びデューティ比をそれぞれF2,D2としたとき、駆動電圧制御部は次のように動作する。すなわち、検出出力電圧が設定出力電圧よりも小さければ周波数及びデューティ比をそれぞれF1及びD1に近づけ、逆に検出出力電圧が設定出力電圧よりも大きければ周波数及びデューティ比をそれぞれF2及びD2に近づける。
駆動電圧の周波数をF1に近づけると出力電圧が増加する。また、デューティ比をD1に近づけると出力電圧が増加する。したがって、周波数をF1に近づけ、かつデューティ比をD1に近づけると、より一層出力電圧が増加する。一方、駆動電圧の周波数をF2に近づけると出力電圧が減少する。また、デューティ比をD2に近づけると出力電圧が減少する。したがって、周波数をF2に近づけ、かつデューティ比をD2に近づけると、より一層出力電圧が減少する。このように、周波数の範囲とデューティ比の範囲とを一定の関係にすることにより、周波数及びデューティ比を同時に制御することを可能にしている。
請求項4記載の電源装置は、請求項3記載の電源装置において、出力電圧が最大値となるとき、周波数は圧電トランスの共振周波数であり、デューティ比は50%である、というものである。
一般に、周波数制御において、周波数が共振周波数であるとき、出力電圧及び効率が最大になる。一般に、デューティ比制御において、デューティ比が50%であるとき、出力電圧及び効率が最大になる。したがって、これらの条件を組み合わせることにより、一般的な圧電トランスの周波数及びデューティ比同時制御において出力電圧及び効率の最大値が得られる。
請求項5記載の電源装置は、請求項3又は4記載の電源装置において、周波数は圧電トランスの共振周波数よりも常に高い、というものである。
駆動電圧の周波数を共振周波数よりも高くしても低くしても、出力電圧を下げることができる。共振周波数よりも高い方を使用する理由は、次のとおりである。(1).同じ出力電圧であれば低周波側よりも高周波側の方が効率がよい。(2).圧電トランスは、一定以上の出力電圧を得るように周波数を変化させると、図8のような非線形現象が現れる。すなわち、高い周波数側から共振周波数に近づけた場合と、低い周波数側から共振周波数に近づけた場合とで、最大出力電圧が得られる周波数が異なる。特に低い周波数側からスキャンすると、いわゆるジャンプ現象が発生して、周波数変化に対する出力電圧変化が極めて大きくなる。したがって、共振周波数よりも高い方からスキャンすると、周波数変化に対する出力電圧変化が小さいので、出力電圧を高精度に制御できる。
請求項6記載の電源装置は、請求項1〜5記載の電源装置において、駆動電圧制御部が矩形波制御パルス発生部、三角波発振部及び誤差検出制御部を備えたものである。矩形波制御パルス発生部は、直流電圧Vaと三角波電圧Vbとを比較し、Va<Vbである時間とVa>Vbである時間とに基づき、周波数及びデューディ比を定める。三角波発振部は、三角波電圧Vbを生成する。誤差検出制御部は、検出出力電圧と設定出力電圧との差に基づき、直流電圧Vaの電圧値を変えるとともに、三角波電圧Vbの周波数を変える。
例えば、Va<Vbである時間をオン時間とし、Va>Vbである時間をオフ時間とする。ここで、検出出力電圧が設定出力電圧よりも低ければ、誤差検出制御部は、例えば、直流電圧Vaの電圧値を下げて、三角波電圧Vbの周波数を下げる。すると、矩形波制御パルス発生部は、(オン時間)/(オン時間+オフ時間)が増えることによりデューティ比を50%に近づけ、(オン時間+オフ時間)が増えることにより周波数を共振周波数に近づける。逆に、検出出力電圧が設定出力電圧よりも高ければ、誤差検出制御部は、例えば、直流電圧Vaの電圧値を上げて、三角波電圧Vbの周波数を上げる。すると、矩形波制御パルス発生部は、(オン時間)/(オン時間+オフ時間)が減ることによりデューティ比を50%から遠ざけ、(オン時間+オフ時間)が減ることにより周波数を共振周波数から遠ざける。このようにして、駆動電圧制御部は、検出出力電圧が設定出力電圧に等しくなるように、駆動電圧の印加に使用する周波数及びデューティ比を同時に制御する。
請求項7記載の電源装置は、請求項1〜6記載の電源装置において、出力電圧に代えて出力電流としたものである。
例えば、請求項1記載の電源装置は、次のようになる。印加された駆動電圧を変圧して出力電流として負荷へ供給する圧電トランスと、この圧電トランスの出力電流を検出する出力検出部と、検出出力電流が設定出力電流に等しくなるように周波数及びデューティ比を同時に制御する駆動電圧制御部と、この駆動電圧制御部で制御された周波数及びデューティ比によって駆動電圧を圧電トランスに印加する駆動部と、を備えた電源装置。このように、出力電圧に代えて出力電流を用いても、前述と同様の作用が得られる。
