WO2013080788A1 - ポリ乳酸系樹脂シート及び成形品 - Google Patents

ポリ乳酸系樹脂シート及び成形品 Download PDF

Info

Publication number
WO2013080788A1
WO2013080788A1 PCT/JP2012/079406 JP2012079406W WO2013080788A1 WO 2013080788 A1 WO2013080788 A1 WO 2013080788A1 JP 2012079406 W JP2012079406 W JP 2012079406W WO 2013080788 A1 WO2013080788 A1 WO 2013080788A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
mass
resin sheet
composition
sheet
Prior art date
Application number
PCT/JP2012/079406
Other languages
English (en)
French (fr)
Inventor
藥師堂健一
田端久敬
石井猛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR20147011747A priority Critical patent/KR20140099444A/ko
Priority to JP2012554116A priority patent/JP5935697B2/ja
Priority to US14/360,772 priority patent/US20140308535A1/en
Priority to EP12852609.2A priority patent/EP2786864B1/en
Priority to CN201280045144.8A priority patent/CN103813902B/zh
Publication of WO2013080788A1 publication Critical patent/WO2013080788A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to a polylactic acid resin sheet which is excellent in heat resistance, antistatic property, transparency and anti-blocking property, and is particularly suitable for use as a molded product subjected to printing.
  • polylactic acid has a relatively high glass transition point of about 57 ° C. and is a hard material, and is thus attracting attention as an alternative material for polyethylene terephthalate (PET) and polystyrene (PS). Development of sheets suitable for miscellaneous goods such as clear files and molded containers for food is underway.
  • PET polyethylene terephthalate
  • PS polystyrene
  • polylactic acid is easy to be charged by friction, as is the case with general polymer compounds. For this reason, dust or dust adheres to it, and the appearance is impaired. May block and processability may be impaired.
  • a method of imparting antistatic properties to a sheet a method of applying an antistatic agent to the surface of the sheet or a method of directly kneading the antistatic agent into the sheet in an extrusion process has been used.
  • Patent Document 1 discloses a technique for applying an anionic surfactant and a specific nonionic surfactant to polylactic acid.
  • Patent Document 2 discloses a technique of containing a conductive agent in polylactic acid.
  • Patent Document 3 discloses a technique in which polylactic acid contains an anionic surfactant.
  • Patent Document 4 discloses a technique in which polylactic acid contains an ionic surfactant and a nonionic surfactant.
  • polylactic acid has a glass transition point that is about 20 ° C. lower than that of conventional petroleum-derived raw materials such as polyethylene terephthalate, and there is a problem that heat resistance is insufficient when polylactic acid is substituted for each current application.
  • Patent Document 5 polylactic acid and polymethyl methacrylate having a molecular weight in a specific range are blended, and only one glass transition point having an intermediate value between the glass transition points of the two resins before blending is observed. Thus, a technique for imparting heat resistance is disclosed.
  • Patent Document 6 discloses a technique of a laminated sheet in which a layer containing 50% by mass or more of a poly (meth) acrylate resin is laminated at a thickness of 0.05 or more with respect to the thickness of the entire sheet. .
  • Patent Document 2 cannot secure the high transparency that is characteristic of polylactic acid. Moreover, there is no description regarding heat resistance.
  • Patent Document 3 aims at the effect of promoting the degradation rate of polylactic acid and cannot secure antistatic properties. Moreover, there is no description regarding heat resistance.
  • Patent Document 4 Although the technology described in Patent Document 4 has antistatic properties, the anti-blocking effect is insufficient, and the antistatic effect after passing through a heat history by thermoforming or the like is not sufficient. Moreover, there is no description regarding heat resistance.
  • Patent Document 5 there is no description regarding the antistatic property of the composition, and when the composition takes the form of a sheet, there are problems such as adhesion of dust due to static electricity and blocking between sheets. In addition, even when a known antistatic agent is added, there is a problem that transparency cannot be maintained.
  • Patent Document 6 there is no description regarding the antistatic property of the sheet, and there are problems such as dust adhesion due to static electricity and sheet blocking. In addition, even when a known antistatic agent is added, there is a problem that transparency cannot be maintained.
  • the conventional technology has not yet achieved a polylactic acid resin sheet that is excellent in heat resistance, antistatic property, transparency, and blocking resistance, and is particularly suitable for use in a molded product subjected to printing.
  • the present invention is intended to provide a polylactic acid resin sheet that is excellent in heat resistance, antistatic property, transparency, and blocking resistance and particularly suitable for use in molded products.
  • composition (B) in which the sheet contains a layer A composed of a composition (A) containing polylactic acid, a poly (meth) acrylate resin, an ionic surfactant, and a nonionic surfactant A layered structure having a layer B made of The layer B is at least one outermost layer of the sheet,
  • the content of the poly (meth) acrylate-based resin is 50 mass% or more and 99.5 mass% or less
  • Polylactic acid characterized in that the mass ratio of the ionic surfactant and the nonionic surfactant in the composition (B) is 2 ⁇ ionic surfactant / nonionic surfactant ⁇ 25 Resin sheet.
  • a polylactic acid resin sheet which is excellent in heat resistance, antistatic property, transparency and anti-blocking property and is particularly suitable for use as a molded product subjected to printing.
  • the molded product using the polylactic acid-based resin sheet of the present invention is excellent in heat resistance and antistatic property, and is preferably used as a molded product subjected to printing processing represented by food containers, clear files, clear cases, etc. Can be done.
  • sheet is used to mean a two-dimensional structure such as a film or a plate.
  • the polylactic acid resin sheet of the present invention contains a layer A composed of a composition (A) containing polylactic acid, a poly (meth) acrylate resin, an ionic surfactant, and a nonionic surfactant. It is important that the layered structure has the layer B made of the composition (B).
  • the layer B made of the composition (B) is at least one outermost layer of the sheet.
  • it is a laminated sheet in which the layer B is arranged on the outermost layer on both sides of the sheet, and from the viewpoint of curling suppression of the sheet, the layers were directly laminated in the order of layer B / layer A / layer B.
  • a particularly preferred embodiment is a three-layer structure.
  • composition (B) when the composition (B) is composed of only a poly (meth) acrylate resin and an ionic surfactant or only a poly (meth) acrylate resin and a nonionic surfactant, it exhibits an antistatic effect. Therefore, it is necessary to contain a large amount of surfactant, and there is a problem that the transparency of the sheet is lowered. Therefore, it is important that the composition (B) constituting the layer B contains a poly (meth) acrylate resin, an ionic surfactant, and a nonionic surfactant.
  • the sheet having antistatic properties means that the surface specific resistance value on the surface on which the layer B made of the composition (B) is laminated is 1 ⁇ 10 12 ⁇ / mouth or less.
  • the polylactic acid based resin sheet of the present invention comprises at least one outermost layer of a sheet comprising a composition (B) containing a poly (meth) acrylate based resin, an ionic surfactant, and a nonionic surfactant. Therefore, the surfactant can be contained in a relatively small amount, and the antistatic effect can be exhibited while maintaining the transparency of the sheet.
  • the content of the poly (meth) acrylate-based resin is 50% by mass or more and 99.5% by mass or less in the total 100% by mass of the composition (B). .
  • the content of the poly (meth) acrylate resin is less than 50% by mass in the total 100% by mass of the composition (B), the heat resistance of the sheet is lowered.
  • the content of the poly (meth) acrylate-based resin is more than 99.5% by mass in the total 100% by mass of the composition (B), the content of the surfactant becomes too small, which is sufficient. The antistatic effect cannot be demonstrated.
  • the content of the poly (meth) acrylate resin is preferably 80% by mass or more and 99.5% by mass or less with respect to 100% by mass as a whole of the composition (B).
  • polylactic acid in the total 100% by mass of the composition (B), polylactic acid is contained in an amount of 10% by mass to less than 40% by mass,
  • the content of the poly (meth) acrylate resin may be 50% by mass or more and 75% by mass or less.
  • the polylactic acid-based resin sheet of the present invention is poly (meth) acrylate-based in the composition (B) according to the heat resistance strength and the plant degree required for various uses.
  • the content of the resin can be appropriately adjusted in the range of 50% by mass or more and 99.5% by mass or less.
  • polylactic acid for example, homopolylactic acid, stereocomplex polylactic acid, and copolymerized polylactic acid as described later can be used. However, it is not particularly limited. Absent.
  • the mass ratio of the ionic surfactant and the nonionic surfactant in the composition (B) is 2 ⁇ ionic surfactant / nonionic surfactant ⁇ 25. It is important that
  • poly (meth) acrylate resin has a technology that contains a large amount of various surfactants in poly (meth) acrylate resin in order to impart high antistatic properties. It was difficult to maintain good characteristics. As a result of intensive studies on this problem, the inventors of the present invention have added a specific surfactant described above at a specific ratio, so that the total amount of the surfactant is much smaller than that of the prior art. As a result, it was found that a high antistatic effect can be imparted by the addition of the above.
  • the mass ratio of the ionic surfactant and the nonionic surfactant in the composition (B) is relative within the range of 2 ⁇ ionic surfactant / nonionic surfactant ⁇ 25.
  • a high antistatic effect can be imparted to the layer B made of the composition (B) by using a large amount of ionic surfactant and a relatively small amount of nonionic surfactant in combination.
  • the principle of the effect of the present invention is not yet clear, but is estimated as follows.
  • the ionic surfactant is more active than when adding only the ionic surfactant alone. Transfer to the surface of the agent and bleed are dramatically promoted, and a high antistatic effect can be obtained with a much smaller addition amount compared to the total amount of surfactant added with the amount of nonionic surfactant used together. It is estimated that
  • the mass ratio of the nonionic surfactant is larger than that of the ionic surfactant, that is, when the ionic surfactant / nonionic surfactant is smaller than 1, the antistatic effect is exhibited.
  • a nonionic surfactant is weak to a thermal history, when it becomes a sheet
  • ionic surfactant / nonionic surfactant is 6 ⁇ ionic surfactant / nonionic surfactant It is preferable that the agent is ⁇ 18, and it is more preferable that 6 ⁇ ionic surfactant / nonionic surfactant ⁇ 10.
  • the surfactant in the present invention is a compound having a hydrophilic group and a lipophilic group in the molecular chain.
  • the ionic surfactant in the present invention means a surfactant having a hydrophilic group that releases or acquires a charge when dissolved in pure water among the above-mentioned surfactants.
  • a cationic surfactant or an anionic surfactant can be used, and a cationic surfactant and an anionic surfactant are mixed and used. You can also
  • a cationic surfactant is a surfactant having a hydrophilic group that becomes a cation in pure water
  • an anionic surfactant is a surfactant having a hydrophilic group that becomes an anion in pure water. It is an agent.
  • the nonionic surfactant in the present invention means a surfactant having a hydrophilic group that does not release or acquire a charge in pure water among the above-mentioned surfactants.
  • a hydrophilic group is a functional group that easily dissolves in water, such as a hydrophilic group that becomes a cation in pure water, a hydrophilic group that becomes an anion in pure water, or a hydrophilic group that does not release or gain electricity in pure water. Can be divided.
  • hydrophilic group that becomes a cation in pure water examples include a tertiary amino group.
  • hydrophilic group that becomes an anion in pure water examples include a sulfo group and a carboxyl group.
  • the lipophilic group is a functional group that is difficult to dissolve in water, and specific examples include an alkyl group, an alkenyl group, a cycloalkyl group, and an aryl group.
  • the ionic surfactant has at least one sulfo group, and the nonionic surfactant is selected from the following group of compounds. It is preferable that it is a kind.
  • ionic surfactant having a sulfo group an alkyl group, an alkylaryl group, other lipophilic groups, and pure water Among them, an ionic surfactant having a sulfo group which is a hydrophilic group that becomes an anion is preferable.
  • the ionic surfactant having a sulfo group preferably has a molecular weight of 1000 or less, and particularly preferably an ionic surfactant having a molecular weight of 100 or more and 500 or less.
  • an alkylsulfonic acid metal salt is suitable.
  • the alkyl group preferably has 11 to 15 carbon atoms in view of the antistatic effect.
  • a sodium salt, potassium salt, lithium salt, calcium salt, magnesium salt, etc. can be used as the metal salt.
  • a sodium salt is preferable.
  • the alkylsulfonic acid metal salts can be used alone or in combination of two or more.
  • An aliphatic alkanolamide suitable as a nonionic surfactant is synthesized by condensation of a higher fatty acid and an alkanolamide.
  • the higher fatty acid is not particularly limited, but a fatty acid having 12 to 20 carbon atoms can be preferably used. Specifically, stearic acid is desirable as the higher fatty acid.
  • diethanolamine, monoethanolamine, and isopropanolamine can be suitably used.
  • the alkyl group of the higher alcohol (i), alkylphenol (ii), fatty acid ester (iii), aliphatic amine (iv), and aliphatic amide (v) suitable as a nonionic surfactant has 8 to 8 carbon atoms. 22 can be preferably used.
  • the number of moles of ethylene oxide added to the ethylene oxide adducts (i) to (v) suitable as a nonionic surfactant is usually 2 to 20 moles depending on the lipophilic group to which they are bonded. . When the number of added moles is large, the transparency tends to be hindered when blended with a resin.
  • polypropylene glycol (vi) suitable as a nonionic surfactant a compound having a molecular weight of 500 to 5000 can be preferably used.
  • the ethylene oxide adduct of polypropylene glycol (vi) suitable as a nonionic surfactant is usually selected from 2 to 20 mol, although the ethylene oxide addition mole number depends on the lipophilic group to which it is bonded.
  • C12 to C18 can be suitably used as the fatty acid constituting the sorbitan fatty acid ester (vii) suitable as a nonionic surfactant.
  • the ethylene oxide adduct of sorbitan fatty acid ester (vii) suitable as a nonionic surfactant is usually selected from 2 to 20 mol, although the number of moles of ethylene oxide added depends on the lipophilic group to which it is bonded.
  • fatty acid of polyglycerin fatty acid ester suitable as a nonionic surfactant a compound having 12 to 18 carbon atoms can be preferably used.
  • the glycerin is selected from any of di, tetra and deca, with tetra being preferred.
  • nonionic surfactant is an ethylene oxide adduct of an aliphatic amine (iv) in terms of good compatibility with a poly (meth) acrylate resin.
  • the above-described ionic surfactant and / or nonionic surfactant may be contained in the composition (A) constituting the layer A in addition to the composition (B).
  • the antistatic effect may not last for 60 days or more. Therefore, for example, when the thickness per layer of the layer B is less than 0.02 mm and the period from the production of the sheet to the molding is 60 days or more, the composition (A) also contains a surfactant. It is preferable to make it.
  • the surfactant to be contained in the composition (A) either the above-mentioned ionic surfactant or the above-mentioned nonionic surfactant may be selected, or both surfactants may be contained.
  • the same type of surfactant as that contained in the composition (B) should be used in the same content as the composition (B). Or it is preferable to make it contain by more content than a composition (B) in the range which does not impair transparency.
  • the polylactic acid resin sheet of the present invention preferably has a haze of 10% or less. If the haze is 10% or less, a molded product using such a polylactic acid-based resin sheet is excellent in the visibility of the contents and looks good as a product. It can be preferably used as a sheet. If the haze is larger than 10%, the transparency is insufficient and it may not be preferable for practical use. If the haze is less than 1%, the sheet is easily scratched, and the appearance may deteriorate when such a laminated sheet is used as a packaging container or packaging sheet. Therefore, the haze is 1% or more. Preferably there is.
  • the more preferable haze of the polylactic acid resin sheet of the present invention is 2% or more and 8% or less.
  • the lower limit of the haze is 1% as described above, but if the lower limit of the haze is about 4%, it is a sufficient value for use in applications requiring transparency such as packaging containers and packaging sheets.
  • the total of the ionic surfactant and the nonionic surfactant is 1% by mass or more and 5% by mass or less in 100% by mass of the composition (B) of the present invention. It is preferable to do. In the case of this range, it is a suitable range that achieves both high antistatic properties and low haze. From the same viewpoint, the more preferable content of the ionic surfactant and the nonionic surfactant is the sum of the ionic surfactant and the nonionic surfactant in the total 100% by mass of the composition (B). It is 0.5 mass% or more and 2.5 mass% or less, Most preferably, it is 0.5 mass% or more and 1.6 mass% or less.
  • the total thickness of the polylactic acid resin sheet of the present invention is not particularly limited, but is usually in the range of 0.1 mm to 2.0 mm.
  • the overall thickness is usually preferably in the range of 0.15 mm or more and 0.7 mm or less, and used as a printed product. In general, the overall thickness is preferably in the range of 0.1 mm to 0.4 mm.
