WO2013081067A1 - 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 - Google Patents
液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 Download PDFInfo
- Publication number
- WO2013081067A1 WO2013081067A1 PCT/JP2012/080978 JP2012080978W WO2013081067A1 WO 2013081067 A1 WO2013081067 A1 WO 2013081067A1 JP 2012080978 W JP2012080978 W JP 2012080978W WO 2013081067 A1 WO2013081067 A1 WO 2013081067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- crystal alignment
- alignment film
- formula
- Prior art date
Links
- LNYGUUJIDRFZBP-UHFFFAOYSA-N CC(C)(C)OC(NCc(cc(cc1)N(C(CC2)=O)C2=O)c1N(C(CC1C(CC(N2c(cc3)ccc3N(C(CC3)=O)C3=O)=O)C2=O)=O)C1=O)=O Chemical compound CC(C)(C)OC(NCc(cc(cc1)N(C(CC2)=O)C2=O)c1N(C(CC1C(CC(N2c(cc3)ccc3N(C(CC3)=O)C3=O)=O)C2=O)=O)C1=O)=O LNYGUUJIDRFZBP-UHFFFAOYSA-N 0.000 description 1
- DMJLNFKAHDXECT-UHFFFAOYSA-N CC(COc1ccc(C)cc1)(C1)[O]1(C)c1ccc(C)cc1 Chemical compound CC(COc1ccc(C)cc1)(C1)[O]1(C)c1ccc(C)cc1 DMJLNFKAHDXECT-UHFFFAOYSA-N 0.000 description 1
- DCPAUBBXJNWEHE-UHFFFAOYSA-N Cc(cc1CN=C2C(C3C4C5=NCc(cc(C)cc6)c6N55)C4C5=O)ccc1N2C3=O Chemical compound Cc(cc1CN=C2C(C3C4C5=NCc(cc(C)cc6)c6N55)C4C5=O)ccc1N2C3=O DCPAUBBXJNWEHE-UHFFFAOYSA-N 0.000 description 1
- URLKBWYHVLBVBO-UHFFFAOYSA-N Cc1ccc(C)cc1 Chemical compound Cc1ccc(C)cc1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
Definitions
- the present invention relates to a liquid crystal alignment film, a method for producing the liquid crystal alignment film, and a liquid crystal display element including the liquid crystal alignment film. More specifically, in place of the rubbing treatment, a liquid crystal alignment film provided with a liquid crystal alignment ability by photo-alignment treatment, that is, irradiation of polarized ultraviolet rays, particularly polarized ultraviolet rays including ultraviolet rays having a wavelength of 300 nm or more, and the liquid crystal alignment The present invention relates to a film manufacturing method and a liquid crystal display device including the liquid crystal alignment film.
- the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, polyester. It is produced by rubbing in one direction with a cloth such as so-called rubbing.
- the method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
- demands for higher performance, higher definition, and larger size of liquid crystal display elements are increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
- Non-Patent Document 1 As a method for replacing the rubbing treatment, a photo-alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known.
- liquid crystal alignment treatment by the photo-alignment method those utilizing a photoisomerization reaction, those utilizing a photocrosslinking (photodimerization) reaction, those utilizing a photodecomposition reaction, etc. have been proposed (see Non-Patent Document 1). .
- the polyimide film having an alicyclic structure such as a cyclobutane ring used in Patent Document 1 exhibits high anisotropy by irradiating short-wave ultraviolet rays, particularly polarized ultraviolet rays around 254 nm, and improves liquid crystal orientation.
- An excellent liquid crystal alignment film can be obtained.
- ultraviolet rays near 254 nm are high in energy and require a lot of power for irradiation, not only the cost for photo-alignment treatment is high, but also the burden on the environment is large.
- ultraviolet rays having a shorter energy and stronger energy are used, there is a possibility that an electrode formed on the substrate and a thin film transistor (hereinafter, TFT) may be damaged.
- TFT thin film transistor
- the photo-alignment method using photoisomerization or photodimerization can impart anisotropy by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more.
- a liquid crystal alignment film obtained by a photo-alignment method using photoisomerization or photodimerization has a weak alignment regulating force and has a problem that an afterimage occurs when used in a liquid crystal display element.
- the present invention is a liquid crystal alignment film to which anisotropy is imparted by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more, and has high anisotropy, good liquid crystal alignment, and high liquid crystal alignment regulating power.
- An object of the present invention is to provide a liquid crystal alignment film, a method for producing the liquid crystal alignment film, and a liquid crystal display device having the liquid crystal alignment film.
- a tetracarboxylic dianhydride having an alicyclic structure and / or a derivative thereof, and an amino group protected with a protecting group that thermally desorbs A film obtained from a polyimide precursor obtained by a polycondensation reaction with a diamine having a specific structure having a diamine or a liquid crystal aligning agent containing an imidized polymer of the polyimide precursor is polarized containing ultraviolet rays having a wavelength of 300 nm or more. It was found that a liquid crystal alignment film having high anisotropy, good liquid crystal alignment properties, and high liquid crystal alignment regulating force can be obtained by photo-alignment by ultraviolet irradiation.
- the present invention has the following gist. 1.
