WO2013084116A1 - Elektrochemische zellen umfassend stickstoff-haltige polymere - Google Patents

Elektrochemische zellen umfassend stickstoff-haltige polymere Download PDF

Info

Publication number
WO2013084116A1
WO2013084116A1 PCT/IB2012/056819 IB2012056819W WO2013084116A1 WO 2013084116 A1 WO2013084116 A1 WO 2013084116A1 IB 2012056819 W IB2012056819 W IB 2012056819W WO 2013084116 A1 WO2013084116 A1 WO 2013084116A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochemical cell
cell according
polymer
lithium
Prior art date
Application number
PCT/IB2012/056819
Other languages
English (en)
French (fr)
Inventor
Oliver Gronwald
Klaus Leitner
Original Assignee
Basf Se
Basf (China) Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf (China) Company Limited filed Critical Basf Se
Priority to KR1020147018619A priority Critical patent/KR20140104995A/ko
Priority to CN201280059796.7A priority patent/CN103959511A/zh
Priority to JP2014545404A priority patent/JP5717929B2/ja
Priority to EP12854572.0A priority patent/EP2789031A4/de
Publication of WO2013084116A1 publication Critical patent/WO2013084116A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to electrochemical cells containing
  • the present invention relates to the use of electrochemical cells according to the invention, and lithium-ion batteries, containing at least one electrochemical cell according to the invention.
  • Saving energy has long been an object of growing interest.
  • Electrochemical cells such as batteries or accumulators, can be used to store electrical energy.
  • lithium-ion batteries are superior in some technical aspects to conventional batteries. So you can create with them voltages that are not accessible with batteries based on aqueous electrolytes.
  • the materials from which the electrodes are made and in particular the material from which the cathode is made, play an important role.
  • use is made of lithium-containing transition metal mixed oxides in particular lithium-containing nickel-cobalt-manganese oxides having a layer structure, or manganese-containing spinels which may be doped with one or more transition metals.
  • a problem of many batteries however, remains the cycle stability, which is still to be improved.
  • Such batteries which contain a relatively high proportion of manganese, for example in electrochemical cells with a manganese-containing spinel electrode and a graphite anode, one often observes a strong loss of capacity within a relatively short time.
  • WO 2009/033627 discloses a sheet which can be used as a separator for lithium-ion batteries. It comprises a nonwoven as well as embedded in the nonwoven particles, which consist of organic polymers and optionally partly of inorganic material. Although such separators can be used to avoid short circuits caused by metal dendrites. In WO 2009/033627, however, no long-term cyclization experiments are disclosed.
  • WO 201 1/024149 discloses lithium-ion batteries containing an alkali metal such as lithium between the cathode and anode, which serves as a scavenger of unwanted by-products or impurities and is referred to as a scavenger.
  • an alkali metal such as lithium between the cathode and anode
  • a scavenger of unwanted by-products or impurities
  • a scavenger Both in the production of the secondary battery cells and in a later recycling of the disused cells due to the presence of highly reactive alkali metal appropriate safety precautions must be taken. It was therefore the object to provide electrical cells that have an improved life and in which you must observe no deposition of elemental manganese even after several cycles, or in whose production you can use a scavenger, which has a lower security problem than the alkali metals and prolongs the life of the cell to the desired extent.
  • the cathode (A) contains at least one lithium-ion-containing transition metal compound, such as the transition metal compounds L1C0O2, LiFeP0 4 or lithium manganese spinel known to those skilled in lithium ion battery technology.
  • the cathode (A) contains as lithium ion-containing transition metal compound, a lithium ion-containing transition metal oxide containing manganese as the transition metal.
  • lithium ion-containing transition metal oxides which contain manganese as the transition metal are understood to mean not only those oxides which have at least one transition metal in cationic form but also those which have at least two transition metal oxides in cationic form. Moreover, in the context of the present invention, such compounds are also termed "lithium ions”. NEN-containing transition metal oxides "which comprise, besides lithium, at least one metal in cationic form which is not a transition metal, for example aluminum or calcium.”
  • manganese may be present in the cathode (A) in the formal oxidation state Particularly preferred is manganese in cathode (A) in a formal oxidation state in the range of +3.5 to +4.
  • lithium ion-containing transition metal mixed oxide which contains less than 0.1% by weight of sodium is therefore considered to be sodium-free in the context of the present invention. Accordingly, a lithium ion-containing transition metal mixed oxide containing less than 0.1 wt .-% sulfate ions, in the context of the present invention as sulfate-free.
  • lithium ion-containing transition metal oxide is a transition metal mixed oxide containing at least one other transition metal in addition to manganese.
  • lithium ion-containing transition metal compound is selected from manganese-containing lithium iron phosphates and preferably from manganese-containing spinels and manganese-containing transition metal oxides having a layer structure, in particular manganese-containing transition metal mixed oxides having a layer structure.
  • lithium ion-containing transition metal compound is selected from those compounds having a more than stoichiometric amount of lithium.
  • manganese-containing spinels are selected from those of the general formula (I) where the variables are defined as follows:
  • O s b s 0.6 for example 0.0 or 0.5
  • M 1 is selected from one or more elements selected from Al, Mg, Ca, Na, B, Mo, W, and transition metals of the first period of the periodic table of the elements.
  • M 1 is selected from Ni, Co, Cr, Zn, Al, and most preferably M 1 is Ni.
  • manganese-containing spinels are selected from those of the formula LiNio.sMn-i.sC-d and LiM.sup.-C.
  • manganese-containing transition metal oxides having a layer structure of those of the formula (II) where the variables are defined as follows: 0 ⁇ t ⁇ 0.3 and
  • M 2 selected from Al, Mg, B, Mo, W, Na, Ca and transition metals of the first period of the Periodic Table of the Elements, wherein the or at least one transition metal is manganese.
  • at least 30 mol% of M 2 are selected from manganese, preferably at least 35 mol%, based on total content of M 2 .
  • M 2 is selected from combinations of Ni, Co and Mn which contain no other elements in significant amounts.
  • M 2 is selected from combinations of Ni, Co and Mn which contain at least one further element in significant amounts, for example in the range from 1 to 10 mol% of Al, Ca or Na.
  • manganese-containing transition metal oxides having a layered structure are selected from those in which M 2 is selected from Nio, 33Coo, 33Mno, 33, Ni 0 , 5Coo, 2Mn 0 , 3, Ni 0 , 4Coo, 3Mn 0 , 4, Ni 0 , 4Coo, 2Mn 0 , 4 and Ni 0 , 45Coo, ioMn 0 , 45.
  • lithium-containing transition metal oxide is present in the form of primary particles which are agglomerated to form spherical secondary particles, the average particle diameter (D50) of the primary particles in the range from 50 nm to 2 ⁇ m, and the mean particle diameter (D50) of the secondary particles in Range of 2 ⁇ to 50 ⁇ lies.
  • Cathode (A) may contain one or more ingredients.
  • cathode (A) may contain carbon in conductive modification, for example selected from graphite, carbon black, carbon nanotubes, graphene or mixtures of at least two of the aforementioned substances.
  • cathode (A) may contain one or more binders, also called binders, for example one or more organic polymers. Suitable binders are, for example, organic (co) polymers.
  • Suitable (co) polymers can be selected, for example, from (co) polymers obtainable by anionic, catalytic or free-radical (co) polymerization, in particular from polyethylene, polyacrylonitrile, polybutadiene, polystyrene, and copolymers of at least two comonomers from ethylene, propylene, styrene, (meth) acrylonitrile and 1, 3-butadiene, in particular styrene-butadiene copolymers.
  • polypropylene is suitable, furthermore polyisoprene and polyacrylates are suitable. Particularly preferred is polyacrylonitrile.
  • polyacrylonitrile is understood to mean not only polyacrylonitrile homopolymers, but also copolymers of acrylonitrile with 1,3-butadiene or styrene. Preference is given to polyacrylonitrile homopolymers.
  • polyethylene is understood to mean not only homo-polyethylene, but also copolymers of ethylene which contain at least 50 mol% of ethylene and up to 50 mol% of at least one further comonomer, for example ⁇ -olefins such as Propylene, butylene (1-butene), 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-pentene, furthermore isobutene, vinylaromatics such as styrene, for example
  • ⁇ -olefins such as Propylene, butylene (1-butene), 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-pentene, furthermore isobutene, vinylaromatics such as styrene, for example
  • Polyethylene may be HDPE or LDPE.
  • polypropylene is understood to mean not only homo-polypropylene but also copolymers of propylene which contain at least 50 mol% of propylene polymerized and up to 50 mol% of at least one further comonomer, for example ethylene and ⁇ -propylene.
  • Olefins such as butylene, 1-hexene, 1-octene, 1-decene, 1-dodecene and 1-pentene.
  • Polypropylene is preferably isotactic or substantially isotactic polypropylene.
  • polystyrene is understood to mean not only homopolymers of styrene, but also copolymers with acrylonitrile, 1,3-butadiene, (meth) acrylic acid, C 1 -C 10 -alkyl esters of (meth) acrylic acid, divinylbenzene, in particular 1, 3. Divinylbenzene, 1, 2-diphenylethylene and a-methylstyrene.
  • Another preferred binder is polybutadiene.
  • binders are selected from polyethylene oxide (PEO), cellulose, carboxymethyl cellulose, polyimides and polyvinyl alcohol.
  • PEO polyethylene oxide
  • binders are selected from those (co) polymers which have an average molecular weight M w in the range from 50,000 to 1,000,000 g / mol, preferably up to 500,000 g / mol. Binders may be crosslinked or uncrosslinked (co) polymers.
  • binders are selected from halogenated (co) polymers, in particular from fluorinated (co) polymers.
  • Halogenated or fluorinated (co) polymers are understood as meaning those (co) polymers which contain at least one (co) monomer in copolymerized form which has at least one halogen atom or at least one fluorine atom per molecule, preferably at least two halogen atoms or at least two fluorine atoms per molecule.
