WO2013071475A1 - 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法 - Google Patents

一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法 Download PDF

Info

Publication number
WO2013071475A1
WO2013071475A1 PCT/CN2011/082156 CN2011082156W WO2013071475A1 WO 2013071475 A1 WO2013071475 A1 WO 2013071475A1 CN 2011082156 W CN2011082156 W CN 2011082156W WO 2013071475 A1 WO2013071475 A1 WO 2013071475A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous phase
corrosion
sealing agent
parts
test
Prior art date
Application number
PCT/CN2011/082156
Other languages
English (en)
French (fr)
Inventor
吴小明
路勇
刘宏
吴银丰
刘倩源
Original Assignee
广州天至环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天至环保科技有限公司 filed Critical 广州天至环保科技有限公司
Priority to JP2014540289A priority Critical patent/JP5837218B2/ja
Priority to PCT/CN2011/082156 priority patent/WO2013071475A1/zh
Priority to US14/358,026 priority patent/US9441115B2/en
Priority to CN201180002064.XA priority patent/CN103370445B/zh
Publication of WO2013071475A1 publication Critical patent/WO2013071475A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0793Aqueous alkaline solution, e.g. for cleaning or etching

Definitions

  • the invention belongs to the technical field of anti-oxidation and anti-corrosion of metal plating for electroplating and electroless plating, and particularly relates to an anti-oxidation and corrosion resistance of a PCB coating by using an aqueous phase sealing technology and related methods of use. Background technique
  • PCBs as the primary medium for carrying multiple electronic components and electrically connecting these electronic components to each other, must be continuously densified to meet the assembly requirements for compact mounting of different types of components and various processes. Therefore, this requires that the solder joints and pads of the PCB must have good assemblability. Since the substrate of the PCB is copper, the copper surface is extremely easy to form an oxide layer, which is not only resistant to electrical resistance but also insulative, and cannot be soldered.
  • a surface coating (plating) layer is usually applied/plated on the copper of the PCB.
  • nickel plating is a commonly used surface coating.
  • the surface of the nickel layer is extremely easy to form a dense self-passivation film with a thickness of up to 100 nm.
  • the thickness of the passivation film reaches 25nm ( ⁇ ⁇ inch) or more, it will cause serious defects in subsequent assembly, including poor or even complete loss of solderability, and bonding failure of Bonding I bonding.
  • the passivation film will cause the plating resistance to become large, which seriously affects the use of the PCB.
  • a metal protective layer is usually applied to the surface thereof.
  • gold has good electrical conductivity and chemical stability, As well as better matching with nickel in the microstructure, at present, gold is often used as a protective layer for nickel.
  • the surface of the copper substrate of the PCB may not have an ideal flatness, and the problem of impurities in the electroplating/electroless plating water is inevitable. Therefore, the plating layer will inevitably produce crystal defects, which are manifested as deformed crystals. And plating micropores, causing the nickel layer to be exposed.
  • the crystal defects on the surface of the coating often start from the underlying layer, even from the defects of the substrate, and then spread to the outermost surface coating; from the physical and chemical point of view, these
  • the metal crystal at the crystal defect is in a "meta-stable” or “active state” and is easily eroded to become the corrosion starting point of the entire workpiece.
  • a small amount of electroplating/electroless plating water is likely to remain in the crystal defects of the plating layer.
  • the exposed nickel is gradually corroded into nickel salt.
  • the traditional method is to thicken the gold plating layer and vacuum packaging, to reduce the corrosion of the PCB by reducing the microporosity of the plating surface and insulating the air.
  • the thick gold plating layer not only greatly increases the production difficulty, but also increases the production cost, and cannot fundamentally solve the oxidation of the plating due to crystal defects, especially residues at the defects.
  • vacuum packaging isolates most of the air, there is still trace air residue that causes oxidation problems and does not have the ability to avoid crystal defects. More importantly, unassembled PCBs can be vacuum packed, but assembled The post-PCB will inevitably be exposed to the air, and the oxidation and corrosion problems of the product during subsequent use cannot be solved by vacuum packaging.
  • the publications are 101824621A, 101514457A, 101974758A, 101701337A and the like, which utilize compounds such as azoles, imidazoles, thiazoles or thiols and their derivatives as the most important functional components to treat metal coatings. It is formed by the specific organic functional group of the functional component and the metal element on the surface of the coating to form an organic protective film, which is prevented by insulating the contact of the corrosive substances in the atmosphere, such as oxygen, water vapor, sulfur dioxide, etc. with the metal surface. The purpose of oxidation of the coating.
  • the factors that cause oxidation and corrosion of the coating are not only from various oxidizing or corrosive substances from the outside, but also various impurities remaining in the pores of the plating layer are also an important factor. Due to the large electrode potential difference between the gold and nickel metals, the gold nickel layer and the residues in the micropores constitute a large number of micro-primary cells, causing severe electrochemical corrosion.
  • Neutral salt spray test is a simple and common method to measure and characterize the oxidation and corrosion resistance of electroplating and electroless plating.
  • the neutral salt spray test is not enough to fully evaluate the oxidation and corrosion resistance of the coating or the metal protective agent to improve the metal oxidation and corrosion resistance.
  • As a measure of erosivity more and more new methods and methods for measuring and characterizing the oxidation and corrosion resistance of electroplating and electroless plating continue to emerge.
  • the present invention selects the use of 'sealing agent' as the name of the product of the invention, since the product of the present invention mainly performs deep chelation cleaning of the residue in the plating micropores. It is thoroughly removed and the micropores are closed to prevent foreign contaminants from entering the micropores and causing corrosion.
  • the product of the present invention uses pure water as a diluent and is completely soluble in water, the more accurate name is 'aqueous phase I aqueous sealing agent', which is distinguished from organic solvents such as trichloroethylene and dichloromethane. , 'Oil phase / oily sealer' which is a diluent for isomeric hydrocarbons.
  • the present invention provides a water phase sealing agent for treating a PCB plating layer, and the PCB plating layer is processed by the use method of the immersion process to solve the PCB plating layer caused by surface crystal defects and microporous residues. Oxidation problem.
  • the invention provides an aqueous phase sealing agent for enhancing the oxidation resistance and corrosion resistance of a PCB coating, comprising the following parts by weight:
  • the aqueous phase sealer has a surface tension in the range of 18 to 28 dynes/cm.
  • the aqueous phase sealer may also contain water, preferably 5-25 parts of pure water.
  • the corrosion inhibitor used in the aqueous phase sealing agent of the present invention is an organic compound which is familiar to those skilled in the surface treatment, such as azole compounds, imidazole compounds, sulfhydryl compounds, thiazole compounds, long chains. It is composed of one or several compounds of an aromatic hydrocarbon sulfonic acid or a salt thereof.
  • the aqueous phase sealer formulation of the present invention further comprises 1) a composite surfactant system providing ultra low surface tension; 2) a biosurfactant having a significant cleaning ability and a builder 3) a chelating agent that eliminates impurity ions in the micropores of the plating layer; and 4) a pH adjusting agent that provides a weakly alkaline environment.
  • the surfactant system employed in the present invention is one of the key factors.
  • the surfactant system comprises at least one of a fluorosurfactant or a biosurfactant. Fluorine table
  • the surfactant is one or more of a nonionic or anionic type;
  • the biosurfactant is one or more of rhamnolipid, sophorolipid or polysaccharide, preferably rhamnolipid.
  • the surfactant system may also contain one or more nonionic, anionic hydrocarbon surfactants such as fatty alcohol polyoxyethylene ethers, carboxylates, and the like.
  • the most preferred surfactant system is a composite surfactant system containing both a hydrocarbon surfactant, a biosurfactant and a fluorosurfactant.
  • the aqueous phase sealer containing the composite surfactant system of the present invention has a surface tension in the range of 18 to 28 dynes/cm. After many trials, the surface tension is critical to achieving the excellent sealing effect of the present invention. Due to the complex residue contained in the micropores of the coating, the sources are quite extensive, including various metal salts (metal ions and acid ions) used in the electroplating process, metal ion compound impurities generated in the electroplating process, and electroplating syrup must be Various organic additivees used, and various kinds of small molecular organic compounds and the like which are generated during the electroplating process of the additives.
  • the sealing agent When using the sealing agent, a certain dilution (10-100 dilution) is required to become a working fluid. (Diluent). Since the concentration of the surfactant in the diluent must be greater than the critical micelle concentration (CMC: Critical Micelle Concentration) when using the diluent of the sealing agent, it can really work. After the concentration of the surfactant reaches CMC, if the amount of the surfactant is further increased, the surface tension will not change. Therefore, the surface tension of the sealing agent and the diluent thereof of the present invention are in the same range, that is, 18 to 28 Due to the /cm range. The sealing agent of the invention can maintain good penetration and surface corrosion protection of the coating layer under high dilution.
  • CMC Critical Micelle Concentration
  • the present invention has been further explored to develop a range of surfactants suitable for the purpose of the invention and for use in aqueous phase sealer systems.
  • a fluorosurfactant By adding a fluorosurfactant, the surface tension of the entire sealing agent working solution can be significantly reduced, thereby ensuring the chelating agent, builder, biosurfactant, etc. in the sealing agent.
  • the components can penetrate deep into the micropores, the chelating agent chelate and capture the residual metal ions, and the biosurfactants and builders can effectively remove and remove the residual acid ions and organic substances, thereby eliminating the factors causing electrochemical corrosion. .
  • the fluorosurfactant can control the surface tension of the entire sealing agent working fluid to not more than 28 dynes I cm or less; the biosurfactant is a metabolite with excellent surface activity secreted by microorganisms during metabolism, and carbon Compared with synthetic surfactants such as hydrogen surfactants, biosurfactants have more complex structures and more unique properties such as reactive functional groups, biodegradability and mildness to the environment, as well as organic matter in micropores. Residues have superior cleaning and removal performance.
  • the chelating agent for removing impurity ions in the micropores of the plating layer used in the aqueous phase sealing agent of the present invention is an alcohol amine organic substance, preferably diethanolamine or triethanolamine.
  • the pH adjusting agent used in the aqueous phase sealing agent of the present invention is composed of an alcohol amine-based organic substance (preferably diethanolamine or triethanolamine) and an alcohol amine soap formed of an organic acid;
  • the organic acid is preferably oleic acid, sub- Oleic acid or oleoyl sarcosine; wherein the weight fraction of diethanolamine or triethanolamine is 2 to 5, and the weight fraction of the organic acid is 4 to 10;
  • the pH of the aqueous phase sealing agent ranges from 7 to 11, It is preferably 7.5 to 9.5.
  • the builder used in the aqueous phase sealer of the present invention may be a heterocyclic alcohol, an alcohol ether or a mixture thereof; the heterocyclic alcohol is preferably tetrahydrofurfuryl alcohol; the alcohol ether is preferably ethylene glycol monobutyl ether, ethylene Alcohol dibutyl ether, propylene glycol monobutyl ether or propylene glycol dibutyl ether.
  • the invention also provides a method for using the water phase sealing agent: using a simple soaking process, using a water phase sealing agent to treat the gold plating layer of the PCB board, which is characterized in that the electroplated PCB board is washed with water and then immersed in the above
  • the working fluid of the aqueous phase sealing agent is subjected to sealing treatment under a certain concentration, temperature and time, and then taken out and washed with water and dried.
