WO2013081067A1 - 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 - Google Patents

液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 Download PDF

Info

Publication number
WO2013081067A1
WO2013081067A1 PCT/JP2012/080978 JP2012080978W WO2013081067A1 WO 2013081067 A1 WO2013081067 A1 WO 2013081067A1 JP 2012080978 W JP2012080978 W JP 2012080978W WO 2013081067 A1 WO2013081067 A1 WO 2013081067A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
alignment film
formula
Prior art date
Application number
PCT/JP2012/080978
Other languages
English (en)
French (fr)
Inventor
直樹 作本
将人 長尾
佳和 原田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013547218A priority Critical patent/JP6102745B2/ja
Priority to KR1020147016593A priority patent/KR102000316B1/ko
Priority to CN201280068402.4A priority patent/CN104106001B/zh
Publication of WO2013081067A1 publication Critical patent/WO2013081067A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal alignment film, a method for producing the liquid crystal alignment film, and a liquid crystal display element including the liquid crystal alignment film. More specifically, in place of the rubbing treatment, a liquid crystal alignment film provided with a liquid crystal alignment ability by photo-alignment treatment, that is, irradiation of polarized ultraviolet rays, particularly polarized ultraviolet rays including ultraviolet rays having a wavelength of 300 nm or more, and the liquid crystal alignment The present invention relates to a film manufacturing method and a liquid crystal display device including the liquid crystal alignment film.
  • the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, polyester. It is produced by rubbing in one direction with a cloth such as so-called rubbing.
  • the method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • demands for higher performance, higher definition, and larger size of liquid crystal display elements are increasing, and the surface of the alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
  • Non-Patent Document 1 As a method for replacing the rubbing treatment, a photo-alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known.
  • liquid crystal alignment treatment by the photo-alignment method those utilizing a photoisomerization reaction, those utilizing a photocrosslinking (photodimerization) reaction, those utilizing a photodecomposition reaction, etc. have been proposed (see Non-Patent Document 1). .
  • the polyimide film having an alicyclic structure such as a cyclobutane ring used in Patent Document 1 exhibits high anisotropy by irradiating short-wave ultraviolet rays, particularly polarized ultraviolet rays around 254 nm, and improves liquid crystal orientation.
  • An excellent liquid crystal alignment film can be obtained.
  • ultraviolet rays near 254 nm are high in energy and require a lot of power for irradiation, not only the cost for photo-alignment treatment is high, but also the burden on the environment is large.
  • ultraviolet rays having a shorter energy and stronger energy are used, there is a possibility that an electrode formed on the substrate and a thin film transistor (hereinafter, TFT) may be damaged.
  • TFT thin film transistor
  • the photo-alignment method using photoisomerization or photodimerization can impart anisotropy by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more.
  • a liquid crystal alignment film obtained by a photo-alignment method using photoisomerization or photodimerization has a weak alignment regulating force and has a problem that an afterimage occurs when used in a liquid crystal display element.
  • the present invention is a liquid crystal alignment film to which anisotropy is imparted by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more, and has high anisotropy, good liquid crystal alignment, and high liquid crystal alignment regulating power.
  • An object of the present invention is to provide a liquid crystal alignment film, a method for producing the liquid crystal alignment film, and a liquid crystal display device having the liquid crystal alignment film.
  • a tetracarboxylic dianhydride having an alicyclic structure and / or a derivative thereof, and an amino group protected with a protecting group that thermally desorbs A film obtained from a polyimide precursor obtained by a polycondensation reaction with a diamine having a specific structure having a diamine or a liquid crystal aligning agent containing an imidized polymer of the polyimide precursor is polarized containing ultraviolet rays having a wavelength of 300 nm or more. It was found that a liquid crystal alignment film having high anisotropy, good liquid crystal alignment properties, and high liquid crystal alignment regulating force can be obtained by photo-alignment by ultraviolet irradiation.
  • the present invention has the following gist. 1.
  • a fired film of a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor, a wavelength of 300 nm
  • X 1 is a tetravalent organic group having an alicyclic structure
  • Y 1 is a divalent organic group represented by the following formula (A)
  • R 1 is a hydrogen atom, or (It is an alkyl group having 1 to 4 carbon atoms.)
  • a 1 and A 2 is at least one structure selected from the group consisting of the following formulas (A-1) ⁇ (A -5), may .B 1 be the same or different , Single bond, —O—, —S—, —NH—, —NR—, ester bond, thioester bond, amide bond, urea bond, carbonate bond, carbamate bond, or divalent organic group having 1 to 10 carbon atoms
  • n is an integer of 0 to 1.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
  • D is an amino-protecting group that is replaced with hydrogen by heating.
  • X 1 in the formula (1) is at least one selected from the group consisting of structures represented by the following formulas (X-1) to (X-10).
  • R 2 , R 3 , R 4 , and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, Or a phenyl group.
  • X 1 is represented by the following formula (X1-1) and (Xl-2) Bareru independently from the group consisting of structures represented by at least one a is a liquid crystal alignment film according to any of claims 1 or 2. 4).
  • X 1 is represented by the following formula (X1-1) and (Xl-2) Bareru independently from the group consisting of structures represented by at least one a is a liquid crystal alignment film according to any of claims 1 or 2. 4).
  • D is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. 5.
  • Y 1 is at least one selected from the group consisting of the structures represented by the following (Y1-1) to (Y1-4). 6). 6.
  • a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and an imidized polymer of the polyimide precursor, and an organic solvent
  • a liquid crystal display device having the liquid crystal alignment film according to any one of 1 to 6 above.
  • the liquid crystal alignment film of the present invention was polarized including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less on a fired film of a liquid crystal alignment agent containing the polyimide precursor having the above specific structure or an imidized polymer of the polyimide precursor. It is obtained by irradiating with ultraviolet rays, can impart high anisotropy, and has excellent liquid crystal alignment and alignment regulating power. Therefore, when used as a liquid crystal display element, a liquid crystal display element having excellent afterimage characteristics can be obtained.
  • the ultraviolet ray used is not a conventional short wavelength, but an ultraviolet ray having a wavelength of 300 nm or more and lower energy can be used. Therefore, the electric power for the photo-alignment treatment is small and the burden on the environment can be reduced. In addition, since long-wavelength ultraviolet light having a lower energy is used, damage to electrodes and TFTs formed on the substrate can be reduced.
  • the reason why the above-described excellent effect is obtained is not necessarily clear, but is considered as follows.
  • Polyimide having an alicyclic structure in the main chain can impart anisotropy by irradiating polarized ultraviolet rays.
  • the alicyclic structure is cyclobutane
  • by irradiating polarized radiation only the aromatic ring bonded to the imide portion of the molecular chain in which the major axis direction of the molecular chain is parallel to the polarization direction absorbs light,
  • the ring-opening reaction of the following formula (i) proceeds and anisotropy is imparted.
  • the photodecomposition reaction proceeds efficiently by irradiating polarized ultraviolet rays around 254 nm.
  • a limited structure such as biphenyl or a condensed ring structure is required, and these limited structures do not necessarily have good liquid crystal alignment or liquid crystal alignment regulation power. There is.