  • Examples are polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyvinylidene fluoride (PVdF), tetrafluoroethylene-hexafluoropropylene copolymers, vinylidene fluoride-hexafluoropropylene copolymers (PVdF-HFP), vinylidene fluoride-tetrafluoroethylene copolymers, perfluoroalkylvinyl ether copolymers, ethylene-tetrafluoroethylene copolymers, vinylidene fluoride copolymers. Chlorotrifluoroethylene copolymers and ethylene-chlorofluoroethylene copolymers.
  • Suitable binders are in particular polyvinyl alcohol and halogenated (co) polymers, for example polyvinyl chloride or polyvinylidene chloride, in particular fluorinated (co) polymers such as polyvinyl fluoride and in particular polyvinylidene fluoride and polytetrafluoroethylene.
  • cathode (A) may comprise further conventional components, for example a current conductor, which may be configured in the form of a metal wire, metal grid, metal mesh, expanded metal, metal sheet or a metal foil.
  • a current conductor which may be configured in the form of a metal wire, metal grid, metal mesh, expanded metal, metal sheet or a metal foil.
  • Aluminum foils are particularly suitable as metal foils.
  • cathode (A) has a thickness in the range of 25 to 200 ⁇ , preferably from 30 to 100 ⁇ , based on the thickness without Stromableiter.
  • anode (B) may be selected from anodes of carbon and anodes containing Sn or Si.
  • carbon anodes may be selected from hard carbon, soft carbon, graphene, graphite, and especially graphite, intercalated graphite, and mixtures of two or more of the aforementioned carbons.
  • Anodes containing Sn or Si can be selected, for example, from nanoparticulate Si or Sn powder, Si or Sn fibers, carbon-Si or carbon-Sn composites and Si-metal or Sn metal alloys.
  • Anode (B) may comprise one or more binders.
  • anode (B) may have further conventional components, for example a current conductor, which may be designed in the form of a metal wire, metal grid, metal mesh, expanded metal, or a metal foil or a metal sheet.
  • a current conductor which may be designed in the form of a metal wire, metal grid, metal mesh, expanded metal, or a metal foil or a metal sheet.
  • metal foils in particular copper foils are suitable.
  • anode (B) has a thickness in the range of 15 to 200 ⁇ , preferably from 30 to 100 ⁇ , based on the thickness without Stromableiter.
  • Electrochemical cells according to the invention furthermore contain (C) at least one layer, also called layer (C) for short, which contains (a) at least one polymer, also referred to as polymer (a), which comprises monomer units which contain nitrogen-containing 5- or 6-membered heterocyclic compounds - contain aromatic structural units, or which contain an organic radical derived from ⁇ -aminophosphonic acid or iminodiacetic acid, and which (b) optionally at least one binder, also referred to as binder (b).
  • layer (C) contains (a) at least one polymer, also referred to as polymer (a), which comprises monomer units which contain nitrogen-containing 5- or 6-membered heterocyclic compounds - contain aromatic structural units, or which contain an organic radical derived from ⁇ -aminophosphonic acid or iminodiacetic acid, and which (b) optionally at least one binder, also referred to as binder (b).
  • Nitrogen-containing 5- or 6-membered heterocyclic aromatic structural units are known to the person skilled in the art in principle. These may be monovalent or polyvalent, for example divalent or trivalent, monocyclic or polycyclic, substituted or unsubstituted structural units. Examples of such structural units are,
  • the polymer (a) contained in layer (C) comprises monomer units which contain nitrogen-containing 5- or 6-membered heterocyclic aromatic structural units or which contain an organic radical. which is derived from ⁇ -aminophosphonic acid or from iminodiacetic acid, those monomer units which are selected from the group of the monomer units consisting of
  • X is O, S or NR and R is hydrogen or a C1-C4 alkyl group, such as methyl, ethyl, n-propyl or n-butyl.
  • the monomer unit is N-vinylimidazole.
  • the polymer (a) contained in layer (C) may be a homopolymer which contains in each case only one monomer unit which contains a nitrogen-containing 5- or 6-membered heterocyclic aromatic structural unit or which contains an organic radical which differs from o
  • the polymer (a) contained in layer (C) may be a copolymer containing, in addition to the at least one monomer unit containing a nitrogen-containing 5- or 6-membered heterocyclic aromatic moiety or containing an organic radical other than ⁇ -aminophosphonic acid or derives from imino-diacetic acid, contains at least one further monomer unit.
  • the further monomer unit of the copolymer may, in principle, be any known monomer unit which is copolymerizable together with the former monomer unit.
  • the polymer (a) contained in layer (C) may contain the monomer units containing the nitrogen-containing 5- or 6-membered heterocyclic aromatic structural units or containing an organic radical derived from ⁇ -aminophosphonic acid or iminodiacetic acid in a proportion of 0.5% by weight up to 100% by weight, preferably of at least 5% by weight %, more preferably of at least 20 wt .-%, most preferably of at least 40 wt .-%, in particular of at least 50 wt .-% based on the total mass of the polymer (a).
  • the polymer (a) contained in layer (C) is a copolymer containing the monomer units N-vinylimidazole and N-vinyl-2-pyrrolidinone.
  • Copolymers containing N-vinylimidazole and N-vinyl-2-pyrrolidinone are known.
  • a crosslinked copolymer containing N-vinyl imidazole and N-vinyl-2-pyrrolidinone as Divergan ® HM of BASF is commercially available which sungsstoffn in all customary solu- is insoluble.
  • there are containing N-vinyl-2-pyrrolidinone and N-vinylimidazole are commercially available, solutions of copolymers such as Sokalan ® HP 56 K or Sokalan ® HP 66 K from BASF.
  • this polymer may be present in different form in layer (C).
  • An insoluble polymer as the cross-linked copolymer Divergan ® HM of BASF is preferably incorporated in the form of particles in layer (C), while a corresponding soluble polymer can be processed into a film or even homogeneous in the layer (C), for example on or in a carrier material, which may be of organic or inorganic origin, can be applied.
  • the separators described in WO 2009/033627 or the ingredients with a solution of a copolymer containing N-vinyl-2-pyrrolidinone and N-vinylimidazole for example, a solution of Sokalan ® HP 66 K or Luvitec VPI 55 K 72 ® W can be treated, For example, be soaked or sprayed to get to a modified separator with which an electrochemical cell according to the invention can be produced. It is also possible to use polymer (a) in particulate form together with the inorganic or organic particles used in WO 2009/033627 for the production of correspondingly modified nonwovens.
  • first polymer (a) or a monomer unit containing nitrogen-containing 5- or 6-membered heterocyclic aromatic structural units or containing an organic radical derived from ⁇ -aminophosphonic acid or iminodiacetic acid to a Another polymer to go by grafting to new polymers (a), for example, by grafting of vinylimidazole to an aromatic polyether ketone or by grafting a copolymer of N-vinyl-2-pyrrolidinone and N-vinylimidazole on polyethylene glycol.
  • the electrochemical cells according to the invention are characterized in that the polymer contained in layer (C) is present in particulate form, in the form of a film or homogeneously distributed in layer (C).
  • the polymer contained in layer (C) is preferably present in particulate form.
  • polymers in particulate form can have an average particle diameter (D50) in the range from 0.05 to 100 ⁇ m, preferably 0.5 to 10 ⁇ m, particularly preferably 2 to 6 ⁇ m.
  • the proportion by weight of the polymer (a) in the total mass of the layer (C) can be up to 100 wt .-%.
  • the weight fraction of the polymer (a) in the total mass of the layer (C) is preferably at least 5% by weight, particularly preferably 40 to 80% by weight, in particular the weight fraction of the polymer (a) is based on the total mass of the layer (C ) in the range of 30 to 50 wt .-%.
  • binder (b) is selected from such binders as described in connection with binders for the cathode (s) (A).
  • layer (C) comprises a binder (b) selected from the group of polymers consisting of polyvinyl alcohol, styrene-butadiene rubber, polyacrylonitrile, carboxymethylcellulose and fluorine-containing (co) polymers, in particular selected from styrene-butadiene- Rubber and fluorine-containing (co) polymers.
  • binder (b) and binder for cathode and for anode, if present, are the same.
  • binder (b) differs from binder for cathode (A) and / or binder for anode (B), or binder for anode (B) and binder for cathode (A) are different.
  • layer (C) has an average thickness in the range from 0.1 ⁇ m to 250 ⁇ m, preferably from 1 ⁇ m to 100 ⁇ m, and particularly preferably from 5 ⁇ m to 30 ⁇ m.
  • Layer (C) is preferably a layer which does not conduct the electric current, that is to say an electrical insulator.
  • layer (C) is preferably a layer which permits the migration of ions, in particular of ions.
  • Layer (C) is preferably arranged spatially between cathode and anode within the electrochemical cell according to the invention.
  • the electrochemical cells according to the invention are characterized in that layer (C) is a separator.
  • Layer (C) may contain, in addition to the polymer (a) and the optional binder (b), further constituents, for example support materials such as fibers or nonwovens, which provide improved stability of layer (C) without compromising their necessary porosity and ion permeability.
  • layer (C) may also contain at least one porous plastic layer, for example a polyolefin membrane, in particular a polyolefin membrane. lyethylene or a polypropylene membrane.
  • polyolefin membranes can be composed of one or more layers. Porous polyolefin membranes or nonwovens themselves can usually fulfill the function of a separator alone.
  • layer (C) may contain particles of inorganic or organic nature, which are mentioned, for example, in WO 2009/033627.
  • the electrochemical cells according to the invention are characterized in that layer (C) additionally contains a nonwoven (c).
  • Fleece (c) may be made of inorganic or organic materials.
  • organic nonwovens are polyester nonwovens, in particular polyethylene terephthalate nonwovens (PET nonwovens), polybutylene terephthalate nonwovens (PBT nonwovens), polyimide nonwovens, polyethylene and polypropylene nonwovens, PVdF nonwovens and PTFE nonwovens.
  • PET nonwovens polyethylene terephthalate nonwovens
  • PBT nonwovens polybutylene terephthalate nonwovens
