WO2013085063A1 - ワイヤ放電加工装置および方法 - Google Patents
ワイヤ放電加工装置および方法 Download PDFInfo
- Publication number
- WO2013085063A1 WO2013085063A1 PCT/JP2012/081993 JP2012081993W WO2013085063A1 WO 2013085063 A1 WO2013085063 A1 WO 2013085063A1 JP 2012081993 W JP2012081993 W JP 2012081993W WO 2013085063 A1 WO2013085063 A1 WO 2013085063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- short circuit
- wire electrode
- tension
- electrode
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/02—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
- B23H1/024—Detection of, and response to, abnormal gap conditions, e.g. short circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/08—Wire electrodes
- B23H7/10—Supporting, winding or electrical connection of wire-electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/08—Wire electrodes
- B23H7/10—Supporting, winding or electrical connection of wire-electrode
- B23H7/104—Wire tension control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/14—Electric circuits specially adapted therefor, e.g. power supply
- B23H7/16—Electric circuits specially adapted therefor, e.g. power supply for preventing short circuits or other abnormal discharges by altering machining parameters using adaptive control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
Definitions
- the present invention relates to a wire electric discharge machining apparatus and method for machining a workpiece by generating an electric discharge in a machining gap formed between a wire electrode and a workpiece.
- the present invention relates to a wire electric discharge machining apparatus and method for releasing an unintended short circuit when an unintended short circuit between a wire electrode and a work is detected.
- a wire electrode moves in a plane ("XY plane") relatively horizontal to a work.
- the wire electrodes Prior to processing, the wire electrodes must be supported perpendicularly to the XY plane between a pair of wire guides. If necessary, starting holes for passing the wire electrodes are formed in the work.
- the size of the starting hole may be limited to a small size, and the gap between the wire electrode and the starting hole (hereinafter referred to as the clearance) may be small.
- FIG. 8 (a) shows a state where a machining gap is not formed due to such unintended contact and electric discharge machining can not be performed.
- Patent Document 1 discloses a method of releasing the short circuit by moving the wire electrode 2 relative to the work 3 in the XY plane as shown in FIG. 8 (b).
- An object of the present invention is to provide a wire electric discharge machining apparatus and method capable of reliably releasing a short circuit between a wire electrode and a work.
- the present invention relates to a wire electric discharge machining apparatus which generates electric discharge in a machining gap formed between a wire electrode (2) inserted into a start hole (4) in a workpiece (3) and the workpiece to start machining of the workpiece .
- the wire electric discharge machining device of the present invention comprises a tension control device (56) for controlling the tension of the wire electrode to be maintained at a set value.
- a short circuit detector (57) that detects a short circuit between the wire electrode and the work; When the short circuit detector detects a short circuit, it includes a short circuit release system that reduces tension on the wire electrode and vibrates the wire electrode to release the short circuit. According to the present invention, the short circuit release system can bend the wire electrode in the starting hole to reliably release the short circuit.
- the short circuit release system may be configured to reduce the tension setting when the short circuit detector detects a short circuit.
- the set value of tension may be reduced to 10 to 50%.
- the short circuit release system may include a vibrating device that sprays high-pressure dielectric liquid to the wire electrode to vibrate the wire electrode.
- the short circuit release system may include a vertical movement device (30) which moves the wire electrode up and down minutely by compressed air.
- the up and down motion device may supply compressed air to the wire electrode to cross it and cause the wire electrode to vibrate laterally.
- the vertical movement device includes a wire guide (32) having a guide hole through which the wire electrode passes, and the wire guide may be movable upward by compressed air.
- the tension control device may generate a command output based on the detected value of the tension of the wire electrode and the gain, and the short circuit cancellation system may reduce the gain when the short circuit detector detects a short circuit.
- the short circuit release system may reduce the traveling speed of the wire electrode.
- the present invention relates to a wire electric discharge machining method in which electric discharge is generated in a machining gap formed between a wire electrode and a work to start machining of the work.
- the wire electric discharge machining method of the present invention comprises the steps of: inserting the wire electrode (2) into the start hole (4) in the work (3); Causing the wire electrode to run with a predetermined tension; Applying a voltage between the wire electrode and the work to generate a discharge in the machining gap; Detecting a short between the wire electrode and the workpiece; Reducing tension of the wire electrode and vibrating the wire electrode to release the short circuit.
- the short circuit between the wire electrode and the work is reliably released. Even when burrs are formed in the opening of the start hole on the top or bottom of the work, the short circuit between the wire electrode and the work is reliably released.
- FIG. 1 is a view showing a wire electric discharge machining apparatus of the present invention.
- FIG. 2 is a cross-sectional view showing the vertically moving device in FIG.
- FIG. 3 is a cross-sectional view showing the flow of compressed air in the vertical movement device of FIG.
- FIG. 4 is a cross-sectional view showing the flow of compressed air in the vertical movement device of FIG.