- a fired film of a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, a wavelength of 300 nm
- X 1 is a tetravalent organic group having an alicyclic structure
- Y 1 is a divalent organic group represented by the following formula (A)
- R 1 is a hydrogen atom, or (It is an alkyl group having 1 to 4 carbon atoms.)
- a 1 and A 2 is at least one structure selected from the group consisting of the following formulas (A-1) ⁇ (A -5), may .B 1 be the same or different , Single bond, —O—, —S—, —NH—, —NR—, ester bond, thioester bond, amide bond, urea bond, carbonate bond, carbamate bond, or divalent organic group having 1 to 10 carbon atoms
- n is an integer of 0 to 1.
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
- D is an amino-protecting group that is replaced with hydrogen by heating.
- X 1 in the formula (1) is at least one selected from the group consisting of structures represented by the following formulas (X-1) to (X-10).
- R 2 , R 3 , R 4 , and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, Or a phenyl group.
- X 1 is represented by the following formula (X1-1) and (Xl-2) Bareru independently from the group consisting of structures represented by at least one a is a liquid crystal alignment film according to any of claims 1 or 2. 4).
- X 1 is represented by the following formula (X1-1) and (Xl-2) Bareru independently from the group consisting of structures represented by at least one a is a liquid crystal alignment film according to any of claims 1 or 2. 4).
- D is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. 5.
- Y 1 is at least one selected from the group consisting of the structures represented by the following (Y1-1) to (Y1-4). 6). 6.
- a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor, and an organic solvent
- a liquid crystal display device having the liquid crystal alignment film according to any one of 1 to 6 above.
- the liquid crystal alignment film of the present invention was polarized including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less on a fired film of a liquid crystal alignment agent containing the polyimide precursor having the above specific structure or an imidized polymer of the polyimide precursor. It is obtained by irradiating with ultraviolet rays, can impart high anisotropy, and has excellent liquid crystal alignment and alignment regulating power. Therefore, when used as a liquid crystal display element, a liquid crystal display element having excellent afterimage characteristics can be obtained.
- the ultraviolet ray used is not a conventional short wavelength, but an ultraviolet ray having a wavelength of 300 nm or more and lower energy can be used. Therefore, the electric power for the photo-alignment treatment is small and the burden on the environment can be reduced. In addition, since long-wavelength ultraviolet light having a lower energy is used, damage to electrodes and TFTs formed on the substrate can be reduced.
- the reason why the above-described excellent effect is obtained is not necessarily clear, but is considered as follows.
- Polyimide having an alicyclic structure in the main chain can impart anisotropy by irradiating polarized ultraviolet rays.
- the alicyclic structure is cyclobutane
- by irradiating polarized radiation only the aromatic ring bonded to the imide portion of the molecular chain in which the major axis direction of the molecular chain is parallel to the polarization direction absorbs light,
- the ring-opening reaction of the following formula (i) proceeds and anisotropy is imparted.
- the photodecomposition reaction proceeds efficiently by irradiating polarized ultraviolet rays around 254 nm.
- a limited structure such as biphenyl or a condensed ring structure is required, and these limited structures do not necessarily have good liquid crystal alignment or liquid crystal alignment regulation power. There is.
- these biphenyls and condensed ring structures are rigid skeletons, the resulting polymers are often poorly soluble in organic solvents.
- the liquid crystal aligning agent containing the polyimide precursor having the specific structure or the imidized polymer of the polyimide precursor when baked, only the volatilization or imidization of the solvent by heating proceeds. Instead, the condensation reaction of the amino group formed by the elimination of the thermally leaving group and the imide carbonyl oxygen proceeds. Thereby, it is considered that the obtained film has a ring structure which is not an imide ring as shown in the following formula (ii).
- the liquid crystal alignment film of the present invention forms a new ring structure as described above by a condensation reaction with an imide ring, and thus has a more rigid structure than the imide ring. For this reason, the molecular chain in the liquid crystal alignment film is difficult to move by driving the liquid crystal, and exhibits high liquid crystal alignment regulating power.
- liquid crystal aligning agent described in the present invention has a bulky substituent as an amino-protecting group, and further, the above ring structure is formed after coating and baking, so that it has excellent solubility and applicability. It is good and the film obtained is homogeneous with no coating failure.
- the liquid crystal alignment film of the present invention includes at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor. Formed from the agent.
- X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited as long as it is a known one. If a specific example of X 1 is given, it is at least one selected from the group consisting of structures represented by the following formulas (X-1) to (X-10).
- R 2 , R 3 , R 4 , and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. , An alkynyl group, or a phenyl group.
- R 2 , R 3 , R 4 and R 5 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably At least one selected from the group consisting of structures represented by (X1-1) to (X1-2).
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
- Y 1 is a divalent organic group represented by the following formula (A).
- a 1 and A 2 are each independently at least one structure selected from the group consisting of the following formulas (A-1) to (A-5).
- the formula (A-1) or (A-2) is preferable, and the formula (A-1) is particularly preferable.
- D is an amino-protecting group that is replaced with hydrogen by heating.
- the structure of D is not particularly limited as long as it is a functional group that can replace a hydrogen atom by heating.