  • these biphenyls and condensed ring structures are rigid skeletons, the resulting polymers are often poorly soluble in organic solvents.
  • the liquid crystal aligning agent containing the polyimide precursor having the specific structure or the imidized polymer of the polyimide precursor when baked, only the volatilization or imidization of the solvent by heating proceeds. Instead, the condensation reaction of the amino group formed by the elimination of the thermally leaving group and the imide carbonyl oxygen proceeds. Thereby, it is considered that the obtained film has a ring structure which is not an imide ring as shown in the following formula (ii).
  • the liquid crystal alignment film of the present invention forms a new ring structure as described above by a condensation reaction with an imide ring, and thus has a more rigid structure than the imide ring. For this reason, the molecular chain in the liquid crystal alignment film is difficult to move by driving the liquid crystal, and exhibits high liquid crystal alignment regulating power.
  • liquid crystal aligning agent described in the present invention has a bulky substituent as an amino-protecting group, and further, the above ring structure is formed after coating and baking, so that it has excellent solubility and applicability. It is good and the film obtained is homogeneous with no coating failure.
  • the liquid crystal alignment film of the present invention includes at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (1) and an imidized polymer of the polyimide precursor. Formed from the agent.
  • X 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited as long as it is a known one. If a specific example of X 1 is given, it is at least one selected from the group consisting of structures represented by the following formulas (X-1) to (X-10).
  • R 2 , R 3 , R 4 , and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. , An alkynyl group, or a phenyl group.
  • R 2 , R 3 , R 4 and R 5 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably At least one selected from the group consisting of structures represented by (X1-1) to (X1-2).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • Y 1 is a divalent organic group represented by the following formula (A).
  • a 1 and A 2 are each independently at least one structure selected from the group consisting of the following formulas (A-1) to (A-5).
  • the formula (A-1) or (A-2) is preferable, and the formula (A-1) is particularly preferable.
  • D is an amino-protecting group that is replaced with hydrogen by heating.
  • the structure of D is not particularly limited as long as it is a functional group that can replace a hydrogen atom by heating.
  • D is a firing temperature at the time of obtaining the liquid crystal alignment film, preferably 150 ° C. to 300 ° C., more preferably 150 to 250 ° C., and a structure in which the elimination reaction efficiently proceeds, and a tert-butoxycarbonyl group or A 9-fluorenylmethoxycarbonyl group is more preferable, and a tert-butoxycarbonyl group is particularly preferable.
  • B 1 is a single bond, —O—, —S—, —NH—, —NR—, ester bond, thioester bond, amide bond, urea bond, carbonate bond, carbamate bond, or divalent having 1 to 10 carbon atoms.
  • N is an integer of 0 to 1.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof.
  • alkyl group examples include a methyl group, ethyl group, propyl group, butyl group, tert-butyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
  • the carbonate bond can have a structure represented by —O—C (O) —O—.
  • the carbamate bond includes —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R is an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof, and examples thereof are the same as the above-described alkyl group, alkenyl group, alkynyl group, and aryl group.
  • B 1 is a divalent organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (2).
  • Z 4 , Z 5 and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, or ester bond, amide bond, thioester bond, urea bond, carbonate Bond, carbamate bond.
  • R 11 is a hydrogen atom, a methyl group, or a tert-butoxycarbonyl group.
  • R 9 and R 10 in the formula (2) are each independently a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. If one of R 9 and R 10 is a single bond, R 9 or R 10 is a group which combines alkylene group having 2 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or these.
  • alkylene group examples include a structure in which one hydrogen atom is removed from the alkyl group. More specifically, a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- Examples thereof include a cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group and the like.
  • the structure remove
  • alkynylene group examples include a structure in which one hydrogen atom is removed from the alkynyl group. More specifically, an ethynylene group, an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group, Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • excluding one hydrogen atom from the said aryl group is mentioned. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like.
  • B 1 a single bond or the following formula (A1-1)
  • the structure of (A1-25) is more preferable.
  • Y 1 the following (Y1-1) to (Y1-4) are particularly preferable.
  • the ratio of the structural unit represented by the formula (1) is the total structure in the polymer. 60 mol% to 100 mol% is preferable with respect to 1 mol of the unit. Higher anisotropy can be imparted by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less as the ratio of the structural unit represented by the above formula (1) is higher. Therefore, the ratio of the structural unit represented by the above formula (1) is preferably 80 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, because a liquid crystal alignment film having good liquid crystal alignment properties can be obtained. Is more preferable.
  • the liquid crystal aligning agent of the present invention may contain a structural unit represented by the following formula (3) in addition to the structural unit represented by the above formula (1).
  • R 1 has the same definition as R 1 in the formula (1).
  • X 2 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the following formulas (X-11) to (X-43). From the viewpoint of availability of the compound, X 2 is preferably X-17, X-26, X-27, X-28, X-32 or X-39.
  • a tetracarboxylic dianhydride having an aromatic ring structure it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, and the structure of X 2 is X-26. X-27, X-28, X-32, X-35 or X-37 are more preferred.
  • Y 2 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 2 include the following formulas (Y-1) to (Y-71).
  • the liquid crystal aligning agent of the present invention may not be able to impart anisotropy with polarized ultraviolet light having a wavelength of 300 nm.
  • the proportion of structural units represented by is preferably 0 to 20 mol%, more preferably 0 to 10 mol%, relative to 1 mol of all structural units.
  • the molecular weight of the polyimide precursor used in the liquid crystal aligning agent of the present invention and the imidized polymer of the polyimide precursor is preferably 2,000 to 500,000, more preferably 5,000 to 300,000 in terms of weight average molecular weight. 000, more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the polyimide precursor used and the imidized polymer of the polyimide precursor are uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate, in addition to the organic solvent for dissolving the polymer component.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the above-mentioned polymers, and the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film are changed.
  • a dielectric or conductive material for the purpose, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when the liquid crystal alignment film is formed, May be added with an imidization accelerator for the purpose of efficiently proceeding imidization of the polyimide precursor when the coating film is baked.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the following methods (1) to (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can be synthesized by reacting.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 moles relative to the diamine component from the viewpoint of easy removal and easy obtaining of a high molecular weight product.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is another polyimide precursor is compoundable by the method shown below. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these are used alone or in combination of two or more. May be.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation hardly occurs and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the imidized polymer of the polyimide precursor in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, re-dissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • an organic solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while thoroughly stirring. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning film of this invention is a liquid crystal aligning agent containing at least 1 type of polymer chosen from the group which consists of the polyimide precursor which has a structural unit represented by Formula (1), and the imidation polymer of this polyimide precursor. Is obtained by irradiating a substantially linearly polarized ultraviolet ray including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less. Usually, it is a coating film obtained by applying a liquid crystal aligning agent to a substrate, drying and firing, and is obtained by irradiating the coating film with the above-mentioned ultraviolet rays.
  • the substrate on which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. Use of a substrate on which an ITO electrode or the like is formed is preferable from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used. Examples of the method for applying the liquid crystal aligning agent described in the present invention include a spin coating method, a printing method, and an ink jet method.
  • the drying and baking process after applying the liquid crystal aligning agent converts the imidized polymer by converting the polyimide precursor into a polyimide, and the amino protecting group that is converted into a hydrogen atom by the heat of the polyimide precursor. It is a process for converting to, and arbitrary temperature and time for that can be selected. Usually, in order to sufficiently remove the organic solvent contained, it is preferably dried at 50 ° C. to 120 ° C., preferably for 1 minute to 10 minutes, and then preferably at 150 ° C. to 300 ° C., preferably for 5 minutes to 120 minutes. Baked.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film surface is irradiated with ultraviolet rays polarized in a certain direction including ultraviolet rays having a wavelength of 300 nm or more and 400 nm or less, preferably 310 nm or more and 380 nm or less.
  • the method of heat-processing at the temperature of 250 degreeC and providing liquid crystal aligning ability is mentioned.
  • the coated substrate may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
  • the irradiation amount of the ultraviolet rays is preferably in the range of 1 to 10,000 mJ / cm 2 , particularly preferably in the range of 50 to 5,000 mJ / cm 2 .
  • the film irradiated with the polarized ultraviolet light may be contact-treated with water or a solution containing a specific organic solvent.
  • the organic solvent is not particularly limited, but water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate Methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate.
  • a liquid crystal alignment film having high anisotropy and no unevenness can be easily obtained, so that 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate And at least one selected from the group consisting of diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. In particular, at least one selected from the group consisting of 1-methoxy-2-propanol and ethyl lactate is preferable.
  • the contact treatment between the film irradiated with polarized ultraviolet light and the solution containing the organic solvent is preferably performed by a treatment such that the film and the liquid are sufficiently in contact, such as an immersion treatment or a spraying treatment.
  • a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing or rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or both are used. May be done.
  • the temperature for drying is preferably 80 to 250 ° C., more preferably 80 to 150 degrees.
  • the liquid crystal alignment film obtained as described above can stably align liquid crystal molecules in a certain direction.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by preparing a liquid crystal cell by a known method after obtaining the above substrate with a liquid crystal alignment film.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the molecular weight of the polymer is measured by a GPC (normal temperature gel permeation chromatography) device, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) are calculated as polyethylene glycol and polyethylene oxide equivalent values. did.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top manufactured by Polymer Laboratories
  • Mp Molecular weight
  • the anisotropy of the alignment film was measured as follows. A polyimide film having a thickness of 100 nm is irradiated with ultraviolet rays through a polarizing plate, and an anisotropic magnitude with respect to the alignment direction of the obtained alignment film is measured according to a liquid crystal alignment film evaluation system (manufactured by Moritex, Ray Scan Lab H, LYS). Measurement was carried out using -LH30S-1A).
  • FT-IR Apparatus: NICOLET5700 (manufactured by Thermo ELECTRON) Smart Orbit accessory measurement method: ATR method
  • F-NMR Fourier transform type superconducting nuclear magnetic resonance apparatus
  • INOVA-400 manufactured by Varian 400 MHz
  • Solvent Deuterated dimethyl sulfoxide (DMSO-d 6 ) Standard substance: Tetramethylsilane (TMS)
  • a liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and baked for 20 minutes in a hot air circulation oven at 230 ° C. Formed.
  • the coating surface was subjected to photo-alignment treatment to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment is antiparallel.
  • the periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell. Using this liquid crystal cell, the alignment state of the liquid crystal was observed with a polarizing microscope.
  • PAE-2 polyamic acid ester solution
  • Example 1 The liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 3 minutes. Baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm. The surface of the coating film was irradiated with ultraviolet light having a wavelength of 313 nm through a polarizing plate at 0.8 J / cm 2 . Next, the substrate with a film was baked for 20 minutes in a hot air circulation oven at 230 ° C. to obtain a liquid crystal alignment film. As a result of measuring the anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film, the magnitude of the anisotropy was 0.33.
  • Example 1 A liquid crystal alignment film was produced in the same manner as in Example 1 except that the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used. As a result of measuring the anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film, the magnitude of the anisotropy was 0.03.
  • Example 2 The liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, and then applied onto a glass substrate with a transparent electrode by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 1.0 J / cm 2 of ultraviolet light having a wavelength of 313 nm through a polarizing plate and baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the alignment directions of the two substrates are antiparallel.
  • the periphery was sealed, and an empty cell with a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
  • the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
  • Example 2 A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used.
  • the liquid crystal aligning agent (B-1) obtained in Synthesis Example 4 was used.
  • the liquid crystal was not aligned, and even if the cell was rotated, the brightness could not be changed. In addition, light leakage occurred. From the comparison of Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2 described above, it was confirmed that the liquid crystal alignment film of the present invention exhibited high anisotropy and was excellent in liquid crystal alignment.
  • the formula (M-1) was dissolved in NMP to obtain a (M-1) solution having a solid concentration of 10% by mass.
  • the glass substrate was placed on a hot plate heated to 230 ° C. and heated. After 10 minutes, about 1 ml of the above (M-1) solution was dropped on a glass substrate and heated at 230 ° C. for 20 minutes. After 20 minutes, the solid remaining on the glass substrate was recovered, dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured. From NMR, it was confirmed that the obtained solid was represented by the following formula (M-3).
  • the liquid crystal aligning agent (A-1) obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a glass substrate with a transparent electrode, and then on a hot plate at a temperature of 80 ° C. for 3 minutes. After drying, the film was baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm. The obtained film was shaved and FT-IR was measured by the ATR method. As a result, an absorption band derived from an imino group was confirmed in the region of 1650 to 1600 cm ⁇ 1 as in the above formula (M-3). From this, also in the polymer, it was confirmed that the condensation reaction between the amino group generated by heating and the imide carbonyl oxygen proceeds to form a ring structure.
  • Example 4 A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was used. When the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
  • Example 5 The liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 3 minutes. Baked in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a film having a thickness of 100 nm.
  • the surface of the coating film was irradiated with ultraviolet light having a wavelength of 313 nm through a polarizing plate at 0.8 J / cm 2 .
  • the substrate was immersed in 1-methoxy-2-propanol for 3 minutes, then immersed in pure water for 1 minute, and dried on a hot plate at 80 ° C. for 5 minutes to obtain a liquid crystal alignment film.
  • the magnitude of the anisotropy was 0.07.
  • Example 6 The liquid crystal aligning agent (A-2) obtained in Synthesis Example 7 was filtered through a 1.0 ⁇ m filter and then applied onto a glass substrate with a transparent electrode by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The coating surface was irradiated with 1.0 J / cm 2 of ultraviolet rays having a wavelength of 313 nm through a polarizing plate. Next, this substrate was immersed in 1-methoxy-2-propanol for 3 minutes, then immersed in pure water for 1 minute, and dried on an 80 ° C. hot plate for 5 minutes.
  • Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then combined so that the alignment directions of the two substrates are antiparallel.
  • the periphery was sealed, and an empty cell with a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
  • the alignment state of the liquid crystal cell was observed with a polarizing microscope under crossed Nicols, it was confirmed that the liquid crystal cell had a uniform alignment with no defects and no light leakage.
  • the liquid crystal alignment film of the present invention is a liquid crystal alignment film obtained by irradiating polarized ultraviolet rays having a wavelength of 300 nm or more, and has high anisotropy, good liquid crystal alignment, and high liquid crystal alignment regulating power.
  • the present invention is widely useful for TN elements, STN elements, TFT liquid crystal elements, and vertical alignment type liquid crystal display elements.
  • it is particularly useful as a liquid crystal alignment element of a liquid crystal display element of an IPS driving method or an FFS (fringe field switching) driving method or a liquid crystal television.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 波長300nm以上の偏光紫外線を照射することで高い異方性と良好な液晶配向性、更に高い液晶配向規制力を有する液晶配向膜、その製造方法を提供する。 式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射してなる液晶配向膜。(Xは脂環構造を有する4価の有機基、Yは式(A)表される2価の有機基、Rは水素原子等。式(A)中、A、Aは、(A-1)~(A-5)の少なくとも1種である。Bは、単結合等、nは0~1)(Dは、加熱によって水素に置き換わるアミノ基の保護基である)

Description

液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子
 本発明は、液晶配向膜、該液晶配向膜の製造方法、及び該液晶配向膜を具備する液晶表示素子に関する。さらに詳しくは、ラビング処理に代わり、光配向処理法、すなわち、偏光された紫外線、特に波長300nm以上の紫外線を含む偏光された紫外線の照射によって液晶配向能を付与された液晶配向膜、該液晶配向膜の製造方法、及び該液晶配向膜を具備する液晶表示素子に関する。
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している方法によれば、液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 液晶配向膜の配向過程において膜面をラビング処理する方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々の問題が明らかとなってきている。
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋(光二量化)反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 液晶配向膜中の重合体として、ポリイミドを光配向用液晶配向膜に用いた場合、他に比べて高い耐熱性を有することからその有用性が期待されており、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている(特許文献1参照)。
特開平9-297313号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号  Vol.17 No.11 13-22ページ
 特許文献1で使用されているシクロブタン環などの脂環構造を有するポリイミド膜は、短波長の紫外線、特に254nm付近の偏光紫外線を照射することにより、高い異方性を発現し、液晶配向性に優れた液晶配向膜が得られる。しかし、254nm付近の紫外線は、エネルギーが高く、照射には多くの電力を必要するため、光配向処理するためのコストが大きいことだけでなく、環境への負荷が大きい。また、よりエネルギーの強い短波長の紫外線を使用するため、基板に形成された電極や薄膜トランジスタ(以下、TFT)にダメージを与える可能性も考えられる。
 一方、光異性化や光二量化を利用した光配向法は、波長300nm以上の偏光紫外線を照射することにより、異方性を付与できる。しかし、光異性化や光二量化を利用した光配向法で得られた液晶配向膜は、配向規制力が弱く、液晶表示素子に用いた場合に、残像が発生してしまうという問題があった。
 本発明は、波長300nm以上の偏光紫外線を照射することで、異方性が付与される液晶配向膜であって、高い異方性と良好な液晶配向性、更には高い液晶配向規制力を有する液晶配向膜、該液晶配向膜の製造方法、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、脂環構造を有するテトラカルボン酸二無水物及び/又はその誘導体と、熱脱離する保護基で保護されたアミノ基を有する特定構造のジアミンと、の重縮合反応により得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化重合体を含有する液晶配向剤から得られる膜が、波長300nm以上の紫外線を含む偏光された紫外線の照射により光配向して高い異方性と良好な液晶配向性、更には高い液晶配向規制力を有する液晶配向膜が得られることを見出した。
 かくして、本発明は、下記を要旨とするものである。
1.下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射してなる液晶配向膜。
Figure JPOXMLDOC01-appb-C000007
(式(1)において、Xは脂環構造を有する4価の有機基であり、Yは下記式(A)で表される2価の有機基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000008
(式(A)において、A及びAは下記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種類の構造であり、同一でも異なってもよい。Bは、単結合、-O-、-S-、-NH-、-NR-、エステル結合、チオエステル結合、アミド結合、ウレア結合、カーボネート結合、カルバメート結合、又は炭素数1~10の2価の有機基であり、nは0~1の整数である。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。)
Figure JPOXMLDOC01-appb-C000009
(式(A-1)~(A-5)において、Dは、加熱によって水素に置き換わるアミノ基の保護基である。)
2.上記式(1)のXが、下記式(X-1)~(X-10)で表される構造からなる群から選ばれる少なくとも1種類である上記1に記載の液晶配向膜。
Figure JPOXMLDOC01-appb-C000010
(上記式において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基である。)
3.Xが、下記式(X1-1)及び(X1-2)で表される構造からなる群から選らばれる少なくとも1種類である上記1または2のいずれかに記載の液晶配向膜。
Figure JPOXMLDOC01-appb-C000011
4.上記式(A-1)~(A-5)において、Dがtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である上記1~3のいずれかに記載の液晶配向膜。
5.Yが、下記(Y1-1)~(Y1-4)で表される構造からなる群から選ばれる少なくとも1種類である上記4に記載の液晶配向膜。
Figure JPOXMLDOC01-appb-C000012
6.上記液晶配向剤の焼成膜が、焼成によって生成したアミノ基とイミドカルボニル酸素との縮合反応による環構造を有する上記1~5のいずれかに記載の液晶配向膜。
7.上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と有機溶媒とを含む液晶配向剤を塗布、焼成して得られる膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射する請求項1~6のいずれかに記載の液晶配向膜の製造方法。
8.上記1~6のいずれかに記載の液晶配向膜を有する液晶表示素子。
 本発明の液晶配向膜は、上記の特定の構造を有するポリイミド前駆体又は該ポリイミド前駆体のイミド化重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射することにより得られ、高い異方性が付与でき、優れた液晶配向性及び配向規制力を有する。そのため、液晶表示素子として用いた場合に、残像特性に優れた液晶表示素子が得られる。使用される紫外線は、従来の短波長ではなく、波長300nm以上のよりエネルギーの低い紫外線を使用できるため、光配向処理するための電力が小さく、環境への負荷も低減することができる。また、よりエネルギーの弱い長波長の紫外線を使用するため、基板に形成された電極やTFTへのダメージを低減することができる。
 本発明の液晶配向剤から得られる液晶配向膜において、何故に上記のような優れた効果が得られるかについては、必ずしも明らかではないが、ほぼ次のように考えられる。
 主鎖に脂環構造を有するポリイミドは、偏光された紫外線を照射することにより、異方性を付与することができる。特に、脂環構造がシクロブタンである場合、偏光された放射線を照射することにより、分子鎖の長軸方向が偏光方向と平行な分子鎖のイミド部位に結合した芳香環のみが光を吸収し、励起され、エネルギー移動することにより、下記式(i)の開環反応が進行し、異方性が付与される。
Figure JPOXMLDOC01-appb-C000013
 上記のシクロブタンの構造は、254nm付近に強い吸収を持つため、254nm付近の偏光紫外線を照射することにより、光分解反応が効率的に進行する。しかし、吸収波長を長波長化するためには、ビフェニルや縮環構造などの限定された構造が必要であり、これらの限定された構造は必ずしも液晶配向性や液晶配向規制力が良好ではない場合がある。また、これらのビフェニルや縮環構造は剛直な骨格であるため、得られたポリマーの有機溶媒に対する溶解性が乏しい場合がほとんどである。
 これに対して、本発明において、上記の特定構造を有するポリイミド前駆体又はポリイミド前駆体のイミド化重合体を含む液晶配向剤を焼成した場合は、加熱による溶媒の揮発やイミド化が進行するだけでなく、熱脱離性基が脱離して生成したアミノ基とイミドカルボニル酸素との縮合反応が進行する。これにより、得られる膜には、下記式(ii)に示すようなイミド環ではない環構造が存在すると考えられる。
Figure JPOXMLDOC01-appb-C000014
 上記(ii)の環構造が形成されることにより、波長300nm以上の偏光された紫外線の照射によって反応する光分解反応が進行し、異方性が付与できると考えられる。
 さらに、本発明の液晶配向膜は、イミド環との縮合反応により、上記した新たな環構造を形成するため、イミド環よりも、更に剛直な構造となる。そのため、液晶の駆動によって、液晶配向膜中の分子鎖が動きにくく、高い液晶配向規制力を示す。また、本発明に記載の液晶配向剤は、アミノ基の保護基として嵩高い置換基を有し、さらに上記の環構造が塗膜、焼成後に形成されるため、溶解性に優れ、塗布性が良好であり、得られる膜は、塗布不良のない均質なものとなる。
<液晶配向膜>
 本発明の液晶配向膜では、下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤から形成される。
Figure JPOXMLDOC01-appb-C000015
 式(1)において、Xは脂環構造を有する4価の有機基であり、公知のものであれば、その構造は特に限定されるものではない。あえて、Xの具体例を挙げるならば、下記式(X-1)~(X-10)で表される構造からなる群から選ばれる少なくとも1種類である。
Figure JPOXMLDOC01-appb-C000016
 式(X-1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基である。液晶配向性の観点から、R、R、R、及びRは、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましく、さらに好ましくは、下記式(X1-1)~(X1-2)で表される構造からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000017
 Rは水素原子、又は炭素数1~4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。
 式(1)において、Yは、下記式(A)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000018
 式(A)において、A及びAは、それぞれ独立して、下記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種類の構造である。合成の容易さから、式(A-1)又は(A-2)が好ましく、式(A-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(A-1)~(A-5)において、Dは、加熱によって水素に置き換わるアミノ基の保護基である。上記Dは、加熱により水素原子に置き換わる官能基であれば、その構造は特に限定されない。Dとしては、液晶配向膜を得る際の焼成温度である、好ましくは150℃~300℃、より好ましくは150~250℃で効率よく脱離反応が進行する構造が好ましく、tert-ブトキシカルボニル基又は9-フルオレニルメトキシカルボニル基がより好ましく、tert-ブトキシカルボニル基が特に好ましい。
 Bは、単結合、-O-、-S-、-NH-、-NR-、エステル結合、チオエステル結合、アミド結合、ウレア結合、カーボネート結合、カルバメート結合、又は炭素数1~10の2価の有機基であり、nは0~1の整数である。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。
 上記エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、又は、-C(O)NR-、-NHC(O)-、-NRC(O)-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基が挙げられる。
 上記ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 上記カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 上記カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせであり、前記のアルキル基、アルケニル基、アルキニル基、アリール基と同様の例を挙げることができる。
 Bが炭素数2~10の2価の有機基である場合、下記式(2)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000020
 式(2)における、Z4、Z及びZはそれぞれ独立して、単結合、-O-、-S-、-NR11-、又はエステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、カルバメート結合である。R11は水素原子、メチル基、又はtert-ブトキシカルボニル基である。
 Z、Z及びZにおいて、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、及びカルバメート結合は、前記のエステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、及びカルバメート結合の同様の構造を示すことができる。
 式(2)におけるR及びR10は、それぞれ独立して単結合、炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基である。RとR10の何れかが単結合の場合、R又はR10は炭素数2~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基である。
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。
 上記アルケニレン基としては、上記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。
 上記アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
 上記アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 Yの構造が、直線性が高い構造や剛直な構造を有する場合、良好な液晶配向性を有する液晶配向膜が得られるため、Bとしては、単結合、又は下記式(A1-1)~(A1-25)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 なかでも、Yとしては、下記(Y1-1)~(Y1-4)が特に好ましい。
Figure JPOXMLDOC01-appb-C000025
 上記式(1)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(1)で表される構造単位の比率は、重合体中の全構造単位1モルに対して、60モル%~100モル%が好ましい。上記式(1)で表される構造単位の比率が高いほど、波長300nm以上400nm以下の偏光された紫外線を照射することにより、高い異方性が付与できる。そのため、上記式(1)で表される構造単位の比率は、良好な液晶配向性を有する液晶配向膜が得られるため、80モル%~100モル%がより好ましく、90モル%~100モル%がさらに好ましい。
 本発明の液晶配向剤には、上記式(1)で表される構造単位以外に下記式(3)で表される構造単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000026
 式(3)において、Rは上記式(1)のRと同様の定義である。Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式(X-11)~(X-43)が挙げられる。化合物の入手性の観点から、Xは、X-17、X-26,X-27、X-28、X-32又はX-39が好ましい。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26,X-27、X-28、X-32、X-35又はX-37がより好ましい。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 上記式(3)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-71)が挙げられる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 ポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の有機溶剤に対する溶解性の向上が期待できるため、Y-8、Y-20、Y-21、Y-22、Y-28、Y-29又はY-30の構造を有する構造単位を有することが好ましい。
 本発明の液晶配向剤は、上記式(3)で表される構造単位の比率が高い場合、波長300nmの偏光された紫外線で異方性が付与できない可能性があるため、上記式(3)で表される構造単位の比率は、全構造単位1モルに対して0~20モル%が好ましく、0~10モル%がさらに好ましい。
 本発明の液晶配向剤に使用されるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明の液晶配向剤に含有される有機溶媒は、使用されるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明の液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、前述の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<ポリイミド前駆体の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 また、別のポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリイミドの製造方法>
 本発明における上記ポリイミド前駆体のイミド化重合体は、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造できる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<液晶配向膜の製造>
 本発明の液晶配向膜は、式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含むほぼ直線に偏光した紫外線を照射することで得られる。通常は、液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜であり、この塗膜面に上記の紫外線を照射することで得られる。
 液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明に記載の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 液晶配向剤を塗布した後の乾燥、焼成工程は、ポリイミド前駆体をポリイミド化してイミド化重合体を転換し、また、ポリイミド前駆体の有する熱によって水素原子に転換するアミノの保護基をアミノ基に転換するための工程であり、そのための任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために好ましくは50℃~120℃で好ましくは1分~10分乾燥させ、次いで、好ましくは150℃~300℃で好ましくは5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。
 光配向処理法の好ましい具体例としては、前記塗膜表面に、波長300nm以上400nm以下、好ましくは310nm以上380nm以下の紫外線を含む一定方向に偏光した紫外線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、紫外線を照射してもよい。前記紫外線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、50~5,000mJ/cmの範囲にあることが特に好ましい。
 さらに、上記で偏光された紫外線を照射した膜は、次いで水、又は特定の有機溶媒を含む溶液で接触処理してもよい。上記の有機溶媒は、特に限定されるものではないが、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。上記の溶媒のなかでも、異方性が高く、ムラのない液晶配向膜が得られ易いことから、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルからなる群から選ばれる少なくとも1種が好ましい。特に、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種が好ましい。
 偏光された紫外線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1分~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。乾燥する場合の温度としては、80~250℃が好ましく、80~150度がより好ましい。
 上記のようにして得られる液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
<液晶表示素子>
 本発明の液晶表示素子は、上記の液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子を設けたアクティブマトリクス構造の液晶表示素子であってもよい。
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 各基板の上には、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。この液晶表示素子は、液晶配向膜として本発明の液晶配向膜の製造方法により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
 本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
1,3DM-CBDE-Cl:ジメチル 1,3-ビス(クロロカルボニル)-1,3-ジ メチルシクロブタン-2,4-ジカルボキシレート
DA-1:(下記式(DA-1))
Figure JPOXMLDOC01-appb-C000037
添加剤A:N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン 
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
DMF:N,N-ジメチルホルムアミド
BCS:ブチルセロソルブ
THF:テトラヒドロフラン
DA-2:下記式(DA-2)
Figure JPOXMLDOC01-appb-I000038
[分子量]
 ポリマーの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[異方性の大きさ]
 配向膜の異方性の測定は以下のようにして行った。
膜厚100nmのポリイミド膜に偏光板を介して紫外線を照射し、得られた配向膜の配向方向に対する異方性の大きさを液晶配向膜評価システム(モリテックス社製、レイ・スキャン ラボH、LYS-LH30S-1A)を用いて測定を行った。
[FT-IR]
装置:NICOLET5700(Thermo ELECTRON社製)
   Smart Orbitアクセサリー
測定法:ATR法
H-NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian社製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d
標準物質:テトラメチルシラン(TMS)
[液晶配向性]
 液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上での5分間の乾燥、230℃の熱風循環式オーブンで20分間の焼成を経て膜厚100nmの塗膜を形成させた。この塗膜面に、光配向処理を施し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルを用いて、液晶配向性を偏光顕微鏡にて液晶の配向状態を観察した。
(合成例1)
 攪拌装置付きの500mL四つ口フラスコを窒素雰囲気とし、DA-1を5.00g(22.39mmol)入れ、NMPを171g、及び塩基としてピリジンを4.00g(50.52mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM-CBDE-Clを6.84g(21.05mmol)添加し、水冷下4時間反応させた。得られたポリアミド酸エステル溶液を847gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取した。続いて、212gの2-プロパンールで5回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=17451、Mw=40651であった。
 得られたポリアミック酸エステル樹脂粉末7.50gを100ml三角フラスコに取り、GBLを67.50g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-1)を得た。
(合成例2)
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリアミック酸エステル溶液(PAE-1)を19.58gとり、GBLを11.82g、BCSを7.90g、添加剤Aを0.28g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(A-1)を得た。
(合成例3)
 撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、p-フェニレンジアミンを6.99g(64.6mmol)取り、NMPを385g、塩基としてピリジンを11.66g(147mmol)加え、撹拌して溶解させた。次にこのジアミン溶液を撹拌しながら1,3DM-CBDE-Clを19.97g(61.41mmol)添加し、水冷下2時間反応させた。得られたポリアミック酸エステルの溶液を、1862gの2-プロパノールに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、931gの2-プロパノールで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末を得た。また、このポリアミック酸エステルの分子量はMn=16,813、Mw=38,585であった。
 得られたポリアミック酸エステル樹脂粉末8.12gを100ml三角フラスコに取り、DMFを73.10g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-2)を得た。
(合成例4)
 攪拌子を入れた20mLサンプル管に、合成例3で得られたポリアミック酸エステル溶液(PAE-2)を7.34gとり、GBLを4.41g、BCSを2.94g、添加剤Aを0.25g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(B-1)を得た。
(実施例1)
 合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、膜厚100nmの膜を得た。この塗膜面に偏光板を介して波長313nmの紫外線を0.8J/cm照射した。次いで、膜付き基板を、230℃の熱風循環式オーブンで20分焼成し、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.33であった。
(比較例1)
 合成例4で得られた液晶配向剤(B-1)を用いた以外は、実施例1と同様の方法で、液晶配向膜を作製した。
 得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.03であった。
(実施例2)
 合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して波長313nmの紫外線を1.0J/cm照射し、230℃の熱風循環式オーブンで20分間焼成して、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
(比較例2)
 合成例4で得られた液晶配向剤(B-1)を用いた以外は、実施例2と同様の方法で、液晶セルを作製した。
 偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、液晶は配向しておらず、セルを回転させても明暗の変化ができなかった。また、光抜けも発生していた。
 上記した実施例1と比較例1、及び実施例2と比較例2の比較より、本発明の液晶配向膜は、高い異方性を発現し、液晶配向性に優れることが確認された。
(参考例1)
 式(DA-1)と無水コハク酸をNMP中で反応させた後、ピリジン、無水酢酸を添加して、40℃にてイミド化させて、下記式(M-1)の化合物を得た。また、p-フェニレンジアミンと無水コハク酸をNMP中で反応させた後、ピリジン、無水酢酸を添加して、40℃にてイミド化させて、下記式(M-2)の化合物を得た。
Figure JPOXMLDOC01-appb-C000039
 次に式(M-1)をNMPに溶解させ、固形分濃度10質量%の(M-1)溶液を得た。次に、230℃に加熱したホットプレートにガラス基板を置き、加熱した。10分後、ガラス基板上に上記の(M-1)溶液を約1ml滴下し、230℃にて20分間加熱した。20分後、ガラス基板上に残った固体を回収し、重ジメチルスルホキシドに溶解させて、H-NMRを測定した。NMRより、得られた固体が下記式(M-3)であることが確認された。
Figure JPOXMLDOC01-appb-C000040
H-NMR(DMSO-d,δppm):2.50~3.00(m,8H)、4.70(s,2H)、6.99(d, 2.1Hz,1H),7.04(dd,J=2.1Hz,8.0Hz,1H)、7.12(d,J=8.1Hz,1H).
 続いて、上記式(M-1)~(M-3)について、ATR法を用いてFT-IRを測定した。その結果、式(M-3)のみ1650~1600cm-1の領域にイミノ基に由来する吸収バンドが確認された。
 以上のことから、式(M-1)を230℃で加熱することにより、熱脱離性基が脱離して生成したアミノ基とイミドカルボニル酸素が縮合し、環構造を形成することが確認された。
 次に、合成例2で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、厚み100nmの膜を得た。得られた膜を削り取り、ATR法にてFT-IRを測定した。結果、上記式(M-3)と同様に1650~1600cm-1の領域にイミノ基に由来する吸収バンドが確認された。このことから、ポリマー中においても、加熱によって生成したアミノ基とイミドカルボニル酸素との縮合反応が進行し、環構造が形成されていることが確認された。
(合成例5)
[ジアミン化合物(DA-2)の合成]
Figure JPOXMLDOC01-appb-C000041
 エチレングリコール(2.62g、42.1mmol)のDMF(170g)溶液に0℃で水素化ナトリウム(4.0g,101mmol)を加え、30分間反応させた後、化合物1-1(15.4g,92.7mmol)を加え3時間後に、反応液を水(560g)へ注ぎ、析出物をろ過し、2-プロパノール、および、ヘキサンで洗浄し乾燥して化合物1-2を茶色固体として得た(収量15.6g, 収率95%)。
 1H NMR (DMSO-d6):δ 8.38, (d, J = 9.3 Hz, 2H, C6H3), 7.83 (d, J = 2.9 Hz, 2H, C6H3), 7.52 (dd, J = 9.3, 2.9 Hz, 2H, C6H3), 4.64 (s, 4H, CH2CH2). 13C{1H} NMR (DMSO-d6):δ162.8, 141.8, 128.6, 121.7, 120.2, 115.8, 109.4, 68.1 (each s)
Figure JPOXMLDOC01-appb-C000042
 化合物1-2(15.5g、43.9mmol)をTHF(311g)に懸濁させ、1.0mmol/LのボランTHF錯体(132mL、132mmol)を加え、加熱還流下1時間撹拌した。その後、反応混合物に水(31.3g)を加え、さらに3mol/L塩酸(124g)を加え、1時間撹拌後、3mol/L水酸化ナトリウム水溶液(157g)を加え塩基性とし1時間撹拌後、有機相を分離した。この有機相を一部採取し、濃縮乾燥して、化合物1-3の同定と粗収率の算出を行った(収率88%)。残りの溶液は、そのまま次工程へ使用した。
 1H NMR (DMSO-d6):δ 8.01, (d, J = 9.1 Hz, 2H, C6H3), 7.36 (d, J = 2.9 Hz, 2H, C6H3), 7.02 (dd, J = 9.1, 2.9 Hz, 2H, C6H3), 4.48 (s, 4H, CH2CH2), 3.96 (s, 4H, NH2). 13C{1H} NMR (DMSO-d6):δ162.7, 143.5, 141.2, 127.8, 115.7, 113.1, 67.3, 43.6 (each s)
Figure JPOXMLDOC01-appb-C000043
 化合物1-3(15.9g、43.9mmol)のTHF(318g)溶液へ、室温でトリエチルアミン(2.66g、26.3mmol)、および、二炭酸ジ-t-ブチル(17.3g、79.0mmol)を加え、室温で1時間反応させた。その後、反応液を濃縮後、トルエン(159g)を加え、析出した固体をろ過し、シリカゲルカラム(ジクロロエタン/酢酸エチル=9/1、Rf=0.4)で精製し、化合物1-4を薄黄色固体(収量6.2g、収率25%)として得た。
 1H NMR (DMSO-d6):δ 8.14, (d, J = 7.8 Hz, 2H, C6H3), 7.48 (t, J = 6.0 Hz, 2H, CH2NH), 7.14 (dd, J = 9.0, 2.5 Hz, 2H, C6H3), 7.02 (d, J = 2.5 Hz, 2H, C6H3), 4.50 (s, 4H, CH2CH2), 4.47 (d, J = 6.0 Hz, 2H, CH2NH), 1.34 (s, 18H, t-Bu). 13C{1H} NMR (DMSO-d6):δ 162.7, 156.2, 141.1, 139.0, 128.3, 115.1, 113.1, 78.7, 67.3, 41.8, 28.6 (each s)
Figure JPOXMLDOC01-appb-C000044
 化合物1-4(6.2g、11mmol)のTHF(620g)の懸濁液に3%Pt-C(0.62g)を加え、水素雰囲気下50℃で18時間撹拌した。その後、50℃で反応液をろ過し、ろ液を37gまで濃縮し、0℃に冷却し析出した固体をろ過、回収することでジアミン化合物(DA-2)を白色固体として得た(収量4.85g、収率88%)。
 1H NMR (DMSO-d6):δ 7.21 (t, J = 6.0 Hz, 2H, CH2NH), 6.59 (d, J = 8.2 Hz, C6H3), 6.58 (s, 2H, C6H3), 6.52 (d, J = 8.2 Hz, 2H, C6H3), 4.56 (s, 4H, CH2CH2), 4.04, (s, 4H, NH2), 3.90 (d, J = 6.0 Hz, 2H, CH2NH), 1.35 (s, 18H, t-Bu). 13C{1H} NMR (DMSO-d6):δ 156.4, 150.1, 140.2, 124.9, 116.0, 115.6, 114.2, 78.2, 67.3, 40.9, 28.7 (each s).
(合成例6)
 攪拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、DA-2を2.00g(3.98mmol)入れ、NMPを56.42g、及び塩基としてピリジンを0.71g(8.98mmol)加え、攪拌して溶解させた。次にこのジアミン溶液を攪拌しながら1,3DM-CBDE-Clを1.22g(3.74mmol)添加し、水冷下4時間反応させた。得られたポリアミド酸エステル溶液を241gの2-プロパノールに撹拌しながら投入し、析出した沈殿物をろ取した。続いて、120gの2-プロパンールで5回洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末を得た。このポリアミック酸エステルの分子量はMn=14564、Mw=29153であった。
 得られたポリアミック酸エステル樹脂粉末2.03gを50ml三角フラスコに取り、NMPを18.30g加え、室温で24時間撹拌し溶解させて、ポリアミック酸エステル溶液(PAE-3)を得た。
(合成例7)
 撹拌子を入れた50mL三角フラスコに、合成例6で得られたポリアミック酸エステル溶液(PAE-3)を12.03gとり、NMPを4.00g、BCSを4.02g、添加剤Aを0.17g加え、マグネチックスターラーで30分間攪拌し液晶配向剤(A-2)を得た。
(実施例3)
 合成例7で得られた液晶配向剤(A-2)を用いた以外は、実施例1と同様の方法で、液晶配向膜を作製した。
 得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.09であった。
(実施例4)
 合成例7で得られた液晶配向剤(A-2)を用いた以外は、実施例2と同様の方法で、液晶セルを作製した。
 偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
(実施例5)
 合成例7で得られた液晶配向剤(A-2)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃の熱風循環式オーブンで20分焼成し、膜厚100nmの膜を得た。この塗膜面に偏光板を介して波長313nmの紫外線を0.8J/cm照射した。次いで、この基板を、1-メトキシ-2-プロパノールに3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは0.07であった。
(実施例6)
 合成例7で得られた液晶配向剤(A-2)を1.0μmのフィルターで濾過した後、透明電極付ガラス基板上に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して波長313nmの紫外線を1.0J/cm照射した。次いで、この基板を、1-メトキシ-2-プロパノールに3分間浸漬させ、次いで純水に1分間浸漬させ、80℃のホットプレート上で5分間乾燥させた。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入し、注入口を封止して液晶セルとした。偏光顕微鏡にて、この液晶セルの配向状態をクロスニコル下で観察したところ、欠陥のない均一な配向をし、光抜けもないことが確認された。
 本発明の液晶配向膜は、300nm以上の偏光された紫外線を照射して得られる液晶配向膜であって、高い異方性、良好な液晶配向性、及び高い液晶配向規制力を有する。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。特に、IPS駆動方式やFFS(フリンジフィールドスイッチング)駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2011年11月30日に出願された日本特許出願2011-262865号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  下記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含む液晶配向剤の焼成膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射してなることを特徴とする液晶配向膜。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Xは脂環構造を有する4価の有機基であり、Yは下記式(A)で表される2価の有機基であり、Rは水素原子、又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(A)において、A及びAは下記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種類の構造であり、同一でも異なってもよい。Bは、単結合、-O-、-S-、-NH-、-NR-、エステル結合、チオエステル結合、アミド結合、ウレア結合、カーボネート結合、カルバメート結合、又は炭素数1~10の2価の有機基であり、nは0~1の整数である。Rは炭素数1~10のアルキル基、アルケニル基、アルキニル基、アリール基、若しくはこれらの組み合わせである。)
    Figure JPOXMLDOC01-appb-C000003
    (式(A-1)~(A-5)において、Dは、加熱によって水素に置き換わるアミノ基の保護基である。)
  2.  上記式(1)のXが、下記式(X-1)~(X-10)で表される構造からなる群から選ばれる少なくとも1種類である請求項1に記載の液晶配向膜。
    Figure JPOXMLDOC01-appb-C000004
    (上記式において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基である。)
  3.  Xが、下記式(X1-1)及び(X1-2)で表される構造からなる群から選らばれる少なくとも1種類である請求項1または2のいずれかに記載の液晶配向膜。
    Figure JPOXMLDOC01-appb-C000005
  4.  上記式(A-1)~(A-5)において、Dがtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である請求項1~3のいずれかに記載の液晶配向膜。
  5.  Yが、下記(Y1-1)~(Y1-4)で表される構造からなる群から選ばれる少なくとも1種類である請求項4に記載の液晶配向膜。
    Figure JPOXMLDOC01-appb-C000006
  6.  上記液晶配向剤の焼成膜が、焼成によって生成したアミノ基とイミドカルボニル酸素との縮合反応による環構造を有する請求項1~5のいずれかに記載の液晶配向膜。
  7.  上記式(1)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と有機溶媒とを含む液晶配向剤を塗布、焼成して得られる膜に、波長300nm以上400nm以下の紫外線を含む偏光された紫外線を照射する請求項1~6のいずれかに記載の液晶配向膜の製造方法。
  8.  請求項1~6のいずれかに記載の液晶配向膜を有する液晶表示素子。
PCT/JP2012/080978 2011-11-30 2012-11-29 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子 WO2013081067A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013547218A JP6102745B2 (ja) 2011-11-30 2012-11-29 液晶配向膜の製造方法
KR1020147016593A KR102000316B1 (ko) 2011-11-30 2012-11-29 액정 배향막, 액정 배향막의 제조 방법 및 액정 표시 소자
CN201280068402.4A CN104106001B (zh) 2011-11-30 2012-11-29 液晶取向膜、液晶取向膜的制造方法、及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011262865 2011-11-30
JP2011-262865 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013081067A1 true WO2013081067A1 (ja) 2013-06-06

Family

ID=48535515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080978 WO2013081067A1 (ja) 2011-11-30 2012-11-29 液晶配向膜、液晶配向膜の製造方法、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6102745B2 (ja)
KR (1) KR102000316B1 (ja)
CN (1) CN104106001B (ja)
TW (1) TWI588181B (ja)
WO (1) WO2013081067A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118763A (ja) * 2014-12-23 2016-06-30 Jsr株式会社 液晶配向膜の製造方法、液晶素子の製造方法及び光配向用重合体組成物
WO2017022636A1 (ja) * 2015-07-31 2017-02-09 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN109891310A (zh) * 2016-08-30 2019-06-14 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
WO2021161989A1 (ja) * 2020-02-14 2021-08-19 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
US11352563B2 (en) 2018-01-22 2022-06-07 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same
WO2024111498A1 (ja) * 2022-11-25 2024-05-30 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631077B2 (ja) * 2014-11-05 2020-01-15 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR101959515B1 (ko) * 2016-08-19 2019-03-18 주식회사 엘지화학 액정 배향막의 제조 방법
CN110573952B (zh) * 2017-03-02 2022-03-22 日产化学株式会社 液晶取向剂、液晶取向膜以及液晶表示元件
WO2018190426A1 (ja) * 2017-04-14 2018-10-18 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050523A1 (ja) * 2008-10-29 2010-05-06 日産化学工業株式会社 ジアミン、ポリイミド、液晶配向剤及び液晶配向膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
TW461980B (en) * 1997-04-30 2001-11-01 Nissan Chemical Ind Ltd Liquid crystal orientation processing agent
JP4078508B2 (ja) * 1998-08-26 2008-04-23 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶素子並びに液晶の配向方法
US6740371B1 (en) * 1999-06-30 2004-05-25 Nissan Chemical Industries, Ltd. Diaminobenzene derivative, polyimide obtained therefrom, and liquid-crystal alignment film
KR100932410B1 (ko) * 2002-05-23 2009-12-17 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050523A1 (ja) * 2008-10-29 2010-05-06 日産化学工業株式会社 ジアミン、ポリイミド、液晶配向剤及び液晶配向膜

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118763A (ja) * 2014-12-23 2016-06-30 Jsr株式会社 液晶配向膜の製造方法、液晶素子の製造方法及び光配向用重合体組成物
WO2017022636A1 (ja) * 2015-07-31 2017-02-09 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20180037013A (ko) * 2015-07-31 2018-04-10 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN108139633A (zh) * 2015-07-31 2018-06-08 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
KR102672865B1 (ko) 2015-07-31 2024-06-05 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN109891310A (zh) * 2016-08-30 2019-06-14 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
US11352563B2 (en) 2018-01-22 2022-06-07 Lg Chem, Ltd. Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using same, and liquid crystal alignment film using same
WO2021161989A1 (ja) * 2020-02-14 2021-08-19 日産化学株式会社 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
WO2024111498A1 (ja) * 2022-11-25 2024-05-30 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
CN104106001B (zh) 2016-11-16
TW201339203A (zh) 2013-10-01
JPWO2013081067A1 (ja) 2015-04-27
CN104106001A (zh) 2014-10-15
KR102000316B1 (ko) 2019-07-15
TWI588181B (zh) 2017-06-21
JP6102745B2 (ja) 2017-03-29
KR20140098146A (ko) 2014-08-07

Similar Documents

Publication Publication Date Title
JP6711443B2 (ja) 液晶配向剤、液晶配向膜、及び液晶配向素子
JP6852771B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6102745B2 (ja) 液晶配向膜の製造方法
JP5900344B2 (ja) 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
JP6056759B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP6233309B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
KR101742838B1 (ko) 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
WO2015060360A1 (ja) 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤
JP6083379B2 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JPWO2015060358A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7239872B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6217648B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP2019101196A (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP2019101195A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147016593

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12852952

Country of ref document: EP

Kind code of ref document: A1