  • the polylactic acid-based resin sheet of the present invention has a heat-resistance, antistatic property, haze, and plantiness, and the thickness per layer of the layer B composed of the composition (B) is usually 0.01 mm or more and 0. .05 mm or less is preferable. If the thickness per layer of the layer B is less than 0.01 mm, the heat resistance may be lowered, or it may be difficult to obtain sufficient antistatic properties. On the other hand, if the thickness per layer of the layer B exceeds 0.05 mm, the haze of the entire sheet may increase or the plantiness may decrease.
  • the ratio of the thickness of each layer B to the total thickness of the polylactic acid resin sheet (that is, “thickness per layer of layer B” / “total thickness of the polylactic acid resin sheet”) From the viewpoint, the range of usually 0.5 / 10 to 3/10 is preferable.
  • the wetting tension of the surface on at least one side is 40 mN / m or more. If it is this range, in addition to the antistatic effect of a sheet
  • the mass ratio of the ionic surfactant and the nonionic surfactant in the composition (B) is set as follows: It is preferable to satisfy 6 ⁇ ionic surfactant / nonionic surfactant ⁇ 18.
  • the ionic system in the composition (B) By setting the mass ratio of the surfactant and the nonionic surfactant to 6 ⁇ ionic surfactant / nonionic surfactant ⁇ 10, the wetting tension of the surface of the layer B is set to 40 mN / m or more. Therefore, as a result, the wetting tension of the surface on at least one side can be 40 mN / m or more.
  • the polylactic acid-based resin sheet of the present invention has a layer A made of a composition (A) containing polylactic acid.
  • the composition (A) is not particularly limited as long as it contains polylactic acid, but preferably 100% by mass of polylactic acid in 100% by mass of the whole composition (A). It is the following. By doing in this way, since the vegetable property of a sheet
  • the polylactic acid-based resin sheet of the present invention is used, for example, in applications where high heat resistance is required, such as a lid material for hot beverage containers, in 100% by mass of the whole composition (A),
  • the composition (A) preferably contains a poly (meth) acrylate resin as used in the composition (B) of the present invention.
  • the polylactic acid used in the present invention is mainly composed of L-lactic acid and / or D-lactic acid, and the components derived from lactic acid are 70 mol% or more and 100 mol% in 100 mol% of all monomer components constituting polylactic acid.
  • Homopolylactic acid consisting essentially of L-lactic acid and / or D-lactic acid is preferably used.
  • the polylactic acid used in the present invention preferably has crystallinity.
  • the polylactic acid has crystallinity when the polylactic acid is sufficiently crystallized under heating and then subjected to differential scanning calorimetry (DSC) measurement in an appropriate temperature range. Says that heat of fusion is observed.
  • DSC differential scanning calorimetry
  • homopolylactic acid has higher melting point and crystallinity as the optical purity is higher.
  • the melting point and crystallinity of polylactic acid are affected by the molecular weight and the catalyst used during polymerization, but normally, homopolylactic acid with an optical purity of 98% or higher has a melting point of about 170 ° C. and relatively high crystallinity. Further, as the optical purity is lowered, the melting point and crystallinity are lowered.
  • the homopolylactic acid having an optical purity of 88% has a melting point of about 145 ° C.
  • the homopolylactic acid having an optical purity of 75% has a melting point of about 120 ° C.
  • Homopolylactic acid with an optical purity lower than 70% does not show a clear melting point and is amorphous.
  • the polylactic acid used in the present invention can be a mixture of crystalline homopolylactic acid and amorphous homopolylactic acid.
  • the ratio of the amorphous homopolylactic acid may be determined within a range that does not impair the effects of the present invention.
  • at least one of the polylactic acids used is optically selected. It preferably contains polylactic acid having a purity of 95% or more.
  • the polylactic acid contained in the composition (A) in the present invention may be stereocomplex polylactic acid.
  • the stereocomplex polylactic acid is a polylactic acid having a crystal in which a poly-L-lactic acid unit and a poly-D-lactic acid unit are paired as described in, for example, Macromolecules, vol. 20, 904 (1987). It is. Poly-L-lactic acid has a left-handed helical structure, whereas the optical isomer poly-D-lactic acid has a right-handed helical structure. When these are mixed, stereospecific binding occurs between the two components. , Poly-L-lactic acid or poly-D-lactic acid forms a crystal structure (stereocomplex) that is tighter and stronger than the crystal structure formed when each of them is used alone, and polylactic acid having this crystal structure (stereocomplex) is produced.
  • stereocomplex polylactic acid This is called stereocomplex polylactic acid.
  • Stereocomplex polylactic acid has a higher melting point due to the formation of stereocomplex, and the melting point of ordinary poly-L-lactic acid or poly-D-lactic acid is 165 to 180 ° C., whereas that of stereocomplex polylactic acid is 190 It may be between °C and 250 °C.
  • the use of stereocomplex polylactic acid as the polylactic acid contained in the composition (A) in the present invention is particularly preferable when used for applications requiring high heat resistance such as for microwave ovens. .
  • a method for producing a stereocomplex polylactic acid that can be used in the present invention is not particularly limited, but can be produced by a known method, for example, as exemplified in Japanese Patent Application Laid-Open No.
  • the mass average molecular weight of the polylactic acid used in the present invention is usually at least 50,000 or more, preferably 80,000 to 400,000, more preferably 100,000 to 300,000.
  • the mass average molecular weight referred to in the present invention is a gel permeation chromatography (GPC), measured using a column with Shodex GPC ⁇ ⁇ ⁇ HFIP-806M and Shodex GPC HFIP-LG connected in series with a chloroform solvent.
  • GPC gel permeation chromatography
  • the laminated sheet of the present invention containing the polylactic acid can have excellent mechanical properties.
  • the mechanical properties can also be improved.
  • the polylactic acid used in the present invention may be a copolymerized polylactic acid obtained by copolymerizing other monomer components having ester forming ability in addition to L-lactic acid and D-lactic acid.
  • copolymerizable monomer components include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid and other hydroxycarboxylic acids, ethylene glycol, propylene glycol, butane Compounds containing a plurality of hydroxyl groups in the molecule such as diol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol or their derivatives, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 , 6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sul
  • the method for producing polylactic acid is not particularly limited, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
  • lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly a phenyl ether solvent, and particularly preferably a solvent distilled by azeotropic distillation.
  • a polymer having a high molecular weight can be obtained by polymerizing by a method in which water is removed from the solvent and the solvent is brought into a substantially anhydrous state and returned to the reaction system.
  • a high molecular weight can also be obtained by subjecting a cyclic ester intermediate of hydroxycarboxylic acid, for example, a cyclic ester intermediate such as lactide or glycolide, to a ring-opening polymerization under reduced pressure using a catalyst such as tin octylate. It is also known that polymers can be obtained.
  • a method for adjusting the conditions for removing moisture and low molecular weight compounds during heating and refluxing in an organic solvent, a method for suppressing the depolymerization reaction by deactivating the catalyst after completion of the polymerization reaction, and a method for heat-treating the produced polymer Can be used to obtain a polymer with a small amount of lactide.
  • the polylactic acid-based resin sheet of the present invention suppresses a decrease in strength due to hydrolysis of polylactic acid and gives good durability, particularly in applications where storage durability is preferred, such as packaging use for various industrial products.
  • the carboxyl group terminal concentration in polylactic acid is preferably 0 equivalent / 10 3 kg or more and 30 equivalent / 10 3 kg or less, more preferably 20 equivalent / 10 3 kg or less, and still more preferably 10 equivalent / 10 3 kg or less. If the carboxyl group terminal concentration in the polylactic acid is 30 equivalents / 10 3 kg or less, the carboxyl group terminal concentration, which also serves as a hydrolysis autocatalyst, is sufficiently low. Can often be granted.
  • Examples of the method for setting the carboxyl group terminal concentration in polylactic acid to 30 equivalents / 10 3 kg or less include, for example, a method of controlling by the catalyst and thermal history at the time of polylactic acid synthesis, lowering or retention of the extrusion temperature at the time of sheet formation Examples thereof include a method of reducing thermal history such as shortening the time, a method of blocking a carboxyl group end using a reactive compound, and the like.
  • a reactive compound In the method of blocking the carboxyl group terminal using a reactive compound, it is preferable that at least a part of the carboxyl group terminal in polylactic acid is blocked, and it is more preferable that the whole amount is blocked.
  • reactive compounds include condensation reactive compounds such as aliphatic alcohols and amide compounds, and addition reactive compounds such as carbodiimide compounds, epoxy compounds, and oxazoline compounds, but extra by-products are generated during the reaction.
  • An addition reaction type compound is preferable in terms of difficulty, and a carbodiimide compound is particularly preferable from the viewpoint of reaction efficiency.
  • the poly (meth) acrylate resin used in the present invention is not particularly limited, but includes at least one monomer selected from acrylate and methacrylate as a structural unit, and two or more kinds of single monomers
  • the body may be copolymerized and used.
  • Examples of the acrylate and methacrylate constituting the poly (meth) acrylate resin include acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, cyanoethyl acrylate, and cyanobutyl acrylate, and methyl methacrylate, ethyl methacrylate,
  • Examples of the methacrylate include cyclohexyl methacrylate and 2-hydroxyethyl methacrylate, but polymethyl methacrylate is preferably used as the poly (meth) acrylate-based resin in order to impart higher temperature rigidity.
  • the method for polymerizing or copolymerizing these monomers is not particularly limited, and known polymerization methods such as bulk polymerization, solution polymerization, and suspension polymerization can be used.
  • polymethylmethacrylate When polymethylmethacrylate is used as the poly (meth) acrylate-based resin, it is excellent in compatibility with polylactic acid, and the viscosity of each layer is adjusted to a value as close as possible during the production of the laminated sheet to suppress viscosity spots and improve the quality. Since it is easy to obtain a good sheet, it is preferable to use a polymethyl methacrylate having a fluidity of 1 to 20 g / 10 min measured at 230 ° C. according to JIS K7210 (established in 1999), preferably 1.5 to 15 g. One that is / 10 min is more preferable, and one that is 2 to 10 g / 10 min is particularly preferable.
  • the mass average molecular weight of the poly (meth) acrylate resin used in the present invention is preferably 20,000 to 500,000, and more preferably 100,000 to 200,000. If the weight average molecular weight is less than 20,000, the strength of the laminated sheet or a molded product molded therefrom may be reduced. If the weight average molecular weight exceeds 500,000, viscosity spots may occur during film formation of the laminated sheet, or the molded product. In some cases, fluidity may be reduced during molding.
  • the polylactic acid-based resin sheet of the present invention is a known antioxidant, UV stabilizer, anti-coloring agent, matting agent, deodorant, flame retardant, weathering agent, anti-resistance, and the like within a range that does not impair the effects of the present invention.
  • As the oxidizing agent, ion exchange agent, crystal nucleating agent, coloring pigment, or the like, or as a lubricant, inorganic fine particles, organic particles, or an organic lubricant may be added as necessary.
  • these additives may be added to both the composition (A) and the composition (B), or may be added to only one of the compositions.
  • antioxidants include hindered phenols and hindered amines.
  • Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, quinocridone, thio Organic pigments such as indigo can be used.
  • inorganic particles include silicon oxide such as silica, various carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate. , Various sulfates such as calcium sulfate and barium sulfate, various composite oxides such as kaolin and talc, various phosphates such as lithium phosphate, calcium phosphate and magnesium phosphate, various oxidations such as aluminum oxide, titanium oxide and zirconium oxide And fine particles comprising various salts such as lithium fluoride can be used.
  • organic particles fine particles made of calcium oxalate, terephthalate such as calcium, barium, zinc, manganese, magnesium, etc. are used.
  • crosslinked polymer particles include fine particles made of a vinyl monomer such as divinylbenzene, styrene, acrylic acid or methacrylic acid, or a copolymer.
  • organic fine particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin are also preferably used.
  • the average particle size of the inorganic particles and the organic particles is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 3 ⁇ m, and most preferably 0.08 to 2 ⁇ m.
  • an impact resistance improver is added to 100% by mass of each composition for the purpose of improving impact resistance.
  • the impact resistance is often insufficient, and the impact resistance improver is 2 in 100% by mass of the total composition (B). It is particularly preferable that the content is from 20% by weight to 20% by weight.
  • the content of the impact modifier is preferably 2.5% by mass or more and 15% by mass or less in 100% by mass of the composition constituting the layer. As the content of the impact resistance improving agent increases, the impact resistance improving effect is improved. However, even if the content exceeds 20% by mass, a significant improvement in the impact resistance improving effect is often not obtained. .
  • the impact resistance improver mentioned here means an additive having an effect of improving brittle properties inherent in the polylactic acid and poly (meth) acrylate resin, which are brittle and easily cracked.
  • polylactic acid and / or poly (meth) acrylate resin becomes the sea, and the additive becomes the island.
  • An additive having such a sea-island structure and having a structure in which the additive that becomes an island is dispersed in a size that normally fits in a sphere having a diameter of about 10 ⁇ m can be mentioned. In this case, it is effective to select a so-called soft additive having a lower elastic modulus than that of polylactic acid and / or poly (meth) acrylate resin.
  • impact modifiers include, for example, ethylene-propylene copolymers, ethylene / propylene-nonconjugated diene copolymers, ethylene-1-butene copolymers, ethylene-acrylic acid copolymers, and Alkali metal salt (so-called ionomer), ethylene-glycidyl (meth) acrylate copolymer, ethylene-alkyl acrylate copolymer (for example, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer) , Acid-modified ethylene-propylene copolymer, diene rubber (eg, polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (eg, styrene-butadiene random copolymer, styrene-butadiene block copolymer) Coalescence, stylene copo
  • the impact resistance improver include those having various cross-linking degrees, various micro structures such as cis structure and trans structure, a core layer and one or more shell layers covering the core layer.
  • the multilayer structure polymer etc. which can be mentioned can be mentioned.
  • an aliphatic polyester other than polylactic acid has a suitable dispersibility in polylactic acid, and a higher impact resistance improvement effect can be obtained in a small amount.
  • aliphatic aromatic polyesters are preferred.
  • the aliphatic polyester or aliphatic aromatic polyester other than polylactic acid, which is a suitable impact modifier for inclusion in the composition (A), is not particularly limited. Specifically, polyglycol Acids, poly-3-hydroxybutyric acid, poly-4-hydroxybutyric acid, poly-4-hydroxyvaleric acid, poly-3-hydroxyhexanoic acid or polycaprolactone, polyethylene adipate, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, etc. Is mentioned.
  • a polybutylene succinate resin which is an aliphatic polyester other than polylactic acid, as an impact resistance improver.
  • More preferable impact modifiers are polybutylene succinate and polybutylene succinate adipate, which have a large impact improving effect and are compatible with polylactic acid.
  • the mass average molecular weight is preferably 100,000 to 300,000.
  • examples of such polybutylene succinates include “GSPla” FZ71PD (trade name, product number; Mitsubishi Chemical) and “Bionore” # 3003 (trade name, product number; Showa Polymer).
  • polybutylene succinate is It can be obtained by polycondensation of 1-4 butanediol and succinic acid.
  • a multilayer structure polymer is also a preferred example. This is because the multilayer polymer has suitable dispersibility in polylactic acid and / or poly (meth) acrylate resin, and a higher impact resistance improving effect can be obtained with a small amount.
  • the multi-layer structure polymer is composed of an innermost layer (core layer) and one or more layers (shell layer) covering the innermost layer (core layer), and a so-called core-shell type in which adjacent layers are composed of different polymers. It is a polymer having a structure called.
  • the number of layers constituting the multilayer structure polymer is not particularly limited, and may be two or more, or three or more or four or more.
  • As a multilayer structure polymer it is preferable to have at least one rubber layer inside, that is, it is preferable to have one or more rubber layers in addition to the outermost layer.
  • the rubber layer is a layer composed of a polymer component having rubber elasticity, and the type of the rubber layer is not particularly limited. Rubber elasticity refers to elasticity caused by the expansion and contraction of polymer chains.