- D is a firing temperature at the time of obtaining the liquid crystal alignment film, preferably 150 ° C. to 300 ° C., more preferably 150 to 250 ° C., and a structure in which the elimination reaction efficiently proceeds, and a tert-butoxycarbonyl group or A 9-fluorenylmethoxycarbonyl group is more preferable, and a tert-butoxycarbonyl group is particularly preferable.
- B 1 is a single bond, —O—, —S—, —NH—, —NR—, ester bond, thioester bond, amide bond, urea bond, carbonate bond, carbamate bond, or divalent having 1 to 10 carbon atoms.
- N is an integer of 0 to 1.
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
- the ester bond is represented by —C (O) O— or —OC (O) —.
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
- alkyl group examples include a methyl group, ethyl group, propyl group, butyl group, tert-butyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group.
- alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
- Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
- Examples of the aryl group include a phenyl group.
- urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
- the carbonate bond can have a structure represented by —O—C (O) —O—.
- the carbamate bond includes —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
- R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
- B 1 is a divalent organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (2).
- Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, or ester bond, amide bond, thioester bond, urea bond, carbonate Bond, carbamate bond.
- R 11 is a hydrogen atom, a methyl group, or a tert-butoxycarbonyl group.
- R 9 and R 10 in the formula (2) are each independently a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. If one of R 9 and R 10 is a single bond, R 9 or R 10 is a group which combines alkylene group having 2 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or these.
- alkylene group examples include a structure in which one hydrogen atom is removed from the alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
- the structure remove
- alkynylene group examples include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
- excluding one hydrogen atom from the said aryl group is mentioned. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
- B 1 a single bond or the following formula (A1-1)
- the structure of (A1-25) is more preferable.
- Y 1 the following (Y1-1) to (Y1-4) are particularly preferable.
- the ratio of the structural unit represented by the formula (1) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. Higher anisotropy can be imparted by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less as the ratio of the structural unit represented by the above formula (1) is higher. Therefore, the ratio of the structural unit represented by the above formula (1) is preferably 80 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, because a liquid crystal alignment film having good liquid crystal alignment properties can be obtained. Is more preferable.
- the liquid crystal aligning agent of the present invention may contain a structural unit represented by the following formula (3) in addition to the structural unit represented by the above formula (1).
- R 1 has the same definition as R 1 in the formula (1).
- X 2 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the following formulas (X-11) to (X-43). From the viewpoint of availability of the compound, X 2 is preferably X-17, X-26, X-27, X-28, X-32 or X-39.
- a tetracarboxylic dianhydride having an aromatic ring structure it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, and the structure of X 2 is X-26. X-27, X-28, X-32, X-35 or X-37 are more preferred.
- Y 2 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 2 include the following formulas (Y-1) to (Y-71).
- the liquid crystal aligning agent of the present invention may not be able to impart anisotropy with polarized ultraviolet light having a wavelength of 300 nm.
- the proportion of structural units represented by is preferably 0 to 20 mol%, more preferably 0 to 10 mol%, relative to 1 mol of all structural units.
- the molecular weight of the polyimide precursor used in the liquid crystal aligning agent of the present invention and the imidized polymer of the polyimide precursor is preferably 2,000 to 500,000, more preferably 5,000 to 300,000 in terms of weight average molecular weight. 000, more preferably 10,000 to 100,000.
- the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
- the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polyimide precursor used and the imidized polymer of the polyimide precursor are uniformly dissolved.
- Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
- the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
- a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
- a solvent having a surface tension lower than that of the organic solvent is generally used.
- ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
- liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the above-mentioned polymers, and the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film are changed.
- a dielectric or conductive material for the purpose, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when the liquid crystal alignment film is formed, May be added with an imidization accelerator for the purpose of efficiently proceeding imidization of the polyimide precursor when the coating film is baked.
- the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the following methods (1) to (3).
- the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
- the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
- the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
- the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good.
- the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
- Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
- pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
- the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
- the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
- the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
- the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
- the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
- condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
- Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
- the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
- tertiary amines such as pyridine and triethylamine can be used.
- the addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
- the reaction proceeds efficiently by adding Lewis acid as an additive.
- Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
- the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
- the synthesis method (1) or (2) is particularly preferable.
- the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
- a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
- the polyamic acid which is another polyimide precursor is compoundable by the method shown below. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
- the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these are used alone or in combination of two or more. May be.
- the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
- the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
- a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
- the imidized polymer of the polyimide precursor in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
- chemical imidization in which a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
- Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
- Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
- a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
- the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
- the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, re-dissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
- Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
- Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
- Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
- an organic solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
- Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
- the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amic acid group. Is double.
- the imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time.
- the liquid crystal aligning agent of the present invention is preferable.
- the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while thoroughly stirring. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
- the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
- the liquid crystal aligning film of this invention is a liquid crystal aligning agent containing at least 1 type of polymer chosen from the group which consists of the polyimide precursor which has a structural unit represented by Formula (1), and the imidation polymer of this polyimide precursor. Is obtained by irradiating a substantially linearly polarized ultraviolet ray including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less. Usually, it is a coating film obtained by applying a liquid crystal aligning agent to a substrate, drying and firing, and is obtained by irradiating the coating film with the above-mentioned ultraviolet rays.
- the substrate on which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. Use of a substrate on which an ITO electrode or the like is formed is preferable from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used. Examples of the method for applying the liquid crystal aligning agent described in the present invention include a spin coating method, a printing method, and an ink jet method.