請求項8の電源装置は、請求項1〜7の電源装置において、電子写真装置の直流バイアス電源として用いられるものである。
この直流バイアス電源は、例えば、出力電圧が数10Vから3kV程度まで変化し、負荷が数10MΩから10GΩ程度まで変化する特性が要求されるので、本発明の電源装置が好適である。
本発明に係る電源装置によれば、周波数及びデューティ比同時制御を採用して出力電圧を一定にすることにより、低い出力電圧及び広い電力的可変幅が容易に得られるので、出力電圧の安定性に優れた定電圧電源を得ることができる。しかも、周波数及びデューティ比の効率の良い範囲同士を組み合わせることにより、効率の悪い周波数及びデューティ比を使わなくても出力電圧の可変幅を広げることができるので、効率を向上できる。また、本発明に係る電源装置は、請求項ごとに次の効果も奏する。
請求項2記載の電源装置によれば、任意の出力電圧を設定する出力設定部を備えたことのより、極めて広い出力電圧幅を有する可変電圧電源を得ることができる。
請求項3記載の電源装置によれば、駆動電圧の周波数及びデューティ比を、最小出力電圧が得られる周波数及びデューティ比の組み合わせ、又は最大出力電圧が得られる周波数及びデューティ比の組み合わせのどちらかに一方に近づけることにより、極めて広い出力電圧幅を得ることができる。
請求項4記載の電源装置によれば、駆動電圧の周波数及びデューティ比を共振周波数及び50%として出力電圧の最大値を得ることにより、一般的な圧電トランスにおいて最も効率を向上できる。
請求項5記載の電源装置によれば、周波数を圧電トランスの共振周波数よりも高い方を使うことにより、低い方を使う場合に比べて、効率を向上でき、出力電圧を高精度に制御でき、共振周波数以下になっても出力電圧が若干上がる特性を利用できる。
請求項6記載の電源装置によれば、検出出力電圧と設定出力電圧との差に基づき直流電圧Vaの電圧値及び三角波電圧Vbの周波数を変え、直流電圧Vaと三角波電圧Vbとを比較して周波数及びデューディ比を定めることにより、低い出力電圧を得ることができる。
請求項7記載の電源装置によれば、出力電圧に代えて出力電流としたことにより、出力電流を基準として前述した効果を得ることができる。
請求項8の電源装置によれば、例えば、出力電圧が数10Vから3kV程度まで変化し、負荷が数10MΩから10GΩ程度まで変化する特性を容易に満たすことができるので、電子写真装置の直流バイアス電源として好適に用いることができる。
図1は、本発明に係る電源装置の第一実施形態を示すブロック図である。以下、この図面に基づき説明する。
本実施形態の電源装置10は、印加された駆動電圧Vdを変圧して出力電圧Voとして負荷Lへ供給する圧電トランス20と、圧電トランス20の出力電圧Voを検出する出力検出部12と、出力検出部12で検出された出力電圧Vo(以下「検出出力電圧Vo」という。)が設定された出力電圧Vs(以下「設定出力電圧Vs」という。)に等しくなるように周波数F及びデューティ比Duを同時に制御する駆動電圧制御部14と、駆動電圧制御部14で制御された周波数F及びデューティ比Duによって駆動電圧Vdを圧電トランス20に印加する駆動部16とを備えたものである。
圧電トランス20は、圧電振動体21に一次電極22,23と二次電極24とを設け、一次側を厚さ方向(図において上下方向)に分極し、二次側を長さ方向(図において左右方向)に分極し、これらを図示しない樹脂ケース等に収容したものである。一次電極22,23は、圧電振動体21を挟んで対向している。圧電振動体21は、PZT等の圧電セラミックスからなり、板状(直方体状)を呈している。圧電振動体21の長さ方向において、一端からその長さの例えば半分までに一次電極22,23が設けられ、他端に二次電極24が設けられている。一次側に長さ寸法で決まる固有共振周波数frの駆動電圧Vdを入力すると、逆圧電効果により強い機械振動を起こし、圧電効果によりその振動に見合った高い出力電圧Voが二次側から出力される。出力電圧Voは負荷Lに供給される。
出力検出部12は、例えば出力電圧Voを分圧する直列抵抗回路等からなり、出力電圧Voに対応した検出信号Soを駆動電圧制御部14へ出力する。