  • polyimide nonwovens polyethylene and polypropylene nonwovens
  • PVdF nonwovens PVdF nonwovens
  • PTFE nonwovens examples of organic nonwovens.
  • inorganic nonwovens examples include glass fiber nonwovens and ceramic fiber nonwovens.
  • this may be, for example, alone from the polymer (a), for example a porous film of the polymer (a), or from polymer (a) in particulate form and a binder (b) or from a Polyesterervliess with consist evenly distributed particles of the polymer (a).
  • layer (C) itself can already be used as a separator in the electrochemical cell according to the invention and can thus cover the cathode (A) or the anode (B) on at least one side.
  • a layer (C) can also be applied to a commonly usable battery separator, such as a porous polyolefin membrane or a nonwoven, so that layer (C) covers a separator on at least one side.
  • Layer (C) can also be applied as a thin layer on cathode or anode and the electrochemical cell according to the invention thus produced additionally contain a porous polyolefin membrane as a separator.
  • the electrochemical cells according to the invention are characterized in that layer (C) covers the cathode (A) or a separator or the anode (B) on at least one side.
  • Another object of the present invention is the use of a polymer (a), as described above, comprising monomer units containing nitrogen-containing 5- or 6-membered heterocyclic aromatic structural units or containing an organic radical derived from ⁇ -aminophosphonic acid or from Derives iminodiacetic acid, for the production of an electrochemical cell, in particular an electrochemical cell according to the invention, as described above.
  • the layer (C) contained in the electrochemical cell according to the invention can also be used independently of the assembly of the electrochemical cell according to the invention, depending on its structure.
  • Rochemical cell are produced as semi-finished and later by a battery manufacturer as part of an electrochemical cell, for example as a finished separator or together with a typical battery separator, such as a PET nonwoven or a porous polyolefin membrane, between the cathode and anode in an electrochemical cell installed ,
  • Electrochemical cells according to the invention may further comprise customary constituents, for example conductive salt, nonaqueous solvent, furthermore cable connections and housings.
  • electrochemical cells according to the invention contain at least one non-aqueous solvent, which may be liquid or solid at room temperature, preferably liquid at room temperature, and which is preferably selected from polymers, cyclic or non-cyclic ethers, cyclic or not cyclic acetals, cyclic or non-cyclic organic carbonates and ionic liquids.
  • suitable polymers are in particular polyalkylene glycols, preferably P0IV-C1-C4-alkylene glycols and in particular polyethylene glycols.
  • Polyethylene glycols may contain up to 20 mol% of one or more C 1 -C 4 -alkylene glycols in copolymerized form.
  • Polyalkylene glycols are preferably double-capped polyalkylene glycols with methyl or ethyl.
  • the molecular weight M w of suitable polyalkylene glycols and especially of suitable polyethylene glycols may be at least 400 g / mol.
  • the molecular weight M w of suitable polyalkylene glycols and in particular of suitable polyethylene glycols may be up to 5,000,000 g / mol, preferably up to 2,000,000 g / mol.
  • suitable non-cyclic ethers are, for example, diisopropyl ether, di-n-butyl ether, 1, 2-dimethoxyethane, 1, 2-diethoxyethane, preference is 1, 2-dimethoxyethane.
  • Suitable cyclic ethers are tetrahydrofuran and 1,4-dioxane.
  • suitable non-cyclic acetals are, for example, dimethoxymethane, diethoxymethane, 1,1-dimethoxyethane and 1,1-diethoxyethane.
  • Suitable cyclic acetals are 1, 3-dioxane and in particular 1, 3-dioxolane.
  • suitable non-cyclic organic carbonates are dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate.
  • suitable cyclic organic carbonates are compounds of the general formulas (X) and (XI)
  • R 1 , R 2 and R 3 may be identical or different and selected from hydrogen and C 1 -C 4 -alkyl, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec. Butyl and tert-butyl, preferably R 2 and R 3 are not both tert-butyl.
  • R 1 is methyl and R 2 and R 3 are each hydrogen, or R 1 , R 2 and R 3 are each hydrogen.
  • Another preferred cyclic organic carbonate is vinylene carbonate, formula (XII).
  • the solvent or solvents are used in the so-called anhydrous state, i. with a water content in the range of 1 ppm to 0.1 wt .-%, determined for example by Karl Fischer titration.
  • Inventive electrochemical cells also contain at least one conductive salt.
  • Suitable conductive salts are in particular lithium salts.
  • suitable lithium salts are LiPF 6 , LiBF 4 , UCIO 4 , LiAsF 6 , UCF 3 SO 3, LiC (CnF 2n + iSO 2) 3, lithium imides such as LiN (CnF 2 n + iSO 2 ) 2 , where n is an integer in the range of 1 to 20 , LiN (SO 2 F) 2, Li 2 SiFe, LiSbF 6, LiAICU, and salts of the general formula (C n F 2n + i SO 2) m X Li, where m is defined as follows:
  • Electrochemical cells according to the invention furthermore contain a housing which can have any shape, for example cuboid or the shape of a cylinder. In another embodiment, electrochemical cells according to the invention have the shape of a prism. In one variant, a metal-plastic composite film prepared as a bag is used as the housing.
  • Inventive electrochemical cells provide a high voltage of up to about 4.8 V and are characterized by a high energy density and good stability.
  • electrochemical cells according to the invention are characterized by only a very small loss of capacity during repeated cycling.
  • Another object of the present invention is the use of electrochemical cells according to the invention in lithium-ion batteries.
  • Another object of the present invention are lithium-ion batteries, containing at least one electrochemical cell according to the invention.
  • Inventive electrochemical cells can be combined with one another in lithium-ion batteries according to the invention, for example in series connection or in parallel connection. Series connection is preferred.
  • Another object of the present invention is the use of inventive electrochemical cells as described above in automobiles, powered by electric motor two-wheelers, aircraft, ships or stationary energy storage.
  • Another object of the present invention is therefore also the use of lithium-ion batteries according to the invention in devices, in particular in mobile devices.
  • mobile devices are vehicles, for example automobiles, two-wheeled vehicles, aircraft or watercraft, such as boats or ships.
  • Other examples of mobile devices are those that you move yourself, such as computers, especially laptops, phones or electrical tools, for example, in the field of construction, in particular drills, cordless screwdrivers or cordless tackers.
  • lithium-ion batteries in devices according to the invention offers the advantage of a longer running time before recharging as well as a lower capacity loss with a longer running time. If one wanted to realize an equal running time with electrochemical cells with a lower energy density, then one would have to accept a higher weight for electrochemical cells.
  • the determination of the particle size distribution was carried out by means of laser diffraction technology in powder form with a mastersizer from Malvern Instruments GmbH,dorfberg, Germany.
  • I.2 producing a separator (S.2) of the invention An aqueous solution of an uncrosslinked copolymer of vinylpyrrolidone and N-vinylimidazole in the ratio 45:55 (Luvitec VPI 55 K 72 W ® from BASF) was in the oven at 40 ° C overnight evaporated in vacuo. The residue was coarsely ground with a mortar and pestle and then dried in an evacuated desiccator over P2O5 for 2 days. The dried residue was finely ground under argon blanketing gas with an agate gravy tray until the particle size was below about 20 ⁇ m.
  • this disc was transferred to an argon-filled glove box.
  • Example 1.1 and I.2 were repeated mutatis mutandis in the same conditions, however, the glass fiber fleece now has not been 55 K 72 W filled with Divergan ® HM or ® Luvitec VPI, but used unchanged, to obtainthesesseparator VS.4.
  • I.5 Preparation of a Separator Not According to the Invention (VS.5)
  • Example I.3 The experiment of Example I.3 was repeated under the same conditions, however, the PET web was not coated with Divergan ® HM but uncoated used to obtainthesesseparator VS.5.
  • Cathode (A.1) in each case one used a lithium-nickel-manganese spinel electrode, which was produced as follows. One mixed with each other:
  • the resulting paste was laced to 20 ⁇ thick copper foil and dried for 16 hours in a vacuum oven at 120 ° C. The thickness of the coating was after drying 35 ⁇ . Then punched out circular disk-shaped segments, diameter: 12 mm.
  • the inventive separator (S.1) prepared according to 1.1 was dripped with electrolyte in an argon-filled glove box and positioned between a cathode (A.1) and an anode (B.1), so that both the anode and the Cathode had direct contact with the separator.
  • Inventive electrochemical cell EZ.1 was obtained.
  • the electrochemical examination took place between 4.25 V and 4.8 V in so-called Swagelok cells. The first two cycles were run at 0.2C rate for formation; cycles # 3 to # 50 were cycled at 1 C rate, followed by another 2 cycles at 0.2C rate followed by 48 cycles at 1 C rate, etc. Charging or discharging the cell was accomplished with the aid of a "MACCOR Battery Tester" performed at room temperature.
  • Electrochemical Cells EZ.2, EZ.3, and V-EZ.4, V-EZ.5 and Testing Analogously to Example 11.1 were prepared from the separators S.2, S.3, and VS. 4, and VS.5 the electrochemical cells EZ.2, EZ.3, as well as V-EZ.4, and V-EZ.5 prepared and tested accordingly.
  • FIG. 1 shows the schematic structure of a disassembled electrochemical cell for testing separators according to the invention and not according to the invention.
  • the explanations in FIG. 1 mean:
  • the electrochemical cell EZ.1 could be charged and discharged very stably over 160 cycles and lost only 27% of the starting capacity after 130 cycles.
  • the electrochemical cell EZ.2 could be charged and discharged very stably over 160 cycles and lost only 1 1% of the starting capacity after 130 cycles.
  • the electrochemical cell EZ.3 could be charged and discharged very stably over 160 cycles and lost only 14% of the starting capacity after 130 cycles.
  • the electrochemical cells V-EZ.4 degraded relatively strong and lost after about 130 cycles 46% of the starting capacity.
  • the electrochemical cells V-EZ.5 from the comparative example degraded relatively strongly and also lost 46% of the starting capacity after about 130 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