  • the aqueous phase sealing agent (surface tension of 18 to 28 dynes/cm) of the present invention is diluted with pure water, diluted 10 to 100 times (volume multiple), preferably 100/8 to 100/3 times. ; pH value is 7-11, preferably 7.5 ⁇ 9.5;
  • the PCB board is washed with water and immersed in the water phase sealing agent diluent for sealing treatment.
  • the sealing treatment temperature is 20 ⁇ 60°C
  • the sealing treatment time is 60 ⁇ 150 seconds
  • the sealing is taken out.
  • the rear PCB is washed and dried, and the drying temperature is 80 to 150 ° C, and the time is 60 to 120 seconds.
  • a preferred solution for using the aqueous phase sealer diluent of the present invention is to add ultrasonic assisted cleaning during the sealing process of the PCB board, specifically during the soaking process.
  • the principle of ultrasonic cleaning is to amplify the oscillating signal of the frequency higher than 20KHZ by the ultrasonic generator and then convert it into high-frequency mechanical vibration energy through the inverse piezoelectric effect of the ultrasonic transducer (shock) to pass the acoustic radiation in the cleaning medium.
  • the cleaning fluid molecules vibrate and produce numerous tiny bubbles.
  • the bubble forms and grows in the negative pressure zone along the ultrasonic propagation direction, and is rapidly closed in the positive pressure zone to generate thousands of atmospheric pressures, and forms numerous microscopic high-pressure shock waves acting on the surface of the workpiece to be cleaned.
  • the "cavitation effect" in the wash. Therefore, ultrasonic cleaning has excellent cleaning ability for workpieces with complex internal and external structures, microscopic uneven surfaces, slits, small holes, corners, dead angles, and dense components, which is unmatched by other cleaning methods. Since the cleaning effect directly determines whether the water phase sealing agent can completely remove the residue in the plating micropores, it is preferable to use ultrasonic assisted cleaning to enhance the cleaning effect when the workpiece is sealed.
  • Ultrasound-assisted cleaning can further enhance the effect of the composite surfactant, that is, to ensure that the active ingredients such as chelating agents, builders, and biosurfactants in the sealing agent can more easily enter and exit the plating micropores, and thoroughly clean and remove the micropores. Various residual substances inside.
  • the process of removing the residue by the chelating agent and the surfactant can be achieved in the same operation step as the film forming process of the corrosion inhibitor.
  • the present invention employs various accelerated corrosion test methods, including a neutral salt spray test, nitric acid. Fog test, mixed gas test, sulfur dioxide and bonding tensile test, comprehensive evaluation of the protective performance of metal plating.
  • the aqueous phase sealing agent of the present invention mainly strengthens the oxidation resistance and corrosion resistance of the gold plating layer of the PCB, the mechanism of the water sealing effect of the patent can be reasonably inferred to maintain the composite surface disclosed in the patent.
  • the active agent system, chelating agent and builder are unchanged, only different corrosion inhibitors can be selected, and other metal plating layers such as silver, copper, tin, nickel and the like can be protected to effectively prevent oxidation. With corrosion.
  • Figure 1 is a scanning electron microscope (SEM) photo of the PCB board before sealing.
  • Figure 2 is a SEM photograph of the PCB board after sealing.
  • Example 1 Comparison of salt spray resistance of different surfactant systems
  • the balance is pure water.
  • the above concentrate was diluted with pure water at a ratio of 30 ml/L, and the diluted solution was an aqueous phase sealer working solution.
  • Test workpiece sample general-purpose copper material, common plating process, nickel-base plating film thickness 1.0 ⁇ 1.5 ⁇ (40 ⁇ 60 ⁇ "), gold plating film thickness 0.05 ⁇ (2 ⁇ ") or more, plating crystal quality is common level, its deformity The number of crystals and plating micropores does not exceed the general requirements of the industry
  • the sealing treatment conditions were as follows: temperature 60 ° C, sealing treatment for 120 seconds, then taking out water washing, and drying at 100 ° C for 100 seconds.
  • test sample is sealed and subjected to a neutral salt spray test.
  • the specific test method refers to the GB/T 10125-1997 test standard.
  • the corrosion resistance of the test specimen is evaluated by the time it takes for the workpiece to begin to corrode during the test. The longer it takes, the stronger its corrosion resistance. The results are shown in Table 1: Surfactant System* Working Fluid Surface Tension** Sample Start Corrosion Surfactant System
  • Fluorosurfactant alcohol ether carboxylate
  • Fatty alcohol polyoxyethylene ether rat
  • the fatty alcohol polyoxyethylene ether is observed every 12 hours as the Dow's Fergitol 15-S-9.
  • the alcohol ether carboxylate is AE 9Na (28) of Shanghai Fakai Chemical, and the rhamnolipid is Jeneil. Biosurfactant Co.
  • fluorosurfactant is DuPont's Zonyl® FSH. It is apparent from Table 1 that the surface tension of the entire working fluid is obtained after replacing the fatty alcohol polyoxyethylene ether in the hydrocarbon surfactant system with the biosurfactant rhamnolipid or the fluorosurfactant Zonyl® FSH. Significantly decreased, the working fluid containing fluorosurfactant has the lowest surface tension; at the same time, the corrosion resistance of the sample after sealing with them is also significantly higher than that treated with a sealing agent containing only a hydrocarbon surfactant system.
  • the sample treated with the working solution containing the biosurfactant has the strongest corrosion resistance, and the sample treated with the working solution containing the fluorosurfactant has the corrosion resistance second, which indicates that the surface is on a certain surface.
  • the cleaning ability of the biosurfactant has a significant effect on improving the oxidation and corrosion resistance of the PCB.
  • the main function of the fluorosurfactant is to reduce the surface tension, and the main function of the biosurfactant is to remove the residue in the coated micropores.
  • contain Composite surfactant systems of hydrocarbon surfactants, biosurfactants and fluorosurfactants exhibit optimum corrosion resistance.
  • the sealing agent concentrate ratio, the diluent (working fluid:) concentration and the test sample workpiece in this example are exactly the same as in the first embodiment, and the composite surfactant system in Table 1 (fatty alcohol polyoxyethylene ether) is selected.
  • + rhamnolipid + fluorosurfactant + alcohol ether carboxylate :) in the case of other sealing conditions are the same, ultrasonic assisted cleaning to strengthen the function of the sealing agent.
  • the above concentrate was diluted with pure water at a ratio of 50 ml/L, and the diluted solution was an aqueous phase sealer working solution.
  • the sealing treatment conditions were as follows: temperature 40 ° C, sealing treatment for 90 seconds, then taking out water washing, and drying at 150 ° C for 60 seconds.
  • a group of gold fingers that have been plated with gold are washed with water and immersed in a water-sealing sealing agent for sealing treatment.
  • another group of gold-plated gold fingers is used as a control sample, and no sealing treatment is performed.
  • the gold finger which was subjected to the sealing treatment and the control group which was not subjected to the sealing treatment were subjected to a nitric acid mist test.
  • the test period is 1 hour.
  • the specific test method refers to the GB/T 19351-2003 test standard; the test results are evaluated by the number and size of the pore corrosion.
  • the results of the nitric acid mist test are shown in Table 3. Table 3 Comparison results of nitric acid mist test
  • the balance is pure water.
  • the surface tension of the sealing agent was 27 dynes/cm.
  • the above concentrate was diluted with pure water at a ratio of 30 ml/L, and the diluted solution was an aqueous phase sealer working solution.
  • the sealing treatment conditions were as follows: temperature 60 ° C, sealing treatment for 150 seconds, then taking out water washing, and drying at 100 ° C for 100 seconds.
  • a set of soft plates that have been plated with gold is sealed; at the same time, another set of soft plates coated with gold is used as a control, and no sealing is performed.
  • the softened plate treated with the plugging and the control group which was not subjected to the sealing treatment were subjected to a neutral salt spray test.
  • the test period is 48 hours.
  • the specific test method refers to the test standard of GB/T 10125-1997; The GB/T6461-2002 rating standard evaluates the test results.
  • the balance is pure water.
  • the surface tension of the sealing agent is 20 dynes/cm.
  • the above concentrate was diluted with pure water at a ratio of 80 ml/L, and the diluted solution was an aqueous phase sealer working solution.
  • the sealing treatment conditions were as follows: sealing treatment at room temperature for 60 seconds, then taking out water washing, and drying at 110 ° C for 80 seconds.
  • a set of gold fingers that have been plated with gold is sealed, and another group of gold-plated gold fingers is used as a control, and no sealing is performed.
  • the sealed gold finger and the control group which was not subjected to the sealing treatment were subjected to a mixed gas test.
  • the test period is 10 days.
  • the specific test method refers to the GR-1217-CORE test standard; the test results are evaluated by the gold finger micro-resistance value.
  • the gold-plated gold layer of the gold finger which was not sealed was severely peeled off, and the gold surface treated by the sealing did not change much.
  • the measured micro-resistance data are shown in Table 5.
  • the results show that after the 10-day mixed gas test, the gold finger micro-resistance value of the unsealed gold finger is >10, which has been severely corroded and broken; The corrosion resistance of the finger is enhanced, and the micro-resistance is ⁇ level, which is not significantly different from before the test, and is still in a good conduction state. It shows that the sealing treatment imparts excellent corrosion resistance to the gold finger coating, and provides a long-term guarantee for its good conduction performance, ensuring long-term reliability of the finished product.
  • Example 6 Gold finger saturation
  • the weight percentage of the sealing agent concentrate in this embodiment is as follows:
  • the balance is pure water.
  • the surface tension of the sealing agent is 24 dynes/cm.
  • the above concentrate was diluted with pure water at a ratio of 40 ml/L, and the diluted solution was an aqueous phase sealer working solution.
  • the sealing treatment conditions were as follows: temperature 50 ° C, sealing treatment for 100 seconds, then taking out water washing, and drying at 80 ° C for 120 seconds.
  • a set of gold fingers that have been plated with gold is sealed, and another group of gold-plated gold fingers is used as a control, and no sealing is performed.
  • the sealed gold finger and the control group which were not subjected to the sealing treatment were subjected to a saturated sulfur dioxide test.
  • the test period is 24 hours.
  • the test method is based on the GB/T2423.33-2005 standard and is tested with saturated sulfur dioxide gas.
  • the test results were evaluated on the first appearance after the test and the corrosion area of the plating after the corrosion removal product.
  • the gold finger sealed by the gold finger also showed strong corrosion resistance in the sulfur dioxide test.
  • the results are shown in Table 6.
  • Table 6 Comparison results of saturated sulfur dioxide test The sample after de-corrosion product shows the first appearance
  • Example 7 Bonding (Bonding, Wire Assembly) Tensile Test The sealing agent concentrate ratio, diluent (working fluid:) concentration and sealing conditions in this example were identical to those in Example 6. Bonding test selected plates are full-plated gold plated, gold thickness 0.025 micron, tensile strength after bonding aluminum wire, 9 test points for each group of bonding test boards, enterprise standard requirements aluminum wire bonding test tensile force greater than 8g is qualified, The test results are shown in Table 7: Table 7 Bonding tensile test comparison results
  • the aqueous phase sealing agent of the present invention mainly strengthens the oxidation resistance and corrosion resistance of the gold plating layer of the PCB, the mechanism of the water sealing effect of the patent can be reasonably inferred, and the disclosure disclosed in this patent is maintained.
  • the composite surfactant system, chelating agent and builder are unchanged, only the different corrosion inhibitors can be selected, and the coatings of other metal coatings such as silver, copper, tin, nickel, etc. can be protected, effectively preventing It oxidizes and corrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明涉及一种用于增强PCB镀层抗氧化和耐腐蚀性能的水相封孔剂,由重量份数为4-12份的缓蚀剂、15-25份的复合表面活性剂体系、10-20份的离子螯合剂、6-15份的pH调节剂、20-40份的助洗剂和余量的纯水组成。采用本水相封孔剂对PCB进行封孔处理,先用纯水将其稀释,稀释10~100倍,优选100/8~100/3倍;pH值为7~11,优选7.5~9.5;表面张力为18~28达因/厘米。封孔处理采用浸泡工艺,同时优选添加超声波辅助清洗封孔。封孔处理温度为20~60°C,时间为60~150秒,封孔后镀件干燥温度为80~150°C,时间为60~120秒。PCB经本发明的水相封孔剂处理后,经中性盐雾试验、硝酸酸雾试验、混合气体试验、二氧化硫和邦定拉力试验综合测试,结果表明其镀层的抗氧化和耐腐蚀性能显著增强。

