WO2013077404A1 - ゼオライト及びその製造方法並びにパラフィンの接触分解触媒 - Google Patents

ゼオライト及びその製造方法並びにパラフィンの接触分解触媒 Download PDF

Info

Publication number
WO2013077404A1
WO2013077404A1 PCT/JP2012/080308 JP2012080308W WO2013077404A1 WO 2013077404 A1 WO2013077404 A1 WO 2013077404A1 JP 2012080308 W JP2012080308 W JP 2012080308W WO 2013077404 A1 WO2013077404 A1 WO 2013077404A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
beta
mse
type zeolite
type
Prior art date
Application number
PCT/JP2012/080308
Other languages
English (en)
French (fr)
Inventor
窪田 好浩
怜史 稲垣
来太 小松
慶治 板橋
達也 大久保
豊彦 稗田
Original Assignee
日本化学工業株式会社
国立大学法人横浜国立大学
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011258328A external-priority patent/JP2013112546A/ja
Priority to KR1020147017275A priority Critical patent/KR102026498B1/ko
Priority to KR1020197007690A priority patent/KR102048913B1/ko
Priority to BR122020025528-5A priority patent/BR122020025528B1/pt
Priority to EP16158202.8A priority patent/EP3050847B1/en
Priority to EP12851632.5A priority patent/EP2784025B1/en
Application filed by 日本化学工業株式会社, 国立大学法人横浜国立大学, 国立大学法人東京大学 filed Critical 日本化学工業株式会社
Priority to BR112014012670-4A priority patent/BR112014012670B1/pt
Priority to CN201280067677.6A priority patent/CN104203824B/zh
Priority to US13/813,104 priority patent/US9238219B2/en
Priority claimed from JP2012255811A external-priority patent/JP5470592B2/ja
Publication of WO2013077404A1 publication Critical patent/WO2013077404A1/ja
Priority to US14/793,428 priority patent/US9895683B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/10Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with stationary catalyst bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to beta-type zeolite and MSE-type zeolite.
  • the beta-type zeolite and MSE-type zeolite of the present invention are promising as solid acid catalysts and adsorbents, and more particularly as paraffin catalytic cracking catalysts, such as long-chain hydrocarbon cracking catalysts in the petrochemical industry. It is also promising as a hydrocarbon trap for exhaust gas purification of internal combustion engines.
  • the present invention also relates to a method for producing beta zeolite or MSE zeolite with an increased Si / Al ratio from beta zeolite or MSE zeolite as a raw material.
  • Beta-type zeolites are useful as solid acid catalysts and adsorbents, and are currently used in large quantities around the world as catalysts in the petrochemical industry and as hydrocarbon traps for exhaust gas purification of internal combustion engines.
  • Various methods for synthesizing beta zeolite have been proposed.
  • a general method is a method in which a compound containing tetraethylammonium ions is used as a structure directing agent (hereinafter abbreviated as “organic SDA”). Such a method is described in Patent Document 1 below, for example.
  • the compound containing tetraethylammonium ions is expensive and most of the excess is decomposed after the crystallization of the beta zeolite is completed, the amount taken into the crystal cannot be removed by any method other than decomposition, It cannot be recovered and reused. Therefore, the beta zeolite produced by this method is expensive. Furthermore, since tetraethylammonium ions are taken into the crystal, it must be removed by calcination when used as an adsorbent or a catalyst. The exhaust gas at that time causes environmental pollution and also requires many chemicals for the detoxification treatment of the synthetic mother liquor.
  • Patent Document 2 recently proposed a method for synthesizing beta-type zeolite that does not use organic SDA.
  • a silica source, an alumina source, an alkali source, and water are mixed so that a reaction mixture having a specific composition is obtained; the SiO 2 / Al 2 O 3 ratio is 8 to 30, and the average particle size is Beta-type zeolite containing no organic compound having a diameter of 150 nm or more is used as a seed crystal, and this is added to the reaction mixture in a proportion of 0.1 to 20% by mass with respect to the silica component in the reaction mixture;
  • the reaction mixture to which the seed crystals have been added is hermetically heated at 100 to 200 ° C. to synthesize beta-type zeolite without using organic SDA.
  • beta-type zeolite when using beta-type zeolite as a catalyst in the petrochemical industry or when using it as a hydrocarbon trap for exhaust gas purification of an internal combustion engine, it is advantageous from the viewpoint of performance improvement to increase its Si / Al ratio. is there.
  • a technique for increasing the Si / Al ratio in beta-type zeolite for example, as described in Patent Document 3, a method of performing steam treatment and acid treatment in this order is known.
  • An object of the present invention is to provide a zeolite that can eliminate the various drawbacks of the above-described conventional technology and a method for producing the zeolite.
  • the present invention solves the above-mentioned problems by providing a beta zeolite having a substantially octahedral shape, a Si / Al ratio of 5 or more, and a proton type. .
  • the Si / Al ratio is 5 or more, the proton type
  • the raw material MSE-type zeolite synthesized without using a structure-directing agent is made into an ammonium form by ion exchange, then the MSE-type zeolite is exposed to water vapor, and the exposed MSE-type zeolite is subjected to acid treatment.
  • the present invention provides an MSE-type zeolite characterized by
  • the present invention also provides a catalytic cracking catalyst for paraffin containing the beta zeolite or MSE zeolite.
  • the raw beta zeolite is made into an ammonium type by ion exchange, then the beta zeolite is exposed to water vapor, and the exposed beta zeolite is subjected to acid treatment to increase the Si / Al ratio.
  • a method for producing a beta-type zeolite which is obtained by using a synthesized beta-type zeolite without using a structure-directing agent as a raw-material beta-type zeolite subjected to ion exchange. To do.
  • the raw material MSE zeolite is made into an ammonium type by ion exchange, then the MSE zeolite is exposed to water vapor, and the exposed MSE zeolite is subjected to an acid treatment to increase the Si / Al ratio.
  • a method for producing an MSE zeolite for obtaining an MSE zeolite obtained by using a material synthesized without using a structure-directing agent as a raw material MSE zeolite to be subjected to ion exchange is provided. To do.
  • beta-type zeolite and MSE-type zeolite that have high catalytic activity and are difficult to deactivate are provided. Further, according to the present invention, a beta zeolite and an MSE zeolite having a high Si / Al ratio can be easily produced without destroying the crystal structure of the zeolite.
  • FIG. 1 is a schematic view showing an apparatus used for water vapor exposure of a beta zeolite.
  • FIG. 2 (a) is a scanning electron microscope image of a beta-type zeolite synthesized without using an organic structure-directing agent, and FIG. 2 (b) shows the dealumination of the beta-type zeolite shown in FIG. 2 (a). It is a scanning electron microscope image after making it into (Example 1).
  • FIG. 3 is an X-ray diffraction pattern of the beta zeolite obtained in Examples 1 to 5 and Comparative Example 1.
  • FIG. 4 (a) is a scanning electron microscope image of a beta zeolite synthesized using an organic structure directing agent, and FIG.
  • FIG. 4 (b) is a dealumination of the beta zeolite shown in FIG. 4 (a). It is a scanning electron microscope image after having performed (comparative example 3).
  • FIG. 5 is an X-ray diffraction pattern of the beta zeolite obtained in Comparative Examples 2 and 3.
  • FIG. 6 is a schematic view of an apparatus for evaluating the catalytic activity of beta zeolite.
  • FIG. 7 is a graph showing the temperature dependence of the conversion rate when hexane cracking is performed using the beta zeolite obtained in Examples and Comparative Examples as a catalyst.
  • FIG. 8 is a graph showing the time dependence of the conversion rate when hexane cracking is performed using the beta zeolite obtained in Examples and Comparative Examples as a catalyst.
  • FIG. 7 is a graph showing the temperature dependence of the conversion rate when hexane cracking is performed using the beta zeolite obtained in Examples and Comparative Examples as a catalyst.
  • FIG. 8 is a graph showing the time
  • FIG. 9 is an X-ray diffraction pattern of the beta zeolite obtained in Examples 6 to 8.
  • FIG. 10 is an X-ray diffraction pattern of the beta zeolite obtained in Examples 9 to 16.
  • FIG. 11 is an X-ray diffraction pattern of the beta zeolite obtained in Examples 17 and 18.
  • FIG. 12 is an X-ray diffraction pattern of the MSE zeolite obtained in Example 19 and Comparative Examples 4 and 5.
  • FIG. 13 is a graph showing the time dependence of the conversion rate when hexane cracking is performed using the MSE zeolite obtained in Examples and Comparative Examples as a catalyst.
  • the term “zeolite” refers to either “beta-type zeolite” or “MSE-type zeolite” or both depending on the context.
  • the beta zeolite has a substantially octahedral appearance.
  • beta-type zeolite with a low Si / Al ratio is known to have a substantially octahedral shape, but a beta-type zeolite with a high Si / Al ratio has a substantially octahedral shape. Things were not known.
  • beta zeolite with a high Si / Al ratio is often obtained using organic SDA, but because of the nucleation induced by organic SDA, it cannot enter the growth mode of a substantially octahedral crystal. It is thought that.
  • the beta zeolite and the MSE zeolite of the present invention are high silica zeolite having a Si / Al ratio of 5 or more.
  • the beta-type zeolite and the MSE-type zeolite of the present invention are used for cracking catalysts of long-chain hydrocarbons (for example, hexane) in the petrochemical industry, exhaust gas purification catalysts for internal combustion engines, etc. Therefore, it is useful as a catalyst used at high temperatures.
  • Beta-type zeolites and MSE-type zeolites having a Si / Al ratio of 5 or more have been known so far, but the external appearance of such zeolites is irregular.
  • a beta-type zeolite having a faceted shape has not been known so far.
  • the beta type zeolite and the MSE type zeolite of the present invention are more preferable as the Si / Al ratio is higher from the viewpoint of catalytic activity and the like.
  • the Si / Al ratio is preferably 14 or more, more preferably 40 or more, and particularly preferably 55 or more.
  • the upper limit value of the Si / Al ratio is not particularly limited. However, if it is 200, further 190, particularly 150, sufficiently satisfactory catalytic activity and the like can be obtained.
  • the beta zeolite of the present invention is characterized by both (i) the appearance shape being substantially octahedral and (ii) the Si / Al ratio being 5 or more.
  • the known beta-type zeolite has only one of (i) and (ii), and none has both.
  • the beta-type zeolite which comprises both (i) and (ii) had high catalytic activity, and the activity was hard to deactivate even at high temperature, and resulted in completion of the present invention.
  • the MSE zeolite of the present invention is characterized by having a Si / Al ratio of 5 or more.
  • the MSE type zeolite having such a Si / Al ratio has high catalytic activity as in the case of the above-mentioned beta type zeolite, and its activity is difficult to deactivate even at high temperatures.
  • the zeolite has a Bronsted acid point.
  • the zeolite of the present invention is of the proton type.
  • a trace amount of ammonium ions or alkali metal ions may be contained within a range not impairing the effects of the present invention.
  • the beta zeolite and MSE zeolite of the present invention preferably have an average particle size of 0.2 to 2.0 ⁇ m, more preferably 0.5 to 1.0 ⁇ m.
  • BET specific surface area 400 ⁇ 650m 2 / g, and more preferably preferably 500 ⁇ 650m 2 / g, 550 ⁇ 650m 2 / g.
  • the micropore volume is preferably 0.10 to 0.28 cm 3 / g, and more preferably 0.15 to 0.25 cm 3 / g.
  • the beta-type zeolite of the present invention preferably has a diffraction pattern obtained by X-ray diffraction using CuK ⁇ 1 rays at least at the positions described in Tables 1 and 2 below.
  • Table 1 shows diffraction patterns
  • Table 2 shows preferable peak intensity ratios.
  • “Vs” in Table 1 has a very strong relative strength (80 to 100%)
  • “s” has a strong relative strength (60 to 80%)
  • “m” has a relatively strong relative strength (40 to 100%).
  • w indicates that the relative intensity is weak (0 to 40%)
  • the peak intensity (%) in Table 2 is the relative intensity when the peak intensity of the maximum peak in the diffraction pattern is 100. It is.
  • the MSE-type zeolite of the present invention has a diffraction pattern obtained by X-ray diffraction using CuK ⁇ 1 rays, preferably having diffraction peaks at least at the positions described in Tables 3 and 4 below.
  • Table 3 shows diffraction patterns
  • Table 4 shows preferable peak intensity ratios.
  • “vs” has a very strong relative strength (80 to 100%)
  • “s” has a strong relative strength (60 to 80%)
  • “m” has a relatively strong relative strength (40 to 100%).
  • 60%) and “w” indicate that the relative intensity is weak (0 to 40%)
  • the peak intensity (%) in Table 4 is the relative intensity when the peak intensity of the maximum peak in the diffraction pattern is 100. It is.
  • the beta zeolite of the present invention is preferably produced by dealumination of a beta zeolite having a substantially octahedral shape and a low Si / Al ratio.
  • the MSE-type zeolite of the present invention is preferably produced by dealumination of MSE-type zeolite having a low Si / Al ratio.
  • a preferred method for producing the beta zeolite of the present invention includes (1) an ion exchange treatment step of the raw material beta zeolite, (2) a step of exposing the ion exchanged raw material beta zeolite to water vapor, and (3 ) It includes three steps of acid treatment of raw beta zeolite exposed to water vapor.
  • the preferable production method of the MSE type zeolite of the present invention is also the same. Therefore, in the following, the method for producing the zeolite of the present invention will be described by taking a preferred method for producing the beta zeolite as an example.
  • the raw material beta-type zeolite generally contains an alkali metal such as sodium.
  • Beta-type zeolite containing alkali metals is removed by ion exchange because it does not exhibit the desired characteristics when used as a catalyst in the petrochemical industry or as a hydrocarbon trap for exhaust gas purification of internal combustion engines. Thus, an ammonium type beta zeolite is obtained.
  • a low Si / Al ratio having a Si / Al ratio of 4 to 100, preferably 4 to 8, and more preferably 5 to 7 is used. This is because such a low-zeolite / beta-type zeolite is easy to synthesize as a substantially octahedral shape.
  • OSDA-free beta-type zeolite As a result of the study of the present inventors, it was found advantageous to use a raw material beta-type zeolite synthesized without using organic SDA (hereinafter also referred to as “OSDA-free beta-type zeolite”).
  • OSDA-free beta-type zeolite When OSDA-free beta-type zeolite is used as the raw material beta-type zeolite, it is easy to synthesize a beta-type zeolite having a substantially octahedral shape.
  • the OSDA-free beta zeolite with a low Si / Al ratio maintains a substantially octahedral shape even when dealuminated, and the catalytic activity of the resulting high Si / Al ratio beta zeolite is lost. Difficult to live.
  • the use of OSDA-free beta zeolite is advantageous from the viewpoint of economic efficiency and environmental burden because it does not use organic SDA.
  • OSDA-free beta-type zeolite has been studied by the present inventors that when the Si / Al content is increased by a conventional method, for example, the method described in Patent Document 3 described above, the crystal structure of the zeolite is easily destroyed. The results are known. However, when OSDA-free beta zeolite is treated by this production method, Si / Al can be increased while suppressing the destruction of the crystal structure as much as possible.
  • the method described in International Publication No. 2011/013560 pamphlet can be employed.
  • the method described in Chinese Patent Application Publication No. 10129968A can also be employed.
  • the method described in Chemistry “of Materials”, “Vol. 20,” No. 14, “p.4533-4535” (2008) may be employed.
  • An example of a method for synthesizing OSDA free beta zeolite is as follows.
  • (I) A silica source, an alumina source, an alkali source, and water are mixed so as to be a reaction mixture having a composition represented by a molar ratio shown below.
  • the reaction mixture to which the seed crystals have been added is hermetically heated at 100 to 200 ° C., particularly 120 to 180 ° C.
  • ammonium compound is used for ion exchange of the raw material beta zeolite, and ammonium nitrate, ammonium chloride, ammonium acetate, and ammonium sulfate are particularly preferably used.
  • an ammonium compound such as ammonium nitrate or ammonium chloride, 25 to 1000 mL, preferably 100 to 1000 mL, of an aqueous solution having an ammonium ion concentration of 0.1 to 10 mol / L with respect to 10 g of the raw beta zeolite. In particular, it is preferable to add 400 to 600 mL.
  • Ion exchange can be performed under a heated state of an aqueous solution containing ammonium ions or under a non-heated state.
  • the heating temperature is preferably 40 to 100 ° C., particularly preferably 70 to 90 ° C.
  • the raw beta zeolite is dispersed in an aqueous solution containing ammonium ions to form a dispersion, and this state is maintained for a predetermined time to perform ion exchange.
  • the holding time is preferably 1 to 48 hours, more preferably 12 to 24 hours.
  • the dispersion may be in a stationary state or in a stirred state.
  • the dispersion After holding the dispersion for a predetermined time, the dispersion is filtered to separate the raw beta zeolite and washed with water. If necessary, the combination of the ion exchange treatment and the water washing may be performed a plurality of times. After performing the ion exchange treatment in this way, the raw material beta zeolite is dried to obtain an ammonium beta zeolite. This ammonium-type beta-type zeolite thus has an extremely reduced content of alkali metal ions.
  • Step of exposing ion-exchanged raw material beta-type zeolite to water vapor To expose the ammonium-type raw material beta-type zeolite to water vapor, for example, the raw material beta-type zeolite is allowed to stand in a water vapor atmosphere, What is necessary is just to arrange
  • the apparatus 10 shown in the figure has a holding tube 11 in which a raw material beta zeolite is held. Both ends of the holding tube 11 are open. The lower end 11a is open to the atmosphere.
  • An upper end portion 11 b of the holding tube 11 serves as a water vapor inlet, and is connected to a water vapor supply source 12 and an inert gas supply source 13.
  • the water vapor supply source 12 includes a bottomed cylindrical body 12a having an upper end opened. One end of an inert gas bubbling tube 12b is inserted into the cylindrical body 12a. The other end of the bubbling tube 12b is connected to an inert gas supply source (not shown). Further, water 14 is placed in the cylinder 12a. The height of the water surface is higher than the position of the end of the bubbling tube 12b inserted into the bottomed cylindrical body 12a.
  • a heating means 15 is installed around the holding tube 11.
  • the heating means 15 can heat the raw material beta-type zeolite held in the holding tube 11 and water vapor flowing through the holding tube 11.
  • a predetermined amount of water vapor is supplied into the holding tube 11 by bubbling the inert gas through the bubbling tube 12b in the water vapor supply source 12 while supplying an inert gas such as argon from the inert gas supply source 13.
  • the supply amount of water vapor is determined by the balance of the supply amounts of inert gas in the inert gas supply source 13 and the water vapor supply source 12.
  • the water vapor supplied into the holding tube 11 is heated by the heating means 15 together with the raw material beta zeolite.
  • the raw beta zeolite is exposed to water vapor heated to a predetermined temperature.
  • the temperature of the water vapor used for the exposure of the raw material beta zeolite is 150 to 1000 ° C., more preferably 500 to 900 ° C., and particularly 500 to 800 ° C. It is preferable from the point which can promote.
  • the exposure time of water vapor is preferably 1 to 48 hours, more preferably 1 to 24 hours, particularly 12 to 24 hours when the temperature of the water vapor is within the above-mentioned range.
  • the pressure (partial pressure) of water vapor at the time when the raw material beta zeolite contacts with water vapor is atmospheric pressure or lower because the lower end in the holding tube 11 is open.
  • a preferable partial pressure of water vapor is 1 to 101.3 kPa.
  • Acid treatment step of raw material beta zeolite exposed to water vapor The raw material beta zeolite exposed to water vapor is subjected to acid treatment, thereby causing dealumination from the beta zeolite.
  • acid treatment various mineral acids are preferably used. For example, nitric acid, sulfuric acid and hydrochloric acid can be used.
  • nitric acid, sulfuric acid and hydrochloric acid can be used.
  • the acid concentration varies depending on the type of acid used, but in many cases, it is preferably 0.1 to 100% by mass, particularly preferably 0.1 to 60% by mass.
  • the nitric acid concentration is preferably 0.1 to 70% by mass, particularly 0.5 to 5% by mass.
  • the nitric acid concentration is preferably 0.01 to 21 mol / L, particularly 0.05 to 14 mol / L as the molar concentration.
  • the amount of acid in the acid treatment is preferably 5 to 500 mL, preferably 10 to 500 mL, particularly 100 to 200 mL of the acid having the above-mentioned concentration per 1 g of the raw beta-type zeolite because efficient dealumination occurs. .
  • the acid treatment may be performed under heating or may be performed under non-heating.
  • the acid temperature is preferably set to 40 to 100 ° C., particularly 70 to 90 ° C., from the viewpoint of efficient dealumination.
  • the temperature of nitric acid is preferably set to 40 to 130 ° C, particularly 70 to 130 ° C, particularly 70 to 90 ° C.
  • the acid treatment time is 1 to 24 hours, particularly 2 to 24 hours, so that efficient dealumination can be achieved while suppressing the destruction of the crystal structure of the zeolite. It is preferable from the point of carrying out.
  • beta-type zeolite has a higher Si / Al ratio than the OSDA-free beta-type zeolite used as a raw material. Although the Si / Al ratio is increased, the beta-type zeolite maintains the zeolite crystal structure. In addition, the substantially octahedral shape of the OSDA free beta zeolite is maintained. This beta zeolite has been converted to a proton type as described above.
  • a preferred method for producing the MSE type zeolite of the present invention is the above-described preferred method for producing beta type zeolite, in which the raw material MSE type zeolite is used instead of the raw material beta type zeolite, and organic SDA is not used as the raw material MSE type zeolite. Except for using the synthesized one (hereinafter also referred to as “OSDA-free MSE-type zeolite”), it is the same as the preferred method for producing the beta-type zeolite described above.
  • OSDA-free MSE type zeolite As a synthesis method of the OSDA-free MSE type zeolite, for example, the method described in International Publication No. 2012/002367 pamphlet can be employed.
  • An example of a method for synthesizing OSDA free beta zeolite is as follows.
  • a silica source, an alumina source, an alkali source, and water are mixed so as to be a reaction mixture having a composition represented by a molar ratio shown in the following (a) or (b):
  • MSE-type zeolite is used as a seed crystal, which is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 1 to 10% by mass with respect to the silica component in the reaction mixture.
  • the reaction mixture to which the seed crystals have been added is hermetically heated at 100 to 200 ° C., particularly 120 to 180 ° C.
  • the gel used for producing the MSE-type zeolite may contain only sodium ions as alkali metals, or both sodium ions and potassium ions. May be included.
  • zeolite is synthesized using a gel containing sodium ions and potassium ions, it is possible to further prevent the generation of impurities by-products, especially by-product trace amounts of zeolite, compared to the case of using a gel containing only sodium ions. It is advantageous.
  • potassium hydroxide is preferably used as the potassium ion source.
  • potassium salts such as potassium chloride, potassium sulfate, and potassium nitrate may be used as other potassium ion sources.
  • beta-type zeolite and MSE-type zeolite of the present invention are promising as solid acid catalysts and adsorbents, and more specifically, catalysts that catalytically decompose paraffin, such as long chains in the petrochemical industry It is particularly promising as a cracking catalyst for hydrocarbons (for example, hexane), and is also promising as a hydrocarbon trap for purifying exhaust gas of various internal combustion engines such as gasoline engines and diesel engines.
  • hydrocarbons for example, hexane
  • the beta zeolite and the MSE zeolite of the present invention can be suitably produced, but the production method can be used to produce a beta zeolite other than the beta zeolite and the MSE zeolite of the present invention. It is also possible to produce MSE type zeolite.
  • Example 1 (1) Synthesis of Seed Crystal Using tetraethylammonium hydroxide as organic SDA, sodium aluminate as an alumina source, and finely powdered silica (Mizukasil P707) as a silica source by a conventionally known method, stirring and heating at 165 ° C. for 96 hours Thus, a beta zeolite having a SiO 2 / Al 2 O 3 ratio of 24.0 was synthesized. This was baked at 550 ° C. for 10 hours while circulating air in an electric furnace to produce a crystal containing no organic matter. As a result of observing this crystal with a scanning electron microscope, the average particle size was 280 nm. The crystals of beta zeolite that do not contain organic substances were used as seed crystals.
  • Beta-type zeolite after exposure to water vapor was acid-treated with a 0.1 mol / L nitric acid aqueous solution.
  • the temperature of the aqueous nitric acid solution was 80 ° C.
  • 10 mL of nitric acid aqueous solution was added to 0.1 g of beta zeolite.
  • the treatment was carried out for 2 hours while stirring the liquid with a magnetic stirrer. In this way, the intended beta zeolite was obtained.
  • a scanning electron microscope image of the obtained beta zeolite is shown in FIG.
  • An X-ray diffraction diagram is shown in FIG.
  • the Si / Al ratio obtained from elemental analysis is shown in FIG.
  • FIG. 2B it can be seen that this beta zeolite has a substantially octahedral shape.
  • Example 2 the concentration of the aqueous nitric acid solution used for the acid treatment was 0.5 mol / L (Example 2), 1.0 mol / L (Example 3), 2.0 mol / L (Example 4), and 8. It was set to 0 mol / L (Example 5). Except this, it carried out similarly to Example 1, and obtained the beta type zeolite by which Si / Al ratio was raised. The X-ray diffraction pattern of the obtained beta zeolite is shown in FIG. Moreover, Si / Al ratio calculated
  • the BET specific surface area and the micropore volume were measured under the following conditions.
  • the BET specific surface area obtained by the measurement was 617 m 2 / g, and the micropore volume was 0.17 cm 3 / g.
  • Example 1 In Example 1, after the OSDA-free beta zeolite was ion-exchanged, it was directly heat-treated without exposure to water vapor and acid treatment to obtain a proton-type beta zeolite.
  • the heat treatment conditions were a temperature of 650 ° C., a time of 60 minutes, and an air flow rate of 40 cm 3 / min.
  • the X-ray diffraction pattern of the obtained beta zeolite is shown in FIG.
  • the beta-type zeolite has lost its octahedral shape by heat treatment.
  • [Comparative Example 2] (1) Synthesis of beta-type zeolite using organic SDA (OSDA) An aqueous solution containing tetraethylammonium hydroxide and sodium hydroxide as an organic structure-directing agent (OSDA) was stirred at room temperature, and colloidal silica was added thereto. . As colloidal silica, Ludox HS-40 (silica content 40%) was used. After adding colloidal silica, stirring was performed for 30 minutes, and then an aqueous aluminum sulfate solution was added, and stirring was further performed for 30 minutes to obtain a gel.
  • OSDA organic structure-directing agent
  • composition of this gel was 0.033 mol of Al 2 O 3 , 0.24 mol of sodium hydroxide, 0.50 mol of tetraethylammonium hydroxide, and 20 mol of water with respect to 1 mol of SiO 2 . .
  • This gel was placed in an autoclave and reacted for 7 days under the condition of being heated to 150 ° C. In this way, a beta zeolite was obtained.
  • This zeolite was heated at 550 ° C. for 6 hours in an air atmosphere to decompose and remove OSDA, tetraethylammonium hydroxide.
  • this product was subjected to X-ray diffraction measurement, it was confirmed to be a beta zeolite containing no impurities.
  • the Si / Al was 13.1.
  • a scanning electron microscope image of the beta zeolite is shown in FIG. As shown in the figure, it can be seen that this beta-type zeolite has an irregular shape.
  • Ion exchange Ion exchange was performed under the same conditions as in Example 1. No steam exposure or acid treatment was performed. After the ion exchange, heat treatment was performed at a temperature of 650 ° C., an hour of 60 minutes, and an air flow rate of 40 cm 3 / min to convert the beta zeolite into the proton type. In this way, a beta zeolite was obtained. An X-ray diffraction pattern of the obtained beta zeolite is shown in FIG. Moreover, Si / Al ratio calculated
  • Comparative Example 3 In Comparative Example 2, after ion exchange, exposure with water vapor and acid treatment were performed under the same conditions as in Example 3. In this way, a beta zeolite was obtained. A scanning electron microscope image of the obtained beta zeolite is shown in FIG. An X-ray diffraction diagram is shown in FIG. Moreover, Si / Al ratio calculated
  • reaction tube a quartz tube having an inner diameter of 8 mm was used, and 100 mg of the previously sized beta-type zeolite catalyst was packed therein, and the catalyst layer was held at the center of the reaction tube with quartz wool.
  • the temperature was raised to 650 ° C. at a rate of temperature rise of about 7 ° C./min under air flow, and kept in this atmosphere for 1 hour.
  • the reaction tube temperature was lowered to 450 ° C. at 5 ° C./min.
  • a methane-helium mixed gas accompanied by hexane was supplied to the catalyst layer to start the catalytic reaction.
  • the partial pressure of hexane was 5.0 kPa.
  • the hexagonal valve is switched to introduce the reaction product accumulated in the sampling loop into the gas chromatograph, and after separation with a capillary column, each product and unreacted with a flame detector (FID).
  • FID flame detector
  • Qualitative and quantitative analysis of the product was performed.
  • the supply of hexane to the catalyst layer was stopped and the helium flow was switched to. Thereafter, when the temperature was stabilized by increasing the temperature to 500 ° C. at 1 to 2 ° C./min, hexane was supplied again to carry out the catalytic reaction. The same operation was continued at 550 and 600 ° C.
  • Beta-type zeolite was obtained in the same manner as in Example 1 except that the production conditions shown in Table 6 below were adopted.
  • An X-ray diffraction pattern of the beta zeolite obtained in Examples 6 to 8 is shown in FIG.
  • An X-ray diffraction pattern of the beta zeolite obtained in Examples 9 to 16 is shown in FIG.
  • the X-ray diffraction pattern of the beta zeolite obtained in Examples 17 and 18 is shown in FIG.
  • required from the elemental analysis was described in these figures.
  • the beta zeolites obtained in Examples 6 to 18 had a substantially octahedral shape. Table 6 below also describes the manufacturing conditions employed in Examples 1 to 5 described above.
  • the crystal structure of the beta zeolite is more maintained as compared to the case of ⁇ 450 ° C. (Examples 9 to 12). Further, from the results of X-ray diffraction patterns of Examples 3, 17 and 18 shown in FIGS. 3 and 11, the water vapor exposure time was changed from 24 hours (Example 3) to 2 hours (Example 17) or 6 hours ( When it is shortened to Example 18), it can be seen that the Si / Al ratio of the beta zeolite is reduced, but the crystallinity is not changed.
  • Example 19 (1) Synthesis of Seed Crystal N, N, N ′, N′-tetraethylbicyclo [2.2.2] -oct-7-ene-2,3: 5,6-dipyrrolidinium diaio as organic SDA A dido was used.
  • a reaction mixture was prepared using aluminum hydroxide as an alumina source, colloidal silica as a silica source, and potassium hydroxide as an alkali source, and heated by standing at 160 ° C. for 16 days.
  • MSE zeolite obtained by calcining the product by heating at 540 ° C. for 8 hours in air was used as a seed crystal.
  • the Si / Al ratio was 12.0.
  • the crystal of MSE type zeolite not containing this organic substance was used as a seed crystal.
  • the SiO 2 / Al 2 O 3 ratio is 100
  • the (Na 2 O + K 2 O) / SiO 2 ratio is 0.3
  • the K 2 O / (Na 2 O + K 2 O) ratio is 0,
  • the H 2 O / The SiO 2 ratio was 20.
  • the mixture of the reaction mixture and the seed crystal was placed in a 60 cc stainless steel sealed container and allowed to stand at 140 ° C. for 60 hours under an autogenous pressure without aging and stirring. After cooling the sealed container, the product was filtered and washed with warm water to obtain a white powder. When this product was subjected to X-ray diffraction measurement, it was confirmed to be MSE-type zeolite. As a result of the compositional analysis, the Si / Al was 6.8.
  • OSDA-free MSE type zeolite was used as a raw material, and this was dispersed in an aqueous ammonium nitrate solution.
  • the mass ratio of OSDA free beta zeolite, ammonium nitrate, and water was 1: 2: 50.
  • the dispersion was allowed to stand for 24 hours under heating at 80 ° C. for ion exchange. Thereafter, filtration was performed to separate the beta zeolite. The ion exchange and filtration operations were repeated once, then washed with water and dried at 80 ° C. to obtain an ammonium type MSE type zeolite.
  • Beta-type zeolite after exposure to water vapor was acid-treated with a 6.0 mol / L aqueous nitric acid solution.
  • the temperature of the aqueous nitric acid solution was 80 ° C.
  • 10 mL of nitric acid aqueous solution was added to 0.1 g of MSE zeolite.
  • the treatment was carried out for 2 hours while stirring the liquid with a magnetic stirrer.
  • the X-ray diffraction pattern of the obtained beta zeolite is shown in FIG.
  • the Si / Al ratio determined from elemental analysis was 62.9.
  • Example 19 after ion-exchange of the OSDA-free MSE zeolite, the proton-type MSE zeolite was obtained by direct heat treatment without exposure to water vapor and acid treatment.
  • the heat treatment conditions were a temperature of 650 ° C., a time of 60 minutes, and an air flow rate of 40 cm 3 / min.
  • FIG. 12 shows an X-ray diffraction pattern of the obtained MSE zeolite.
  • required from the elemental analysis was 6.5.
  • Example 19 the OSDA-free MSE zeolite was ion-exchanged, then exposed to water vapor, and then directly heat-treated without acid treatment to obtain a proton-type MSE zeolite.
  • the heat treatment conditions were a temperature of 650 ° C., a time of 60 minutes, and an air flow rate of 40 cm 3 / min.
  • FIG. 12 shows an X-ray diffraction pattern of the obtained MSE zeolite.
  • required from the elemental analysis was 6.8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

触媒活性が高く、かつ失活しにくいベータ型ゼオライトを提供すること。 本発明のベータ型ゼオライトは、略八面体の形状を有し、Si/Al比が5以上であり、プロトン型であることを特徴とする。Si/Al比が40以上であることが好適である。このベータ型ゼオライトは、構造規定剤を用いずに合成された原料ベータ型ゼオライトをイオン交換によってアンモニウム型となし、次いで該ベータ型ゼオライトを水蒸気に曝露し、曝露後の該ベータ型ゼオライトを酸処理に付すことで得られたものであることが好適である。

Description

ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
 本発明はベータ型ゼオライト及びMSE型ゼオライトに関する。本発明のベータ型ゼオライト及びMSE型ゼオライトは、固体酸触媒や吸着剤として有望なものであり、更に詳細にはパラフィンの接触分解触媒、例えば石油化学工業における長鎖炭化水素のクラッキング触媒として特に有望であり、また、内燃機関の排気ガス浄化用ハイドロカーボントラップとしても有望なものである。また本発明は、原料としてのベータ型ゼオライト又はMSE型ゼオライトから、Si/Al比が高められたベータ型ゼオライト又はMSE型ゼオライトを製造する方法に関する。
 ベータ型ゼオライトは、固体酸触媒や吸着剤として有用なものであり、石油化学工業における触媒として、また内燃機関の排気ガス浄化用ハイドロカーボントラップとして、現在世界中で多量に使用されている。ベータ型ゼオライトの合成法は種々提案されている。一般的な方法はテトラエチルアンモニウムイオンを含む化合物を構造規定剤(以下「有機SDA」と略称する。)として用いる方法である。そのような方法は例えば以下の特許文献1に記載されている。しかしながら、テトラエチルアンモニウムイオンを含む化合物は高価である上に、ベータ型ゼオライトの結晶化終了後は過剰分のほとんどが分解してしまい、結晶に取り込まれた分も分解以外の方法で除去できないため、回収して再利用することは不可能である。そのために、この方法により製造したベータ型ゼオライトは高価である。更に、結晶中にテトラエチルアンモニウムイオンが取り込まれるため、吸着剤や触媒として使用する際には焼成により除去する必要がある。その際の排ガスは環境汚染の原因となり、また、合成母液の無害化処理のためにも多くの薬剤を必要とする。このように、テトラエチルアンモニウムイオンを用いるベータ型ゼオライトの合成方法は高価であるばかりでなく、環境負荷の大きい製造方法であることから、有機SDAを用いない製造方法の実現が望まれていた。
 このような状況の中で、最近、有機SDAを使用しないベータ型ゼオライトの合成方法が特許文献2において提案された。同文献においては、特定の組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し;SiO2/Al23比が8~30であり、かつ平均粒子径が150nm以上である有機化合物を含まないベータ型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して0.1~20質量%の割合で該反応混合物に添加し;前記種結晶が添加された前記反応混合物を100~200℃で密閉加熱することで、有機SDAを使用せずにベータ型ゼオライトを合成している。
 ところで、ベータ型ゼオライトを、石油化学工業における触媒として用いる場合や、内燃機関の排気ガス浄化用ハイドロカーボントラップとして用いる場合には、そのSi/Al比を高めることが、性能向上の観点から有利である。ベータ型ゼオライトにおけるSi/Al比を高めるための手法としては、例えば特許文献3に記載されているとおり、水蒸気処理及び酸処理をこの順で行う方法が知られている。
米国特許第3,308,069号明細書 国際公開2011/013560号パンフレット 特開2010-215434号公報
 しかし、ベータ型ゼオライトのSi/Al比を高めただけでは、高温での使用時にベータ型ゼオライトの触媒活性が低下してしまうことがある。また、ベータ型セオライトと骨格と触媒特性等の諸物性が類似するMSE型ゼオライトについても同様の課題がある。
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得るゼオライト及びその製造方法を提供することにある。
 本発明は、略八面体の形状を有し、Si/Al比が5以上であり、プロトン型であることを特徴とするベータ型ゼオライトを提供することによって、前記の課題を解決したものである。
 また本発明は、Si/Al比が5以上であり、プロトン型であり、
 構造規定剤を用いずに合成された原料MSE型ゼオライトをイオン交換によってアンモニウム型となし、次いで該MSE型ゼオライトを水蒸気に曝露し、曝露後の該MSE型ゼオライトを酸処理に付すことで得られたものであることを特徴とするMSE型ゼオライトを提供するものである。
 また本発明は、前記のベータ型ゼオライト又はMSE型ゼオライトを含むパラフィンの接触分解触媒を提供するものである。
 また本発明は、原料ベータ型ゼオライトをイオン交換によってアンモニウム型となし、次いで該ベータ型ゼオライトを水蒸気に曝露し、曝露後の該ベータ型ゼオライトを酸処理に付して、Si/Al比が高められたベータ型ゼオライトを得るベータ型ゼオライトの製造方法であって、イオン交換に付される原料ベータ型ゼオライトとして、構造規定剤を用いずに合成されたものを用いるベータ型ゼオライトの製造方法を提供するものである。
 更に本発明は、原料MSE型ゼオライトをイオン交換によってアンモニウム型となし、次いで該MSE型ゼオライトを水蒸気に曝露し、曝露後の該MSE型ゼオライトを酸処理に付して、Si/Al比が高められたMSE型ゼオライトを得るMSE型ゼオライトの製造方法であって、イオン交換に付される原料MSE型ゼオライトとして、構造規定剤を用いずに合成されたものを用いるMSE型ゼオライトの製造方法を提供するものである。
 本発明によれば、触媒活性が高く、かつ失活しにくいベータ型ゼオライト及びMSE型ゼオライトが提供される。また本発明によれば、ゼオライトの結晶構造を破壊することなく、Si/Al比の高いベータ型ゼオライト及びMSE型ゼオライトを容易に製造することができる。
図1は、ベータ型ゼオライトの水蒸気曝露に用いられる装置を示す模式図である。 図2(a)は、有機構造規定剤を用いずに合成されたベータ型ゼオライトの走査型電子顕微鏡像であり、図2(b)は、図2(a)に示すベータ型ゼオライトを脱アルミニウム化した後(実施例1)の走査型電子顕微鏡像である。 図3は、実施例1ないし5及び比較例1で得られたベータ型ゼオライトのX線回折図である。 図4(a)は、有機構造規定剤を用いて合成されたベータ型ゼオライトの走査型電子顕微鏡像であり、図4(b)は、図4(a)に示すベータ型ゼオライトを脱アルミニウム化した後(比較例3)の走査型電子顕微鏡像である。 図5は、比較例2及び3で得られたベータ型ゼオライトのX線回折図である。 図6は、ベータ型ゼオライトの触媒活性を評価するための装置の概略図である。 図7は、実施例及び比較例で得られたベータ型ゼオライトを触媒として、ヘキサンのクラッキングを行ったときの転化率の温度依存性を表すグラフである。 図8は、実施例及び比較例で得られたベータ型ゼオライトを触媒として、ヘキサンのクラッキングを行ったときの転化率の時間依存性を表すグラフである。 図9は、実施例6ないし8で得られたベータ型ゼオライトのX線回折図である。 図10は、実施例9ないし16で得られたベータ型ゼオライトのX線回折図である。 図11は、実施例17及び18で得られたベータ型ゼオライトのX線回折図である。 図12は、実施例19並びに比較例4及び5で得られたMSE型ゼオライトのX線回折図である。 図13は、実施例及び比較例で得られたMSE型ゼオライトを触媒として、ヘキサンのクラッキングを行ったときの転化率の時間依存性を表すグラフである。
 以下、本発明を詳細に説明する。以下の説明において単に「ゼオライト」というときは、文脈に応じ「ベータ型ゼオライト」若しくは「MSE型ゼオライト」のいずれか一方を指すか、又は両方を指す。本発明のベータ型ゼオライト及びMSE型ゼオライトのうち、ベータ型ゼオライトは、その外観形状が略八面体をしている。従来、Si/Al比の低いベータ型ゼオライトでは、その外観形状が略八面体であるものが知られているが、Si/Al比の高いベータ型ゼオライトでは、その外観形状が略八面体であるものは知られていなかった。この理由は、Si/Al比の高いベータ型ゼオライトは、有機SDAを用いて得る場合が多いところ、有機SDAに誘起された核生成に起因して、略八面体結晶の成長モードに入れないためであると考えられる。
 本発明のベータ型ゼオライト及びMSE型ゼオライトは、そのSi/Al比が5以上であるハイシリカゼオライトである。このようなSi/Al比を有することで、本発明のベータ型ゼオライト及びMSE型ゼオライトは、石油化学工業における長鎖炭化水素(例えばヘキサン)のクラッキング触媒や、内燃機関の排気ガス浄化用触媒など、高温で使用される触媒として有用なものとなる。Si/Al比が5以上であるベータ型ゼオライトやMSE型ゼオライトはこれまでにも知られていたが、そのようなゼオライトの外観形状は不規則なものであり、特に本発明のような略八面体の形状を有するベータ型ゼオライトは、これまで知られていなかった。本発明のベータ型ゼオライト及びMSE型ゼオライトは、触媒活性等の観点から、Si/Al比は高ければ高いほど好ましい。具体的には、Si/Al比は、14以上であることが好ましく、40以上であることが更に好ましく、55以上であることが特に好ましい。Si/Al比の上限値に特に制限はないが、200、更に190、特に150であれば、十分満足し得る触媒活性等が得られる。
 以上のとおり、本発明のベータ型ゼオライトは、(i)外観形状が略八面体であること、及び(ii)Si/Al比が5以上であることの双方によって特徴付けられる。これまで知られているベータ型ゼオライトは、上述のとおり、(i)及び(ii)のいずれか一方のみを具備するものであり、双方を具備するものはなかった。そして本発明者は、(i)及び(ii)の双方を具備するベータ型ゼオライトが、触媒活性が高く、かつその活性が高温でも失活しにくいことを知見し、本発明の完成に至った。一方、本発明のMSE型ゼオライトは、Si/Al比が5以上であることによって特徴付けられる。このようなSi/Al比を有するMSE型ゼオライトは、前記のベータ型ゼオライトと同様に触媒活性が高く、かつその活性が高温でも失活しにくいものである。
 本発明のベータ型ゼオライト及びMSE型ゼオライトを各種の触媒として用いるためには、該ゼオライトはブレンステッド酸点を有することが有利である。この観点から、本発明のゼオライトはプロトン型のものとする。尤も、本発明の効果を損なわない範囲で、微量のアンモニウムイオンやアルカリ金属イオンが含まれていても差し支えない。
 本発明のベータ型ゼオライト及びMSE型ゼオライトは、その平均粒子径が好ましくは0.2~2.0μm、更に好ましくは0.5~1.0μmである。また、BET比表面積は、400~650m2/g、好ましくは500~650m2/g、550~650m2/gであることが更に好ましい。更に、ミクロ孔容積は、0.10~0.28cm3/gであることが好ましく、0.15~0.25cm3/gであることが更に好ましい。これらの比表面積や容積は、BET表面積測定装置を用いて測定される。
 本発明のベータ型ゼオライトは、CuKα1線を用いたX線回折によって得られる回折パターンが、好ましくは、少なくとも以下の表1及び表2に記載の位置に回折ピークを有するものである。なお表1は、回析パターンを示し、表2は好ましいピーク強度比を示す。表1中の「vs」は相対強度が非常に強い(80~100%)、「s」は相対強度が強い(60~80%)、「m」は相対強度が中程度に強い(40~60%)、「w」は相対強度が弱い(0~40%)ことを示し、表2中のピーク強度(%)は、回折パターン中の最大ピークのピーク強度を100としたときの相対強度である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のMSE型ゼオライトは、CuKα1線を用いたX線回折によって得られる回折パターンが、好ましくは、少なくとも以下の表3及び表4に記載の位置に回折ピークを有するものである。なお表3は、回析パターンを示し、表4は好ましいピーク強度比を示す。表3中の「vs」は相対強度が非常に強い(80~100%)、「s」は相対強度が強い(60~80%)、「m」は相対強度が中程度に強い(40~60%)、「w」は相対強度が弱い(0~40%)ことを示し、表4中のピーク強度(%)は、回折パターン中の最大ピークのピーク強度を100としたときの相対強度である。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明のベータ型ゼオライトは、略八面体の形状を有し、かつSi/Al比が低いベータ型ゼオライトを脱アルミニウム化することで好適に製造される。一方、本発明のMSE型ゼオライトは、Si/Al比が低いMSE型ゼオライトを脱アルミニウム化することで好適に製造される。具体的には、本発明のベータ型ゼオライトの好ましい製造方法は、(1)原料ベータ型ゼオライトのイオン交換処理工程、(2)イオン交換された原料ベータ型ゼオライトを水蒸気に曝露する工程及び(3)水蒸気に曝露された原料ベータ型ゼオライトの酸処理工程の3つの工程を含んでいる。本発明のMSE型ゼオライトの好ましい製造方法も、これと同様である。そこで、以下には、ベータ型ゼオライトの好ましい製造方法を例に挙げて、本発明のゼオライトの製造方法を説明する。
(1)原料ベータ型ゼオライトのイオン交換処理工程
 原料ベータ型ゼオライトは、一般にナトリウム等のアルカリ金属を含んでいる。アルカリ金属を含むベータ型ゼオライトは、これを石油化学工業における触媒として用いる場合や、内燃機関の排気ガス浄化用ハイドロカーボントラップとして用いる場合に、所期の特性を発揮しにくいので、イオン交換によって除去し、アンモニウム型のベータ型ゼオライトとなす。
 イオン交換処理に付す原料ベータ型ゼオライトとしては、例えばSi/Al比が4~100、好ましくは4~8、更に好ましくは5~7である低Si/Al比のものを用いる。このような低Si/Al比のベータ型ゼオライトは、略八面体の形状のものとして合成しやすいからである。
 原料ベータ型ゼオライトとしては、有機SDAを用いずに合成されたもの(以下「OSDAフリーベータ型ゼオライト」とも言う。)を用いることが有利であることが、本発明者の検討の結果判明した。原料ベータ型ゼオライトとして、OSDAフリーベータ型ゼオライトを用いると、略八面体の形状のベータ型ゼオライトを合成しやすい。また、低Si/Al比のOSDAフリーベータ型ゼオライトは、これを脱アルミニウム化しても、略八面体の形状が維持されるともに、得られる高Si/Al比のベータ型ゼオライトの触媒活性が失活しづらい。更に、OSDAフリーベータ型ゼオライトを用いることは、有機SDAを用いないという点で、経済性の観点及び環境負荷の観点からも有利である。
 なお、OSDAフリーベータ型ゼオライトは、従来の手法、例えば先に述べた特許文献3に記載の方法によってSi/Alを高めると、ゼオライトの結晶構造が破壊されやすいことが本発明者らの検討の結果判明している。しかし、本製造方法によってOSDAフリーベータ型ゼオライトを処理すると、結晶構造の破壊を極力抑えた上で、Si/Alを高めることが可能である。
 OSDAフリーベータ型ゼオライトの合成方法としては、例えば国際公開2011/013560号パンフレットに記載の方法を採用することができる。また、中国特許出願公開第101249968A号明細書に記載の方法も採用することができる。更に、Chemistry of Materials, Vol.20, No.14, p.4533-4535 (2008)に記載の方法を採用することもできる。
 OSDAフリーベータ型ゼオライトの合成方法の一例を挙げるならば、以下のとおりである。
(i)以下に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し、
   SiO2/Al23=40~200、特に44~200
   Na2O/SiO2=0.22~0.4、特に0.24~0.35
   H2O/SiO2=10~50、特に15~25
(ii)SiO2/Al23比が8~30であり、かつ平均粒子径が150nm以上、特に
150~1000nm、とりわけ200~600nmである、有機化合物を含まないベータ型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して0.1~20質量%の割合で該反応混合物に添加し、
(iii)前記種結晶が添加された前記反応混合物を100~200℃、特に120~180℃で密閉加熱する。
 原料ベータ型ゼオライトのイオン交換には、アンモニウム化合物が用いられ、特に硝酸アンモニウム、塩化アンモニウム、酢酸アンモニウム、硫酸アンモニウムを用いることが好ましい。硝酸アンモニウム、塩化アンモニウム等のアンモニウム化合物によってイオン交換を行う場合、原料ベータ型ゼオライト10gに対して、アンモニウムイオンの濃度が0.1~10mol/Lである水溶液を、25~1000mL、好ましくは100~1000mL、特に400~600mL添加することが好ましい。イオン交換は、アンモニウムイオンを含む水溶液を加熱した状態下に、又は非加熱の状態下に行うことができる。アンモニウムイオンを含む水溶液を加熱する場合、加熱温度は40~100℃、特に70~90℃とすることが好ましい。原料ベータ型ゼオライトを、アンモニウムイオンを含む水溶液に分散させて分散液となし、この状態を所定時間保持してイオン交換を行う。保持時間は1~48時間、特に12~24時間とすることが好ましい。分散液は静置状態としてもよく、あるいは撹拌状態としてもよい。
 前記分散液を所定時間保持したら、該分散液を濾過し、原料ベータ型ゼオライトを分離し、水洗を行う。必要に応じ、前記のイオン交換処理と水洗との組み合わせを複数回行ってもよい。このようにしてイオン交換処理を行った後、原料ベータ型ゼオライトを乾燥させて、アンモニウム型のベータ型ゼオライトを得る。このアンモニウム型のベータ型ゼオライトは、それよってアルカリ金属イオンの含有量が極めて低減したものとなる。
(2)イオン交換された原料ベータ型ゼオライトを水蒸気に曝露する工程
 アンモニウム型の原料ベータ型ゼオライトを水蒸気に曝露するには、例えば、水蒸気雰囲気下に原料ベータ型ゼオライトを静置したり、水蒸気流中に原料ベータ型ゼオライトを配置したりすればよい。具体的には、図1に示す装置を用いて、原料ベータ型ゼオライトを水蒸気に曝露することができる。同図に示す装置10は、原料ベータ型ゼオライトが保持された保持管11を有している。保持管11の両端は開口している。下方の端部11aは大気に開放されている。保持管11の上方の端部11bは、水蒸気の流入口となっており、水蒸気の供給源12及び不活性ガスの供給源13と接続している。水蒸気の供給源12は、上方の端部が開口した有底筒体12aからなる。この筒体12a内には不活性ガスのバブリング管12bの一方の端部が挿入されている。バブリング管12bの他方の端部は、不活性ガスの供給源(図示せず)に接続されている。更に、この筒体12a内には水14が入れられている。水面の高さは、有底筒体12a内に挿入されているバブリング管12bの端部の位置よりも高くなっている。保持管11の周囲には加熱手段15が設置されている。加熱手段15は、保持管11内に保持された原料ベータ型ゼオライト及び保持管11内を流通する水蒸気の加熱が可能になっている。不活性ガスの供給源13からアルゴン等の不活性ガスを供給しつつ、水蒸気の供給源12におけるバブリング管12bを通じて不活性ガスをバブリングすることで、所定量の水蒸気が保持管11内に供給される。水蒸気の供給量は、不活性ガスの供給源13及び水蒸気の供給源12における不活性ガスの供給量のバランスで決定される。保持管11内に供給された水蒸気は、原料ベータ型ゼオライトとともに加熱手段15によって加熱される。そして、原料ベータ型ゼオライトは、所定温度に加熱された水蒸気に曝露される。この曝露によって、原料ベータ型ゼオライトを構成するアルミニウム原子が結晶格子内の所定のサイトから脱離し、脱離したサイトにケイ素原子がマイグレーションしてくると考えられる。しかし、水蒸気に曝露した時点では、原料ベータ型ゼオライトにおけるSi/Al比には変化は生じていない。また、原料ベータ型ゼオライトが水蒸気に曝露されることによって、該ゼオライトは、アンモニウム型からプロトン型に変換される。
 原料ベータ型ゼオライトの曝露に用いられる水蒸気の温度は、150~1000℃、更に500~900℃、特に500~800℃とすることが、ゼオライトの結晶構造の破壊を抑制しつつ、アルミニウムの脱離を促進し得る点から好ましい。同様の理由によって、水蒸気の曝露時間は、水蒸気の温度は上述の範囲内である場合には、1~48時間、更に1~24時間、特に12~24時間であることが好ましい。原料ベータ型ゼオライトと水蒸気とが接触する時点における水蒸気の圧力(分圧)は、保持管11内の下方の端部が開放になっていることから大気圧又はそれ以下になっている。好ましい水蒸気の分圧は1~101.3kPaである。
(3)水蒸気に曝露された原料ベータ型ゼオライトの酸処理工程
 水蒸気に曝露された原料ベータ型ゼオライトは、酸処理に付され、それによってベータ型ゼオライトからの脱アルミニウムが生じる。酸処理に用いられる酸としては、各種の鉱酸を用いることが好ましい。例えば硝酸、硫酸及び塩酸などを用いることができる。酸処理を行うときの酸の濃度が高いほど、脱アルミニウム化が進行してベータ型ゼオライトのSi/Al比が高くなる。したがって、所望のSi/Al比を有するベータ型ゼオライトを得るためには、酸の濃度を調整することが簡便である。この観点から、酸の濃度は、使用する酸の種類により異なるが、多くの場合、0.1~100質量%、特に0.1~60質量%であることが好ましい。例えば、鉱酸として硝酸を用いる場合、硝酸濃度は、0.1~70質量%、特に0.5~5質量%であることが好ましい。鉱酸として硝酸を用いる場合には、硝酸濃度が、モル濃度として、0.01~21mol/L、特に、0.05~14mol/Lであることも好ましい。なお、酸の濃度が高ければ脱アルミニウム化が進行することは、上述のとおりであるところ、それに伴いゼオライトの結晶構造の破壊が起こりやすい。特に原料としてOSDAフリーベータ型ゼオライトを用いた場合には、結晶構造の破壊が起こりやすい。しかし本発明においては、酸処理に先立ち、上述の水蒸気曝露処理を行っていることに起因して、OSDAフリーベータ型ゼオライトを原料として用い、高濃度の酸で処理を行った場合であっても、ゼオライトの結晶構造の破壊が起こりにくくなっている。
 酸処理における酸の量は、原料ベータ型ゼオライト1g当たり、上述の濃度の酸を5~500mL、好ましくは10~500mL、特に100~200mL用いることが、効率的な脱アルミニウム化が生じる点から好ましい。酸処理は、加熱下に行ってもよく、あるいは非加熱下に行ってもよい。加熱下に酸処理を行う場合、酸の温度は40~100℃、特に70~90℃に設定することが、効率的な脱アルミニウム化の点から好ましい。鉱酸として硝酸を用いる場合には、その濃度にもよるが、硝酸の温度は40~130℃、特に70~130℃、とりわけ70~90℃に設定することが好ましい。また、酸処理を加熱下に行う場合には、酸を環流させた状態にしてもよい。酸処理の時間は、酸の濃度及び温度が上述した範囲である場合、1~24時間、特に2~24時間とすることが、ゼオライトの結晶構造の破壊を抑制しつつ、効率的な脱アルミニウム化を行う点から好ましい。
 酸処理が完了したら固液分離を行い、濾別されたベータ型ゼオライトを1回又は複数回水洗し、その後乾燥させる。このようにして、目的とするベータ型ゼオライトが得られる。このベータ型ゼオライトは、原料として用いたOSDAフリーベータ型ゼオライトに比べてSi/Al比が高められたものになっている。このようなSi/Al比が高められたものでありながらも、このベータ型ゼオライトは、該ゼオライトの結晶構造が維持されたものになっている。しかも、OSDAフリーベータ型ゼオライトが有していた略八面体の形状を維持したものになっている。このベータ型ゼオライトは、先に述べたとおりプロトン型のものに変換されている。
 本発明のMSE型ゼオライトの好ましい製造方法は、上述したベータ型ゼオライトの好ましい製造方法において、原料ベータ型ゼオライトに代えて原料MSE型ゼオライトを用い、該原料MSE型ゼオライトとして、有機SDAを用いずに合成されたもの(以下「OSDAフリーMSE型ゼオライト」とも言う。)を用いる点以外は、上述したベータ型ゼオライトの好ましい製造方法と同様である。
 OSDAフリーMSE型ゼオライトの合成方法としては、例えば国際公開2012/002367号パンフレットに記載の方法を採用することができる。OSDAフリーベータ型ゼオライトの合成方法の一例を挙げるならば、以下のとおりである。
(i)以下の(a)又は(b)に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し、
 (a)
   SiO2/Al23=40~200、特に44~200
   (Na2O+K2O)/SiO2=0.24~0.4、特に0.25~0.35
   K2O/(Na2O+K2O)=0~0.7、特に0.01~0.65
   H2O/SiO2=10~50、特に15~25、
 (b)
   SiO2/Al23=10~40、特に12~40
   (Na2O+K2O)/SiO2=0.05~0.25、特に0.1~0.25
   K2O/(Na2O+K2O)=0~0.7、特に0.01~0.65
   H2O/SiO2=5~50、特に10~25
(ii)SiO2/Al23比が好ましくは10~50、特に15~40であり、かつ平均粒子径が好ましくは100~2000nm、更に好ましくは200~1000nmである、有機化合物を含まないMSE型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して好ましくは0.1~30質量%、更に好ましくは1~20質量%、一層好ましくは1~10質量%の割合で該反応混合物に添加し、
(iii)前記種結晶が添加された前記反応混合物を100~200℃、特に120~180℃で密閉加熱する。
 前記の(a)及び(b)の組成から明らかなとおり、MSE型ゼオライトを製造するために用いるゲルは、アルカリ金属として、ナトリウムイオンのみを含んでいてもよいし、ナトリウムイオン及びカリウムイオンの双方を含んでいてもよい。ナトリウムイオン及びカリウムイオンを含むゲルを用いてゼオライトを合成すると、ナトリウムイオンのみを含むゲルを用いて合成する場合に比べて、不純物の副生、特に副生微量ゼオライトの発生を一層防止ができるので有利である。カリウムイオンのみを含むゲルからでもMSE型ゼオライトの合成は可能であるが、カリウムイオンの比率が高くなると、結晶化速度が遅くなり、得られるMSE型ゼオライトの結晶度が低くなる傾向にある。カリウムイオン源としては例えば水酸化カリウムを用いることが好ましい。また、K2O/(Na2O+K2O)比を調整するために、それ以外のカリウムイオン源として、塩化カリウム、硫酸カリウム、硝酸カリウムなどのカリウム塩を用いてもよい。
 このようにして得られた本発明のベータ型ゼオライト及びMSE型ゼオライトは、固体酸触媒や吸着剤として有望なものであり、更に詳細にはパラフィンを接触分解する触媒、例えば石油化学工業における長鎖炭化水素(例えばヘキサン)のクラッキング触媒として特に有望であり、また、ガソリンエンジン及びディーゼルエンジン等の各種内燃機関の排気ガス浄化用ハイドロカーボントラップとしても有望なものである。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば、上述した製造方法によれば、本発明のベータ型ゼオライト及びMSE型ゼオライトを好適に製造することができるが、該製造方法によって、本発明のベータ型ゼオライト及びMSE型ゼオライト以外のベータ型ゼオライト及びMSE型ゼオライトを製造することも可能である。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
(1)種結晶の合成
 水酸化テトラエチルアンモニウムを有機SDAとして用い、アルミン酸ナトリウムをアルミナ源、微粉状シリカ(Mizukasil P707)をシリカ源とする従来公知の方法により、165℃、96時間、攪拌加熱を行って、SiO2/Al23比が24.0のベータ型ゼオライトを合成した。これを電気炉中で空気を流通しながら550℃で10時間焼成して、有機物を含まない結晶を製造した。この結晶を走査型電子顕微鏡により観察した結果、平均粒子径は280nmであった。この有機物を含まないベータ型ゼオライトの結晶を、種結晶として使用した。
(2)OSDAフリーベータ型ゼオライトの合成
 純水13.9gに、アルミン酸ナトリウム0.235gと、36%水酸化ナトリウム1.828gを溶解した。微粉状シリカ(Cab-O-sil、M-5)2.024gと、前記の種結晶0.202gを混合したものを、少しずつ前記の水溶液に添加して攪拌混合し、反応混合物を得た。この反応混合物におけるSiO2/Al23比は70、Na2O/SiO2比は0.3、H2O/SiO2比は20であった。この反応混合物を60mLのステンレス製密閉容器に入れて、熟成及び攪拌することなしに140℃で34時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。この生成物についてX線回折測定を行ったところ、不純物を含まないベータ型ゼオライトであることが確認された。組成分析の結果、そのSi/Alは6.4であった。このベータ型ゼオライトの走査型電子顕微鏡像を図2(a)に示す。同図に示すとおり、このベータ型ゼオライトは略八面体の形状を有するものであることが判る。
(3)イオン交換処理
 得られたOSDAフリーベータ型ゼオライトを原料として用い、これを硝酸アンモニウム水溶液中に分散させた。OSDAフリーベータ型ゼオライトと硝酸アンモニウムと水との質量比は1:2:50とした。この分散液を80℃に加熱した状態下に24時間にわたって静置してイオン交換を行った。その後、濾過を行い、ベータ型ゼオライトを濾別した。イオン交換及び濾過の操作をもう一度繰り返した後、水洗して80℃で乾燥して、アンモニウム型のベータ型ゼオライトを得た。
(4)水蒸気による曝露
 アンモニウム型のベータ型ゼオライトを図1に示す装置に充填した。充填量は1gとした。同図に示す加熱手段15によって700℃に加熱した状態下に、アルゴン-水蒸気の混合ガスを24時間にわたって連続して流通させた。水蒸気の分圧は12.2kPaとした。水蒸気による曝露で、ベータ型ゼオライトはアンモニウム型からプロトン型に変換された。
(5)酸処理
 水蒸気曝露後のベータ型ゼオライトを、0.1mol/Lの硝酸水溶液で酸処理した。硝酸水溶液の温度は80℃とした。硝酸水溶液は、ベータ型ゼオライト0.1gに対して10mL添加した。マグネチックスターラーで液を撹拌しながら2時間にわたって処理を行った。このようにして、目的とするベータ型ゼオライトを得た。得られたベータ型ゼオライトの走査型電子顕微鏡像を図2(b)に示す。また、X線回折図を図3に示す。更に、元素分析から求めたSi/Al比を図3中に記載した。図2(b)に示すとおり、このベータ型ゼオライトは略八面体の形状を有するものであることが判る。
  〔実施例2ないし5〕
 実施例1において、酸処理に用いた硝酸水溶液の濃度を0.5mol/L(実施例2)、1.0mol/L(実施例3)、2.0mol/L(実施例4)及び8.0mol/L(実施例5)とした。これ以外は実施例1と同様にして、Si/Al比が高められたベータ型ゼオライトを得た。得られたベータ型ゼオライトのX線回折図を図3に示す。また、元素分析から求めたSi/Al比を同図中に記載した。なお、図示していないが、これらの実施例で得られたベータ型ゼオライトは略八面体の形状を有するものであった。また、実施例3で得られたベータ型ゼオライトに関しては、BET比表面積及びミクロ孔容積を以下の条件で測定した。測定によって得られたBET比表面積は617m2/gであり、ミクロ孔容積は0.17cm3/gであった。
 〔BET比表面積及びミクロ孔容積の測定条件〕
使用装置:日本ベル社製全自動吸着測定装置 Belsorp-max-1-N
測定温度:-196℃(窒素),空気恒温槽温度:40℃
平衡吸着時間:300s
サンプル前処理条件:真空下(1.33×10-4Pa)の加熱処理(400℃,2h)
  〔比較例1〕
 実施例1において、OSDAフリーベータ型ゼオライトをイオン交換した後、水蒸気による曝露及び酸処理を行わず、直接熱処理してプロトン型のベータ型ゼオライトを得た。熱処理の条件は、温度650℃、時間60分、空気の流通量40cm3/minとした。得られたベータ型ゼオライトのX線回折図を図3に示す。また、元素分析から求めたSi/Al比を同図中に記載した。ベータ型ゼオライトは、熱処理によって八面体の形状を失っていた。
  〔比較例2〕
(1)有機SDA(OSDA)を用いたベータ型ゼオライトの合成
 有機構造規定剤(OSDA)としての水酸化テトラエチルアンモニウム及び水酸化ナトリウムを含む水溶液を室温下に撹拌し、そこにコロイダルシリカを添加した。コロイダルシリカとしては、Ludox HS-40(シリカ分40%)を用いた。コロイダルシリカを添加してから30分間にわたり撹拌を行った後、硫酸アルミニウム水溶液を添加し、更に30分間にわたり撹拌を行い、ゲルを得た。このゲルの組成は、SiO21モルに対して、Al23が0.033モル、水酸化ナトリウムが0.24モル、水酸化テトラエチルアンモニウムが0.50モル、水が20モルであった。このゲルをオートクレーブ中に入れて、150℃に加熱した状態下に7日間にわたり反応を行った。このようにしてベータ型ゼオライトを得た。このゼオライトを、大気雰囲気下に550℃で6時間にわたり加熱して、OSDAである水酸化テトラエチルアンモニウムを分解除去した。この生成物についてX線回折測定を行ったところ、不純物を含まないベータ型ゼオライトであることが確認された。組成分析の結果、そのSi/Alは13.1であった。このベータ型ゼオライトの走査型電子顕微鏡像を図4(a)に示す。同図に示すとおり、このベータ型ゼオライトは不規則な形状を有するものであることが判る。
(2)イオン交換
 実施例1と同様の条件で、イオン交換を行った。水蒸気による曝露及び酸処理は行わなかった。イオン交換の後、温度650℃、時間60分、空気の流通量40cm3/minで熱処理を行い、ベータ型ゼオライトをプロトン型に変換した。このようにして、ベータ型ゼオライトを得た。得られたベータ型ゼオライトのX線回折図を図5に示す。また、元素分析から求めたSi/Al比を同図中に記載した。
  〔比較例3〕
 比較例2において、イオン交換の後に、実施例3と同様の条件で、水蒸気による曝露及び酸処理を行った。このようにして、ベータ型ゼオライトを得た。得られたベータ型ゼオライトの走査型電子顕微鏡像を図4(b)に示す。また、X線回折図を図5に示す。また、元素分析から求めたSi/Al比を図5中に記載した。図4(b)に示すとおり、このベータ型ゼオライトは不規則な形状を有するものであることが判る。
  〔評価〕
 実施例3及び比較例1ないし3で得られたベータ型ゼオライトについて、ヘキサンのクラッキング反応における触媒活性の評価1及び評価2を以下の手順で行った。評価1及び評価2を行うのに先立ち、粉末状のベータ型ゼオライトを成型・整粒した。具体的には、ベータ型ゼオライト粉末1~2gを、内径20mmの錠剤成型器に詰めたのち、油圧プレスにて0.4MPaで加圧成型し、径が20mmのペレットを得た。このペレットをふるいの上で適度に粉砕し、500~600μmに整粒してこれを触媒として用いた。
  〔評価1〕
 触媒反応は固定床常圧流通反応装置を用いて行った。装置の概略図を図6に示す。反応物であるヘキサンはシリンジポンプを用いてシリンジから供給し、キャリアガスである窒素(1%)-アルゴン混合ガスに導入した。シリンジポンプから供給されたヘキサンは、あらかじめ加熱した気化室に導入されるため蒸発して気体となり、この気体をキャリアガスに同伴した。反応装置のガスラインには内径2mmのステンレスパイプを用いて、ヒーターで外側から適温に加熱することで気化したヘキサンの凝縮を防いだ。反応管は内径8mmの石英管を用い、これに、先に整粒したベータ型ゼオライト触媒を100mg詰め、石英ウールで触媒層を反応管中央部に保持した。反応前処理として、空気流通下で約7℃/minの昇温速度で650℃まで昇温し、この雰囲気で1時間保持した。その後、ヘリウム流通に切り替えてから5℃/minで450℃まで反応管温度を下げた。450℃で安定したのを確認してから、ヘキサンを同伴したメタン-ヘリウム混合ガスを触媒層に供給し、触媒反応を開始した。ヘキサンの分圧は5.0kPaであった。反応開始から5分経過後に六方バルブを切り替えて、サンプリングループに溜めた反応後の生成物をガスクロマトグラフへ導入し、キャピラリーカラムで分離後、水素炎検出器(FID)にて各生成物・未反応物の定性・定量を行った。所定時間(70分)経過後、触媒層へのヘキサンの供給をやめ、ヘリウム流通に切り替えた。その後で、1~2℃/minで500℃まで昇温して温度が安定したところで、再びヘキサンを供給し、触媒反応を行った。同様の操作を550及び600℃でも続けて行った。触媒反応時のW/Fはいずれの反応温度でも、19.8g-catalyst h(mol-hexane)-1とした。600℃での触媒反応を停止した後には、ヘリウム流通下で自然放冷した。結果を、以下の表5及び図7に示す。各生成物への選択率はカーボンベース(炭素原子換算)で求めた。プロピレン(C3=)収率は、「転化率×プロピレン(C3=)への選択率」から求めた。なお、反応温度は、固定床常圧流通反応装置の石英製反応管を外側から加熱するように設置したヒーターと、反応管との間で測定したものである。
Figure JPOXMLDOC01-appb-T000005
 
  〔評価2〕
 評価1において、反応温度を600℃に固定し、反応開始から5分経過後、55分経過後、105分経過後及び155分経過後に、反応後の生成物をガスクロマトグラフへ導入し、キャピラリーカラムで分離後、水素炎検出器(FID)にて各生成物・未反応物の定性・定量を行った。これ以外は評価1と同様とした。そして、転化率の時間依存性を求めた。結果を図8に示す。
 表5並びに図7及び図8に示す結果から明らかなように、実施例3で得られたベータ型ゼオライトを触媒として用い、ヘキサンのクラッキングを行うと、化学原料として有用な物質であるC3=(プロピレン)が、高収率で生成することが判る。また、ベータ型ゼオライトの失活が観察されないことも判る。これに対して、略八面体の形状を有するものの、低Si/Al比である比較例1のベータ型ゼオライトや、高Si/Al比であるものの、不規則な形状を有する比較例2のベータ型ゼオライトは、C3=(プロピレン)の収率が、実施例3よりも低いものであった。しかも、失活が観察された。Si/Al比が非常に高いものの、不規則な形状を有する比較例3のベータ型ゼオライトは、C3=(プロピレン)の収率は良好であるが、600℃での反応において経時的な失活が観察された。
  〔実施例6ないし18〕
 以下の表6に記載の製造条件を採用した以外は実施例1と同様にして、ベータ型ゼオライトを得た。実施例6ないし8で得られたベータ型ゼオライトのX線回折図を図9に示す。実施例9ないし16で得られたベータ型ゼオライトのX線回折図を図10に示す。実施例17及び18で得られたベータ型ゼオライトのX線回折図を図11に示す。また、元素分析から求めたSi/Al比をこれらの図中に記載した。なお、図示していないが、実施例6ないし18で得られたベータ型ゼオライトは略八面体の形状を有するものであった。以下の表6には、前記の実施例1ないし5で採用した製造条件についても併せて記載されている。
Figure JPOXMLDOC01-appb-T000006
 
 図3及び図9に示す実施例1ないし8のX線回折図の結果から、酸処理工程において、酸濃度を高くしたり、酸処理の時間を長くしたりすると、ベータ型ゼオライトのSi/Al比が高まることが判る。一方で、酸濃度を13.4mol/Lまで高め、かつ酸処理の時間を24時間まで長くしても、ベータ型ゼオライトの結晶構造の破壊が起こっていないことが判る。また、図10における実施例9ないし16のX線回折図の結果から、特に、水蒸気曝露工程における水蒸気温度が550~750℃の場合(実施例13ないし15)は、それよりも低温である150~450℃の場合(実施例9ないし12)に比べて、ベータ型ゼオライトの結晶構造がより維持されていることが判る。また、図3及び図11に示す実施例3、17及び18のX線回折図の結果から、水蒸気曝露時間を、24時間(実施例3)から、2時間(実施例17)又は6時間(実施例18)と短くした場合は、ベータ型ゼオライトのSi/Al比は低下するものの、結晶性に変化がないことが判る。
  〔実施例19〕
(1)種結晶の合成
 有機SDAとしてN,N,N’,N’-テトラエチルビシクロ[2.2.2]-オクト-7-エン-2,3:5,6-ジピロリジニウムジアイオダイドを用いた。米国特許第6049018号明細書の記載にしたがって、水酸化アルミニウムをアルミナ源、コロイダルシリカをシリカ源、水酸化カリウムをアルカリ源として反応混合物を調製し、160℃で16日間静置法で加熱した。生成物を空気中で540℃で8時間加熱して焼成して得られたMSE型ゼオライトを種結晶とした。そのSi/Al比は12.0であった。この有機物を含まないMSE型ゼオライトの結晶を、種結晶として使用した。
(2)OSDAフリーMSE型ゼオライトの合成
 純水10.74gに、アルミン酸ナトリウム0.096gと、36%水酸化ナトリウム2.147gを溶解して水溶液を得た。微粉状シリカ(Cab-O-Sil、M-5)2.022gと、0.202gの種結晶とを混合したものを、前記の水溶液に少しずつ添加して攪拌混合して反応混合物を得た。この反応混合物におけるSiO2/Al23比は100、(Na2O+K2O)/SiO2比は0.3、K2O/(Na2O+K2O)比は0、H2O/SiO2比は20であった。この反応混合物と種結晶の混合物を60ccのステンレス製密閉容器に入れて、熟成及び攪拌することなしに140℃で60時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。この生成物についてX線回折測定を行ったところ、MSE型ゼオライトであることが確認された。組成分析の結果、そのSi/Alは6.8であった。
(3)イオン交換処理
 得られたOSDAフリーMSE型ゼオライトを原料として用い、これを硝酸アンモニウム水溶液中に分散させた。OSDAフリーベータ型ゼオライトと硝酸アンモニウムと水との質量比は1:2:50とした。この分散液を80℃に加熱した状態下に24時間にわたって静置してイオン交換を行った。その後、濾過を行い、ベータ型ゼオライトを濾別した。イオン交換及び濾過の操作をもう一度繰り返した後、水洗して80℃で乾燥して、アンモニウム型のMSE型ゼオライトを得た。
(4)水蒸気による曝露
 アンモニウム型のMSE型ゼオライトを図1に示す装置に充填した。充填量は1gとした。同図に示す加熱手段15によって700℃に加熱した状態下に、アルゴン-水蒸気の混合ガスを24時間にわたって連続して流通させた。水蒸気の分圧は12.2kPaとした。水蒸気による曝露で、MSE型ゼオライトはアンモニウム型からプロトン型に変換された。
(5)酸処理
 水蒸気曝露後のベータ型ゼオライトを、6.0mol/Lの硝酸水溶液で酸処理した。硝酸水溶液の温度は80℃とした。硝酸水溶液は、MSE型ゼオライト0.1gに対して10mL添加した。マグネチックスターラーで液を撹拌しながら2時間にわたって処理を行った。このようにして、目的とするMSE型ゼオライトを得た。得られたベータ型ゼオライトのX線回折図を図12に示す。元素分析から求めたSi/Al比は62.9であった。
  〔比較例4〕
 実施例19において、OSDAフリーMSE型ゼオライトをイオン交換した後、水蒸気による曝露及び酸処理を行わず、直接熱処理してプロトン型のMSE型ゼオライトを得た。熱処理の条件は、温度650℃、時間60分、空気の流通量40cm3/minとした。得られたMSE型ゼオライトのX線回折図を図12に示す。また、元素分析から求めたSi/Al比は6.5であった。
  〔比較例5〕
 実施例19において、OSDAフリーMSE型ゼオライトをイオン交換し、次いで水蒸気で曝露した後、酸処理を行わず、直接熱処理してプロトン型のMSE型ゼオライトを得た。熱処理の条件は、温度650℃、時間60分、空気の流通量40cm3/minとした。得られたMSE型ゼオライトのX線回折図を図12に示す。また、元素分析から求めたSi/Al比は6.8であった。
  〔評価〕
 実施例19並びに比較例4及び5で得られたMSE型ゼオライトについて、ヘキサンのクラッキング反応における触媒活性の評価を、上述した評価2に従い行った。転化率の時間依存性を図13に示す。また、各生成物への選択率及びプロピレンの収率を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 図13及び表7に示す結果から明らかなように、実施例19で得られたMSE型ゼオライトを触媒として用い、ヘキサンのクラッキングを行うと、化学原料として有用な物質であるC3=(プロピレン)が、高収率で生成することが判る。また、MSE型ゼオライトの失活が観察されないことも判る。これに対して、イオン交換処理のみを行った比較例4のMSE型ゼオライトや、イオン交換処理及び水蒸気暴露処理のみを行い酸処理を行わなかった比較例5のMSE型ゼオライトでは、プロピレンの収率が低く、しかも失活が観察された。
 10 水蒸気曝露装置
 11 保持管
 12 水蒸気の供給源
 13 不活性ガスの供給源
 14 水
 15 加熱手段

Claims (15)

  1.  略八面体の形状を有し、Si/Al比が5以上であり、プロトン型であることを特徴とするベータ型ゼオライト。
  2.  Si/Al比が40以上である請求項1に記載のベータ型ゼオライト。
  3.  構造規定剤を用いずに合成された原料ベータ型ゼオライトをイオン交換によってアンモニウム型となし、次いで該ベータ型ゼオライトを水蒸気に曝露し、曝露後の該ベータ型ゼオライトを酸処理に付すことで得られたものである請求項1又は2に記載のベータ型ゼオライト。
  4.  請求項1ないし3のいずれか一項に記載のベータ型ゼオライトを含むパラフィンの接触分解触媒。
  5.  Si/Al比が5以上であり、プロトン型であり、
     構造規定剤を用いずに合成された原料MSE型ゼオライトをイオン交換によってアンモニウム型となし、次いで該MSE型ゼオライトを水蒸気に曝露し、曝露後の該MSE型ゼオライトを酸処理に付すことで得られたものであることを特徴とするMSE型ゼオライト。
  6.  Si/Al比が40以上である請求項5に記載のMSE型ゼオライト。
  7.  請求項5又は6に記載のMSE型ゼオライトを含むパラフィンの接触分解触媒。
  8.  原料ベータ型ゼオライトをイオン交換によってアンモニウム型となし、次いで該ベータ型ゼオライトを水蒸気に曝露し、曝露後の該ベータ型ゼオライトを酸処理に付して、Si/Al比が高められたベータ型ゼオライトを得るベータ型ゼオライトの製造方法であって、イオン交換に付される原料ベータ型ゼオライトとして、構造規定剤を用いずに合成されたものを用いるベータ型ゼオライトの製造方法。
  9.  イオン交換後の原料ベータ型ゼオライトを、150~1000℃の水蒸気に、1~48時間曝露する請求項8に記載の製造方法。
  10.  水蒸気に曝露した後の原料ベータ型ゼオライトを、鉱酸を用い、40~100℃下に1~24時間にわたり酸処理に付す請求項8又は9に記載の製造方法。
  11.  Si/Al比が5以上のベータ型ゼオライトを得る請求項8ないし10のいずれか一項に記載の製造方法。
  12.  原料MSE型ゼオライトをイオン交換によってアンモニウム型となし、次いで該MSE型ゼオライトを水蒸気に曝露し、曝露後の該MSE型ゼオライトを酸処理に付して、Si/Al比が高められたMSE型ゼオライトを得るMSE型ゼオライトの製造方法であって、イオン交換に付される原料MSE型ゼオライトとして、構造規定剤を用いずに合成されたものを用いるMSE型ゼオライトの製造方法。
  13.  イオン交換後の原料MSE型ゼオライトを、150~1000℃の水蒸気に、1~48時間曝露する請求項12に記載の製造方法。
  14.  水蒸気に曝露した後の原料MSE型ゼオライトを、鉱酸を用い、40~100℃下に1~24時間にわたり酸処理に付す請求項12又は13に記載の製造方法。
  15.  Si/Al比が5以上のMSE型ゼオライトを得る請求項12ないし14のいずれか一項に記載の製造方法。
PCT/JP2012/080308 2011-11-25 2012-11-22 ゼオライト及びその製造方法並びにパラフィンの接触分解触媒 WO2013077404A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/813,104 US9238219B2 (en) 2011-11-25 2012-11-22 Zeolite, manufacturing method of the same, and catalytic cracking batalyst of paraffin
KR1020197007690A KR102048913B1 (ko) 2011-11-25 2012-11-22 제올라이트 및 그의 제조 방법, 및 파라핀의 접촉 분해 촉매
BR122020025528-5A BR122020025528B1 (pt) 2011-11-25 2012-11-22 Zeólita tipo mse, catalisador de craqueamento catalítico para parafina e método de produção de uma zeólita tipo mse
EP16158202.8A EP3050847B1 (en) 2011-11-25 2012-11-22 Mse-type zeolite, manufacturing method of the same, and catalytic cracking catalyst of paraffin
EP12851632.5A EP2784025B1 (en) 2011-11-25 2012-11-22 Zeolite and method for producing same, and cracking catalyst for paraffin
KR1020147017275A KR102026498B1 (ko) 2011-11-25 2012-11-22 제올라이트 및 그의 제조 방법, 및 파라핀의 접촉 분해 촉매
BR112014012670-4A BR112014012670B1 (pt) 2011-11-25 2012-11-22 Zeólita tipo b, catalisador de craqueamento catalítico para a parafina e método de produção de uma zeólita tipo b
CN201280067677.6A CN104203824B (zh) 2011-11-25 2012-11-22 沸石及所述沸石的制造方法以及石蜡的接触分解催化剂
US14/793,428 US9895683B2 (en) 2011-11-25 2015-07-07 Zeolite, manufacturing method of the same, and catalytic cracking catalyst of paraffin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-258328 2011-11-25
JP2011-258329 2011-11-25
JP2011258328A JP2013112546A (ja) 2011-11-25 2011-11-25 ベータ型ゼオライトの製造方法
JP2011258329 2011-11-25
JP2012255811A JP5470592B2 (ja) 2011-11-25 2012-11-22 ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP2012-255811 2012-11-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/813,104 A-371-Of-International US9238219B2 (en) 2011-11-25 2012-11-22 Zeolite, manufacturing method of the same, and catalytic cracking batalyst of paraffin
US14/793,428 Division US9895683B2 (en) 2011-11-25 2015-07-07 Zeolite, manufacturing method of the same, and catalytic cracking catalyst of paraffin

