WO2013077452A1 - 引き裂き性を有する熱収縮チューブ - Google Patents

引き裂き性を有する熱収縮チューブ Download PDF

Info

Publication number
WO2013077452A1
WO2013077452A1 PCT/JP2012/080520 JP2012080520W WO2013077452A1 WO 2013077452 A1 WO2013077452 A1 WO 2013077452A1 JP 2012080520 W JP2012080520 W JP 2012080520W WO 2013077452 A1 WO2013077452 A1 WO 2013077452A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fluororesin
shrinkable tube
tube
tearability
Prior art date
Application number
PCT/JP2012/080520
Other languages
English (en)
French (fr)
Inventor
鈴木 雅弘
衡平 由利
勝 三好
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48469891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013077452(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Priority to KR1020147008433A priority Critical patent/KR101844628B1/ko
Priority to CN201280048315.2A priority patent/CN103842705B/zh
Priority to US14/348,309 priority patent/US9446171B2/en
Priority to EP12852063.2A priority patent/EP2749802B1/en
Priority to JP2013545986A priority patent/JP5518268B2/ja
Priority to SG11201401004XA priority patent/SG11201401004XA/en
Publication of WO2013077452A1 publication Critical patent/WO2013077452A1/ja
Priority to US15/205,560 priority patent/US9623154B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/049Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • Y10T428/1331Single layer [continuous layer]