- the drying and baking process after applying the liquid crystal aligning agent converts the imidized polymer by converting the polyimide precursor into a polyimide, and the amino protecting group that is converted into a hydrogen atom by the heat of the polyimide precursor. It is a process for converting to, and arbitrary temperature and time for that can be selected. Usually, in order to sufficiently remove the organic solvent contained, it is preferably dried at 50 ° C. to 120 ° C., preferably for 1 minute to 10 minutes, and then preferably at 150 ° C. to 300 ° C., preferably for 5 minutes to 120 minutes. Baked.
- the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
- the coating film surface is irradiated with ultraviolet rays polarized in a certain direction including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less, preferably 310 nm or more and 380 nm or less.
- the method of heat-processing at the temperature of 250 degreeC and providing liquid crystal aligning ability is mentioned.
- the coated substrate may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
- the irradiation amount of the ultraviolet rays is preferably in the range of 1 to 10,000 mJ / cm 2 , particularly preferably in the range of 50 to 5,000 mJ / cm 2 .
- the film irradiated with the polarized ultraviolet light may be contact-treated with water or a solution containing a specific organic solvent.
- the organic solvent is not particularly limited, but water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate Methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate.
- a liquid crystal alignment film having high anisotropy and no unevenness can be easily obtained, so that 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate And at least one selected from the group consisting of diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. In particular, at least one selected from the group consisting of 1-methoxy-2-propanol and ethyl lactate is preferable.
- the contact treatment between the film irradiated with polarized ultraviolet light and the solution containing the organic solvent is preferably performed by a treatment such that the film and the liquid are sufficiently in contact, such as an immersion treatment or a spraying treatment.
- a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes is preferable.
- the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
- a means for enhancing contact such as ultrasonic waves can be applied as necessary.
- rinsing or rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or both are used. May be done.
- the temperature for drying is preferably 80 to 250 ° C., more preferably 80 to 150 degrees.
- the liquid crystal alignment film obtained as described above can stably align liquid crystal molecules in a certain direction.
- the liquid crystal display element of the present invention is a liquid crystal display element obtained by preparing a liquid crystal cell by a known method after obtaining the above substrate with a liquid crystal alignment film.
- a liquid crystal display element having a passive matrix structure will be described as an example.
- an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
- a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
- These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
- an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
- the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
- the liquid crystal alignment film of the present invention is formed on each substrate.
- the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
- a spacer is usually mixed in the sealing material.
- a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
- a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
- a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
- the molecular weight of the polymer is measured by a GPC (normal temperature gel permeation chromatography) device, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) are calculated as polyethylene glycol and polyethylene oxide equivalent values. did.
- Mn number average molecular weight
- Mw weight average molecular weight
- GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min
- Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000).
- Mw weight average molecular weight
- Mp peak top manufactured by Polymer Laboratories
- Mp Molecular weight
- the anisotropy of the alignment film was measured as follows. A polyimide film having a thickness of 100 nm is irradiated with ultraviolet rays through a polarizing plate, and an anisotropic magnitude with respect to the alignment direction of the obtained alignment film is measured according to a liquid crystal alignment film evaluation system (manufactured by Moritex, Ray Scan Lab H, LYS). Measurement was carried out using -LH30S-1A).
- FT-IR Apparatus: NICOLET5700 (manufactured by Thermo ELECTRON) Smart Orbit accessory measurement method: ATR method
- F-NMR Fourier transform type superconducting nuclear magnetic resonance apparatus
- INOVA-400 manufactured by Varian 400 MHz
- Solvent Deuterated dimethyl sulfoxide (DMSO-d 6 ) Standard substance: Tetramethylsilane (TMS)
- a liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and baked for 20 minutes in a hot air circulation oven at 230 ° C. Formed.
- the coating surface was subjected to photo-alignment treatment to obtain a substrate with a liquid crystal alignment film.
- Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment is antiparallel.
- the periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
- Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell. Using this liquid crystal cell, the alignment state of the liquid crystal was observed with a polarizing microscope.
- PAE-2 polyamic acid ester solution
- Example 1 The liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 3 minutes. Baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm. The surface of the coating film was irradiated with ultraviolet light having a wavelength of 313 nm through a polarizing plate at 0.8 J / cm 2 . Next, the substrate with a film was baked for 20 minutes in a hot air circulation oven at 230 ° C. to obtain a liquid crystal alignment film. As a result of measuring the anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film, the magnitude of the anisotropy was 0.33.
- Example 1 A liquid crystal alignment film was produced in the same manner as in Example 1 except that the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used. As a result of measuring the anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film, the magnitude of the anisotropy was 0.03.
- Example 2 The liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, and then applied onto a glass substrate with a transparent electrode by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 1.0 J / cm 2 of ultraviolet light having a wavelength of 313 nm through a polarizing plate and baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film.
- Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the alignment directions of the two substrates are antiparallel.
- the periphery was sealed, and an empty cell with a cell gap of 6 ⁇ m was produced.
- Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
- the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
- Example 2 A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used.
- the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used.