- FIG. 5 is a block diagram showing the numerical control device in FIG.
- FIG. 6 is a flow chart showing the operation of the numerical control apparatus of FIG.
- FIG. 7 illustrates a method of releasing a short according to the present invention.
- FIG. 8 is a diagram showing a conventional method of releasing a short circuit.
- FIG. 9 is a diagram showing a conventional method of releasing a short circuit.
- the wire electric discharge machining device of the present invention includes a short circuit release system that reduces the tension of the wire electrode 2 and vibrates the wire electrode 2 in order to release a short circuit.
- FIG. 1 shows a wire electric discharge machining apparatus of the present invention.
- the feeding mechanism 5 continuously feeds new wire electrodes 2 to the work 3.
- the supply mechanism 5 includes a reel 52, a servo pulley 53, a disconnection detector 54, a feed roller 10, and a tension detector 55.
- the wire bobbin 51 is mounted on the reel 52.
- the reel 52 has a brake motor that applies a reverse tension to the wire electrode 2.
- the servo pulley 53 prevents tension fluctuation.
- the disconnection detector 54 is provided to detect breakage of the wire electrode 2 and is, for example, a limit switch.
- the feed roller 10 comprises a drive roller 12 and a pinch roller 13.
- the drive roller 12 is rotated by the servomotor 11.
- the pinch roller 13 follows the drive roller 12 and presses the wire electrode 2.
- the feed roller 10 feeds the wire electrode 2 toward the collection roller 63. Further, the feed roller 10 cooperates with the collection roller 63 to apply a predetermined tension to the traveling wire electrode 2.
- the tension for maintaining the straightness of the wire electrode 2 is set in accordance with the diameter and material of the wire electrode 2 and the type of processing.
- the set value of the wire tension is stored in the numerical controller 80.
- the tension detector 55 is provided to detect the tension of the wire electrode 2 and is, for example, a strain gauge.
- the output of the tension detector 55 is supplied to a tension controller 56.
- the numerical control unit 80 supplies the tension control unit 56 with a set value indicating the wire tension and a set value indicating the wire speed.
- the tension control device 56 determines the rotational speed of the servomotor 11 so as to maintain the wire tension detection value at the set value.
- the command value of the rotational speed of the servomotor 11 is determined based on a tension command obtained by multiplying the deviation between the detection value of the wire tension and the setting value by a gain.
- the short circuit detector 57 is provided to detect a short circuit between the wire electrode 2 and the work 3.
- the upper guide assembly 7 accommodates an upper wire guide 71, an upper conductor 72, and an AWT nozzle (not shown).
- the upper guide assembly 7 has a jet nozzle 73 at its lower end.
- the lower guide assembly 8 also has a wire guide, a conductor and a jet nozzle 74.
- the dielectric liquid supply apparatus includes a liquid reservoir, a pump, and appropriate piping. Jet nozzles 73, 74 are provided for injecting dielectric liquid into the processing gap during processing. The openings of the jet nozzles 73, 74 are directed to the machining gap.
- the dielectric liquid supply device constitutes a vibrating device that vibrates the wire electrode 2 by the injection of high pressure liquid.
- a vertically moving device 30 is provided between the feed roller 10 and the start hole 4.
- the vertically moving device 30 slightly vertically moves the wire electrode 2 by compressed air and vibrates it in the lateral direction.
- the minute up and down movement means that the wire electrode 2 repeatedly moves up and down along the wire traveling path in several hundreds of milliseconds to several seconds.
- the distance of the vertical movement is several mm to twenty and several mm in the vertical direction.
- the automatic wire threading device 1 is provided to automatically insert the wire electrode 2 into the start hole 4 formed in the work 3.
- the automatic wire insertion device 1 has a feed roller 10 for feeding the wire electrode 2 toward the start hole 4 and a guide pipe 20 for guiding the wire electrode 2.
- the automatic wire insertion device 1 further has a cutter 41 for cutting off the roughened tip of the wire electrode 2.
- a clamp 43 is provided for transferring the cut wire piece to the waste box 42.
- the automatic wire insertion device 1 includes a tip detector 50 that detects the tip of the wire electrode 2 and a buckling detector 60 that detects deflection of the wire electrode 2.
- the automatic wire insertion device 1 includes a jet supply device 70 capable of supplying a high-pressure dielectric liquid to an AWT nozzle.
- the AWT nozzle forms a fluid jet that restrains the wire electrode 2. Fluid jets increase the success rate of automatic wire penetration.
- the jet delivery device 70 is selectively used if the success rate of automatic wire penetration is likely to be low.
- a jet supply device 70 is required. Alternatively, it is used when the clearance of the starting hole 4 is small.
- the feed roller 10 feeds the wire electrode 2 slowly by forward rotation.
- the feed roller 10 rolls up the wire electrode 2 by reverse rotation.
- the tip detector 60 detects the tip of the wire electrode 2
- the reverse rotation of the feed roller 10 is stopped.
- the guide pipe 20 is provided between the feed roller 10 and the upper wire guide 71.
- An elevating device 21 operated by an actuator raises and lowers the guide pipe 20.
- FIG. 1 shows the guide pipe 20 waiting at the upper limit position. During the automatic wire insertion operation, the lower end of the guide pipe 20 is lowered to a position just above the upper wire guide 71 in order to guide the wire electrode 2 to the upper wire guide 71.
- the used wire electrode 2 is sent to the bucket 64 via the idling roller 61 and the collection roller 63.
- the recovery roller 63 is provided to recover the wire electrode 2.
- a motor 62 is connected to the drive pulley of the collection roller 63.
- a device that controls the speed at which the wire electrode 2 travels determines the rotational speed of the motor 62 based on the set value of the wire speed.
- the set value of the wire speed is stored in the numerical controller 80.
- the vertical movement device 30 is shown in detail. Arrows in FIGS. 3 and 4 indicate the flow of air.
- the wire electrode 2 only vibrates in the lateral direction simply by ejecting compressed air toward the wire electrode 2.
- the wire electrode 2 needs to be reciprocated up and down in a short time in small increments.
- the vertical movement device 30 moves the wire electrode 2 in the vertical direction by several mm to twenty and several mm in several hundred milliseconds to several seconds by the force of air.
- the vertically moving device 30 includes a rectangular block 28, a first wire guide 31, a second wire guide 32, and a compressed air supply device 35.
- the vertical movement device 30 has a vertical passage through which the wire electrode 2 passes.
- a vertically extending cylindrical sealed space 37 is formed in the block 28.
- the wire electrode 2 passes through the closed space 37, and the closed space 37 forms a vertical passage.
- Two horizontally extending air supply passages 33, 34 are formed in the block 28.
- the first wire guide 31 and the second wire guide 32 guide the wire electrode 2.
- the first wire guide 31 is provided between the feed roller 10 and the start hole 4. Specifically, the first wire guide 31 is provided between the feed roller 10 and the guide pipe 20. The first wire guide 31 can not move downward.
- the first wire guide 31 is in the shape of a die and has a guide hole through which the wire electrode 2 passes.
- the gap between the guide hole of the wire guide and the wire electrode 2 is referred to as a guide clearance.
- the first wire guide 31 has a guide clearance of 3 ⁇ m to 20 ⁇ m, and compressed air can hardly pass through this small guide clearance.
- the enclosed space 37 is defined by the first wire guide 31 and the guide pipe 20. “Sealed” in the enclosed space 37 means that the space 37 is not open to anything other than the guide clearance of the first wire guide 31 and the inlet of the guide pipe 20.
- the second wire guide 32 is provided between the feed roller 10 and the first wire guide 31.
- the second wire guide 32 is in the shape of a die and has a guide hole through which the wire electrode 2 passes.
- the guide holes of the first and second wire guides 31, 32 form vertical passages.
- the second wire guide 32 has the same guide clearance in size as the first wire guide.
- a cap 36 is secured to the top of the block 28.
- a funnel shaped chamber is formed in the cap 36.
- the second wire guide 32 has a similar profile to this funnel shaped chamber and is located at the bottom of the chamber by its own weight.
- the second wire guide 32 is loosely fitted in the funnel shaped chamber.
- the second wire guide 32 is provided immediately above the first wire guide 31, and a sealed space 38 is formed between the guide holes of the two wire guides 31 and 32.
- the enclosed space 38 forms a vertical passage. "Sealing" in the enclosed space 38 means that the space 38 is not open to anything other than the two guide clearances.
- the enclosed space 38 mainly consists of a cylindrical chamber extending vertically in the first wire guide 31.
- the first and second wire guides 31, 32 are exchangeably mounted to the block 28. Therefore, the first and second wire guides 31, 32 can be replaced according to the diameter of the wire electrode 2.
- the second air supply passage 34 communicates with the sealed space 38 to supply compressed air.
- the vertical movement device 30 can supply the compressed air which has passed through the second air supply passage 34 to the sealed space 38 so as to cross the wire electrode 2 from a plurality of directions. Furthermore, the compressed air spouts upward from the enclosed space 38. As a result, the second wire guide 32 floats up and tilts slightly. Since the second wire guide 32 has a small guide clearance, the inner surface of the guide hole of the second wire guide 32 contacts the wire electrode 2. A frictional force is generated between the second wire guide 32 and the wire electrode 2.
- the second wire guide 32 moves upward while holding the wire electrode 2 until it collides with the ceiling of the chamber of the cap 36.
- the second wire guide 32 helps the wire electrode 2 to move straight upward a predetermined distance, so that extremely high pressure or high speed compressed air is not required.
- the predetermined distance is defined by the height of the chamber in the cap 36.
- the first air supply passage 33 communicates with the passage 37 for supplying compressed air.
- the compressed air supply device 35 can supply compressed air to the first air supply passage 33 at the same time as stopping the supply of the compressed air via the second air supply passage 34.
- the vertically moving device 30 can supply the compressed air having passed through the first air supply passage 33 to the passage 37 so as to cross the wire electrode 2 from one direction. Since the first wire guide 31 has a small guide clearance that the compressed air can hardly pass, the compressed air in the enclosed space 37 goes downward along the wire traveling path. As a result, as shown in FIG. 4, a strong downdraft is generated, and the wire electrode 2 which has been lifted moves downward along the wire traveling path.
- the compressed air supply device 35 supplies compressed air alternately to the first air supply passage 33 and the second air supply passage 34 at predetermined time intervals.
- the compressed air supply device 35 includes an air compressor, an air regulator, a two-way solenoid valve operating at high speed, and a flow control valve.
- the air regulator holds the compressed air at a predetermined pressure.
- the two-way solenoid valve switches the connection between the first air supply passage 33 and the second air supply passage 34 at predetermined time intervals.
- a flow control valve is provided between the air regulator and the two-way solenoid valve to control the supply of compressed air.
- the numerical control device 80 will be described in detail with reference to FIG.
- the numerical control device 80 comprises an input device 81, a storage device 82, and a processing device 90.
- the input device 81 is configured of a keyboard, a mouse, a touch panel, etc., and the input information is sent to the processing device 90.
- the operator can use the input device 81 to set processing conditions such as wire tension (WT), wire speed (WS), hydraulic pressure (WP) and the like.
- the hydraulic pressure (WP) is the pressure of the dielectric liquid injected from the jet nozzles 73, 74 into the processing gap during processing.
- the storage device 82 is configured of a hard disk or the like.
- the storage device 82 stores information necessary for the processing device 90, for example, a wire electric discharge machining program and an operation of automatic wire insertion.
- the set values of the processing conditions input by the operator are also stored in the storage device 82.
- the CPU and the memory cooperate to perform the function of the processor 90.
- the processing device 90 includes an AWT control unit 92, a counter 93, a tension reduction unit 94, a gain reduction unit 95, a wire speed reduction unit 96, a vertical movement device control unit 97, and a hydraulic pressure increase unit 98.
- the AWT control unit 92 is configured to control the automatic wire insertion device 1 and to receive the output of the tension detector 55.
- the AWT control unit 92 compares the detected value of the wire tension with the set value (WT) to determine the completion of the automatic wire insertion.
- the counter 93 is configured to be able to receive the output of the short circuit detector 57, and stores the short circuit release time. When a short circuit is detected at the start of electrical discharge machining, the counter 93 supplies a signal instructing the start of operation to the sections 94, 95, 96, 97 and 98, and starts the short circuit release time.
- the tension reducing unit 94 changes the set value (WT) of the wire tension to a lower value.
- a new setpoint (WT) is provided to the tension controller 56. It is stored in the tension reducing unit 94.
- the new set value (WT) may be 10 to 50% of the original set value (WT).
- the gain reducing unit 95 changes the gain in the tension control device 56 to a lower value. As a result, the responsiveness of tension control is reduced, and the wire electrode 2 is easily vibrated.
- the wire speed reduction unit 96 changes the set value (WS) of the wire speed to a lower value, and supplies a new set value (WS) to the wire speed controller 66 and the tension controller 56.
- the new set value (WS) is, for example, 60% or less of the original set value (WS).
- the wire speed reduction unit 96 intentionally generates an uneven discharge to promote the vibration of the wire electrode 2.
- the vertical movement device control unit 97 starts the operation of the vertical movement device 30, particularly the compressed air supply device 35, in order to vibrate the wire electrode 2.
- the fluid pressure increasing portion 98 increases the set value (WP) of the pressure of the dielectric fluid injected from the jet nozzles 73 and 74 to the wire electrode 2 in the processing gap in order to vibrate the wire electrode 2.
- step S1 the operator uses the input device 81 to set processing conditions such as wire tension (WT), wire speed (WS), fluid pressure (WP) and the like.
- WT wire tension
- WP fluid pressure
- the AWT control unit 92 starts the operation of the automatic wire insertion device 1.
- the wire electrode 2 is inserted into the start hole 4 and reaches the recovery roller 63, automatic wire insertion is completed, and the process proceeds to step S3.
- step S3 the processing device 90 supplies control signals to each device to start electric discharge processing based on the processing conditions.
- the dielectric liquid supply device supplies the dielectric liquid to the guide assemblies 7 and 8 from the liquid storage tank.
- the dielectric liquid is jetted from the jet nozzles 73, 74 into the processing gap.
- the wire electrode 2 is allowed to travel along the wire traveling path in accordance with the wire speed setting value (WS).
- a power supply (not shown) applies a voltage pulse between the wire electrode 2 and the work 3 in order to generate the discharge repeatedly.
- the wire electrode 2 and the work 3 may contact unintentionally and the discharge may not occur.
- the counter 93 receives a signal indicating a short circuit in step S4, and starts the operations of the sections 94, 95, 96, 97 and 98 in step S5 and starts the short circuit release time.
- the tension reducing unit 94 changes the setting value (WT) of the wire tension to a lower value.
- WT setting value
- the vertical movement device control unit 97 starts the operation of the vertical movement device 30.
- the compressed air supply 35 alternately delivers compressed air to the second air supply path 34 and the first air supply path 33.
- the fluid pressure increasing portion 98 increases the fluid pressure setting value (WP).
- the wire electrode 2 is bent due to the large decrease in wire tension and the vibration of the wire electrode 2. As a result, the wire electrode 2 is separated from the work 3 and a processing gap is formed. Arrows in FIG. 7 indicate vertical and horizontal vibrations of the wire electrode 2. A discharge occurs at a point where the wire electrode 2 is closest to the work 3 and the repulsive force of the discharge maintains the machining gap at an appropriate size.
- the short circuit release time is a sufficient time for repeated discharges to occur.
- the gain reduction unit 95 changes the gain in the tension control device 56 to a lower value
- the wire speed reduction unit 96 changes the set value (WS) of the wire speed to a lower value. Do.
- the short circuit release time ends in step S7, the process proceeds to step S8.
- the processing device 90 stops the vibration of the wire electrode 2.
- the operation of the vertical movement device 30 is stopped, and the set value (WP) of the hydraulic pressure is returned to the original value.
- the wire speed setpoint (WS) is returned to its original value, and the gain in tension control 56 is also returned to its original value.
- the wire tension (WT) setting is gradually returned to the original value.
- the vibrating device by the injection of the high pressure liquid and the vertical movement device 30 vibrate the wire electrode 2, but only one of the two devices may operate. Also, instead of both devices, a magnetic or electrical vibration device may be used.
- the scope of the invention is defined by the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本発明のワイヤ放電加工装置は、ワイヤ電極の張力を設定値へ維持されるように制御する張力制御装置(56)と、
ワイヤ電極とワーク間の短絡を検出する短絡検出器(57)と、
短絡検出器が短絡を検出したとき、短絡を解除するため、ワイヤ電極の張力を低減すると共にワイヤ電極を振動させる短絡解除システムを含む。
本発明によれば、短絡解除システムは開始穴中のワイヤ電極を撓ませて短絡を確実に解除できる。
本発明のワイヤ放電加工方法は、ワイヤ電極(2)をワーク(3)中の開始穴(4)に挿通するステップと、
ワイヤ電極を所定の張力を与えて走行させるステップと、
加工間隙に放電を発生させるためワイヤ電極とワーク間に電圧を印加するステップと、
ワイヤ電極とワーク間の短絡を検出するステップと、
短絡を解除するため、ワイヤ電極の張力を低減すると共にワイヤ電極を振動させるステップとを含む。
Claims (10)
- ワーク中の開始穴に挿通されたワイヤ電極と前記ワーク間に形成された加工間隙に放電を発生させて前記ワークの加工を開始するワイヤ放電加工装置において、
前記ワイヤ電極の張力を設定値へ維持されるように制御する張力制御装置と、
前記ワイヤ電極と前記ワーク間の短絡を検出する短絡検出器と、
前記短絡検出器が前記短絡を検出したとき、前記短絡を解除するため、前記ワイヤ電極の張力を低減すると共に前記ワイヤ電極を振動させる短絡解除システムを含むワイヤ放電加工装置。 - 前記短絡解除システムは、前記短絡検出器が前記短絡を検出したとき張力の前記設定値を低減する、請求項1に記載のワイヤ放電加装置。
- 前記短絡解除システムは、前記短絡検出器が前記短絡を検出したとき張力の前記設定値を10~50%へ低減する、請求項1に記載のワイヤ放電加装置。
- 前記短絡解除システムは、高圧の誘電性液を前記ワイヤ電極へ噴射して前記ワイヤ電極を振動させる振動装置を含む、請求項1に記載のワイヤ放電加装置。
- 前記短絡解除システムは圧縮空気によって前記ワイヤ電極を微小に上下動させる上下動装置を含む、請求項1に記載のワイヤ放電加装置。
- 前記上下動装置は、圧縮空気を前記ワイヤ電極に交差するように供給して前記ワイヤ電極を横方向に振動させる、請求項5に記載のワイヤ放電加装置。
- 前記上下動装置は前記ワイヤ電極が通過する案内孔を有するワイヤガイドを含み、前記ワイヤガイドは前記圧縮空気によって上方向に移動可能である、請求項54に記載のワイヤ放電加装置。
- 前記張力制御装置は前記ワイヤ電極の張力の検出値とゲインとに基づいて張力指令を発生し、前記短絡検出器が前記短絡を検出したとき前記短絡解除システムは前記ゲインを低減する、請求項1に記載のワイヤ放電加装置。
- 前記短絡検出器が前記短絡を検出したとき前記短絡解除システムは前記ワイヤ電極の走行速度を低減する、請求項1に記載のワイヤ放電加装置。
- ワイヤ電極とワーク間に形成された加工間隙に放電を発生させて前記ワークの加工を開始するワイヤ放電加工方法において、
前記ワイヤ電極を前記ワーク中の開始穴に挿通するステップと、
前記ワイヤ電極を所定の張力を与えて走行させるステップと、
前記加工間隙に放電を発生させるため前記ワイヤ電極と前記ワーク間に電圧を印加するステップと、
前記ワイヤ電極と前記ワーク間の短絡を検出するステップと、
前記短絡を解除するため、前記ワイヤ電極の張力を低減すると共に前記ワイヤ電極を振動させるステップとを含むワイヤ放電加工方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280060446.2A CN103974795B (zh) | 2011-12-09 | 2012-12-10 | 线放电加工装置及方法 |
KR1020147014486A KR101856082B1 (ko) | 2011-12-09 | 2012-12-10 | 와이어 방전 가공 장치 및 방법 |
US14/361,706 US10118239B2 (en) | 2011-12-09 | 2012-12-10 | Wire electric discharge machining device and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011269607A JP5220179B2 (ja) | 2011-12-09 | 2011-12-09 | ワイヤ放電加工機 |
JP2011-269607 | 2011-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013085063A1 true WO2013085063A1 (ja) | 2013-06-13 |
Family
ID=48574412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081993 WO2013085063A1 (ja) | 2011-12-09 | 2012-12-10 | ワイヤ放電加工装置および方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10118239B2 (ja) |
JP (1) | JP5220179B2 (ja) |
KR (1) | KR101856082B1 (ja) |
CN (1) | CN103974795B (ja) |
WO (1) | WO2013085063A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6219785B2 (ja) * | 2014-06-23 | 2017-10-25 | ファナック株式会社 | 断線修復手段を備えたワイヤ放電加工機 |
CN104458114B (zh) * | 2014-10-31 | 2016-09-07 | 自贡市嘉特数控机械制造有限公司 | 轴式张力传感器定位检具工装 |
CN104677542B (zh) * | 2015-03-16 | 2017-03-01 | 山东大学 | 一种电火花放电冲击力的测量系统及方法 |
US10471529B2 (en) | 2015-10-13 | 2019-11-12 | Foundation Of Soongsil University-Industry Cooperation | Electrical discharge machining device and method for the same |
CN107073614B (zh) * | 2015-10-30 | 2019-01-04 | 三菱电机株式会社 | 线放电加工机、线放电加工机的控制装置的控制方法及定位方法 |
JP6469045B2 (ja) * | 2016-07-13 | 2019-02-13 | ファナック株式会社 | ワイヤ放電加工機 |
JP6423832B2 (ja) * | 2016-08-24 | 2018-11-14 | ファナック株式会社 | ワイヤ放電加工機および測定方法 |
JP6310039B1 (ja) * | 2016-11-08 | 2018-04-11 | ファナック株式会社 | ワイヤ放電加工機および自動結線方法 |
JP6360212B1 (ja) * | 2017-01-31 | 2018-07-18 | ファナック株式会社 | ワイヤ放電加工機 |
JP6824916B2 (ja) * | 2018-01-31 | 2021-02-03 | 株式会社ソディック | ワイヤ放電加工装置 |
JP6391865B1 (ja) * | 2018-02-22 | 2018-09-19 | 株式会社ソディック | ワイヤ放電加工装置 |
JP7343328B2 (ja) * | 2019-08-02 | 2023-09-12 | ファナック株式会社 | ワイヤ放電加工機および制御方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111823A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS61111841A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS61111834A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS62124827A (ja) * | 1985-11-22 | 1987-06-06 | Inoue Japax Res Inc | ワイヤカツト放電加工装置 |
JPS62287919A (ja) * | 1986-06-03 | 1987-12-14 | Mitsubishi Electric Corp | 放電加工装置 |
JPS63318211A (ja) * | 1987-06-22 | 1988-12-27 | Mitsubishi Electric Corp | 放電加工装置 |
JPH09108950A (ja) * | 1995-10-11 | 1997-04-28 | Sodick Co Ltd | ワイヤカット放電加工装置に於けるワイヤ電極挿通方法 |
JP2005001054A (ja) * | 2003-06-11 | 2005-01-06 | Mitsubishi Electric Corp | ワイヤ電極自動結線装置およびワイヤ電極の自動結線方法 |
JP2008012644A (ja) * | 2006-07-10 | 2008-01-24 | Sodick Co Ltd | ワイヤカット放電加工装置 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3781507A (en) * | 1969-03-13 | 1973-12-25 | K Inoue | Servosystem for electrical machining processes |
US4223198A (en) * | 1978-01-11 | 1980-09-16 | Inoue-Japax Research Incorporated | Arm deflection constant traveling-wire EDM method and apparatus |
JPS57144633A (en) * | 1981-03-05 | 1982-09-07 | Inoue Japax Res Inc | Wire electrode feeder |
JPS58120428A (ja) * | 1981-12-30 | 1983-07-18 | Fanuc Ltd | ワイヤカツト放電加工機の制御法 |
NL8202964A (nl) * | 1982-07-22 | 1984-02-16 | Stichting Steunfonds Lab Voor | Werkwijze voor het onderdrukken van boogvorming bij een vonkerosieproces. |
JPS5993227A (ja) * | 1982-11-15 | 1984-05-29 | Fanuc Ltd | 放電加工制御回路 |
US4575603A (en) * | 1983-03-12 | 1986-03-11 | Inoue-Japax Research Incorporated | TW-Electroerosion with controlled flushing flow guidance means |
CH678825A5 (ja) * | 1986-06-03 | 1991-11-15 | Mitsubishi Electric Corp | |
DE3790662T (ja) * | 1986-10-24 | 1988-10-27 | ||
JPS6411728A (en) * | 1987-07-02 | 1989-01-17 | Mitsubishi Electric Corp | Wire electrode supply device for wire cut electric discharge machine |
JPH01199726A (ja) * | 1988-02-03 | 1989-08-11 | Fanuc Ltd | ワイヤ張力,断線検出制御装置 |
JPH0796168B2 (ja) * | 1989-02-23 | 1995-10-18 | 三菱電機株式会社 | ワイヤ放電加工装置のワイヤ自動供給装置 |
JPH0622763A (ja) | 1990-12-10 | 1994-02-01 | Hitachi Chem Co Ltd | 抗アレルギー性ペンタペプチドの多量体ペプチドをコードするdna |
JP2692386B2 (ja) * | 1991-01-17 | 1997-12-17 | 三菱電機株式会社 | ワイヤ放電加工装置 |
JP3084879B2 (ja) * | 1992-01-27 | 2000-09-04 | ブラザー工業株式会社 | ワイヤ放電加工機 |
JP3097793B2 (ja) * | 1993-06-15 | 2000-10-10 | 矢崎総業株式会社 | 放電加工機用ワイヤの誘導装置を備えたワイヤ切断機 |
JPH0790424A (ja) | 1993-09-21 | 1995-04-04 | Nagahori:Kk | 高品位金合金 |
JP3253812B2 (ja) * | 1994-10-17 | 2002-02-04 | 松下電器産業株式会社 | 放電加工装置 |
DE19516990C2 (de) * | 1995-05-09 | 1998-09-17 | Agie Ag Ind Elektronik | Verfahren zum funkenerosiven Nachschneiden mittels drahtförmiger Elektrode und hierfür ausgelegte Funkenerosionsmaschine |
DE69834465T2 (de) * | 1997-03-07 | 2006-12-07 | Sodick Co. Ltd., Yokohama | System und verfahren für drahtschneidefunkenerosionsbearbeitung |
JP3889175B2 (ja) * | 1999-02-26 | 2007-03-07 | 株式会社ソディック | ワイヤ電極の張力制御装置 |
JP3882751B2 (ja) * | 2001-01-16 | 2007-02-21 | 三菱電機株式会社 | ワイヤ放電加工装置のワイヤ電極自動供給装置 |
JP3775744B2 (ja) * | 2003-05-26 | 2006-05-17 | 有限会社エフ・エー電子 | ワイヤカット放電加工機のワイヤの張力制御装置 |
EP1607161B1 (en) | 2004-06-02 | 2007-05-09 | Fanuc Ltd | Controller for a wire electrical discharge machine |
JP2006110654A (ja) * | 2004-10-13 | 2006-04-27 | Sodick Co Ltd | 自動結線装置 |
EP1886755B1 (en) * | 2006-08-11 | 2013-01-02 | Agie Charmilles SA | Device and method for high frequency electrical discharge machining |
JP4168076B2 (ja) * | 2007-03-08 | 2008-10-22 | ファナック株式会社 | ワイヤ電極張力制御機能を有するワイヤカット放電加工機 |
JP2009050926A (ja) * | 2007-08-24 | 2009-03-12 | Seibu Electric & Mach Co Ltd | ワイヤ放電加工機におけるワイヤ送り方法 |
DE112008003926B4 (de) * | 2008-07-03 | 2019-09-05 | Mitsubishi Electric Corp. | Elektrische drahterodiermaschine, steuervorrichtung dafür und elektrisches drahterrodierbearbeitungsverfahren |
DE112011103905B4 (de) * | 2010-11-24 | 2022-09-15 | Mitsubishi Electric Corporation | Drahtschneideelektroerodierverfahren und Halbleiterwaferherstellungsverfahren |