Elektrochemische Zellen umfassend: (A) mindestens eine Kathode umfassend mindestens eine Lithiumionen-haltige Übergangsmetallverbindung, (B) mindestens eine Anode, und mindestens eine Schicht umfassend (a) mindestens ein Polymer, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten umfassen oder die einen organischen Rest umfassen, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, und (b) gegebenenfalls mindestens ein Bindemittel.

Description

ELEKTROCHEMISCHE ZELLEN UMFASSEND STICKSTOFF-HALTIGE POLYMERE
Beschreibung Die vorliegende Erfindung betrifft elektrochemische Zellen, enthaltend
(A) mindestens eine Kathode, enthaltend mindestens eine Lithiumionen-haltige Übergangsmetallverbindung,
(B) mindestens eine Anode, und
(C) mindestens eine Schicht, enthaltend
(a) mindestens ein Polymer, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder
6-gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, und
(b) gegebenenfalls mindestens ein Bindemittel.
Weiterhin betrifft die vorliegende Erfindung die Verwendung von erfindungsgemäßen elektrochemischen Zellen, sowie Lithium-Ionen-Batterien, enthaltend mindestens eine erfindungsgemäße elektrochemische Zelle. Energie zu speichern, ist schon seit langer Zeit ein Gegenstand wachsenden Interesses. Elektrochemische Zellen, beispielsweise Batterien oder Akkumulatoren, können zur Speicherung von elektrischer Energie dienen. Besonderes Interesse genießen seit neuerer Zeit die sogenannten Lithium-Ionen-Batterien. Sie sind in einigen technischen Aspekten den herkömmlichen Batterien überlegen. So kann man mit ihnen Spannungen erzeugen, die mit Batterien auf der Grundlage von wässrigen Elektrolyten nicht zugänglich sind.
Dabei spielen die Materialien, aus denen die Elektroden gemacht werden, und dabei insbesondere das Material, aus dem die Kathode gemacht wird, eine wichtige Rolle. In vielen Fällen verwendet man Lithium-haltige Übergangmetallmischoxide, insbesondere Lithium-haltige Nickel-Kobalt-Mangan-Oxide mit Schichtstruktur, oder Mangan-haltige Spinelle, die mit einem oder mehreren Übergangsmetallen dotiert sein können. Ein Problem vieler Batterien bleibt jedoch die Zyklenbeständigkeit, die noch zu verbessern ist. Gerade bei solchen Batterien, die einen verhältnismäßig hohen Anteil an Mangan enthalten, beispielsweise bei elektro- chemischen Zellen mit einer Mangan-haltigen Spinell-Elektrode und einer Graphit-Anode, beobachtet man häufig einen starken Kapazitätsverlust innerhalb von relativ kurzer Zeit. Weiterhin kann man feststellen, dass in Fällen, in denen man als Gegenelektroden Graphitanoden wählt, elementares Mangan auf der Anode abgeschieden wird. Man stellt sich vor, dass diese auf der Anode abgeschiedenen Mangankeime bei einem Potential von weniger als 1 V vs. Li/Li+ als Ka- talysator für eine reduktive Zersetzung des Elektrolyten wirken. Dabei soll auch Lithium irreversibel gebunden werden, wodurch die Lithium-Ionen-Batterie nach und nach Kapazität verliert. WO 2009/033627 offenbart eine Lage, die als Separator für Lithium-Ionen-Batterien eingesetzt werden kann. Sie umfasst ein Vlies sowie in das Vlies eingelagerte Partikel, die aus organischen Polymeren und gegebenenfalls zum Teil aus anorganischem Material bestehen. Durch derartige Separatoren kann man zwar Kurzschlüsse, die durch Metalldendriten verursacht wer- den, vermeiden. In WO 2009/033627 sind jedoch keine Langzeit-Zyklisierungs-Experimente offenbart.
WO 201 1/024149 offenbart Lithium-Ionen-Batterien, die ein Alkalimetall wie Lithium zwischen Kathode und Anode enthalten, welches als Fänger von unerwünschten Nebenprodukten oder Verunreinigungen dient und als Scavenger bezeichnet wird. Sowohl bei der Herstellung der sekundären Batteriezellen als auch bei einem späteren Recycling der ausgedienten Zellen müssen auf Grund der Anwesenheit von hochreaktivem Alkalimetall geeignete Sicherheitsvorkehrungen getroffen werden. Es bestand also die Aufgabe, elektrische Zellen bereit zu stellen, die eine verbesserte Lebensdauer aufweisen und in denen man auch nach mehreren Zyklen keine Abscheidung von elementarem Mangan beobachten muss, oder bei deren Herstellung man einen Scavenger einsetzen kann, der eine geringere Sicherheitsproblematik als die Alkalimetalle aufweist und die Lebensdauer der Zelle in dem gewünschten Maße verlängert.
Diese Aufgabe wird durch eine eingangs definierte elektrochemische Zelle gelöst, welche
(A) mindestens eine Kathode, enthaltend mindestens eine Lithiumionen-haltige Übergangsmetallverbindung,
(B) mindestens eine Anode, und
(C) mindestens eine Schicht, enthaltend
(a) mindestens ein Polymer, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-glied rige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, und
(b) gegebenenfalls mindestens ein Bindemittel, enthält.
Die Kathode (A) enthält mindestens eine Lithiumionen-haltige Übergangsmetallverbindung, wie beispielsweise die dem Fachmann in der Lithiumionenbatterie-Technologie bekannten Übergangsmetallverbindungen L1C0O2, LiFeP04 oder Lithiummangan-Spinell. Bevorzugt enthält die Kathode (A) als Lithiumionen-haltige Übergangsmetallverbindung ein Lithiumionen-haltiges Übergangsmetalloxid, das als Übergangsmetall Mangan enthält.
Unter Lithiumionen-haltigen Übergangsmetalloxiden, die als Übergangsmetall Mangan enthalten, werden im Rahmen der vorliegenden Erfindung nicht nur solche Oxide verstanden, die mindestens ein Übergangsmetall in kationischer Form aufweisen, sondern auch solche, die mindestens zwei Übergangsmetalloxide in kationischer Form aufweisen. Außerdem werden im Rahmen der vorliegenden Erfindung auch solche Verbindungen unter dem Begriff„Lithiumio- nen-haltige Übergangsmetalloxide" mit umfasst, die - neben Lithium - mindestens ein Metall in kationischer Form mit umfassen, das kein Übergangsmetall ist, beispielsweise Aluminium oder Calcium. Mangan kann in einer bevorzugten Ausführungsform in der Kathode (A) in der formalen Oxida- tionsstufe +4 vorkommen. Besonders bevorzugt kommt Mangan in Kathode (A) in einer formalen Oxidationsstufe im Bereich von +3,5 bis +4 vor.
Viele Elemente sind ubiquitär. In gewissen sehr kleinen Anteilen sind beispielsweise Natrium, Kalium und Chlorid in praktisch allen anorganischen Materialien nachzuweisen. Im Rahmen der vorliegenden Erfindung werden Anteile von weniger als 0,1 Gew.-% von Kationen oder Anionen vernachlässigt. Ein Lithiumionen-haltiges Übergangsmetallmischoxid, welches weniger als 0,1 Gew.-% Natrium enthält, gilt im Rahmen der vorliegenden Erfindung also als Natrium-frei. Dementsprechend gilt ein Lithiumionen-haltiges Übergangsmetallmischoxid, das weniger als 0,1 Gew.-% Sulfationen enthält, im Rahmen der vorliegenden Erfindung als Sulfat-frei.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei Lithiumionen-haltigem Übergangsmetalloxid um ein Übergangsmetallmischoxid, das neben Mangan mindestens ein weiteres Übergangsmetall enthält.
In einer Ausführungsform der vorliegenden Erfindung wählt man Lithiumionen-haltige Übergangsmetallverbindung aus Mangan-haltigen Lithium-Eisenphosphaten und bevorzugt aus Mangan-haltigen Spinellen und Mangan-haltigen Übergangsmetalloxiden mit Schichtstruktur, insbesondere Mangan-haltigen Übergangsmetallmischoxiden mit Schichtstruktur.
In einer Ausführungsform der vorliegenden Erfindung wählt man Lithiumionen-haltige Übergangsmetallverbindung aus solchen Verbindungen, die einen überstöchiometrischen Anteil an Lithium aufweisen. In einer Ausführungsform der vorliegenden Erfindung wählt man Mangan-haltige Spinelle aus solchen der allgemeinen Formel (I)
Figure imgf000004_0001
wobei die Variablen wie folgt definiert sind:
0,9 < a < 1 ,3, bevorzugt 0,95 < a < 1 ,15,
O s b s 0,6, beispielsweise 0,0 oder 0,5,
wobei für den Fall, dass man M1 = Ni wählt, bevorzugt gilt: 0,4 < b ^ 0,55,
-0,1 < d < 0,4, bevorzugt 0 < d < 0,1 , M1 wird gewählt aus einem oder mehreren Elementen, gewählt aus AI, Mg, Ca, Na, B, Mo, W und Übergangsmetallen der ersten Periode des Periodensystems der Elemente. Bevorzugt ist M1 gewählt aus Ni, Co, Cr, Zn, AI und ganz besonders bevorzugt ist M1 Ni. In einer Ausführungsform der vorliegenden Erfindung wählt man Mangan-haltige Spinelle aus solchen der Formel LiNio.sMn-i.sC -d und LiM^C .
In einer anderen Ausführungsform der vorliegenden Erfindung wählt man Mangan-haltige Übergangsmetalloxide mit Schichtstruktur aus solchen der Formel (II)
Figure imgf000005_0001
wobei die Variablen wie folgt definiert sind: 0 < t < 0,3 und
M2 gewählt aus AI, Mg, B, Mo, W, Na, Ca und Übergangsmetallen der ersten Periode des Periodensystems der Elemente, wobei das oder mindestens ein Übergangsmetall Mangan ist. In einer Ausführungsform der vorliegenden Erfindung sind mindestens 30 mol-% von M2 gewählt aus Mangan, bevorzugt mindestens 35 mol-%, bezogen auf gesamten Gehalt an M2.
In einer Ausführungsform der vorliegenden Erfindung ist M2 gewählt aus Kombinationen von Ni, Co und Mn, die keine weiteren Elemente in signifikanten Mengen enthalten.
In einer anderen Ausführungsform ist M2 gewählt aus Kombinationen von Ni, Co und Mn, die mindestens ein weiteres Element in signifikanten Mengen enthalten, beispielsweise im Bereich von 1 bis 10 mol-% AI, Ca oder Na. In einer Ausführungsform der vorliegenden Erfindung wählt man Mangan-haltige Übergangsmetalloxide mit Schichtstruktur aus solchen, in denen M2 gewählt ist aus Nio,33Coo,33Mno,33, Ni0,5Coo,2Mn0,3, Ni0,4Coo,3Mn0,4, Ni0,4Coo,2Mn0,4 und Ni0,45Coo,ioMn0,45.
In einer Ausführungsform liegt Lithium-haltiges Übergangsmetalloxid in Form von Primärparti- kein vor, die zu sphärischen Sekundärpartikeln agglomeriert sind, wobei der mittlere Partikeldurchmesser (D50) der Primärpartikel im Bereich von 50 nm bis 2 μηη und der mittlere Partikeldurchmesser (D50) der Sekundärpartikel im Bereich von 2 μηη bis 50 μηη liegt.
Kathode (A) kann einen oder weitere Bestandteile enthalten. Beispielsweise kann Kathode (A) Kohlenstoff in leitfähiger Modifikation enthalten, beispielsweise aus Graphit, Ruß, Kohlenstoff- nanoröhren, Graphen oder Mischungen von mindestens zwei der vorstehend genannten Stoffen gewählt. Weiterhin kann Kathode (A) einen oder mehrere Binder, auch Bindemittel genannt, enthalten, beispielsweise ein oder mehrere organische Polymere. Geeignete Bindemittel sind beispielsweise organischen (Co)polymeren. Geeignete (Co)polymere, also Homopolymere oder Copolymere, kann man beispielsweise wählen aus durch anionische, katalytische oder radikalische (Co)polymerisation erhältlichen (Co)polymeren, insbesondere aus Polyethylen, Polyacrylnitril, Polybutadien, Polystyrol, und Copolymeren von mindestens zwei Comonomeren, gewählt aus Ethylen, Propylen, Styrol, (Meth)acrylnitril und 1 ,3-Butadien, insbesondere Styrol-Butadien- Copolymere. Außerdem ist Polypropylen geeignet, weiterhin sind Polyisopren und Polyacrylate geeignet. Besonders bevorzugt ist Polyacrylnitril.