Definitions

  • the present invention relates to a heat-shrinkable tube made of a fluororesin and having a tearability, and more particularly to a tearable tube having a heat-shrinkability that is made of a thermoplastic fluororesin.
  • the tear tube is used as a protective member until the use of various articles.
  • the tear tube made of fluororesin has characteristics that cannot be obtained with a tear tube made of hydrocarbon synthetic resin such as heat resistance, chemical resistance, water and oil repellency, non-adhesiveness, and self-lubricating properties of fluororesin. Have. Therefore, using these characteristics, they are used as tubes for protecting precision instruments, electronic parts and the like, or tubes for introducing medical equipment for introducing catheters, guide wires and the like into the body.
  • the medical device introduction tube is not only necessary after the catheter is introduced into the body, but there is also a management problem for maintaining hygiene. After introducing the catheter into the body, the tube is torn. It is being pulled out.
  • the tear tube can reliably protect the equipment installed inside, and can be easily torn without using special equipment, and retains the characteristics of fluororesin. There is a need to be.
  • the surface is cut along the longitudinal direction, and it is never easy to tear. Therefore,
  • JP 2008-20037 A a fluororesin extruded tube obtained by extruding a mixture of a tetrafluoroethylene resin and a low molecular weight fluororesin so as to be easily torn without requiring an excessive break. has been proposed.
  • An object of the present invention is a heat-shrinkable tube made of a mixture of a fluororesin and a different kind of resin and having a tearing property, applying a sinusoidal stress with a period of 30 sec and an amplitude of 10 g, and a rate of 5 ° C./min
  • the heat shrinkable tube (1) having a tearing property in which the amount of change ⁇ Eloss of the loss energy takes a positive value when the temperature is increased from 175 ° C. to 185 ° C.
  • the tube (1) which has a ⁇ Eloss of 0.05 ⁇ J or more, provides better tearability and heat shrinkability.
  • the tube (1) which has a storage elastic modulus at 50 ° C.
  • An object of the present invention is a heat-shrinkable tube having a tearable property composed of a mixture of a plurality of different types of fluororesins, wherein the main fluororesin is a polymer made of at least three types of monomers, and a constituent monomer unit Can be solved by a heat-shrinkable tube (4) having a tear property characterized by containing at least tetrafluoroethylene and hexafluoropropylene.
  • the tube (4) in which the main fluororesin contains at least tetrafluoroethylene, hexafluoropropylene and perfluoroalkyl vinyl ether as constituent monomer units, provides better tearability and heat shrinkability. Is obtained.
  • the fluororesin other than the main fluororesin has better tearability and heat shrinkability due to the tube (7) containing tetrafluoroethylene / ethylene copolymer or polyvinylidene fluoride. can get.
  • the compounding ratio of the main fluororesin and the resin other than the main fluororesin is 98: 2 to 70:30 by mass ratio, and a better tearing is achieved. And heat shrinkability.
  • the object of the present invention is solved by a heat-shrinkable tube having a tear property, which contains a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer as a main component and further contains a tetrafluoroethylene / ethylene copolymer.
  • a heat-shrinkable tube having a tear property which contains a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer as a main component and further contains a tetrafluoroethylene / ethylene copolymer.
  • Can do The heat-shrinkable tube described above, wherein the mixing ratio of the tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer and the tetrafluoroethylene / ethylene copolymer is 98:
  • the tear tube made of the fluororesin of the present invention has good tearability and heat shrinkability at a low temperature of about 200 ° C., it can be tightly attached to an object when it is attached to a device. Therefore, a product excellent in handling can be obtained. Further, the tear tube made of the fluororesin of the present invention can be manufactured by melt extrusion molding a raw material blended with different types of thermoplastic fluororesins, so that it is easy to manufacture and has a stable tear property. A resin tear tube can be obtained.
  • FIG. 1 is a diagram for explaining sinusoidal stress in the DMA measurement according to the present invention.
  • FIG. 2 is a diagram illustrating the relationship between stress and strain when the sine wave stress is applied to a sample.
  • FIG. 3 is a viscoelasticity graph of the tube of Example 1.
  • FIG. 4 is a viscoelasticity graph of the tube of Comparative Example 1.
  • FIG. 5 is a viscoelasticity graph of the tube of Example 3.
  • the tube of the present invention has a heat shrinkage rate of 40% or more at a low temperature of about 200 ° C., and it is important that ⁇ Eloss> 0.
  • ⁇ Eloss> 0 means that the molecular chain aggregation structure that could not be broken near the glass transition temperature (low temperature side) is gradually released on the high temperature side after 150 ° C., and the distortion of the object due to external force increases.
  • the tube of the present invention means that the molecules can move to some extent while maintaining the entanglement between the molecules to some extent even near 200 ° C. Due to such characteristics, it is considered that when heated to around 200 ° C., it is easy to return to the state during molding and a high shrinkage rate is obtained.
  • ⁇ Eloss refers to the amount of change in loss energy when sinusoidal stress is applied and the temperature is increased at a rate of 5 ° C./min and the temperature changes from 175 ° C. to 185 ° C.
  • the measurement sample is not the tube itself, but is a hot-melt press of the tube.
  • the measurement sample Since the measurement sample is subjected to a thermal history, it does not require a change in loss energy around 200 ° C., which causes thermal shrinkage. The change of the loss energy near 180 ° C. on the lower temperature side was obtained.
  • the conventional tube has a negative ⁇ Eloss value.
  • Such conventional products are in a state in which the molecular chains are hardly entangled on the high temperature side after 150 ° C., and the function of returning to the state at the time of molding hardly occurs, and the heat shrinkage rate is low. . It is preferable that ⁇ Eloss is 0.05 ⁇ J or more because a higher heat shrinkage rate can be obtained. It can be said that it is a more preferable aspect when ⁇ Eloss is 0.2 ⁇ J or more.
  • the heat-shrinkable tube having tearability according to the present invention is expanded after tube forming. At that time, if the elastic modulus is too high, even if it is expanded, it will instantaneously return to its original size, resulting in a high expansion rate. As a result, it is difficult to obtain a high heat shrinkage rate.
  • the elastic modulus at 50 ° C. is preferably 100 MPa or less.
  • a main fluororesin material having a large thermal shrinkage at a low temperature of 200 ° C. includes a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer.
  • the main fluororesin mentioned here refers to the one having the largest blending ratio among a plurality of different types of fluororesins.
  • the copolymer is a terpolymer in which a perfluoroalkyl vinyl ether monomer is added to a monomer constituting a tetrafluoroethylene / hexafluoropropylene copolymer (FEP), but the perfluoroalkyl vinyl ether portion is closely packed with other molecules.
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • the glass transition temperature (Tg) of the tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer is 68 ° C. or higher from the viewpoint of whether a moderate molecular chain aggregate structure is formed.
  • Tg glass transition temperature
  • a blend of tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer with tetrafluoroethylene and hexafluoropropylene, which are similar copolymers, can be considered, but only these are blended. However, entanglement at the molecular level does not occur, and the effect of preventing bursting during high expansion cannot be expected.
  • THV terpolymers
  • VDF vinylidene fluoride
  • THV is a terpolymer in which VDF is further added to the monomer constituting FEP, but the VDF portion is greatly polarized positively and negatively, and an aggregate structure of molecular chains starting from this is formed. Due to the aggregate structure of the molecular chains, a force to return to the size at the time of molding works when heated to 200 ° C. from the state expanded at 100 ° C. after the molding.
  • Tg glass transition temperature
  • Tg is less than 40 ° C.
  • the above-described appropriate molecular chain aggregate structure cannot be formed, and thus a sufficient heat shrinkage rate cannot be obtained.
  • THV221 manufactured by Dyneon of 3M Group has a Tg of 5 ° C.
  • THV610 manufactured by Dyneon of 3M Group has a low Tg of conventional THV, such as Tg of 34 ° C.
  • Tg tends to increase.
  • Tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride-perfluoroalkyl vinyl ether quaternary copolymer has the same tendency as THV.
  • quaternary THV Tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride-perfluoroalkyl vinyl ether quaternary copolymer
  • a heat-shrinkable tube made of a fluororesin having excellent characteristics and high shrinkage rate can be obtained by blending a fluorine-containing ternary (quaternary) copolymer as in the present invention is not clear, but ternary Perfluorovinyl ether (PVE) component in the copolymer, for example in tetrafluoroethylene / hexafluoropropylene, increases molecular entanglement, which makes it difficult to rupture the heat-shrinkable tube even at high expansion. It is thought that there is not.
  • PVE ternary Perfluorovinyl ether
  • the fluororesin combined with the main fluororesin is 1) close in melting point, 2) incompatible, and 3) the length of the C—H bond or C—F bond in the molecule in relation to the main fluororesin.
  • Any fluororesin may be used as long as it has a difference in thickness or a difference in cohesive energy, and is not particularly limited.
  • a combination of a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer and a tetrafluoroethylene / ethylene copolymer a combination of THV and polyvinylidene fluoride (PVDF)
  • the fluororesin combined with the fluororesin is not limited to this.
  • a resin combined with the main fluororesin 1) the melting point is close, and 2) a resin other than the fluororesin may be used as long as it is incompatible. It can be said that a fluororesin capable of producing a difference in terms of the above is more preferable.
  • One aspect of the present invention is a heat-shrinkable tube having a tear property containing a tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer and a tetrafluoroethylene / ethylene copolymer.
  • a heat-shrinkable tube containing THV and PVDF and having tearability can be mentioned.
  • blending of a main fluororesin for example, tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer
  • a fluororesin other than the main fluororesin for example, tetrafluoroethylene / ethylene copolymer
  • blending of a main fluororesin for example, tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer
  • a fluororesin other than the main fluororesin for example, tetrafluoroethylene / ethylene copolymer
  • the ratio is more preferably 98: 2 to 80:20, and still more preferably 95: 5 to 80:20.
  • the heat-shrinkable tube made of fluororesin of the present invention having tearability is formed by mixing the raw materials and then forming a tube by a sizing plate method at a screw rotation speed of 10 rpm using a single-screw melt extruder having a cylinder diameter of 20 mm. Can do.
  • the temperature condition can be a die temperature of 360 to 400 ° C. Further, depending on the blending ratio of the resins, the stability during molding can be increased by changing the temperature in consideration of the molding state.
  • heat shrinkability can be imparted by filling the molded fluororesin tube with pressurized nitrogen or the like for expansion.
  • the pressure of the gas supplied into the fluororesin tube at the time of expansion can be performed by supplying a pressure within a range where each fluororesin tube does not break.
  • the attached analysis software automatically divides the data for each period from the measured data, and calculates these viscoelastic data for each period.
  • Example 1 Ratio of tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEI-130J, Mitsui DuPont Fluorochemical, Tg 72 ° C.) and tetrafluoroethylene-ethylene copolymer (ETFE: C-55AP, manufactured by Asahi Glass)
  • the mixture was prepared by using a twin screw extruder with a cylinder diameter of 20 mm, pelletized from each mixture at a screw speed of 45 rpm and a die temperature of 320 ° C., and then the pellet was used to make a single cylinder with a cylinder diameter of 20 mm.
  • a tube was formed by a sizing plate method using a screw extruder at a screw rotation speed of 10 rpm and a die temperature of 390 ° C. to prepare a sample having an inner diameter of 0.5 mm, an outer diameter of 0.9 mm, and a wall thickness of 0.2 mm. (Tear strength test) After examining whether or not to tear only by hand without using an instrument, for those that could not be torn only by hand, it was tested whether or not tearing from the incised portion was possible after incision with a razor.
  • Table 2 shows the results of samples 2-1 to 2-5 measured in the same manner and having an ETFE concentration of 5 mass%. The results are shown in Table 3 for samples 3-1 to 3-5 having an ETFE concentration of 7% by mass.
  • Table 4 shows the results of 10% by mass of Samples 4-1 to 4-5. The results are shown in Table 5 for 20% by mass of Samples 5-1 to 5-5. The results are shown in Table 6 for 30% by mass of Samples 6-1 to 6-5.
  • Example 2 Changed blending ratio of tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEP-NP120, Tg 74 ° C made by Daikin Industries) and tetrafluoroethylene-ethylene copolymer (ETFE: C-55AP made by Asahi Glass) The prepared mixtures were prepared, and pellets were formed using each mixture by a twin screw extruder having a cylinder diameter of 20 mm at a screw rotation speed of 45 rpm and a die temperature of 320 ° C.
  • FEP-NP120 tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • a tube was formed by a sizing plate method at a screw rotation speed of 10 rpm and a die temperature of 390 ° C. with a single-screw extruder having a cylinder diameter of 20 mm.
  • Samples 7-4 were prepared from 0.2 mm sample 7-1. (Tear strength test) After testing whether it is possible to tear from the incision portion by cutting with a razor, a 40 mm incision was provided at one end of a sample having a length of 100 mm, Tearing was performed at a speed of 200 mm / min with a tensile tester, and the maximum force at that time was measured to obtain the tear strength.
  • Table 7 shows the straightness of tearing as the length of tearing without breaking when it is cut with a razor.
  • Table 8 shows the results of samples 8-1 to 8-5 having an ETFE concentration of 2 mass%. The results are shown in Table 9 for samples 9-1 to 9-5 having an ETFE concentration of 5 mass%.
  • Table 10 shows the results of samples 10-1 to 10-5 having an ETFE concentration of 7% by mass.
  • Table 11 shows the results of samples 11-1 to 11-5 having an ETFE concentration of 10% by mass.
  • Comparative Example 1 (Sample preparation) A mixture in which the blending ratio of tetrafluoroethylene-hexafluoropropylene copolymer (FEP-100J manufactured by Mitsui Dupont Fluorochemical) and tetrafluoroethylene-ethylene copolymer (ETFE: C-88AX manufactured by Asahi Glass) was changed was prepared. Each tube was formed into a tube by the sizing plate method at a screw rotation speed of 10 rpm and a die temperature of 390 ° C. by a single screw extruder having a cylinder diameter of 20 mm, and an inner diameter of 1.0 mm, an outer diameter of 1.4 mm, and a wall thickness of 0. A 2 mm sample was prepared.
  • FEP-100J tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • Tear strength test For those that can be torn only by hand without using a tool, or that can be torn after testing whether it is possible to tear from a cut with a razor. A 40 mm incision was provided at one end of a 100 mm sample, and it was torn at a speed of 200 mm / min with a tensile tester, and the maximum force at that time was measured to obtain the tear strength. Further, the measurement was performed three times for samples having the same composition, and the weighted average value was obtained and shown in Table 12.
  • Example 3 (Sample preparation) A terpolymer (THV: Tg 46 ° C.) of about 10 mol% vinylidene fluoride, about 70 mol% ethylene tetrafluoride and about 20 mol% propylene hexafluoride and polyvinylidene fluoride (PVDF: Mixtures having different blending ratios with KYNAR 740 manufactured by ARKEMA (Arkema) were prepared, and pellets were formed using a twin screw extruder with a cylinder diameter of 20 mm using each mixture at a screw rotation speed of 45 rpm and a die temperature of 280 ° C. .
  • TSV Tg 46 ° C.
  • the resulting pellet was formed into a tube by a sizing plate method at a screw rotation speed of 10 rpm and a die temperature of 340 ° C. with a single-screw extruder having a cylinder diameter of 20 mm.
  • Samples 14-3 were prepared from 0.2 mm samples 14-1. (Tear strength test) After testing whether it is possible to tear from the incision portion by cutting with a razor, a 40 mm incision was provided at one end of a sample having a length of 100 mm, Tearing was performed at a speed of 200 mm / min with a tensile tester, and the maximum force at that time was measured to obtain the tear strength.
  • PVDF polyvinylidene fluoride
  • the fluororesin tear tube of the present invention has good heat shrinkability as well as tearability, it can be tightly attached to a body to be attached when attached to a medical device or the like. An excellent one is obtained. Moreover, since it can be manufactured by melt extrusion molding raw materials containing different types of thermoplastic fluororesins, it is possible to provide a tear tube made of a fluororesin that is easy to manufacture and has stable tear characteristics. .