駆動電圧制御部14は、例えばPWM制御回路からなり、検出出力電圧Voに対応した検出信号Soと設定出力電圧Vsに対応した設定信号Ssとを比較し、So>Ssであれば出力電圧Voが低くなるように周波数F及びデューティ比Duを定め、逆にSo<Ssであれば出力電圧Voが高くなるように周波数F及びデューティ比Duを定める。
駆動部16は、例えばインダクタ、スイッチング素子等からなり、周波数F及びデューティ比Duに応じてスイッチング素子がオン・オフすることにより、直流の入力電圧Viを擬似正弦波電圧に変換して圧電トランス20に印加する。
電源装置10は、例えば次のように動作する。
出力電圧Voが最大値となる周波数F及びデューティ比DuをそれぞれF1,D1とし、出力電圧Voが最小値となる周波数F及びデューティ比DuをそれぞれF2,D2とする。このとき、駆動電圧制御部14は、検出出力電圧Voが設定出力電圧Vsよりも小さければ周波数F及びデューティ比DuをそれぞれF1及びD1に近づけ、逆に検出出力電圧Voが設定出力電圧Vsよりも大きければ周波数F及びデューティ比DuをそれぞれF2及びD2に近づける。
周波数FをF1に近づけると出力電圧Voが増加する。また、デューティ比DuをD1に近づけると出力電圧Voが増加する。したがって、周波数FをF1に近づけ、かつデューティ比DuをD1に近づけると、より一層出力電圧Voが増加する。一方、周波数FをF2に近づけると出力電圧Voが減少する。また、デューティ比DuをD2に近づけると出力電圧Voが減少する。したがって、周波数FをF2に近づけ、かつデューティ比DuをD2に近づけると、より一層出力電圧Voが減少する。
このように、電源装置10によれば、周波数及びデューティ比同時制御によって、低い出力電圧及び広い電力的可変幅が容易に得られる。したがって、負荷Lが激しく変動しても、出力電圧Voの安定性が容易に保たれる定電圧電源が得られる。しかも、周波数F及びデューティ比Duの効率の良い範囲同士を組み合わせることにより、効率の悪い周波数F及びデューティ比Duを使わなくても出力電圧Voの可変幅を広げることができるので、効率を向上できる。
また、電源装置10では、出力電圧Voが最大値となるとき、周波数Fが圧電トランス20の共振周波数であり、デューティ比Duが50%である。一般に、周波数制御において、周波数Fが共振周波数であるとき、出力電圧Vo及び効率が最大になる。また、一般に、デューティ比制御において、デューティ比Duが50%であるとき、出力電圧Vo及び効率が最大になる。したがって、これらの条件を組み合わせることにより、一般的な圧電トランス20の周波数及びデューティ比同時制御において出力電圧Vo及び効率の最大値が得られる。
また、電源装置10では、駆動電圧Vdの周波数Fは圧電トランス20の共振周波数よりも常に高くしている。駆動電圧Vdの周波数Fを共振周波数よりも高くしても低くしても、出力電圧Voを下げることができる。共振周波数よりも高い方を使用する理由は、次のとおりである。(1).同じ出力電圧Voであれば低周波側よりも高周波側の方が効率がよい。(2).共振周波数よりも高い方が、周波数変化に対する出力電圧Voの変化が小さいので、出力電圧Voを高精度に制御できる。
また、出力電圧Voに代えて出力電流Ioを用いることもできる。このとき、電源装置10は、印加された駆動電圧Voを変圧して出力電流Ioとして負荷Lへ供給する圧電トランス20と、圧電トランス20の出力電流Ioを検出する出力検出部12と、検出出力電流Ioが設定出力電流Is(図示せず)に等しくなるように周波数F及びデューティ比Duを同時に制御する駆動電圧制御部14と、駆動電圧制御部14で制御された周波数F及びデューティ比Duによって駆動電圧Vdを圧電トランス20に印加する駆動部16とを備えたものとなる。このように、出力電圧Voに代えて出力電流Ioを用いても、前述と同様の作用及び効果が得られる。
図2は、本発明に係る電源装置の第二実施形態を示すブロック図である。以下、この図面に基づき説明する。ただし、図1と同じ部分は同じ符号を付すことにより説明を省略する。
本実施形態の電源装置30は、任意の出力電圧(設定出力電圧Vs)を設定する出力設定部31を更に備えている。そして、駆動電圧制御部14は、出力検出部12で検出された出力電圧Voが出力設定部31で設定された出力電圧Vsに等しくなるように、周波数F及びデューティ比Duを同時に制御する。
出力設定部31は、例えばF−V変換器等からなり、他の装置から出力された制御信号Ss’を入力し、設定出力電圧Vsに対応する設定信号Ssとして駆動電圧制御部14へ出力する。