Unter Polyacrylnitril werden im Rahmen der vorliegenden Erfindung nicht nur Polyacrylnitril- Homopolymere verstanden, sondern auch Copolymere von Acrylnitril mit 1 ,3-Butadien oder Styrol. Bevorzugt sind Polyacrylnitril-Homopolymere. Im Rahmen der vorliegenden Erfindung wird unter Polyethylen nicht nur Homo-Polyethylen verstanden, sondern auch Copolymere des Ethylens, die mindestens 50 mol-% Ethylen einpolyme- risiert enthalten und bis zu 50 mol-% von mindestens einem weiteren Comonomer, beispielsweise a-Olefine wie Propylen, Butylen (1-Buten), 1 -Hexen, 1 -Octen, 1 -Decen, 1 -Dodecen, 1 - Penten, weiterhin Isobuten, Vinylaromaten wie beispielsweise Styrol, weiterhin
(Meth)acrylsäure, Vinylacetat, Vinylpropionat, Ci-Cio-Alkylester der (Meth)acrylsäure, insbesondere Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Butylacrylat, 2- Ethylhexylacrylat, n-Butylmethacrylat, 2-Ethylhexylmethacrylat, weiterhin Maleinsäure, Maleinsäureanhydrid und Itaconsäureanhydrid. Bei Polyethylen kann es sich um HDPE oder um LDPE handeln.
Im Rahmen der vorliegenden Erfindung wird unter Polypropylen nicht nur Homo-Polypropylen verstanden, sondern auch Copolymere des Propylens, die mindestens 50 mol-% Propylen ein- polymerisiert enthalten und bis zu 50 mol-% von mindestens einem weiteren Comonomer, beispielsweise Ethylen und α-Olefine wie Butylen, 1 -Hexen, 1 -Octen, 1 -Decen, 1 -Dodecen und 1 - Penten. Bei Polypropylen handelt es sich vorzugsweise um isotaktisches oder um im Wesentlichen isotaktisches Polypropylen.
Im Rahmen der vorliegenden Erfindung werden unter Polystyrol nicht nur Homopolymere des Styrols verstanden, sondern auch Copolymere mit Acrylnitril, 1 ,3-Butadien, (Meth)acrylsäure, Ci-Cio-Alkylester der (Meth)acrylsäure, Divinylbenzol, insbesondere 1 ,3-Divinylbenzol, 1 ,2- Diphenylethylen und a-Methylstyrol.
Ein anderes bevorzugtes Bindemittel ist Polybutadien.
Andere geeignete Bindemittel sind gewählt aus Polyethylenoxid (PEO), Cellulose, Carboxyme- thylcellulose, Polyimiden und Polyvinylalkohol. In einer Ausführungsform der vorliegenden Erfindung wählt man Bindemittel aus solchen (Co)polymeren, die ein mittleres Molekulargewicht Mw im Bereich von 50.000 bis 1 .000.000 g/mol, bevorzugt bis 500.000 g/mol aufweisen. Bei Bindemitteln kann es sich um vernetzte oder unvernetzte (Co)polymere handeln.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wählt man Bindemittel aus halogenierten (Co)polymeren, insbesondere aus fluorierten (Co)polymeren. Dabei werden unter halogenierten bzw. fluorierten (Co)polymeren solche (Co)polymere verstanden, die mindestens ein (Co)monomer einpolymerisiert enthalten, das mindestens ein Halogenatom bzw. mindestens ein Fluoratom pro Molekül aufweist, bevorzugt mindestens zwei Halogenatome bzw. mindestens zwei Fluoratome pro Molekül.
Beispiele sind Polyvinylchlorid, Polyvinylidenchlorid, Polytetrafluorethylen, Polyvinylidenfluorid (PVdF), Tetrafluoroethylen-Hexafluorpropylen-Copolymere, Vinylidenfluorid-Hexafluorpropylen- Copolymere (PVdF-HFP), Vinylidenfluorid-Tetrafluorethylen-Copolymere, Perfluoralkylvi- nylether-Copolymere, Ethylen-Tetrafluorethylen-Copolymere, Vinylidenfluorid- Chlortrifluorethylen-Copolymere und Ethylen-Chlorfluorethylen-Copolymere. Geeignete Bindemittel sind insbesondere Polyvinylalkohol und halogenierte (Co)polymere, beispielsweise Polyvinylchlorid oder Polyvinylidenchlorid, insbesondere fluorierte (Co)polymere wie Polyvinylfluorid und insbesondere Polyvinylidenfluorid und Polytetrafluorethylen.
Weiterhin kann Kathode (A) weitere an sich übliche Bestandteile aufweisen, beispielsweise ei- nen Stromableiter, der in Form eines Metalldrahts, Metallgitters, Metallnetzes, Streckmetalls, Metallblechs oder einer Metallfolie ausgestaltet sein kann. Als Metallfolien sind insbesondere Aluminiumfolien geeignet.
In einer Ausführungsform der vorliegenden Erfindung weist Kathode (A) eine Dicke im Bereich von 25 bis 200 μηη, vorzugweise von 30 bis 100 μηη auf, bezogen auf die Dicke ohne Stromableiter.
Erfindungsgemäße elektrochemische Zellen enthalten weiterhin mindestens eine Anode (B). In einer Ausführungsform der vorliegenden Erfindung kann man Anode (B) aus Anoden aus Kohlenstoff und Anoden, die Sn oder Si enthalten, wählen. Anoden aus Kohlenstoff kann man beispielsweise wählen aus Hart-Carbon, Soft Carbon, Graphen, Graphit und insbesondere Graphit, interkaliertem Graphit und Gemischen von zwei oder mehr der vorstehend genannten Kohlenstoffen. Anoden, die Sn oder Si enthalten, kann man beispielsweise wählen aus nanopartiku- lärem Si- bzw. Sn-Pulver, Si- bzw. Sn-Fasern, Kohlenstoff-Si- bzw. Kohlenstoff-Sn- Verbundwerkstoffen und Si-Metall- bzw. Sn-Metall-Legierungen. Anode (B) kann ein oder mehrere Bindemittel aufweisen. Dabei kann man als Bindemittel ein oder mehrere der vorstehend genannten Bindemittel wählen, die im Rahmen der Beschreibung der Kathode (A) genannt werden. Weiterhin kann Anode (B) weitere an sich übliche Bestandteile aufweisen, beispielsweise einen Stromableiter, der in Form eines Metalldrahts, Metallgitters, Metallnetzes, Streckmetalls, oder einer Metallfolie oder eines Metallblechs ausgestaltet sein kann. Als Metallfolien sind insbesondere Kupferfolien geeignet. In einer Ausführungsform der vorliegenden Erfindung weist Anode (B) eine Dicke im Bereich von 15 bis 200 μηη, vorzugweise von 30 bis 100 μηη auf, bezogen auf die Dicke ohne Stromableiter.
Erfindungsgemäße elektrochemische Zellen enthalten weiterhin (C) mindestens eine Schicht, kurz auch Schicht (C) genannt, die (a) mindestens ein Polymer enthält, kurz auch Polymer (a) genannt, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-gliedrige heterocycli- sche aromatische Struktureinheiten enthalten, oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, und die (b) gegebenenfalls mindestens ein Bindemittel, kurz auch Bindemittel (b) genannt, enthält.
Stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten sind dem Fachmann prinzipiell gekannt. Es kann sich dabei um einbindige oder mehrbindige, beispielsweise zwei- oder dreibindige, monocyclische oder polycyclische, substituierte oder unsubstitu- ierte Struktureinheiten handeln. Beispiele für solche Struktureinheiten sind,
Figure imgf000008_0001
wobei das mit * versehene Atom die Stelle anzeigt, über die die Struktureinheit in das Polymer eingebaut ist. Bevorzugt ist Imidazolyl als Struktureinheit. Einbindige Struktureinheiten können direkt oder über ein zweibindiges Bindeglied mit einer Polymerhauptkette verbunden sein, während zweibindige Struktureinheiten in eine Polymerhauptkette eingebaut sein können. In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst das in Schicht (C) enthaltene Polymer (a), das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest ent- halten, der sich von α-Aminophosphonsäure oder von Iminodiessigsaure ableitet, solche Monomereinheiten, die ausgewählt sind aus der Gruppe der Monomereinheiten bestehend aus,
Figure imgf000009_0001
worin X für O, S oder NR steht und R Wasserstoff oder einen C1-C4 Alkylrest, wie Methyl, Ethyl, n-Propyl oder n-Butyl, bedeutet. In einer besonders bevorzugten Ausführungsform handelt es sich bei der Monomereinheit um N-Vinylimidazol.
Das in Schicht (C) enthaltene Polymer (a) kann ein Homopolymer sein, das jeweils nur eine Monomereinheit enthält, die eine stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromati- sehe Struktureinheit enthält oder die einen organischen Rest enthält, der sich von o
Aminophosphonsäure oder von Iminodiessigsäure ableitet. Weiterhin kann das in Schichte (C) enthaltene Polymer (a) ein Copolymer sein, das neben der mindestens einen Monomereinheit, die eine stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheit enthält oder die einen organischen Rest enthält, der sich von α-Aminophosphonsäure oder von Imino- diessigsäure ableitet, mindestens eine weitere Monomereinheit enthält. Bei der weiteren Monomereinheit des Copolymers kann es sich im Prinzip um jede bekannte Monomereinheit handeln, die zusammen mit der erstgenannten Monomereinheit copolymerisierbar ist.
Das in Schicht (C) enthaltene Polymer (a) kann die Monomereinheiten, die die stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, in einem Anteil von 0,5 Gew.-% bis zu 100 Gew.-%, bevorzugt von mindestens 5 Gew.- %, besonders bevorzugt von mindesten 20 Gew.-%, ganz besonders bevorzugt von mindesten 40 Gew.-%, insbesondere von mindestens 50 Gew.-% bezogen auf die Gesamtmasse des Polymers (a) enthalten. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das in Schicht (C) enthaltene Polymer (a) ein Copolymer, enthaltend die Monomereinheiten N-Vinylimidazol und N-Vinyl- 2-pyrrolidinon. Copolymere enthaltend N-Vinylimidazol und N-Vinyl-2-pyrrolidinon sind bekannt. Beispielsweise ist ein vernetztes Copolymer enthaltend N-Vinylimidazol und N-Vinyl-2- pyrrolidinon als Divergan® HM von BASF kommerziell erhältlich, welches in allen üblichen Lö- sungsmitteln unlöslich ist. Es sind jedoch auch Lösungen von Copolymeren enthaltend N-Vinyl- 2-pyrrolidinon und N-Vinylimidazol kommerziell erhältlich, wie beispielsweise Sokalan® HP 56 K oder Sokalan® HP 66 K von BASF.