Publications (1)

Publication Number Publication Date
WO2013077404A1 true WO2013077404A1 (ja) 2013-05-30

Family

ID=51392994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080308 WO2013077404A1 (ja) 2011-11-25 2012-11-22 ゼオライト及びその製造方法並びにパラフィンの接触分解触媒

Country Status (6)

Country Link
US (2) US9238219B2 (ja)
EP (2) EP3050847B1 (ja)
KR (2) KR102048913B1 (ja)
CN (2) CN104203824B (ja)
BR (2) BR112014012670B1 (ja)
WO (1) WO2013077404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512905A (zh) * 2013-09-29 2015-04-15 中国石油化工股份有限公司 一种Beta分子筛交换过程的清洁生产方法
WO2019082995A1 (ja) * 2017-10-25 2019-05-02 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351216B2 (ja) 2010-07-01 2013-11-27 日本化学工業株式会社 ゼオライトの製造方法
JP5116880B2 (ja) * 2011-01-18 2013-01-09 日本化学工業株式会社 Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
CN104203824B (zh) * 2011-11-25 2017-10-17 UniZeo株式会社 沸石及所述沸石的制造方法以及石蜡的接触分解催化剂
US9513267B1 (en) * 2013-03-21 2016-12-06 Mocon, Inc. Reactor for near absolute conversion of alternative moiety-containing species into a select moiety-containing species and analytical instrument employing the reactor
JP6734692B2 (ja) 2016-04-26 2020-08-05 三井金属鉱業株式会社 Mse型ゼオライトの製造方法
JP6810649B2 (ja) * 2016-05-17 2021-01-06 株式会社堀場製作所 ガス分析装置
KR102000728B1 (ko) 2016-09-09 2019-07-22 주식회사 엘지화학 알루미노실리케이트 입자를 포함한 고무 보강재 및 이를 포함한 타이어용 고무 조성물
KR102060640B1 (ko) 2016-09-09 2019-12-30 주식회사 엘지화학 알루미노실리케이트 입자를 포함한 고무 보강재 및 이를 포함한 타이어용 고무 조성물
KR102397255B1 (ko) 2017-10-25 2022-05-12 미쓰이금속광업주식회사 금속 치환 베타형 제올라이트 및 그의 제조 방법
US10899971B2 (en) 2019-02-13 2021-01-26 Exxonmobil Research And Engineering Company Stabilization of zeolite beta for FCC processes
BR112021022558A2 (pt) * 2019-07-03 2022-01-11 Mitsui Mining & Smelting Co Ltd Método para produzir uma zeólita
WO2023167809A1 (en) * 2022-03-02 2023-09-07 Basf Corporation Phosphorus stabilized zeolites

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308069A (en) 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
JPH0341408B2 (ja) * 1982-05-18 1991-06-24
US5980859A (en) * 1994-08-18 1999-11-09 Uop Llc Modified zeolite beta processes for preparation
US6049018A (en) 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
JP2008050186A (ja) * 2006-08-23 2008-03-06 Yokohama National Univ チタノシリケート及びその製法
CN101249968A (zh) 2008-03-10 2008-08-27 吉林大学 无有机模板剂合成Beta分子筛的方法
JP2010215434A (ja) 2009-03-13 2010-09-30 Idemitsu Kosan Co Ltd ベータゼオライトの製造方法及び水素化分解触媒の製造方法
WO2010146156A1 (en) * 2009-06-18 2010-12-23 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material
JP2011013560A (ja) 2009-07-03 2011-01-20 Fujitsu Ltd オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
WO2011013560A1 (ja) 2009-07-27 2011-02-03 日本化学工業株式会社 ベータ型ゼオライト及びその製造方法
WO2012002367A1 (ja) 2010-07-01 2012-01-05 日本化学工業株式会社 ゼオライトの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642226A (en) * 1984-04-16 1987-02-10 Mobil Oil Corporation Process for the preparation of zeolite Beta using dibenzyldimethylammonium ions and the product produced
US5139759A (en) * 1991-12-19 1992-08-18 Uop Synthesis of zeolite beta
US5227558A (en) * 1992-02-10 1993-07-13 Fina Technology, Inc. Aromatic alkylation process employing steam modified zeolite beta catalyst
US6310265B1 (en) * 1999-11-01 2001-10-30 Exxonmobil Chemical Patents Inc. Isomerization of paraffins
US7198711B1 (en) * 2000-01-21 2007-04-03 Exxonmobil Research And Engineering Company Catalytic cracking processing using an MCM-68 catalyst
US6506953B1 (en) * 2000-01-24 2003-01-14 Exxonmobil Oil Corporation Hydroalkylation of aromatic hydrocarbons
CN101096274B (zh) * 2006-06-29 2010-08-25 中国石油化工股份有限公司 一种富铝beta沸石的制备方法
US20120123178A1 (en) * 2008-09-30 2012-05-17 Uop Llc Uzm-35hs aluminosilicate zeolite, method of preparation and processes using uzm-35hs
US8865121B2 (en) * 2009-06-18 2014-10-21 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material
CN102039201A (zh) * 2009-10-22 2011-05-04 中国石油天然气股份有限公司 一种双微孔-介孔复合分子筛及其制备方法
JP5982469B2 (ja) 2011-04-08 2016-08-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アシル化触媒の製造方法
CN104203824B (zh) * 2011-11-25 2017-10-17 UniZeo株式会社 沸石及所述沸石的制造方法以及石蜡的接触分解催化剂
WO2016060820A1 (en) * 2014-10-14 2016-04-21 Exxonmobil Research And Engineering Company Removal of occluded alkali metal cations from mse-framework type molecular sieves

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308069A (en) 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
JPH0341408B2 (ja) * 1982-05-18 1991-06-24
US5980859A (en) * 1994-08-18 1999-11-09 Uop Llc Modified zeolite beta processes for preparation
US6049018A (en) 1999-01-21 2000-04-11 Mobil Corporation Synthetic porous crystalline MCM-68, its synthesis and use
JP2008050186A (ja) * 2006-08-23 2008-03-06 Yokohama National Univ チタノシリケート及びその製法
CN101249968A (zh) 2008-03-10 2008-08-27 吉林大学 无有机模板剂合成Beta分子筛的方法
JP2010215434A (ja) 2009-03-13 2010-09-30 Idemitsu Kosan Co Ltd ベータゼオライトの製造方法及び水素化分解触媒の製造方法
WO2010146156A1 (en) * 2009-06-18 2010-12-23 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material
JP2011013560A (ja) 2009-07-03 2011-01-20 Fujitsu Ltd オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
WO2011013560A1 (ja) 2009-07-27 2011-02-03 日本化学工業株式会社 ベータ型ゼオライト及びその製造方法
WO2012002367A1 (ja) 2010-07-01 2012-01-05 日本化学工業株式会社 ゼオライトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY OF MATERIALS, vol. 20, no. 14, 2008, pages 4533 - 4535

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512905A (zh) * 2013-09-29 2015-04-15 中国石油化工股份有限公司 一种Beta分子筛交换过程的清洁生产方法
CN104512905B (zh) * 2013-09-29 2016-08-10 中国石油化工股份有限公司 一种Beta分子筛交换过程的清洁生产方法
WO2019082995A1 (ja) * 2017-10-25 2019-05-02 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒
JPWO2019082995A1 (ja) * 2017-10-25 2021-02-04 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒
US11142464B2 (en) 2017-10-25 2021-10-12 Mitsui Mining & Smelting Co., Ltd. Beta zeolite, method for producing same, and catalyst
JP7196090B2 (ja) 2017-10-25 2022-12-26 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒

Also Published As

Publication number Publication date
BR112014012670A8 (pt) 2017-06-20
EP2784025A1 (en) 2014-10-01
US9895683B2 (en) 2018-02-20
KR102048913B1 (ko) 2019-11-27
CN104203824A (zh) 2014-12-10
US9238219B2 (en) 2016-01-19
KR20190032623A (ko) 2019-03-27
EP3050847A1 (en) 2016-08-03
KR102026498B1 (ko) 2019-09-27
BR122020025528B1 (pt) 2022-04-19
CN106694031A (zh) 2017-05-24
BR112014012670A2 (pt) 2017-06-13
US20140322126A1 (en) 2014-10-30
EP2784025B1 (en) 2018-06-13
EP2784025A4 (en) 2015-05-20
CN104203824B (zh) 2017-10-17
CN106694031B (zh) 2019-06-18
EP3050847B1 (en) 2020-04-08
KR20140094024A (ko) 2014-07-29
BR112014012670B1 (pt) 2021-11-23
US20170368539A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2013077404A1 (ja) ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP5470592B2 (ja) ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
US8282908B2 (en) Zeolite beta and process for producing the same
EP3678993B1 (en) Synthesis of afx framework type molecular sieves
KR20090075857A (ko) 알루미늄 함유 분자체 ssz-26의 제조 방법
JP6445685B2 (ja) ゼオライトssz−52を調製するための方法
JP2021513944A (ja) 分子ふるいssz−113、その合成および使用
JP7138697B2 (ja) モレキュラーシーブssz-112、その合成及び使用
US9844771B2 (en) Hydrocarbon reforming/trapping material and method for removing hydrocarbon
JP2013112546A (ja) ベータ型ゼオライトの製造方法
KR102685664B1 (ko) Emm-37 물질, 이의 제조 방법 및 용도
JP6525958B2 (ja) モレキュラーシーブ、cok−5、その合成及び使用
KR102541359B1 (ko) 분자체 ssz-111, 이의 합성 및 용도
JP7119128B2 (ja) モレキュラーシーブssz-109の合成
KR20210037773A (ko) 제올라이트 pst-32 및 그 제조방법
KR102667235B1 (ko) 분자체 ssz-63을 제조하는 방법
WO2020063784A1 (en) Gallium containing zeolitic material and use thereof in scr
JP2023509265A (ja) 小型結晶ssz-27、その合成及び使用
Kapure et al. Journal Homepage:-www. journalijar. com

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13813104

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012851632

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147017275

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012670

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014012670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140526