電源装置10によれば、周波数及びデューティ比同時制御によって、低い出力電圧及び広い電力的可変幅が容易に得られる。したがって、極めて広い範囲に渡って出力電圧Voを変えられる可変電圧電源が得られる。
図3乃至図5は第一実施形態を更に具体化した実施例1を示し、図3は全体構成を示す回路図、図4は図3の各部分における波形を示す波形図、図5は動作を示す波形図である。以下、これらの図面に基づき説明する。ただし、図1と同じ部分は同じ符号を付すことにより説明を省略する。
本実施例の電源装置10は、出力検出部12が出力電圧検出部121及び出力電流検出部122からなり、駆動電圧制御部14が矩形波制御パルス発生部141、三角波発振部142及び誤差検出制御部143からなり、駆動部16が駆動部161及び共振部162からなる。また、電源装置10には、入力電圧Viの変動防止用のコンデンサC1、入力電圧Viから基準電圧Vrを発生する基準電圧発生部17、圧電トランス20から出力された交流電圧(図4波形E)を直流の出力電圧Voに変換する整流部18等が付設されている。
矩形波制御パルス発生部141は、直流電圧Va(図4波形A)と三角波電圧Vb(図4波形B)とを比較し、Va<Vbである時間とVa>Vbである時間とに基づき、駆動電圧Vd(図4波形D)を印加するときに使用する周波数F及びデューティ比Du(図4波形C)を定める。三角波発振部142は、三角波電圧Vbを生成する。誤差検出制御部143は、検出出力電圧Voと設定出力電圧Vsとの差に基づき、直流電圧Vaの電圧値を変えるとともに、三角波電圧Vbの周波数を変える。
次に、各部の構成及び動作について、更に詳しく説明する。
基準電圧発生部17は、抵抗器R2,R3、ツェナーダイオードD1、コンデンサC2等からなり、入力電圧Viを入力して基準電圧Vrを出力する。
三角波発振部142は、抵抗器R4〜R7、コンデンサC3、コンパレータU1、FETQ1等からなる。コンパレータU1の−入力端子には、抵抗器R4,R5によって生成された基準電圧Vrの分圧電圧V1−が印加される。コンパレータU1の+入力端子には、コンデンサC3の充電電圧V1+が印加される。充電電圧V1+は、コンデンサC3及び抵抗器R6によって決まる時定数で漸増する。充電電圧V1+が分圧電圧V1−を越えると、コンパレータU1の出力電圧がHレベルとなることによりFETQ1がオンとなって充電電圧V1+が放電される。この動作の繰り返しによって、連続した三角波電圧Vbが生成される。なお、抵抗器R6及びコンデンサC3の時定数は、出力電圧Voを最小値に絞ったときの周波数Fすなわち最高の周波数Fに設定する。
矩形波制御パルス発生部141は、抵抗器R8,R9、コンデンサC4、コンパレータU2等からなる。コンデンサC4はノイズ対策用である。コンパレータU2の−入力端子には、抵抗器R8,R9によって生成された基準電圧Vrの分圧電圧である直流電圧Vaが印加される。コンパレータU2の+入力端子には、三角波発振部142から出力された三角波電圧Vbが印加される。コンパレータU2は、Va>VbであればLレベル電圧を出力し、Va<VbであればHレベル電圧を出力する。Lレベル出力時間がオフ時間であり、Hレベル出力時間がオン時間である。したがって、Hレベル出力時間/(Lレベル出力時間+Hレベル出力時間)がデューティ比Duであり、1/(Lレベル出力時間+Hレベル出力時間)が周波数Fである。
なお、直流電圧Vaは、出力電圧Voが最小値となる電圧値又は抵抗器R4と抵抗器R5とで決まる分圧電圧V1−よりも高く設定する。直流電圧Vaが分圧電圧V1−と同じであれば、デューティ比Duが0%のときにコンパレータU2の出力はLレベルとなる。この状態で直流電圧Vaを下げていくとデューティ比Duが増加し、初期値の1/2まで下げるとデューティ比Duが50%となる。
誤差検出制御部143は、抵抗器R15〜R19、コンデンサC9、ダイオードD3,D4、コンパレータU3等からなる。抵抗器R17及びコンデンサC9は、コンパレータU3の入出力間の位相補償用である。ダイオードD3及び抵抗器R15はコンデンサC3の放電用であり、ダイオードD4及び抵抗器R16は直流電圧Vaの調整用である。抵抗器R18,R19は、設定出力電圧Vsに対応する設定信号Ss生成用である。コンパレータU3の+入力端子には検出出力電圧Voに対応した検出信号Soが印加され、コンパレータU3の−入力端子には設定出力電圧Vsに対応した設定信号Ssが印加される。コンパレータU2は、So<SsであればLレベル電圧を出力し、So>SsであればHレベル電圧を出力する。