Je nach den Eigenschaften des in Schicht (C) enthaltenen, oben diskutierten Polymers (a), kann dieses Polymer in unterschiedlicher Form in Schicht (C) vorliegen. Ein unlösliches Polymer wie das vernetzte Copolymer Divergan® HM von BASF wird vorzugsweise in Form von Partikeln in Schicht (C) eingebaut, während ein entsprechendes lösliches Polymer zu einem Film verarbeitet werden kann oder auch homogen in der Schicht (C), beispielsweise auf oder in einem Trägermaterial, das organischen oder anorganischen Ursprung sein kann, aufgebracht werden kann. Beispielsweise können die in WO 2009/033627 beschriebenen Separatoren oder deren Bestandteile mit einer Lösung eines Copolymers enthaltend N-Vinyl-2-pyrrolidinon und N- Vinylimidazol, beispielsweise einer Lösung von Sokalan® HP 66 K oder Luvitec® VPI 55 K 72 W behandelt, beispielsweise getränkt oder besprüht werden, um zu einem modifizierten Separator zu gelangen, mit dem eine erfindungsgemäße elektrochemische Zelle hergestellt werden kann. Es ist auch möglich, Polymer (a) in partikulärer Form zusammen mit den in WO 2009/033627 eingesetzten anorganischen oder organischen Partikeln zur Herstellung entsprechend modifizierter Vliese zu verwenden. Ebenfalls möglich ist auch die chemische Anbindung eines ersten Polymer (a) oder einer Monomereinheit, die stickstoffhaltige 5- oder 6-glied rige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, an ein weiteres Polymer, um durch Pfropfungstechnik zu neuen Polymeren (a) zu gelangen, beispielsweise durch Pfropfung von Vinylimidazol auf ein aromatisches Polyetherketon oder durch Pfropfung eines Copolymers aus N-Vinyl-2-pyrrolidinon und N-Vinylimidazol auf Polyethylenglycol. In einer Ausführungsform der vorliegenden Erfindung zeichnen sich die erfindungsgemäßen elektrochemischen Zellen dadurch aus, dass das in Schicht (C) enthaltende Polymer in partikulärer Form, in Form eines Films oder homogen verteilt in Schicht (C) vorliegt. Bevorzugt liegt das in Schicht (C) enthaltende Polymer in partikulärer Form vor. Polymere in partikulärer Form können im Rahmen der vorliegenden Erfindung einen mittleren Partikel-Durchmesser (D50) im Bereich von 0,05 bis 100 μηη, bevorzugt 0,5 bis 10 μηη, besonders bevorzugt 2 bis 6 μηη aufweisen. Der Gewichtsanteil des Polymers (a) an der Gesamtmasse der Schicht (C) kann bis zu 100 Gew.-% betragen. Bevorzugt beträgt der Gewichtsanteil des Polymers (a) an der Gesamtmasse der Schicht (C) mindestens 5 Gew.-%, besonders bevorzugt 40 bis 80 Gew.-%, insbesondere liegt der Gewichtsanteil des Polymers (a) an der Gesamtmasse der Schicht (C) im Bereich von 30 bis 50 Gew.-%.
In einer Ausführungsform der vorliegenden Erfindung wählt man Bindemittel (b) aus solchen Bindemitteln, wie im Zusammenhang mit Bindemitteln für die Kathode(n) (A) beschrieben. In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält Schicht (C) ein Bindemittel (b) ausgewählt aus der Gruppe der Polymere bestehend aus Polyvinylalkohol, Styrol- Butadien-Kautschuk, Polyacrylnitril, Carboxymethylcellulose und fluorhaltigen (Co)polymeren, insbesondere ausgewählt aus Styrol-Butadien-Kautschuk und fluorhaltigen (Co)polymeren. In einer Ausführungsform der vorliegenden Erfindung sind Bindemittel (b) sowie Bindemittel für Kathode und für Anode, so vorhanden, jeweils gleich.
In einer anderen Ausführungsform unterscheidet sich Bindemittel (b) von Bindemittel für Kathode (A) und/oder Bindemittel für Anode (B), oder Bindemittel für Anode (B) und Bindemittel für Kathode (A) sind verschieden.
In einer Ausführungsform der vorliegenden Erfindung weist Schicht (C) eine mittlere Dicke im Bereich von 0,1 μηη bis 250 μηη, bevorzugt von 1 μηη bis 100 μηη und besonders bevorzugt von 5 μηη bis 30 μηη auf.
Schicht (C) ist bevorzugt eine den elektrischen Strom nicht leitende Schicht, also ein elektrischer Isolator. Andererseits ist Schicht (C) bevorzugt eine Schicht, die die Wanderung von Ionen, insbesondere von Li onen zulässt. Bevorzugt ist Schicht (C) innerhalb der erfindungsgemäßen elektrochemischen Zelle räumlich zwischen Kathode und Anode angeordnet.
In elektrochemischen Zellen wird üblicherweise der direkte, einen Kurzschluss verursachende Kontakt der Anode mit der Kathode durch den Einbau eines Separator verhindert.
In einer weiteren Ausführungsform der vorliegenden Erfindung zeichnen sich die erfindungsge- mäßen elektrochemischen Zellen dadurch aus, dass es sich bei Schicht (C) um einen Separator handelt.
Schicht (C) kann neben dem Polymer (a) und dem fakultativen Bindemittel (b) weitere Bestandteile aufweisen, beispielsweise Stützmaterial wie Fasern oder Vliese, die für eine verbesserte Stabilität von Schicht (C) sorgen, ohne deren notwendige Porosität und lonendurchlässigkeit zu beeinträchtigen. Alternativ oder zusätzlich kann Schicht (C) auch mindestens eine poröse Kunststoffschicht enthalten, beispielsweise eine Polyolefinmembran, insbesondere eine Po- lyethylen- oder eine Polypropylenmembran. Polyolefinmembranen können wiederum aus einer oder mehreren Schichten aufgebaut sein. Poröse Polyolefinmembranen oder auch Vliese selbst können in der Regel allein die Funktion eines Separators erfüllen. Ebenfalls kann Schicht (C) Partikel enthalten, die anorganischer oder organischer Natur sind und die beispielsweise in WO 2009/033627 genannt werden.
In einer Ausführungsform der vorliegenden Erfindung zeichnen sich die erfindungsgemäßen elektrochemischen Zellen dadurch aus, dass Schicht (C) zusätzlich ein Vlies (c) enthält. Vlies (c) kann aus anorganischen oder organischen Materialien hergestellt worden sein.
Beispiele für organische Vliese sind Polyester-Vliese, insbesondere Polyethylenterephthalat- Vliese (PET-Vliese), Polybutylenterephthalat-Vliese (PBT-Vliese), Polyimid-Vliese, Polyethylen- und Polypropylen-Vliese, PVdF-Vliese und PTFE-Vliese.
Beispiele für anorganische Vliese sind Glasfaservliese und Keramikfaservliese.
Je nach Zusammensetzung der Schicht (C) kann diese beispielsweise allein aus dem Polymer (a), beispielsweise einem porösen Film des Polymer (a), oder aus Polymer (a) in partikulärer Form und einem Binder (b) oder auch aus einem Polyestervliess mit gleichmäßig darin verteilten Partikeln des Polymers (a) bestehen. In diesen Fällen kann Schicht (C) bereits selbst als Separator in der erfindungsgemäßen elektrochemischen Zelle verwendet werden und kann somit die Kathode (A) oder die Anode (B) auf zumindest einer Seite bedecken. Weiterhin kann eine Schicht (C) auch auf einen üblicherweise verwendbaren Batterieseparator, wie eine poröse Polyolefinmembran oder ein Vlies, aufgebracht werden, sodass Schicht (C) einen Separator auf mindestens einer Seite bedeckt. Schicht (C) kann auch als dünne Schicht auf Kathode oder Anode aufgebracht werden und die damit hergestellte erfindungsgemäße elektrochemische Zelle zusätzlich noch eine poröse Polyolefinmembran als Separator enthalten. In einer weiteren Ausführungsform der vorliegenden Erfindung zeichnen sich die erfindungsgemäßen elektrochemischen Zellen dadurch aus, dass Schicht (C) die Kathode (A) oder einen Separator oder die Anode (B) auf zumindest einer Seite bedeckt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Polymers (a), wie vorangehend beschrieben, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6- gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, zur Herstellung einer elektrochemischen Zelle, insbesondere einer erfindungsgemäßen elektrochemischen Zelle, wie vorangehend beschrieben.
Die in der erfindungsgemäßen elektrochemischen Zelle enthaltene Schicht (C) kann in Abhängigkeit von ihrem Aufbau auch unabhängig vom Zusammenbau der erfindungsgemäßen elekt- rochemischen Zelle als Halbzeug hergestellt werden und später von einem Batteriehersteller als Bestandteil einer elektrochemischen Zelle, beispielsweise als fertiger Separator oder zusammen mit einem typischen Batterieseparator, wie einem PET-Vlies oder einer porösen Polyole- finmembran, zwischen Kathode und Anode in einer elektrochemischen Zelle eingebaut werden.
Erfindungsgemäße elektrochemische Zellen können weiterhin an sich übliche Bestandteile aufweisen, beispielsweise Leitsalz, nicht-wässriges Lösungsmittel, weiterhin Kabelverbindungen und Gehäuse. In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße elektrochemische Zellen mindestens ein nicht-wässriges Lösungsmittel, das bei Zimmertemperatur flüssig oder fest sein kann, vorzugsweise bei Zimmertemperatur flüssig ist, und das bevorzugt gewählt wird aus Polymeren, cyclischen oder nicht-cyclischen Ethern, cyclischen oder nicht-cyclischen Acetalen, cyclischen oder nicht cyclischen organischen Carbonaten und ionischen Flüssigkeiten (englisch ionic liquids).
Beispiele für geeignete Polymere sind insbesondere Polyalkylenglykole, bevorzugt P0IV-C1-C4- alkylenglykole und insbesondere Polyethylenglykole. Dabei können Polyethylenglykole bis zu 20 mol-% ein oder mehrere Ci-C4-Alkylenglykole einpolymerisiert enthalten. Vorzugsweise han- delt es sich bei Polyalkylenglykolen um zweifach mit Methyl oder Ethyl verkappte Polyalkylenglykole.
Das Molekulargewicht Mw von geeigneten Polyalkylenglykolen und insbesondere von geeigneten Polyethylenglykolen kann mindestens 400 g/mol betragen.
Das Molekulargewicht Mw von geeigneten Polyalkylenglykolen und insbesondere von geeigneten Polyethylenglykolen kann bis zu 5.000.000 g/mol betragen, bevorzugt bis zu 2.000.000 g/mol betragen. Beispiele für geeignete nicht-cyclische Ether sind beispielsweise Diisopropylether, Di-n- Butylether, 1 ,2-Dimethoxyethan, 1 ,2-Diethoxyethan, bevorzugt ist 1 ,2-Dimethoxyethan.
Beispiele für geeignete cyclische Ether sind Tetra hydrofu ran und 1 ,4-Dioxan. Beispiele für geeignete nicht-cyclische Acetale sind beispielsweise Dimethoxymethan, Diet- hoxymethan, 1 ,1 -Dimethoxyethan und 1 ,1-Diethoxyethan.
Beispiele für geeignete cyclische Acetale sind 1 ,3-Dioxan und insbesondere 1 ,3-Dioxolan. Beispiele für geeignete nicht-cyclische organische Carbonate sind Dimethylcarbonat, Ethylme- thylcarbonat und Diethylcarbonat. Beispiele für geeignete cyclische organische Carbonate sind Verbindungen der allgemeinen Formeln (X) und (XI)
Figure imgf000014_0001
bei denen R1, R2 und R3 gleich oder verschieden sein können und gewählt aus Wasserstoff und Ci-C4-Alkyl, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, wobei vorzugsweise R2 und R3 nicht beide tert.-Butyl sind.
In besonders bevorzugten Ausführungsformen ist R1 Methyl und R2 und R3 sind jeweils Was- serstoff, oder R1, R2 und R3 sind jeweils gleich Wasserstoff.
Ein anderes bevorzugtes cyclisches organisches Carbonat ist Vinylencarbonat, Formel (XII).
O
} X o
\=J
Vorzugsweise setzt man das oder die Lösungsmittel im so genannten wasserfreien Zustand ein, d.h. mit einem Wassergehalt im Bereich von 1 ppm bis 0,1 Gew.-%, bestimmbar beispielsweise durch Karl-Fischer-Titration.
Erfindungsgemäße elektrochemische Zellen enthalten weiterhin mindestens ein Leitsalz. Geeignete Leitsalze sind insbesondere Lithiumsalze. Beispiele für geeignete Lithiumsalze sind LiPF6, LiBF4, UCIO4, LiAsF6, UCF3SO3, LiC(CnF2n+iS02)3, Lithiumimide wie LiN(CnF2n+iS02)2, wobei n eine ganze Zahl im Bereich von 1 bis 20 ist, LiN(S02F)2, Li2SiFe, LiSbF6, LiAICU, und Salze der allgemeinen Formel (CnF2n+iS02)mXLi, wobei m wie folgt definiert ist:
m = 1 , wenn X gewählt wird aus Sauerstoff und Schwefel,
m = 2, wenn X gewählt wird aus Stickstoff und Phosphor, und
m = 3, wenn X gewählt wird aus Kohlenstoff und Silizium.
Bevorzugte Leitsalze sind gewählt aus LiC(CF3S02)3, LiN(CF3S02)2, LiPF6, LiBF4, LiCI04, und besonders bevorzugt sind LiPF6 und LiN(CFsS02)2. Erfindungsgemäße elektrochemische Zellen enthalten weiterhin ein Gehäuse, das beliebige Form haben kann, beispielsweise quaderförmig oder die Form eines Zylinders. In einer anderen Ausführungsform haben erfindungsgemäße elektrochemische Zellen die Form eines Prismas. In einer Variante wird als Gehäuse eine als Beutel ausgearbeitete Metall-Kunststoff- Verbundfolie eingesetzt.