JP6022763B2 (ja) * | 2011-12-07 | 2016-11-09 | 富士機械製造株式会社 | 対回路基板作業機 |
JP5204321B1 (ja) * | 2012-02-01 | 2013-06-05 | ファナック株式会社 | 加工状態を検出し極間の平均電圧を求めるワイヤ放電加工機 |
-
2011
- 2011-12-09 JP JP2011269607A patent/JP5220179B2/ja active Active
-
2012
- 2012-12-10 KR KR1020147014486A patent/KR101856082B1/ko active IP Right Grant
- 2012-12-10 CN CN201280060446.2A patent/CN103974795B/zh active Active
- 2012-12-10 WO PCT/JP2012/081993 patent/WO2013085063A1/ja active Application Filing
- 2012-12-10 US US14/361,706 patent/US10118239B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111823A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS61111841A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS61111834A (ja) * | 1984-11-05 | 1986-05-29 | Mitsubishi Electric Corp | ワイヤカツト放電加工装置 |
JPS62124827A (ja) * | 1985-11-22 | 1987-06-06 | Inoue Japax Res Inc | ワイヤカツト放電加工装置 |
JPS62287919A (ja) * | 1986-06-03 | 1987-12-14 | Mitsubishi Electric Corp | 放電加工装置 |
JPS63318211A (ja) * | 1987-06-22 | 1988-12-27 | Mitsubishi Electric Corp | 放電加工装置 |
JPH09108950A (ja) * | 1995-10-11 | 1997-04-28 | Sodick Co Ltd | ワイヤカット放電加工装置に於けるワイヤ電極挿通方法 |
JP2005001054A (ja) * | 2003-06-11 | 2005-01-06 | Mitsubishi Electric Corp | ワイヤ電極自動結線装置およびワイヤ電極の自動結線方法 |
JP2008012644A (ja) * | 2006-07-10 | 2008-01-24 | Sodick Co Ltd | ワイヤカット放電加工装置 |
Also Published As
Publication number | Publication date |
---|---|
KR101856082B1 (ko) | 2018-05-09 |
KR20140084317A (ko) | 2014-07-04 |
US10118239B2 (en) | 2018-11-06 |
US20150231716A1 (en) | 2015-08-20 |
CN103974795A (zh) | 2014-08-06 |
JP5220179B2 (ja) | 2013-06-26 |
JP2013119154A (ja) | 2013-06-17 |
CN103974795B (zh) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013085063A1 (ja) | ワイヤ放電加工装置および方法 | |
WO2012070167A1 (ja) | ワイヤ放電加工装置および半導体ウエハ製造方法 | |
JP5783653B1 (ja) | ワイヤカット放電加工装置 | |
JP3832433B2 (ja) | ワイヤ放電加工方法及び装置 | |
JP4331119B2 (ja) | ワイヤ放電加工機 | |
KR20190030173A (ko) | 자동 결선 방법 및 와이어 방전 가공기 | |
JP2009233842A (ja) | ワイヤ放電加工方法 | |
EP2952280B1 (en) | Wire-cut electrical discharge machining machine in which position of liquid level of machining fluid is adjusted at time of automatic wire threading | |
US20080277383A1 (en) | Apparatus for removing debris from the cutting gap of a work piece on a wire electronic discharge machine and method therefor | |
EP2698222B1 (en) | Wire discharge machining device | |
JPH02311221A (ja) | ワイヤ放電加工装置のワイヤ電極供給装置 | |
JP5361101B2 (ja) | ワイヤ放電加工機およびワイヤ放電加工方法 | |
JP5414660B2 (ja) | ワイヤカット放電加工装置 | |
JP3623363B2 (ja) | ワイヤ放電加工機におけるワイヤ送り装置 | |
JP3328577B2 (ja) | ワイヤカット放電加工機の加工液供給ノズル装置 | |
CN112296461A (zh) | 线放电加工机以及控制方法 | |
JP4342737B2 (ja) | ワイヤ放電加工時の短絡回避方法 | |
JPH01135423A (ja) | ワイヤ放電加工装置のワイヤ自動供給装置 | |
WO2023127901A1 (ja) | ワイヤ放電加工機の制御方法およびワイヤ放電加工機 | |
JP3582468B2 (ja) | ワイヤ放電加工装置 | |
CN116060710A (zh) | 电极丝放电加工装置以及电极丝放电加工方法 | |
JP2788912B2 (ja) | ワイヤカット放電加工装置 | |
JPH06226543A (ja) | ワイヤ放電加工機のワイヤ電極自動装填方法及び装置 | |
JP2001087946A (ja) | ワイヤ放電加工機の加工液供給制御方法 | |
JPH0551409B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12855177 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147014486 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14361706 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12855177 Country of ref document: EP Kind code of ref document: A1 |