- the liquid crystal was not aligned, and even if the cell was rotated, the brightness could not be changed. In addition, light leakage occurred. From the comparison of Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2 described above, it was confirmed that the liquid crystal alignment film of the present invention exhibited high anisotropy and was excellent in liquid crystal alignment.
- the formula (M-1) was dissolved in NMP to obtain a (M-1) solution having a solid concentration of 10% by mass.
- the glass substrate was placed on a hot plate heated to 230 ° C. and heated. After 10 minutes, about 1 ml of the above (M-1) solution was dropped on a glass substrate and heated at 230 ° C. for 20 minutes. After 20 minutes, the solid remaining on the glass substrate was recovered, dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured. From NMR, it was confirmed that the obtained solid was represented by the following formula (M-3).
- the liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a glass substrate with a transparent electrode, and then on a hot plate at a temperature of 80 ° C. for 3 minutes. After drying, the film was baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm. The obtained film was shaved and FT-IR was measured by the ATR method. As a result, an absorption band derived from an imino group was confirmed in the region of 1650 to 1600 cm ⁇ 1 as in the above formula (M-3). From this, also in the polymer, it was confirmed that the condensation reaction between the amino group generated by heating and the imide carbonyl oxygen proceeds to form a ring structure.
- Example 4 A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was used. When the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
- Example 5 The liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 3 minutes. Baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm.
- the surface of the coating film was irradiated with ultraviolet light having a wavelength of 313 nm through a polarizing plate at 0.8 J / cm 2 .
- the substrate was immersed in 1-methoxy-2-propanol for 3 minutes, then immersed in pure water for 1 minute, and dried on a hot plate at 80 ° C. for 5 minutes to obtain a liquid crystal alignment film.
- the magnitude of the anisotropy was 0.07.
- Example 6 The liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was filtered through a 1.0 ⁇ m filter and then applied onto a glass substrate with a transparent electrode by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The coating surface was irradiated with 1.0 J / cm 2 of ultraviolet rays having a wavelength of 313 nm through a polarizing plate. Next, this substrate was immersed in 1-methoxy-2-propanol for 3 minutes, then immersed in pure water for 1 minute, and dried on an 80 ° C. hot plate for 5 minutes.
- Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the alignment directions of the two substrates are antiparallel.
- the periphery was sealed, and an empty cell with a cell gap of 6 ⁇ m was produced.
- Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
- the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
- the liquid crystal alignment film of the present invention is a liquid crystal alignment film obtained by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more, and has high anisotropy, good liquid crystal alignment, and high liquid crystal alignment regulating power.
- the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
- it is particularly useful as a liquid crystal alignment element of a liquid crystal display element of an IPS driving method or an FFS (fringe field switching) driving method or a liquid crystal television.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
現在、工業的に最も普及している方法によれば、液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
1.下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射してなる液晶配向膜。
5.Y1が、下記(Y1-1)~(Y1-4)で表される構造からなる群から選ばれる少なくとも1種類である上記4に記載の液晶配向膜。
7.上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と有機溶媒とを含む液晶配向剤を塗布、焼成して得られる膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射する請求項1~6のいずれかに記載の液晶配向膜の製造方法。
8.上記1~6のいずれかに記載の液晶配向膜を有する液晶表示素子。
主鎖に脂環構造を有するポリイミドは、偏光された紫外線を照射することにより、異方性を付与することができる。特に、脂環構造がシクロブタンである場合、偏光された放射線を照射することにより、分子鎖の長軸方向が偏光方向と平行な分子鎖のイミド部位に結合した芳香環のみが光を吸収し、励起され、エネルギー移動することにより、下記式(i)の開環反応が進行し、異方性が付与される。
さらに、本発明の液晶配向膜は、イミド環との縮合反応により、上記した新たな環構造を形成するため、イミド環よりも、更に剛直な構造となる。そのため、液晶の駆動によって、液晶配向膜中の分子鎖が動きにくく、高い液晶配向規制力を示す。また、本発明に記載の液晶配向剤は、アミノ基の保護基として嵩高い置換基を有し、さらに上記の環構造が塗膜、焼成後に形成されるため、溶解性に優れ、塗布性が良好であり、得られる膜は、塗布不良のない均質なものとなる。