コンパレータU2からLレベル電圧が出力されると、抵抗器6→抵抗器R15→ダイオードD3と電流が流れることにより、コンデンサC3の充電電流が減少する。その結果、三角波電圧Vbの傾きが緩やかになるので、三角波電圧Vbの周波数Fが低下する(図5[1]→[2])。また、コンパレータU3からLレベル電圧が出力されると、抵抗器R8から抵抗器R9へ流れる電流がダイオードD4及び抵抗器R16を介して減少することにより、直流電圧Vaが低下するので、デューティ比Duが増加する(図5[1]→[2])。このとき、コンパレータU3からHレベル電圧が出力されると、ダイオードD3,D4に逆バイアス電圧が印加されて電流が流れなくなるので、三角波電圧Vbの周波数Fが上昇するとともにデューティ比Duが低下する(図5[2]→[1])。
なお、抵抗器R15の抵抗値は、コンパレータU3の出力がLレベル電圧になったときに、コンデンサC3の充電時定数が共振周波数を下回らない範囲で、出力電圧Voの最大値及び最大負荷をカバーできる周波数になるように設定する。また、抵抗器R16は、抵抗器R8と抵抗器R9との分圧電圧すなわち直流電圧Vaを変化させる。
出力電圧検出部121は、抵抗器R13,R14、コンデンサC7、ダイオードD2等からなる。出力電圧Voは、抵抗器R13,R14によって分圧され、検出信号Soとして誤差検出制御部143へ出力される。
出力電流検出部122は、電流検出回路123、抵抗器R12、コンデンサC6等からなる。本実施例での出力電流検出部122は、過電流又は短絡電流を検出して圧電トランス20の破壊を防止する。なお、出力電圧検出部121の代わりに出力電流検出部122を用い、出力電圧Voの代わりに出力電流Ioを用いて出力制御することもできる。
整流部18は、整流用ダイオード(図示せず)等からなる。整流部18及び電流検出回路123については、一般的なものであるので、詳しい説明を省略する。
次に、電源装置10の全体の動作を説明する。
入力端子に入力電圧Viを印加すると、基準電圧発生部17から基準電圧Vrが各部へ出力される。基準電圧Vrは、各コンパレータU1,U2,U3へも供給される。これにより、基準電圧Vrが分圧されて直流電圧Vaが生成されるとともに、三角波発振部142で三角波電圧Vbが生成される(図4波形A,B)。すると、コンパレータU2は、直流電圧Va及び三角波電圧Vbの大小を比較して、Hレベル電圧又はLレベル電圧を出力する(図4波形C)。この波形Cの周波数F及びデューティ比DuによってFETQ2がオン・オフし、これにより圧電トランス20に駆動電圧Vd(図4波形D)が印加される。すると、圧電トランス20は駆動電圧Vdを変圧して交流電圧(図4波形E)を出力する。この交流電圧は、整流されて直流の出力電圧Voとなって、負荷(図示せず)へ供給される。出力電圧Voは、出力電圧検出部121で検出されて、検出信号SoとしてコンパレータU3の+入力端子へ出力される。コンパレータU3の−入力端子には、設定出力電圧Vsに対応する設定信号Ssが印加されている。
ここで、出力電圧Voが負荷変動により設定電圧Vsよりも低下したとする。すると、コンパレータU3は、So<Ssとなることにより、Lレベル電圧を出力する。これにより、三角波電圧Vbの傾きが緩やかになるとともに直流電圧Vaが低下することにより、周波数Fが減少するとともにデューティ比Duが増加する(図5[1]→[2])。その結果、出力電圧Voが増加する。
これとは逆に、出力電圧Voが負荷変動により設定電圧Vsよりも上昇したとする。すると、コンパレータU3は、So>Ssとなることにより、Hレベル電圧を出力する。これにより、三角波電圧Vbの傾きが急になるとともに直流電圧Vaが上昇することにより、周波数Fが増加するとともにデューティ比Duが減少する(図5[2]→[1])。その結果、出力電圧Voが低下する。
なお、周波数Fを変化させたときの出力変化とデューティ比Duを変化させたときの出力変化は、周波数Fを変化させたときの方がデューティ比Duを変化させたときよりもはるかに急峻であるため、周波数FとデューティDuを同時に変化させてもあるポイントで出力が平衡する。
また、ダイオードD3,D4は、図とは逆向きに接続してもよい。この場合は、コンパレータU3からHレベル電圧が出力されたときに、周波数Fを増加させデューティ比Duを減少させるように動作する。また、この場合は、コンパレータU3から出力されるLレベル電圧の変動の影響を防ぐことができる。