Erfindungsgemäße elektrochemische Zellen liefern eine hohe Spannung von bis zu ca. 4,8 V und zeichnen sich durch eine hohe Energiedichte und gute Stabilität aus. Insbesondere zeichnen sich erfindungsgemäße elektrochemische Zellen durch einen nur sehr geringen Kapazitäts- verlust bei wiederholtem Zyklieren aus.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen elektrochemischen Zellen in Lithium-Ionen-Batterien. Ein weiterer Gegenstand der vorliegenden Erfindung sind Lithium-Ionen-Batterien, enthaltend mindestens eine erfindungsgemäße elektrochemische Zelle. Erfindungsgemäße elektrochemische Zellen lassen sich in erfindungsgemäßen Lithium-Ionen-Batterien miteinander kombinieren, beispielsweise in Reihenschaltung oder in Parallelschaltung. Reihenschaltung ist bevorzugt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemä- ßen elektrochemischen Zellen wie vorangehend beschrieben in Automobilen, mit Elektromotor betriebenen Zweirädern, Flugzeugen, Schiffen oder stationären Energiespeichern.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung von erfindungsgemäßen Lithium-Ionen-Batterien in Geräten, insbesondere in mobilen Geräten. Beispiele für mobile Geräte sind Fahrzeuge, beispielsweise Automobile, Zweiräder, Flugzeuge oder Wasserfahrzeuge wie Boote oder Schiffe. Andere Beispiele für mobile Geräte sind solche, die man selber bewegt, beispielsweise Computer, insbesondere Laptops, Telefone oder elektrische Handwerkszeuge, beispielsweise aus dem Bereich des Bauens, insbesondere Bohrmaschinen, Akkubohrschrauber oder Akku-Tacker.
Die Verwendung von erfindungsgemäßen Lithium-Ionen-Batterien in Geräten bietet den Vorteil einer längeren Laufzeit vor dem Nachladen sowie einen geringeren Kapazitätsverlust bei längerer Laufzeit. Wollte man mit elektrochemischen Zellen mit geringerer Energiedichte eine gleiche Laufzeit verwirklichen, so müsste man ein höheres Gewicht für elektrochemische Zellen in Kauf nehmen.
Die Erfindung wird durch folgende, die Erfindung jedoch nicht einschränkende Beispiele erläutert. Angaben in Prozent beziehen sich jeweils auf Gew.-%, wenn nicht ausdrücklich anders angegeben. 1.1 Herstellung eines erfindungsgemäßen Separators (S.1 )
Ein vernetztes Copolymer aus Vinylpyrrolidon (VP) und N-Vinylimidazol (VI) im Verhältnis 10:90 (Divergan® HM der Firma BASF) wurde in einer Fließbett-Gegenstrahlmühle AFG auf Partikel- großen von weniger als 8 μηη zerkleinert (x10 = 1 ,2 μηη, x50 = 4,7 μηη, x90= 7,9 μηη). Die Bestimmung der Partikelgrößenverteilung erfolgte mittels Laserbeugungstechnologie in Pulverform mit einem Mastersizer der Firma Malvern Instruments GmbH, Herrenberg, Deutschland.
Aus einem Glasfaservlies (Whatman, 260 μηη Dicke) stanzte man Scheiben mit 13 mm Durchmesser aus und trocknete sie im Trockenschrank bei 120°C für mehrere Stunden. Danach überführte man die Glasfaservlies-Scheiben in eine Argon-gefüllte Glove-box. Man teilte jede Glasfaservlies-Scheibe in zwei Teile, so dass aus einer 260 μηη dicken Glasfaservlies-Scheibe zwei Glasfaservlies-Scheiben entstanden, die je ca. 130 μηη dick waren. Das zuvor gemahlenen vernetztes Copolymer aus VI und VP (90:10) (Divergan® HM) wurde gleichmäßig und deckend zwischen den zwei Glasfaserscheiben verteilt, so dass ein Glasfaservlies/Divergan® HM/ Glas- faservlies-Sandwich entstand, das etwa eine relative Flächenbelegung an Divergan® HM von ca. 5-10 mg/cm2 aufweist.
I.2 Herstellung eines erfindungsgemäßen Separators (S.2) Eine wässrige Lösung eines unvernetzten Copolymer aus Vinylpyrrolidon und N-Vinylimidazol im Verhältnis 45:55 (Luvitec® VPI 55 K 72 W der Firma BASF) wurde im Trockenschrank bei 40°C über Nacht im Vakuum eingedampft. Der Rückstand wurde mit Mörser und Pistill grob zerkleinert und anschließend im evakuierten Exsikkator über P2O5 für 2 Tage getrocknet. Der getrocknete Rückstand wurde unter Argon-Schutzgas mit einer Achatreibschale feingemahlen, bis die Partikelgröße unter ca. 20 μηη lag. Aus einem Glasfaservlies (Whatman, 260 μηη Dicke) stanzte man Scheiben mit 13 mm Durchmesser aus und trocknete sie im Trockenschrank bei 120°C für mehrere Stunden. Danach überführte man die Glasfaservlies-Scheiben in eine Argongefüllte Glove-box. Man teilte jede Glasfaservlies-Scheibe in zwei Teile, so dass aus einer 260 μηη dicken Glasfaservlies-Scheibe zwei Glasfaservlies-Scheiben entstanden, die je ca. 130 μηη dick waren. Das zuvor gemahlenen Luvitec® VPI 55 K 72 W wurde gleichmäßig und deckend zwischen den zwei Glasfaserscheiben verteilt, so dass ein Glasfaservlies/Luvitec® VPI 55 K 72 VW Glasfaservlies-Sandwich entstand, das etwa eine relative Flächenbelegung an Luvitec® VPI 55 K 72 W von ca. 5-10 mg/cm2 aufweist. I.3 Herstellung eines erfindungsgemäßen Separators (S.3)
1 ,9 g des zuvor hergestellten Divergan® HM Feingutes aus Beispiel 1.1 wurden mit 0,2 g einer 50 Gew.-%igen wässrigen Emulsion eines Styrol-Butadien-Kautschuks (durchschnittl. Partikel- große: 190 nm; Glasübergangstemperatur: - 10 °C; Binder 20-01 ) und 8 ml Wasser zu einer rührbaren Suspension vereinigt und für ca. 1 h gerührt. Man räkelte die so erhaltene Suspension gleichmäßig auf ein PET-Vlies, kommerziell erhältlich als Vlies„PES20" der Fa. APODIS Filtertechnik OHG und trocknete das beschichtete Vlies über Nacht bei Raumtemperatur. Nach dem Trocknen erhielt man ein Vlies mit einer Divergan® HM -Belegung von je ca. 5-10 mg/cm2. Danach stanzte man daraus Scheiben mit 13 mm Durchmesser aus und trocknete sie nochmals im Vakuumtrockenschrank bei 120°C für 16 Stunden.
Anschließend überführte man diese Scheibe in eine Argon-gefüllte Glove-box.
I.4 Herstellung eines nicht erfindungsgemäßen Separators (V-S.4)
Der Versuch aus Beispiel 1.1 bzw. I.2 wurde sinngemäß unter denselben Bedingungen wiederholt, jedoch wurde das Glasfaservlies nun nicht mit Divergan® HM bzw. Luvitec® VPI 55 K 72 W gefüllt, sondern unverändert verwendet, um Vergleichsseparator V-S.4 zu erhalten. I.5 Herstellung eines nicht erfindungsgemäßen Separators (V-S.5)
Der Versuch aus Beispiel I.3 wurde unter denselben Bedingungen wiederholt, jedoch wurde das PET-Vlies nicht mit Divergan® HM beschichtet, sondern unbeschichtet verwendet, um Vergleichsseparator V-S.5 zu erhalten.
II. Herstellung von elektrochemischen Zellen und deren Testung
Man verwendete stets folgende Elektroden: Kathode (A.1 ): man verwendete jeweils eine Lithium-Nickel-Mangan-Spinell-Elektrode, die wie folgt hergestellt wurde. Man vermischte miteinander:
85% LiMni,5Ni0,5O4,
6% PVdF, kommerziell erhältlich als Kynar Flex® 2801 der Arkema Group,
6% Ruß, BET-Oberfläche von 62 m2/g, kommerziell erhältlich als„Super P Li" der Firma Timcal, 3% Graphit, kommerziell erhältlich als KS6 der Fa. Timcal;
in einem verschraubbaren Gefäß. Unter Rühren versetzte man mit so viel N-Methyl-Pyrrolidon, bis man eine zähe klumpenfreie Paste erhielt. Man rührte 16 Stunden.
Dann räkelte man die so erhaltene Paste auf 20 μηη dicke Aluminiumfolie auf und trocknete 16 Stunden lang in einem Vakuumtrockenschrank bei 120°C. Die Dicke der Beschichtung betrug nach dem Trocknen 30 μηη. Anschließend stanzte man kreisscheibenförmige Segmente aus, Durchmesser: 12 mm. Anode (B.1 ): Man vermischte miteinander
91 % Graphit ConocoPhillips C5,
6% PVdF, kommerziell erhältlich als Kynar Flex® 2801 der Arkema Group,
3% Ruß, BET-Oberfläche von 62 m2/g, kommerziell erhältlich als„Super P Li" der Firma Timcal In einem verschraubbaren Gefäß. Unter Rühren versetzte man mit so viel N-Methyl-Pyrrolidon, bis man eine zähe klumpenfreie Paste erhielt. Man rührte 16 Stunden.
Dann räkelte man die so erhaltene Paste auf 20 μηη dicke Kupferfolie auf und trocknete 16 Stunden lang in einem Vakuumtrockenschrank bei 120°C. Die Dicke der Beschichtung betrug nach dem Trocknen 35 μηη. Anschließend stanzte man kreisscheibenförmige Segmente aus, Durchmesser: 12 mm.
Man verwendete stets folgenden Elektrolyten:
1 M Lösung von LiPF6 in wasserfreiem Ethylencarbonat-Ethylmethylcarbonat-Gemisch (Ge- wichtsanteile 1 :1 )
11.1 Herstellung einer erfindungsgemäßen elektrochemischen Zelle EZ.1 und Testung
Der nach 1.1 hergestellte erfindungsgemäße Separator (S.1 ) wurde in einer Argon-gefüllten Glove-box mit Elektrolyt betropft und zwischen einer Kathode (A.1 ) und einer Anode (B.1 ) positioniert, so dass sowohl die Anode als auch die Kathode direkten Kontakt zum Separator hatte. Man erhielt erfindungsgemäße elektrochemische Zelle EZ.1. Die elektrochemische Untersuchung erfolgte zwischen 4,25 V und 4,8 V in sog. Swagelokzellen. Die ersten zwei Zyklen wurden zwecks Formierung bei 0,2C-Rate gefahren; die Zyklen Nr. 3 bis Nr. 50 wurden bei 1 C-Rate gezykelt, danach folgten wieder 2 Zyklen mit 0,2C-Rate gefolgt von 48 Zyklen mit 1 C-Rate usw. Das Laden bzw. Entladen der Zelle wurde mit Hilfe eines„MAC- COR Battery Tester" bei Raumtemperatur durchgeführt.
Es konnte gezeigt werden, dass die Batterie-Kapazität über wiederholtes Laden und Entladen sehr stabil blieb.
11.2 bis II.5 Herstellung der elektrochemischen Zellen EZ.2, EZ.3, sowie V-EZ.4, V-EZ.5 und Testung Analog zu Beispiel 11.1 wurden aus den Separatoren S.2, S.3, sowie V-S.4, und V-S.5 die elektrochemischen Zellen EZ.2, EZ.3, sowie V-EZ.4, und V-EZ.5 hergestellt und entsprechend ausgetestet.
Figur 1 zeigt den schematischen Aufbau einer auseinandergenommenen elektrochemischen Zelle zum Testen von erfindungsgemäßen sowie nicht erfindungsgemäßen Separatoren. Die Erläuterungen in Figur 1 bedeuten:
1 , 1 ' Stempel
2, 2' Mutter
3, 3' Dichtungsring - jeweils doppelt, der jeweils zweite, etwas kleinere Dichtungsring ist hier nicht gezeigt
4 Spiralfeder
5 Stromableiter aus Nickel
6 Gehäuse
Ergebnisse:
Die elektrochemischen Zelle EZ.1 konnte über 160 Zyklen sehr stabil geladen und entladen werden und verlor nach 130 Zyklen nur 27% der Startkapazität.
Die elektrochemischen Zelle EZ.2 konnte über 160 Zyklen sehr stabil geladen und entladen werden und verlor nach 130 Zyklen nur 1 1 % der Startkapazität.
Die elektrochemischen Zelle EZ.3 konnte über 160 Zyklen sehr stabil geladen und entladen werden und verlor nach 130 Zyklen nur 14% der Startkapazität.
Die elektrochemischen Zellen V-EZ.4 aus dem Vergleichsbeispiel degradierte relativ stark und verlor nach ca. 130 Zyklen 46% der Startkapazität. Die elektrochemischen Zellen V-EZ.5 aus dem Vergleichsbeispiel degradierte relativ stark und verlor nach ca. 130 Zyklen ebenfalls 46% der Startkapazität.