本発明の液晶配向膜では、下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤から形成される。
上記エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、又は、-C(O)NR-、-NHC(O)-、-NRC(O)-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。
上記カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
上記カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
式(2)におけるR9及びR10は、それぞれ独立して単結合、炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基である。R9とR10の何れかが単結合の場合、R9又はR10は炭素数2~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基である。
上記アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
Y1の構造が、直線性が高い構造や剛直な構造を有する場合、良好な液晶配向性を有する液晶配向膜が得られるため、B1としては、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。
本発明の液晶配向剤は、上記式(3)で表される構造単位の比率が高い場合、波長300nmの偏光された紫外線で異方性が付与できない可能性があるため、上記式(3)で表される構造単位の比率は、全構造単位1モルに対して0~20モル%が好ましく、0~10モル%がさらに好ましい。
本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
本発明における上記ポリイミド前駆体のイミド化重合体は、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造できる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
本発明の液晶配向膜は、式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含むほぼ直線に偏光した紫外線を照射することで得られる。通常は、液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜であり、この塗膜面に上記の紫外線を照射することで得られる。
上記のようにして得られる液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
本発明の液晶表示素子は、上記の液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子を設けたアクティブマトリクス構造の液晶表示素子であってもよい。
本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
1,3DM-CBDE-Cl:ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジ メチルシクロブタン-2,4-ジカルボキシレート
DA-1:(下記式(DA-1))
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
DMF:N,N-ジメチルホルムアミド
BCS:ブチルセロソルブ
THF:テトラヒドロフラン
DA-2:下記式(DA-2)
ポリマーの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
配向膜の異方性の測定は以下のようにして行った。
膜厚100nmのポリイミド膜に偏光板を介して紫外線を照射し、得られた配向膜の配向方向に対する異方性の大きさを液晶配向膜評価システム(モリテックス社製、レイ・スキャン ラボH、LYS-LH30S-1A)を用いて測定を行った。
[FT-IR]
装置:NICOLET5700(Thermo ELECTRON社製)
Smart Orbitアクセサリー
測定法:ATR法
[1H-NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian社製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d6)
標準物質:テトラメチルシラン(TMS)
液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上での5分間の乾燥、230℃の熱風循環式オーブンで20分間の焼成を経て膜厚100nmの塗膜を形成させた。この塗膜面に、光配向処理を施し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルを用いて、液晶配向性を偏光顕微鏡にて液晶の配向状態を観察した。
攪拌装置付きの500mL四つ口フラスコを窒素雰囲気とし、DA-1を5.00g(22.39mmol)入れ、NMPを171g、及び塩基としてピリジンを4.00g(50.52mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM-CBDE-Clを6.84g(21.05mmol)添加し、水冷下4時間反応させた。得られたポリアミド酸エステル溶液を847gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取した。続いて、212gの2-プロパンールで5回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=17451、Mw=40651であった。
得られたポリアミック酸エステル樹脂粉末7.50gを100ml三角フラスコに取り、GBLを67.50g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-1)を得た。
撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリアミック酸エステル溶液(PAE-1)を19.58gとり、GBLを11.82g、BCSを7.90g、添加剤Aを0.28g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(A-1)を得た。
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを6.99g(64.6mmol)取り、NMPを385g、塩基としてピリジンを11.66g(147mmol)加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM-CBDE-Clを19.97g(61.41mmol)添加し、水冷下2時間反応させた。得られたポリアミック酸エステルの溶液を、1862gの2-プロパノールに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、931gの2-プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。また、このポリアミック酸エステルの分子量はMn=16,813、Mw=38,585であった。
得られたポリアミック酸エステル樹脂粉末8.12gを100ml三角フラスコに取り、DMFを73.10g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-2)を得た。
攪拌子を入れた20mLサンプル管に、合成例3で得られたポリアミック酸エステル溶液(PAE-2)を7.34gとり、GBLを4.41g、BCSを2.94g、添加剤Aを0.25g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(B-1)を得た。
合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、膜厚100nmの膜を得た。この塗膜面に偏光板を介して波長313nmの紫外線を0.8J/cm2照射した。次いで、膜付き基板を、230℃の熱風循環式オーブンで20分焼成し、液晶配向膜を得た。
得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.33であった。
合成例4で得られた液晶配向剤(B-1)を用いた以外は、実施例1と同様の方法で、液晶配向膜を作製した。
得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.03であった。
合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して波長313nmの紫外線を1.0J/cm2照射し、230℃の熱風循環式オーブンで20分間焼成して、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
合成例4で得られた液晶配向剤(B-1)を用いた以外は、実施例2と同様の方法で、液晶セルを作製した。
偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、液晶は配向しておらず、セルを回転させても明暗の変化ができなかった。また、光抜けも発生していた。
上記した実施例1と比較例1、及び実施例2と比較例2の比較より、本発明の液晶配向膜は、高い異方性を発現し、液晶配向性に優れることが確認された。
式(DA-1)と無水コハク酸をNMP中で反応させた後、ピリジン、無水酢酸を添加して、40℃にてイミド化させて、下記式(M-1)の化合物を得た。また、p-フェニレンジアミンと無水コハク酸をNMP中で反応させた後、ピリジン、無水酢酸を添加して、40℃にてイミド化させて、下記式(M-2)の化合物を得た。
以上のことから、式(M-1)を230℃で加熱することにより、熱脱離性基が脱離して生成したアミノ基とイミドカルボニル酸素が縮合し、環構造を形成することが確認された。
次に、合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、厚み100nmの膜を得た。得られた膜を削り取り、ATR法にてFT-IRを測定した。結果、上記式(M-3)と同様に1650~1600cm-1の領域にイミノ基に由来する吸収バンドが確認された。このことから、ポリマー中においても、加熱によって生成したアミノ基とイミドカルボニル酸素との縮合反応が進行し、環構造が形成されていることが確認された。
[ジアミン化合物(DA-2)の合成]
1H NMR (DMSO-d6):δ 8.38, (d, J = 9.3 Hz, 2H, C6H3), 7.83 (d, J = 2.9 Hz, 2H, C6H3), 7.52 (dd, J = 9.3, 2.9 Hz, 2H, C6H3), 4.64 (s, 4H, CH2CH2). 13C{1H} NMR (DMSO-d6):δ162.8, 141.8, 128.6, 121.7, 120.2, 115.8, 109.4, 68.1 (each s)
1H NMR (DMSO-d6):δ 8.01, (d, J = 9.1 Hz, 2H, C6H3), 7.36 (d, J = 2.9 Hz, 2H, C6H3), 7.02 (dd, J = 9.1, 2.9 Hz, 2H, C6H3), 4.48 (s, 4H, CH2CH2), 3.96 (s, 4H, NH2). 13C{1H} NMR (DMSO-d6):δ162.7, 143.5, 141.2, 127.8, 115.7, 113.1, 67.3, 43.6 (each s)
1H NMR (DMSO-d6):δ 8.14, (d, J = 7.8 Hz, 2H, C6H3), 7.48 (t, J = 6.0 Hz, 2H, CH2NH), 7.14 (dd, J = 9.0, 2.5 Hz, 2H, C6H3), 7.02 (d, J = 2.5 Hz, 2H, C6H3), 4.50 (s, 4H, CH2CH2), 4.47 (d, J = 6.0 Hz, 2H, CH2NH), 1.34 (s, 18H, t-Bu). 13C{1H} NMR (DMSO-d6):δ 162.7, 156.2, 141.1, 139.0, 128.3, 115.1, 113.1, 78.7, 67.3, 41.8, 28.6 (each s)
1H NMR (DMSO-d6):δ 7.21 (t, J = 6.0 Hz, 2H, CH2NH), 6.59 (d, J = 8.2 Hz, C6H3), 6.58 (s, 2H, C6H3), 6.52 (d, J = 8.2 Hz, 2H, C6H3), 4.56 (s, 4H, CH2CH2), 4.04, (s, 4H, NH2), 3.90 (d, J = 6.0 Hz, 2H, CH2NH), 1.35 (s, 18H, t-Bu). 13C{1H} NMR (DMSO-d6):δ 156.4, 150.1, 140.2, 124.9, 116.0, 115.6, 114.2, 78.2, 67.3, 40.9, 28.7 (each s).
攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、DA-2を2.00g(3.98mmol)入れ、NMPを56.42g、及び塩基としてピリジンを0.71g(8.98mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM-CBDE-Clを1.22g(3.74mmol)添加し、水冷下4時間反応させた。得られたポリアミド酸エステル溶液を241gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取した。続いて、120gの2-プロパンールで5回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=14564、Mw=29153であった。
得られたポリアミック酸エステル樹脂粉末2.03gを50ml三角フラスコに取り、NMPを18.30g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-3)を得た。
撹拌子を入れた50mL三角フラスコに、合成例6で得られたポリアミック酸エステル溶液(PAE-3)を12.03gとり、NMPを4.00g、BCSを4.02g、添加剤Aを0.17g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(A-2)を得た。
(実施例3)
合成例7で得られた液晶配向剤(A-2)を用いた以外は、実施例1と同様の方法で、液晶配向膜を作製した。
得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.09であった。
合成例7で得られた液晶配向剤(A-2)を用いた以外は、実施例2と同様の方法で、液晶セルを作製した。
偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
(実施例5)
合成例7で得られた液晶配向剤(A-2)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、膜厚100nmの膜を得た。この塗膜面に偏光板を介して波長313nmの紫外線を0.8J/cm2照射した。次いで、この基板を、1-メトキシ-2-プロパノールに3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間乾燥させて、液晶配向膜を得た。
得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.07であった。
合成例7で得られた液晶配向剤(A-2)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して波長313nmの紫外線を1.0J/cm2照射した。次いで、この基板を、1-メトキシ-2-プロパノールに3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間乾燥させた。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
Claims (8)
- 下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射してなることを特徴とする液晶配向膜。
- 上記式(A-1)~(A-5)において、Dがtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である請求項1~3のいずれかに記載の液晶配向膜。
- 上記液晶配向剤の焼成膜が、焼成によって生成したアミノ基とイミドカルボニル酸素との縮合反応による環構造を有する請求項1~5のいずれかに記載の液晶配向膜。
- 上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と有機溶媒とを含む液晶配向剤を塗布、焼成して得られる膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射する請求項1~6のいずれかに記載の液晶配向膜の製造方法。
- 請求項1~6のいずれかに記載の液晶配向膜を有する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013547218A JP6102745B2 (ja) | 2011-11-30 | 2012-11-29 | 液晶配向膜の製造方法 |
KR1020147016593A KR102000316B1 (ko) | 2011-11-30 | 2012-11-29 | 액정 배향막, 액정 배향막의 제조 방법 및 액정 표시 소자 |
CN201280068402.4A CN104106001B (zh) | 2011-11-30 | 2012-11-29 | 液晶取向膜、液晶取向膜的制造方法、及液晶显示元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011262865 | 2011-11-30 | ||
JP2011-262865 | 2011-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013081067A1 true WO2013081067A1 (ja) | 2013-06-06 |
Family
ID=48535515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080978 WO2013081067A1 (ja) | 2011-11-30 | 2012-11-29 | 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6102745B2 (ja) |
KR (1) | KR102000316B1 (ja) |
CN (1) | CN104106001B (ja) |
TW (1) | TWI588181B (ja) |
WO (1) | WO2013081067A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016118763A (ja) * | 2014-12-23 | 2016-06-30 | Jsr株式会社 | 液晶配向膜の製造方法、液晶素子の製造方法及び光配向用重合体組成物 |
WO2017022636A1 (ja) * | 2015-07-31 | 2017-02-09 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
CN109891310A (zh) * | 2016-08-30 | 2019-06-14 | 日产化学株式会社 | 液晶取向剂、液晶取向膜和液晶表示元件 |
WO2021161989A1 (ja) * | 2020-02-14 | 2021-08-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン |
US11352563B2 (en) | 2018-01-22 | 2022-06-07 | Lg Chem, Ltd. | Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same |
WO2024111498A1 (ja) * | 2022-11-25 | 2024-05-30 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6631077B2 (ja) * | 2014-11-05 | 2020-01-15 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
KR101959515B1 (ko) * | 2016-08-19 | 2019-03-18 | 주식회사 엘지화학 | 액정 배향막의 제조 방법 |
CN110573952B (zh) * | 2017-03-02 | 2022-03-22 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶表示元件 |
WO2018190426A1 (ja) * | 2017-04-14 | 2018-10-18 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050523A1 (ja) * | 2008-10-29 | 2010-05-06 | 日産化学工業株式会社 | ジアミン、ポリイミド、液晶配向剤及び液晶配向膜 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3893659B2 (ja) | 1996-03-05 | 2007-03-14 | 日産化学工業株式会社 | 液晶配向処理方法 |
TW461980B (en) * | 1997-04-30 | 2001-11-01 | Nissan Chemical Ind Ltd | Liquid crystal orientation processing agent |
JP4078508B2 (ja) * | 1998-08-26 | 2008-04-23 | 日産化学工業株式会社 | 液晶配向処理剤及びそれを用いた液晶素子並びに液晶の配向方法 |
US6740371B1 (en) * | 1999-06-30 | 2004-05-25 | Nissan Chemical Industries, Ltd. | Diaminobenzene derivative, polyimide obtained therefrom, and liquid-crystal alignment film |
KR100932410B1 (ko) * | 2002-05-23 | 2009-12-17 | 닛산 가가쿠 고교 가부시키 가이샤 | 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 |
-
2012
- 2012-11-29 JP JP2013547218A patent/JP6102745B2/ja active Active
- 2012-11-29 KR KR1020147016593A patent/KR102000316B1/ko active IP Right Grant
- 2012-11-29 WO PCT/JP2012/080978 patent/WO2013081067A1/ja active Application Filing
- 2012-11-29 CN CN201280068402.4A patent/CN104106001B/zh active Active
- 2012-11-30 TW TW101145045A patent/TWI588181B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050523A1 (ja) * | 2008-10-29 | 2010-05-06 | 日産化学工業株式会社 | ジアミン、ポリイミド、液晶配向剤及び液晶配向膜 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016118763A (ja) * | 2014-12-23 | 2016-06-30 | Jsr株式会社 | 液晶配向膜の製造方法、液晶素子の製造方法及び光配向用重合体組成物 |
WO2017022636A1 (ja) * | 2015-07-31 | 2017-02-09 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
KR20180037013A (ko) * | 2015-07-31 | 2018-04-10 | 닛산 가가쿠 고교 가부시키 가이샤 | 액정 배향제, 액정 배향막 및 액정 표시 소자 |
CN108139633A (zh) * | 2015-07-31 | 2018-06-08 | 日产化学工业株式会社 | 液晶取向剂、液晶取向膜和液晶表示元件 |
KR102672865B1 (ko) | 2015-07-31 | 2024-06-05 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막 및 액정 표시 소자 |
CN109891310A (zh) * | 2016-08-30 | 2019-06-14 | 日产化学株式会社 | 液晶取向剂、液晶取向膜和液晶表示元件 |
US11352563B2 (en) | 2018-01-22 | 2022-06-07 | Lg Chem, Ltd. | Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same |
WO2021161989A1 (ja) * | 2020-02-14 | 2021-08-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン |
WO2024111498A1 (ja) * | 2022-11-25 | 2024-05-30 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
CN104106001B (zh) | 2016-11-16 |
TW201339203A (zh) | 2013-10-01 |
JPWO2013081067A1 (ja) | 2015-04-27 |
CN104106001A (zh) | 2014-10-15 |
KR102000316B1 (ko) | 2019-07-15 |
TWI588181B (zh) | 2017-06-21 |
JP6102745B2 (ja) | 2017-03-29 |
KR20140098146A (ko) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6711443B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶配向素子 | |
JP6852771B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6102745B2 (ja) | 液晶配向膜の製造方法 | |
JP5900344B2 (ja) | 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜 | |
JP6056759B2 (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 | |
JP6187457B2 (ja) | 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP6233309B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
KR101742838B1 (ko) | 액정 배향 처리제 및 그것을 사용한 액정 표시 소자 | |
WO2015060360A1 (ja) | 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤 | |
JP6083379B2 (ja) | 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜 | |
JP6202006B2 (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 | |
JPWO2015060358A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP7239872B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP6217648B2 (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 | |
JP2019101196A (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP2019101195A (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 | |
JP2018040979A (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852952 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547218 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147016593 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12852952 Country of ref document: EP Kind code of ref document: A1 |