Description

说 明 书
一种增强 PCB铍层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法 所属技术领域
本发明属于电镀和化学镀的金属镀层抗氧化和防腐蚀技术领域, 特别 是涉及一种利用水相封孔技术及其相关的使用方法来增强 PCB镀层的抗氧 化和耐腐蚀性能。 背景技术
近年来, 随着电子技术的日新月异, 以及高科技电子产业的相继问世, 使得电子产品不断推陈出新, 并朝向轻、 薄、 短、 小的趋势迈进。 在此趋 势之下, PCB 作为承载多个电子组件以及使这些电子组件彼此电气连接的 主要媒介, 必须不断走向高密度化, 满足紧凑安装不同类型元件和多种工 艺的组装要求。 因此, 这就要求 PCB的焊接点和焊盘必须具有良好的可组 装性。 由于 PCB的基材是铜质的, 铜表面极容易形成氧化层, 不仅电阻大 甚至绝缘, 而且不可焊接。 为保护铜面不被氧化, 通常在 PCB的铜材上涂 / 镀上表面涂 (镀) 层。 目前, 镍镀层是一种普遍采用的表面镀层。 但是, 镍层表面极易形成一层致密的自钝化膜, 其厚度可达 100nm。 当自钝化膜 厚度达到 25nm (~ΐ μ inch) 以上时就会导致后续组装严重不良, 包括焊锡 性变差甚至完全丧失、 邦定 I打线 (Bonding) 组装失败。 同时, 该钝化膜 会导致镀层电阻变大, 严重影响 PCB的使用。 为了防止镍镀层的氧化, 通 常在其表面施镀一层金属保护层。 由于金具有良好的导电性和化学稳定性, 以及与镍在微观结构的较好匹配性, 目前, 多选用金作为镍的保护层。 但是, 限于实际工业生产的技术水平, PCB 的铜基材表面不可能具有 理想平整度, 电镀 /化学镀药水中的杂质影响问题也不可避免, 因此, 镀层 必然会产生结晶缺陷, 表现为畸形结晶和镀层微孔, 导致镍层裸露。 从微 观结构的角度看, 镀层表面的结晶缺陷往往是起始于底镀层的, 甚至从基 材的缺陷处就开始产生、 生长, 直至蔓延到最外面的表镀层; 从理化的角 度看, 这些结晶缺陷处的金属晶体处于 "亚稳态" 或 "活性态", 很容易 被侵蚀而成为整个工件的腐蚀起点。 同时, 微量的电镀 /化学镀药水容易在 镀层结晶缺陷处残留。 随着 PCB储存和使用时间的延长, 裸露的镍逐渐被 腐蚀为镍盐, 这些局部区域性腐蚀一经发生, 就会很快发展扩散成全面性 的腐蚀, 形成 PCB业界所谓的"金层氧化"。 金层氧化不但使镀层的表观体 积和颜色发生变化, 影响产品的外观和焊锡或邦定组装效果, 而且会导致 功能接触点导通失效, 严重时甚至会使 PCB板内线路断路, 造成大量的产 品报废。 特别是镀层微孔里的残留物, 常规的纯水清洗根本无法将其完全 去除, 这些残留物不但在镀层内部引起普通的化学腐蚀, 而且会将普通的 化学腐蚀转变成更为严重的电化学腐蚀, 导致镀层急速变质。
为了防止 PCB镀层氧化, 传统的方法是加厚镀金层和采用真空包装, 通过降低镀层表面微孔率和隔绝空气, 缓解 PCB的腐蚀。 但加厚镀金层不 仅使生产难度大幅增加, 生产成本升高, 而且不能从根本上解决由于结晶 缺陷, 特别是缺陷处的残留物所导致的镀层氧化。 真空包装虽然隔绝了大 部分的空气, 但仍有微量空气残余引发氧化问题, 而且也不具有避免结晶 缺陷产生的能力。 更重要的是, 未组装的 PCB可以采用真空包装, 但组装 后的 PCB必然会裸露在空气中,产品在后续使用过程中的氧化、腐蚀问题, 并不能通过真空包装来解决。
目前, 已经公布了许多有关金属抗氧化和防腐蚀的保护剂的专利。 如 公开号为 101824621A, 101514457A, 101974758A, 101701337A等专利, 它们利用氮唑类、 咪唑类、 噻唑类或硫醇类等化合物及其衍生物作为最主 要的功能组分来处理金属镀层, 其作用机理是通过功能组分的特定有机官 能团与金属元素在镀层表面因络合作用而形成一层有机保护膜, 通过隔绝 大气中腐蚀性物质, 如氧气、 水汽、 二氧化硫等与金属表面的接触来达到 防止镀层氧化的目的。 但是, 导致镀层氧化及腐蚀的因素不仅仅来自外界 的各种氧化性或者腐蚀性物质, 残留在镀层微孔里的各种杂质也是一个很 重要的因素。 由于金与镍两种金属之间存在较大的电极电位差, 金镍层及 微孔中的残留物便组成了大量的微型原电池, 从而引发严重的电化学腐蚀。
当前的镀层抗氧化和防腐蚀技术及专利, 主要通过在镀层表面形成一 层保护膜来防止镀层氧化, 却忽略了镀层微孔残留物这个非常重要的电化 学腐蚀因素, 这也是为什么在 PCB行业中即使采用增加镀金层膜厚和真空 包装仍然会有 "金层氧化"发生的主要原因。
同时, 这些公开专利在衡量其抗氧化和防腐蚀性能时, 基本采用中性 盐雾试验的方法来表征。 中性盐雾试验是一种用来衡量和表征电镀和化学 镀镀层抗氧化、 耐腐蚀性能的简单常见的方法, 但是, 由于镀层氧化及腐 蚀因素的复杂性, 以及整个电镀、 PCB 行业和消费者对产品品质要求的不 断提升, 作为一种传统的常规表征手段, 中性盐雾试验已不足以成为全面 评估镀层的抗氧化和耐腐蚀能力或者金属保护剂对提高金属抗氧化和耐腐 蚀能力的衡量标准, 因此越来越多的衡量和表征电镀和化学镀镀层抗氧化、 耐腐蚀性能的新的手段与方法不断孕育而生。 除了中性盐雾试验外, 现在 还有硝酸酸雾试验、 混合气体试验、 二氧化硫试验和邦定拉力测试等。 诺 基亚 (Nokia) 公司在 2008年就要求其所有的镀金连接器端子都必须通过硝 酸酸雾试验才能作为产品耐腐蚀性合格的标准 (EIA-364-53:2000 (R2007), Nitric Acid Vapor Test, Gold Finish Test Procedure For Electrical Connectors And Sockets), 因为硝酸酸雾试验能够更好地反映镀层的质量, 测试镀层致 密度、 均匀度、 孔隙率是否满足连接器端子的高可靠性要求。 通过对这些 测试方法所得到的结果和数据进行分析, 才能对金属表面镀层的抗氧化和 耐腐蚀性能得到全面的了解和评估。 而当前所公开的金属抗氧化和防腐蚀 专利中, 基本上只是通过中性盐雾试验的结果来说明其抗氧化和耐腐蚀能 力, 这显然也是远远不够的。
发明内容
当前, 无论是学术界还是工业领域, 对用于防止镀层氧化和腐蚀的各 种化学品并没有特别规范的统一名称, 有许多名称用来描述这类化学品, 比如 呆护剂'、 '防锈剂'、 '防变色剂'、 '钝化剂'、 '防腐蚀剂' 等等。 为了更准确地反映出本发明产品的作用机理, 本发明选择使用 '封孔剂' 作为所发明产品的名称, 因为本发明产品主要通过对镀层微孔里的残留物 进行深入的螯合清洗, 将其彻底清除, 并对微孔进行封闭, 阻止外来污染 物进入微孔而导致腐蚀。 同时由于本发明的产品用纯水为稀释剂, 完全溶 于水中,因此更准确的名称为 '水相 I水性封孔剂', 以区别于以有机溶剂, 如三氯乙烯、 二氯甲垸 、 异构垸烃等为稀释剂的 '油相 / 油性封孔剂'。 为了克服现有技术的不足, 本发明提供了一种处理 PCB镀层的水相封 孔剂, 通过浸泡工艺的使用方法对 PCB镀层进行处理, 解决由于表面结晶 缺陷及微孔残留物引发的 PCB镀层的氧化问题。
本发明提供的增强 PCB镀层抗氧化和耐腐蚀性能的水相封孔剂, 包含 以下重量份数的组分:
缓蚀剂 4-12份;
表面活性剂体系 15-25份;
离子螯合剂 10-20份;
pH调节剂 6-15份;
助洗剂 20-40份。
所述水相封孔剂, 其表面张力在 18~28达因 /厘米的范围内。
除了上述的组分, 水相封孔剂中还可含有水, 优选纯水 5-25份。 本发明中的水相封孔剂所使用的缓蚀剂, 采用表面处理领域的技术人 员都比较熟悉的有机化合物, 如氮唑类化合物、 咪唑类化合物、 巯基类化 合物、 噻唑类化合物、 长链芳香烃磺酸或其盐等中的一种或者几种化合物 组成。
除了上述的缓蚀剂之外, 本发明中的水相封孔剂的配方还含有 1) 提供 超低表面张力的复合表面活性剂体系; 2) 具有显著清洗能力的生物表面活 性剂和助洗剂; 3) 消除镀层微孔内杂质离子的螯合剂; 以及 4) 提供弱碱 性环境的 pH值调节剂等。
而本发明中所采用的表面活性剂体系是关键的因素之一。 该表面活性 剂体系至少包含有氟表面活性剂或生物表面活性剂中的一种。 其中的氟表 面活性剂是非离子型或者阴离子型中的一种或多种; 生物表面活性剂为鼠 李糖脂、 槐糖脂或多聚糖的一种或多种, 优选鼠李糖脂。
除此, 该表面活性剂体系还可以含有一种或一种以上的非离子型、 阴 离子型碳氢表面活性剂, 如脂肪醇聚氧乙烯醚、 羧酸盐等。
而最优选的表面活性剂体系是同时含有碳氢表面活性剂、 生物表面活 性剂和氟表面活性剂的复合表面活性剂体系。
含有本发明复合表面活性剂体系的水相封孔剂, 其表面张力在 18~28 达因 /厘米的范围内。 经多次试验摸索, 该表面张力对实现本发明优良的封 孔效果是至关重要的。 由于镀层微孔中含有复杂的残留物, 其来源相当广 泛, 包括电镀制程中所使用的各种金属盐 (金属离子与酸根离子)、 电镀制 程中所产生的金属离子化合物杂质、 电镀药水中必须使用的各种有机物添 加剂、 以及添加剂在电镀过程中所生成的多种多样的小分子有机化合物等。 在导致电化学腐蚀的三要素, 即惰性金属、 活性金属、 电解质中, 这些复 杂的残留物扮演了电解质的角色。 由于镀层微孔的孔径非常小, 一般不超 过 100纳米, 如果仅仅依靠常规碳氢表面活性剂, 根本无法使封孔剂中的 螯合剂、 助洗剂、 生物表面活性剂等活性成分进入微孔内部清除里面的残 留物。 而本发明经过大量试验摸索出, 当水相封孔剂的表面张力在 18~28 达因 /厘米的范围内时, 封孔剂可以顺利进入微孔内, 使微孔中的残留物得 到有效的清除, 并且不影响缓蚀剂发挥作用, 使镀层可以获得长时间的缓 蚀保护效果。 而当封孔剂的表面张力超出这个范围时, 耐盐雾性能测试结 果表明, 其样品开始腐蚀所耗时间对比本发明缩短了一半以上。
在使用该封孔剂时, 需要作一定的稀释 (10-100 倍稀释) 成为工作液 (稀释液)。 由于在使用封孔剂的稀释液时, 稀释液中的表面活性剂的浓度 必须大于临界胶束浓度 (CMC:Critical Micelle Concentration)才能真正发挥 作用。 当面活性剂的浓度达到 CMC之后, 如果进一步增加表面活性剂的用 量, 表面张力将不再变化, 因此本发明封孔剂及其稀释液的表面张力的大 小范围是一致的, 即 18~28达因 /厘米范围。 使得本发明封孔剂在高倍数稀 释下, 仍能保持对镀层良好的渗透作用及表面缓蚀保护作用。
本发明经过进一步的摸索, 研究出了一系列适应于发明目的的表面活 性剂的种类以及在水相封孔剂体系中的用量。 在常规碳氢表面活性剂的基 础上, 通过加入氟表面活性剂, 可以显著降低整个封孔剂工作液的表面张 力, 从而保证封孔剂中的螯合剂、 助洗剂、 生物表面活性剂等成分能够深 入到微孔内部, 螯合剂对其中残留的金属离子进行螯合捕捉, 生物表面活 性剂和助洗剂对其中残留的酸根离子和有机物予以有效的清洗去除, 消除 导致电化学腐蚀的因素。 氟表面活性剂可以将整个封孔剂工作液的表面张 力控制在不超过 28达因 I厘米甚至更低;生物表面活性剂是微生物在代谢 过程中分泌的具有优异表面活性的代谢产物, 与碳氢表面活性剂等合成类 表面活性剂相比, 生物表面活性剂具有更复杂的结构和更多的活性官能团、 生物可降解及对环境的温和性等独特的属性, 同时对微孔中的有机物残留 具有更优异的清洗去除性能。
本发明中的水相封孔剂所使用的去除镀层微孔内杂质离子的螯合剂为 醇胺类有机物, 优选二乙醇胺、 三乙醇胺。
本发明中的水相封孔剂所使用的 pH值调节剂由醇胺类有机物(优选二 乙醇胺或三乙醇胺) 与有机酸所形成的醇胺皂组成; 有机酸优选油酸、 亚 油酸或油酰肌氨酸; 其中二乙醇胺或三乙醇胺的重量份数为 2~5, 有机酸的 重量份数为 4~10; 该水相封孔剂的 pH值范围为 7~11, 优选为 7.5~9.5。
本发明中的水相封孔剂所使用的助洗剂可以是杂环醇、 醇醚或者二者 的混和物; 杂环醇优选四氢糠醇; 醇醚优选乙二醇单丁醚、 乙二醇双丁醚、 丙二醇单丁醚或丙二醇双丁醚等。
本发明同时提供了该水相封孔剂的使用方法: 采用简单的浸泡工艺, 利用水相封孔剂对 PCB板镀金层进行处理,其特点是将电镀后的 PCB板经 水洗后浸泡在上述水相封孔剂的工作液中, 在一定的浓度、 温度、 时间条 件下进行封孔处理, 然后取出再进行水洗和干燥。
具体来说, 是将本发明水相封孔剂 (表面张力为 18~28达因 /厘米) 先 用纯水稀释, 稀释 10~100倍 (体积倍数), 优选 100/8~100/3倍; pH值为 7-11 , 优选 7.5~9.5;。 将电镀后的 PCB板经水洗后浸泡在水相封孔剂稀释 液中进行封孔处理, 封孔处理温度为 20~60°C, 封孔处理的时间为 60~150 秒, 然后取出封孔后的 PCB板进行水洗和干燥, 干燥温度为 80~150°C, 时 间为 60~120秒。
使用本发明水相封孔剂稀释液的优选方案是在对 PCB板的封孔处理过 程中 (具体为浸泡过程中) 加入超声波辅助清洗。 超声波清洗的原理是通 过超声波发生器将高于 20KHZ频率的震荡信号进行电功率放大后经超声波 换能器 (震头) 的逆压电效应转换成高频机械振动能量通过清洗介质中的 声辐射, 使清洗液分子振动并产生无数微小气泡。 气泡沿超声传播方向在 负压区形成、 生长, 并在正压区迅速闭合而产生上千个大气压的瞬间高压 而爆破, 形成无数微观高压冲击波作用于被清洗工件表面, 此即超声波清 洗中的"空化效应"。 因此, 超声清洗对具有内外结构复杂、微观不平表面、 狭缝、 小孔、 拐角、 死角、 元件密集等特点的工件均具有卓越的洗净能力, 是其他清洗方法无可比拟的。 由于清洗效果的优劣直接决定了水相封孔剂 是否能彻底清除镀层微孔中的残留物, 因此在对工件进行封孔处理时, 优 选使用超声波辅助清洗以强化清洗效果。 通过超声波辅助清洗, 可以进一 步增强复合表面活性剂的效果, 即保证封孔剂中的螯合剂、 助洗剂、 生物 表面活性剂等活性成分能够更容易地出入镀层微孔, 充分清洗去除微孔内 的各种残留物质。
采用本发明所提供的水相封孔剂体系及使用方法, 可以使得螯合剂和 表面活性剂对残留物的去除过程与缓蚀剂的成膜过程在同一操作步骤中实 现。
同时, 为了全面表征经过本发明所提供的水相封孔剂对金属镀层的抗 氧化及耐腐蚀性能的提升效果, 本发明采用多种加速腐蚀的试验方法, 包 括中性盐雾试验、 硝酸酸雾试验、 混合气体试验、 二氧化硫和邦定拉力试 验, 全面综合的对金属镀层的防护性能进行评价。
本发明的有益效果在于:
1) 从根本上解决由于结晶缺陷及微孔残留物引发的 PCB镀层的氧化和 腐蚀问题, 在中性盐雾试验、 硝酸酸雾试验、 混合气体试验和二氧化硫试 验中, 都表现出极佳的防变色、 防腐蚀、 抗氧化效果。
2) 未经封孔保护处理的 PCB产品, 因镀层表面的氧化会导致钝化层普 遍存在, 很多时候甚至会出现明显的腐蚀层, 这些都会导致焊锡或邦定组 装失败, 造成大量的报废。 经本发明所述的水相封孔剂保护处理后, 通过 邦定拉力测试表明, 产品的组装合格率大幅提高。
3) 目前 PCB产品因镀层未做封孔保护处理而经常性地发生氧化腐蚀, 板面变色, 在组装前就会出现大量的不良, 不良比例有时甚至会高达 40~50%。 PCB经本发明所述的水相封孔剂保护处理后, 板面氧化、 腐蚀、 变色的情况基本可以避免, 大幅度提高了产品的良率。
4) 即使在组装的时候表现为 "良品 "的 PCB, 在组装为电子产成品后, 由于镀层表面缺乏保护, 在后续使用的过程中, 也会出现不少因氧化腐蚀 而导致的产品导通不良或失效, 导致电子产品需要返修甚至报废, 造成大 量的人力物力浪费。 在使用本发明所述的水相封孔剂保护处理后, 镀层导 通性能的长期可靠度得到大幅提升。
虽然本发明所述水相封孔剂主要是强化 PCB板镀金层的抗氧化和耐腐 蚀性能, 但是通过本专利的水相封孔作用机理可以合理地推知, 在保持本 专利所公开的复合表面活性剂体系、 螯合剂和助洗剂不变的情况下, 仅需 通过选用不同的缓蚀剂, 同样可以对其它金属镀层, 如银、 铜、 锡、 镍等 镀层进行保护, 有效防止其氧化与腐蚀。 附图说明
图 1 是 PCB板封孔前扫描电镜 (SEM) 照片
图 2 是 PCB板封孔后 SEM照片 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明, 但本发明的实施方式不限于此。
实施例 1 : 不同表面活性剂体系耐盐雾性能比较
本实施例中的封孔剂浓缩液重量百分比配比如下:
1-苯基 -5-巯基-四氮唑 1%和 5-(4-叔丁基苯基) -lH-1,2,4-三唑 -3-硫醇 3%,
表面活性剂体系 (具体见表 1) 总计 25%,
二乙醇胺 12%, 三乙醇胺 5%, 油酸 2%和亚油酸 2%,
四氢糠醇 14%、 乙二醇双丁醚 14%与丙二醇双丁醚 12%,
余量为纯水。
将上述浓缩液按 30ml/L 的比例以纯水稀释,该稀释液即为水相封孔剂 工作液。
测试工件样品:通用型铜素材,普通电镀工艺,镍底镀层膜厚 1.0~1.5μηι (40~60μ" ), 金镀层膜厚 0.05μηι (2μ" ) 以上, 镀层结晶质量属普通水平, 其畸形结晶与镀层微孔数量不超出业界的普通要求范围
封孔处理条件为: 温度 60°C, 封孔处理 120秒, 然后取出水洗, 100°C 热风干燥 100秒。
将测试工件样品经封孔处理后进行中性盐雾试验, 具体试验方法参照 GB/T 10125-1997试验标准。 通过考察测试样品工件在测试过程中开始出现 腐蚀时所消耗的时间来评估其耐腐蚀能力, 所耗时间越长, 其耐腐蚀能力 越强。 结果见表 1 : 表面活性剂体系 *工作液表面张力 ** 样品开始腐蚀 表面活性剂体系
类型 (;达因 /厘米) 所耗时间 (小时) 脂肪醇聚氧乙烯醚 : 醇
碳氢表面活性剂 34 36 醚羧酸盐 (20:5)
鼠李糖脂 : 醇醚羧酸盐
生物表面活性剂 25 72 (20:5)
氟表面活性剂 : 醇醚羧
氟表面活性剂 19 60 酸盐 (20:5)
脂肪醇聚氧乙烯醚 : 鼠
李糖脂 : 氟表面活性
复合表面活性剂 20 96 剂 : 醇醚羧酸盐
(2: 15:3:5)
* 所有实施例中的表面张力都是使用 SEO Phoneix 450 表面张力测试 仪进行测定, 测试方法为悬滴法。
** 每 12小时观察一次 其中的脂肪醇聚氧乙烯醚为陶氏化学的 Tergitol 15-S-9,醇醚羧酸盐为 上海发凯化工的 AE 9Na (28) , 鼠李糖脂为 Jeneil Biosurfactant Co. 的
JBR215, 氟表面活性剂为杜邦公司的 Zonyl® FSH。 从表 1可以明显看出, 当用生物表面活性剂鼠李糖脂或者用氟表面活性 剂 Zonyl® FSH替代碳氢表面活性剂体系中的脂肪醇聚氧乙烯醚之后, 整个 工作液的表面张力都显著下降, 含有氟表面活性剂的工作液的表面张力最 低; 同时, 用它们封孔处理后的样品的耐腐蚀能力也明显超过用只含有碳 氢表面活性剂体系的封孔剂处理后的样品, 三者中以含有生物表面活性剂 的工作液处理后的样品的耐腐蚀能力最强, 含有氟表面活性剂的工作液处 理后的样品的耐腐蚀能力次之, 这说明在一定的表面张力范围内, 生物表 面活性剂的清洗能力对提升 PCB板的抗氧化耐腐蚀性能具有显著的作用。同 时也说明在本发明水相封孔剂中, 氟表面活性剂的主要功能是降低表面张 力, 生物表面活性剂的主要功能是去除镀层微孔中的残留物。 而同时含有 碳氢表面活性剂、 生物表面活性剂和氟表面活性剂的复合表面活性剂体系 显示出最优的耐腐蚀性能。 实施例 2: 超声波对水相封孔剂功能的影响
本实施例中的封孔剂浓缩液配比、稀释液 (工作液:)浓度和测试样品工件 与实施例 1完全一样,同时选取表 1中的复合表面活性剂体系 (脂肪醇聚氧乙 烯醚 +鼠李糖脂 +氟表面活性剂 +醇醚羧酸盐:), 考察在其它封孔条件都相同 的情况下, 超声波辅助清洗对封孔剂功能的强化作用。
Figure imgf000015_0001
Figure imgf000015_0002
*每 12小时观察一次
表 2中的数据清楚地显示: 对于同一种水相封孔剂, 对测试工件样品在 相同的条件下进行封孔处理, 当添加了超声波辅助清洗后, 测试样品的耐 腐蚀性能进一步大幅度提高。 这是因为超声波辅助能很好地增强封孔剂对 镀层微孔残留物质的清除能力, 说明了水相封孔剂中起清洗作用的成分, 如表面活性剂、 助洗剂等, 对镀层微孔的清洗效果将显著影响本发明水相 封孔剂的功能, 清洗的程度越彻底, 越能提高封孔效果, 从而越能增强镀 层的抗氧化和耐腐蚀性能。 实施例 3 : PCB金手指硝酸酸雾试验 本实施例中的封孔剂浓缩液重量百分比配比如下:
1-苯基 -5-巯基-四氮唑 2%和 2-巯基苯并咪唑 6% 鼠李糖脂(JBR215 ) 12%, 氟表面活性剂(Zonyf FSH) 3%与椰子油二 乙醇酰胺磷酸酯 3%。 椰子油二乙醇酰胺磷酸酯为清洗剂行业广泛使用的 净洗剂 6503。 二乙醇胺 17%, 三乙醇胺 8%, 亚油酸 6%和油酰肌氨酸 4%, 四氢糠醇 13%与丙二醇单丁醚 12%, 余量为纯水。 封孔剂的表面张力为 21达因 /厘米。 将上述浓缩液按 50ml/L 的比例以纯水稀释,该稀释液即为水相封孔剂 工作液。 封孔处理条件为: 温度 40°C, 封孔处理 90秒, 然后取出水洗, 150°C热 风干燥 60秒。 将一组已经镀好金层的金手指水洗, 浸于水相封孔剂中进行封孔处理; 同时将另一组镀完金层的金手指作为对照样, 不进行封孔处理。 将经封孔处理的金手指和未进行封孔处理的对照组进行硝酸酸雾试 验。测试周期为 1小时, 具体试验方法参照 GB/T 19351-2003试验标准; 以孔 隙腐蚀的数量和尺寸对试验结果进行评价。 硝酸酸雾试验结果见表 3。 表 3 硝酸酸雾试验对比结果
小于 7.5μηι的腐蚀点 大于 7.5μηι的腐蚀点 样品说明
数量 (个 /cm2) 数量 (个 /cm2) 未经封孔 19 6 封孔处理 0 0 同时, 通过对金手指进行 SEM表征, 可以看出未经封孔的金手指镀金 层结晶缺陷严重, 存在较多空隙和明显裂痕 (图 1 ) , 而经封孔处理后镀金 层晶格致密均匀 (图 2 ) , 表明封孔剂对结晶缺陷有很好的修复作用。 实施例 4: 软性线路板中性盐雾试验
本实施例中的封孔剂浓缩液重量百分比配比如下:
1-苯基 -5-巯基-四氮唑 1%和 5-(4-叔丁基苯基) -lH-1,2,4-三唑 -3-硫醇
3%,
鼠李糖脂 (JBR215 ) 6%, 氟表面活性剂(杜邦公司 Zonyl® 1033D) 3%, 聚醚(陶氏化学 Triton CF-76 ) 12%与醇醚羧酸盐 A ( E 9Na (28) ) 4%, 二乙醇胺 12%, 三乙醇胺 5%, 油酸 2%和亚油酸 2%,
四氢糠醇 14%, 乙二醇双丁醚 13%与丙二醇双丁醚 13%,
余量为纯水。
封孔剂的表面张力为 27达因 /厘米。
将上述浓缩液按 30ml/L 的比例以纯水稀释,该稀释液即为水相封孔剂 工作液。
封孔处理条件为: 温度 60°C, 封孔处理 150秒, 然后取出水洗, 100°C 热风干燥 100秒。
将一组已经镀完金层的软板进行封孔; 同时将另一组镀完金层的软板 作为对照样, 不进行封孔处理。
将经封孔处理的软板和未进行封孔处理的对照组进行中性盐雾试验。 试验周期为 48小时, 具体试验方法参照 GB/T 10125-1997试验标准; 按照 GB/T6461-2002评级标准对试验结果进行评价。
未作封孔处理的软板经 48 h盐雾试验后,镀层被大面积腐蚀,出现开裂; 经封孔处理的软板则看不见明显的腐蚀缺陷。 外观和覆盖层破损评级见表 4。
表 4 中性盐雾试验对比结果
Figure imgf000018_0001
实施例 5: 金手指混合气体试验
本实施例中的封孔剂浓缩液重量百分比配比如下:
1-苯基 -5-巯基-四氮唑 2%, 2-巯基苯并咪唑 5%和 2,5-二巯基噻二唑
5%,
鼠李糖脂(JBR215 ) 7%, 氟表面活性剂(杜邦公司 Zonyl®FSH) 4%, 垸基糖苷(上海发凯化工 APG0810) 3%和醇醚羧酸盐(AEC-9Na (28)) 1%
二乙醇胺 14%, 三乙醇胺 5%, 油酸 3%和油酰肌氨酸 4%, 四氢糠醇 6%, 乙二醇单丁醚 7%与丙二醇单丁醚 7%,
余量为纯水。
封孔剂的表面张力为 20达因 /厘米。
将上述浓缩液按 80ml/L 的比例以纯水稀释,该稀释液即为水相封孔剂 工作液。 封孔处理条件为: 在室温下封孔处理 60秒, 然后取出水洗, 110°C热风 干燥 80秒。
将一组已经镀完金层的金手指进行封孔, 同时将另一组镀完金层的金 手指作为对照样, 不进行封孔处理。
将经封孔处理的金手指和未进行封孔处理的对照组进行混合气体试 验。试验周期为 10天, 具体试验方法参照 GR-1217-CORE试验标准; 以金手 指微阻值对试验结果进行评价。
混合气体测试后, 未作封孔处理的金手指镀金层严重脱落, 而经封孔 处理的金面没有太大的变化。 测得的微阻值数据见表 5, 结果显示经周期为 10天的混合气体测试后, 未作封孔处理的金手指微阻值>10,已经被严重腐 蚀断路; 经封孔处理的金手指耐腐蚀性增强, 微阻值为 ηιΩ级别, 与试验前 无明显差别, 仍处于良好导通状态。 表明封孔处理赋予金手指镀层优异的 耐腐蚀性能, 对其良好导通性能提供了长效保证, 确保制成产品的长期可 靠度。
表 5 混合气体试验对比结果
Figure imgf000019_0001
实施例 6: 金手指饱和 本实施例中的封孔剂浓缩液重量百分比配比如下:
2-巯基苯并恶唑 2%, 2,5-二巯基噻二唑 2%和十八硫醇 3%, 鼠李糖脂(JBR215 ) 5%、 氟表面活性剂(Zonyl® 1033D) 3%与脂肪醇 聚氧乙烯醚 (Tergitol 15-S-9) 12%,
二乙醇胺 10%, 三乙醇胺 5%, 油酸 4%和油酰肌氨酸 4%, 四氢糠醇 15%与乙二醇单丁醚 15%,
余量为纯水。
封孔剂的表面张力为 24达因 /厘米。
将上述浓缩液按 40ml/L 的比例以纯水稀释,该稀释液即为水相封孔剂 工作液。
封孔处理条件为: 温度 50°C, 封孔处理 100秒, 然后取出水洗, 80°C热 风干燥 120秒。
将一组已经镀完金层的金手指进行封孔, 同时将另一组镀完金层的金 手指作为对照样, 不进行封孔处理。
将经封孔处理的金手指和未进行封孔处理的对照组进行饱和二氧化硫 试验。试验周期为 24小时, 试验方法依据 GB/T2423.33-2005标准, 选用饱 和二氧化硫气体进行试验。 以试验后的第一外观和去腐蚀产物后的镀层腐 蚀面积对试验结果进行评价。
经封孔处理的金手指在二氧化硫试验中, 也表现出了较强的耐腐蚀性, 结果见表 6。 表 6饱和二氧化硫试验对比结果 去腐蚀产物后的 样品说明 第一外观
镀层腐蚀面积 镀层被腐蚀产物
未经封孔 镀层 95%以上腐蚀
严重覆盖 封孔处理 未出现镀层腐蚀产物 镀层未出现腐蚀
实施例 7 镀金板邦定 (Bonding , 打线组装)拉力测试: 本实施例中的封孔剂浓缩液配比、稀释液 (工作液:)浓度和封孔条件与实 施例 6完全相同。 邦定测试所选板为整版镀金, 金厚 0.025微米, 邦定铝线后测试拉力, 每组邦定测试板选 9个测试点, 企业标准要求铝线邦定测试拉力大于 8g为合 格, 测试结果见表 7: 表 7 邦定拉力测试对比结果
Figure imgf000021_0001
经过上述实施例中各种恶劣环境的多项加速腐蚀试验证明, 经本发明 所述的水相封孔剂进行保护处理的 PCB,其镀层结晶缺陷得到了明显修复, 金层结构致密; 同时抵抗恶劣环境的抗氧化、 耐腐蚀能力显著增强。
同时,虽然本发明所述水相封孔剂主要是强化 PCB板镀金层的抗氧化和 耐腐蚀性能, 但是通过本专利的水相封孔作用机理可以合理地推知, 在保 持本专利所公开的复合表面活性剂体系、 螯合剂和助洗剂不变的情况下, 仅需通过选用不同的缓蚀剂, 同样可以对其它金属镀层, 如银、 铜、 锡、 镍等镀层进行保护, 有效防止其氧化与腐蚀。

Claims

权 利 要 求 书
1. 一种增强金属抗氧化和耐腐蚀性能的水相封孔剂, 其特征在于各组分 按下列重量份数组成:
缓蚀剂 4-12份;
表面活性剂体系 15-25份;
离子螯合剂 10-20份;
pH调节剂 6-15份;
助洗剂 20-40份;
所述水相封孔剂, 其表面张力在 18~28达因 /厘米的范围内。
2. 根据权利要求 1所述的水相封孔剂, 其特征在于, 所述表面活性剂体 系至少包含有氟表面活性剂或生物表面活性剂中的一种。
3. 根据权利要求 2所述的水相封孔剂, 其特征在于, 所述表面活性剂体 系中的氟表面活性剂是非离子型或者阴离子型中的一种或多种; 生物 表面活性剂为鼠李糖脂、 槐糖脂或多聚糖的一种或多种。
4. 根据权利要求 3所述的水相封孔剂, 其特征在于, 所述表面活性剂体 系还含有一种或一种以上的碳氢表面活性剂; 所述的生物表面活性剂 为鼠李糖脂。
5. 根据权利要求 1所述的水相封孔剂, 其特征在于, 所述缓蚀剂由氮唑 类化合物、 咪唑类化合物、 巯基类化合物、 噻唑类化合物、 长链芳香 烃磺酸或其盐等中的一种或者几种化合物组成; 所述离子螯合剂为醇 胺类有机物; 所述 pH调节剂由醇胺类有机物与有机酸所形成的醇胺 皂组成; 所述助洗剂为杂环醇或醇醚或二者的混和物; 所述水相封孔 剂的 pH值为 7~11。
6. 根据权利要求 5所述的水相封孔剂, 其特征在于, 所述的醇胺类有 机物为二乙醇胺或三乙醇胺; 所述的有机酸为油酸、 亚油酸或油酰肌 氨酸; 所述杂环醇为四氢糠醇; 醇醚为乙二醇单丁醚、 乙二醇双丁醚、 丙二醇单丁醚或丙二醇双丁醚; 所述水相封孔剂的 pH值为 7.5~9.5。
7. 根据权利要求 1所述的水相封孔剂, 其特征在于, 所述的水相封孔剂 还含有水 5-25份。
8. 一种增强 PCB镀层抗氧化和耐腐蚀性能的使用方法,其特征在于,将 权利要求 1所述的水相封孔剂用纯水稀释体积倍数 10~100倍, 将电 镀后的 PCB板水洗浸泡在水相封孔剂稀释液中进行封孔处理,然后取 出进行水洗和干燥; 所述封孔处理的温度为 20~60°C, 封孔处理的时 间为 60-150秒。
9. 根据权利要求 8所述的增强 PCB镀层抗氧化和耐腐蚀性能的使用方 法, 其特征在于, 所述水相封孔剂用纯水稀释体积倍数 100/8~100/3 倍; 封孔处理后镀件的干燥温度为 80~150°C,干燥时间为 60~120秒。
10.根据权利要求 8所述的增强 PCB镀层抗氧化和耐腐蚀性能的使用方 法, 其特征在于, 浸泡过程中采用超声波辅助清洗封孔。
PCT/CN2011/082156 2011-11-14 2011-11-14 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法 WO2013071475A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014540289A JP5837218B2 (ja) 2011-11-14 2011-11-14 Pcbメッキ層の酸化防止および耐腐食の性能を向上させる水相不動態化剤並びその使用方法
PCT/CN2011/082156 WO2013071475A1 (zh) 2011-11-14 2011-11-14 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法
US14/358,026 US9441115B2 (en) 2011-11-14 2011-11-14 Aqueous phase pore sealing agent imroving PCB coating oxidation-resistant and corrosion-resistant properties and method for using same
CN201180002064.XA CN103370445B (zh) 2011-11-14 2011-11-14 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082156 WO2013071475A1 (zh) 2011-11-14 2011-11-14 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法

Publications (1)

Publication Number Publication Date
WO2013071475A1 true WO2013071475A1 (zh) 2013-05-23

Family

ID=48428918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082156 WO2013071475A1 (zh) 2011-11-14 2011-11-14 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法

Country Status (4)

Country Link
US (1) US9441115B2 (zh)
JP (1) JP5837218B2 (zh)
CN (1) CN103370445B (zh)
WO (1) WO2013071475A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643228A (zh) * 2013-12-02 2014-03-19 深圳市华大电路科技有限公司 一种水相封孔剂及其使用方法
CN105980607A (zh) * 2013-09-05 2016-09-28 乐思股份有限公司 具有减少的空中传播的发射物的水性电解质组合物、这种组合物的方法和用途
CN109628913A (zh) * 2019-01-31 2019-04-16 湖南互连微电子材料有限公司 一种新型化学镍金生产工艺及化学镀镍液
CN109852951A (zh) * 2019-04-04 2019-06-07 深圳市互连微电子材料有限公司 一种化学镍钯金生产线和生产工艺

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927411B2 (en) * 2015-09-08 2018-03-27 International Business Machines Corporation Humidity and sulfur concentration in test chamber
CN106337196B (zh) * 2016-07-31 2018-08-10 深圳市贝加电子材料有限公司 用于印制线路板贵金属表面处理的微观孔隙封闭剂
CN107794488A (zh) * 2016-08-29 2018-03-13 中国科学院金属研究所 一种提高超音速火焰喷涂铁基非晶涂层长期耐蚀性的封孔剂和封孔工艺
CR20190175A (es) 2016-09-08 2019-09-03 Locus Ip Co Llc Sistemas distribuidos para la producción y uso eficientes de composiciones a base de microbios
DK3580311T3 (da) 2017-02-09 2023-07-24 Locus Solutions Ipco Llc Fremgangsmåde til reduktion af hydrogensulfid og mikrobiel påvirket korrosion i råolie, naturgas og i dertilhørende udstyr
CN110573268A (zh) 2017-04-09 2019-12-13 轨迹Ip有限责任公司 维护工业、机械和餐厅设备的材料和方法
US11549067B2 (en) 2017-06-12 2023-01-10 Locus Solutions Ipco, Llc Remediation of rag layer and other disposable layers in oil tanks and storage equipment
US11549052B2 (en) 2017-11-08 2023-01-10 Locus Solutions Ipco, Llc Multifunctional composition for enhanced oil recovery, improved oil quality and prevention of corrosion
EP3775094A4 (en) 2018-03-27 2022-01-12 Locus Oil IP Company, LLC MULTI-FUNCTIONAL COMPOSITIONS FOR ENHANCED OIL AND GAS RECOVERY AND OTHER OIL INDUSTRY APPLICATIONS
US11434415B2 (en) 2018-04-30 2022-09-06 Locus Oil Ip Company, Llc Compositions and methods for paraffin liquefaction and enhanced oil recovery in oil wells and associated equipment
CN110062523A (zh) * 2019-04-04 2019-07-26 广州兴森快捷电路科技有限公司 金手指及其制作方法、电路板及其制作方法
CN110167281B (zh) * 2019-04-28 2020-06-02 珠海中京电子电路有限公司 封孔剂及其制备方法和应用
CN111020659A (zh) * 2019-12-07 2020-04-17 爱科科技有限公司 一种降低钕铁硼永磁材料表面镀层孔隙率的方法
CN112410838B (zh) * 2020-04-08 2022-07-01 上海昕沐化学科技有限公司 一种水基电镀镍封闭剂及制备方法
CN113698995A (zh) * 2021-09-07 2021-11-26 珠海市板明科技有限公司 一种适用于线路板上的深度清洗剂及其使用方法
CN113913816B (zh) * 2021-10-14 2023-06-30 吉林大学 一种增强纯铜耐腐蚀性的方法
CN115044894B (zh) * 2022-06-22 2024-05-07 西安创联华特表面处理技术有限责任公司 一种金锡镀层共用的水性保护剂及制备方法
CN115725370B (zh) * 2022-10-25 2024-06-07 华阳新兴科技(天津)集团有限公司 一种航空燃气涡轮发动机燃气通道清洗剂
CN115746605A (zh) * 2022-11-14 2023-03-07 郎溪县科宏科技有限公司 一种水溶性金保护剂及其制备使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348590A (en) * 1992-08-31 1994-09-20 Hitachi, Ltd. Surface treating agent for copper or copper alloys
US5650088A (en) * 1995-03-24 1997-07-22 Nippon Mining & Metals Company, Ltd. Treating solution for gold-plated material
CN1391618A (zh) * 1999-08-26 2003-01-15 恩索恩-Omi公司 铜底基的选择性沉积方法
CN101440332A (zh) * 2008-12-30 2009-05-27 潘惠凯 一种环保高效水基型线路板清洗剂及其制备方法
CN101868125A (zh) * 2010-05-25 2010-10-20 深圳市深联电路有限公司 一种防止选化pcb板镍金层受腐蚀的方法
CN101925553A (zh) * 2007-11-21 2010-12-22 恩索恩公司 防失光泽性涂料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224728A (ja) 1987-03-13 1988-09-19 Mitsubishi Electric Corp 酸ハロゲン化フツ素系界面活性剤
CA2060698C (en) * 1991-02-12 1997-09-30 Peter J. Hall Detergent compositions
DE4206044A1 (de) 1992-02-27 1993-09-02 Bayer Ag Beschichtungsmittel, ein verfahren zu ihrer herstellung und ihre verwendung
JPH08277480A (ja) 1995-04-05 1996-10-22 Nippon Oil & Fats Co Ltd 油性防錆剤
JP3402365B2 (ja) 2000-06-28 2003-05-06 日本電気株式会社 防食剤
JP2003213463A (ja) * 2002-01-17 2003-07-30 Sumitomo Chem Co Ltd 金属腐食防止剤および洗浄液
JP2006063662A (ja) 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd 遮蔽部材
US8921295B2 (en) * 2010-07-23 2014-12-30 American Sterilizer Company Biodegradable concentrated neutral detergent composition
MY172099A (en) * 2011-10-05 2019-11-13 Avantor Performance Mat Llc Microelectronic substrate cleaning compositions having copper/azole polymer inhibition
TWI456013B (zh) * 2012-04-10 2014-10-11 Uwiz Technology Co Ltd 研磨液組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348590A (en) * 1992-08-31 1994-09-20 Hitachi, Ltd. Surface treating agent for copper or copper alloys
US5650088A (en) * 1995-03-24 1997-07-22 Nippon Mining & Metals Company, Ltd. Treating solution for gold-plated material
CN1391618A (zh) * 1999-08-26 2003-01-15 恩索恩-Omi公司 铜底基的选择性沉积方法
CN101925553A (zh) * 2007-11-21 2010-12-22 恩索恩公司 防失光泽性涂料
CN101440332A (zh) * 2008-12-30 2009-05-27 潘惠凯 一种环保高效水基型线路板清洗剂及其制备方法
CN101868125A (zh) * 2010-05-25 2010-10-20 深圳市深联电路有限公司 一种防止选化pcb板镍金层受腐蚀的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, TAO ET AL.: "Discussion on Corrosion-Resistance of Gold Fingers", PRINTED CIRCUIT INFORMATION, November 2009 (2009-11-01), pages 45 - 50 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980607A (zh) * 2013-09-05 2016-09-28 乐思股份有限公司 具有减少的空中传播的发射物的水性电解质组合物、这种组合物的方法和用途
CN103643228A (zh) * 2013-12-02 2014-03-19 深圳市华大电路科技有限公司 一种水相封孔剂及其使用方法
CN109628913A (zh) * 2019-01-31 2019-04-16 湖南互连微电子材料有限公司 一种新型化学镍金生产工艺及化学镀镍液
CN109852951A (zh) * 2019-04-04 2019-06-07 深圳市互连微电子材料有限公司 一种化学镍钯金生产线和生产工艺

Also Published As

Publication number Publication date
JP5837218B2 (ja) 2015-12-24
CN103370445A (zh) 2013-10-23
US20140314967A1 (en) 2014-10-23
JP2015502453A (ja) 2015-01-22
US9441115B2 (en) 2016-09-13
CN103370445B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2013071475A1 (zh) 一种增强pcb镀层抗氧化和耐腐蚀性能的水相封孔剂及其使用方法
TWI499696B (zh) 電鍍用預處理劑,電鍍用預處理方法,以及電鍍方法
TWI452173B (zh) 銅或銅合金用之蝕刻液,蝕刻前處理液及蝕刻方法
JP2001247986A (ja) アルミニウムのスマット除去用組成物
CN105734571A (zh) 一种金属表面微蚀液
US20140098504A1 (en) Electroplating method for printed circuit board
CN103643228B (zh) 一种水相封孔剂及其使用方法
TWI307730B (en) Method of using ultrasonics to plate silver
CN102827707A (zh) 一种等离子刻蚀残留物清洗液
CN101945544A (zh) 一种挠性电路板的制造方法
CN106852007A (zh) 应用于pcb表面处理的双层镍金工艺
CN111926360B (zh) 一种不锈钢表面镀金方法
CN117210814B (zh) 一种线路板铜面用微蚀清洁剂及其制备方法
CN102234833B (zh) 电解退除碳化铬膜层的退镀液及方法
CN103555443A (zh) 一种水基印刷电路板锡膏清洗剂及其制备方法
CN108774597A (zh) 一种线路板酸性清洗剂及其制备方法
CN111744870A (zh) 一种半导体器件金锡焊接后的清洗方法
Oh et al. Effects of temperature and operation parameters on the galvanic corrosion of Cu coupled to Au in organic solderability preservatives process
JP5763129B2 (ja) フォトソルダーレジスト前処理用脱脂剤及びこれを用いた脱脂方法
CN112160002B (zh) 一种在铜合金表面进行表面活化处理的方法
CN110167281B (zh) 封孔剂及其制备方法和应用
CN110241429B (zh) 一种金属清洗液及其清洗方法
CN103418584A (zh) 一种电火花加工栅网的清洗方法
CN118422202A (zh) 一种锡合金抛光液及其应用
CN115433947A (zh) 一种退镍剂、制备方法及使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002064.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358026

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11875984

Country of ref document: EP

Kind code of ref document: A1