Claims

Patentansprüche
1 . Elektrochemische Zelle, enthaltend
(A) mindestens eine Kathode, enthaltend mindestens eine Lithiumionen-haltige Übergangsmetallverbindung,
(B) mindestens eine Anode, und
(C) mindestens eine Schicht, enthaltend
(a) mindestens ein Polymer, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, und
(b) gegebenenfalls mindestens ein Bindemittel.
2. Elektrochemische Zelle nach Anspruch 1 , dadurch gekennzeichnet, dass man Lithiumionen-haltige Übergangsmetallverbindung wählt aus Mangan-haltigen Spinellen und Mangan-haltigen Übergangsmetalloxiden mit Schichtstruktur.
3. Elektrochemische Zelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Anode (B) gewählt wird aus Anoden aus Kohlenstoff und Anoden, die Sn oder Si enthalten.
4. Elektrochemische Zelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das in Schicht (C) enthaltende Polymer Monomereinheiten umfasst, die ausgewählt sind aus der Gruppe der Monomereinheiten bestehend aus
Figure imgf000020_0001
worin X für O, S oder NR steht und R Wasserstoff oder einen C1-C4 Alkylrest bedeutet.
5. Elektrochemische Zelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das in Schicht (C) enthaltende Polymer ein Copolymer ist, enthaltend die Monomereinheiten N-Vinylimidazol und N-Vinyl-2-pyrrolidinon.
6. Elektrochemische Zelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das in Schicht (C) enthaltende Polymer in partikulärer Form, in Form eines Films oder homogen verteilt in Schicht (C) vorliegt.
7. Elektrochemische Zelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Schicht (C) ein Bindemittel (b) enthält ausgewählt aus der Gruppe der Polymere bestehend aus Polyvinylalkohol, Styrol-Butadien-Kautschuk, Polyacrylnitril, Carboxymethylcel- lulose und fluorhaltigen (Co)polymeren.
8. Elektrochemische Zelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Schicht (C) eine mittlere Dicke im Bereich von 9 bis 50 μηη aufweist.
9. Elektrochemische Zelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei Schicht (C) um einen Separator handelt.
10. Elektrochemische Zelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Schicht (C) zusätzlich ein Vlies (c) enthält.
1 1 . Elektrochemische Zelle nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Schicht (C) die Kathode (A) oder einen Separator oder die Anode (B) auf zumindest einer Seite bedeckt.
12. Verwendung von elektrochemischen Zellen nach einem der Ansprüche 1 bis 1 1 in Lithium-Ionen-Batterien.
13. Lithium-Ionen-Batterie, enthaltend mindestens eine elektrochemische Zelle nach einem der Ansprüche 1 bis 1 1 .
14. Verwendung von elektrochemischen Zellen nach einem der Ansprüche 1 bis 1 1 in Automobilen, mit Elektromotor betriebenen Zweirädern, Flugzeugen, Schiffen oder stationären Energiespeichern.
15. Verwendung eines Polymers, das Monomereinheiten umfasst, die stickstoffhaltige 5- oder 6-gliedrige heterocyclische aromatische Struktureinheiten enthalten oder die einen organischen Rest enthalten, der sich von α-Aminophosphonsäure oder von Iminodiessigsäure ableitet, zur Herstellung einer elektrochemischen Zelle.
PCT/IB2012/056819 2011-12-07 2012-11-29 Elektrochemische zellen umfassend stickstoff-haltige polymere WO2013084116A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147018619A KR20140104995A (ko) 2011-12-07 2012-11-29 질소-함유 중합체를 포함하는 전기화학 전지
CN201280059796.7A CN103959511A (zh) 2011-12-07 2012-11-29 包含含氮聚合物的电化学电池
JP2014545404A JP5717929B2 (ja) 2011-12-07 2012-11-29 窒素含有ポリマーを含む電気化学セル
EP12854572.0A EP2789031A4 (de) 2011-12-07 2012-11-29 Elektrochemische zellen umfassend stickstoff-haltige polymere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11192262.1 2011-12-07
EP11192262 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084116A1 true WO2013084116A1 (de) 2013-06-13

Family

ID=48573644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/056819 WO2013084116A1 (de) 2011-12-07 2012-11-29 Elektrochemische zellen umfassend stickstoff-haltige polymere

Country Status (5)

Country Link
EP (1) EP2789031A4 (de)
JP (1) JP5717929B2 (de)
KR (1) KR20140104995A (de)
CN (1) CN103959511A (de)
WO (1) WO2013084116A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149589A1 (en) * 2011-12-07 2013-06-13 Oliver Gronwald Electrochemical cells comprising a nitrogen-containing polymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346818B (zh) * 2016-05-06 2020-04-07 宁德新能源科技有限公司 阴极极片及其制备方法以及锂离子电池
KR102616369B1 (ko) * 2017-07-06 2023-12-27 가부시키가이샤 무라타 세이사쿠쇼 이미다졸 유도체를 포함하는 중합체 및 전기화학 전지에서의 이의 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202018A (zh) * 1997-06-10 1998-12-16 中国科学院物理研究所 一种以纳米相金属材料为阳极活性材料的二次锂电池
CN1247388A (zh) * 1998-09-10 2000-03-15 中国科学院物理研究所 一种二次锂电池
CN1315752A (zh) * 2000-03-30 2001-10-03 中国科学院物理研究所 一种以胶体聚合物为电解质的二次锂离子电池及制备方法
CN101197443A (zh) * 2007-12-06 2008-06-11 复旦大学 一种锂离子电池阳极薄膜材料及其制备方法
WO2011113921A1 (de) * 2010-03-19 2011-09-22 Basf Se Elektrodenmaterial und seine verwendung zur herstellung von elektrochemischen zellen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243978A (ja) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP4445099B2 (ja) * 2000-05-26 2010-04-07 日本化学工業株式会社 非水電解液電池
JP2002025527A (ja) * 2000-07-03 2002-01-25 Japan Storage Battery Co Ltd 非水電解液二次電池
DE10122811B4 (de) * 2001-05-10 2007-08-09 Dilo Trading Ag Elektrode für eine Lithium-Polymer-Wickelzellen-Batterie, Lithium-Polymer-Batterie und Verfahren zur Herstellung der Lithium-Polymer-Batterie
JP2004063423A (ja) * 2002-07-31 2004-02-26 Mitsubishi Chemicals Corp 電極製造に用いる塗布液、それを用いて製造した電極及び電池
JP5286001B2 (ja) * 2007-09-13 2013-09-11 日東電工株式会社 電池用セパレータとこれを用いてなる非水リチウムイオン二次電池
WO2009103537A1 (de) * 2008-02-20 2009-08-27 Carl Freudenberg Kg Vliesstoff mit vernetzungsmaterial
JP2009266557A (ja) * 2008-04-24 2009-11-12 Nitto Denko Corp 電池用セパレータ及びリチウムイオン二次電池
JP5399190B2 (ja) * 2009-09-29 2014-01-29 古河電池株式会社 非水電解質二次電池用セパレータの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202018A (zh) * 1997-06-10 1998-12-16 中国科学院物理研究所 一种以纳米相金属材料为阳极活性材料的二次锂电池
CN1247388A (zh) * 1998-09-10 2000-03-15 中国科学院物理研究所 一种二次锂电池
CN1315752A (zh) * 2000-03-30 2001-10-03 中国科学院物理研究所 一种以胶体聚合物为电解质的二次锂离子电池及制备方法
CN101197443A (zh) * 2007-12-06 2008-06-11 复旦大学 一种锂离子电池阳极薄膜材料及其制备方法
WO2011113921A1 (de) * 2010-03-19 2011-09-22 Basf Se Elektrodenmaterial und seine verwendung zur herstellung von elektrochemischen zellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789031A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130149589A1 (en) * 2011-12-07 2013-06-13 Oliver Gronwald Electrochemical cells comprising a nitrogen-containing polymer

Also Published As

Publication number Publication date
JP5717929B2 (ja) 2015-05-13
JP2015505122A (ja) 2015-02-16
EP2789031A1 (de) 2014-10-15
KR20140104995A (ko) 2014-08-29
CN103959511A (zh) 2014-07-30
EP2789031A4 (de) 2015-08-12

Similar Documents

Publication Publication Date Title
EP2994424B1 (de) Sphärische partikel, ihre herstellung und verwendung
KR101983099B1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
EP2994425B1 (de) Sphärische partikel, ihre herstellung und verwendung
DE112015003717T5 (de) Positive Elektrodenplatte für Energiespeichergerät mit nichtwässrigem Elektrolyt, und Energiespeichergerät mit nichtwässrigem Elektrolyt
EP2742552A1 (de) Elektrochemische zellen
CN107851839A (zh) 非水电解质二次电池
EP2814778B1 (de) Partikel, verfahren zu ihrer herstellung und ihre verwendung
KR20220031645A (ko) 코팅된 전극 활물질의 제조 방법
JP2021518988A (ja) リチウム二次電池用負極スラリー、及びこの製造方法
JP2023015188A (ja) 非水電解質二次電池用正極活物質の製造方法
EP3215462A1 (de) Übergangsmetall-mischoxide für lithiumionen-batterien
WO2012038269A1 (de) Verfahren zur herstellung von elektrodenmaterialien
WO2013084116A1 (de) Elektrochemische zellen umfassend stickstoff-haltige polymere
EP2820693A1 (de) Separatoren für elektrochemische zellen enthaltend polymerpartikel
EP2619139B1 (de) Verfahren zur herstellung von oberflächen modifizierten elektrodenmaterialien
DE102022130523B4 (de) Zusatzstoffe aus kristallinem material für dicke elektroden
WO2013102533A1 (de) Materialien, ihre herstellung und verwendung
DE102022109356A1 (de) Lithiumionen-ausgetauschte zeolithteilchen für elektrochemische zellen und verfahren zu deren herstellung
KR102337900B1 (ko) 코발트산 리튬 양극 활물질 및 이를 이용한 이차전지
EP2695222A2 (de) Elektrochemische zellen, die ionenaustauscher enthalten
EP2548244A1 (de) Elektrodenmaterial und seine verwendung zur herstellung von elektrochemischen zellen
WO2013144842A1 (de) Elektrochemische zelle enthaltend ein schwefelhaltiges polymer
EP2572397A1 (de) Verbindungen und ihre verwendung zur herstellung von elektrochemischen zellen
US20130149589A1 (en) Electrochemical cells comprising a nitrogen-containing polymer
DE102022119829A1 (de) Verfahren zur herstellung von elektroaktiven materialien aus vorlithiiertem siliziumoxid, die silizide und silikate umfassen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854572

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012854572

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014545404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018619

Country of ref document: KR

Kind code of ref document: A