Abstract

 本発明の目的は、引き裂き性が良く、低温での熱収縮率が高いチューブを提供することにある。 本発明のチューブは、フッ素樹脂と、これと種類の異なる樹脂の混合物からなる、引き裂き性を有する熱収縮チューブであって、175℃から185℃にかけての温度変化の際の、損失エネルギーの変化量⊿Elossが正の値をとる引き裂き性を有する熱収縮チューブである。

Description

引き裂き性を有する熱収縮チューブ
 本発明は、フッ素樹脂製の引き裂き性を有する熱収縮チューブに関するものであり、特にチューブの材質が熱可塑性フッ素樹脂からなる熱収縮性を有する引き裂きチューブに関するものである。
 引き裂きチューブは、各種物品の使用時までの保護部材として利用されている。なかでもフッ素樹脂製の引き裂きチューブは、フッ素樹脂が有する耐熱性、耐薬品性、撥水撥油性、非粘着性、自己潤滑性等の炭化水素系合成樹脂製の引き裂きチューブでは得られない特性を有している。
 そこで、これらの特性を利用して、精密機器、電子部品等の保護用チューブ、あるいはカテーテル、ガイドワイヤー等を体内に導入するための医療機器導入用チューブ等として使用されている。 医療機器導入用チューブは、カテーテル等を体内に導入した後は不要であるばかりではなく、衛生状態を保持するための管理上の問題もあるのでカテーテルを体内に導入した後には、チューブを引き裂きながら引き抜くことが行われている。
 引き裂きチューブは、内部に装着された機器の保護を確実に行うことが可能であるとともに、特殊な器具を使用しなくても容易に引き裂き可能であって、フッ素樹脂が有する特性を保持したものであることが求められている。従来の引き裂きチューブでは、長手方向にわたってその表面に切れ目を入れたもので,決して容易に引き裂きができるものではなかった。 そこで、
特開2008−20037号公報では、過度の切れ目を必要とせず容易に引き裂きができるようにするために、テトラフルオロエチレン樹脂と低分子量のフッ素樹脂との混合物を押出し成形したフッ素樹脂製の押出チューブが提案されている。 カテーテル等の機器の表面をフッ素樹脂で被覆するにはフッ素樹脂製の熱収縮チューブを機器の表面にかぶせた後に加熱することでフッ素樹脂製の熱収縮チューブを熱収縮させることが必要となるが、熱収縮チューブの収縮率が小さい場合には熱収縮チューブと機器との密着が不十分なものとなるとともに作業性も悪化するという問題点があった。
 本発明は、フッ素樹脂製の引き裂きチューブとして、容易に引き裂きが可能であるとともに、大きな熱収縮性を有し、機器に装着する際には熱収縮によって確実に密着して被覆することが可能であるとともに、機器の使用時には簡単に引き裂くことが可能なフッ素樹脂製の引き裂きチューブを提供することを課題とするものである。
 本発明の課題は、フッ素樹脂と、これと種類の異なる樹脂の混合物からなる、引き裂き性を有する熱収縮チューブであって、周期30sec、振幅10gの正弦振動応力を加え、5℃/minの速度で昇温させ、175℃から185℃にかけて温度が変化したときの、損失エネルギーの変化量ΔElossが正の値をとる引き裂き性を有する熱収縮チューブ(1)によって解決できる。
 上記チューブ(1)であって、更にΔElossが0.05μJ以上であるチューブ(2)によって、より良好な引き裂き性と熱収縮性が得られる。
 上記チューブ(1)であって、更に50℃での貯蔵弾性率が100MPa以下であるチューブ(3)によって、より良好な引き裂き性と熱収縮性が得られる。
 本発明の課題は、種類の異なる複数のフッ素樹脂の混合物からなる、引裂き性を有する熱収縮チューブであって、主のフッ素樹脂が少なくとも3種類のモノマーからつくられるポリマーであって、構成モノマー単位として、少なくともテトラフルオロエチレン及びヘキサフルオロプロピレンを含むことを特徴とする引き裂き性を有する熱収縮チューブ(4)によって解決できる。
 上記チューブ(4)であって、主のフッ素樹脂が、構成モノマー単位として、少なくともテトラフルオロエチレン、ヘキサフルオロプロピレン及びパーフルオロアルキルビニルエーテルを含むチューブ(5)によって、より良好な引き裂き性と熱収縮性が得られる。
 上記チューブ(4)であって、主のフッ素樹脂が、構成モノマー単位として、少なくともテトラフルオロエチレン、ヘキサフルオロプロピレン及びビニリデンフルオライドを含み、主のフッ素樹脂のガラス転移温度が40℃以上であるチューブ(6)によって、より良好な引き裂き性と熱収縮性が得られる。
 上記チューブ(4)であって、主のフッ素樹脂以外のフッ素樹脂が、テトラフルオロエチレン/エチレン共重合体又はポリフッ化ビニリデンを含有するチューブ(7)によって、より良好な引き裂き性と熱収縮性が得られる。
 上記チューブ(4)であって、主のフッ素樹脂と、主のフッ素樹脂以外の樹脂との配合比が質量比で、98:2~70:30であるチューブ(8)によって、より良好な引き裂き性と熱収縮性が得られる。
 本発明の課題は、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体を主成分とし、更にテトラフルオロエチレン/エチレン共重合体とを含有する引き裂き性を有する熱収縮チューブによって解決することができる。 テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体と、テトラフルオロエチレン/エチレン共重合体との配合比が質量比で、98:2~70:30である前記の熱収縮チューブである。
 本発明のフッ素樹脂製の引き裂きチューブは、引き裂き性とともに、200℃程度の低温での熱収縮性が良好であるので、機器に装着する際には被装着体に対して密に装着が可能であって取り扱い上も優れたものが得られる。また、本発明のフッ素樹脂製の引き裂きチューブは、異種の熱可塑性フッ素樹脂を配合した原料を溶融押出成形することによって製造することができるので、製造が容易であると共に、引き裂き特性が安定したフッ素樹脂製の引き裂きチューブを得ることができる。
図1は、本発明に係るDMA測定に関し、正弦波応力を説明するための図である。
図2は、上記正弦波応力を試料に加えた際の、応力と歪みの関係を表す図である。
図3は、実施例1のチューブの粘弾性グラフである。
図4は、比較例1のチューブの粘弾性グラフである。
図5は、実施例3のチューブの粘弾性グラフである。
 引き裂き性を有する熱収縮チューブについては、特開2008−20037号公報に開示されている。しかしながら、そこに開示されたチューブの熱収縮率(内径の変化率)はせいぜい30%程度でありとても十分とは言えなかった。
 本発明のチューブは、200℃程度の低温での熱収縮率にして40%以上のものが得られており、それには、ΔEloss>0であることが重要である。ΔEloss>0とは、ガラス転移温度付近(低温側)では崩れきれなかった分子鎖の凝集構造が、150℃以降の高温側においては、徐々に解放され、外力による物体のひずみが大きくなっていくようになるが、そのようなひずみの増大が高温側での損失エネルギー増大とつながっていることを意味している。また、このことを別の見方をすると、本発明のチューブは、200℃近辺でも、分子同士の絡み合いをある程度維持しつつも、分子がある程度自由に動けるようになっていることを意味しており、そのような特性によって、200℃近辺に加熱したときに、成形時の状態に戻りやすく、高い収縮率が得られるものと考えられる。ここで、ΔElossとは、正弦振動応力を加え、5℃/minの速度で昇温させ、175℃から185℃にかけて温度が変化したときの、損失エネルギーの変化量を言う。その測定サンプルは、チューブそのものではなく、それを熱溶融プレスしたものであり、測定サンプルが熱履歴を受けていることから、熱収縮が行われる、200℃近辺の損失エネルギーの変化を求めるのでなく、より低温側の180℃近辺の損失エネルギーの変化を求めるようにした。従前のチューブは、ΔElossが負の値をとるものであった。このような従前品は、150℃以降の高温側において、分子鎖の絡み合いがほとんどなくなった状態になり、成形時の状態に戻ろうという働きは生じにくく、熱収縮率は低いものとなっていた。ΔElossが0.05μJ以上の場合、より高い熱収縮率が得られるため好ましい。ΔElossが0.2μJ以上の場合、更に好ましい態様と言える。ΔElossは、後で説明する「主のフッ素樹脂」の特性に大きく依存する。
 本発明の引き裂き性を有する熱収縮チューブは、チューブ成形後に拡張を行うことになるが、そのとき弾性率が高すぎると拡張しても瞬間的に元のサイズにもどろうとしてしまい、高い拡張率が得られにくい結果、高い熱収縮率が得られにくくなる。50℃での弾性率が100MPa以下であることが好ましい。
 200℃という低温で熱収縮率が大きい、主のふっ素樹脂の材料としては、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体があげられる。ここで言う主のフッ素樹脂とは、種類の異なる複数のフッ素樹脂のうち、もっとも配合割合が多いものを言う。前記共重合体は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)を構成するモノマーにパーフルオロアルキルビニルエーテルモノマーを加えたターポリマーであるが、パーフルオロアルキルビニルエーテル部分が他の分子と緻密に絡み合うことで、分子鎖の凝集構造がつくられている。この分子鎖の凝集構造により、成形後に100℃で拡張された状態から、200℃に加熱した際に、成形時のサイズに戻ろうとする力が働く。ここで、適度な分子鎖の凝集構造ができているかという観点から、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体のガラス転移温度(Tg)が68℃以上であることが好ましい。一方、類似する組成を有するものとして二元共重合体であるテトラフルオロエチレンとヘキサフルオロプロピレンに、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体をブレンドしたものが考えられるが、これらをブレンドしたのみでは分子レベルでのからみあいは発生せず、高拡張時の破裂防止の効果は期待できない。