  • the multilayer structure polymer contained as the impact resistance improver is preferably a core-shell type acrylic polymer.
  • the rubber layer is composed of, for example, an acrylic component, a silicone component, a styrene component, a nitrile component, a conjugated diene component, a urethane component, or an ethylene propylene component. Rubber.
  • the polymer component preferably used as the rubber layer examples include acrylic components such as ethyl acrylate units and butyl acrylate units, silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, styrene units and ⁇ -methylstyrene units.
  • the rubber is composed of a polymer obtained by polymerizing a styrene component, a nitrile component such as an acrylonitrile unit or a methacrylonitrile unit, or a conjugated diene component such as a butadiene unit or an isoprene unit.
  • a rubber composed of a copolymer obtained by combining two or more of these components is also preferable.
  • acrylic components such as ethyl acrylate units and butyl acrylate units, dimethylsiloxane units, and phenylmethylsiloxane Rubber composed of components copolymerized with silicone components such as units;
  • components copolymerized with acrylic components such as ethyl acrylate units and butyl acrylate units and styrene components such as styrene units and ⁇ -methylstyrene units
  • rubber composed of a component obtained by copolymerizing an acrylic component such as an ethyl acrylate unit or a butyl acrylate unit and a conjugated diene component such as a butadiene unit or an isoprene unit, and (4) ethyl acrylate.
  • Acrylic components such as units and butyl acrylate units and di Rubber comprised silicone component and component obtained by copolymerizing a styrene component such as styrene units or ⁇ - methylstyrene units such as chill siloxane units and phenyl methyl siloxane units, and the like.
  • a rubber obtained by copolymerizing and crosslinking a crosslinkable component such as a divinylbenzene unit, an allyl acrylate unit, or a butylene glycol diacrylate unit can also be preferably used.
  • a preferred example of the multilayer structure polymer is a multilayer structure polymer composed of a core layer and one shell layer, and the core layer contains a component obtained by copolymerizing a dimethylsiloxane unit and a butyl acrylate unit.
  • the core layer is a rubber layer containing a component in which a butadiene unit and a styrene unit are overlapped
  • the shell layer is a methyl methacrylate polymer
  • examples thereof include a polymer, or a multilayer structure polymer in which a core layer is a rubber layer containing a component obtained by polymerizing butyl acrylate units and a shell layer is a methyl methacrylate polymer.
  • the rubber layer is particularly preferably a polymer containing glycidyl methacrylate units.
  • melt-kneading method of the polylactic acid and / or poly (meth) acrylate resin and the impact resistance improver there is no particular limitation on the melt-kneading method of the polylactic acid and / or poly (meth) acrylate resin and the impact resistance improver, and the kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder, etc. are usually used. Can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
  • the order of mixing is not particularly limited.
  • polylactic acid and / or a poly (meth) acrylate resin and an impact modifier are dry-blended and then subjected to a melt kneader, or polylactic acid and / or in advance.
  • examples include a method of preparing a master batch in which a poly (meth) acrylate resin and an impact resistance improver are melt-kneaded, and then melt-kneading the master batch and polylactic acid.
  • melt-kneading other components at the same time or preparing a master batch in which polylactic acid and / or poly (meth) acrylate resin and other additives are melt-kneaded in advance, A melt kneading method may be used.
  • the polylactic acid-based resin sheet of the present invention can be obtained, for example, by an existing film production method such as a T-die casting method, an inflation method, or a calendar method, but is preferably produced by a T-die casting method.
  • a T-die casting method pellets having a moisture content of 400 ppm or less by drying the pellets at 60 to 110 ° C. for 3 hours or more are used, and the cylinder temperature is 150 ° C. or more and 240 ° C. or less.
  • the mixture is melt kneaded using a twin-screw extruder in the range of 150 ° C. to 240 ° C.
  • the temperature range of the cylinder temperature and the die is preferably in the range of 200 ° C. or higher and 220 ° C. or lower from the viewpoint of suppressing thermal deterioration of the raw material.
  • the temperature range of the cylinder temperature and the base is higher than the melting temperature of the stereocomplex crystal and the melting temperature of the stereocomplex crystal + 20 It is preferable that the temperature range is less than ° C.
  • stereocomplex polylactic acid when using stereocomplex polylactic acid, it is possible to perform heat treatment in the production process of the polylactic acid resin sheet of the present invention, and in order to increase the ratio of stereocomplex crystals, a heat treatment process using a hot air oven is provided. Also good.
  • the polylactic acid resin sheet of the present invention may be subjected to various surface treatments for the purpose of improving coating suitability.
  • the surface treatment method include corona discharge treatment, plasma treatment, flame treatment, and acid treatment.
  • the sheet preheating method in various molding methods includes the indirect heating method and the hot plate direct heating method.
  • the indirect heating method is a method in which the sheet is preheated by a heating device installed at a position away from the sheet, and the hot plate is directly heated.
  • the system is a system in which the sheet is preheated by contacting the sheet and the hot plate, but the polylactic acid resin sheet of the present invention is a vacuum plate processing of a hot plate direct heating method, or a vacuum / pressure forming of a hot plate direct heating method. It can be preferably used for processing.
  • the coating layer shifts to the hot plate when the sheet is heated.
  • the antifogging effect may fade.
  • the polylactic acid-based resin sheet of the present invention even if the surfactant on the surface of the sheet is transferred to the hot plate at the time of direct heating of the hot plate, the surfactant is again from the inside of the sheet. In many cases, bleeding out and anti-fogging and anti-fogging effects can be achieved when using molded products.
  • Molded articles using the polylactic acid-based resin sheet of the present invention include, for example, containers for food, containers such as cup lids for beverages, various containers and packages such as blister packs, and other antistatic properties and antifogging. It can be preferably used for various applications that require the properties.
  • the polylactic acid resin sheet and / or molded product of the present invention may be subjected to printing or the like.
  • the polylactic acid-based resin sheet of the present invention subjected to printing can be preferably used for various containers, blister packs, cards, clear files, clear cases, etc., but the polylactic acid-based resin sheet of the present invention before printing is processed.
  • the lactic acid resin sheet is transparent, it can be used with existing printing machines, and it is transparent and excellent in antistatic properties, so it is especially useful for clear cases, desktop calendar cases, clear file applications, etc. It can be preferably used.
  • the polylactic acid-based resin sheet and / or molded product of the present invention is colored white or the like by a known method, it can be preferably used for card applications.
  • the order of the printing process is not particularly limited, but when the polylactic acid resin sheet is molded, the printing process may be performed before the molding process or after the molding process.
  • composition (B) Content of poly (meth) acrylate resin in composition (B) (% by mass) The content of the poly (meth) acrylate resin was calculated from the blending amount at the time of production.
  • composition (B) Content of surfactant (% by mass) in composition (B) The content of the surfactant was calculated from the blending amount during production.
  • Heat resistance temperature (° C)
  • a forming vacuum 300X mold made by Seiko Sangyo Co., Ltd. equipped with a beverage dummy can mold (semi-cylinder) with a diameter of 70 mm and a height of 130 mm
  • the sheet is preheated and molded under temperature conditions such that the sheet temperature is in the range of 90 ° C to 110 ° C.
  • the upper limit temperature at which the molded body was not deformed was defined as the heat-resistant temperature.
  • Antistatic properties surface resistivity ( ⁇ / ⁇ ) Based on JIS-K6911 (established in 1962), the surface specific resistance value of the polylactic acid-based resin sheet was adjusted to a temperature of 23 ° C. using a resiliency chamber manufactured by ADC Co., Ltd. and a digital ultrahigh resistance / microammeter. , And measured in an atmosphere of 65% humidity. The measurement was performed three times for each sample, and was obtained from the average value of the three measurements.
  • a batch type hot plate direct heating type vacuum forming machine is used to set the upper and lower hot plate at a set temperature of 85 ° C and a preheating time of 1 second.
  • the container lid was formed to have a length of about 9 cm, a width of about 12 cm, and a height of about 2.5 cm. At this time, the sheet surface was selected so that the layer B was inside the container lid. Put 100 ml of water at 25 ° C. into the container bottom material paired with the separately prepared container lid material, cover with the molded lid material, and cloud the lid material after storage for 24 hours in an atmosphere at 5 ° C. Observations of water and water droplets were made and judged according to the following criteria.
  • Impact resistance Impact value (N ⁇ m / mm) Using a film impact tester (manufactured by Toyo Seiki Seisakusho), an impact value was measured using a hemispherical impact head having a diameter of 1/2 inch in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH. A film sample was prepared in a size of 100 mm ⁇ 100 mm, and the measurement was performed 5 times per sample. Furthermore, the impact value for each time was divided by the thickness of the measurement sample, and the impact value per unit thickness was obtained from the average value of five measurements. The sample thickness was measured with a digital micrometer.
  • Plant degree of whole sheet (mass%) The content of polylactic acid relative to the entire sheet was calculated from the blending amount during production.
  • PVA-1 Polylactic acid (manufactured by NatureWorks, trade name “NatureWorks4042D”, L-form / D-form: 96/4).
  • PLA-2 Polylactic acid (manufactured by NatureWorks, trade name “NatureWorks4032D”, L-form / D-form: 99/1).
  • PHA-3 48.75 g of L-lactide (manufactured by Musashino Chemical Laboratories Co., Ltd.) and 1.25 g of D-lactide (manufactured by Musashino Chemical Laboratories Co., Ltd.) were added to the flask, the inside of the system was purged with nitrogen, 0.05 g of stearyl alcohol, 25 mg of tin octylate was added as a catalyst, and polymerization was carried out at 190 ° C. for 2 hours to obtain poly-L-lactic acid.
  • PHA-4 Add 50 g of L-lactide (made by Musashino Chemical Laboratory Co., Ltd.) to the flask, dissolve uniformly at 120 ° C in a nitrogen atmosphere, then set the temperature to 150 ° C, add 0.05 g of tin octylate, and polymerize for 30 minutes. To obtain poly-L-lactic acid.
  • poly-D-lactic acid was obtained by the same production method as poly-L-lactic acid except that D-lactide (made by Musashino Chemical Laboratory Co., Ltd.) was used.
  • poly-L-lactic acid and poly-D-lactic acid 50 parts by mass of each polylactic acid and 0.1 parts by mass of tin octylate were supplied to a twin screw extruder equipped with a vent.
  • poly-L-lactic acid and poly-D-lactic acid polylactic acid mixture pellets were obtained.
  • the obtained polylactic acid mixture pellets were put into a vacuum dryer and reacted at 140 ° C. for 20 hours and further at 180 ° C. for 30 hours under a pressure of 13.3 Pa to obtain PLA-4.
  • PLA-4 forms a stereocomplex crystal by heat treatment.
  • PM-1 Polymethyl methacrylate (trade name “Delpet 80NH” manufactured by Asahi Kasei Chemicals Corporation).
  • SP-1 Polybutylene succinate (trade name “GsPla FZ71PD” manufactured by Mitsubishi Chemical Corporation).
  • SP-2 Core-shell type acrylic polymer (Rohm and Haas Japan, trade name “Paraloid BPM500” (core layer; butyl acrylate polymer, shell layer; methyl methacrylate polymer)).
  • ISA-1 Sodium salt of alkylsulfonic acid (trade name “Chemist 3033”, manufactured by Sanyo Kasei Co., Ltd.).
  • Nonionic surfactant used (NISA-1): Higher fatty acid amide (manufactured by Takemoto Yushi Co., Ltd., trade name “Elecut S-154”).
  • NISA-2 Polyglycerin fatty acid ester (trade name “Poem J-40481V” manufactured by Riken Vitamin Co., Ltd.).
  • NISA-3 Ethylene oxide adduct of aliphatic amine (trade name “Electro Stripper TS9B” manufactured by Kao Corporation).
  • NISA-5 Fatty acid amine (manufactured by Lion Akzo, trade name “Armin 2C”).
  • NISA-6 Polyoxyethylene glycerin monostearate (Riken Vitamin Co., Ltd., trade name “Poem S-105”).
  • S-MB Master batch of silica particles (average particle size: 3.2 ⁇ m) and PLA-1 (silica particles: 10% by mass, PLA-1: 90% by mass).
  • TO-MB A master batch of titanium oxide (anatase type titanium oxide, average particle size: 0.2 ⁇ m) and PLA-1 (titanium oxide: 25 mass%, PLA-1: 75 mass%).
  • AS-1 Sucrose fatty acid ester aqueous solution (trade name “Riquemar A” manufactured by Riken Vitamin Co., Ltd.).
  • Example 1 Polylactic acid resins, poly (meth) acrylate resins, impact modifiers, ionic surfactants, nonionic surfactants, and other components listed in Table 1 in proportions of each mass% listed in Table 1. , Supplied to separate independent vent type twin-screw extruders, melt-kneaded while degassing the vacuum vent part, co-extruded from a T-die die set at a die temperature of 210 ° C., and rotated in a direction contacting each other.
  • the sheet was discharged between a pair of casting drums and a polishing roll that had been cooled to 0 ° C., closely contacted with the casting drum and solidified by cooling, and an unstretched sheet having a thickness shown in Table 1 was prepared.
  • the evaluation results of the obtained sheet are shown in Table 1.
  • Examples 2 to 10, Comparative Examples 1 to 7 The polylactic acid resins, poly (meth) acrylate resins, impact modifiers, impact modifiers, ionic surfactants, nonionic surfactants, and other components listed in Table 1 are listed in Table 1.
  • a polylactic acid resin sheet was obtained in the same manner as in Example 1 except that the type and content were changed. The evaluation results of the obtained sheet are shown in Table 1.
  • Example 11 to 12 The polylactic acid resins, poly (meth) acrylate resins, impact modifiers, impact modifiers, ionic surfactants, nonionic surfactants, and other components listed in Table 1 are listed in Table 1. Change to type and content, supply to each independent vent type twin screw extruder, melt knead while degassing the vacuum vent part, co-extrusion from the T die die set the die temperature to 230 °C, Rotating in the direction of contact with each other and cooled to 40 ° C., discharged between a pair of casting drums and a polishing roll, adhered to the casting drum and solidified, and then subjected to heat treatment at 160 ° C. for 20 seconds in a hot air oven, A system resin sheet was obtained. The evaluation results of the obtained sheet are shown in Table 1.
  • Example 8 The polylactic acid resins, poly (meth) acrylate resins, impact modifiers, impact modifiers, ionic surfactants, nonionic surfactants, and other components listed in Table 1 are listed in Table 1.
  • the polylactic acid resin sheet was changed to the type and content in the same manner as in Example 1 except that a single-layer sheet consisting only of the composition (A) was obtained using a single bent twin-screw extruder. Got. The evaluation results of the obtained sheet are shown in Table 1.
  • Example 10 The polylactic acid resins, poly (meth) acrylate resins, impact modifiers, impact modifiers, ionic surfactants, nonionic surfactants, and other components listed in Table 1 are listed in Table 1.
  • a polylactic acid resin sheet was obtained in the same manner as in Example 1 except that the type and content were changed. Subsequently, corona treatment was applied to both sides of each side, and an aqueous coating solution of a coating surfactant AS-1 was applied to each side by a gravure roll method, dried through a drying furnace, and finally listed in Table 1. After forming the surface active agent coating layer so that the amount of coating was 1%, the coating sheet was wound up with a winder. The evaluation results of the obtained sheet are shown in Table 1.
  • the polylactic acid resin sheets of Examples 1 to 12 were excellent in sheet heat resistance, antistatic properties, ink adhesion, and blocking resistance at any level.
  • Examples 1, 2, 3, 5, 6, 8, 11, and 12 were excellent in antifogging property in addition to antistatic property, ink adhesion property, and blocking resistance.
  • Levels 4 and 10 can obtain white molded articles, and antifogging properties have not yet been confirmed, but are excellent in blocking resistance and have a process of stacking cut sheets, such as white container applications and cards. It can be estimated that it is preferably used as a use.
  • level 9 is slightly inferior in transparency, it has high plantiness and heat resistance.
  • it can be estimated that it is preferably used as a hot beverage cover material having an added value of reducing environmental burden.
  • Comparative Examples 1, 2, and 5 were inferior in antistatic properties, and there was a clear difference from Examples.
  • Comparative Examples 3, 6, and 7 were inferior in transparency, and there was a clear difference from the Examples at a level that could not be used as a transparent container.
  • Comparative Examples 4 and 8 were inferior in heat resistance and were not at a level that could be used as molding applications, and had problems such as blocking after heat treatment.
  • the comparative example 10 was inferior to ink adhesiveness, and there was a clear difference with an Example.
  • Comparative Example 9 has heat resistance, antistatic properties, ink adhesion, and blocking resistance, the plant degree is low for the degree of heat resistance, and it has less added value compared to the examples. there were.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、耐熱性、帯電防止性、透明性、耐ブロッキング性に優れ、特に印刷加工を施される成形品用途に適したポリ乳酸系樹脂シートを提供せんとするものである。 シートが、ポリ乳酸を含有する組成物(A)からなる層Aと、アクリル、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物(B)からなる層Bとを有する積層構成であり、該層Bは、シートの少なくとも一方の最表層であり、組成物(B)の全体100質量%において、アクリルの含有量が50質量%以上99.5質量%以下であり、イオン系界面活性剤および非イオン系界面活性剤の質量比が、2≦イオン系界面活性剤/非イオン系界面活性剤≦25であることを特徴とするポリ乳酸系樹脂シートである。

Description

ポリ乳酸系樹脂シート及び成形品
 本発明は、耐熱性、帯電防止性、透明性、耐ブロッキング性に優れ、特に印刷加工を施される成形品用途に適したポリ乳酸系樹脂シートに関する。
 近年、大気中の炭酸ガス濃度増加による地球温暖化問題が世界的な問題となりつつある。各産業分野においても、大気中への炭酸ガス排出量を削減する技術の開発が盛んに行われている。プラスチック製品の分野においては、従来、汎用の石油由来原料から製造されたプラスチックが使用後に焼却されるなどして、大気中へ炭酸ガスとして放出されてきた。近年、本来大気中の炭素源(炭酸ガス)に由来する植物由来原料のプラスチックが注目されている。中でも、透明性に優れ、コスト面でも比較的有利なポリ乳酸の実用化に向けた研究開発が盛んである。
 ポリ乳酸は、生分解性プラスチックのなかでも、ガラス転移点が約57℃と比較的高く、硬質な素材であることから、ポリエチレンテレフタレート(PET)やポリスチレン(PS)の代替材料として注目されつつあり、クリアファイル等の雑貨用途や食品用成形容器へ適したシートの開発が進められている。
 しかしながら、ポリ乳酸は、一般の高分子化合物と同様に摩擦などにより帯電しやすく、そのため、ごみやホコリが付着して外観を損ねてしまうことや、加工シートとして使用する際に、帯電によりシート同士がブロッキングして加工性を損なってしまうことがある。
 一般的にシートに帯電防止性を付与する方法としては、シートの表面に帯電防止剤を塗布する方法や、押出し工程において帯電防止剤をシートに直接練りこむ方法が用いられてきた。
 特許文献1には、ポリ乳酸にアニオン系界面活性剤と特定の非イオン系界面活性剤を塗布する技術が開示されている。
 特許文献2には、ポリ乳酸に導電剤を含有する技術が開示されている。
 特許文献3には、ポリ乳酸にアニオン系界面活性剤を含有する技術が開示されている。
 特許文献4には、ポリ乳酸にイオン系界面活性剤と非イオン系界面活性剤を含有する技術が開示されている。
 また、ポリ乳酸は、従来の石油由来原料、例えば、ポリエチレンテレフタレートに比べるとガラス転移点が約20℃低く、現行の各用途をポリ乳酸で代替するとなると、耐熱性が不足するという問題がある。
 そこで、ポリ乳酸系樹脂シートに耐熱性を付与する方法として、ポリ乳酸にポリ(メタ)アクリレート系樹脂を混合または複合するなどの方法が用いられてきた。
 特許文献5には、ポリ乳酸と特定範囲の分子量のポリメチルメタクリレートをブレンドさせて、ブレンド前の2種の樹脂のガラス転移点の中間の値を有する1個のガラス転移点のみが観測されるようにすることで耐熱性を付与する技術が開示されている。
 特許文献6には、ポリ(メタ)アクリレート系樹脂を50質量%以上含有する層がシート全体の厚みに対して0.05以上の比率の厚みで積層される積層シートの技術が開示されている。
特開2002-12687号公報 特開2002-114895号公報 特開平10-17757号公報 特開2004-67801号公報 特開2005-171204号公報 特開2008-221504号公報
 特許文献1に記載の技術では、フィルムのべとつきやフィルム同士のブロッキングが起こりやすく、また、塗布型はインキ密着性が悪いために印刷用途として使用できないなどの問題がある。また、耐熱性に関する記載はない。
 特許文献2に記載の技術では、ポリ乳酸の特徴である、高い透明性を確保することはできない。また、耐熱性に関する記載はない。
 特許文献3に記載の技術では、ポリ乳酸の分解速度を促進する効果を狙ったものであり、帯電防止性を確保することはできない。また、耐熱性に関する記載はない。
 特許文献4に記載の技術では、帯電防止性は有しているものの、耐ブロッキング性効果が不十分であり、また、熱成形等により熱履歴を経たあとの帯電防止効果が十分ではなかった。また、耐熱性に関する記載はない。
 特許文献5に記載の技術では、組成物の帯電防止性に関する記載はなく、組成物がシートの形体をとるとき、静電気によるホコリの付着、シート同士のブロッキングが発生するなどの問題がある。また、公知の帯電防止剤を添加した場合でも、透明性が維持できないなどの問題がある。
 特許文献6に記載の技術では、シートの帯電防止性に関する記載はなく、静電気によるホコリの付着、シート同士のブロッキングが発生するなどの問題がある。また、公知の帯電防止剤を添加した場合でも、透明性が維持できないなどの問題がある。
 以上のように従来技術では、耐熱性、帯電防止性、透明性、耐ブロッキング性に優れ、特に印刷加工を施される成形品用途に適したポリ乳酸系樹脂シートは未だに達成されていなかった。
 そこで本発明は、かかる従来技術の背景に鑑み、耐熱性、帯電防止性、透明性、耐ブロッキング性に優れ、特に成形品用途に適したポリ乳酸系樹脂シートを提供せんとするものである。
 本発明は、上記課題を解決するために次のような手段を採用するものである。
1) シートが、ポリ乳酸を含有する組成物(A)からなる層Aと、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物(B)からなる層Bとを有する積層構成であり、
 該層Bは、シートの少なくとも一方の最表層であり、
 組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が50質量%以上99.5質量%以下であり、
 組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比が、2≦イオン系界面活性剤/非イオン系界面活性剤≦25であることを特徴とするポリ乳酸系樹脂シート。
2) 前記イオン系界面活性剤がスルホ基を持つことを特徴とする前記1)に記載のポリ乳酸系樹脂シート。
3) 前記非イオン系界面活性剤が下記化合物群から選ばれる少なくとも一つであることを特徴とする前記1)または2)に記載のポリ乳酸系樹脂シート。
 化合物群:脂肪族アルカノールアミド、ポリグリセリン脂肪酸エステル、高級アルコール(i)、アルキルフェノール(ii)、脂肪酸エステル(iii)、脂肪族アミン(iv)、脂肪族アミド(v)、ポリプロピレングリコール(vi)、ソルビタン脂肪酸エステル(vii)、前記(i)~(vii)のエチレンオキサイド付加物
4) 前記組成物(B)の全体100質量%において、イオン系界面活性剤および非イオン系界面活性剤の合計の含有量が、1質量%以上5質量%以下であることを特徴とする前記1)~3)のいずれかに記載のポリ乳酸系樹脂シート。
5) ヘイズが10%以下であることを特徴とする前記1)~4)のいずれかに記載のポリ乳酸系樹脂シート。
6) ぬれ張力が40mN/m以上であることを特徴とする前記1)~5)のいずれかに記載のポリ乳酸系樹脂シート。
7) 前記組成物(B)の全体100質量%において、耐衝撃性改良剤を2質量%以上20質量%以下含有することを特徴とする前記1)~6)のいずれかに記載のポリ乳酸系樹脂シート。
8) 前記組成物(A)に含有されるポリ乳酸が、ステレオコンプレックスポリ乳酸であることを特徴とする前記1)~7)のいずれかに記載のポリ乳酸系樹脂シート。
9) 前記1)~8)のいずれかに記載のポリ乳酸系樹脂シートからなる成形品。
 本発明によれば、耐熱性、帯電防止性、透明性、耐ブロッキング性に優れ、特に印刷加工を施される成形品用途に適したポリ乳酸系樹脂シートが提供される。また本発明のポリ乳酸系樹脂シートを用いてなる成形品は、耐熱性、帯電防止性に優れ、食品容器、クリアファイル、クリアケースなどに代表される印刷加工を施された成形品として好ましく用いられることができる。
 以下、本発明のポリ乳酸系樹脂シートについて説明する。なお、本明細書において「シート」とは、二次元的な構造物、例えば、フィルム、プレートなどを含む意味に用いる。
 本発明のポリ乳酸系樹脂シートは、ポリ乳酸を含有する組成物(A)からなる層Aと、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物(B)からなる層Bとを有する積層構成であることが重要である。
 例えば、単に、ポリ乳酸、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物からなる単層シートの場合は、十分な耐熱性を発揮させるためには多量のポリ(メタ)アクリレート系樹脂を含有する必要があり、高い植物度を維持できなくなる。逆に、高い植物度を維持しようとする場合は、ポリ(メタ)アクリレート系樹脂の含有量が制限され、十分な耐熱性を発揮させることはできない。
 また、生産性や耐熱性の観点から、組成物(B)からなる層Bがシートの少なくとも一方の最表層であることが重要である。なお、シートの両側の最表層に、層Bが配置された積層シートであることが好ましい態様であり、シートのカール抑制の観点から、層B/層A/層Bの順で直接積層された3層構成であることが特に好ましい態様である。
 そして、組成物(B)がポリ(メタ)アクリレート系樹脂とイオン系界面活性剤だけ、あるいは、ポリ(メタ)アクリレート系樹脂と非イオン系界面活性剤だけからなる場合は、帯電防止効果を発揮させるために多量の界面活性剤を含有する必要があり、シートの透明性を低下させてしまう問題がある。そのため層Bを構成する組成物(B)は、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有することが重要である。
 なお、シートが帯電防止性を有するとは、組成物(B)からなる層Bが積層されている側の表面の表面比抵抗値が1×1012Ω/口以下である状態を意味する。
 本発明のポリ乳酸系樹脂シートは、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物(B)からなる層をシートの少なくとも一方の最表層に有することにより、界面活性剤の含有量が比較的少量ですみ、シートの透明性を維持したまま帯電防止効果を発揮させることができる。
 本発明のポリ乳酸系樹脂シートは、組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が50質量%以上99.5質量%以下であることが重要である。
 組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が、50質量%未満であれば、シートの耐熱性が低下してしまう。一方、組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が、99.5質量%より多い場合は、界面活性剤の含有量が少なくなり過ぎてしまい、十分な帯電防止効果が発揮できない。
 高い耐熱性を維持できるという観点では、組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が80質量%以上99.5質量%以下であることが好ましい。また、ポリ乳酸系樹脂シートの生産性や高い植物度を維持するという観点では、組成物(B)の全体100質量%において、ポリ乳酸を10質量%以上40質量%未満含有させるなどして、ポリ(メタ)アクリレート系樹脂の含有量を50質量%以上75質量%以下としても良い。このように、本発明のポリ乳酸系樹脂シートは、多岐に渡る用途に対して、それぞれが要求する耐熱性の強さと植物度に応じて、組成物(B)中のポリ(メタ)アクリレート系樹脂の含有量を50質量%以上99.5質量%以下の範囲で適宜調整することができる。なお、組成物(B)にポリ乳酸を含有させる場合は、例えば、後述するような、ホモポリ乳酸、ステレオコンプレックスポリ乳酸、および共重合ポリ乳酸などを用いることができるが、特に限定されるものではない。
 本発明のポリ乳酸系樹脂シートは、組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比が、2≦イオン系界面活性剤/非イオン系界面活性剤≦25であることが重要である。
 従来から、高い帯電防止性を付与するために多量の各種界面活性剤をポリ(メタ)アクリレート系樹脂に含有させた技術はあったものの、透明性などの本来ポリ(メタ)アクリレート系樹脂が有する良好な特性を維持することは困難であった。本発明の発明者らはこの課題について鋭意検討を行った結果、上述した特定の界面活性剤を特定の割合で添加することにより、従来技術に比較して総量として遙かに少量の界面活性剤の添加で高い帯電防止効果を付与できることを見出し本発明に至った。すなわち、上述したとおり、組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比が、2≦イオン系界面活性剤/非イオン系界面活性剤≦25の範囲で相対的に多量のイオン系界面活性剤と相対的に少量の非イオン系界面活性剤を併用することで、組成物(B)からなる層Bに高い帯電防止効果を付与できる。本発明の効果が発現する原理については、未だ明らかではないが、以下の通りと推定される。
 本来、ポリ(メタ)アクリレート系樹脂に添加、混合された各種界面活性剤は、あるいはその後さらに溶融成形された後、経時とともに成形品の表面に移行しブリードするとともに、帯電防止効果を発揮するものである。また、一般的にイオン系界面活性剤と非イオン系界面活性剤の単体それぞれをポリ(メタ)アクリレート系樹脂に添加した場合を比較すると、前者の方が比較的少量で帯電防止付与効果を発揮しやすいが、一方でヘイズは上がりやすい。本発明では相対的に多量のイオン系界面活性剤に相対的に少量の非イオン系界面活性剤を併用することで、イオン系界面活性剤のみを単体で添加する場合に比べてイオン系界面活性剤の表面への移行とブリードを飛躍的に促進し、併用する非イオン系界面活性剤の量を加えた界面活性剤添加総量で比較しても大幅に少ない添加量で高い帯電防止効果を得られるものと推定している。
 上述した観点から、組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比、イオン系界面活性剤/非イオン系界面活性剤が、2より小さい場合、帯電防止効果を発揮させるためにイオン系界面活性剤を多量に含有する必要があり、透明性を損なってしまう。一方、イオン系界面活性剤/非イオン系界面活性剤が、25より大きい場合も上記と同様の理由から、透明性を損なってしまう。
 とくにイオン系界面活性剤よりも非イオン系界面活性剤の質量比率が多い場合、すなわち、イオン系界面活性剤/非イオン系界面活性剤が1より小さい場合には、帯電防止効果を発揮させるために、イオン系界面活性剤および非イオン系界面活性剤の含有量を増やすことが必要となり、透明性が悪化したり、シート成形時の溶融粘度低下を起こし成形不良となってしまう場合がある。また、非イオン系界面活性剤は熱履歴に弱いために、シートとなった際、熱履歴をうけたことで、シート同士が粘着によるブロッキングを起こしてしまう場合がある。
 組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比、イオン系界面活性剤/非イオン系界面活性剤が、6≦イオン系界面活性剤/非イオン系界面活性剤≦18であることが好ましく、6≦イオン系界面活性剤/非イオン系界面活性剤≦10であることがより好ましい。
 なお、本発明における界面活性剤とは、分子鎖中に親水基と親油基とを有する化合物である。
 本発明におけるイオン系界面活性剤とは、上述の界面活性剤の中でも純水に溶解したときに電荷を放出または獲得する親水基を有する界面活性剤を意味する。なおイオン系界面活性剤は、カチオン系の界面活性剤、アニオン系の界面活性剤のいずれを用いることも可能であり、カチオン系の界面活性剤とアニオン系の界面活性剤を混合して使用することもできる。
 カチオン系の界面活性剤とは、純水中で陽イオンになる親水基を有する界面活性剤であり、アニオン系の界面活性剤とは、純水中で陰イオンになる親水基を有する界面活性剤である。
 本発明における非イオン系界面活性剤とは、上述の界面活性剤の中でも純水中で電荷を放出または獲得しない親水基を有する界面活性剤を意味する。
 親水基とは、水に溶解しやすい官能基であり、純水中で陽イオンになる親水基、純水中で陰イオンになる親水基、純水中で電を放出または獲得しない親水基に分けることができる。
 純水中で陽イオンになる親水基とは、具体的には、第3級アミノ基を挙げることができる。
 純水中で陰イオンになる親水基とは、具体的には、スルホ基、カルボキシル基などを挙げることができる。
 純水中で電荷を放出または獲得しない親水基とは、具体的には、ヒドロキシル基、アミド基などを挙げることができる。
 親油基とは、水に溶解しにくい官能基であり、具体的には、アルキル基、アルケニル基、シクロアルキル基、アリール基などを挙げることができる。
 本発明のポリ乳酸系樹脂シートの組成物(B)に含有される界面活性剤としては、イオン系界面活性剤がスルホ基を持ち、非イオン系界面活性剤が下記化合物群から選ばれる少なくとも1種類であることが好ましい。
 化合物群:脂肪族アルカノールアミド、ポリグリセリン脂肪酸エステル、高級アルコール(i)、アルキルフェノール(ii)、脂肪酸エステル(iii)、脂肪族アミン(iv)、脂肪族アミド(v)、ポリプロピレングリコール(vi)、ソルビタン脂肪酸エステル(vii)、前記(i)~(vii)のエチレンオキサイド付加物
 スルホ基を持つイオン系界面活性剤としては、アルキル基、アルキルアリール基、又はその他の親油基、並びに、純水中で陰イオンとなる親水基であるスルホ基を持つイオン系界面活性剤が好ましい。そしてスルホ基を持つイオン系界面活性剤は、分子量1000以下が好ましく、特に分子量100以上500以下のイオン系界面活性剤が好ましい。
 スルホ基を持つイオン系界面活性剤としては、例えば、アルキルスルホン酸金属塩が好適である。スルホ基を持つイオン系界面活性剤が、アルキルスルホン酸金属塩の場合には、帯電防止効果の面でアルキル基の炭素数が11~15であることが好ましい。またスルホ基を持つイオン系界面活性剤が、アルキルスルホン酸金属塩の場合には、金属塩としては、ナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩等を使用することができるが、好ましくはナトリウム塩である。アルキルスルホン酸金属塩は1種または2種以上を混合して用いることができる。
 本発明の非イオン系界面活性剤として使用される化合物群について説明する。
 非イオン系界面活性剤として好適な脂肪族アルカノールアミドは、高級脂肪酸とアルカノールアミドの縮合によって合成される。高級脂肪酸は特に限定されないが、炭素数が12~20の脂肪酸が好適に使用できる。高級脂肪酸としては、具体的には、ステアリン酸が望ましい。アルカノールアミドは、ジエタノールアミン、モノエタノールアミン、イソプロパノールアミンが好適に使用できる。
 非イオン系界面活性剤として好適な高級アルコール(i)、アルキルフェノール(ii)、脂肪酸エステル(iii)、脂肪族アミン(iv)、脂肪族アミド(v)の有するアルキル基は、炭素数が8~22が好適に使用できる。
 非イオン系界面活性剤として好適な上記(i)~(v)のエチレンオキサイド付加物のエチレンオキサイド付加モル数は、結合している親油基にもよるが、通常2~20モルが選ばれる。付加モル数が多いと樹脂に配合したときに透明性を阻害しやすい傾向が見られる。
 非イオン系界面活性剤として好適なポリプロピレングリコール(vi)は、分子量500~5000の化合物が好適に使用できる。
 非イオン系界面活性剤として好適なポリプロピレングリコール(vi)のエチレンオキサイド付加物は、そのエチレンオキサイド付加モル数は結合している親油基にもよるが、通常2~20モルが選ばれる。
 非イオン系界面活性剤として好適なソルビタン脂肪酸エステル(vii)を構成する脂肪酸はC12~C18が好適に使用できる。
 非イオン系界面活性剤として好適なソルビタン脂肪酸エステル(vii)のエチレンオキサイド付加物は、そのエチレンオキサイド付加モル数は結合している親油基にもよるが、通常2~20モルが選ばれる。
 非イオン系界面活性剤として好適なポリグリセリン脂肪酸エステルの脂肪酸は、炭素数12~炭素数18の化合物が好適に使用できる。また、グリセリンはジ、テトラ、デカのいずれから選ばれるが、テトラが好ましい。
 ポリ(メタ)アクリレート系樹脂との相溶性がよいという点で、非イオン系界面活性剤としてとくに好ましいのは、脂肪族アミン(iv)のエチレンオキサイド付加物である。
 また、上述のイオン系界面活性剤および/または非イオン系界面活性剤は、組成物(B)の他に、層Aを構成する組成物(A)に含有させても良い。特に、層Bの1層当たりの厚みが0.02mm未満であるときには、耐電防止性の効果が60日以上持続しない場合がある。そのため、例えば、層Bの1層当たりの厚みが0.02mm未満であり、さらにシートの生産から成形までの期間が60日以上空くとき等は、組成物(A)にも界面活性剤を含有させることが好ましい。組成物(A)に含有させる界面活性剤としては、上述のイオン系界面活性剤または上述の非イオン系界面活性剤のいずれか一方を選択しても良いし、両方の界面活性剤を含有させても良いが、特に長期間にわたって帯電防止性の効果を持続させる場合には、組成物(B)に含有させる界面活性剤と同じ種類の界面活性剤を、組成物(B)と同じ含有量、または、透明性を損なわない範囲で、組成物(B)よりも多い含有量で含有させることが好ましい。
 本発明のポリ乳酸系樹脂シートは、ヘイズが10%以下であることが好ましい。ヘイズが10%以下であれば、このようなポリ乳酸系樹脂シートを用いてなる成形品は、内容物の視認性に優れ、商品として見栄えがよいなど、高い意匠性を有した包装容器あるいは包装シートとして好ましく用いることができる。ヘイズが10%より大きいと透明性が不十分であり、実用化に好ましくないことがある。なお、ヘイズが1%未満であれば、シートに傷がつきやすく、このような積層シートを包装用容器あるいは包装シートにした時に外観が悪くなってしまうことがあるため、ヘイズは1%以上であることが好ましい。本発明のポリ乳酸系樹脂シートのさらに好ましいヘイズは、2%以上8%以下である。なおヘイズの下限は前述の通り1%であるが、ヘイズの下限は4%程度であれば、包装用容器や包装シートなどの透明性の必要な用途に使用するに際し、十分な値である。
 ヘイズを10%以下とするためには、本発明の組成物(B)の全体100質量%において、イオン系界面活性剤および非イオン系界面活性剤の合計を1質量%以上5質量%以下とすることが好ましい。この範囲の場合、高い帯電防止性と低いヘイズを両立する好適な範囲となる。同様の観点からさらに好ましいイオン系界面活性剤および非イオン系界面活性剤の含有量は、組成物(B)の全体100質量%において、イオン系界面活性剤および非イオン系界面活性剤の合計を0.5質量%以上2.5質量%以下とすることであり、特に好ましくは0.5質量%以上1.6質量%以下とすることである。
 本発明のポリ乳酸系樹脂シートの全体の厚みは、特に制限されないが、通常は0.1mm以上2.0mm以下の範囲となる。本発明のポリ乳酸系樹脂シートが各種容器用途やブリスターパック用途として用いられる場合は、全体厚みは通常は0.15mm以上0.7mm以下の範囲が好適であり、また、印刷加工物用途として用いられる場合は、全体厚みは通常は0.1mm以上0.4mm以下の範囲が好適である。
 本発明のポリ乳酸系樹脂シートは、耐熱性、帯電防止性、ヘイズ、植物度を両立させるために、組成物(B)からなる層Bの1層当たりの厚みは、通常0.01mm以上0.05mm以下であることが好ましい。層Bの1層当たりの厚みが0.01mm未満であれば、耐熱性が低下する場合や、十分な帯電防止性を得ることが困難となる場合がある。一方で、層Bの1層当たりの厚みが0.05mmを超えれば、シート全体のヘイズが高くなる場合や、植物度が低下する場合がある。
 また、ポリ乳酸系樹脂シート全体の厚みにおける各々の層Bの厚みの比率(つまり、「層Bの1層当たりの厚み」/「ポリ乳酸系樹脂シート全体の厚み」)としては、生産性の観点から、通常0.5/10~3/10の範囲が好ましい。
 本発明のポリ乳酸系樹脂シートは、少なくとも一方の側の表面のぬれ張力が40mN/m以上であることが好ましい。この範囲であれば、シートの帯電防止効果に加えて、食品容器用途に使用する場合に良好な防曇効果を発揮しやすい。
 ポリ乳酸系樹脂シートの少なくとも一方の側の表面のぬれ張力を40mN/m以上とするためには、組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比を、6≦イオン系界面活性剤/非イオン系界面活性剤≦18とすることが好ましく、特に、帯電防止性と防曇性の効果を同時に発揮するためには、組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比を、6≦イオン系界面活性剤/非イオン系界面活性剤≦10とすることによって、層Bの表面のぬれ張力を40mN/m以上とすることができるため、結果として、少なくとも一方の側の表面のぬれ張力を40mN/m以上とすることができる。
 本発明のポリ乳酸系樹脂シートは、ポリ乳酸を含有する組成物(A)からなる層Aを有することが重要である。組成物(A)は、ポリ乳酸を含有しさえすれば、その含有量に特に制限はないが、好ましくは組成物(A)の全体100質量%において、ポリ乳酸が50質量%以上100質量%以下であることである。このようにすることで、シートの植物性を高めることができるために好ましい。
 また、本発明のポリ乳酸系樹脂シートは、例えば、ホット飲料容器の蓋材用途等の高い耐熱性が要求されるような用途に用いる場合は、組成物(A)の全体100質量%において、例えば、ポリ乳酸が30質量%以上45質量%以下とすることで、シート全体の植物度をある程度維持しつつ、かつ、高い耐熱性を発揮することもできる。この場合、透明性や生産性の観点から、組成物(A)に、本発明の組成物(B)に用いるようなポリ(メタ)アクリレート系樹脂を含有することが好ましい。
 本発明に用いるポリ乳酸は、L-乳酸および/またはD―乳酸を主成分とし、乳酸由来の成分が、ポリ乳酸を構成する全ての単量体成分100モル%において70モル%以上100モル%以下のものをいい、実質的にL-乳酸および/またはD―乳酸のみからなるホモポリ乳酸が好ましく用いられる。
 また、本発明に用いるポリ乳酸は、結晶性を有することが好ましい。ポリ乳酸が結晶性を有するとは、該ポリ乳酸を加熱下で十分に結晶化させた後に、適当な温度範囲で示差走査熱量分析(DSC)測定を行った場合、ポリ乳酸成分に由来する結晶融解熱が観測されることを言う。通常、ホモポリ乳酸は、光学純度が高いほど融点や結晶性が高い。ポリ乳酸の融点や結晶性は、分子量や重合時に使用する触媒の影響を受けるが、通常、光学純度が98%以上のホモポリ乳酸では融点が170℃程度であり結晶性も比較的高い。また、光学純度が低くなるに従って融点や結晶性が低下し、例えば光学純度が88%のホモポリ乳酸では融点は145℃程度であり、光学純度が75%のホモポリ乳酸では融点は120℃程度である。光学純度が70%よりもさらに低いホモポリ乳酸では明確な融点は示さず非結晶性となる。
 本発明に用いるポリ乳酸は、結晶性を有するホモポリ乳酸と非晶性のホモポリ乳酸を混合することも可能である。この場合、非晶性のホモポリ乳酸の割合は本発明の効果を損ねない範囲で決定すれば良く、特に、比較的高い耐熱性を付与したい場合は、使用するポリ乳酸のうち少なくとも1種に光学純度が95%以上のポリ乳酸を含むことが好ましい。
本発明における組成物(A)に含有されるポリ乳酸は、ステレオコンプレックスポリ乳酸であっても良い。ステレオコンプレックスポリ乳酸とは、例えば Macromolecules, vol.20, 904 (1987)に記載されているように、ポリ-L-乳酸ユニットとポリ-D-乳酸ユニットが1対となった結晶を有するポリ乳酸である。ポリ-L-乳酸は左巻きらせん構造を有するのに対し、光学異性体のポリ-D-乳酸は右巻きらせん構造を有するところから、これらを混合すると、二成分間に立体特異的な結合が生じ、ポリ-L-乳酸あるいはポリ-D-乳酸それぞれ単独の場合に形成される結晶構造よりも緊密かつ強固な結晶構造(ステレオコンプレックス)を形成し、この結晶構造(ステレオコンプレックス)を有するポリ乳酸をステレオコンプレックスポリ乳酸という。ステレオコンプレックスポリ乳酸はステレオコンプレックスの形成により融点が高くなり、通常のポリ-L-乳酸あるいはポリ-D-乳酸の融点が165~180℃であるのに対して、ステレオコンプレックスポリ乳酸の融点は190℃~250℃となることもある。本発明における組成物(A)に含有されるポリ乳酸にステレオコンプレックスポリ乳酸を用いることは、例えば、電子レンジ対応容器用途等の高い耐熱性が要求されるような用途に用いる場合に、特に好ましい。
本発明に用いることができるステレオコンプレックスポリ乳酸の製造方法としては、特に制限されるものではないが、公知の方法で製造することができ、例えば特開2006-036808号公報に例示されるような、ポリ-L-乳酸とポリ-D-乳酸とを溶融混練して得る方法や、特開2003-238672号公報に例示されるような、ポリ-L-乳酸とポリ-D-乳酸をブロック共重合して得る方法などを例示することができる。
 本発明に用いるポリ乳酸の質量平均分子量は、通常少なくとも5万以上、好ましくは8万~40万、さらに好ましくは10万~30万である。なお、本発明でいう質量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)で、カラムにShodexGPC HFIP-806MとShodex GPC HFIP-LGを直列に接続したものを用いて、クロロホルム溶媒にて測定を行い、ポリメチルメタクリレート(PMMA)換算法により計算した分子量をいう。
 ポリ乳酸の質量平均分子量を5万以上とすることで、該ポリ乳酸を含んだ本発明の積層シートの機械特性を優れたものとすることができ、さらに本発明の積層シートからなる加工品の機械特性をも優れたものとすることができる。
 また、本発明に用いるポリ乳酸は、L-乳酸、D-乳酸のほかにエステル形成能を有するその他の単量体成分を共重合した共重合ポリ乳酸であってもよい。共重合可能な単量体成分としては、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸等の分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。これら共重合成分は、ポリ乳酸を構成する全ての単量体成分100モル%において0モル%以上30モル%以下含有することが好ましい。
 ポリ乳酸の製造方法としては、特に限定されないが、乳酸からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。例えば直接脱水縮合して製造する場合、乳酸類または乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより高分子量のポリマーが得られる。また、開環重合法としては、ヒドロキシカルボン酸の環状エステル中間体、例えば、ラクチド、グリコリド等の環状エステル中間体をオクチル酸錫等の触媒を用い減圧下開環重合することによっても高分子量のポリマーが得られることも知られている。このとき、有機溶媒中での加熱還流時の水分および低分子化合物の除去の条件を調整する方法や、重合反応終了後に触媒を失活させ解重合反応を抑える方法、製造したポリマーを熱処理する方法などを用いることにより、ラクチド量の少ないポリマーを得ることができる。
 本発明のポリ乳酸系樹脂シートは、特に各種工業製品の包装用途など、保管耐久性があった方が好ましい用途においては、ポリ乳酸の加水分解による強度低下を抑制し、良好な耐久性を付与する観点から、ポリ乳酸中のカルボキシル基末端濃度が0当量/10kg以上30当量/10kg以下であることが好ましく、より好ましくは20当量/10kg以下、さらに好ましくは10当量/10kg以下である。ポリ乳酸中のカルボキシル基末端濃度が30当量/10kg以下であると、加水分解の自己触媒ともなるカルボキシ基末端濃度が十分低いために、用途にもよるが実用的に良好な耐久性を付与できる場合が多い。
 ポリ乳酸中のカルボキシル基末端濃度を30当量/10kg以下とする方法としては、例えば、ポリ乳酸の合成時の触媒や熱履歴により制御する方法、シート製膜時の押出温度を低下あるいは滞留時間を短時間化する等熱履歴を低減する方法、反応型化合物を用いカルボキシル基末端を封鎖する方法等が挙げられる。
 反応型化合物を用いてカルボキシル基末端を封鎖する方法では、ポリ乳酸中のカルボキシル基末端の少なくとも一部が封鎖されていることが好ましく、全量が封鎖されていることがより好ましい。反応型化合物としては、例えば、脂肪族アルコールやアミド化合物等の縮合反応型化合物やカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等の付加反応型化合物が挙げられるが、反応時に余分な副生成物が発生しにくい点で付加反応型化合物が好ましく、中でも反応効率の点からカルボジイミド化合物が好ましい。
 本発明に用いるポリ(メタ)アクリレート系樹脂は、特に限定されるものではないが、アクリレートおよびメタクリレートから選ばれる少なくとも1種の単量体を構成単位とするものであり、2種以上の単量体を共重合して用いても構わない。ポリ(メタ)アクリレート系樹脂を構成するアクリレートおよびメタクリレートとしては、例えばメチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、シアノエチルアクリレート、シアノブチルアクリレートなどのアクリレート、およびメチルメタクリレート、エチルメタクリレート、シクロヘキシルメタクリレート、2-ヒドロキシエチルメタクリレートなどのメタクリレートが挙げられるが、より高い高温剛性を付与するには、ポリ(メタ)アクリレート系樹脂としてポリメチルメタクリレートを用いることが好ましい。
 これらの単量体を重合あるいは共重合する方法については特に限定されるものではなく、塊状重合、溶液重合、懸濁重合等の公知の重合方法を用いることができる。
 ポリ(メタ)アクリレート系樹脂としてポリメチルメタクリレートを用いる場合、ポリ乳酸との相溶性に優れること、また、積層シート製造時において各層の粘度をできるだけ近い値に調整し粘度斑を抑制して品位の良いシートを得やすいことから、JIS K7210(1999年制定)に準じて230℃で測定したポリメチルメタクリレートの流動性が、1~20g/10minであるものを用いることが好ましく、1.5~15g/10minであるものがさらに好ましく、2~10g/10minであるものが特に好ましい。
 本発明で用いられるポリ(メタ)アクリレート系樹脂は、質量平均分子量が2万~50万であることが好ましく、10万~20万であることがより好ましい。質量平均分子量が2万未満では、積層シートまたはそれから成形される成形品の強度が低下する場合があり、質量平均分子量が50万を超えると積層シート製膜時に粘度斑が発生したり、成形品の成形時に流動性が低下する場合がある。
 本発明のポリ乳酸系樹脂シートは、本発明の効果を損なわない範囲で、公知の酸化防止剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、抗酸化剤、イオン交換剤、結晶核剤、着色顔料等あるいは滑剤として、無機微粒子や有機粒子、有機滑剤を必要に応じて添加してもよい。また、これらの添加剤は、組成物(A)と組成物(B)の両方に添加してもよいし、どちらか一方の組成物のみに添加してもよい。
 酸化防止剤としてはヒンダードフェノール系、ヒンダードアミン系などが例示される。着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアニン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料等を使用することができる。
 加工品の易滑性や耐ブロッキング性の向上などを目的として、粒子を添加する際には、例えば無機粒子としては、シリカ等の酸化ケイ素、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の各種炭酸塩、硫酸カルシウム、硫酸バリウム等の各種硫酸塩、カオリン、タルク等の各種複合酸化物、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の各種リン酸塩、酸化アルミニウム、酸化チタン、酸化ジルコニウム等の各種酸化物、フッ化リチウム等の各種塩等からなる微粒子を使用することができる。
 また有機粒子としては、シュウ酸カルシウムや、カルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩などからなる微粒子が使用される。架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸のビニル系モノマーの単独または共重合体からなる微粒子が挙げられる。その他、ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機微粒子も好ましく使用される。
 無機粒子及び有機粒子の平均粒径は、特に限定されないが、0.01~5μmが好ましく、より好ましくは0.05~3μm、最も好ましくは0.08~2μmである。加工品の易滑性や耐ブロッキング性の向上など、シート表面への機能付与を目的とする場合は、透明性や生産性、製造コストの観点から、表層に配置される層を構成する組成物のみに添加することが特に好ましい。
 本発明のポリ乳酸系樹脂シートにおける組成物(A)および/または組成物(B)には、耐衝撃性を改良する目的で、それぞれの組成物の全体100質量%において耐衝撃性改良剤を2質量%以上20質量%以下含有してもよい。特に、組成物(B)は、ポリ(メタ)アクリレート系樹脂を多く含有するために耐衝撃性が十分でない場合が多く、耐衝撃性改良剤を組成物(B)の全体100質量%において2質量%以上20質量%以下含有することは特に好ましい。
 耐衝撃性改良剤の含有量は、好ましくは層を構成する組成物100質量%において2.5質量%以上15質量%以下である。耐衝撃性改良剤の含有量が多くなるほど、耐衝撃性の改良効果は向上するが、20質量%を超えて含有しても耐衝撃性の改良効果の大幅な向上は得られない場合が多い。
 なお、ここで言う耐衝撃性改良剤とは、ポリ乳酸およびポリ(メタ)アクリレート系樹脂が本来有する脆くて割れやすい脆性特性を改善する効果を有する添加剤を意味する。この様な効果を発揮するものとしては、ポリ乳酸および/またはポリ(メタ)アクリレート系樹脂に混合した際に、ポリ乳酸および/またはポリ(メタ)アクリレート系樹脂が海、添加剤が島となるような海島構造をとり、かつ島となる添加剤が通常10μm程度の直径の球体内に納まるサイズで分散した構造となるような添加剤が挙げられる。またこの場合、ポリ乳酸および/またはポリ(メタ)アクリレート系樹脂よりも弾性率の低い、いわゆる軟質の添加剤を選択すると効果的である。
 このような耐衝撃性改良剤の具体例としては、例えばエチレン-プロピレン共重合体、エチレン/プロピレン-非共役ジエン共重合体、エチレン-1-ブテン共重合体、エチレン-アクリル酸共重合体およびそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、酸変性エチレン-プロピレン共重合体、ジエンゴム(例えば、ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えばスチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合せしめたもの、ブタジエン-アクリロニトリル共重合体)、ポリエステル-ジオール・ジカルボン酸ブロック共重合体、ポリイソブチレン、イソブチレンとブタジエンまたはイソプレンとの共重合体、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、シリコーンゴム、ポリウレタンゴム、ポリエーテルゴム、エピクロロヒドリンゴム、脂肪族ポリエステル、ポリエステル系エラストマーおよびポリアミド系エラストマーなどが挙げられる。
 さらに耐衝撃性改良剤の具体例としては、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造などを有するもの、コア層とそれを覆う1以上のシェル層から構成される多層構造重合体などを挙げることができる。
 組成物(A)に好適な耐衝撃性改良剤としては、ポリ乳酸中において好適な分散性を有し、少量でより高い耐衝撃性改良効果が得られる点で、ポリ乳酸以外の脂肪族ポリエステルや脂肪族芳香族ポリエステルが好ましい。
 組成物(A)に含有させるのに好適な耐衝撃性改良剤であるポリ乳酸以外の脂肪族ポリエステルや脂肪族芳香族ポリエステルとしては、特に限定されるものではなく、具体的には、ポリグリコール酸、ポリ3-ヒドロキシ酪酸、ポリ4-ヒドロキシ酪酸、ポリ4-ヒドロキシ吉草酸、ポリ3-ヒドロキシヘキサン酸またはポリカプロラクトン、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートなどが挙げられる。
 さらに、透明性を維持しながら耐衝撃性を改良するためには、ポリ乳酸以外の脂肪族ポリエステルである、ポリブチレンサクシネート系樹脂を耐衝撃性改良剤として用いることがより好ましい。さらに好ましい耐衝撃性改良剤は、耐衝撃性の改良効果が大きくポリ乳酸と相溶性のよいポリブチレンサクシネートやポリブチレンサクシネート・アジペートである。
 組成物(A)中の耐衝撃性改良剤としてポリブチレンサクシネートを用いる場合は、質量平均分子量が10万~30万であることが好ましい。このようなポリブチレンサクシネートとしては、例えば、“GSPla”FZ71PD(商品名 品番;三菱化学)や“ビオノーレ”#3003(商品名 品番;昭和高分子)が挙げられ、例えば、ポリブチレンサクシネートは、1-4ブタンジオールとコハク酸を重縮合して得られる。
 組成物(A)および/または組成物(B)中の耐衝撃性改良剤としては、多層構造重合体も好ましい例として挙げられる。多層構造重合体は、ポリ乳酸および/またはポリ(メタ)アクリレート系樹脂中において好適な分散性を有し、少量でより高い耐衝撃性改良効果が得られるためである。
 多層構造重合体とは、最内層(コア層)とそれを覆う1以上の層(シェル層)から構成され、また、隣接し合った層が異種の重合体から構成される、いわゆるコアシェル型と呼ばれる構造を有する重合体である。多層構造重合体を構成する層の数は、特に限定されるものではなく、2層以上であればよいし、3層以上または4層以上であってもよい。多層構造重合体としては、内部に少なくとも1層以上のゴム層を有することが好ましく、すなわち、最外層以外に1層以上のゴム層を有することが好ましい。
 ゴム層とは、ゴム弾性を有する重合体成分から構成される層であり、ゴム層の種類は、特に限定されるものではない。ゴム弾性とは、高分子鎖の伸び縮みによって起こる弾性をいう。
また、透明性を維持しながら耐衝撃性を改良することができるという観点から、耐衝撃性改良剤として含有する多層構造重合体は、コアシェル型のアクリル系重合体であることが好ましい。
 さらに詳しくは、多層構造重合体である場合において、ゴム層は、例えば、アクリル成分、シリコーン成分、スチレン成分、ニトリル成分、共役ジエン成分、ウレタン成分またはエチレンプロピレン成分などを重合させたものから構成されるゴムが挙げられる。
 ゴム層として好ましく用いられる重合体成分としては、例えば、アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分、ジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分、スチレン単位やα-メチルスチレン単位などのスチレン成分、アクリロニトリル単位やメタクリロニトリル単位などのニトリル成分またはブタジエン単位やイソプレン単位などの共役ジエン成分を重合させたものから構成されるゴムである。また、これらの成分を2種以上組み合せて共重合させたものから構成されるゴムも好ましく、例えば、(1)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分を共重合した成分から構成されるゴム、(2)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびスチレン単位やα-メチルスチレン単位などのスチレン成分を共重合した成分から構成されるゴム、(3)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびブタジエン単位やイソプレン単位などの共役ジエン成分を共重合した成分から構成されるゴム、(4)アクリル酸エチル単位やアクリル酸ブチル単位などのアクリル成分およびジメチルシロキサン単位やフェニルメチルシロキサン単位などのシリコーン成分およびスチレン単位やα-メチルスチレン単位などのスチレン成分を共重合した成分から構成されるゴム、などが挙げられる。また、これらの成分の他に、ジビニルベンゼン単位、アリルアクリレート単位またはブチレングリコールジアクリレート単位などの架橋性成分を共重合し架橋させたゴムも好ましく用いることができる。
 また、多層構造重合体の好ましい例としては、コア層と1つのシェル層から構成される多層構造重合体であり、コア層がジメチルシロキサン単位とアクリル酸ブチル単位を共重合した成分を含有するゴム層で、シェル層がメタクリル酸メチル重合体である多層構造重合体、コア層がブタジエン単位とスチレン単位を共重した成分を含有するゴム層で、シェル層がメタクリル酸メチル重合体である多層構造重合体、または、コア層がアクリル酸ブチル単位を重合した成分を含有するゴム層で、シェル層がメタクリル酸メチル重合体である多層構造重合体などが挙げられる。なお、ゴム層としてはメタクリル酸グリシジル単位を含有する重合体であることが特に好ましい。
 ポリ乳酸および/またはポリ(メタ)アクリレート系樹脂と耐衝撃性改良剤との溶融混練方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸または二軸押出機等の通常使用されている混合機を用いることができる。中でも生産性の観点から、単軸または二軸押出機の使用が好ましい。
 またその混合順序についても特に制限はなく、例えばポリ乳酸および/またはポリ(メタ)アクリレート系樹脂と耐衝撃性改良剤とをドライブレンド後、溶融混練機に供する方法や、予めポリ乳酸および/またはポリ(メタ)アクリレート系樹脂と耐衝撃性改良剤とを溶融混練したマスターバッチを作製後、該マスターバッチとポリ乳酸とを溶融混練する方法等が挙げられる。また必要に応じて、その他の成分を同時に溶融混練する方法や、予めポリ乳酸および/またはポリ(メタ)アクリレート系樹脂とその他の添加剤とを溶融混練したマスターバッチを作製後、該マスターバッチと溶融混練する方法を用いてもよい。
 本発明のポリ乳酸系樹脂シートは、例えばTダイキャスト法、インフレーション法、カレンダー法などの既存のフィルムの製造法により得ることが出来るが、Tダイキャスト法による製造が好ましい。例えば、Tダイキャスト法による製造例としては、ペレットを60~110℃にて3時間以上乾燥するなどして水分量を質量比で400ppm以下としたペレットを用い、シリンダー温度150℃以上240℃以下の範囲で二軸押出機を用いて溶融混練を行い、口金温度150℃以上240℃以下の範囲でTダイから押出した後、30~40℃の冷却ロールにて冷却し、厚み0.1mmから2.0mm程度のシートを得ることが挙げられる。この場合、シリンダー温度および口金の温度範囲は、原料の熱劣化を抑制する観点から、200℃以上220℃以下の範囲とすることが好ましい。一方で、ステレオコンプレックスポリ乳酸を用いる場合は、そのステレオコンプレックス結晶を融解させる必要があるため、この場合のシリンダー温度および口金の温度範囲は、ステレオコンプレックス結晶の融解温度以上ステレオコンプレックス結晶の融解温度+20℃未満の温度範囲とすることが好ましい。
 また、ステレオコンプレックスポリ乳酸を用いる場合は、本発明のポリ乳酸系樹脂シートの製造工程において熱処理を施すことも可能であり、ステレオコンプレックス結晶の比率を上げるために、熱風オーブンによる熱処理工程を設けても良い。
 本発明のポリ乳酸系樹脂シートは、コーティング適性を向上させる目的で各種の表面処理を施してもよい。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理、酸処理などが挙げられる。
 本発明のポリ乳酸系樹脂シートを用いてなる成形品の成形法としては、真空成形、真空圧空成形、プラグアシスト成形、ストレート成形、フリードローイング成形、プラグアンドリング成形、スケルトン成形などの各種成形法を適用することができる。各種成形法におけるシート予熱方式としては、間接加熱方式と熱板直接加熱方式があり、間接加熱方式はシートから離れた位置に設置された加熱装置によってシートを予熱する方式であり、熱板直接加熱方式はシートと熱板が接触することによってシートを予熱する方式であるが、本発明のポリ乳酸系樹脂シートは、熱板直接加熱方式の真空成形加工、または熱板直接加熱方式の真空圧空成形加工に好ましく用いることができる。
 すなわち、帯電防止性や防曇性の機能をコーティングにより付与している公知のシートを熱板直接加熱方式で加熱した場合、シート加熱時にコーティング層が熱板に移行してしまい、帯電防止性や防曇性の効果が薄れてしまうことがある。一方で、本発明のポリ乳酸系樹脂シートを使用した場合は、熱板直接加熱時に熱板に、仮にシート表面の界面活性剤が熱板に移行したとしても、シート内部から界面活性剤が再度ブリードアウトし、成形品使用時には帯電防止効果や防曇効果を発揮できる場合が多い。
 本発明のポリ乳酸系樹脂シートを用いてなる成形品は、例えば食品用の成形容器、飲料用カップ蓋などの容器類や、ブリスターパックなどの各種容器包装類、その他、帯電防止性や防曇性を必要とする各種用途に好ましく用いることができる。
 本発明のポリ乳酸系樹脂シートおよび/または成形品は、印刷加工等を施してもよい。例えば、印刷加工を施した本発明のポリ乳酸系樹脂シートは各種容器、ブリスターパック、カード、クリアファイル、クリアケース等の用途に好ましく用いることができるが、印刷加工を施す前の本発明のポリ乳酸系樹脂シートが透明である場合は、既存の印刷加工機を使用することができ、かつ、透明でありながら帯電防止性に優れる点から、クリアケースや卓上カレンダーケース、クリアファイル用途などに特に好ましく用いることができる。また一方で、本発明のポリ乳酸系樹脂シートおよび/または成形品が公知の方法で白色などに着色されている場合は、カード用途などに好ましく用いることができる。また、印刷加工の順序は特に限定されないが、ポリ乳酸系樹脂シートを成形加工する場合、印刷加工は成形加工前に行ってもよいし、成形加工後に行ってもよい。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら制限を受けるものではない。
[測定及び評価方法]
 実施例中に示す測定や評価は次に示すような条件で行った。
 (1)各層の厚み比
 シート断面を、ライカマイクロシステムズ(株)製金属顕微鏡LeicaDMLMを用いて、倍率100倍、透過光で写真撮影し、各層の厚みを測定することにより、各層の厚み比を求めた。
 (2)シート厚み(mm)
 厚みをシート全幅に対して、マイクロゲージで10点測定し、厚みの平均値t(mm)を求めて、シート厚みとした。
 (3)組成物(B)中のポリ(メタ)アクリレート系樹脂の含有量(質量%)
 製造の際の配合量から、ポリ(メタ)アクリレート系樹脂の含有量を算出した。
 (4)組成物(B)中の界面活性剤の質量比
 製造の際のイオン系界面活性剤と非イオン系界面活性剤の添加量から算出した。
 (5)組成物(B)中の界面活性剤の含有量(質量%)
 製造の際の配合量から、界面活性剤の含有量を算出した。
 (6)耐熱性:耐熱温度(℃)
 幅320mm、長さ460mmの枚葉サンプルを、直径70mm、高さ130mmの飲料ダミー缶型(半円柱)を備えた成光産業(株)製小型真空成形機フォーミング300X型を用いて、成形時のシート温度が90℃~110℃の範囲になるような温度条件で予熱、成形を行い、得られた成形体を50℃、55℃、60℃、65℃、70℃、75℃、80℃の各設定温度の恒温漕内に2時間置き、成形体が変形しない上限の温度を耐熱温度とした。
 (7)帯電防止性:表面比抵抗値(Ω/□)
 JIS-K6911(1962年制定)に基づいて、(株)エーディーシー社製レジスティビティ・チェンバおよびデジタル超高抵抗/微少電流計を用いて、ポリ乳酸系樹脂シートの表面比抵抗値を温度23℃、湿度65%の雰囲気下で測定した。測定は1サンプルにつき3回行い、3回の測定の平均値から求めた。
 (8)耐ブロッキング性
 ポリ乳酸系樹脂シートをA4サイズに10枚切り出し、シート10枚を重ね合わせた状態で、200g/cmの荷重をかけ、40℃の雰囲気下で24時間放置後、重ね合わせたシートの束からシート1枚ずつを摘み上げ、下記の基準で判定した。
○:ブロッキングはなく、容易に1枚ずつ摘み上げることができる。
×:ブロッキングしており、一度にシート数枚がくっついてくる。
 (9)透明性:ヘイズ値(%)
 ヘイズメーターHGM-2DP型(スガ試験機社製)を用いてヘイズ値を測定した。測定は1サンプルにつき5回行い、5回の測定の平均値から求めた。
 (10)ぬれ張力(mN/m)
 JIS-K6768(1999年)に基づいて、ポリ乳酸系樹脂シートの層Bが積層されている側の表面に、各種ぬれ張力試験用混合液(和光純薬工業株式会社製)を綿棒を用いて幅1cm、長さ6cmに塗り、塗布から2秒後の塗布液の様子から、シートのぬれ張力を測定した。層Bが両方の表面に積層されている場合には、両面のぬれ張力を測定し、ぬれ張力が大きい方の値を採用した。
 (11)防曇性
 ポリ乳酸系樹脂シートを用い、バッチ式熱板直接加熱方式の真空成形機にて上下熱板設定温度:85℃、予熱時間1秒にて、メス型の成形型をシートに押し当てて内部を減圧することで縦:約9cm、横:約12cm、高さ:約2.5cmの容器蓋材を成形した。この際、層Bが容器蓋材の内側となるようにシート面を選択した。別途準備した前記容器蓋材と対をなす容器底材に25℃の水を100ml入れて、成形した蓋材にて蓋をし、5℃の雰囲気中にて24時間保管後の蓋材の曇りや水滴の付着状況を観察し、以下の基準で判断した。
○:表面に付着した水滴が全て連なって膜状となっており、内部の視認性が良好である。
△:部分的に独立した微細水滴が付着し、内部の視認が困難である。
×:全面に独立した微細水滴が付着し、底が見えない。
 (12)印刷性:インキ密着性
 紫外線硬化型インキ(T&K TOKA社製 UV STP 藍)を用い、ロールコート法でポリ乳酸系樹脂シートの層B面の上に約2μmの厚みにインキ層を塗布した。その後、照射強度80W/cmの紫外線を照射距離9cmで8秒間照射し硬化させ、試料を作製した。
ポリ乳酸系樹脂シートとインキとの密着性をJIS-K5600(1999年制定)に記載のクロスカット法によるテープ剥離により評価した。まず、試料片にカッターナイフを用いて直交する縦横7本ずつの平行線を1mm間隔で引き、碁盤目状に36個のマス目を作製した。これらのマス目の上に粘着テープ(ニチバン社製「セロテープ(登録商標)」24mm幅)を貼り付け、均一に密着させた後、粘着テープを瞬時に引き剥がし、試験片のインキ層の剥離状態を観察し、剥がれずに残ったマス目の割合から、以下の基準で評価した。
○:90%以上
×:90%未満。
 (13)耐衝撃性:インパクト値(N・m/mm)
 フィルムインパクトテスター(東洋精機製作所製)により、直径1/2インチの半球状衝撃頭を用い、温度23℃、湿度65%RHの雰囲気下においてインパクト値の測定を行った。100mm×100mmにフィルムサンプルを作製し、測定は1サンプルにつき5回行った。さらに、1回毎のインパクト値を測定サンプル厚みで割り返し、単位厚みあたりのインパクト値とし、5回の測定の平均値から求めた。サンプル厚みは、デジタル式マイクロメーターで測定した。
 (14)シート全体の植物度(質量%)
 製造の際の配合量から、シート全体に対するポリ乳酸の含有量を算出した。
 [使用したポリ乳酸]
 (PLA-1):
ポリ乳酸(NatureWorks社製、商品名「NatureWorks4042D」、L体/D体:96/4)。
 (PLA-2):
ポリ乳酸(NatureWorks社製、商品名「NatureWorks4032D」、L体/D体:99/1)。
 (PLA-3):
L-ラクチド(株式会社武蔵野化学研究所製)48.75gとD-ラクチド(株式会社武蔵野化学研究所製)1.25gをフラスコに加え、系内を窒素置換した後、ステアリルアルコール0.05g、触媒としてオクチル酸スズ25mgを加え、190℃、2時間、重合を行い、ポリ-L-乳酸を得た。一方、L-ラクチド(株式会社武蔵野化学研究所製)1.25gとD-ラクチド(株式会社武蔵野化学研究所製)48.75gを用いた以外は前記のポリ-L-乳酸と同じ製造方法により、ポリ-D-乳酸を得た。得られたポリ-L-乳酸とポリ-D-乳酸とを等質量混合して、PLA-3を得た。PLA-3は、熱処理を行うことにより、ステレオコンプレックス結晶を形成する。
 (PLA-4):
 L-ラクチド(株式会社武蔵野化学研究所製)50gをフラスコに加え、窒素雰囲気下、120℃で均一に溶解させた後、温度を150℃にし、オクチル酸スズ0.05gを加え、30分間重合させることにより、ポリ-L-乳酸を得た。一方、D-ラクチド(株式会社武蔵野化学研究所製)用いた以外は前記のポリ-L-乳酸と同じ製造方法により、ポリ-D-乳酸を得た。得られたポリ-L-乳酸とポリ-D-乳酸を用いて、それぞれのポリ乳酸50質量部ずつと、オクチル酸スズ0.1質量部をベント付き二軸押出機に供給し、減圧下、220℃で溶融混練(滞留時間2分)し、ストランドカッターでペレタイズすることにより、ポリ-L-乳酸とポリ-D-乳酸のポリ乳酸混合物ペレットを得た。得られたポリ乳酸混合物ペレットを真空乾燥機に入れ、13.3Paの圧力下で、140℃で20時間、さらに180℃で30時間反応させ、PLA-4を得た。PLA-4は、熱処理を行うことにより、ステレオコンプレックス結晶を形成する。
 [使用したポリ(メタ)アクリレート系樹脂]
 (PM-1):
ポリメチルメタクリレート(旭化成ケミカルズ(株)製、商品名「デルペット 80NH」)。
 (PM-2):
ポリメチルメタクリレート(住友化学(株)製、商品名「スミペックス LG21」)。
 (PM-3)
ポリメチルメタクリレート(住友化学(株)製、商品名「スミペックス HT03Y」、耐衝撃性改良剤としてゴム成分を40質量%含有する。)。
 [使用した耐衝撃性改良剤]
 (SP-1):
ポリブチレンサクシネート(三菱化学社製、商品名「GsPla FZ71PD」)。
 (SP-2):
コアシェル型アクリル系重合体(ロームアンドハースジャパン製、商品名「パラロイド BPM500」(コア層;アクリル酸ブチル重合体、シェル層;メタクリル酸メチル重合体))。
 [使用したイオン系界面活性剤]
 (ISA-1):
アルキルスルホン酸ナトリウム塩(三洋化成社製、商品名「ケミスタット 3033」)。
 (ISA-2):
アルキルベンゼンスルホン酸リチウム塩(竹本油脂社製、商品名「エレカット S-417」)。
 [使用した非イオン系界面活性剤]
 (NISA-1):
高級脂肪酸アミド(竹本油脂社製、商品名「エレカット S-154」)。
 (NISA-2):
ポリグリセリン脂肪酸エステル(理研ビタミン社製、商品名「ポエム J-40481V」)。
 (NISA-3):
脂肪族アミンのエチレンオキサイド付加物(花王社製、商品名「エレクトロストリッパー TS9B」)。
 (NISA-4):
ソルビタン脂肪酸エステル(理研ビタミン社製、商品名「ポエム S-250」)。
 (NISA-5):
脂肪酸アミン(ライオン・アクゾ社製、商品名「アーミン2C」)。
 (NISA-6):
ポリオキシエチレン グリセリンモノステアレート(理研ビタミン社製、商品名「ポエム S-105」)。
 [使用したその他の成分]
 (S-MB):
シリカ粒子(平均粒子径:3.2μm)とPLA-1のマスターバッチ(シリカ粒子:10質量%、PLA-1:90質量%)。
 (TO-MB):
酸化チタン(アナターゼ型酸化チタン、平均粒子径:0.2μm)とPLA-1のマスターバッチ(酸化チタン:25質量%、PLA-1:75質量%)。
 [使用したコーティング用界面活性剤]
 (AS-1):
ショ糖脂肪酸エステル水溶液(理研ビタミン社製、商品名「リケマールA」)。
 [ポリ乳酸系樹脂シートの作成]
 (実施例1)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の各質量%の割合で、それぞれ独立した別々のベント式二軸押出機に供給し、真空ベント部を脱気しながら溶融混練し、口金温度を210℃に設定したTダイ口金より共押出し、互いに接する方向に回転し40℃に冷却した、一対のキャスティングドラムとポリッシングロール間に吐出してキャスティングドラムに密着させ冷却固化し、表1記載の厚みの未延伸シートを作製した後に、ワインダーにてシートを巻き取った。得られたシートの評価結果を表1に示した。
 (実施例2~10、比較例1~7)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の種類、含有量に変更した以外は実施例1と同様にしてポリ乳酸系樹脂シートを得た。得られたシートの評価結果を表1に示した。
 (実施例11~12)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の種類、含有量に変更し、それぞれ独立した別々のベント式二軸押出機に供給し、真空ベント部を脱気しながら溶融混練し、口金温度を230℃に設定したTダイ口金より共押出し、互いに接する方向に回転し40℃に冷却した、一対のキャスティングドラムとポリッシングロール間に吐出してキャスティングドラムに密着させ固化し、その後、熱風オーブンにて160℃20秒の熱処理を施して、ポリ乳酸系樹脂シートを得た。得られたシートの評価結果を表1に示した。
 (比較例8)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の種類、含有量に変更し、1台のベント式二軸押出機を用いて、組成物(A)のみからなる単層シートを得たこと以外は実施例1と同様にしてポリ乳酸系樹脂シートを得た。得られたシートの評価結果を表1に示した。
 (比較例9)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の種類、含有量に変更し、1台のベント式二軸押出機を用いて、組成物(B)のみからなる単層シートを得たこと以外は実施例1と同様にしてポリ乳酸系樹脂シートを得た。得られたシートの評価結果を表1に示した。
 (比較例10)
 表1記載のポリ乳酸樹脂、ポリ(メタ)アクリレート系樹脂、耐衝撃性改良剤、耐衝撃性改良剤、イオン系界面活性剤、非イオン系界面活性剤、その他の成分を、表1記載の種類、含有量に変更した以外は実施例1と同様にしてポリ乳酸系樹脂シートを得た。続いて片側ずつ両面にコロナ処理を施し、コーティング用界面活性剤AS-1の水性塗工液をグラビアロール方式により、片面ずつ両面に塗布し、乾燥炉を通して乾燥し、最終的に表1に記載の塗布量となるように界面活性剤塗布層を形成した後、ワインダーにて塗工シートを巻き取った。得られたシートの評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~12のポリ乳酸系樹脂シートは、いずれの水準においてもシートの耐熱性、帯電防止性、インキ密着性、耐ブロッキング性に優れていた。特に実施例1、2、3、5、6、8、11、12は帯電防止性、インキ密着性、耐ブロッキング性に加えて、防曇性も優れていた。また、水準4、10は白色の成形体を得ることができ、防曇性は未確認ではあるが、耐ブロッキング性に優れ、断裁シートの積み上げ工程を有するような用途、例えば、白色容器用途やカード用途として好ましく用いられると推測できるものであった。水準9は透明性は若干劣るものの、高い植物度と耐熱性を有しており、例えば、環境負荷低減の付加価値を有したホット飲料蓋材用途として好ましく用いられると推測できるものであった。
 一方、比較例1、2、5は帯電防止性に劣っており、実施例との間に明らかな差があった。また、比較例3、6、7は透明性に劣っており、透明容器としては使用できないレベルで実施例との間に明らかな差があった。さらに、比較例4、8は耐熱性に劣っており、成形用途として使用できるレベルではなく、熱処理後にブロッキングが発生するなどの不具合があった。そして、比較例10はインキ密着性に劣っており、実施例との間に明らかな差があった。比較例9は耐熱性、帯電防止性、インキ密着性、耐ブロッキング性は有しているものの、耐熱性の度合いの割には植物度が低く、実施例と比較すると、付加価値の小さいものであった。