図6乃至図8は第二実施形態を更に具体化した実施例2を示し、図6は全体構成を示す回路図、図7は動作を示すグラフ(その1)、図8は動作を示すグラフ(その2)である。以下、これらの図面に基づき説明する。ただし、図2乃至図5と同じ部分は同じ符号を付すことにより説明を省略する。
本実施例の電源装置30は、任意の出力電圧(設定出力電圧Vs)を設定する出力設定部31としてのF−V変換部311を更に備えている。F−V変換部311は、他の装置から出力されたPWM信号からなる制御信号Ss’を入力し、そのデューティ比(0〜100%)に対応する電圧値(0〜5V)である設定信号Ssを出力する。設定信号Ssは、出力電圧Vsに対応する設定信号Ssとして、コンパレータU2の−入力端子へ出力される。その他の部分の動作は、実施例1と同様である。
次に、電源装置30の動作について説明する。
図7は、電源装置30における周波数F及びデューティ比Duと出力電圧Voとの関係の一例を示すグラフである。
このグラフは、横軸の一つの出力電圧Voに、縦軸の一つの周波数F及び一つのデューティ比Duが対応している。例えば、設定信号Ssを0.15Vとすると、図示するように、周波数Fが165.00kHz(F1)かつデューティ比Duが51%(D1)となり、最大の出力電圧3300Vが得られる。また、設定信号Ssを2.38Vとすると、図示するように、周波数Fが188.23kHz(F2)かつデューティ比Duが21%(D2)となり、最小の出力電圧6Vが得られる。
図8は、電源装置30における周波数Fと出力電圧Voとの関係の一例を示すグラフである。
駆動電圧Vdの周波数Fは圧電トランス20の共振周波数よりも常に高くしている。図では、高周波側からスキャンした場合を実線で示し、低周波側からスキャンした場合を二点鎖線で示している。詳しく言えば、駆動電圧Vdの周波数Fは、低周波側からスキャンした場合に出力電圧Voの最大値が得られる周波数(164kHz)よりも常に高くしている。
なお、図7及び図8に示す特性は、実施例1でも同様である。
本発明に係る電源装置の第一実施形態を示すブロック図である。 本発明に係る電源装置の第二実施形態を示すブロック図である。 実施例1の全体構成を示す回路図である。 図3の各部分における波形を示す波形図である。 実施例1の動作を示す波形図であり、図5[1]は出力電圧を低くする場合であり、図5[2]は出力電圧を高くする場合である。 実施例2の全体構成を示す回路図である。 実施例2における駆動電圧の周波数及びデューティ比と出力電圧との関係の一例を示すグラフである。 実施例2における駆動電圧の周波数と出力電圧との関係の一例を示すグラフである。
符号の説明
10,30 電源装置
12 出力検出部
121 出力電圧検出部
122 出力電流検出部
14 駆動電圧制御部
141 矩形波制御パルス発生部
142 三角波発振部
143 誤差検出制御部
16 駆動部
161 駆動部
162 共振部
17 基準電圧発生部
18 整流部
20 圧電トランス
31 出力設定部
311 F−V変換部
Du 駆動電圧のデューティ比
F 駆動電圧の周波数
Io 出力電流
L 負荷
Vd 駆動電圧
Vo 出力電圧

Claims (8)

  1. 印加された駆動電圧を変圧して出力電圧として負荷へ供給する圧電トランスと、
    この圧電トランスの出力電圧を検出する出力検出部と、
    この出力検出部で検出された出力電圧が設定された出力電圧に等しくなるように、周波数及びデューティ比を同時に制御する駆動電圧制御部と、
    この駆動電圧制御部で制御された前記周波数及び前記デューティ比によって前記駆動電圧を前記圧電トランスに印加する駆動部と、
    を備えた圧電トランスを用いた電源装置。
  2. 任意の出力電圧を設定する出力設定部を更に備え、
    前記駆動電圧制御部は、前記出力検出部で検出された出力電圧が前記出力設定部で設定された出力電圧に等しくなるように、前記周波数及び前記デューティ比を同時に制御する、
    請求項1記載の圧電トランスを用いた電源装置。
  3. 前記出力電圧が最大値となる前記周波数及び前記デューティ比をそれぞれF1,D1とし、前記出力電圧が最小値となる前記周波数及び前記デューティ比をそれぞれF2,D2としたとき、
    前記駆動電圧制御部は、前記検出された出力電圧が前記設定された出力電圧よりも小さければ前記周波数及び前記デューティ比をそれぞれ前記F1及び前記D1に近づけ、逆に前記検出された出力電圧が前記設定された出力電圧よりも大きければ前記周波数及び前記デューティ比をそれぞれ前記F2及び前記D2に近づける、
    請求項1又は2記載の圧電トランスを用いた電源装置。
  4. 前記出力電圧が最大値となるとき、前記周波数は前記圧電トランスの共振周波数であり、前記デューティ比は50%である、
    請求項3記載の圧電トランスを用いた電源装置。
  5. 前記周波数は前記圧電トランスの共振周波数よりも常に高い、
    請求項3又は4記載の圧電トランスを用いた電源装置。
  6. 前記駆動電圧制御部は、
    直流電圧Vaと三角波電圧Vbとを比較し、Va<Vbである時間とVa>Vbである時間とに基づき、前記周波数及び前記デューディ比を定める矩形波制御パルス発生部と、
    前記三角波電圧Vbを生成する三角波発振部と、
    前記検出された出力電圧と前記設定された出力電圧との差に基づき、前記直流電圧Vaの電圧値を変えるとともに、前記三角波電圧Vbの周波数を変える誤差検出制御部と、
    を備えた、
    請求項1乃至5のいずれかに記載の圧電トランスを用いた電源装置。
  7. 前記出力電圧に代えて出力電流とした、
    請求項1乃至6のいずれかに記載の圧電トランスを用いた電源装置。
  8. 電子写真装置の直流バイアス電源として用いられる、
    請求項1乃至7のいずれかに記載の圧電トランスを用いた電源装置。
JP2004004432A 2004-01-09 2004-01-09 圧電トランスを用いた電源装置 Pending JP2005198462A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004432A JP2005198462A (ja) 2004-01-09 2004-01-09 圧電トランスを用いた電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004432A JP2005198462A (ja) 2004-01-09 2004-01-09 圧電トランスを用いた電源装置

Publications (1)

Publication Number Publication Date
JP2005198462A true JP2005198462A (ja) 2005-07-21

Family

ID=34819052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004432A Pending JP2005198462A (ja) 2004-01-09 2004-01-09 圧電トランスを用いた電源装置

Country Status (1)

Country Link
JP (1) JP2005198462A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037312A (ja) * 2005-07-27 2007-02-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
JP2007043804A (ja) * 2005-08-02 2007-02-15 Tamura Seisakusho Co Ltd 圧電トランス出力検出装置及びこれを用いた電源装置
JP2007049794A (ja) * 2005-08-08 2007-02-22 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
KR100790677B1 (ko) * 2005-08-01 2008-01-02 캐논 가부시끼가이샤 화상 형성 장치 및 전원 장치
US7558501B2 (en) 2005-08-01 2009-07-07 Canon Kabushiki Kaisha Image forming apparatus and power supply
US20100166463A1 (en) * 2008-12-26 2010-07-01 Canon Kabushiki Kaisha High-voltage power supply device and image forming apparatus including the same
JP2013009457A (ja) * 2011-06-22 2013-01-10 Oki Data Corp 圧電トランス駆動装置、電源装置及び画像形成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037312A (ja) * 2005-07-27 2007-02-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
KR100790677B1 (ko) * 2005-08-01 2008-01-02 캐논 가부시끼가이샤 화상 형성 장치 및 전원 장치
US7558501B2 (en) 2005-08-01 2009-07-07 Canon Kabushiki Kaisha Image forming apparatus and power supply
EP1750179A3 (en) * 2005-08-01 2012-10-24 Canon Kabushiki Kaisha Image forming apparatus and power supply
JP2007043804A (ja) * 2005-08-02 2007-02-15 Tamura Seisakusho Co Ltd 圧電トランス出力検出装置及びこれを用いた電源装置
JP2007049794A (ja) * 2005-08-08 2007-02-22 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
US20100166463A1 (en) * 2008-12-26 2010-07-01 Canon Kabushiki Kaisha High-voltage power supply device and image forming apparatus including the same
US8213823B2 (en) * 2008-12-26 2012-07-03 Canon Kabushiki Kaisha High-voltage power supply device and image forming apparatus including the same
JP2013009457A (ja) * 2011-06-22 2013-01-10 Oki Data Corp 圧電トランス駆動装置、電源装置及び画像形成装置

Similar Documents

Publication Publication Date Title
JP4371042B2 (ja) スイッチング電源装置
JP6330402B2 (ja) インバータ装置及びプラズマ発生装置
JP2008312359A (ja) スイッチング電源装置、並びにレギュレーション回路
JP5293006B2 (ja) 半波整流電流共振型スイッチング電源装置、及びその起動方法
JP2008312399A (ja) スイッチング電源装置
US11139734B2 (en) DC/DC power converter
JP2011087394A (ja) スイッチング素子駆動用制御回路およびスイッチング電源装置
KR101362501B1 (ko) 펄스 전압을 이용하는 고전압 인가 장치 및 그 고전압 인가 방법
US9819280B2 (en) Inverter device
JP2005198462A (ja) 圧電トランスを用いた電源装置
JP4729468B2 (ja) 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
JP5834596B2 (ja) 高電圧インバータ装置
US9467071B2 (en) Voltage resonant inverter, control method, and surface treatment device
JP2004221031A (ja) 放電灯点灯装置
JP5097029B2 (ja) 圧電トランスを用いた電源回路
JP5130664B2 (ja) スイッチング電源
JP4820600B2 (ja) 電源装置
JP6135776B2 (ja) 高圧電源装置
JP4483204B2 (ja) スイッチング電源
JP4820603B2 (ja) 圧電トランスを用いた電源装置
JP2938241B2 (ja) 高圧電源回路
JP2008206270A (ja) 高電圧電源装置
JPH0993959A (ja) インバ−タ装置
JP2004048853A (ja) 圧電トランス式直列共振型dc−dcコンバータ
JP2007037312A (ja) 圧電トランスを用いた電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216