 主のフッ素樹脂のその他材料としては、テトラフルオロエチレンと、ヘキサフルオロプロピレンと、ビニリデンフルオライド(VDF)との三元共重合体(THV)があげられる。THVは、FEPを構成するモノマーに更にVDFを加えたターポリマーであるが、VDF部分がプラスとマイナスに大きく分極しており、これを起点とした分子鎖の凝集構造がつくられている。この分子鎖の凝集構造により、成形後に100℃で拡張された状態から、200℃に加熱した際に、成形時のサイズに戻ろうとする力が働く。ただし、THVの場合、ガラス転移温度(Tg)にして40℃以上である必要があり、45℃以上であれば、より好ましい。Tgが40℃未満では、上述の適度な分子鎖の凝集構造がつくられないため十分な熱収縮率が得られない。例えば、3MグループのDyneon社製のTHV221はTgが5℃、3MグループのDyneon社製のTHV610は、Tgが34℃というように、従来のTHVのTgは低めとなっている。THVの場合、テトラフルオロエチレンの比率を上げると、Tgがあがる傾向が見られる。
 テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフルオライド−パーフルオロアルキルビニルエーテル四元共重合体(四元THV)もTHVと同様の傾向がある。
 上述したように、三元以上のポリマーの場合、分子鎖の凝集構造をつくりやすく、本件発明の目的を達成することができる。
 本発明のようにフッ素含有三元(四元)共重合体を配合することによって、特性が優れた高収縮率を有するフッ素樹脂製の熱収縮チューブが得られる理由は定かではないが、三元共重合体中の、例えばテトラフルオロエチレン/ヘキサフルオロプロピレン中のパーフルオロビニルエーテル(PVE)成分が分子のからみあいを増加し、高拡張時にも熱収縮チューブが破裂しにくくなっていることも一因ではないかと考えられる。
 また、このように本発明により特性が優れた引き裂き性を有するチューブが得られる理由について検討したところ、異種のフッ素樹脂のそれぞれの分子内のC−H結合あるいはC−F結合の長さの差、もしくは凝集エネルギーの差が異なること等によるフッ素樹脂間の相溶性によるものと考えられる。したがって、主のフッ素樹脂と組み合わせるフッ素樹脂は、1)融点が近く、2)相溶せず、3)主のフッ素樹脂との関係で、分子内のC−H結合あるいはC−F結合の長さの差、もしくは凝集エネルギーの差があるフッ素樹脂であればよく、特に限定されるものではない。例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体と、テトラフルオロエチレン/エチレン共重合体との組合せ、THVとポリふっ化ビニリデン(PVDF)との組合せがあげられるが、主のフッ素樹脂と組合せるフッ素樹脂としては、これに限定されるものではない。主のフッ素樹脂と組合せる樹脂としては、1)融点が近く、2)非相溶であれば、フッ素樹脂以外の樹脂でもよいが、主のフッ素樹脂と基本的構造が類似しながら、凝集エネルギー等の面で差が出せるフッ素樹脂がより好ましいと言える。
 本発明の一態様としては、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体と、テトラフルオロエチレン/エチレン共重合体とを含有する引き裂き性を有する熱収縮チューブがあげられ、別の一態様としては、THVとPVDFとを含有する引き裂き性を有する熱収縮チューブがあげられる。
 また、主のフッ素樹脂(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体)と、主のフッ素樹脂以外のフッ素樹脂(例えば、テトラフルオロエチレン/エチレン共重合体)との配合比を質量比で、98:2~70:30とすることによって熱収縮性、および引き裂き性が各段に優れたフッ素樹脂製の引き裂き性を有する熱収縮チューブを得ることができる。 更に、主のフッ素樹脂(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体)と、主のフッ素樹脂以外のフッ素樹脂(例えば、テトラフルオロエチレン/エチレン共重合体)との配合比は、98:2~80:20とすることがより好ましく、95:5~80:20とするのが更に好ましい。
 本発明のフッ素樹脂製の引き裂き性を有する熱収縮チューブは、原料を配合した後に、シリンダー径20mmの単軸溶融押出機を用いて、スクリュー回転数10rpmで、サイジングプレート法によるチューブ成形を行うことができる。
 温度条件は、ダイ温度360~400℃とすることができる。
 また、樹脂の配合比によっては、成形状態を考慮して温度を変化させることによって成形時の安定性を増大することができる。
 次いで、成形されたフッ素樹脂製のチューブの内部に、加圧窒素等を充填して拡張を行うことによって熱収縮性を付与することができる。拡張の際にフッ素樹脂製のチューブ内部に供給する気体の圧力は、それぞれのフッ素樹脂製のチューブが破壊しない範囲の圧力を供給することによって行うことができる。
 以下に実施例、比較例を示し、本発明を説明する。
(1)損失エネルギー、弾性率、tanδ
 ブルカーエイエックスエス社製熱機械分析装置TMA4000を使用したDMA(動的粘弾性)測定により、粘弾性データを求めた。
<測定試料>
作成方法:試験チューブを、東邦マシナリー製熱プレスにて、設定温度310℃(但し、実施例3では260℃)、圧力200~400N/cm2で溶融プレスし、その後すぐに水冷プレスにて冷却して測定サンプルを取得した。
サイズ(縦×横×厚さ): 20mm×5mm×200~400μm
<試料の固定>
チャック間の距離: 15mm.
<温度プログラム>
昇温速度: 5℃/分
<荷重プログラム>
荷重モード: 正弦波の周期荷重(定周期応力)
オフセット値: −3g
振幅: 10g (−3~−13g)
周期: 30sec
※ 図1を参照のこと
<解析方法>
 正弦波応力を試料に加えた時の、応力及び歪みのデータを1周期分について応力−歪み座標に表すと図2のような楕円を描く。
 ここで、楕円の傾きは弾性率を表し、楕円の面積は損失エネルギーを表す。応力データと歪みデータの位相差によりtanδが求まる。
 付属の解析ソフトでは、測定されたデータから自動的に1周期毎にデータを分割し各周期毎にこれらの粘弾性データの演算を行っている。
(2)ガラス転移温度
 上述したDMA測定によるtanδチャートから、そのピークに相当する温度をガラス転移温度として求めた。
実施例1
(試料の作製)
 テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(三井デュポンフロロケミカル製FEP−130J、Tg72℃)とテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−55AP)との配合割合を変化させた混合物を準備し、シリンダー径20mmの2軸押出機を用いて、スクリュー回転数45rpm、ダイ温度320℃で各混合物からペレット成形をした後、そのペレットを用いてシリンダー径20mmの単軸押出機によって、スクリュー回転数10rpm、ダイ温度390℃でサイジングプレート法によってチューブ成形を行って、内径0.5mm、外形0.9mm、肉厚0.2mmの試料を作製した。
(引き裂き強度の試験)
 器具を使用することなく手のみで裂けるか否かを調べた後、手のみでは裂けないものについてはカミソリによって切り込みを入れた後に切り込み部からの引き裂きが可能であるか否かを試験した。引き裂きが可能であったものについて、長さ100mmの試料の一方の端部に40mmの切り込みを設けて、引っ張り試験機によって、200mm/minの速度で引き裂き、そのときの最大の力を測定して、引き裂き強度とした。
 また、引き裂いた際に、破断することなく引き裂ける長さを引き裂き直進性とした。また、測定は同一組成の試料について3回行い、その加重平均値を求めて、表1に示す。
Figure JPOXMLDOC01-appb-T000001
(拡張と熱収縮性試験)
 原料の配合量を変えた試験チューブを作製して拡張試験装置に装着して内部に加圧窒素を注入し、破壊が生じることなく拡張することが可能か否かを測定してその結果を以下の表に示す。
 試験に使用したテトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(三井デュポンフロロケミカル製FEP−130J)とテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−55AP)との混合物は、テトラフルオロエチレン−エチレン共重合体が全体の5質量%以上のものであれば、引き裂き性と熱収縮性が得られることが確認できた。
 そこで、テトラフルオロエチレン−エチレン共重合体(ETFE)がそれぞれ全体の5質量%、7質量%、10質量%、20質量%、30質量%の試料を各5個を作製して、各試料に加圧窒素を供給して破壊しない程度にできるだけ大きく拡張を行った後にその大きさを測定し、次いでそれぞれの試料を、200℃20minの条件で加熱して熱収縮させ、熱収縮後の大きさも同様に測定し、ETFEの濃度が5質量%の試料2−1~2−5については、表2にその結果を示す。また、ETFEの濃度が7質量%の試料3−1~3−5については、表3にその結果を示す。また、10質量%の試料4−1~4−5については、表4にその結果を示す。また、20質量%の試料5−1~5−5については、表5にその結果を示す。また、30質量%の試料6−1~6−5については、表6にその結果を示す。
 なお、30質量%および40質量%の試料では、ペレット成形で樹脂が繊維化し易くなるためペレット化が困難であり、製造性の面に限って言えば、上限は20質量%程度までが安定した製造範囲と考えられる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例2
(試料の作製)
 テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(ダイキン工業製FEP−NP120、Tg74℃)とテトラフルオロエチレンーエチレン共重合体(ETFE:旭硝子製C−55AP)との配合割合を変化させた混合物を準備し、各混合物を用いてシリンダー径20mmの2軸押出機によって、スクリュー回転数45rpm、ダイ温度320℃でペレット成形をした。
 次いで得られたペレットを用いてシリンダー径20mmの単軸押出機によって、スクリュー回転数10rpm、ダイ温度390℃でサイジングプレート法によるチューブ成形をして、内径0.5mm、外形0.9mm、肉厚0.2mmの試料7−1から試料7−4を作製した。
(引き裂き強度の試験)
 カミソリによって切り込みを入れて切り込み部からの引き裂きが可能であるか否かを試験した後、引き裂きが可能であったものについて、長さ100mmの試料の一方の端部に40mmの切り込みを設けて、引っ張り試験機によって、200mm/minの速度で引き裂き、そのときの最大の力を測定して、引き裂き強度とした。また、測定は同一組成の試料について3回行い、その加重平均値を求めて、表7に示す。 また、カミソリによって切り込みを入れて引き裂いた際に、破断することなく引き裂ける長さを引き裂き直進性として表7に示す。
Figure JPOXMLDOC01-appb-T000007
(拡張と熱収縮性試験)
 原料の配合量を変えた試験チューブを作製して拡張試験装置に装着して内部に加圧窒素を注入し、破壊が生じることなく拡張することが可能か否かを測定してその結果を以下の表に示す。
 作製したテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−55AP)とテトラフルオロエチレン−ヘキサフルオロプロピレンパーフルオロアルキルビニルエーテル共重合体(ダイキン工業製FEP−NP120)との混合物にあっては、テトラフルオロエチレン−エチレン共重合体が全体の2質量%以上であれば、引き裂き性と熱収縮性が得られることが確認できた。
 そこで、テトラフルオロエチレン−エチレン共重合体(ETFE)が全体の2質量%、5質量%、7質量%および10質量%の試料を各5個を作製して、各試料に加圧窒素を供給して破壊しない程度にできるだけ大きく拡張を行った後にその大きさを測定し、次いでそれぞれの試料を、200℃20minの条件で加熱して熱収縮させ、熱収縮後の大きさも同様に測定した。
 ETFEの濃度が2質量%の試料8−1~8−5については、表8にその結果を示す。ETFEの濃度が5質量%の試料9−1~9−5については、表9にその結果を示す。ETFEの濃度が7質量%の試料10−1~10−5については、表10にその結果を示す。また、ETFEの濃度が10質量%の試料11−1~11−5については、表11にその結果を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
比較例1
(試料の作製)
 テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(三井デュポンフロロケミカル製FEP−100J)とテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−88AX)との配合割合を変化させた混合物を準備し、各混合物を用いてシリンダー径20mmの単軸押出機によって、スクリュー回転数10rpm、ダイ温度390℃でサイジングプレート法によるチューブ成形をして、内径1.0mm、外形1.4mm、肉厚0.2mmの試料を作製した。
(引き裂き強度の試験)
 器具を使用することなく手のみで引き裂きが可能であるか、あるいはカミソリによって切り込みを入れて切り込み部からの引き裂きが可能であるか否かを試験した後に、引き裂きが可能であったものについて、長さ100mmの試料の一方の端部に40mmの切り込みを設けて、引っ張り試験機によって、200mm/minの速度で引き裂き、そのときの最大の力を測定して、引き裂き強度とした。また、測定は同一組成の試料について3回行い、その加重平均値を求めて、表12に示す。
Figure JPOXMLDOC01-appb-T000012
(拡張と熱収縮性試験)
 成形したチューブ内に拡張手段によって加圧窒素を注入し、破壊が生じることなく拡張することが可能か否かを測定したところ、試験で使用したテトラフルオロエチレン−エチレン共重合体(ETFE:旭硝子製C−88AX)とテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(三井デュポンフロロケミカル製FEP−100J)との混合物にあっては、テトラフルオロエチレン−エチレン共重合体が全体の3質量%~10質量%のものであれば、引き裂き性と熱収縮性が得られることが確認できた。
 そこで、テトラフルオロエチレン−エチレン共重合体(ETFE)が全体の10質量%の試料を5個作製して、各試料に加圧窒素を供給して破壊しない程度にできるだけ大きく拡張を行った後にその大きさを測定し、次いでそれぞれの試料を、200℃20minの条件で加熱して熱収縮させ、熱収縮後の大きさも同様に測定し、ETFEの濃度が、10質量%の試料13−1~13−5について表13にその結果を示す。
Figure JPOXMLDOC01-appb-T000013
実施例3
(試料の作製)
 約10モル%のフッ化ビニリデンと、約70モル%の四フッ化エチレンと、約20モル%の六フッ化プロピレンとの三元共重合体(THV:Tg46℃)とポリフッ化ビニリデン(PVDF:ARKEMA(アルケマ)製KYNAR 740)との配合割合を変化させた混合物を準備し、各混合物を用いてシリンダー径20mmの2軸押出機によって、スクリュー回転数45rpm、ダイ温度280℃でペレット成形をした。
 次いで得られたペレットを用いてシリンダー径20mmの単軸押出機によって、スクリュー回転数10rpm、ダイ温度340℃でサイジングプレート法によるチューブ成形をして、内径0.5mm、外形0.9mm、肉厚0.2mmの試料14−1から試料14−3を作製した。
(引き裂き強度の試験)
 カミソリによって切り込みを入れて切り込み部からの引き裂きが可能であるか否かを試験した後、引き裂きが可能であったものについて、長さ100mmの試料の一方の端部に40mmの切り込みを設けて、引っ張り試験機によって、200mm/minの速度で引き裂き、そのときの最大の力を測定して、引き裂き強度とした。また、測定は同一組成の試料について3回行い、その加重平均値を求めて、表14に示す。
Figure JPOXMLDOC01-appb-T000014
(拡張と熱収縮性試験)
 原料の配合量を変えた試験チューブを作製して拡張試験装置に装着して内部に加圧窒素を注入し、破壊が生じることなく拡張することが可能か否かを測定してその結果を以下の表に示す。 作製したポリフッ化ビニリデン(PVDF:ARKEMA(アルケマ)製KYNAR 740)とTHVとの混合物にあっては、ポリフッ化ビニリデンが全体の2質量%以上であれば、引き裂き性と熱収縮性が得られることが確認できた。
 そこで、ポリフッ化ビニリデン(PVDF)が全体の2質量%、20質量%および30質量%の試料を各1個を作製して、各試料に加圧窒素を供給して破壊しない程度にできるだけ大きく拡張を行った後にその大きさを測定し、次いでそれぞれの試料を、200℃20minの条件で加熱して熱収縮させ、熱収縮後の大きさも同様に測定した。
 PVDFの濃度が2質量%の試料15−1については、表15にその結果を示す。PVDFの濃度が20質量%の試料16−1については、表16にその結果を示す。PVDFの濃度が30質量%の試料17−1については、表17にその結果を示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 各試料の特性のデータを表18に示す。
Figure JPOXMLDOC01-appb-T000018
 本発明のフッ素樹脂製の引き裂きチューブは、引き裂き性とともに、熱収縮性が良好であるので、医療機器等に装着する際には被装着体に対して密に装着が可能であって取り扱い上も優れたものが得られる。また、異種の熱可塑性フッ素樹脂を配合した原料を溶融押出成形することによって製造することができるので、製造が容易であると共に、引き裂き特性が安定したフッ素樹脂製の引き裂きチューブを提供することができる。

Claims (8)

  1.  フッ素樹脂と、これと種類の異なる樹脂の混合物からなる、引裂き性を有する熱収縮チューブであって、周期30s、振幅10gの正弦振動応力を加え、5℃/minの速度で昇温させ、175℃から185℃にかけて温度が変化したときの、損失エネルギーの変化量ΔElossが正の値をとることを特徴とする引き裂き性を有する熱収縮チューブ。
  2.  ΔElossが0.05μJ以上であることを特徴とする請求項1に記載の引裂き性を有する熱収縮チューブ。
  3.  50℃での貯蔵弾性率が100MPa以下であることを特徴とする請求項1に記載の引裂き性を有する熱収縮チューブ。
  4.  種類の異なる複数のフッ素樹脂の混合物からなる、引裂き性を有する熱収縮チューブであって、主のフッ素樹脂が少なくとも3種類のモノマーからつくられるポリマーであって、構成モノマー単位として、少なくともテトラフルオロエチレン及びヘキサフルオロプロピレンを含むことを特徴とする引き裂き性を有する熱収縮チューブ。
  5.  主のフッ素樹脂が、構成モノマー単位として、少なくともテトラフルオロエチレン、ヘキサフルオロプロピレン及びパーフルオロアルキルビニルエーテルを含むことを特徴とする請求項4に記載の引裂き性を有する熱収縮チューブ。
  6.  主のフッ素樹脂が、構成モノマー単位として、少なくともテトラフルオロエチレン、ヘキサフルオロプロピレン及びビニリデンフルオライドを含み、ガラス転移温度が40℃以上であることを特徴とする請求項4に記載の引裂き性を有する熱収縮チューブ。
  7.  主のフッ素樹脂以外のフッ素樹脂が、テトラフルオロエチレン/エチレン共重合体又はポリフッ化ビニリデンを含有することを特徴とする請求項4に記載の引裂き性を有する熱収縮チューブ。
  8.  主のフッ素樹脂と、主のフッ素樹脂以外の樹脂との配合比が質量比で、98:2~70:30であることを特徴とする請求項4に記載の引裂き性を有する熱収縮チューブ。
PCT/JP2012/080520 2011-11-21 2012-11-19 引き裂き性を有する熱収縮チューブ WO2013077452A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147008433A KR101844628B1 (ko) 2011-11-21 2012-11-19 인열성을 가지는 열수축 튜브
CN201280048315.2A CN103842705B (zh) 2011-11-21 2012-11-19 具有撕裂性的热收缩管
US14/348,309 US9446171B2 (en) 2011-11-21 2012-11-19 Heat-shrinkable tube having tearability
EP12852063.2A EP2749802B1 (en) 2011-11-21 2012-11-19 Thermally shrinkable tube having tearing properties
JP2013545986A JP5518268B2 (ja) 2011-11-21 2012-11-19 引き裂き性を有する熱収縮チューブ
SG11201401004XA SG11201401004XA (en) 2011-11-21 2012-11-19 Heat-shrinkable tube having tearability
US15/205,560 US9623154B2 (en) 2011-11-21 2016-07-08 Heat-shrinkable tube having tearability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011254074 2011-11-21
JP2011-254074 2011-11-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/348,309 A-371-Of-International US9446171B2 (en) 2011-11-21 2012-11-19 Heat-shrinkable tube having tearability
US15/205,560 Continuation US9623154B2 (en) 2011-11-21 2016-07-08 Heat-shrinkable tube having tearability

Publications (1)

Publication Number Publication Date
WO2013077452A1 true WO2013077452A1 (ja) 2013-05-30

Family

ID=48469891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080520 WO2013077452A1 (ja) 2011-11-21 2012-11-19 引き裂き性を有する熱収縮チューブ

Country Status (7)

Country Link
US (2) US9446171B2 (ja)
EP (1) EP2749802B1 (ja)
JP (2) JP5518268B2 (ja)
KR (1) KR101844628B1 (ja)
CN (2) CN103842705B (ja)
SG (1) SG11201401004XA (ja)
WO (1) WO2013077452A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839310B1 (ja) * 2015-02-01 2016-01-06 株式会社潤工社 引き裂き性を有する熱収縮チューブ
EP3135313A1 (en) 2015-08-24 2017-03-01 Junkosha Inc. Heat-shrinkable tube having tearability
WO2019135295A1 (ja) * 2018-01-04 2019-07-11 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
JP2019184048A (ja) * 2018-07-30 2019-10-24 グンゼ株式会社 チューブ及び該チューブの製造方法
EP3622998A3 (en) * 2014-06-06 2020-05-27 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
WO2020158854A1 (ja) * 2019-01-31 2020-08-06 株式会社 潤工社 引き裂き性を有する熱収縮チューブ
JP2021038397A (ja) * 2015-09-11 2021-03-11 グンゼ株式会社 フッ素樹脂製の引き裂きチューブ
CN114025940A (zh) * 2019-01-31 2022-02-08 株式会社润工社 具有撕裂性的热缩管

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016279465A1 (en) 2015-06-16 2017-12-14 Dupont-Mitsui Fluorochemicals Co., Ltd. Heat-shrinkable tube and method for producing same
CN106633356B (zh) * 2016-12-28 2019-03-05 长园电子(东莞)有限公司 一种乙烯和四氟乙烯共聚树脂热收缩材料及其制备方法
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
US20220349500A1 (en) * 2019-08-30 2022-11-03 Nissei Electric Co., Ltd. Heat Shrink Tube and Method for Forming Same
CA3184886A1 (en) * 2020-05-28 2021-12-02 Zeus Company Inc. Dual layer heat shrink tubing
CN112876792B (zh) * 2021-03-02 2022-11-11 长园电子(东莞)有限公司 一种热收缩材料及其制备方法、热收缩透明软管
CN112961449A (zh) * 2021-03-16 2021-06-15 长园电子(东莞)有限公司 一种氟塑料材料及其制备方法、热缩套管
CN117511093A (zh) * 2023-11-10 2024-02-06 浙江脉通智造科技(集团)有限公司 热缩管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212441A (ja) * 1990-01-18 1991-09-18 Sumitomo Electric Ind Ltd フッ素樹脂組成物
JPH0812767A (ja) * 1994-06-30 1996-01-16 Nissei Denki Kk 熱収縮性電気絶縁チューブ
JPH0931285A (ja) * 1995-07-19 1997-02-04 Hitachi Cable Ltd 熱収縮性チューブ及びその組成物
JP2007321817A (ja) * 2006-05-30 2007-12-13 Junkosha Co Ltd フッ素樹脂製の引き裂き性のチューブ
JP2008020037A (ja) 2006-07-14 2008-01-31 Junkosha Co Ltd フッ素樹脂製の引き裂き性のチューブ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029868A (en) 1976-03-10 1977-06-14 E. I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymers
JPH02189354A (ja) * 1989-01-18 1990-07-25 Sumitomo Electric Ind Ltd フッ素樹脂組成物
JPH02261812A (ja) * 1989-03-31 1990-10-24 Mitsubishi Cable Ind Ltd 熱収縮性チューブ
JPH08216252A (ja) * 1995-02-08 1996-08-27 Hitachi Cable Ltd 熱収縮性チューブ
JP3983458B2 (ja) * 2000-06-29 2007-09-26 三菱樹脂株式会社 ポリオレフィン系熱収縮性チューブ
WO2003022922A1 (fr) * 2001-09-11 2003-03-20 Daikin Industries, Ltd. Composition de fluororesine, procede de production associe et cable enduit de cette composition
JP2004123920A (ja) * 2002-10-02 2004-04-22 Mitsubishi Plastics Ind Ltd 熱収縮性プラスチック材料用組成物、熱収縮性フィルムおよび熱収縮性チューブ
JP2007179889A (ja) 2005-12-28 2007-07-12 Nissei Electric Co Ltd 改善された引裂性を有する熱収縮チューブ
JP5663218B2 (ja) * 2010-07-09 2015-02-04 オリンパス株式会社 熱可塑性樹脂組成物及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212441A (ja) * 1990-01-18 1991-09-18 Sumitomo Electric Ind Ltd フッ素樹脂組成物
JPH0812767A (ja) * 1994-06-30 1996-01-16 Nissei Denki Kk 熱収縮性電気絶縁チューブ
JPH0931285A (ja) * 1995-07-19 1997-02-04 Hitachi Cable Ltd 熱収縮性チューブ及びその組成物
JP2007321817A (ja) * 2006-05-30 2007-12-13 Junkosha Co Ltd フッ素樹脂製の引き裂き性のチューブ
JP2008020037A (ja) 2006-07-14 2008-01-31 Junkosha Co Ltd フッ素樹脂製の引き裂き性のチューブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749802A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3622998A3 (en) * 2014-06-06 2020-05-27 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
EP3050696A1 (en) 2015-02-01 2016-08-03 Junkosha Inc. Heat-shrinkable tube having tearability
US9464149B2 (en) 2015-02-01 2016-10-11 Junkosha Inc. Heat-shrinkable tube having tearability
JP5839310B1 (ja) * 2015-02-01 2016-01-06 株式会社潤工社 引き裂き性を有する熱収縮チューブ
EP3135313A1 (en) 2015-08-24 2017-03-01 Junkosha Inc. Heat-shrinkable tube having tearability
US9957384B2 (en) 2015-08-24 2018-05-01 Junkosha Inc. Heat-shrinkable tube having tearability
JP2021038397A (ja) * 2015-09-11 2021-03-11 グンゼ株式会社 フッ素樹脂製の引き裂きチューブ
JPWO2019135295A1 (ja) * 2018-01-04 2021-01-07 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
WO2019135295A1 (ja) * 2018-01-04 2019-07-11 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
JP7181897B2 (ja) 2018-01-04 2022-12-01 グンゼ株式会社 熱可塑性フッ素樹脂製チューブ
US11802199B2 (en) 2018-01-04 2023-10-31 Gunze Limited Thermoplastic fluororesin tube
JP2019184048A (ja) * 2018-07-30 2019-10-24 グンゼ株式会社 チューブ及び該チューブの製造方法
JP7215842B2 (ja) 2018-07-30 2023-01-31 グンゼ株式会社 チューブ及び該チューブの製造方法
WO2020158854A1 (ja) * 2019-01-31 2020-08-06 株式会社 潤工社 引き裂き性を有する熱収縮チューブ
CN114025940A (zh) * 2019-01-31 2022-02-08 株式会社润工社 具有撕裂性的热缩管

Also Published As

Publication number Publication date
CN103842705B (zh) 2015-02-18
EP2749802B1 (en) 2017-04-05
SG11201401004XA (en) 2014-09-26
JP2014129883A (ja) 2014-07-10
EP2749802A4 (en) 2014-09-24
EP2749802A1 (en) 2014-07-02
US9446171B2 (en) 2016-09-20
CN103842705A (zh) 2014-06-04
CN104693650B (zh) 2017-09-22
US20140255633A1 (en) 2014-09-11
JPWO2013077452A1 (ja) 2015-04-27
CN104693650A (zh) 2015-06-10
KR101844628B1 (ko) 2018-04-02
JP5518268B2 (ja) 2014-06-11
US9623154B2 (en) 2017-04-18
KR20140093926A (ko) 2014-07-29
US20160317716A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
JP5518268B2 (ja) 引き裂き性を有する熱収縮チューブ
JP6369961B2 (ja) 成形用材料及びこの成形用材料から成る熱収縮チューブ
JP5839310B1 (ja) 引き裂き性を有する熱収縮チューブ
JP4968823B2 (ja) フッ素樹脂製の引き裂き性のチューブ
RU2002129592A (ru) Полимерная композиция для труб
JP6990501B2 (ja) 引き裂き性を有する熱収縮チューブ
CN105829436A (zh) 交联聚乙烯树脂组合物
JP2004035885A (ja) フルオロポリマーブレンド
JPH08239537A (ja) 熱可塑性フッ素系樹脂組成物、及びそれから製造された成形品
WO2021039837A1 (ja) 熱収縮チューブ及びその成形方法
WO2020158854A1 (ja) 引き裂き性を有する熱収縮チューブ
KR102151932B1 (ko) 폴리에틸렌계 수지 조성물, 폴리에틸렌계 필름
JP7181897B2 (ja) 熱可塑性フッ素樹脂製チューブ
JP2021045954A (ja) 引き裂き性を有する熱収縮チューブ
JP6517068B2 (ja) フッ化ビニリデン系樹脂組成物および成形物ならびにそれらの製造方法
JP2018090737A (ja) 離型シート
JP2018089913A (ja) 離型シート
JP2015174936A (ja) 樹脂組成物、混練物および成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852063

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013545986

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012852063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147008433

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348309

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE