WO2020063784A1 - Gallium containing zeolitic material and use thereof in scr - Google Patents

Gallium containing zeolitic material and use thereof in scr Download PDF

Info

Publication number
WO2020063784A1
WO2020063784A1 PCT/CN2019/108284 CN2019108284W WO2020063784A1 WO 2020063784 A1 WO2020063784 A1 WO 2020063784A1 CN 2019108284 W CN2019108284 W CN 2019108284W WO 2020063784 A1 WO2020063784 A1 WO 2020063784A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolitic material
metal cations
sio
mixture
sources
Prior art date
Application number
PCT/CN2019/108284
Other languages
French (fr)
Inventor
Andrei-Nicolae PARVULESCU
Robert Mcguire
Ulrich Mueller
Dirk De Vos
Trees De Baerdemaeker
Patrick Tomkins
Bernd Marler
Weiping Zhang
Toshiyuki Yokoi
Feng-Shou Xiao
Ute KOLB
Hermann Gies
Original Assignee
Basf Se
Basf (China) Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf (China) Company Ltd. filed Critical Basf Se
Publication of WO2020063784A1 publication Critical patent/WO2020063784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines

Definitions

  • the present invention relates to a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure and comprising one or more metal cations M at the ion exchange sites of the frame-work structure, as well as to a method for its production. Furthermore, the present invention relates to a zeolitic material as obtained or obtainable according to the inventive method for the production of a zeolitic material, as well as to a process for the treatment of NO x using the in-ventive zeolitic materials, to an apparatus for the treatment of a gas stream containing NO x , the apparatus containing the inventive zeolitic materials, and to the use of the zeolitic materials ac-cording to the present invention.
  • NH 3 -SCR ammonia
  • N 2 O is typically formed as a side product during SCR and catalysts that minimize this reaction are essential.
  • a broad range of catalysts have been tested for this reaction, for example manganese oxides, titania supported vanadia or transition metal containing zeolites.
  • the VO x /TiO 2 type systems have been thorough-ly investigated and are produced on a commercial scale, mainly for stationary emission treat-ment.
  • Transition metal containing zeolites have emerged as the most prom-ising for application in automotive exhaust treatment.
  • a major challenge for these automotive applications remains improving the low temperature activity, which is of particular important dur-ing the cold start-up of the vehicle.
  • iron zeolites are more active for high temperature application and copper zeolites are more active for low temperature application. Poor perfor-mance at low temperature can be caused by a simple Arrhenius type relationship between rates and temperature at the active site.
  • the amounts of adsorbed ammonia and water change drastically during start-up. For instance, adsorbed water can be problematic for reactivi-ty at low temperatures due to competitive adsorption.
  • Other key challenges for mobile applica-tions are the hydrothermal stability of the catalyst and the selectivity of the reaction, especially with regard to N 2 O formation.
  • Cu-ZSM-5 was identified as a promising SCR catalyst, although many other catalysts were tested (Cu-*BEA, Cu-FAU, Cu-MOR...) . Later, small pore zeolites, especially Cu-SSZ-13 (CHA) and SSZ-39 (AEI) were found to have remarkable activity and sta-bility. Cu-SSZ-13 is highly resistant against dealumination, which allows for stability under the harsh conditions of SCR, during which high temperatures are reached in the presence of water and where repeated cycles of dehydration and rehydration during start-up and cool-down occur.
  • zeolite catalysts for instance, Cu-*BEA and Cu-MFI, loose (mostly low-temperature) ac-tivity and selectivity through dealumination, ensuing structural degradation, and through the formation of CuO x and Cu-aluminate species.
  • Cu-SSZ-13 the reason for its high stability, as the pores are too narrow to allow extensive removal of Al species from the zeolite and the structure remains stable even when a large part of the Al is no longer in the framework itself.
  • Cu-SSZ-13 exhibits stable, highly dispersed Cu species, which is crucial for optimal SCR performance.
  • the Si/Al ratio plays an important role in the performance of Cu-SSZ-13. On the one hand, it has been suggested that the Si/Al ratio needs to be low enough to allow introduction of suffi-cient copper to have a reasonable activity at low temperatures. On the other hand, the location, speciation and stability of that copper also depend on the Si/Al ratio and the copper loading. Additionally, both the Si/Al and Cu/Al affect the number and strength of residual acid sites that can serve as a reservoir for ammonia species.
  • inventive zeolitic materials comprising gallium as trivalent framework element
  • the same high conversion of NO is achieved as observed as for conventional SCR catalysts having aluminum as trivalent framework element, yet wherein the inventive zeolitic materials display a far lower N 2 O make.
  • the present invention relates to a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure, wherein the zeolitic material comprises one or more metal cations M se-lected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material contains 1 weight-%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 weight-%of Si, calculated as SiO 2 , in the ze
  • %of Si calculated as SiO 2 , in the zeolitic material, more preferably 0.1 wt. -%or less, more prefera-bly 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
  • the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M no particular restriction applies such that any element of the periodic system of elements may be comprised by said trivalent elements provided that they are different to Ga and different to the trivalent metal cations among the one or more metal cations M.
  • the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M more particularly is Al and/or B, more particularly Al.
  • the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mix-tures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cations M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
  • the zeolitic material comprises the one or more metal cations M in an amount in the range of from 0.01 to 5 wt. -%based on 100 wt. %of Si in the zeolitic material calculated as SiO 2 , more preferably in the range of from 0.05 to 4 wt. -%, more preferably in the range of from 0.1 to 3 wt. -%, more preferably in the range of from 0.2 to 2.5 wt. -%, more preferably in the range of from 0.4 to 2 wt. -%, more preferably in the range of from 0.6 to 1.5 wt. -%, and more preferably in the range of from 0.8 to 1.2 wt. -%.
  • the zeolitic material may have any known framework structure type. It is preferred that the zeolitic material has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS,
  • the zeolitic material has a CHA-type framework structure.
  • the zeolitic material has a CHA-type framework structure, no particular restriction applies as regards the chemical or physical nature of the zeolitic material itself.
  • the zeo-litic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21,
  • the zeolitic material has an AEI-type framework structure.
  • the zeolitic material having an AEI-type framework structure is selected from the group consisting of SSZ-39, SAPO-18, SIZ-8, and mixtures of two or more thereof, wherein more preferably the zeolitic material comprises SSZ-39, and wherein more preferably the zeolitic material is SSZ-39.
  • the zeolitic material is substantially free of further metal cations. It is preferred that the zeolitic material contains 1 wt. -%or less of metal cations, calculated as the respective element, other than the one or more metal cations M and other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2 , more preferably 0.5 wt.
  • zeolitic material com-prises further metal cations no particular restriction applies as regards the physical or chemical nature thereof.
  • the metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the zeolitic material comprises further metal cations. It is preferred that the zeolitic material fur-ther contains Na + and/or Li + , more preferably Na + , at the ion-exchange sites of the framework structure.
  • the zeolitic material further contains Na + and/or Li + , preferably Na + , no par-ticular restriction applies as regards the amount thereof further contained in the zeolitic material.
  • the zeolitic material further contains Na + and/or Li + , preferably Na +
  • the zeolitic material contains 1 wt. -%or less of metal cations other than Ga, Na, Li, and other than the one or more metal cations M, based on 100 wt. %of Si in the zeolitic ma-terial calculated as SiO 2 , more preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
  • the zeolitic material further contains Na + and/or Li + , preferably Na +
  • the metal cations other than Ga, Na, Li and other than the one or more metal cations M is K, pref-erably K, Rb, and Cs, and more preferably K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the SiO 2 : Ga 2 O 3 molar ratio of the framework structure of the zeolitic material no particular restriction applies. According to a first alternative, it is preferred that the SiO 2 : Ga 2 O 3 molar ratio of the framework structure of the zeolitic material is in the range of from 5 to 250, more preferably of from 10 to 150, more preferably of from 15 to 100, more preferably of from 20 to 80, more preferably of from 26 to 60, more preferably of from 30 to 40, and more prefera-bly of from 32 to 36.
  • the SiO 2 : Ga 2 O 3 mo-lar ratio of the framework structure of the zeolitic material is in the range of from 34 to 300, pref- erably of from 50 to 200, more preferably of from 66 to 150, more preferably of from 80 to 110, and more preferably of from 92 to 96.
  • the zeolitic material comprises one or more metal cations M, wherein the zeolitic material contains 1 weight-%or less of trivalent elements, calcu-lated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M.
  • the mean particle size D50 by volume as determined according to ISO 13320: 2009 of the zeolitic material is of at least 0.3 ⁇ m, more preferably in the range of from 0.3 to 6.0 ⁇ m, more preferably in the range of from 1.5 to 4.5 ⁇ m, and more preferably in the range of from 2.5 to 3.6 ⁇ m.
  • the mean particle size of the primary crystals of the zeolitic material is in the range of from 100 to 3000 nm, more preferably in the range of from 110 to 1000 nm, more preferably in the range of from 120 to 500 nm, and more preferably in the range of from 130 to 250 nm.
  • the mean particle size of the primary crystals is determined with SEM as described in the experimental section of the present patent application.
  • the present invention relates to two alternative processes for the preparation of a zeolit-ic material comprising SiO 2 and Ga 2 O 3 in its framework structure, preferably of a zeolitic materi-al according to any of the embodiments disclosed herein.
  • the present invention relates to a process for the preparation of a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure, preferably of a zeolitic material according to any of the embodiments disclosed herein, the process comprising
  • the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of trivalent ele-ments, calculated as the respective element, other than Ga, based on 100 wt. %of Si, calculat-ed as SiO 2 , in the one or more sources of SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt.-%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt.
  • metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • the trivalent elements other than Ga no particular restriction applies such that any other trivalent element of the periodic system of elements may be comprised in the mixture. It is preferred that the trivalent elements other than Ga are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga is preferably Al and/or B, preferably Al.
  • (3) may be performed in two or more steps.
  • (3) comprises two steps, wherein (3) preferably comprises (3a) subjecting the zeolitic material obtained in (2) to one or more ion exchange pro-cedures with H + and/or NH 4 + , preferably with NH 4 + ; (3b) subjecting the zeolitic material obtained in (3a) to one or more ion exchange procedures with the one or more metal cations M; wherein independently from one another (3a) and/or (3b) is preferably repeated 1 to 3 times, more pref-erably once or twice, and more preferably once.
  • no particular restriction applies as regards further steps that are performed after (2) and prior to (3) .
  • the zeolitic material obtained in (2) is directly subjected to ion exchange with the one or more metal cations M, wherein preferably no ion-exchange step is performed prior to ion exchange of the zeolitic material obtained in (2) with the one or more metal cations M.
  • the mixture may be prepared in two or more steps. It is preferred that the mixture is prepared in (1) in four steps, wherein (1) more preferably comprises
  • the mixture prepared in (1) and heated in (2) may further comprise metal cations other than Ga.It is preferred that the mixture prepared in (1) and heated in (2) is substantially free of metal cations other than Ga. It is particularly preferred that the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective element, other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
  • the mixture pre-pared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the re-spective element, other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more pref-erably 0.001 wt. -%or less.
  • the mixture prepared in (1) and heated in (2) further comprises metal cations other than the one or more metal cations M and other than Ga
  • metal cations other than the one or more metal cations M and other than Ga is Na, more preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, more preferably from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the present invention relates to a process for the preparation of a zeo-litic material comprising SiO 2 and Ga 2 O 3 in its framework structure, preferably of a zeolitic mate-rial according to any of the embodiments disclosed herein, the process comprising
  • the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of trivalent ele-ments, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2 , in the one or more sources of SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt.
  • metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M no particular restriction applies such that any trivalent element of the periodic system of elements may be comprised. It is preferred that the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M is preferably Al and/or B, more preferably Al.
  • (3) may be performed in two or more steps. It is preferred that (3) comprises two steps, wherein (3) preferably comprises
  • the molar ratio M: Si of the mixture prepared in (1)
  • the molar ratio M: Si of the one or more metal cations M to Si in the mixture prepared in (1) or (1a) is in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
  • the one or more metal cations M used for prepar-ing the mixture according to (1) or (1a) are provid-ed as salts, more preferably as one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of sulfate, nitrate, acetate, and mixtures of two or more thereof, wherein more preferably the one or more metal cations M used for preparing the mixture according to (1) or (1a) are provided as nitrates and/or acetates, and more preferably as acetates.
  • the mixture prepared in (1) and heated in (2) may further comprise metal cations other than the one or more metal cations M and other than Ga. It is preferred that the mixture prepared in (1) and heated in (2) is substantially free of metal cations other than the one or more metal cati-ons M and other than Ga. It is particularly preferred that the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective element, other than the one or more metal cations M and other than Ga, based on 100 wt.
  • %of Si in the zeolitic material calculated as SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
  • the mixture prepared in (1) and heated in (2) further comprises metal cations other than the one or more metal cations M and other than Ga
  • metal cations other than the one or more metal cations M and other than Ga is Na, more preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more pref-erably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the following embodiments may apply to both the first alternative and the second alternative for the two alternative processes for the preparation of a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure, preferably of a zeolitic material according to any of the embod-iments disclosed herein.
  • the amount of seed crystals comprised in the mixture prepared in (1) is in the range of from 0.1 to 15 wt. -%based on 100 wt.%of Si in the mixture calculated as SiO 2 , and more preferably of from 0.5 to 11 wt. -%, more preferably of from 0.8 to 8 wt. -%, more preferably of from 1.2 to 5 wt. -%, more preferably of from 1.5 to 3 wt. -%, and more preferably of from 1.8 to 2.5 wt. -%.
  • the seed crystals comprise one or more zeolitic materials having the frame-work structure of the zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure ob-tained according to the process of any of the embodiments disclosed herein, wherein preferably the one or more zeolitic materials of the seed crystals is obtainable and/or obtained according to the process of any of the embodiments disclosed herein.
  • the framework structure type of the zeolitic material crystallized in (2) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV
  • the seed crystals may have any known framework structure type.
  • the seed crystals comprise one or more zeolitic materials having a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT,
  • the one or more organotemplates As regards the physical or chemical nature of the one or more organotemplates, no particular restriction applies. According to the present invention, three different alternatives for the one or more organotemplates are preferred.
  • the one or more organotemplates comprise one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 inde-pendently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, more preferably for 1-adamantyl.
  • the one or more organotemplates comprise one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one an-other stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl
  • the one or more organotemplates comprise one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds
  • R 4 stands for adamantyl and/or benzyl, more preferably for adamantyl, more preferably for 1-adamantyl.
  • the one or more organotemplates comprise one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one an-other stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, more preferably for 1-adamantyl
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2
  • the one or more organotemplates comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl
  • R 1 and R 2 inde-pendently from one another stand for optionally branched (C 1 -C 6 ) alkyl, more preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for methyl.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl
  • R 3 stands for optionally branched (C 1 -C 6 ) alkyl, more preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 3 stands for ethyl.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl
  • R 4 stands for optionally heterocyclic 5-to 8-membered cycloalkyl, more preferably for 5-to 7-membered cy-cloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic 6-membered cycloalkyl, and more preferably for cyclohexyl.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl- (C 5 -C 7 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl- (C 5 -C 6 ) cycloalkylammonium compounds, more preferably one or more N
  • the one or more organotemplates comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain
  • R 1 and R 2 independently from one another stand for optionally branched (C 1 -C 6 ) alkyl, more preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, wherein more preferably R 1 and R 2 independently from one another stand for methyl or ethyl, and more pref-erably for ethyl.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain
  • R 3 and R 4 form a common (C 4 –C 8 ) alkyl chain, more preferably a common (C 4 –C 7 ) alkyl chain, more preferably a common (C 4 –C 6 ) alkyl chain, wherein more preferably said common alkyl chain is a C 4 or C 5 alkyl chain, and more preferably a C 5 alkyl chain.
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain
  • the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more ammonium compounds selected from the group consisting of N, N-di (C 1 -C 4 ) alkyl-3, 5-di (C 1 -C 4 ) alkylpyrrolidinium compounds, N, N-di (C 1 -C 4 ) alkyl-3, 5-di (C 1 -C 4 ) alkylpiperidinium compounds, N, N-di (C 1 -C 4 ) alkyl-3, 5-di (C 1 -C 4 ) alkyl alky
  • the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain
  • the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium compounds display the cis con-figuration, the trans configuration, or contain a mixture of the cis and trans isomers, wherein more preferably the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroaze
  • the one or more organotemplates in general, no particular restriction applies as re-gards the physical or chemical nature thereof, provided that the one or more organotemplates are in accordance with any of the embodiments disclosed herein. It is preferred that the one or more organotemplates are provided as salts, more preferably as one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more organotemplates are provided as hydroxides and/or bromides, and more preferably as hydroxides.
  • the mixture prepared in (1) , (1a) , or (1b) no par-ticular restriction applies such that the mixture may comprise further components. It is preferred that the mixture prepared in (1) , (1a) , or (1b) , more preferably in (1a) and (1b) , comprises hy-droxide salts.
  • the mixture prepared in (1) , (1a) , or (1b) comprises hydroxide salts
  • no par-ticular restriction applies as regards the molar ratio of OH - in the first mixture prepared in (1a) to OH - in the second mixture prepared in (1b) .
  • the molar ratio of OH - in the first mixture prepared in (1a) to OH - in the second mixture prepared in (1b) is in the range of from 0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more prefer-ably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
  • the mixture prepared in (1) , (1a) , or (1b) comprises hydroxide salts
  • no par-ticular restriction applies as regards the molar ratio OH - : organotemplate in the mixture prepared in (1) .
  • the molar ratio OH - : organotemplate in the mixture prepared in (1) is in the range of from 0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
  • the mixture prepared in (1) or (1a) comprises one or more alkali metals, more preferably one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, more preferably from the group consisting of Li, Na, and K, wherein more preferably the mixture prepared in (1) or (1a) comprises Li and/or Na, preferably Na.
  • the mixture prepared in (1) or (1a) comprises one or more alkali metals
  • the molar ratio of the one or more alkali metals to the one or more organotemplates is in the range of from 0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
  • the molar ratio Ga 2 O 3 : SiO 2 of the one or more sources for Ga 2 O 3 to the one or more sources for SiO 2 , prepared in (1) or (1a) is in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
  • the molar ratio SiO 2 : organotemplate of the one or more sources for SiO 2 to the one or more organotemplates, prepared in (1) or (1a) is in the range of from 1 to 50, more preferably of from 2 to 20, more preferably of from 3 to 10, more preferably of from 4 to 7, and more preferably of from 4.5 to 5.5.
  • any of the embodiments for the process for the preparation of a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure preferably of a zeolitic material according to any of the embodiments, as disclosed herein, no particular restriction applies in view of fur- ther process steps comprised therein. It is preferred that the process according to any of the embodiments defined herein comprises further steps. It is particularly preferred that the process comprises
  • calcination in (iv) is con-ducted for a duration in the range of from 0.5 to 15 h, more preferably of from 1 to 10 h, more preferably of from 1.5 to 8 h, more preferably of from 2 to 6 h, more preferably of from 2.5 to 5.5 h, more preferably of from 3 to 5 h, and more preferably of from 3.5 to 4.5 h.
  • the process comprises (iv)
  • the conditions of calcination e.g. the temperature at which it is conducted. It is preferred that calcination in (iv) is conducted at a temperature in the range of from 300 to 900 °C, more preferably of from 350 to 800 °C, more preferably of from 400 to 750 °C, more preferably of from 450 to 700 °C, more preferably of from 500 to 650 °C, and more preferably of from 560 to 600 °C.
  • heating in (2) is conducted for a duration in the range of from 0.5 to 15 d, more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, more preferably from 4.5 to 5.5 d.
  • heating in (2) is conducted at a temperature in the range of from 80 to 220 °C, more preferably of from 100 to 200 °C, more preferably of from 120 to 180 °C, more preferably of from 130 to 170 °C, more preferably of from 140 to 160 °C, more preferably of from 145 to 155 °C.
  • heating in (2) is conducted under au-togenous pressure, preferably under solvothermal conditions, more preferably under hydro-thermal conditions, wherein more preferably heating in (2) is performed in a pressure tight ves-sel, more preferably in an autoclave.
  • seed crystals As regards the physical or chemical nature of the seed crystals, no particular restriction applies such that they may be prepared according to any suitable preparation method. It is preferred that the seed crystals are prepared according to a process comprising
  • heating in (b) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
  • heating in (b) is conducted at a temperature in the range of from 80 to 220 °C, more preferably of from 100 to 200 °C, more preferably of from 120 to 190 °C, more preferably of from 130 to 180 °C, more preferably of from 150 to 170 °C, and more preferably of from 155 to 165 °C.
  • heating in (b) is conducted under autogenous pressure, more preferably un-der solvothermal conditions, more preferably under hydrothermal conditions, wherein more preferably heating in (2) is performed in a pressure tight vessel, more preferably in an autoclave.
  • the acid treatment in (c) no particular restriction applies in view of the conditions thereof such that in particular any organic or inorganic acid may be used, preferably a Bronsted acid. Further, as regards the physical or chemical nature of the acid, no particular restriction applies such that the acid may be employed in an aqueous solution. It is preferred that the acid employed in (c) is in aqueous solution, wherein the concentration of the acid in the aqueous solution is preferably in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
  • the acid employed in (c) is selected from the group consisting of HCl, HNO 3 , H 3 PO 4 , H 2 SO 4 , H 3 BO 3 , HF, HBr, HClO 4 , and mixtures of two or more thereof, more preferably from the group consisting of HCl, HNO 3 , H 2 SO 4 , HBr, HClO 4 , and mixtures of two or more thereof, wherein more preferably the acid employed in (c) is HCl and/or HNO 3 , preferably HNO 3 .
  • deboronation of the seed crystals may be achieved by treatment with water as described in WO 2013/117537 A1, the contents of which are incorporated herein by refer-ence.
  • the acid treatment in (c) is conducted for a duration in the range of from 0.1 to 6 h, more preferably of from 0.5 to 4 h, more preferably of from 1 to 3 h, more preferably of from 1.5 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
  • the treatment in (c) is conducted at a temperature in the range of from 20 to 95 °C, more preferably of from 30 to 85 °C, more preferably of from 40 to 80 °C, more preferably of from 45 to 75 °C, more preferably of from 50 to 70 °C, and more preferably of from 55 to 65 °C.
  • the one or more sources for B 2 O 3 is selected from the group consisting of boric acid, borates, boric esters, and mixtures of two or more thereof, more preferably from the group consisting of boric acid, borates, triethyl borate, trimethyl borateboric esters, and mixtures of two or more thereof, wherein more preferably the one or more sources for B 2 O 3 comprises boric acid and/or borates, preferably boric acid, wherein more preferably the one or more sources for B 2 O 3 consists of boric acid and/or borates, preferably of boric acid.
  • the mixture prepared in (a) e.g. the molar ratio SiO 2 : B 2 O 3 of the one or more sources for SiO 2 to the one or more sources for B 2 O 3 or the molar ratio SiO 2 : organotemplate of the one or more sources for SiO 2 to the one or more organotem-plates, no particular restriction applies.
  • the molar ratio SiO 2 : B 2 O 3 of the one or more sources for SiO 2 to the one or more sources for B 2 O 3 in the mixture prepared in (a) is in the range of from 0.5 to 50, more preferably of from 1 to 20, more preferably of from 2 to 10, more preferably of from 2.5 to 5, more preferably of from 3 to 4, and more preferably of from 3.3 to 3.4.
  • the molar ratio SiO 2 : organotemplate of the one or more sources for SiO 2 to the one or more organotemplates in the mixture prepared in (a) is in the range of from 0.1 to 50, more preferably of from 0.5 to 20, more preferably of from 1 to 10, more preferably of from 1.4 to 5, more preferably of from 1.6 to 3, and more preferably of from 1.8 to 2.5.
  • the molar ratio H 2 O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared according to (a) is in the range of from 5 to 30, more preferably in the range of from 8 to 25, more preferably in the range of from 10 to 20, more preferably in the range of from 12 to 18, and more preferably in the range of from 14 to 16.
  • the zeolitic material crystallized in (b) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN
  • the one or more sources of SiO 2 are selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, more preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of colloidal silica, fumed silica, silica gel, pyrogenic silica, and combinations of two or more thereof, wherein more preferably the one or more sources of SiO 2 comprises colloidal silica and/or fumed silica, preferably fumed silica, wherein more preferably the one or more sources of SiO 2 comprises colloidal silica and/or fumed silica, preferably
  • the one or more sources of Ga 2 O 3 comprises one or more gallium salts, wherein more preferably the one or more sources of Ga 2 O 3 comprises gallium nitrate, wherein more preferably one or more sources of Ga 2 O 3 consists of gallium nitrate.
  • the solvent system is selected from the group consisting of optionally branched (C 1 -C 4 ) alcohols, distilled water, and mixtures thereof, preferably from the group con-sisting of optionally branched (C 1 -C 3 ) alcohols, distilled water, and mixtures thereof, more pref-erably from the group consisting of methanol, ethanol, distilled water, and mixtures thereof, wherein more preferably the solvent system comprises distilled water, wherein more preferably the solvent system consists of distilled water.
  • the solvent system comprises distilled water
  • the molar ratio H 2 O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture e.g. the molar ratio H 2 O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture. It is preferred that the molar ratio H 2 O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared according to (1) or (1a) ranges from 5 to 90, more preferably from 10 to 75, more preferably from 20 to 65, more preferably from 30 to 58, more preferably from 36 to 52, more preferably from 40 to 48, and more preferably from 42 to 46.
  • the seed crystals used in the process according to any of the embodiments disclosed herein, no particular restriction applies. It is preferred that the seed crystals comprise one or more zeolitic materials comprising SiO 2 and Ga 2 O 3 in its frame-work structure as obtainable and or obtained according to the process of any of the embodi-ments disclosed herein.
  • the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mix-tures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cations M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
  • the present invention further relates to a zeolitic material obtainable from the process of any of the embodiments as disclosed herein.
  • the present invention relates to a process for the treatment of NO x by selective catalytic reduction, wherein the process comprises
  • step (B) contacting the gas stream provided in step (A) with a zeolitic material according to any of the embodiments disclosed herein.
  • the gas stream may comprise further components. It is preferred that the gas stream provided in (A) further comprises one or more reducing agents, wherein the reducing agent more preferably comprises ammonia and/or urea.
  • the gas stream provided in (A) comprises one or more waste gases, more preferably one or more waste gases from one or more industrial processes, wherein more preferably the waste gas stream comprises one or more waste gas streams ob-tained in processes for producing adipic acid, nitric acid, hydroxylamine derivatives, caprolac-tame, glyoxal, methyl-glyoxal, glyoxylic acid or in processes for burning nitrogeneous materials, including mixtures of waste gas streams from two or more of said processes, wherein even more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid and/or nitric acid.
  • the gas stream provided in (A) comprises one or more waste gases from an internal combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
  • the conditions of contacting of the gas stream with the zeolitic material in (B) e.g. the temperature at which contacting is conducted, no particular restriction applies. It is preferred that the contacting of the gas stream with the zeolitic material in (B) is conducted at a tempera-ture comprised in the range of from 250 to 550 °C, more preferably of from 300 to 500 °C, more preferably of from 325 to 450 °C, more preferably of from 350 to 425 °C, more preferably of from 380 to 420 °C, and even more preferably of from 390 to 410 °C.
  • the present invention relates to an apparatus for the treatment of a gas stream contain-ing NO x , the apparatus comprising a catalyst bed provided in fluid contact with the gas stream to be treated, wherein the catalyst bed comprises a zeolitic material according to any of the em-bodiments disclosed herein.
  • the catalyst bed is a fixed bed catalyst or a fluidized bed catalyst, more pref-erably a fixed bed catalyst.
  • the apparatus further comprises one or more devices. It is particularly preferred that the apparatus comprises one or more devices provided upstream of the catalyst bed for injecting one or more reducing agents into the gas stream, wherein the reducing agent more preferably comprises ammonia and/or urea.
  • the present invention relates to a use of a zeolitic material according to any of the em-bodiments disclosed herein as a molecular sieve, as an adsorbent, for ion-exchange, as a cata-lyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more prefer-ably as a catalyst or a precursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x ; for the storage and/or adsorption of CO 2 ; for the oxida-tion of NH 3 , in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2 O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more
  • a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure, wherein the zeo-litic material comprises one or more metal cations M selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material contains 1 wt.
  • metal cations M selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd
  • the one or more metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, preferably from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cat-ions M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
  • metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the zeolitic material of embodiment 11 or 12, wherein the metal cations other than Ga, Na, Li, and other than the one or more metal cations M is K, preferably K, Rb, and Cs, and more preferably K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the zeolitic material of any of embodiments 1 to 13, wherein the SiO 2 : Ga 2 O 3 molar ratio of the framework structure of the zeolitic material is in the range of from 34 to 300, prefer-ably of from 50 to 200, more preferably of from 66 to 150, more preferably of from 80 to 110, and more preferably of from 92 to 96.
  • the zeolitic material of any of embodiments 1 to 15, wherein the mean particle size D50 by volume of the zeolitic material as determined according to ISO 13320: 2009 is of at least 0.3 ⁇ m, and is preferably in the range of from 0.3 to 6.0 ⁇ m, more preferably in the range of from 1.5 to 4.5 ⁇ m, and more preferably in the range of from 2.5 to 3.6 ⁇ m.
  • a process for the preparation of a zeolitic material comprising SiO 2 and Ga 2 O 3 in its framework structure, preferably of a zeolitic material according to any of embodiments 1 to 17, the process comprising
  • the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of triva-lent elements, calculated as the respective element, other than Ga, based on 100 wt. %of Si, calculated as SiO 2 , in the one or more sources of SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less,
  • metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • metal cations other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consist-ing of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of of triva-lent elements, calculated as the respective element, other than Ga and other than any tri-valent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2 , in the one or more sources of SiO 2 , preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt.
  • metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  • metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
  • the seed crystals comprise one or more zeolitic materials having a framework structure type selected from the group consist-ing of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, L
  • the one or more organotemplates comprise one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl.
  • R 1 , R 2 , and R 3 independently from one another stand for optionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, more preferably for methyl or ethyl, and more pref-erably for methyl.
  • R 4 stands for adamantyl and/or benzyl, preferably for adamantyl, more preferably for 1-adamantyl.
  • any of embodiments 36 to 38, wherein the one or more tetraalkylammoni-um cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more N, N, N-tri (C 1 -C 4 ) alkyl-1-adamantammonium compounds, preferably one or more N, N, N-tri (C 1 -C 3 ) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantammonium and/or one or more N, N, N-tri (C 1 -C 2 ) alkyl-1-adamantammonium com-pounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantammonium, N, N-die
  • the one or more organotemplates comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
  • R 3 stands for optionally branched (C 1 -C 6 ) alkyl, preferably (C 1 -C 5 ) alkyl, more preferably (C 1 -C 4 ) alkyl, more preferably (C 1 -C 3 ) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 3 stands for ethyl.
  • R 4 stands for optionally heterocyclic 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally hetero-cyclic 6-membered cycloalkyl, and more preferably for cyclohexyl.
  • the one or more organotemplates comprises one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds, wherein R 1 , R 2 , R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain.
  • N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium compounds display the cis configuration, the trans configuration, or contain a mixture of the cis and trans isomers, wherein preferably the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium com-pounds display the cis configuration, wherein more preferably the one or more tetraalkylammonium cation R 1 R 2 R 3 R 4 N + -containing compounds comprise one or more ammonium compounds selected from the group consisting of N, N-di (C 1 -C 2 )
  • heating in (2) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more prefer-ably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
  • heating in (2) is conducted at a temperature in the range of from 80 to 220 °C, preferably of from 100 to 200 °C, more preferably of from 120 to 180 °C, more preferably of from 130 to 170 °C, more preferably of from 140 to 160 °C, and more preferably of from 145 to 155 °C.
  • heating in (2) is conducted under autogenous pressure, preferably under solvothermal conditions, more preferably under hydrothermal conditions, wherein preferably heating in (2) is performed in a pressure tight vessel, preferably in an autoclave.
  • heating in (b) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
  • the one or more sources for B 2 O 3 is selected from the group consisting of boric acid, borates, boric esters, and mixtures of two or more thereof, preferably from the group consisting of boric acid, borates, triethyl borate, trimethyl borateboric esters, and mixtures of two or more thereof, wherein more preferably the one or more sources for B 2 O 3 comprises boric acid and/or borates, preferably boric acid, wherein more preferably the one or more sources for B 2 O 3 consists of boric acid and/or borates, preferably of boric acid.
  • any of embodiments 18 to 77, wherein the one or more sources of SiO 2 are selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic ac-id, and combinations of two or more thereof, more preferably selected from the group consisting of colloidal silica, fumed silica, silica gel, pyrogenic silica, and combinations of two or more thereof, wherein more preferably the one or more sources of SiO 2 comprises colloidal silica and/or fumed silica, preferably fumed silica, wherein more preferably the one or more sources of
  • any of embodiments 18 to 78, wherein the one or more sources of Ga 2 O 3 comprises one or more gallium salts, wherein preferably the one or more sources of Ga 2 O 3 comprises gallium nitrate, wherein more preferably one or more sources of Ga 2 O 3 consists of gallium nitrate.
  • any of embodiments 18 to 79 wherein the solvent system is selected from the group consisting of optionally branched (C 1 -C 4 ) alcohols, distilled water, and mixtures thereof, preferably from the group consisting of optionally branched (C 1 -C 3 ) alcohols, dis-tilled water, and mixtures thereof, more preferably from the group consisting of methanol, ethanol, distilled water, and mixtures thereof, wherein more preferably the solvent system comprises distilled water, wherein more preferably the solvent system consists of distilled water.
  • the solvent system is selected from the group consisting of optionally branched (C 1 -C 4 ) alcohols, distilled water, and mixtures thereof, preferably from the group consisting of optionally branched (C 1 -C 3 ) alcohols, dis-tilled water, and mixtures thereof, more preferably from the group consisting of methanol, ethanol, distilled water, and mixtures thereof, wherein more preferably the solvent system comprises distilled water, wherein more
  • any one of embodiments 18 to 82, wherein the one or more metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, preferably from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cat-ions M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
  • a zeolitic material obtainable from the process of any of embodiments 18 to 83.
  • a process for the treatment of NO x by selective catalytic reduction comprising
  • step (B) contacting the gas stream provided in step (A) with a zeolitic material according to any of embodiments 1 to 17 and 84.
  • gas stream provided in (A) further comprises one or more reducing agents, wherein the reducing agent preferably comprises ammonia and/or urea.
  • the gas stream provided in (A) comprises one or more waste gases, preferably one or more waste gases from one or more industri-al processes, wherein more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid, nitric acid, hydroxyla-mine derivatives, caprolactame, glyoxal, methyl-glyoxal, glyoxylic acid or in processes for burning nitrogeneous materials, including mixtures of waste gas streams from two or more of said processes, wherein even more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid and/or nitric acid.
  • gas stream provided in (A) comprises one or more waste gases from an internal combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
  • Apparatus for the treatment of a gas stream containing NO x comprising a catalyst bed provided in fluid contact with the gas stream to be treated, wherein the cata-lyst bed comprises a zeolitic material according to any of embodiments 1 to 17 and 84.
  • invention 90 or 91 further comprising one or more devices provided upstream of the catalyst bed for injecting one or more reducing agents into the gas stream, wherein the reducing agent preferably comprises ammonia and/or urea.
  • a zeolitic material according to any of embodiments 1 to 17 and 84 as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a pre-cursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x ; for the storage and/or adsorption of CO 2 ; for the oxidation of NH 3 , in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2 O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more prefer-ably in methanol to olefin (MTO)
  • Figure 1 displays the SEM micrograph of the zeolitic material obtained according to Reference Example 2 displaying an Si: Ga molar ratio of 17.
  • Figure 2 shows HRTEM images of the zeolitic material obtained according to Refer-ence Example 2 displaying an Si: Ga molar ratio of 17, wherein (a) shows fac-etted, platelike Ga-CHA (17) crystals with a size of about 100 nm, (b) is the enlarged image from the marked box in (a) , showing the d 101 , and (c) is the HRTEM of a single crystal recorded along
  • Figure 3 displays the results from SCR testing and in particular the NO conversion (closed symbols) and N 2 O make (open symbols) for the zeolitic material ob-tained according to Example 1 displaying an Si: Ga molar ratio of 17 ( “Cu-Ga-CHA (17) ” ) compared to Cu-B-CHA samples displaying an Si: B molar ratio of 14 ( “Cu-B-CHA (14) ” ) and 22 ( “Cu-B-CHA (22) ” ) , respectively, and Cu-Al-CHA displaying an Si: Al molar ratio of 13 ( “Cu-Al-CHA” ) .
  • the tempera-ture in °C is plotted along the abscissa
  • the N 2 O make in %is plotted along the right ordi-nate is plotted along the tempera-ture in °C .
  • Figure 4 displays the results from SCR testing and in particular the NO conversion and N 2 O make for the zeolitic material obtained according to Example 1 displaying an Si: Ga molar ratio of 17 at copper loading levels of 4 wt. -%and 1 wt. -%, re-spectivels.
  • the temperature in °C is plotted along the abscissa
  • the NO conversion rate in % is plotted along the left ordinate
  • Figure 5 displays the results from SCR testing and in particular the NO conversion and N 2 O make for the fresh zeolitic materials obtained according to Example 1 displaying an Si: Ga molar ratios of 17 ( “Cu-Ga-CHA (17) ” ) , 33 ( “Cu-Ga-CHA (33) ” ) , and 47 ( “Cu-Ga-CHA (47) ” ) , according to Example 2 displaying an Si: Ga molar ratio of 17 ( “Cu-Ga-CHA (17) *” ) , and of a sodium containing sam-ple displaying an Si: Ga molar ratios of 33 ( “Na-Cu-Ga-CHA (33) ” ) .
  • the temperature in °C is plotted along the abscissa
  • the NO conversion rate in % is plotted along the left ordinate
  • Figure 6 displays the results from SCR testing and in particular the NO conversion and N 2 O make for the steamed zeolitic material obtained according to Example 1 displaying an Si: Ga molar ratios of 17 ( “Cu-Ga-CHA (17) ” ) , 33 ( “Cu-Ga-CHA (33) ” ) , and 47 ( “Cu-Ga-CHA (47) ” ) , according to Example 2 displaying an Si:Ga molar ratio of 17 ( “Cu-Ga-CHA (17) *” ) , and of a sodium containing sam-ple displaying an Si: Ga molar ratios of 33 ( “Na-Cu-Ga-CHA (33) ” ) .
  • the temperature in °C is plotted along the abscissa
  • the NO conversion rate in % is plotted along the left ordinate
  • Powder X-ray diffraction (XRD) patterns were routinely collected on a STOE STADI P diffrac-tometer using an image plate detector, Cu K ⁇ radiation and transmission geometry.
  • Lattice parameters were refined using the Le Bail method [38] . Si/B ratios of the samples were determined at the ‘Bodemkundi-ge Div van VZW’ (Heverlee, Belgium) .
  • Crystal morphology and size were investigated using scanning electron microscopy (SEM) on a Philips XL30 SEM FEG microscope.
  • High-resolution transmission electron microscopy (HRTEM) data were collected with an FEI Tecnai G2 Spirit Twin TEM operating at 120 kV using a Gatan US1000 2k x 2k CCD camera.
  • N 2 physisorption and desorption iso-therms were collected using a Micromeritics 3Flex surface analyzer at -196°C after evacuating the samples at 350°C for 12 h under vacuum. From the N 2 isotherms, the specific surface area (S BET ) was determined using the BET method (p/p 0 0.05-0.3) . The specific micropore volume (V micro ) was obtained from t-plot analysis.
  • Catalyst powders were granulated by pressing between two metal bolts followed by crushing and sieving. The fraction with mesh size between 0.250 and 0.500 mm was separated and used for catalytic testing. Catalytic testing of the samples was performed in a quartz fixed bed tube reactor with downstream flow and an internal diameter of 4 mm at atmospheric pressure. 200 mg granulated catalyst (mesh size 0.250 -0.500 mm) was fixed in the middle of the reactor bed using quartz wool. A thermocouple was placed inside the catalyst bed to control the reactor temperature. The catalyst was pretreated by heating at 5°C/min in a flow of O 2 (30 mL/min) to 450°C and remaining at 450°C for 0.5 h.
  • the catalyst was cooled down in a flow of O 2 (30 mL/min) to 150°C.
  • a gas mixture consisting of 500 ppm NH 3 , 500 ppm NO, 10 %O 2 , 10 %CO 2 and 5 %H 2 O in N 2 was prepared by diluting 0.5 %NH 3 in N 2 (30 mL/min) , 0.5 %NO in N 2 (30 mL/min) , O 2 (30 mL/min) and CO 2 (30 mL/min) in N 2 (150 mL/min) .
  • H 2 O was added to the latter N 2 stream prior to mixing with NH 3 , NO, O 2 and CO 2 .
  • This gas mixture was passed over the catalyst at 150°C using a space velocity of 80,000 h -1 .
  • the catalyst was tested at 150°C, 200°C, 250°C, 350°C, and 450°C by remaining 1 h at each temperature step and heating at 5°C/min in between two temperature steps.
  • the reactor outlet was analyzed using a GASMET FT-IR Gas analyser (Model DX4000) .
  • the catalysts were hydrothermally aged by steam treatment in 5 %H 2 O at 750°C for 6 h (5 °C/min) .
  • the catalyst was cooled down to 100°C under O 2 flow (30 mL/min) after pretreatment.
  • a gas mixture of 790 ppm NO and 5.2 %O 2 in N 2 was used.
  • the catalyst was tested at 100°C, 150°C, 200°C, 250°C, 350°C, and 450°C by remaining 1 h at each temperature step and heat-ing at 5°C/min in between two temperature steps.
  • B 3+ -containing CHA was prepared with two different Si/B 3+ ratios based on the literature proce-dures in Regli, L. et al. in J. Phys. Chem. C. 2007, 111, 2992–2999 and Liang, J. et al. in Mi-croporous Mesoporous Mater. 2014, 194, 97–105.
  • high B 3+ content CHA was crystallized from a gel with a composition of 1 SiO 2 : 0.3 H 3 BO 3 : 0.5 TMAdaOH : 15 H 2 O.
  • TMAdaOH N, N, N-trimethyl-1-adamantylammonium hydroxide, 30 wt%, 46.44 g
  • H 3 BO 3 (2.46 g)
  • fumed silica cabosil M5, 7.92 g
  • deionized water 3.18 g
  • Low B 3+ content CHA was synthesized in a similar way from a gel with composition 1 SiO 2 : 0.08 H 3 BO 3 : 0.24 TMAdaOH : 22.3 H 2 O, which was heated for 5 days at 160°C under static conditions. The dried products were calcined in air at 580°C for 4 h (heating ramp 1°C/min) to obtain the H + -form.
  • the high B 3+ CHA (H-B-CHA (14) ) and the low B 3+ CHA (H-B-CHA (22) ) syntheses resulted in a respective bulk Si/B ratio of 14 and 22.
  • a solution A was prepared by mixing 13.63 g TMAdaOH (20 wt. %) and 0.25 g NaOH in 20 mL H 2 O. 3.88 g fumed silica (Cabosil M5) was added and the mixture was stirred until it was homogeneous.
  • Figure 1 displays the SEM micrograph of the sample displaying an Si: Ga molar ratio of 17, wherein the figure shows intergrown crystals having a particle size in the range of from 100-250 nm.
  • Figure 2 shows HRTEM images of the sample displaying an Si: Ga molar ratio of 17, wherein (a) shows facetted, platelike Ga-CHA (17) crystals with a size of about 100 nm, (b) is the enlarged image from the marked box in (a) , showing the d 101 , and (c) is the HRTEM of a single crystal recorded along
  • a portion of the sample displaying an Si: Ga molar ratio of 17 was converted to the H-form via ion exchange with ammonium and subsequent calcination and subject to surface area and po-rosity analysis, thus affording a BET surface area of 554 m 2 /g and a micropore volume of 0.27 cm 3 /g.
  • the product of Reference Example 2 was first brought into the NH 4 + form by exchange for 24 h at 25°C in 1 M NH 4 NO 3 (1 g of zeolite per 150 mL solution) .
  • the dried powders were ex-changed with Cu 2+ using a 0.3 M Cu (CH 3 COO) 2 .3H 2 O solution.
  • 1 g of zeolite was stirred in an appropriate volume of Cu acetate solution for 1 h at 70°C; for instance, 1 g in 3.75 mL of a 0.3 M Cu acetate solution results in 2.5 wt. %Cu loading.
  • samples were abundantly rinsed with distilled water until the washing water was free of Cu 2+ (as determined in a test with NH 4 OH solution) .
  • Example 3 Catalytic testing in SCR –Comparison with Cu-B-CHA and Cu-Al-CHA
  • a sample of the zeolitic material obtained from Example 1 having a copper loading of 2.5 wt. -% was tested for SCR at temperatures from 150°C to 450°C.
  • samples of copper loaded B-SSZ-13 with Si: B molar ratios of 14 and 22, respectively, and a copper loaded Al-SSZ-13 with an Si: Al molar ratio of 13 were tested under the same conditions.
  • the testing results are displayed in Figure 3.
  • the benchmark Cu-Al-CHA gave 82 %conversion at 150°C, full conversion at 200 -250°C, and then the conversion decreased slightly to 95 %at 450°C.
  • a maximum N 2 O make of 12 ppm was reached at 250 °C.
  • the Ga 3+ -substituted chabazite has a hydrothermal stability that is more akin to that of its Al 3+ -congener than to that of the B 3+ -chabazite.
  • the N 2 O make was consistently lower for Cu-Ga-CHA (17) than for Cu-Al-CHA.
  • a detailed screening showed that also in the low temperature domain (120-150°C) , Cu-Ga-CHA (17) (2.5 wt%Cu) produced ⁇ 2 ppm N 2 O, close to the detection limit.
  • Ga-SSZ-13 displays the same high activity relative to the conversion of NO x in SCR, yet affords a far lower make in N 2 O.
  • Example 4 Catalyst testing in SCR –Variation of the copper loading
  • Example 5 Catalyst testing in SCR –Influence of sodium content
  • the most steam-stable Ga-based Cu-chabazite catalyst is the cata-lyst according to Example 2 which was obtained by introduction of the Cu directly in the hydro-thermal synthesis of the zeolite (see results for Cu-Ga-CHA (17) *in Figures 5 and 6) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention relates to a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, wherein the zeolitic material comprises one or more metal cations M selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material contains 1 wt.-% or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent met-al cations among the one or more metal cations M, based on 100 wt. % of Si, calculated as SiO 2, in the zeolitic material, and furthermore to a method for its production as well as to a process for the treatment of NO x using the inventive zeolitic materials and to an apparatus for the treatment of a gas stream containing NO x, the apparatus containing the inventive zeolitic materials, and finally to the use of the zeolitic materials according to the present invention.

Description

Gallium Containing Zeolitic Material and Use Thereof in SCR
The present invention relates to a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure and comprising one or more metal cations M at the ion exchange sites of the frame-work structure, as well as to a method for its production. Furthermore, the present invention relates to a zeolitic material as obtained or obtainable according to the inventive method for the production of a zeolitic material, as well as to a process for the treatment of NO x using the in-ventive zeolitic materials, to an apparatus for the treatment of a gas stream containing NO x, the apparatus containing the inventive zeolitic materials, and to the use of the zeolitic materials ac-cording to the present invention.
INTRODUCTION
The selective catalytic reduction of NOx to N 2 by ammonia (NH 3-SCR) is an important technolo-gy for pollution abatement as regulations regarding stationary and mobile emissions become more strict. This is particularly the case for the emission of NO and NO 2, which are formed dur-ing high temperature fuel combustion in the engine. In addition, N 2O is typically formed as a side product during SCR and catalysts that minimize this reaction are essential. A broad range of catalysts have been tested for this reaction, for example manganese oxides, titania supported vanadia or transition metal containing zeolites. The VO x/TiO 2 type systems have been thorough-ly investigated and are produced on a commercial scale, mainly for stationary emission treat-ment. Transition metal containing zeolites, on the other hand, have emerged as the most prom-ising for application in automotive exhaust treatment. A major challenge for these automotive applications remains improving the low temperature activity, which is of particular important dur-ing the cold start-up of the vehicle. Generally, iron zeolites are more active for high temperature application and copper zeolites are more active for low temperature application. Poor perfor-mance at low temperature can be caused by a simple Arrhenius type relationship between rates and temperature at the active site. Additionally, the amounts of adsorbed ammonia and water change drastically during start-up. For instance, adsorbed water can be problematic for reactivi-ty at low temperatures due to competitive adsorption. Other key challenges for mobile applica-tions are the hydrothermal stability of the catalyst and the selectivity of the reaction, especially with regard to N 2O formation.
After decades of research, Cu-ZSM-5 was identified as a promising SCR catalyst, although many other catalysts were tested (Cu-*BEA, Cu-FAU, Cu-MOR…) . Later, small pore zeolites, especially Cu-SSZ-13 (CHA) and SSZ-39 (AEI) were found to have remarkable activity and sta-bility. Cu-SSZ-13 is highly resistant against dealumination, which allows for stability under the harsh conditions of SCR, during which high temperatures are reached in the presence of water and where repeated cycles of dehydration and rehydration during start-up and cool-down occur. Many zeolite catalysts, for instance, Cu-*BEA and Cu-MFI, loose (mostly low-temperature) ac-tivity and selectivity through dealumination, ensuing structural degradation, and through the  formation of CuO x and Cu-aluminate species. It has been proposed that the small pore size of Cu-SSZ-13 is the reason for its high stability, as the pores are too narrow to allow extensive removal of Al species from the zeolite and the structure remains stable even when a large part of the Al is no longer in the framework itself. Furthermore, Cu-SSZ-13 exhibits stable, highly dispersed Cu species, which is crucial for optimal SCR performance.
The Si/Al ratio plays an important role in the performance of Cu-SSZ-13. On the one hand, it has been suggested that the Si/Al ratio needs to be low enough to allow introduction of suffi-cient copper to have a reasonable activity at low temperatures. On the other hand, the location, speciation and stability of that copper also depend on the Si/Al ratio and the copper loading. Additionally, both the Si/Al and Cu/Al affect the number and strength of residual 
Figure PCTCN2019108284-appb-000001
acid sites that can serve as a reservoir for ammonia species.
Despite the progress which has been made with regard to the development of zeolite catalysts, and in particular of those employed in SCR, there remains the need for improved catalysts dis-playing improved activity and selectivity, in particular after ageing.
As regards the replacement of framework Al 3+ by other trivalent heteroatoms, i.e. B 3+ and Ga 3+, these alternative framework compositions have only received limited attention, in particular in the literature of SCR applications. Thus, Fickel, D. W. et al. Appl. Catal. B Environ. 2011, 102, 441–448 discuss differences between Al-SSZ-13 and SSZ-13 isomorphously substituted with Ga, wherein Ga-SSZ-13 was found to be unstable after steaming. Takata, N. et al. in Mi-croporous Mesoporous Mater. 2017, 246, 89–101, on the other hand, synthesized and tested CHA with both Al 3+ and Ga 3+ in the framework obtained via conversion of heterometal contain-ing FAU aluminosilicates.
DETAILED DESCRIPTION
It was therefore the object of the present invention to provide an improved zeolitic material, in particular with regard to its use as a catalyst, and to its activity and selectivity as well as its re-sistance to aging in such uses, in particular in the treatment of NO x in exhaust gases via SCR. Furthermore it was the object of the present invention to provide a method for its production, as well as to a process for its use, in particular in the abatement of NO x via SCR. Thus, it has sur-prisingly been found that when fully replacing the trivalent framework elements of zeolitic mate-rials, and in particular aluminum, by gallium, an improved performance of these materials in catalysis, and in particular in SCR, is observed, more particularly on their stability, activity and selectivity. More specifically, with regard to SCR performance, it has quite unexpectedly been found that for the inventive zeolitic materials comprising gallium as trivalent framework element, the same high conversion of NO is achieved as observed as for conventional SCR catalysts having aluminum as trivalent framework element, yet wherein the inventive zeolitic materials display a far lower N 2O make.
Therefore, the present invention relates to a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, wherein the zeolitic material comprises one or more metal cations M se-lected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material contains 1 weight-%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 weight-%of Si, calculated as SiO 2, in the zeolitic material.
A regards the amount of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, no particular restriction applies such that any amount of said trivalent elements may be comprised in the zeo-litic material provided that the amount is 1 weight-%or less, based on 100 weight-%of Si, cal-culated as SiO 2, in the zeolitic material. It is preferred that the zeolitic material contains 0.5 wt. -%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the zeolitic material, more preferably 0.1 wt. -%or less, more prefera-bly 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
As regards the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M no particular restriction applies such that any element of the periodic system of elements may be comprised by said trivalent elements provided that they are different to Ga and different to the trivalent metal cations among the one or more metal cations M. In particular, the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M more particularly is Al and/or B, more particularly Al.
As regards the physical or chemical nature of the one or more metal cations M no particular restriction applies provided that the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof. It is preferred that the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mix-tures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cations M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
As regards the amount of the one or more metal cations M comprised in the zeolitic material no particular restriction applies. It is preferred that the zeolitic material comprises the one or more metal cations M in an amount in the range of from 0.01 to 5 wt. -%based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, more preferably in the range of from 0.05 to 4 wt. -%, more preferably in the range of from 0.1 to 3 wt. -%, more preferably in the range of from 0.2 to 2.5 wt. -%, more preferably in the range of from 0.4 to 2 wt. -%, more preferably in the range of from 0.6 to 1.5 wt. -%, and more preferably in the range of from 0.8 to 1.2 wt. -%.
As regards the framework structure type of the zeolitic material no particular restriction applies such that the zeolitic material may have any known framework structure type. It is preferred that the zeolitic material has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof, wherein more preferably the zeolitic material has a CHA-and/or AEI-type framework structure, wherein more preferably the zeolitic material has a CHA-type framework structure. According to a first alternative, it is partic-ularly preferred that the zeolitic material has a CHA-type framework structure. In the case where the zeolitic material has a CHA-type framework structure, no particular restriction applies as regards the chemical or physical nature of the zeolitic material itself. It is preferred that the zeo-litic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, SSZ-62, and mixtures of two or more thereof, more preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, SSZ-62, and mixtures of two or more thereof, more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, SSZ-62, and mixtures of two or more thereof, more preferably from the group con-sisting of Chabazite, SSZ-13, SSZ-62, and mixtures of two or three thereof, wherein more pref-erably the zeolitic material comprises chabazite and/or SSZ-13, preferably chabazite, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, preferably SSZ-13. According to a second alternative, it is particularly preferred that the zeolitic material has an AEI-type framework structure. In the case where the zeolitic material has an AEI-type frame-work structure, no particular restriction applies as regards the chemical or physical nature of the zeolitic material itself. It is preferred that the zeolitic material having an AEI-type framework structure is selected from the group consisting of SSZ-39, SAPO-18, SIZ-8, and mixtures of two or more thereof, wherein more preferably the zeolitic material comprises SSZ-39, and wherein more preferably the zeolitic material is SSZ-39.
As regards the physical or chemical nature of further metal cations, other than the one or more metal cations M and other than Ga, that may be comprised in the zeolitic material, no particular restriction applies such that metal cations may be comprised in the zeolitic material other than the specifically defined metal cations. According to a first alternative, it is preferred that the zeo-litic material is substantially free of further metal cations. It is preferred that the zeolitic material contains 1 wt. -%or less of metal cations, calculated as the respective element, other than the one or more metal cations M and other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, more preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less. In the case where the zeolitic material com-prises further metal cations, no particular restriction applies as regards the physical or chemical nature thereof. It is preferred that the metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba. According to a second alternative, the zeolitic material comprises further metal cations. It is preferred that the zeolitic material fur-ther contains Na + and/or Li +, more preferably Na +, at the ion-exchange sites of the framework structure.
In the case where the zeolitic material further contains Na + and/or Li +, preferably Na +, no par-ticular restriction applies as regards the amount thereof further contained in the zeolitic material.
Further, in the case where the zeolitic material further contains Na + and/or Li +, preferably Na +, it is preferred that the zeolitic material contains 1 wt. -%or less of metal cations other than Ga, Na, Li, and other than the one or more metal cations M, based on 100 wt. %of Si in the zeolitic ma-terial calculated as SiO 2, more preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
Further, in the case where the zeolitic material further contains Na + and/or Li +, preferably Na +, no particular restriction applies as regards the physical or chemical nature of the metal cations other than Ga, Na, Li and other than the one or more metal cations M. It is preferred that the metal cations other than Ga, Na, Li, and other than the one or more metal cations M is K, pref-erably K, Rb, and Cs, and more preferably K, Rb, Cs, Mg, Ca, Sr, and Ba.
As regards the SiO 2 : Ga 2O 3 molar ratio of the framework structure of the zeolitic material no particular restriction applies. According to a first alternative, it is preferred that the SiO 2 : Ga 2O 3 molar ratio of the framework structure of the zeolitic material is in the range of from 5 to 250, more preferably of from 10 to 150, more preferably of from 15 to 100, more preferably of from 20 to 80, more preferably of from 26 to 60, more preferably of from 30 to 40, and more prefera-bly of from 32 to 36. According to a second alternative, it is preferred that the SiO 2 : Ga 2O 3 mo-lar ratio of the framework structure of the zeolitic material is in the range of from 34 to 300, pref- erably of from 50 to 200, more preferably of from 66 to 150, more preferably of from 80 to 110, and more preferably of from 92 to 96.
As regards the physical or chemical nature of the zeolitic material, e.g. the mean particle size, no particular restriction applies provided that the zeolitic material comprises one or more metal cations M, wherein the zeolitic material contains 1 weight-%or less of trivalent elements, calcu-lated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M. It is preferred that the mean particle size D50 by volume as determined according to ISO 13320: 2009 of the zeolitic material is of at least 0.3 μm, more preferably in the range of from 0.3 to 6.0 μm, more preferably in the range of from 1.5 to 4.5 μm, and more preferably in the range of from 2.5 to 3.6 μm.
As disclosed above, no particular restriction applies as regards the physical or chemical nature, e.g. the mean particle size, of the zeolitic material. It is preferred that the mean particle size of the primary crystals of the zeolitic material as determined by SEM is in the range of from 100 to 3000 nm, more preferably in the range of from 110 to 1000 nm, more preferably in the range of from 120 to 500 nm, and more preferably in the range of from 130 to 250 nm. As regards the determination of the mean particle size by SEM, it is preferred according to the present inven-tion that the mean particle size of the primary crystals is determined with SEM as described in the experimental section of the present patent application.
Further, the present invention relates to two alternative processes for the preparation of a zeolit-ic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic materi-al according to any of the embodiments disclosed herein.
As a first alternative, the present invention relates to a process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of the embodiments disclosed herein, the process comprising
(1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, and a sol-vent system;
(2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
(3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of trivalent ele-ments, calculated as the respective element, other than Ga, based on 100 wt. %of Si, calculat-ed as SiO 2, in the one or more sources of SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt.-%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less, and wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
As regards the trivalent elements other than Ga no particular restriction applies such that any other trivalent element of the periodic system of elements may be comprised in the mixture. It is preferred that the trivalent elements other than Ga are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga is preferably Al and/or B, preferably Al.
As regards (3) no particular restriction applies such that (3) may be performed in two or more steps. As a first alternative, it is preferred that (3) comprises two steps, wherein (3) preferably comprises (3a) subjecting the zeolitic material obtained in (2) to one or more ion exchange pro-cedures with H + and/or NH 4 +, preferably with NH 4 +; (3b) subjecting the zeolitic material obtained in (3a) to one or more ion exchange procedures with the one or more metal cations M; wherein independently from one another (3a) and/or (3b) is preferably repeated 1 to 3 times, more pref-erably once or twice, and more preferably once. As regards (3) no particular restriction applies as regards further steps that are performed after (2) and prior to (3) . As a second alternative, it is preferred that in (3) the zeolitic material obtained in (2) is directly subjected to ion exchange with the one or more metal cations M, wherein preferably no ion-exchange step is performed prior to ion exchange of the zeolitic material obtained in (2) with the one or more metal cations M.
As regards (1) no particular restriction applies such that the mixture may be prepared in two or more steps. It is preferred that the mixture is prepared in (1) in four steps, wherein (1) more preferably comprises
(1a) preparing a first mixture comprising the one or more organotemplates as structure direct-ing agents, the one or more sources of SiO 2, and a first portion of the solvent system;
(1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a second portion of the solvent system;
(1c) mixing the first and second mixtures to form a third mixture;
(1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture, pref-erably by stirring.
As regards metal cations other than the one or more metal cations M and other than Ga further comprised in the mixture prepared in (1) and heated in (2) no particular restriction applies such that the mixture prepared in (1) and heated in (2) may further comprise metal cations other than Ga.It is preferred that the mixture prepared in (1) and heated in (2) is substantially free of metal cations other than Ga. It is particularly preferred that the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective element, other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
As regards the mixture prepared in (1) and heated in (2) no particular restriction applies as re-gards further metal cations other than Ga comprised therein. It is preferred that the mixture pre-pared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the re-spective element, other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more pref-erably 0.001 wt. -%or less.
In the case where the mixture prepared in (1) and heated in (2) further comprises metal cations other than the one or more metal cations M and other than Ga, no particular restriction applies as regards the physical or chemical nature thereof such that any metal of the periodic system of elements may be comprised. It is preferred that the metal cations other than the one or more metal cations M and other than Ga is Na, more preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, more preferably from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
As a second alternative, the present invention relates to a process for the preparation of a zeo-litic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic mate-rial according to any of the embodiments disclosed herein, the process comprising
(1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, one or more metal cations M, and a solvent system;
(2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
(3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of trivalent ele-ments, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the one or more sources of SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less, and wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
As regards the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M no particular restriction applies such that any trivalent element of the periodic system of elements may be comprised. It is preferred that the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M is preferably Al and/or B, more preferably Al.
As regards (3) no particular restriction applies such that (3) may be performed in two or more steps. It is preferred that (3) comprises two steps, wherein (3) preferably comprises
(1a) preparing a first mixture comprising the one or more organotemplates as structure direct-ing agents, the one or more sources of SiO 2, one or more metal cations M, and a first portion of the solvent system;
(1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a second portion of the solvent system;
(1c) mixing the first and second mixtures to form a third mixture;
(1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture, pref-erably by stirring.
As regards the physical or chemical nature, e.g. the molar ratio M: Si, of the mixture prepared in (1) no particular restriction applies. It is preferred that the molar ratio M: Si of the one or more metal cations M to Si in the mixture prepared in (1) or (1a) is in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
As regards the physical or chemical nature of the one or more metal cations M used for prepar-ing the mixture according to (1) or (1a) no particular restriction applies. It is preferred that the one or more metal cations M used for preparing the mixture according to (1) or (1a) are provid-ed as salts, more preferably as one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of sulfate, nitrate, acetate, and mixtures of two or more thereof, wherein more preferably the one or more metal cations M used for preparing the mixture according to (1) or (1a) are provided as nitrates and/or acetates, and more preferably as acetates.
As regards metal cations other than the one or more metal cations M and other than Ga further comprised in the mixture prepared in (1) and heated in (2) no particular restriction applies such that the mixture prepared in (1) and heated in (2) may further comprise metal cations other than the one or more metal cations M and other than Ga. It is preferred that the mixture prepared in (1) and heated in (2) is substantially free of metal cations other than the one or more metal cati-ons M and other than Ga. It is particularly preferred that the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective element, other than the one or more metal cations M and other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
In the case where the mixture prepared in (1) and heated in (2) further comprises metal cations other than the one or more metal cations M and other than Ga, no particular restriction applies as regards the physical or chemical nature thereof such that any metal of the periodic system of elements may be comprised. It is preferred that the metal cations other than the one or more  metal cations M and other than Ga is Na, more preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more pref-erably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
The following embodiments may apply to both the first alternative and the second alternative for the two alternative processes for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of the embod-iments disclosed herein.
As regards the physical or chemical nature, e.g. the amount of seed crystals, of the mixture prepared in (1) , no particular restriction applies. It is preferred that the amount of seed crystals comprised in the mixture prepared in (1) is in the range of from 0.1 to 15 wt. -%based on 100 wt.%of Si in the mixture calculated as SiO 2, and more preferably of from 0.5 to 11 wt. -%, more preferably of from 0.8 to 8 wt. -%, more preferably of from 1.2 to 5 wt. -%, more preferably of from 1.5 to 3 wt. -%, and more preferably of from 1.8 to 2.5 wt. -%.
As regards the physical or chemical nature of the seed crystals, no particular restriction applies. It is preferred that the seed crystals comprise one or more zeolitic materials having the frame-work structure of the zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure ob-tained according to the process of any of the embodiments disclosed herein, wherein preferably the one or more zeolitic materials of the seed crystals is obtainable and/or obtained according to the process of any of the embodiments disclosed herein.
As regards the framework structure type of the zeolitic material crystallized in (2) , no particular restriction applies. It is preferred that the zeolitic material crystallized in (2) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed struc-tures of two or more thereof, more preferably from the group consisting of AEI and CHA, includ-ing mixed structures of two or more thereof, wherein more preferably the zeolitic material crys-tallized in (2) has a CHA-and/or AEI-type framework structure, wherein more preferably the zeolitic material crystallized in (2) has a CHA-type framework structure.
As regards the framework structure type of the seed crystals, again no particular restriction ap-plies such that the seed crystals may have any known framework structure type. It is preferred that the seed crystals comprise one or more zeolitic materials having a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN,  SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more prefer-ably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof, wherein more preferably the seed crystals comprise one or more zeolitic materials having a CHA-and/or AEI-type framework structure, wherein more preferably the seed crystals comprise one or more zeolitic materials having a CHA-type framework structure.
As regards the physical or chemical nature of the one or more organotemplates, no particular restriction applies. According to the present invention, three different alternatives for the one or more organotemplates are preferred.
As a first alternative, it is preferred that the one or more organotemplates comprise one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 inde-pendently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, more preferably for 1-adamantyl.
In the case where the one or more organotemplates comprise one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one an-other stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl, it is particularly preferred that R 1, R 2, and R 3 independently from one another stand for optionally branched (C 1-C 6) alkyl, more preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, more preferably for methyl or ethyl, and more preferably for methyl.
In the case where the one or more organotemplates comprise one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, it is further preferred that R 4 stands for adamantyl and/or benzyl, more preferably for adamantyl, more preferably for 1-adamantyl.
In the case where the one or more organotemplates comprise one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one an-other stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, more preferably for 1-adamantyl, it is particularly preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1-C 3) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantammonium, N, N-diethyl-N -methyl-1-adamantammonium, N, N-dimethyl-N -ethyl-1-adamantammonium, N, N, N -trimethyl-1-adamantammonium compounds, and mixtures of two or more thereof,  wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N -trimethyl-1-adamantammonium compounds.
As a second alternative, it is preferred that the one or more organotemplates comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl, it is preferred that R 1 and R 2 inde-pendently from one another stand for optionally branched (C 1-C 6) alkyl, more preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 1 and R 2 independently from one another stand for methyl.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl, it is preferred that R 3 stands for optionally branched (C 1-C 6) alkyl, more preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 3 stands for ethyl.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl, it is preferred that R 4 stands for optionally heterocyclic 5-to 8-membered cycloalkyl, more preferably for 5-to 7-membered cy-cloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally heterocyclic 6-membered cycloalkyl, and more preferably for cyclohexyl.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl, it is preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl- (C 5-C 7) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 3) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-cyclohexylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-cyclohexylammonium, N, N-diethyl-N -methyl-cyclohexylammonium, N, N-dimethyl-N -ethyl-cyclohexylammonium, N, N, N -trimethyl-cyclohexylammonium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammo-nium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-N -ethyl- cyclohexylammonium and/or N, N, N -trimethyl-cyclohexylammonium compounds, more prefera-bly one or more N, N, N -trimethyl-cyclohexylammonium compounds.
As a third alternative, it is preferred that the one or more organotemplates comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain, it is preferred that R 1 and R 2 independently from one another stand for optionally branched (C 1-C 6) alkyl, more preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, wherein more preferably R 1 and R 2 independently from one another stand for methyl or ethyl, and more pref-erably for ethyl.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain, it is preferred that R 3 and R 4 form a common (C 4 –C 8) alkyl chain, more preferably a common (C 4 –C 7) alkyl chain, more preferably a common (C 4 –C 6) alkyl chain, wherein more preferably said common alkyl chain is a C 4 or C 5 alkyl chain, and more preferably a C 5 alkyl chain.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain, it is preferred that the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more ammonium compounds selected from the group consisting of N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylpyrrolidinium compounds, N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylpiperidinium compounds, N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylhexahydroazepinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylpyrrolidinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylpiperidinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylhexahydroazepinium compounds, and mixtures of two or more thereof, preferably from the group consisting of N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylpyrrolidinium com-pounds, N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylpiperidinium compounds, N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylhexahydroazepinium compounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylpyrrolidinium compounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylpiperidinium compounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylhexahydroazepinium compounds, and mixtures of two or more thereof, more preferably from the group consisting of N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpyrrolidinium compounds, N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpiperidinium compounds, N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylhexahydroazepinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpyrrolidinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpiperidinium compounds,  N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylhexahydroazepinium compounds, and mixtures of two or more thereof, more preferably from the group consisting of N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpiperidinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpiperidinium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-3, 5-dimethylpiperidinium and/or N, N-diethyl-2, 6-dimethylpiperidinium compounds, preferably one or more N, N-diethyl-2, 6-dimethylpiperidinium compounds.
In the case where the one or more organotemplates comprises one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain, it is preferred that the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium compounds display the cis con-figuration, the trans configuration, or contain a mixture of the cis and trans isomers, wherein more preferably the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium compounds display the cis configuration, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more ammonium compounds selected from the group consisting of N, N-di (C 1-C 2) alkyl-cis-2, 6-di (C 1-C 2) alkylpiperidinium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-diethyl-cis-2, 6-dimethylpiperidinium com-pounds.
As regards the one or more organotemplates in general, no particular restriction applies as re-gards the physical or chemical nature thereof, provided that the one or more organotemplates are in accordance with any of the embodiments disclosed herein. It is preferred that the one or more organotemplates are provided as salts, more preferably as one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more organotemplates are provided as hydroxides and/or bromides, and more preferably as hydroxides.
As regards the physical or chemical nature of the mixture prepared in (1) , (1a) , or (1b) , no par-ticular restriction applies such that the mixture may comprise further components. It is preferred that the mixture prepared in (1) , (1a) , or (1b) , more preferably in (1a) and (1b) , comprises hy-droxide salts.
In the case where the mixture prepared in (1) , (1a) , or (1b) comprises hydroxide salts, no par-ticular restriction applies as regards the molar ratio of OH -in the first mixture prepared in (1a) to OH -in the second mixture prepared in (1b) . It is preferred that the molar ratio of OH -in the first mixture prepared in (1a) to OH -in the second mixture prepared in (1b) is in the range of from  0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more prefer-ably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
In the case where the mixture prepared in (1) , (1a) , or (1b) comprises hydroxide salts, no par-ticular restriction applies as regards the molar ratio OH -: organotemplate in the mixture prepared in (1) . It is preferred that the molar ratio OH -: organotemplate in the mixture prepared in (1) is in the range of from 0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
As regards the physical or chemical nature of the mixture prepared in (1) or (1a) , no particular restriction applies such that the mixture may comprise further components. It is preferred that the mixture prepared in (1) or (1a) comprises one or more alkali metals, more preferably one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, more preferably from the group consisting of Li, Na, and K, wherein more preferably the mixture prepared in (1) or (1a) comprises Li and/or Na, preferably Na.
In the case where the mixture prepared in (1) or (1a) comprises one or more alkali metals, no particular restriction applies as regards the molar ratio of the one or more alkali metals to the one or more organotemplates. It is preferred that the molar ratio of the one or more alkali metals to the one or more organotemplates is in the range of from 0.01 to 100, more preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
As regards the physical or chemical nature of the mixture, e.g. the molar ratio Ga 2O 3: SiO 2 of the one or more sources for Ga 2O 3 to the one or more sources for SiO 2, prepared in (1) or (1a) , no particular restriction applies. It is preferred that the molar ratio Ga 2O 3: SiO 2 of the one or more sources for Ga 2O 3 to the one or more sources for SiO 2 in the mixture prepared in (1) or (1a) is in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
As regards the physical or chemical nature of the mixture, e.g. the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotemplates, prepared in (1) or (1a) , no particular restriction applies. It is preferred that the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotemplates in the mixture prepared in (1) or (1a) is in the range of from 1 to 50, more preferably of from 2 to 20, more preferably of from 3 to 10, more preferably of from 4 to 7, and more preferably of from 4.5 to 5.5.
As regards any of the embodiments for the process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of the embodiments, as disclosed herein, no particular restriction applies in view of fur- ther process steps comprised therein. It is preferred that the process according to any of the embodiments defined herein comprises further steps. It is particularly preferred that the process comprises
(i) optionally isolating the zeolitic material obtained in (2) , preferably by filtration;
and/or, preferably and
(ii) optionally washing the zeolitic material obtained in (2) or (i) , preferably with distilled water;
and/or, preferably and
(iii) optionally drying the zeolitic material obtained in (2) , (i) , or (ii) ;
and/or, preferably and
(iv) optionally calcining the zeolitic material obtained in (2) , (i) , (ii) , or (iii) .
In the case where the process comprises (iv) , no particular restriction applies as regards the conditions of calcination, e.g. the duration thereof. It is preferred that calcination in (iv) is con-ducted for a duration in the range of from 0.5 to 15 h, more preferably of from 1 to 10 h, more preferably of from 1.5 to 8 h, more preferably of from 2 to 6 h, more preferably of from 2.5 to 5.5 h, more preferably of from 3 to 5 h, and more preferably of from 3.5 to 4.5 h.
Further, in the case where the process comprises (iv) , no particular restriction applies as re-gards the conditions of calcination, e.g. the temperature at which it is conducted. It is preferred that calcination in (iv) is conducted at a temperature in the range of from 300 to 900 ℃, more preferably of from 350 to 800 ℃, more preferably of from 400 to 750 ℃, more preferably of from 450 to 700 ℃, more preferably of from 500 to 650 ℃, and more preferably of from 560 to 600 ℃.
As regards the conditions of heating in (2) , no particular restriction applies. It is preferred that heating in (2) is conducted for a duration in the range of from 0.5 to 15 d, more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, more preferably from 4.5 to 5.5 d.
Further, as regards the conditions, e.g. the temperature at which heating is conducted, of heat-ing in (2) , no particular restriction applies. It is preferred that heating in (2) is conducted at a temperature in the range of from 80 to 220 ℃, more preferably of from 100 to 200 ℃, more preferably of from 120 to 180 ℃, more preferably of from 130 to 170 ℃, more preferably of from 140 to 160 ℃, more preferably of from 145 to 155 ℃.
Further, as regards the conditions, e.g. the pressure at which heating is conducted, of heating in (2) , no particular restriction applies. It is preferred that heating in (2) is conducted under au-togenous pressure, preferably under solvothermal conditions, more preferably under hydro-thermal conditions, wherein more preferably heating in (2) is performed in a pressure tight ves-sel, more preferably in an autoclave.
As regards the physical or chemical nature of the seed crystals, no particular restriction applies such that they may be prepared according to any suitable preparation method. It is preferred  that the seed crystals are prepared according to a process comprising
(a) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of B 2O 3, and a solvent system;
(b) heating the mixture obtained in (1) for crystallizing a zeolitic material from the mixture;
(c) subjecting the zeolitic material obtained in (b) to an acid treatment.
As regards the conditions, e.g. the duration, the temperature and the pressure, under which heating in (b) is conducted, no particular restriction applies. It is preferred that heating in (b) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
As disclosed above, no particular restriction applies as regards the conditions of heating in (b) . It is preferred that heating in (b) is conducted at a temperature in the range of from 80 to 220 ℃, more preferably of from 100 to 200 ℃, more preferably of from 120 to 190 ℃, more preferably of from 130 to 180 ℃, more preferably of from 150 to 170 ℃, and more preferably of from 155 to 165 ℃.
As disclosed above, no particular restriction applies as regards the conditions of heating in (b) . It is preferred that heating in (b) is conducted under autogenous pressure, more preferably un-der solvothermal conditions, more preferably under hydrothermal conditions, wherein more preferably heating in (2) is performed in a pressure tight vessel, more preferably in an autoclave.
As regards the acid treatment in (c) , no particular restriction applies in view of the conditions thereof such that in particular any organic or inorganic acid may be used, preferably a Bronsted acid. Further, as regards the physical or chemical nature of the acid, no particular restriction applies such that the acid may be employed in an aqueous solution. It is preferred that the acid employed in (c) is in aqueous solution, wherein the concentration of the acid in the aqueous solution is preferably in the range of from 0.01 to 0.5, more preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
As disclosed above, no particular restriction applies as regards the acid treatment in (c) . It is preferred that the acid employed in (c) is selected from the group consisting of HCl, HNO 3, H 3PO 4, H 2SO 4, H 3BO 3, HF, HBr, HClO 4, and mixtures of two or more thereof, more preferably from the group consisting of HCl, HNO 3, H 2SO 4, HBr, HClO 4, and mixtures of two or more thereof, wherein more preferably the acid employed in (c) is HCl and/or HNO 3, preferably HNO 3.
Alternatively to step (c) as described in the particular and preferred embodiments of the present patent application, deboronation of the seed crystals may be achieved by treatment with water as described in WO 2013/117537 A1, the contents of which are incorporated herein by refer-ence.
As regards the conditions, e.g. the duration and the temperature, under which the acid treat-ment in (c) is conducted, no particular restriction applies. It is preferred that the acid treatment in (c) is conducted for a duration in the range of from 0.1 to 6 h, more preferably of from 0.5 to 4 h, more preferably of from 1 to 3 h, more preferably of from 1.5 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
As disclosed above, no particular restriction applies as regards the conditions of the acid treat-ment in (c) . It is preferred that the treatment in (c) is conducted at a temperature in the range of from 20 to 95 ℃, more preferably of from 30 to 85 ℃, more preferably of from 40 to 80 ℃, more preferably of from 45 to 75 ℃, more preferably of from 50 to 70 ℃, and more preferably of from 55 to 65 ℃.
As regards the physical or chemical nature of the one or more sources for B 2O 3, no particular restriction applies. It is preferred that the one or more sources for B 2O 3 is selected from the group consisting of boric acid, borates, boric esters, and mixtures of two or more thereof, more preferably from the group consisting of boric acid, borates, triethyl borate, trimethyl borateboric esters, and mixtures of two or more thereof, wherein more preferably the one or more sources for B 2O 3 comprises boric acid and/or borates, preferably boric acid, wherein more preferably the one or more sources for B 2O 3 consists of boric acid and/or borates, preferably of boric acid.
As regards the physical or chemical nature of the mixture prepared in (a) , e.g. the molar ratio SiO 2: B 2O 3 of the one or more sources for SiO 2 to the one or more sources for B 2O 3 or the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotem-plates, no particular restriction applies. It is preferred that the molar ratio SiO 2: B 2O 3 of the one or more sources for SiO 2 to the one or more sources for B 2O 3 in the mixture prepared in (a) is in the range of from 0.5 to 50, more preferably of from 1 to 20, more preferably of from 2 to 10, more preferably of from 2.5 to 5, more preferably of from 3 to 4, and more preferably of from 3.3 to 3.4.
As disclosed above, no particular restriction applies in view of the physical or chemical nature of the mixture prepared in (a) . It is preferred that the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotemplates in the mixture prepared in (a) is in the range of from 0.1 to 50, more preferably of from 0.5 to 20, more preferably of from 1 to 10, more preferably of from 1.4 to 5, more preferably of from 1.6 to 3, and more preferably of from 1.8 to 2.5.
As regards the physical or chemical nature of the framework structure of the first zeolitic materi-al in the mixture prepared according to (a) , no particular restriction applies. It is preferred that the molar ratio H 2O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared according to (a) is in the range of from 5 to 30, more preferably in the range of from 8 to 25, more preferably in the range of from 10 to 20, more preferably in the range of from 12 to 18, and more preferably in the range of from 14 to 16.
As regards further steps in view of the process comprising (a) , (b) and (c) , no particular re-striction applies. It is preferred that the process comprising (a) , (b) and (c) comprises one or more further steps. It is particularly preferred that the process for the preparation of the seed crystals further comprises
(i) optionally isolating the zeolitic material obtained in (c) , preferably by filtration; and/or, preferably and
(ii) optionally washing the zeolitic material obtained in (c) or (i) , preferably with distilled water; and/or, preferably and
(iii) optionally drying the zeolitic material obtained in (c) , (i) , or (ii) .
As disclosed above, no particular restriction applies as regards the physical or chemical nature of the zeolitic material crystallized in (b) . It is preferred that the zeolitic material crystallized in (b) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed struc-tures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof, wherein more preferably the zeolitic material crystallized in (b) has a CHA-and/or AEI-type framework structure, wherein more pref-erably the zeolitic material crystallized in (b) has a CHA-type framework structure.
As regards the physical or chemical nature of the one or more sources of SiO 2, no particular restriction applies. It is preferred that the one or more sources of SiO 2 are selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, more preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of colloidal silica, fumed silica, silica gel, pyrogenic silica, and combinations of two or more thereof, wherein more preferably the one or more sources of SiO 2 comprises colloidal silica and/or fumed silica, preferably fumed silica, wherein more preferably the one or more sources of SiO 2 is fumed silica.
As regards the physical or chemical nature of the one or more sources of Ga 2O 3, no particular restriction applies. It is preferred that the one or more sources of Ga 2O 3 comprises one or more gallium salts, wherein more preferably the one or more sources of Ga 2O 3 comprises gallium nitrate, wherein more preferably one or more sources of Ga 2O 3 consists of gallium nitrate.
As regards the physical or chemical nature of the solvent system, no particular restriction ap-plies. It is preferred that the solvent system is selected from the group consisting of optionally  branched (C 1-C 4) alcohols, distilled water, and mixtures thereof, preferably from the group con-sisting of optionally branched (C 1-C 3) alcohols, distilled water, and mixtures thereof, more pref-erably from the group consisting of methanol, ethanol, distilled water, and mixtures thereof, wherein more preferably the solvent system comprises distilled water, wherein more preferably the solvent system consists of distilled water.
In the case where the solvent system comprises distilled water, no particular restriction applies as regards the physical or chemical nature of the mixture prepared according to (1) or (1a) , e.g. the molar ratio H 2O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture. It is preferred that the molar ratio H 2O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared according to (1) or (1a) ranges from 5 to 90, more preferably from 10 to 75, more preferably from 20 to 65, more preferably from 30 to 58, more preferably from 36 to 52, more preferably from 40 to 48, and more preferably from 42 to 46.
As regards the physical or chemical nature of the seed crystals used in the process according to any of the embodiments disclosed herein, no particular restriction applies. It is preferred that the seed crystals comprise one or more zeolitic materials comprising SiO 2 and Ga 2O 3 in its frame-work structure as obtainable and or obtained according to the process of any of the embodi-ments disclosed herein.
As regards the physical or chemical nature of the one or more metal cations M no particular restriction applies provided that the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof. It is preferred that the one or more metal cations M are selected from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mix-tures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cations M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
The present invention further relates to a zeolitic material obtainable from the process of any of the embodiments as disclosed herein.
Further, the present invention relates to a process for the treatment of NO x by selective catalytic reduction, wherein the process comprises
(A) providing a gas stream containing one or more nitrogen oxides;
(B) contacting the gas stream provided in step (A) with a zeolitic material according to any of the embodiments disclosed herein.
As regards the physical or chemical nature of the gas stream, no particular restriction applies such that the gas stream may comprise further components. It is preferred that the gas stream  provided in (A) further comprises one or more reducing agents, wherein the reducing agent more preferably comprises ammonia and/or urea.
As disclosed above, no particular restriction applies as regards the physical or chemical nature of the gas stream. It is preferred that the gas stream provided in (A) comprises one or more waste gases, more preferably one or more waste gases from one or more industrial processes, wherein more preferably the waste gas stream comprises one or more waste gas streams ob-tained in processes for producing adipic acid, nitric acid, hydroxylamine derivatives, caprolac-tame, glyoxal, methyl-glyoxal, glyoxylic acid or in processes for burning nitrogeneous materials, including mixtures of waste gas streams from two or more of said processes, wherein even more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid and/or nitric acid.
As disclosed above, no particular restriction applies as regards the physical or chemical nature of the gas stream. It is preferred that the gas stream provided in (A) comprises one or more waste gases from an internal combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
As regards the conditions of contacting of the gas stream with the zeolitic material in (B) , e.g. the temperature at which contacting is conducted, no particular restriction applies. It is preferred that the contacting of the gas stream with the zeolitic material in (B) is conducted at a tempera-ture comprised in the range of from 250 to 550 ℃, more preferably of from 300 to 500 ℃, more preferably of from 325 to 450 ℃, more preferably of from 350 to 425 ℃, more preferably of from 380 to 420 ℃, and even more preferably of from 390 to 410 ℃.
Further, the present invention relates to an apparatus for the treatment of a gas stream contain-ing NO x, the apparatus comprising a catalyst bed provided in fluid contact with the gas stream to be treated, wherein the catalyst bed comprises a zeolitic material according to any of the em-bodiments disclosed herein.
As regards the physical or chemical nature of the catalyst bed, no particular restriction applies. It is preferred that the catalyst bed is a fixed bed catalyst or a fluidized bed catalyst, more pref-erably a fixed bed catalyst.
As regards further components of the apparatus, no particular restriction applies. It is preferred that the apparatus further comprises one or more devices. It is particularly preferred that the apparatus comprises one or more devices provided upstream of the catalyst bed for injecting one or more reducing agents into the gas stream, wherein the reducing agent more preferably comprises ammonia and/or urea.
Finally, the present invention relates to a use of a zeolitic material according to any of the em-bodiments disclosed herein as a molecular sieve, as an adsorbent, for ion-exchange, as a cata-lyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a  catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more prefer-ably as a catalyst or a precursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x; for the storage and/or adsorption of CO 2; for the oxida-tion of NH 3, in particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more preferably in methanol to olefin (MTO) catalysis; more preferably for the selective catalytic reduction (SCR) of nitrogen oxides NO x, and more preferably for the selective catalytic reduction (SCR) of nitrogen oxides NO x in exhaust gas from a combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
The present invention is further illustrated by the following embodiments and combinations of embodiments as indicated by the respective dependencies and back-references. In particular, it is noted that in each instance where a range of embodiments is mentioned, for example in the context of a term such as "The ... of any of embodiments 1 to 4" , every embodiment in this range is meant to be explicitly disclosed for the skilled person, i.e. the wording of this term is to be understood by the skilled person as being synonymous to "The ... of any of  embodiments  1, 2, 3, and 4" .
1. A zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, wherein the zeo-litic material comprises one or more metal cations M selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material contains 1 wt. -%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the zeolitic material.
2. The zeolitic material of embodiment 1, wherein the zeolitic material contains 0.5 wt. -%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt.%of Si, calculated as SiO 2, in the zeolitic material, preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
3. The zeolitic material of embodiment 1 or 2, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are se-lected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M is preferably Al and/or B, more preferably Al.
4. The zeolitic material of any of embodiments 1 to 3, wherein the one or more metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, preferably from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cat-ions M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
5. The zeolitic material of any of embodiments 1 to 4, wherein the zeolitic material comprises the one or more metal cations M in an amount ranging from 0.01 to 5 wt. -%based on 100 wt.%of Si in the zeolitic material calculated as SiO 2, preferably of from 0.05 to 4 wt. -%, more preferably of from 0.1 to 3 wt. -%, more preferably of from 0.2 to 2.5 wt. -%, more preferably of from 0.4 to 2 wt. -%, more preferably of from 0.6 to 1.5 wt. -%, and more pref-erably of from 0.8 to 1.2 wt. -%.
6. The zeolitic material of any of embodiments 1 to 5, wherein the zeolitic material has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof, wherein more preferably the zeolitic material has a CHA-and/or AEI-type framework structure, wherein more preferably the zeolitic material has a CHA-type framework struc-ture.
7. The zeolitic material of any of embodiments 1 to 6, wherein the zeolitic material has a CHA-type framework structure, wherein preferably the zeolitic material having a CHA-type framework structure is selected from the group consisting of Willhendersonite, ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, MeAPSO-47, Phi, DAF-5, UiO-21, |Li-Na| [Al-Si-O] -CHA, (Ni (deta) 2) -UT-6, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of ZYT-6, SAPO-47, Na-Chabazite, Chabazite, LZ-218, Linde D, Linde R, SAPO-34, ZK-14, K-Chabazite, Phi, DAF-5, UiO-21, SSZ-13, and SSZ-62, including mixtures of two or more thereof, more preferably from the group consisting of Chabazite, Linde D, Linde R, SAPO-34, SSZ-13, and SSZ-62, including mixtures of two or more thereof,  more preferably from the group consisting of Chabazite, SSZ-13, and SSZ-62, including mixtures of two or three thereof, wherein more preferably the zeolitic material comprises chabazite and/or SSZ-13, prefer-ably chabazite, and wherein more preferably the zeolitic material is chabazite and/or SSZ-13, preferably SSZ-13.
8. The zeolitic material of any of embodiments 1 to 6, wherein the zeolitic material has an AEI-type framework structure, wherein preferably the zeolitic material having an AEI-type framework structure is selected from the group consisting of SSZ-39, SAPO-18, SIZ-8, in-cluding mixtures of two or more thereof, wherein more preferably the zeolitic material comprises SSZ-39, and wherein more preferably the zeolitic material is SSZ-39.
9. The zeolitic material of any of embodiments 1 to 8, wherein the zeolitic material contains 1 wt.-%or less of metal cations, calculated as the respective element, other than the one or more metal cations M and other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt.-%or less, and more preferably 0.001 wt. -%or less.
10. The zeolitic material of embodiment 9, wherein the metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
11. The zeolitic material of any of embodiments 1 to 8, wherein the zeolitic material further contains Na + and/or Li +, preferably Na +, at the ion-exchange sites of the framework struc-ture.
12. The zeolitic material of embodiment 11, wherein the zeolitic material contains 1 wt. -%or less of metal cations other than Ga, Na, Li, and other than the one or more metal cations M, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more pref-erably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt.-%or less.
13. The zeolitic material of embodiment 11 or 12, wherein the metal cations other than Ga, Na, Li, and other than the one or more metal cations M is K, preferably K, Rb, and Cs, and more preferably K, Rb, Cs, Mg, Ca, Sr, and Ba.
14. The zeolitic material of any of embodiments 1 to 13, wherein the SiO 2 : Ga 2O 3 molar ratio of the framework structure of the zeolitic material is in the range of from 5 to 250, prefera-bly of from 10 to 150, more preferably of from 15 to 100, more preferably of from 20 to 80, more preferably of from 26 to 60, more preferably of from 30 to 40, and more preferably of from 32 to 36.
15. The zeolitic material of any of embodiments 1 to 13, wherein the SiO 2 : Ga 2O 3 molar ratio of the framework structure of the zeolitic material is in the range of from 34 to 300, prefer-ably of from 50 to 200, more preferably of from 66 to 150, more preferably of from 80 to 110, and more preferably of from 92 to 96.
16. The zeolitic material of any of embodiments 1 to 15, wherein the mean particle size D50 by volume of the zeolitic material as determined according to ISO 13320: 2009 is of at least 0.3 μm, and is preferably in the range of from 0.3 to 6.0 μm, more preferably in the range of from 1.5 to 4.5 μm, and more preferably in the range of from 2.5 to 3.6 μm.
17. The zeolitic material of any of embodiments 1 to 15, wherein the mean particle size of the primary crystals of the zeolitic material as determined by SEM is in the range of from 100 to 3000 nm, preferably in the range of from 110 to 1000 nm, more preferably in the range of from 120 to 500 nm, and more preferably in the range of from 130 to 250 nm.
18. A process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of embodiments 1 to 17, the process comprising
(1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, and a solvent system;
(2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
(3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of triva-lent elements, calculated as the respective element, other than Ga, based on 100 wt. %of Si, calculated as SiO 2, in the one or more sources of SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less,
wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
19. The process of embodiment 18, wherein the trivalent elements other than Ga are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the trivalent elements other than Ga is preferably Al and/or B, more preferably Al.
20. The process of embodiment 18 or 19, wherein (3) comprises
(3a) subjecting the zeolitic material obtained in (2) to one or more ion exchange proce-dures with H + and/or NH 4 +, preferably with NH 4 +;
(3b) subjecting the zeolitic material obtained in (3a) to one or more ion exchange proce-dures with the one or more metal cations M;
wherein independently from one another (3a) and/or (3b) is preferably repeated 1 to 3 times, more preferably once or twice, and more preferably once.
21. The process of embodiment 18 or 19, wherein in (3) the zeolitic material obtained in (2) is directly subject to ion exchange with the one or more metal cations M, wherein no ion-exchange step is performed prior to ion exchange of the zeolitic material obtained in (2) with the one or more metal cations M.
22. The process of any of embodiments 18 to 21, wherein (1) comprises
(1a) preparing a first mixture comprising the one or more organotemplates as structure directing agents, the one or more sources of SiO 2, and a first portion of the solvent system;
(1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a se-cond portion of the solvent system;
(1c) mixing the first and second mixtures to form a third mixture;
(1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture, preferably by stirring.
23. The process of any of embodiments 18 to 22, wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective ele-ment, other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
24. The process of embodiment 23, wherein the metal cations other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consist-ing of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
25. A process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of embodiments 1 to  17, the process comprising
(1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, one or more metal cations M, and a solvent system;
(2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
(3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of of triva-lent elements, calculated as the respective element, other than Ga and other than any tri-valent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the one or more sources of SiO 2, preferably 0.5 wt. -%or less, more preferably 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less, wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
26. The process of embodiment 25, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof, wherein the tri-valent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M is preferably Al and/or B, more preferably Al.
27. The process of embodiment 25 or 26, wherein (1) comprises
(1a) preparing a first mixture comprising the one or more organotemplates as structure directing agents, the one or more sources of SiO 2, one or more metal cations M, and a first portion of the solvent system;
(1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a se-cond portion of the solvent system;
(1c) mixing the first and second mixtures to form a third mixture;
(1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture, preferably by stirring.
28. The process of any of embodiments 25 to 27, wherein the molar ratio M: Si of the one or more metal cations M to Si in the mixture prepared in (1) or (1a) is in the range of from 0.01 to 0.5, preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more pref-erably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
29. The process of any of embodiments 25 to 28, wherein the one or more metal cations M used for preparing the mixture according to (1) or (1a) are provided as salts, preferably as  one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of sulfate, nitrate, acetate, and mixtures of two or more thereof, wherein more preferably the one or more metal cations M used for preparing the mixture according to (1) or (1a) are provided as nitrates and/or acetates, and more preferably as acetates.
30. The process of any of embodiments 25 to 29, wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of metal cations, calculated as the respective ele-ment, other than the one or more metal cations M and other than Ga, based on 100 wt. %of Si in the zeolitic material calculated as SiO 2, preferably 0.5 wt. -%or less, more prefera-bly 0.1 wt. -%or less, more preferably 0.05 wt. -%or less, more preferably 0.01 wt. -%or less, more preferably 0.005 wt. -%or less, and more preferably 0.001 wt. -%or less.
31. The process of embodiment 30, wherein the metal cations other than the one or more metal cations M and other than Ga is Na, preferably Na and/or K, more preferably one or more metal cations selected from the group consisting of Li, Na, K, Rb, and Cs, and more preferably selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba.
32. The process of any of embodiments 18 to 31, wherein the amount of seed crystals com-prised in the mixture prepared in (1) is in the range of from 0.1 to 15 wt. -%based on 100 wt.%of Si in the mixture calculated as SiO 2, and preferably of from 0.5 to 11 wt. -%, more preferably of from 0.8 to 8 wt. -%, more preferably of from 1.2 to 5 wt. -%, more preferably of from 1.5 to 3 wt. -%, and more preferably of from 1.8 to 2.5 wt. -%.
33. The process of any of embodiments 18 to 32, wherein the seed crystals comprise one or more zeolitic materials having the framework structure of the zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure obtained according to the process of any of embodiments 1 to 49, wherein preferably the one or more zeolitic materials of the seed crystals is obtainable and/or obtained according to the process of any of embodiments 1 to 49.
34. The process of any of embodiments 18 to 33, wherein the zeolitic material crystallized in (2) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof,  wherein more preferably the zeolitic material crystallized in (2) has a CHA-and/or AEI-type framework structure, wherein more preferably the zeolitic material crystallized in (2) has a CHA-type framework structure.
35. The process of any of embodiments 18 to 34, wherein the seed crystals comprise one or more zeolitic materials having a framework structure type selected from the group consist-ing of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed struc-tures of two or more thereof, wherein more preferably the seed crystals comprise one or more zeolitic materials having a CHA-and/or AEI-type framework structure, wherein more preferably the seed crystals comprise one or more zeolitic materials having a CHA-type framework structure.
36. The process of any of embodiments 18 to 35, wherein the one or more organotemplates comprise one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for adamantyl and/or benzyl, preferably for 1-adamantyl.
37. The process of embodiment 36, wherein R 1 , R 2, and R 3 independently from one another stand for optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, more preferably for methyl or ethyl, and more pref-erably for methyl.
38. The process of embodiment 36 or 37, wherein R 4 stands for adamantyl and/or benzyl, preferably for adamantyl, more preferably for 1-adamantyl.
39. The process of any of embodiments 36 to 38, wherein the one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl-1-adamantammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-1-adamantammonium com-pounds, more preferably one or more compounds selected from N, N, N-triethyl-1-adamantammonium, N, N-diethyl-N -methyl-1-adamantammonium, N, N-dimethyl-N -ethyl-1-adamantammonium, N, N, N -trimethyl-1-adamantammonium compounds, and mixtures  of two or more thereof, wherein more preferably the one or more tetraalkylammonium cat-ion R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N -trimethyl-1-adamantammonium compounds.
40. The process of any of embodiments 18 to 35, wherein the one or more organotemplates comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds, wherein R 1, R 2, and R 3 independently from one another stand for alkyl, and wherein R 4 stands for cycloalkyl.
41. The process of embodiment 40, wherein R 1 and R 2 independently from one another stand for optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for methyl or ethyl, wherein more pref-erably R 1 and R 2 independently from one another stand for methyl.
42. The process of embodiment 40 or 41, wherein R 3 stands for optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, and more preferably for methyl or ethyl, wherein more preferably R 3 stands for ethyl.
43. The process of any of embodiments 40 to 42, wherein R 4 stands for optionally heterocyclic 5-to 8-membered cycloalkyl, preferably for 5-to 7-membered cycloalkyl, more preferably for 5-or 6-membered cycloalkyl, wherein more preferably R 4 stands for optionally hetero-cyclic 6-membered cycloalkyl, and more preferably for cyclohexyl.
44. The process of any of embodiments 40 to 43, wherein the one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N, N-tri (C 1-C 4) alkyl- (C 5-C 7) cycloalkylammonium compounds, preferably one or more N, N, N-tri (C 1-C 3) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl- (C 5-C 6) cycloalkylammonium compounds, more preferably one or more N, N, N-tri (C 1-C 2) alkyl-cyclopentylammonium and/or one or more N, N, N-tri (C 1-C 2) alkyl-cyclohexylammonium compounds, more preferably one or more compounds selected from N, N, N-triethyl-cyclohexylammonium, N, N-diethyl-N -methyl-cyclohexylammonium, N, N-dimethyl-N -ethyl-cyclohexylammonium, N, N, N -trimethyl-cyclohexylammonium com-pounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-N -ethyl-cyclohexylammonium and/or N, N, N -trimethyl-cyclohexylammonium compounds, more preferably one or more N, N, N -trimethyl-cyclohexylammonium com-pounds.
45. The process of any of embodiments 18 to 35, wherein the one or more organotemplates comprises one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds,  wherein R 1, R 2, R 3 and R 4 independently from one another stand for alkyl, and wherein R 3 and R 4 form a common alkyl chain.
46. The process of embodiment 45, wherein R 1 and R 2 independently from one another stand for optionally branched (C 1-C 6) alkyl, preferably (C 1-C 5) alkyl, more preferably (C 1-C 4) alkyl, more preferably (C 1-C 3) alkyl, wherein more preferably R 1 and R 2 independently from one another stand for methyl or ethyl, and more preferably for ethyl.
47. The process of embodiment 45 or 46, wherein R 3 and R 4 form a common (C 4 –C 8) alkyl chain, more preferably a common (C 4 –C 7) alkyl chain, more preferably a common (C 4 –C 6) alkyl chain, wherein more preferably said common alkyl chain is a C 4 or C 5 alkyl chain, and more preferably a C 5 alkyl chain.
48. The process of any of embodiments 45 to 47, wherein the one or more tetraalkylammoni-um cation R 1R 2R 3R 4N +-containing compounds comprise one or more ammonium com-pounds selected from the group consisting of N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylpyrrolidinium compounds, N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylpiperidinium com-pounds, N, N-di (C 1-C 4) alkyl-3, 5-di (C 1-C 4) alkylhexahydroazepinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylpyrrolidinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylpiperidinium compounds, N, N-di (C 1-C 4) alkyl-2, 6-di (C 1-C 4) alkylhexahydroazepinium compounds, and mixtures of two or more thereof, preferably from the group consisting of N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylpyrrolidinium compounds, N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylpiperidinium compounds, N, N-di (C 1-C 3) alkyl-3, 5-di (C 1-C 3) alkylhexahydroazepinium compounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylpyrrolidinium compounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylpiperidinium com-pounds, N, N-di (C 1-C 3) alkyl-2, 6-di (C 1-C 3) alkylhexahydroazepinium compounds, and mix-tures of two or more thereof, more preferably from the group consisting of N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpyrrolidinium compounds, N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpiperidinium com-pounds, N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylhexahydroazepinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpyrrolidinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpiperidinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylhexahydroazepinium compounds, and mixtures of two or more thereof, more preferably from the group consisting of N, N-di (C 1-C 2) alkyl-3, 5-di (C 1-C 2) alkylpiperidinium compounds, N, N-di (C 1-C 2) alkyl-2, 6-di (C 1-C 2) alkylpiperidinium com-pounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-dimethyl-3, 5-dimethylpiperidinium and/or N, N-diethyl-2, 6-dimethylpiperidinium com-pounds, preferably one or more N, N-diethyl-2, 6-dimethylpiperidinium compounds.
49. The process of any of embodiments 45 to 48, wherein the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium compounds display the cis configuration, the trans configuration, or contain a mixture of the cis and trans isomers, wherein preferably the N, N-dialkyl-2, 6-dialkylpyrrolidinium compounds, N, N-dialkyl-2, 6-dialkylpiperidinium compounds, and/or N, N-dialkyl-2, 6-dialkylhexahydroazepinium com-pounds display the cis configuration, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more ammonium compounds selected from the group consisting of N, N-di (C 1-C 2) alkyl-cis-2, 6-di (C 1-C 2) alkylpiperidinium compounds, and mixtures of two or more thereof, wherein more preferably the one or more tetraalkylammonium cation R 1R 2R 3R 4N +-containing compounds comprise one or more N, N-diethyl-cis-2, 6-dimethylpiperidinium compounds.
50. The process of any of embodiments 18 to 49, wherein the one or more organotemplates are provided as salts, preferably as one or more salts selected from the group consisting of halides, sulfate, nitrate, phosphate, acetate, and mixtures of two or more thereof, more preferably from the group consisting of bromide, chloride, hydroxide, sulfate, and mixtures of two or more thereof, wherein more preferably the one or more organotemplates are provided as hydroxides and/or bromides, and more preferably as hydroxides.
51. The process of any of embodiments 18 to 50, wherein the mixture prepared in (1) , (1a) , or (1b) , preferably in (1a) and (1b) , comprises hydroxide salts.
52. The process of embodiment 51, wherein the molar ratio of OH -in the first mixture pre-pared in (1a) to OH -in the second mixture prepared in (1b) is in the range of from 0.01 to 100, preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
53. The process of embodiment 51 or 52, wherein the molar ratio OH -: organotemplate in the mixture prepared in (1) is in the range of from 0.01 to 100, preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more preferably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
54. The process of any of embodiments 18 to 53, wherein the mixture prepared in (1) or (1a) comprises one or more alkali metals, preferably one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, more preferably from the group consisting of Li, Na, and K, wherein more preferably the mixture prepared in (1) or (1a) comprises Li and/or Na, preferably Na.
55. The process of embodiment 54, wherein the molar ratio of the one or more alkali metals to the one or more organotemplates is in the range of from 0.01 to 100, preferably of from 0.05 to 20, more preferably of from 0.1 to 10, more preferably of from 0.2 to 5, more pref-erably of from 0.4 to 2.5, more preferably of from 0.6 to 1.7, and more preferably of from 0.8 to 1.25.
56. The process of any of embodiments 18 to 55, wherein the molar ratio Ga 2O 3: SiO 2 of the one or more sources for Ga 2O 3 to the one or more sources for SiO 2 in the mixture pre-pared in (1) or (1a) is in the range of from 0.01 to 0.5, preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
57. The process of any of embodiments 18 to 56, wherein the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotem-plates in the mixture prepared in (1) or (1a) is in the range of from 1 to 50, preferably of from 2 to 20, more preferably of from 3 to 10, more preferably of from 4 to 7, and more preferably of from 4.5 to 5.5.
58. The process of any of embodiments 18 to 57, wherein after (2) and prior to (3) the process comprises
(i) optionally isolating the zeolitic material obtained in (2) , preferably by filtration;
and/or, preferably and
(ii) optionally washing the zeolitic material obtained in (2) or (i) , preferably with distilled water;
and/or, preferably and
(iii) optionally drying the zeolitic material obtained in (2) , (i) , or (ii) ;
and/or, preferably and
(iv) optionally calcining the zeolitic material obtained in (2) , (i) , (ii) , or (iii) .
59. The process of embodiment 58, wherein calcination in (iv) is conducted for a duration in the range of from 0.5 to 15 h, preferably of from 1 to 10 h, more preferably of from 1.5 to 8 h, more preferably of from 2 to 6 h, more preferably of from 2.5 to 5.5 h, more preferably of from 3 to 5 h, and more preferably of from 3.5 to 4.5 h.
60. The process of embodiment 58 or 59, wherein calcination in (iv) is conducted at a temper-ature in the range of from 300 to 900 ℃, preferably of from 350 to 800 ℃, more prefera-bly of from 400 to 750 ℃, more preferably of from 450 to 700 ℃, more preferably of from 500 to 650 ℃, and more preferably of from 560 to 600 ℃.
61. The process of any of embodiments 18 to 60, wherein heating in (2) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more prefer-ably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
62. The process of any of embodiments 18 to 61, wherein heating in (2) is conducted at a temperature in the range of from 80 to 220 ℃, preferably of from 100 to 200 ℃, more preferably of from 120 to 180 ℃, more preferably of from 130 to 170 ℃, more preferably of from 140 to 160 ℃, and more preferably of from 145 to 155 ℃.
63. The process of any of embodiments 18 to 62, wherein heating in (2) is conducted under autogenous pressure, preferably under solvothermal conditions, more preferably under hydrothermal conditions, wherein preferably heating in (2) is performed in a pressure tight vessel, preferably in an autoclave.
64. The process of any of embodiments 18 to 63, wherein the seed crystals are prepared ac-cording to a process comprising
(a) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of B 2O 3, and a solvent system;
(b) heating the mixture obtained in (1) for crystallizing a zeolitic material from the mix-ture;
(c) subjecting the zeolitic material obtained in (b) to an acid treatment.
65. The process of embodiment 64, wherein heating in (b) is conducted for a duration in the range of from 0.5 to 15 d, and more preferably from 1 to 10 d, more preferably from 2 to 8 d, more preferably from 3 to 7 d, more preferably from 3.5 to 6.5 d, more preferably from 4 to 6 d, preferably from 4.5 to 5.5 d.
66. The process of embodiment 64 or 65, wherein heating in (b) is conducted at a tempera-ture in the range of from 80 to 220 ℃, preferably of from 100 to 200 ℃, more preferably of from 120 to 190 ℃, more preferably of from 130 to 180 ℃, more preferably of from 150 to 170 ℃, and more preferably of from 155 to 165 ℃.
67. The process of any of embodiments 64 to 66, wherein heating in (b) is conducted under autogenous pressure, preferably under solvothermal conditions, more preferably under hydrothermal conditions, wherein preferably heating in (2) is performed in a pressure tight vessel, preferably in an autoclave..
68. The process of any of embodiments 64 to 67, wherein the acid employed in (c) is in aque-ous solution, wherein the concentration of the acid in the aqueous solution is in the range  of from 0.01 to 0.5, preferably of from 0.03 to 0.3, more preferably of from 0.05 to 0.2, more preferably of from 0.07 to 0.15, and more preferably of from 0.09 to 0.11.
69. The process of any of embodiments 64 to 68, wherein the acid employed in (c) is selected from the group consisting of HCl, HNO 3, H 3PO 4, H 2SO 4, H 3BO 3, HF, HBr, HClO 4, and mix-tures of two or more thereof, preferably from the group consisting of HCl, HNO 3, H 2SO 4, HBr, HClO 4, and mixtures of two or more thereof, wherein more preferably the acid em-ployed in (c) is HCl and/or HNO 3, preferably HNO 3.
70. The process of any of embodiments 64 to 69, wherein the treatment in (c) is conducted for a duration in the range of from 0.1 to 6 h, preferably of from 0.5 to 4 h, more preferably of from 1 to 3 h, more preferably of from 1.5 to 2.5 h, and more preferably of from 1.8 to 2.2 h.
71. The process of any of embodiments 64 to 70, wherein the treatment in (c) is conducted at a temperature in the range of from 20 to 95 ℃, preferably of from 30 to 85 ℃, more pref-erably of from 40 to 80 ℃, more preferably of from 45 to 75 ℃, more preferably of from 50 to 70 ℃, and more preferably of from 55 to 65 ℃.
72. The process of any of embodiments 64 to 71, wherein the one or more sources for B 2O 3 is selected from the group consisting of boric acid, borates, boric esters, and mixtures of two or more thereof, preferably from the group consisting of boric acid, borates, triethyl borate, trimethyl borateboric esters, and mixtures of two or more thereof, wherein more preferably the one or more sources for B 2O 3 comprises boric acid and/or borates, preferably boric acid, wherein more preferably the one or more sources for B 2O 3 consists of boric acid and/or borates, preferably of boric acid.
73. The process of any of embodiments 64 to 72, wherein the molar ratio SiO 2: B 2O 3 of the one or more sources for SiO 2 to the one or more sources for B 2O 3 in the mixture prepared in (a) is in the range of from 0.5 to 50, preferably of from 1 to 20, more preferably of from 2 to 10, more preferably of from 2.5 to 5, more preferably of from 3 to 4, and more prefera-bly of from 3.3 to 3.4.
74. The process of any of embodiments 64 to 73, wherein the molar ratio SiO 2: organotemplate of the one or more sources for SiO 2 to the one or more organotem-plates in the mixture prepared in (a) is in the range of from 0.1 to 50, preferably of from 0.5 to 20, more preferably of from 1 to 10, more preferably of from 1.4 to 5, more prefera-bly of from 1.6 to 3, and more preferably of from 1.8 to 2.5.
75. The process of any of embodiments 64 to 74, wherein the molar ratio H 2O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared ac-cording to (a) ranges from 5 to 30, preferably of from 8 to 25, more preferably of from 10 to 20, more preferably of from 12 to 18, and more preferably of from 14 to 16.
76. The process of any of embodiments 64 to 75, wherein the process for the preparation of the seed crystals further comprises
(i) optionally isolating the zeolitic material obtained in (c) , preferably by filtration;
and/or, preferably and
(ii) optionally washing the zeolitic material obtained in (c) or (i) , preferably with distilled water;
and/or, preferably and
(iii) optionally drying the zeolitic material obtained in (c) , (i) , or (ii) .
77. The process of any of embodiments 64 to 76, wherein the zeolitic material crystallized in (b) has a framework structure type selected from the group consisting of AEI, BEA, BEC, CHA, EUO, FAU, FER, GIS, HEU, ITH, ITW, LEV, MEL, MFI, MOR, MTN, MWW, AFT, AFV, AFX, AVL, EMT, GME, KFI, LEV, LTN, SFW, and TON, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, EMT, GIS, GME, KFI, LEV, LTN, MTN, SFW, BEA, CHA, FAU, FER, MFI, MOR, and MWW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, AFT, AFV, AFX, AVL, CHA, EMT, GIS, GME, KFI, LEV, LTN, MTN, and SFW, including mixed structures of two or more thereof, more preferably from the group consisting of AEI, CHA, GIS, and MTN, including mixed structures of two or more thereof, wherein more preferably the zeolitic material crystallized in (b) has a CHA-and/or AEI-type framework structure, wherein more preferably the zeolitic material crystallized in (b) has a CHA-type framework structure.
78. The process of any of embodiments 18 to 77, wherein the one or more sources of SiO 2 are selected from the group consisting of silicas, silicates, silicic acid and combinations of two or more thereof, preferably selected from the group consisting of silicas, alkali metal silicates, silicic acid, and combinations of two or more thereof, more preferably selected from the group consisting of fumed silica, colloidal silica, reactive amorphous solid silica, silica gel, pyrogenic silica, lithium silicates, sodium silicates, potassium silicates, silicic ac-id, and combinations of two or more thereof, more preferably selected from the group consisting of colloidal silica, fumed silica, silica gel, pyrogenic silica, and combinations of two or more thereof, wherein more preferably the one or more sources of SiO 2 comprises colloidal silica and/or fumed silica, preferably fumed silica, wherein more preferably the one or more sources of SiO 2 is fumed silica.
79. The process of any of embodiments 18 to 78, wherein the one or more sources of Ga 2O 3 comprises one or more gallium salts, wherein preferably the one or more sources of Ga 2O 3 comprises gallium nitrate, wherein more preferably one or more sources of Ga 2O 3 consists of gallium nitrate.
80. The process of any of embodiments 18 to 79, wherein the solvent system is selected from the group consisting of optionally branched (C 1-C 4) alcohols, distilled water, and mixtures thereof, preferably from the group consisting of optionally branched (C 1-C 3) alcohols, dis-tilled water, and mixtures thereof, more preferably from the group consisting of methanol, ethanol, distilled water, and mixtures thereof, wherein more preferably the solvent system comprises distilled water, wherein more preferably the solvent system consists of distilled water.
81. The process of embodiment 80, wherein the molar ratio H 2O : SiO 2 of water to SiO 2 in the framework structure of the first zeolitic material in the mixture prepared according to (1) or (1a) ranges from 5 to 90, preferably from 10 to 75, more preferably from 20 to 65, more preferably from 30 to 58, more preferably from 36 to 52, more preferably from 40 to 48, and more preferably from 42 to 46.
82. The process of any of embodiments 18 to 81, wherein the seed crystals comprise one or more zeolitic materials comprising SiO 2 and Ga 2O 3 in its framework structure as obtaina-ble and or obtained according to the process of any of embodiments 18 to 81.
83. The process of any one of embodiments 18 to 82, wherein the one or more metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, preferably from the group consisting of Sr, Cr, Mo, Fe, Co, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Cr, Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, more preferably from the group consisting of Mg, Mo, Fe, Ni, Cu, Zn, Ag, and mixtures of two or more thereof, wherein more preferably the one or more cat-ions M comprise Cu and/or Fe, preferably Cu, wherein even more preferably the one or more cations M consist of Cu and/or Fe, preferably of Cu.
84. A zeolitic material obtainable from the process of any of embodiments 18 to 83.
85. A process for the treatment of NO x by selective catalytic reduction comprising
(A) providing a gas stream containing one or more nitrogen oxides;
(B) contacting the gas stream provided in step (A) with a zeolitic material according to any of embodiments 1 to 17 and 84.
86. The process of embodiment 85, wherein the gas stream provided in (A) further comprises one or more reducing agents, wherein the reducing agent preferably comprises ammonia and/or urea.
87. The process of embodiment 85 or 86, wherein the gas stream provided in (A) comprises one or more waste gases, preferably one or more waste gases from one or more industri-al processes, wherein more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid, nitric acid, hydroxyla-mine derivatives, caprolactame, glyoxal, methyl-glyoxal, glyoxylic acid or in processes for burning nitrogeneous materials, including mixtures of waste gas streams from two or more of said processes, wherein even more preferably the waste gas stream comprises one or more waste gas streams obtained in processes for producing adipic acid and/or nitric acid.
88. The process of any of embodiments 85 to 87, wherein the gas stream provided in (A) comprises one or more waste gases from an internal combustion engine, preferably from a diesel engine or from a lean burn gasoline engine.
89. The process of any of embodiments 85 to 88, wherein the contacting of the gas stream with the zeolitic material in (B) is conducted at a temperature comprised in the range of from 250 to 550 ℃, preferably of from 300 to 500 ℃, more preferably of from 325 to 450 °C, more preferably of from 350 to 425 ℃, more preferably of from 380 to 420 ℃, and even more preferably of from 390 to 410 ℃.
90. Apparatus for the treatment of a gas stream containing NO x, the apparatus comprising a catalyst bed provided in fluid contact with the gas stream to be treated, wherein the cata-lyst bed comprises a zeolitic material according to any of embodiments 1 to 17 and 84.
91. The apparatus of embodiment 90, wherein the catalyst bed is a fixed bed catalyst or a fluidized bed catalyst, preferably a fixed bed catalyst.
92. The apparatus of embodiment 90 or 91 further comprising one or more devices provided upstream of the catalyst bed for injecting one or more reducing agents into the gas stream, wherein the reducing agent preferably comprises ammonia and/or urea.
93. Use of a zeolitic material according to any of embodiments 1 to 17 and 84 as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof, preferably as a catalyst or a precursor thereof and/or as a catalyst support or a precursor thereof, more preferably as a catalyst or a pre-cursor thereof, more preferably as a catalyst for the selective catalytic reduction (SCR) of nitrogen oxides NO x; for the storage and/or adsorption of CO 2; for the oxidation of NH 3, in  particular for the oxidation of NH 3 slip in diesel systems; for the decomposition of N 2O; as an additive in fluid catalytic cracking (FCC) processes; and/or as a catalyst in organic conversion reactions, preferably in the conversion of alcohols to olefins, and more prefer-ably in methanol to olefin (MTO) catalysis; more preferably for the selective catalytic re-duction (SCR) of nitrogen oxides NO x, and more preferably for the selective catalytic re-duction (SCR) of nitrogen oxides NO x in exhaust gas from a combustion engine, prefera-bly from a diesel engine or from a lean burn gasoline engine.
DESCRIPTION OF THE FIGURES
Figure 1 displays the SEM micrograph of the zeolitic material obtained according to Reference Example 2 displaying an Si: Ga molar ratio of 17.
Figure 2 shows HRTEM images of the zeolitic material obtained according to Refer-ence Example 2 displaying an Si: Ga molar ratio of 17, wherein (a) shows fac-etted, platelike Ga-CHA (17) crystals with a size of about 100 nm, (b) is the enlarged image from the marked box in (a) , showing the d 101, and (c) is the HRTEM of a single crystal recorded along 
Figure PCTCN2019108284-appb-000002
Figure 3 displays the results from SCR testing and in particular the NO conversion (closed symbols) and N 2O make (open symbols) for the zeolitic material ob-tained according to Example 1 displaying an Si: Ga molar ratio of 17 ( “Cu-Ga-CHA (17) ” ) compared to Cu-B-CHA samples displaying an Si: B molar ratio of 14 ( “Cu-B-CHA (14) ” ) and 22 ( “Cu-B-CHA (22) ” ) , respectively, and Cu-Al-CHA displaying an Si: Al molar ratio of 13 ( “Cu-Al-CHA” ) . In the figure, the tempera-ture in ℃ is plotted along the abscissa, the NO conversion rate in %is plotted along the left ordinate, and the N 2O make in %is plotted along the right ordi-nate.
Figure 4 displays the results from SCR testing and in particular the NO conversion and N 2O make for the zeolitic material obtained according to Example 1 displaying an Si: Ga molar ratio of 17 at copper loading levels of 4 wt. -%and 1 wt. -%, re-spectivels. In the figure, the temperature in ℃ is plotted along the abscissa, the NO conversion rate in %is plotted along the left ordinate, and the N 2O make in %is plotted along the right ordinate.
Figure 5 displays the results from SCR testing and in particular the NO conversion and N 2O make for the fresh zeolitic materials obtained according to Example 1 displaying an Si: Ga molar ratios of 17 ( “Cu-Ga-CHA (17) ” ) , 33 ( “Cu-Ga-CHA (33) ” ) , and 47 ( “Cu-Ga-CHA (47) ” ) , according to Example 2 displaying an  Si: Ga molar ratio of 17 ( “Cu-Ga-CHA (17) *” ) , and of a sodium containing sam-ple displaying an Si: Ga molar ratios of 33 ( “Na-Cu-Ga-CHA (33) ” ) . In the figure, the temperature in ℃ is plotted along the abscissa, the NO conversion rate in %is plotted along the left ordinate, and the NO conversion rate in %and the N 2O make in %are respectively plotted along the ordinate.
Figure 6 displays the results from SCR testing and in particular the NO conversion and N 2O make for the steamed zeolitic material obtained according to Example 1 displaying an Si: Ga molar ratios of 17 ( “Cu-Ga-CHA (17) ” ) , 33 ( “Cu-Ga-CHA (33) ” ) , and 47 ( “Cu-Ga-CHA (47) ” ) , according to Example 2 displaying an Si:Ga molar ratio of 17 ( “Cu-Ga-CHA (17) *” ) , and of a sodium containing sam-ple displaying an Si: Ga molar ratios of 33 ( “Na-Cu-Ga-CHA (33) ” ) . In the figure, the temperature in ℃ is plotted along the abscissa, the NO conversion rate in %is plotted along the left ordinate, and the NO conversion rate in %and the N 2O make in %are respectively plotted along the ordinate.
EXPERIMENTAL
Characterization via X-ray diffraction analysis
Powder X-ray diffraction (XRD) patterns were routinely collected on a STOE STADI P diffrac-tometer using an image plate detector, Cu Kα radiation and transmission geometry. For lattice parameter refinements, powder XRD data were recorded from a Bruker D8 Advance powder diffractometer in modified Debye-Scherrer geometry using MoKα radiation
Figure PCTCN2019108284-appb-000003
Figure PCTCN2019108284-appb-000004
The diffractometer was equipped with a focussing multilayer 
Figure PCTCN2019108284-appb-000005
mirror and a “Lynx Eye “position-sensitive detector (2θ coverage = 3.2°) . Lattice parameters were refined using the Le Bail method [38] . Si/B ratios of the samples were determined at the ‘Bodemkundi-ge Dienst van
Figure PCTCN2019108284-appb-000006
VZW’ (Heverlee, Belgium) .
Characterization via ICP-OES
Other bulk elemental analyses were performed using a Varian 720-ES inductively coupled plasma optical emission spectrometer (ICP-OES) .
Characterization via SEM and TEM
Crystal morphology and size were investigated using scanning electron microscopy (SEM) on a Philips XL30 SEM FEG microscope. High-resolution transmission electron microscopy (HRTEM) data were collected with an FEI Tecnai G2 Spirit Twin TEM operating at 120 kV using a Gatan US1000 2k x 2k CCD camera.
Characterization surface area and porosity characteristics
Textural properties were measured using N 2 physisorption. N 2 adsorption and desorption iso-therms were collected using a Micromeritics 3Flex surface analyzer at -196℃ after evacuating the samples at 350℃ for 12 h under vacuum. From the N 2 isotherms, the specific surface area (S BET) was determined using the BET method (p/p 0 0.05-0.3) . The specific micropore volume (V micro) was obtained from t-plot analysis.
Testing in SCR
Catalyst powders were granulated by pressing between two metal bolts followed by crushing and sieving. The fraction with mesh size between 0.250 and 0.500 mm was separated and used for catalytic testing. Catalytic testing of the samples was performed in a quartz fixed bed tube reactor with downstream flow and an internal diameter of 4 mm at atmospheric pressure. 200 mg granulated catalyst (mesh size 0.250 -0.500 mm) was fixed in the middle of the reactor bed using quartz wool. A thermocouple was placed inside the catalyst bed to control the reactor temperature. The catalyst was pretreated by heating at 5℃/min in a flow of O 2 (30 mL/min) to 450℃ and remaining at 450℃ for 0.5 h.
After pretreatment, the catalyst was cooled down in a flow of O 2 (30 mL/min) to 150℃. For the testing conditions, a gas mixture consisting of 500 ppm NH 3, 500 ppm NO, 10 %O 2, 10 %CO 2 and 5 %H 2O in N 2 was prepared by diluting 0.5 %NH 3 in N 2 (30 mL/min) , 0.5 %NO in N 2 (30 mL/min) , O 2 (30 mL/min) and CO 2 (30 mL/min) in N 2 (150 mL/min) . Using a temperature controlled evaporator, H 2O was added to the latter N 2 stream prior to mixing with NH 3, NO, O 2 and CO 2. This gas mixture was passed over the catalyst at 150℃ using a space velocity of 80,000 h -1. The catalyst was tested at 150℃, 200℃, 250℃, 350℃, and 450℃ by remaining 1 h at each temperature step and heating at 5℃/min in between two temperature steps. The reactor outlet was analyzed using a GASMET FT-IR Gas analyser (Model DX4000) .
To test the stability of the catalysts, the catalysts were hydrothermally aged by steam treatment in 5 %H 2O at 750℃ for 6 h (5 ℃/min) .
Testing of NO oxidation
For testing NO oxidation, the catalyst was cooled down to 100℃ under O 2 flow (30 mL/min) after pretreatment. To test the NO oxidation, a gas mixture of 790 ppm NO and 5.2 %O 2 in N 2 (total flow 190 mL/min, space velocity of 56, 300 h -1) was used. The catalyst was tested at 100℃, 150℃, 200℃, 250℃, 350℃, and 450℃ by remaining 1 h at each temperature step and heat-ing at 5℃/min in between two temperature steps.
Reference Example 1: Synthesis of B-CHA
B 3+-containing CHA was prepared with two different Si/B 3+ ratios based on the literature proce-dures in Regli, L. et al. in J. Phys. Chem. C. 2007, 111, 2992–2999 and Liang, J. et al. in Mi-croporous Mesoporous Mater. 2014, 194, 97–105. To this effect, high B 3+ content CHA was crystallized from a gel with a composition of 1 SiO 2 : 0.3 H 3BO 3 : 0.5 TMAdaOH : 15 H 2O. TMAdaOH (N, N, N-trimethyl-1-adamantylammonium hydroxide, 30 wt%, 46.44 g) , H 3BO 3 (2.46 g) , fumed silica (cabosil M5, 7.92 g) and deionized water (3.18 g) were mixed to form a uniform gel. The gel was transferred to Teflon lined autoclaves and heated for 7 days at 150℃ under static conditions. The suspension was filtered and the material was thoroughly washed with water followed by drying at 60℃. Low B 3+ content CHA was synthesized in a similar way from a gel with composition 1 SiO 2 : 0.08 H 3BO 3 : 0.24 TMAdaOH : 22.3 H 2O, which was heated for 5 days at 160℃ under static conditions. The dried products were calcined in air at 580℃ for 4 h (heating ramp 1℃/min) to obtain the H +-form. The high B 3+ CHA (H-B-CHA (14) ) and the low B 3+ CHA (H-B-CHA (22) ) syntheses resulted in a respective bulk Si/B ratio of 14 and 22.
Reference Example 2: Synthesis of Ga-SSZ-13
The seeded synthesis proposed by Tatsumi and co-workers in Zhu, Q. et al. in Microporous Mesoporous Mater. 2008, 116, 253–257 was successfully adopted using a gel composition 1 SiO 2 : 0.1 Ga (NO 33 ·xH 2O : 0.2 TMAdaOH : 0.2 NaOH : 44 H 2O. First, for an Al-free synthe-sis, highly deboronated chabazite seeds were obtained by stirring 0.3 g calcined H-B-CHA (14) from Reference Example 1 in 0.1 N HNO 3 for 2 h at 60℃, careful washing with water and drying. Next, a solution A was prepared by mixing 13.63 g TMAdaOH (20 wt. %) and 0.25 g NaOH in 20 mL H 2O. 3.88 g fumed silica (Cabosil M5) was added and the mixture was stirred until it was homogeneous. Solution B contained 0.267 g NaOH and 1.652 g Ga (NO 33 ·xH 2O with x = 9-10 in 20.3 mL water. Solution B was added to solution A while stirring, followed by the addition of 0.078 g seeds (2 wt. %with respect to the SiO 2 source) . The suspension was stirred until it was homogeneous, and next crystallized for 5 days at 150℃. After filtering, washing and drying, the material was calcined in air for 4 h at 580℃, using a 1℃/min heating ramp. The bulk Si/Ga ratio of the obtained material was 17. Analogous syntheses were as well performed with lower Ga contents in the gel. Starting from 1 Si : 0.05 Ga and 1 Si : 0.025 Ga, crystalline materials were obtained with Si/Ga = 33 and Si/Ga = 47.
Figure 1 displays the SEM micrograph of the sample displaying an Si: Ga molar ratio of 17, wherein the figure shows intergrown crystals having a particle size in the range of from 100-250 nm.
Figure 2 shows HRTEM images of the sample displaying an Si: Ga molar ratio of 17, wherein (a) shows facetted, platelike Ga-CHA (17) crystals with a size of about 100 nm, (b) is the enlarged  image from the marked box in (a) , showing the d 101, and (c) is the HRTEM of a single crystal recorded along
Figure PCTCN2019108284-appb-000007
A portion of the sample displaying an Si: Ga molar ratio of 17 was converted to the H-form via ion exchange with ammonium and subsequent calcination and subject to surface area and po-rosity analysis, thus affording a BET surface area of 554 m 2/g and a micropore volume of 0.27 cm 3/g.
Example 1: Synthesis of Cu-Ga-SSZ-13 via copper exchange of Ga-SSZ-13
The product of Reference Example 2 was first brought into the NH 4 + form by exchange for 24 h at 25℃ in 1 M NH 4NO 3 (1 g of zeolite per 150 mL solution) . Next, the dried powders were ex-changed with Cu 2+ using a 0.3 M Cu (CH 3COO)  2.3H 2O solution. Depending on the Cu loading desired, 1 g of zeolite was stirred in an appropriate volume of Cu acetate solution for 1 h at 70℃; for instance, 1 g in 3.75 mL of a 0.3 M Cu acetate solution results in 2.5 wt. %Cu loading. After exchange, samples were abundantly rinsed with distilled water until the washing water was free of Cu 2+ (as determined in a test with NH 4OH solution) .
Example 2: Direct synthesis of Cu-Ga-SSZ-13
Reference Example 1 was repeated, wherein Cu was added directly to solution A, in order to avoid the additional step of a Cu exchange in Example 1. To the recipe as described in Refer-ence Example 1, 0.561 g Cu (NO 32 ·3H 2O was added, resulting in 1 SiO 2 : 0.1 Ga (NO 33 : 0.2 TMAdaOH : 0.2 NaOH : 0.035 Cu (NO 32 : 44 H 2O. All other steps were as in Reference Ex-ample 1, resulting in a crystalline material (denoted Cu-Ga-CHA (17) *) with Si/Ga = 17 and 2.5 wt. %Cu.
Example 3: Catalytic testing in SCR –Comparison with Cu-B-CHA and Cu-Al-CHA
A sample of the zeolitic material obtained from Example 1 having a copper loading of 2.5 wt. -%was tested for SCR at temperatures from 150℃ to 450℃. For comparison, samples of copper loaded B-SSZ-13 with Si: B molar ratios of 14 and 22, respectively, and a copper loaded Al-SSZ-13 with an Si: Al molar ratio of 13 were tested under the same conditions. The testing results are displayed in Figure 3. In our conditions, the benchmark Cu-Al-CHA gave 82 %conversion at 150℃, full conversion at 200 -250℃, and then the conversion decreased slightly to 95 %at 450℃. A maximum N 2O make of 12 ppm was reached at 250 ℃. At a WHSV of 80, 000 h -1 and 500 ppm NO, this proves the excellent activity of the reference material. Both Cu-B-CHA cata-lysts showed lower activity, with less than 20 %NO conversion at 150℃ and a maximum con-version of approximately 90 %at 250 -350℃ which decreased to 72 %at 450℃. Also, the N 2O make was higher in both cases with up to 23 ppm N 2O. Finally, Cu-Ga-CHA (17) closely followed  the activity of Cu-Al-CHA, even in the most drastic conditions considered (450℃, 5 vol%water) . This shows that the Ga 3+-substituted chabazite has a hydrothermal stability that is more akin to that of its Al 3+-congener than to that of the B 3+-chabazite. Remarkably, however, the N 2O make was consistently lower for Cu-Ga-CHA (17) than for Cu-Al-CHA. A detailed screening showed that also in the low temperature domain (120-150℃) , Cu-Ga-CHA (17) (2.5 wt%Cu) produced ≤2 ppm N 2O, close to the detection limit.
Thus as may be taken from the results displayed in Figure 3, it has surprisingly been found that compared to copper loaded Al-SSZ-13, Ga-SSZ-13 displays the same high activity relative to the conversion of NO x in SCR, yet affords a far lower make in N 2O.
Example 4: Catalyst testing in SCR –Variation of the copper loading
In order to further map the catalytic characteristics of Cu-Ga-CHA (17) obtained according to Example 1, the dependence of the catalytic performance on the Cu content was studied. As is also well known for the analogous Cu-Al-CHA catalyst, the low temperature performance (at 150℃) is improved by a higher Cu content, but these higher Cu contents somewhat decrease the NO conversion at the highest temperatures (≥ 450℃) . Strikingly, as may be taken from the testing results displayed in Figure 4, the 4 wt%and especially the 1 wt. %Cu-Ga-CHA (17) sam-ple displays an excellent, low N 2O formation (1 ppm or less for 1 wt%Cu) even at complete NO conversion. This low N 2O make is one of the key characteristics of Cu-chabazite SCR catalysts.
Example 5: Catalyst testing in SCR –Influence of sodium content
As may be taken from a comparison of the results displayed in Figure 5 for the fresh and in Fig-ure 6 for the aged catalysts, the activity for or Cu-Ga-CHA (17) obtained according to Example 1 after a steaming treatment for 6 h at 750℃ with 5 vol%H 2O decreased its activity and severely increased the production of N 2O. Therefore, various tracks were explored to increase the re-sistance of Cu-Ga-CHA to steaming. Attention was focused on samples with Si/Ga = 33 or higher, since one expects better hydrothermal stability. As may be taken from the figures, con-version of the as-synthesized and calcined Ga-CHA to the Na + form, followed by the usual Cu exchange (indicated as “Na-Cu-Ga-CHA (33) ” in the figures) , remarkably increased the preser-vation of the SCR activity after steaming.
Quite surprisingly, however, the most steam-stable Ga-based Cu-chabazite catalyst is the cata-lyst according to Example 2 which was obtained by introduction of the Cu directly in the hydro-thermal synthesis of the zeolite (see results for Cu-Ga-CHA (17) *in Figures 5 and 6) .

Claims (15)

  1. A zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, wherein the zeo-litic material comprises one or more metal cations M selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and mixtures of two or more thereof, wherein the one or more metal cations M are located at the ion-exchange sites of the framework structure of the zeolitic material, wherein the zeolitic material con-tains 1 wt. -%or less of trivalent elements, calculated as the respective element, other than Ga and other than any trivalent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the zeolitic material.
  2. The zeolitic material of claim 1, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof.
  3. The zeolitic material of claim 1 or 2, wherein the one or more metal cations M comprise Cu and/or Fe.
  4. The zeolitic material of any of claims 1 to 3, wherein the zeolitic material has a CHA-or an AEI-type framework structure.
  5. A process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of claims 1 to 4, the process comprising
    (1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, and a solvent system;
    (2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
    (3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
    wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of triva-lent elements, calculated as the respective element, other than Ga, based on 100 wt. %of Si, calculated as SiO 2, in the one or more sources of SiO 2,
    wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  6. The process of claim 5, wherein the trivalent elements other than Ga are selected from the group consisting of Al, B, In, and combinations of two or more thereof.
  7. The process of claim 5 or 6, wherein (1) comprises
    (1a) preparing a first mixture comprising the one or more organotemplates as structure directing agents, the one or more sources of SiO 2, and a first portion of the solvent system;
    (1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a se-cond portion of the solvent system;
    (1c) mixing the first and second mixtures to form a third mixture;
    (1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture, preferably by stirring.
  8. A process for the preparation of a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure, preferably of a zeolitic material according to any of claims 1 to 4, the process comprising
    (1) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of Ga 2O 3, seed crystals, one or more metal cations M, and a solvent system;
    (2) heating the mixture obtained in (1) for crystallizing a zeolitic material comprising SiO 2 and Ga 2O 3 in its framework structure from the mixture;
    (3) subjecting the zeolitic material obtained in (2) to ion exchange with one or more metal cations M;
    wherein the mixture prepared in (1) and heated in (2) comprises 1 wt. -%or less of triva-lent elements, calculated as the respective element, other than Ga and other than any tri-valent metal cations among the one or more metal cations M, based on 100 wt. %of Si, calculated as SiO 2, in the one or more sources of SiO 2
    wherein the metal cations M are selected from the group consisting of Sr, Zr, Cr, Mg, Mo, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, and mixtures of two or more thereof.
  9. The process of claim 8, wherein the trivalent elements other than Ga and other than any trivalent metal cations among the one or more metal cations M are selected from the group consisting of Al, B, In, and combinations of two or more thereof.
  10. The process of claim 8 or 9, wherein (1) comprises
    (1a) preparing a first mixture comprising the one or more organotemplates as structure directing agents, the one or more sources of SiO 2, one or more metal cations M, and a first portion of the solvent system;
    (1b) preparing a second mixture comprising the one or more sources of Ga 2O 3 and a se-cond portion of the solvent system;
    (1c) mixing the first and second mixtures to form a third mixture;
    (1d) adding the seed crystals to the third mixture and homogenizing the resulting mixture.
  11. The process of any of claims 5 to 10, wherein the seed crystals are prepared according to a process comprising
    (a) preparing a mixture comprising one or more organotemplates as structure directing agents, one or more sources of SiO 2, one or more sources of B 2O 3, and a solvent system;
    (b) heating the mixture obtained in (1) for crystallizing a zeolitic material from the mix-ture;
    (c) subjecting the zeolitic material obtained in (b) to an acid treatment.
  12. A zeolitic material obtainable from the process of any of claims 5 to 11.
  13. A process for the treatment of NO x by selective catalytic reduction comprising
    (A) providing a gas stream containing one or more nitrogen oxides;
    (B) contacting the gas stream provided in step (A) with a zeolitic material according to any of claims 1 to 4 and 12.
  14. Apparatus for the treatment of a gas stream containing NO x, the apparatus comprising a catalyst bed provided in fluid contact with the gas stream to be treated, wherein the cata-lyst bed comprises a zeolitic material according to any of claims 1 to 4 and 12.
  15. Use of a zeolitic material according to any of claims 1 to 4 and 12 as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst or a precursor thereof, and/or as a catalyst support or a precursor thereof.
PCT/CN2019/108284 2018-09-27 2019-09-26 Gallium containing zeolitic material and use thereof in scr WO2020063784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2018/108001 2018-09-27
CN2018108001 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020063784A1 true WO2020063784A1 (en) 2020-04-02

Family

ID=69953389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108284 WO2020063784A1 (en) 2018-09-27 2019-09-26 Gallium containing zeolitic material and use thereof in scr

Country Status (1)

Country Link
WO (1) WO2020063784A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803060A (en) * 1986-12-01 1989-02-07 Union Oil Company Of California Process for producing a crystalline galliosilicate with the faujasite structure
JP2001009289A (en) * 1999-07-02 2001-01-16 Honda Motor Co Ltd Catalyst for purification of exhaust gas and its production
JP2001029793A (en) * 1999-07-19 2001-02-06 Honda Motor Co Ltd Composite catalyst for exhaust gas treatment
CN1735451A (en) * 2002-11-25 2006-02-15 亚拉国际有限公司 Method for preparation and activation of multimetallic zeolite catalysts, a catalyst composition and application for reducing N2O
WO2018019983A1 (en) * 2016-07-29 2018-02-01 Basf Se Process for the preparation of a zeolitic material having a fau-type framework structure and use thereof in the selective catalytic reduction of nox

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803060A (en) * 1986-12-01 1989-02-07 Union Oil Company Of California Process for producing a crystalline galliosilicate with the faujasite structure
JP2001009289A (en) * 1999-07-02 2001-01-16 Honda Motor Co Ltd Catalyst for purification of exhaust gas and its production
JP2001029793A (en) * 1999-07-19 2001-02-06 Honda Motor Co Ltd Composite catalyst for exhaust gas treatment
CN1735451A (en) * 2002-11-25 2006-02-15 亚拉国际有限公司 Method for preparation and activation of multimetallic zeolite catalysts, a catalyst composition and application for reducing N2O
WO2018019983A1 (en) * 2016-07-29 2018-02-01 Basf Se Process for the preparation of a zeolitic material having a fau-type framework structure and use thereof in the selective catalytic reduction of nox

Similar Documents

Publication Publication Date Title
KR101991529B1 (en) Molecular sieve precursors and synthesis of molecular sieves
US10870583B2 (en) Process for the production of a zeolitic material via solvent-free interzeolitic conversion
EP2457872B1 (en) Zeolite beta and method for producing same
JP5833560B2 (en) Method for producing zeolite having CHA structure
US9675935B2 (en) Metallosilicates, processes for producing the same, nitrogen oxide removal catalyst, process for producing the same, and method for removing nitrogen oxide with the same
US20110313226A1 (en) Zeolitic Materials of the LEV-Type Structure And Methods For Their Production
WO2011157839A1 (en) Organotemplate-free synthetic process for the production of a zeolitic material of the lev-type structure
Zhao et al. Amino-acid modulated hierarchical In/H-Beta zeolites for selective catalytic reduction of NO with CH 4 in the presence of H 2 O and SO 2
US10137411B2 (en) Method of preparing an STT-type zeolite for use as a catalyst in selective catalytic reduction reactions
CN112469666B (en) Method for continuous synthesis of zeolite materials using seed crystals loaded with an organic template
EP3597293B1 (en) Transition metal-carrying zeolite and production method therefor, and nitrogen oxide purification catalyst and method for using same
Shi et al. Acidic properties of Al-rich ZSM-5 crystallized in strongly acidic fluoride medium
EP3625171B1 (en) A process for preparing a zeolitic material having framework type aei
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP2017218367A (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
WO2020063784A1 (en) Gallium containing zeolitic material and use thereof in scr
KR20230108315A (en) Synthesis of chabazite zeolites using combined organic templates
US10377638B2 (en) Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
WO2020164545A1 (en) Aluminum-and Gallium Containing Zeolitic Material and Use Thereof in SCR
KR20200118129A (en) Method for preparing zeolite material with RTH skeleton structure type
WO2017213022A1 (en) Chabazite zeolite with high hydrothermal resistance and method for producing same
US20220106192A1 (en) An oxidic material comprising a zeolite having framework type aei
WO2023078835A1 (en) Process for the production of aei-type zeolitic materials having a defined morphology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865943

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865943

Country of ref document: EP

Kind code of ref document: A1