Claims (9)

  1.  シートが、ポリ乳酸を含有する組成物(A)からなる層Aと、ポリ(メタ)アクリレート系樹脂、イオン系界面活性剤、および非イオン系界面活性剤を含有する組成物(B)からなる層Bとを有する積層構成であり、
     該層Bは、シートの少なくとも一方の最表層であり、
     組成物(B)の全体100質量%において、ポリ(メタ)アクリレート系樹脂の含有量が50質量%以上99.5質量%以下であり、
     組成物(B)中のイオン系界面活性剤および非イオン系界面活性剤の質量比が、2≦イオン系界面活性剤/非イオン系界面活性剤≦25であることを特徴とするポリ乳酸系樹脂シート。
  2.  前記イオン系界面活性剤がスルホ基を持つことを特徴とする請求項1に記載のポリ乳酸系樹脂シート。
  3.  前記非イオン系界面活性剤が下記化合物群から選ばれる少なくとも一つであることを特徴とする請求項1または2記載のポリ乳酸系樹脂シート。
     化合物群:脂肪族アルカノールアミド、ポリグリセリン脂肪酸エステル、高級アルコール(i)、アルキルフェノール(ii)、脂肪酸エステル(iii)、脂肪族アミン(iv)、脂肪族アミド(v)、ポリプロピレングリコール(vi)、ソルビタン脂肪酸エステル(vii)、前記(i)~(vii)のエチレンオキサイド付加物
  4.  前記組成物(B)の全体100質量%において、イオン系界面活性剤および非イオン系界面活性剤の合計の含有量が、1質量%以上5質量%以下であることを特徴とする請求項1~3のいずれかに記載のポリ乳酸系樹脂シート。
  5.  ヘイズが10%以下であることを特徴とする請求項1~4のいずれかに記載のポリ乳酸系樹脂シート。
  6.  ぬれ張力が40mN/m以上であることを特徴とする請求項1~5のいずれかに記載のポリ乳酸系樹脂シート。
  7.  前記組成物(B)の全体100質量%において、耐衝撃性改良剤を2質量%以上20質量%以下含有することを特徴とする請求項1~6のいずれかに記載のポリ乳酸系樹脂シート。
  8.  前記組成物(A)に含有されるポリ乳酸が、ステレオコンプレックスポリ乳酸であることを特徴とする請求項1~7のいずれかに記載のポリ乳酸系樹脂シート。
  9.  請求項1~8のいずれかに記載のポリ乳酸系樹脂シートからなる成形品。
PCT/JP2012/079406 2011-11-30 2012-11-13 ポリ乳酸系樹脂シート及び成形品 WO2013080788A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20147011747A KR20140099444A (ko) 2011-11-30 2012-11-13 폴리락트산계 수지 시트 및 성형품
JP2012554116A JP5935697B2 (ja) 2011-11-30 2012-11-13 ポリ乳酸系樹脂シート及び成形品
US14/360,772 US20140308535A1 (en) 2011-11-30 2012-11-13 Polylactic acid resin sheet and molded body
EP12852609.2A EP2786864B1 (en) 2011-11-30 2012-11-13 Polylactic acid resin sheet and molded body
CN201280045144.8A CN103813902B (zh) 2011-11-30 2012-11-13 聚乳酸系树脂片及成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-261452 2011-11-30
JP2011261452 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080788A1 true WO2013080788A1 (ja) 2013-06-06

Family

ID=48535255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079406 WO2013080788A1 (ja) 2011-11-30 2012-11-13 ポリ乳酸系樹脂シート及び成形品

Country Status (7)

Country Link
US (1) US20140308535A1 (ja)
EP (1) EP2786864B1 (ja)
JP (1) JP5935697B2 (ja)
KR (1) KR20140099444A (ja)
CN (1) CN103813902B (ja)
TW (1) TWI543874B (ja)
WO (1) WO2013080788A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987820B2 (en) * 2009-11-17 2018-06-05 Arkema France Multilayer structures containing biopolymers
AT523563B1 (de) 2020-03-03 2023-02-15 Trumpf Maschinen Austria Gmbh & Co Kg Vorrichtung und Verfahren zum Wenden von Blechen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141803A (ja) * 1995-11-22 1997-06-03 Teijin Ltd 制電性フイルム
JPH1017757A (ja) 1996-07-04 1998-01-20 Shimadzu Corp ポリ乳酸組成物
JP2002012687A (ja) 2000-06-28 2002-01-15 Unitika Ltd 帯電防止性に優れたポリ乳酸系二軸延伸フィルム及びその製造方法
JP2002114895A (ja) 2000-10-10 2002-04-16 Mitsubishi Plastics Ind Ltd 生分解性シート、それを用いた成形体及びキャリアテープ
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2004067801A (ja) 2002-08-05 2004-03-04 Riken Vitamin Co Ltd 生分解性ポリエステル樹脂組成物並びにフィルム、シート又は成形品
JP2005036088A (ja) * 2003-07-18 2005-02-10 Riken Vitamin Co Ltd 食品包装用樹脂組成物及び食品用包装体
JP2005171204A (ja) 2003-12-15 2005-06-30 Unitika Ltd 樹脂組成物及びそれより得られる成形体
JP2006036808A (ja) 2004-07-22 2006-02-09 Teijin Ltd ステレオコンプレックスポリ乳酸およびその製造方法
JP2007331154A (ja) * 2006-06-13 2007-12-27 Mitsubishi Plastics Ind Ltd ポリ乳酸系2軸延伸フィルムおよびその製造方法
JP2008221504A (ja) 2007-03-09 2008-09-25 Toray Ind Inc 積層シートおよびそれからなる成形体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625999A (en) * 1968-02-19 1971-12-07 Lever Brothers Ltd Process for the preparation of phosphonium sulfonate salts
JPS61148262A (ja) * 1984-12-21 1986-07-05 Polyplastics Co ポリブチレンテレフタレ−ト樹脂組成物
JPH0813923B2 (ja) * 1987-08-17 1996-02-14 三菱化学ビーエーエスエフ株式会社 常温架橋型重合体分散体組成物
JPH0735458B2 (ja) * 1988-02-01 1995-04-19 花王株式会社 アクリル系樹脂組成物
US5216050A (en) * 1988-08-08 1993-06-01 Biopak Technology, Ltd. Blends of polyactic acid
US5180765A (en) * 1988-08-08 1993-01-19 Biopak Technology, Ltd. Biodegradable packaging thermoplastics from lactides
US5244935A (en) * 1990-02-26 1993-09-14 Nippon Oil And Fats Co., Ltd. Composition of ultraviolet curing antifogging agent and process for forming antifogging coating film
US6284823B1 (en) * 1997-07-11 2001-09-04 Mitsubishi Gas Chemical Company, Inc. Antistatic acrylic resin composition
JP2000204193A (ja) * 1998-11-12 2000-07-25 Takemoto Oil & Fat Co Ltd 合成高分子材料用帯電防止剤及び合成高分子材料に帯電防止性を付与する方法
US6455142B1 (en) * 1999-12-17 2002-09-24 Mitsubishi Polyester Film, Llc Anti-fog coating and coated film
JP4551048B2 (ja) * 2001-08-08 2010-09-22 サンディック株式会社 防曇性樹脂シートならびに防曇性成形品およびその製造方法
ATE482999T1 (de) * 2003-03-28 2010-10-15 Toray Industries Polymilchsäure-harzzusammensetzung, herstellungsverfahren dafür, biaxial gedehnter polymilchsäurefilm und daraus geformte artikel
BRPI0513553A (pt) * 2004-07-22 2008-05-06 Teijin Ltd ácido polilático, processo para a produção de ácido polilático, composição, e produto moldado
WO2006121056A1 (ja) * 2005-05-12 2006-11-16 Mitsui Chemicals, Inc. 乳酸系ポリマー組成物、該組成物からなる成形品およびその製造方法
EP1942001B1 (en) * 2005-11-30 2009-09-30 Toray Industries, Inc. Polylactic acid resin multilayer sheet and molded body made of same
US8962791B2 (en) * 2006-10-26 2015-02-24 Natureworks Llc Polylactic acid stereocomplex compositions and methods for making and using same
EP2189493A4 (en) * 2007-09-10 2015-07-22 Teijin Ltd MOVIE
JPWO2009099225A1 (ja) * 2008-02-04 2011-06-02 帝人株式会社 樹脂組成物および成形品
EP2330148A4 (en) * 2008-09-29 2015-03-18 Teijin Ltd POLYLACTIC ACID FILM
WO2010053167A1 (ja) * 2008-11-05 2010-05-14 帝人化成株式会社 ポリ乳酸組成物およびその成形品
CN101747690A (zh) * 2008-11-28 2010-06-23 3M创新有限公司 防雾涂层组合物、防雾薄膜和制品
US8476214B2 (en) * 2009-10-22 2013-07-02 S.C. Johnson & Son, Inc. Low voc hard surface treating composition providing anti-fogging and cleaning benefits
US8685524B2 (en) * 2010-01-29 2014-04-01 Toray Industries, Inc. Polylactic acid-based resin sheet
KR20130132728A (ko) * 2010-07-30 2013-12-05 도레이 카부시키가이샤 폴리락트산계 수지 시트 및 성형품

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141803A (ja) * 1995-11-22 1997-06-03 Teijin Ltd 制電性フイルム
JPH1017757A (ja) 1996-07-04 1998-01-20 Shimadzu Corp ポリ乳酸組成物
JP2002012687A (ja) 2000-06-28 2002-01-15 Unitika Ltd 帯電防止性に優れたポリ乳酸系二軸延伸フィルム及びその製造方法
JP2002114895A (ja) 2000-10-10 2002-04-16 Mitsubishi Plastics Ind Ltd 生分解性シート、それを用いた成形体及びキャリアテープ
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2004067801A (ja) 2002-08-05 2004-03-04 Riken Vitamin Co Ltd 生分解性ポリエステル樹脂組成物並びにフィルム、シート又は成形品
JP2005036088A (ja) * 2003-07-18 2005-02-10 Riken Vitamin Co Ltd 食品包装用樹脂組成物及び食品用包装体
JP2005171204A (ja) 2003-12-15 2005-06-30 Unitika Ltd 樹脂組成物及びそれより得られる成形体
JP2006036808A (ja) 2004-07-22 2006-02-09 Teijin Ltd ステレオコンプレックスポリ乳酸およびその製造方法
JP2007331154A (ja) * 2006-06-13 2007-12-27 Mitsubishi Plastics Ind Ltd ポリ乳酸系2軸延伸フィルムおよびその製造方法
JP2008221504A (ja) 2007-03-09 2008-09-25 Toray Ind Inc 積層シートおよびそれからなる成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 20, 1987, pages 904
See also references of EP2786864A4

Also Published As

Publication number Publication date
TW201328877A (zh) 2013-07-16
JP5935697B2 (ja) 2016-06-15
EP2786864A4 (en) 2015-07-15
US20140308535A1 (en) 2014-10-16
CN103813902B (zh) 2015-07-01
TWI543874B (zh) 2016-08-01
EP2786864B1 (en) 2016-07-20
CN103813902A (zh) 2014-05-21
KR20140099444A (ko) 2014-08-12
EP2786864A1 (en) 2014-10-08
JPWO2013080788A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
TWI502017B (zh) 聚乳酸系樹脂片及成形品
JP4952252B2 (ja) ポリ乳酸系樹脂積層シートおよびそれからなる成形体
US8685524B2 (en) Polylactic acid-based resin sheet
JP2009155413A (ja) 加飾用ポリ乳酸系樹脂シート並びにそれを用いた加飾部材
JP2010229393A (ja) ポリ乳酸系フィルム
JP5606159B2 (ja) 樹脂組成物、並びにこの樹脂組成物を用いた成形品、フィルム、延伸フィルム、熱収縮性フィルム、熱収縮性ラベル、及び該ラベルを装着した容器
JP5935697B2 (ja) ポリ乳酸系樹脂シート及び成形品
JP5623479B2 (ja) 樹脂組成物及びこれを用いたフィルム、積層体
JP2010189536A (ja) ポリ乳酸系フィルム
JP5208821B2 (ja) ポリ乳酸系二軸延伸フィルム
JP6332027B2 (ja) ポリ乳酸系樹脂シートおよび成形品
JP5176494B2 (ja) 加飾用ポリ乳酸系樹脂積層シートおよびそれを用いた転写箔ならびに化粧シート
JP2014105299A (ja) 帯電防止性シート及び成形品
JP6191360B2 (ja) ポリ乳酸系樹脂シートおよび成形品
JP2005219487A (ja) 積層フィルム
JP5151189B2 (ja) 積層シートおよびそれからなる成形体
JP6175831B2 (ja) ポリ乳酸系樹脂シート及び成形品
JP4962268B2 (ja) ポリ乳酸系樹脂積層シートおよびそれからなる成形体
JP2011148915A (ja) ポリ乳酸系シート
JPH1149874A (ja) ポリエステルシート及びそれからなる成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012554116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147011747

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012852609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14360772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE