WO2013065661A1 - 洗浄方法及び洗浄装置 - Google Patents

洗浄方法及び洗浄装置 Download PDF

Info

Publication number
WO2013065661A1
WO2013065661A1 PCT/JP2012/077958 JP2012077958W WO2013065661A1 WO 2013065661 A1 WO2013065661 A1 WO 2013065661A1 JP 2012077958 W JP2012077958 W JP 2012077958W WO 2013065661 A1 WO2013065661 A1 WO 2013065661A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
water
unit
waste liquid
acidic water
Prior art date
Application number
PCT/JP2012/077958
Other languages
English (en)
French (fr)
Inventor
輝樹 高安
晋吾 森
Original Assignee
株式会社昭和
豫洲短板産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和, 豫洲短板産業株式会社 filed Critical 株式会社昭和
Publication of WO2013065661A1 publication Critical patent/WO2013065661A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/02Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for washing or blanching
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/015Preserving by irradiation or electric treatment without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/153Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of liquids or solids
    • A23B7/157Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • A23L3/325Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect by electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/14Removing waste, e.g. labels, from cleaning liquid; Regenerating cleaning liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/28Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/42Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus being characterised by means for conveying or carrying containers therethrough
    • B08B9/423Holders for bottles, cell construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/17Combination with washing or cleaning means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail

Definitions

  • the present invention relates to a cleaning method and a cleaning device for agricultural products such as a container having an opening and vegetables.
  • Patent Document 1 is a method using acidic water generated on the anode side by performing diaphragm electrolysis with an aqueous sodium chloride solution as electrolyzed water as a cleaning liquid that can sufficiently remove agricultural chemicals remaining on the surface of agricultural products such as vegetables. .
  • Patent Document 3 proposes an apparatus that sprays water filtered by a reverse osmosis membrane module into a drinking water container and cleans the inside of the container.
  • the cleaning apparatus as described above merely rinses a used drinking water container with water, and has not been considered until the container is disinfected or the washed container is dried.
  • Patent Document 4 after the oil and fat adhering to the dishes is emulsified into a microbe-decomposable fine particle state with reduced water generated on the cathode side by subjecting a sodium chloride aqueous solution to diaphragm electrolysis without using a detergent.
  • the tableware was washed and sterilized with acidic water generated on the anode side by electrolysis of sodium chloride aqueous solution, rinsed, and then a waste liquid receiving part for collecting drainage was made, and this waste liquid part was emulsified in a fine particle state.
  • a cleaning technique that does not adversely affect the decomposition environment is proposed by adsorbing undecomposed oils and fats to a fine fiber cotton-like member.
  • the waste liquid after washing which is a problem of the prior art, adheres to the container in a relatively short time using a relatively low concentration of acidic water and reduced water without adversely affecting the environment. It is an object of the present invention to provide a cleaning device and a cleaning method capable of removing dirt and bacteria, and agricultural chemicals and bacteria attached to agricultural products such as vegetables and fruits.
  • the cleaning method according to the present invention is a method for cleaning a container or a crop having an opening, wherein the container or the crop is cleaned with reduced water, and the container or the crop after the cleaning step is cleaned.
  • Disinfecting step for disinfecting with acidic water rinsing step for rinsing the container or the crop after the disinfecting step with a rinsing liquid, and a container removed with the reducing water used for washing
  • the photocatalytic material is one or more kinds of acids selected from inorganic acids and organic acids having an etching property with respect to the metal titanium or titanium alloy after nitriding the metal titanium or titanium alloy. It is preferably formed by performing an anodic oxidation treatment in which a voltage equal to or higher than the spark discharge generation voltage is applied in an electrolyte solution containing
  • the photocatalyst material is irradiated with light using a lamp or fluorescent lamp that emits near ultraviolet rays or ultraviolet rays in order to purify the waste liquid with the photocatalytic material.
  • the reducing water used for cleaning and the acidic water used for disinfection are generated by diaphragm electrolysis using a dilute sodium chloride aqueous solution as electrolyzed water.
  • the reduced water and the acidic water after the filtration step are reused for the production of the reduced water used for cleaning and the acidic water used for disinfection.
  • the filter is preferably composed of at least one filter selected from a filter that removes organic matter, a filter that removes solid matter, and an ion exchange resin filter.
  • the cleaning device is a device for cleaning a container having an opening, and includes a cleaning unit that supplies reducing water into the container through the opening, and acid water in the container through the opening.
  • the cleaning unit includes a reducing water supply source and a first nozzle that injects reducing water from the reducing water supply source into the container, and the disinfecting unit supplies acidic water.
  • a second nozzle for injecting acidic water from the acidic water supply source into the container wherein the rinsing section includes a rinsing liquid supply source and a rinsing liquid from the rinsing liquid supply source in the container. It is preferable to have a third nozzle that injects the air into the container, and the drying unit has an airflow generating unit and a fourth nozzle that injects air sent from the airflow generating unit into the container.
  • the cleaning liquid supply source and the disinfecting liquid supply source for example, in addition to a tank for storing the cleaning liquid and the disinfecting liquid, electrolytic water generated by diaphragm electrolysis using dilute sodium chloride aqueous solution as electrolyzed water and reducing water and acidic water. It may be a cathode side tank and an anode side tank of the water production apparatus.
  • the first to fourth nozzles are further installed so as to protrude upward and further include an installation surface made of a photocatalytic material. According to this configuration, even when the reducing water, acidic water and rinsing liquid discharged from the container adhere to the installation surface, the droplets of the reducing water, acidic water and rinsing liquid are placed on the installation surface due to the superhydrophilicity of the photocatalytic material. It is hard to remain, and the installation surface can be kept clean.
  • the cleaning device is a device for cleaning crops, wherein the cleaning unit stores reduced water and can immerse the crops, and the disinfecting unit stores acidic water and can immerse the crops.
  • the rinsing section stores the rinsing liquid and includes the agricultural chemical components and bacteria removed from the crop by the reduced water discharged from the cleaning section and the acidic water discharged from the disinfecting section.
  • a purification processing unit that collects waste liquid and purifies it with a photocatalytic material, and a filtering unit that filters, with a filter, what could not be removed with the photocatalytic material discharged from the purification processing unit.
  • the cleaning unit, the disinfecting unit, and the rinsing unit are swingable. Moreover, it is preferable that the said washing
  • the photocatalytic material is one or more selected from an inorganic acid or an organic acid having an etching property with respect to the metal titanium or titanium alloy after nitriding the metal titanium or titanium alloy It is preferably formed by performing an anodizing process in which a voltage equal to or higher than the spark discharge generation voltage is applied in an electrolyte containing the acid.
  • the photocatalytic material is made of titanium metal or titanium alloy having super hydrophilicity.
  • “having super hydrophilicity” means that the contact angle with water is 10 ° or less.
  • the cleaning apparatus 10 is for cleaning the bottle B by removing dirt, bacteria, and the like attached to the bottle B (container) having an opening, and as shown in FIG.
  • a cleaning unit 6 for supplying reducing water As a cleaning unit 6 for supplying reducing water, a disinfecting unit 1 for supplying acidic water as a disinfecting solution into the bottle B, a rinsing unit 2 for supplying a rinsing solution into the bottle B, and a drying unit for blowing air into the bottle B 3, a purification treatment unit 7 that collects waste liquid such as reduced water used for cleaning and acidic water used for disinfection and performs purification treatment with a photocatalyst material, and a thing that could not be removed with the photocatalyst material after purification treatment And a filtering unit 8 for filtering. Further, the cleaning apparatus 10 includes an installation surface 4 on which first to fourth nozzles 61, 11, 21, 31 described later are installed.
  • the cleaning unit 6 includes a first nozzle 61 that protrudes upward from the installation surface 4 and a cleaning liquid storage tank (cleaning liquid supply source) 62 in which the reduced water is stored, and is compressed into the cleaning liquid storage tank 62 by a compressor.
  • a cleaning liquid storage tank cleaning liquid supply source
  • the first nozzle 61 is configured to be able to inject the reducing water from the cleaning liquid storage tank 62 into the bottle B from the tip and side surfaces, and to be able to rotate 360 ° around the axis.
  • the first nozzle 61 may have any shape that can be inserted into the bottle B.
  • the first nozzle 61 is more than the opening of the bottle B so that the reducing water injected into the bottle B can be discharged from the opening of the bottle B.
  • the diameter is small.
  • a first restricting tool 50 is provided on the installation surface 4, and the movement of the bottle B is prevented by the first restricting tool 50 from moving upward due to the hydraulic pressure of the reducing water ejected from the first nozzle 61. Is regulated.
  • the 1st control tool 50 is not specifically limited, For example, the thing provided with the bar 501 and the upper piece 502, and the bottom piece of the bottle B contact
  • the upper piece 502 may be detachably attached to the bar 501 with a screw, or may be attached to the bar 501 so as to open a connecting portion with the bar 501 as a fulcrum.
  • a mouth may be directly attached to the bottle B having an opening, a nozzle may be provided so that the reducing water can be injected also to the outer peripheral surface of the opening of the bottle B.
  • the temperature of the reducing water sprayed in the washing section 6 is not particularly limited, and is usually 5 ° C. to 30 ° C., preferably 20 ° C. to 30 ° C.
  • the spraying time of the reducing water varies depending on the amount of organic matter such as fats and oils adhering to the bottle B, but is 1 second to 60 seconds, preferably 1 second to 30 seconds, more preferably 3 seconds to 10 seconds. . By shortening the spraying time, it is possible to reduce the amount of waste water of reduced water, and the efficiency of performing drainage treatment of contaminated reduced water is improved.
  • the disinfecting unit 1 includes a second nozzle 11 protruding upward from the installation surface 4 and a disinfecting liquid storage tank (disinfecting liquid supply source) 12 in which acidic water is stored, and the disinfecting liquid storage tank 12 by a compressor.
  • the acidic water in the disinfectant liquid storage tank 12 is configured to be sent to the second nozzle 11 by sending compressed air therein.
  • the second nozzle 11 is configured to be able to inject the acidic water from the disinfectant solution storage tank 12 into the bottle B from the tip and side surfaces, and to rotate 360 ° around the axis.
  • a nozzle may be provided so that acidic water can be injected also to the outer peripheral surface of the opening of the bottle B.
  • the temperature of the acidic water sprayed in the disinfection unit 1 is not particularly limited, and is usually 5 ° C to 30 ° C, preferably 20 ° C to 30 ° C.
  • the spray time of acidic water varies depending on the degree of bacterial contamination adhering to the bottle B, but is 1 second to 60 seconds, preferably 1 second to 30 seconds, and more preferably 3 seconds to 10 seconds. By shortening the spraying time, it becomes possible to reduce the amount of waste water of acidic water, and the efficiency of performing drainage treatment of contaminated acidic water is improved.
  • the above-described reduced water and acidic water can be generated by the following method, for example. That is, reducing water is generated on the cathode side simultaneously with an aqueous solution of sodium chloride in an electrolytic cell provided with an anode plate and a cathode plate through an ion permeable membrane that transmits anions or cations. On the side, acid water having sterilization and disinfection is generated.
  • the sodium chloride aqueous solution in the electrolytic cell has a dilute concentration of 0.001 to 0.5%, preferably 0.01 to 0.5%, more preferably 0.01 to 0.2%.
  • An aqueous sodium chloride solution can be used. As a result, dilute reduced water and acidic water are generated that have little environmental impact and do not affect the human body.
  • the reduced water has a pH of 10.25 to 12.00 and an ORP (redox potential) of about ⁇ 121 mV to ⁇ 858 mV, and the acidic water has a pH of 2.10 to 3.50 and an ORP (redox potential). ) Is about +746 mV to +1171 mV.
  • the above-described diluted reduced water and acidic water are generated in the electrolyzed water production apparatus 9 and supplied to the cleaning liquid storage tank (cleaning liquid supply source) 62 and the disinfecting liquid storage tank (disinfecting liquid supply source) 12, respectively. Is done.
  • the rinsing unit 2 includes a third nozzle 21 that protrudes upward from the installation surface 4 and a rinsing liquid storage tank (rinsing liquid supply source) 22 in which the rinsing liquid is stored.
  • the rinsing liquid in the rinsing liquid storage tank 22 is sent to the third nozzle 21 by sending the compressed air into the inside.
  • the rinsing liquid is not particularly limited as long as it does not remain in the bottle B, and it is preferable to use tap water in consideration of economy.
  • the drying unit 3 includes a fourth nozzle 31 projecting upward from the installation surface 4 and an airflow generation means 32.
  • the air flow generation means 32 is not particularly limited as long as it can generate an air flow toward the fourth nozzle 31.
  • various devices such as a compressor that generates compressed air, an air pump, and a fan are used. be able to.
  • the drying unit 3 is preferably provided with a heater (not shown) for heating the air sent from the airflow generation means 32 to the fourth nozzle 31.
  • the configurations of the fourth nozzle 31 and the fourth restricting tool 53 are the same as those of the first nozzle 61 and the first restricting tool 61, and thus the description thereof is omitted.
  • the installation surface 4 is preferably made of a photocatalytic material.
  • the photocatalytic material can also be titanium metal or titanium alloy having super hydrophilicity. Specifically, after forming titanium nitride on the surface of metal titanium or titanium alloy, electrolysis containing at least one acid selected from the group consisting of inorganic acids and organic acids having an etching action on titanium A photocatalytic function that exhibits superhydrophilicity in which the contact angle with water is 10 ° or less by performing anodizing treatment in which a voltage higher than the spark discharge generation potential (usually 100 V or more, preferably 150 V or more) is applied in the liquid. Can be applied to the surface of titanium metal or titanium alloy.
  • Examples of the method of forming titanium nitride include PVD, CVD, thermal spraying, and heat treatment under a nitrogen gas atmosphere. From the viewpoint of simplicity, mass productivity, and manufacturing cost, nitrogen can be used. Heat treatment in a gas atmosphere is preferable.
  • the electrolytic solution used for the anodizing treatment may be selected from inorganic acids and organic acids having etching properties with respect to titanium, inorganic acids such as sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, aqua regia, In addition, organic acids such as oxalic acid, formic acid, and citric acid can be used singly or in combination of two or more.
  • the purification treatment unit 7 collects the reducing water waste liquid, acidic water waste liquid and rinse liquid (all collectively referred to as waste liquid) used for the cleaning, disinfection and rinsing described above, and performs the purification treatment, and can store the waste liquid.
  • waste liquid reducing water waste liquid, acidic water waste liquid and rinse liquid (all collectively referred to as waste liquid) used for the cleaning, disinfection and rinsing described above, and performs the purification treatment, and can store the waste liquid.
  • a photocatalyst material is installed inside a waste liquid storage tank.
  • titanium nitride As a photocatalyst material used for the purification treatment of waste liquid, after forming titanium nitride on the surface of titanium metal or titanium alloy, at least one or more selected from inorganic acids and organic acids having an etching action on titanium
  • Methods for forming titanium nitride include PVD, CVD, thermal spraying, and heat treatment under a nitrogen gas atmosphere. From the viewpoints of simplicity, mass productivity, manufacturing cost, etc., the nitrogen nitride atmosphere is used. Heat treatment is preferred.
  • the acid used for the anodizing treatment is at least one acid selected from inorganic acids such as sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid and aqua regia, and organic acids such as oxalic acid, formic acid and citric acid. Is used.
  • the waste liquid purification technology using this photocatalyst material does not have a concern that the effect is reduced even when acidic water having antibacterial properties coexists.
  • the microbial layer needs to be inserted from time to time, whereas the waste liquid purification technology by the photocatalytic reaction lasts semipermanently if there is light irradiation.
  • the photocatalytic material whose surface is coated with normal titanium oxide particles with a binder or the like is a base material in which only the titanium oxide particles exposed on the surface only undergo a photocatalytic reaction and do not exhibit high photocatalytic activity.
  • the photocatalytic material of the present embodiment is formed of titanium nitride on the surface of titanium metal or titanium alloy, and then an inorganic acid or organic compound having an etching action on titanium.
  • a trace amount of ozone or hydrogen peroxide may be added.
  • the filtration unit 8 is for removing food residues, bacteria debris, and organic substances that could not be decomposed by the photocatalyst material from the waste liquid after the purification treatment. It has a configuration with a filter installed inside.
  • a filter by using a porous material such as activated carbon, a hollow fiber membrane, or a continuous porous body, it is possible to filter dirt, oil and fat, etc. of the bottle B that has not been decomposed by the photocatalytic material.
  • an ionic substance when an ionic substance is contained in the waste liquid, it can be removed by using an ion exchange resin filter.
  • solid matters such as food residues and dead bodies of bacteria can be removed by using a filter paper suitable for the size of the solid matter.
  • the filter can be used in combination with a plurality of types described above, so that the waste liquid can be filtered well and discharged in a clean state.
  • an aggregating agent such as polyaluminum chloride may be used in combination as necessary.
  • the waste liquid cleaned by the purification treatment unit 7 and the filtration unit 8 may be discharged, but may be introduced into the electrolyzed water production apparatus 9 and reused to generate acidic water and reduced water. preferable.
  • the acidic water and the reduced water can be used efficiently.
  • generation of acidic water and reduced water when introducing into the electrolyzed water manufacturing apparatus 9 as needed, you may add sodium chloride timely.
  • the opening of the empty bottle B is directed downward, the first nozzle 61 of the cleaning unit 6 is inserted into the bottle B from this opening, and the bottle B comes off from the first nozzle 61.
  • the upper piece member 502 of the first restricting tool 50 is disposed above the bottle B so as not to be present (FIG. 2A).
  • compressed air is supplied to the cleaning liquid storage tank 62 by a compressor, and the reducing water in the cleaning liquid storage tank 62 is injected into the bottle B from the tip and side surfaces of the first nozzle 50.
  • the 1st nozzle 61 rotates 360 degrees around an axis
  • the supply of compressed air into the cleaning liquid storage tank 62 is stopped, and the injection of reducing water from the first nozzle 61 is stopped.
  • the bottle B is removed from the first restrictor 50 and the first nozzle 61 and moved to the disinfection unit 1 (FIG. 2B).
  • the 2nd nozzle 11 of the disinfection part 1 is inserted in the bottle B, and the upper piece material 512 of the 2nd control tool 51 is arrange
  • compressed air is supplied into the disinfecting liquid storage tank 12 by a compressor, and acidic water in the disinfecting liquid storage tank 12 is injected into the bottle B from the tip and side surfaces of the second nozzle 11.
  • the second nozzle 11 rotates 360 ° around the axis so that the acidic water is evenly distributed in the bottle B.
  • the supply of compressed air into the disinfecting liquid storage tank 12 is stopped, and the disinfecting liquid injection from the second nozzle 11 is stopped.
  • the bottle B is removed from the second restricting tool 51 and the second nozzle 11 and moved to the rinsing section 2 (FIG. 2 (c)).
  • the third nozzle 21 is inserted into the bottle B and the third restrictor 52 is set, and the compressed air is supplied into the rinse liquid storage tank 22 by a compressor, thereby rinsing the rinse liquid storage tank 22.
  • the liquid is sprayed into the bottle B from the tip and side surfaces of the third nozzle 21.
  • the third nozzle 21 rotates 360 ° around the axis so that the rinsing liquid is evenly distributed in the bottle B.
  • the temperature of the rinsing liquid is not particularly limited and is usually 5 to 80 ° C., preferably 20 to 30 ° C., although it depends on the material of the bottle B. The higher the temperature of the rinsing liquid, the shorter the drying time for the next step. After the rinsing liquid is injected into the bottle B for about 1 second to 60 seconds, the supply of the compressed air into the rinsing liquid storage tank 22 is stopped, and the injection of the rinsing liquid from the third nozzle 21 is stopped.
  • the bottle B is removed from the third restrictor 52 and the third nozzle 21 and moved to the drying unit 3, and the fourth nozzle 31 is inserted into the bottle B and the fourth restrictor 53 is set. (FIG. 2D).
  • the airflow generation means 32 is operated to inject air from the airflow generation means 32 into the bottle B from the tip and side surfaces of the fourth nozzle 31.
  • the air sent from the airflow generating means 32 to the fourth nozzle 31 may be heated by a heater, and the heating temperature at this time depends on the material of the bottle B to be washed, but 30 It can be ⁇ 100 ° C.
  • the fourth nozzle 31 rotates 360 ° around the axis so that the inside of the bottle B is uniformly dried.
  • the air flow generating means 32 is stopped after the air is injected into the bottle B for about 1 second to 60 seconds, the cleaning of the bottle B is completed and the bottle B is re-started. Can be used.
  • the reducing water waste liquid, acidic water waste liquid, and rinse water waste liquid (waste liquid) that are used for the above-described cleaning, disinfection, and rinsing and are discharged from the bottle B are collected in the purification treatment unit 7 and decomposed by the photocatalyst material. Then, after a purification process such as sterilization of bacteria is performed, it is introduced into the filtration unit 8 and the filtration process is performed. As a result, the waste liquid is brought into a clean state and circulated to the electrolyzed water production apparatus 9, and is again used for cleaning and disinfection of the bottle B (see FIG. 1). In addition, when introducing into the electrolyzed water manufacturing apparatus 9 as needed, you may add sodium chloride timely.
  • the cleaning device 10 includes the cleaning unit 6 for cleaning and disinfecting the bottle B and the disinfecting unit 1 in addition to the rinsing unit 2, and the drying unit 3 for drying the bottle B.
  • the bottle B can be cleaned and disinfected, and the rinsed bottle B can be dried.
  • the cleaning unit 6, the sterilizing unit 1, the rinsing unit 2, and the drying unit 3 are each provided with a nozzle, it is possible to simultaneously perform cleaning, disinfection, rinsing, and drying of a plurality of bottles B, The bottle B can be washed efficiently and speedily.
  • washing with reducing water, sterilization with acidic water, rinsing and drying are performed through different nozzles, but a plurality of bottles B are washed together. It is also possible to change the design to sterilize, rinse and dry.
  • dilute reduced water and acidic water are produced by diaphragm electrolysis of a dilute sodium chloride aqueous solution, and dirt and bacteria attached to the bottle B are washed using the dilute reduced water and acidic water. Therefore, it can prevent adversely affecting the human body.
  • the organic matter and bacteria contained in the waste liquid are decomposed and sterilized with the photocatalyst material, and the solid matter such as organic matter, bacteria, and residues that have not been excluded with the photocatalyst material is filtered through a filter, so that the waste liquid As a result, it is possible to prevent environmental pollution.
  • the cleaning liquid storage tank 62 and the disinfecting liquid storage tank 12 are used as the cleaning liquid supply source and the disinfecting liquid supply source.
  • reducing water and acidic water are supplied to the first and second nozzles.
  • the electrolyzed water production apparatus may be directly connected to the first and second nozzles.
  • the rinsing liquid supply source may be a water supply connected to the third nozzle, for example.
  • cleaning part 6, the disinfection part 1, the rinse part 2, and the drying part 3 were each provided with the nozzle, it is not limited to this,
  • the liquid supply source and the airflow generating means may be connected to a single nozzle, and the water may be selectively injected with reducing water, acidic water, rinsing liquid, or air by a switching valve or the like.
  • reducing water, acidic water, and the rinse liquid were supplied or ventilated in the bottle B via the nozzle, reducing water, acidic water, or a rinse liquid was supplied in the container, If the air can be blown, the nozzle need not be used.
  • cleaning apparatus 10 was equipped with the washing
  • the case of cleaning the bottle B (container) having an opening has been described as an example.
  • crops A such as vegetables and fruits can also be cleaned.
  • the pesticide can be effectively removed in addition to the dirt adhering to the crop A.
  • Reduced water and acidic water used for washing the crop A are 0.001% to 0.5%, preferably 0.01% to 0.5%, more preferably 0.1% to 0.2%. It is produced by electrolyzing a dilute aqueous sodium chloride solution by a diaphragm electrolysis method.
  • the agricultural chemical A adhering to the crop A is removed by putting the crop A in, for example, a tub and immersing it in the tank 63 storing the reduced water generated in this way, and swinging the tank 63. Can do. At this time, when the crop A is subjected to ultrasonic cleaning, the removal efficiency of the pesticide is improved.
  • bacteria attached to the crop A can be sterilized by similarly putting the crop A in a basket or the like and immersing it in the tank 13 in which the acidic water is stored. .
  • the crop A is similarly put in a tub or the like and immersed in a tank 23 in which tap water or the like is stored as a rinsing solution, and rinsed with reducing water and acidic water.
  • the cleaning of the bottle (container) having the above-described opening is performed by spraying from a nozzle, and thus the amount of waste liquid can be limited by limiting the spray amount.
  • the cleaning of the pesticides adhering to the crop A uses the reduced water and acidic water stored in the tanks 63 and 13, so that the reduced water and acidic water in the tanks 63 and 13 are exchanged each time.
  • the waste liquid discharged in this way is, as in the above-described embodiment, a near ultraviolet or ultraviolet lamp capable of photoexciting anatase-type titanium oxide, and a photocatalytic material.
  • the active oxygen such as OH radical and superoxide anion (O 2 ⁇ ), which are extremely active and strong in oxidizing power, are hardly decomposed in the waste liquid.
  • the active oxygen such as OH radical and superoxide anion (O 2 ⁇ )
  • the photocatalytic material whose surface is coated with normal titanium oxide particles with a binder or the like is a base material in which only the titanium oxide particles exposed on the surface only undergo a photocatalytic reaction and do not exhibit high photocatalytic activity.
  • At least one selected from an inorganic acid and an organic acid having an etching action on titanium after forming titanium nitride on the surface of metal titanium or a titanium alloy is also high because the surface of metal titanium or titanium alloy is photocatalyzed by anodizing by applying a voltage higher than the spark discharge generation voltage in an electrolyte containing more than one kind of acid. Because of its excellent adhesion, it is also possible to perform highly efficient organic matter decomposition of bacteria and sterilization of bacteria over a long period of time. Sterilization under acidic water was not sterilization bacteria is capable performed. Further, in order to improve the photocatalytic reaction, a trace amount of ozone or hydrogen peroxide may be added.
  • the organic matter and bacteria debris that could not be decomposed by the photocatalyst material in the waste liquid are introduced into the filtration unit 8 and filtered through the filter, so that it can be discharged in a clean state and prevent environmental pollution. be able to.
  • the waste liquid in the purified state is not discharged, but is circulated through the electrolyzed water production apparatus 9 and used for the production of reduced water and acidic water, the water is not discharged.
  • a circulation type cleaning device that is not newly added can be realized.
  • the tanks 63, 13, 23 of the cleaning unit 6, the disinfecting unit 1, and the rinsing unit 2 are made of a superhydrophilic photocatalytic material having a contact angle with water of 10 ° or less, whereby the tanks 63, 13, It becomes difficult for droplets such as reducing water, acidic water, and rinsing liquid to remain on the inner and outer surfaces of the tank 23, and the tanks 63, 13, and 23 can be kept clean.
  • the cleaning method and the cleaning device according to the present invention are not limited to cleaning of containers having openings, and cleaning of agricultural chemicals such as vegetables and fruits, but any type of cleaning is possible as long as cleaning can be performed by nozzles or immersion. It can be applied to.
  • Example 1 Electrolysis of sodium chloride solution diluted with distilled water using ALTRON-MINI AL-700A (voltage 100V, current 0.6A, electrolysis time 10 minutes) manufactured by Altec as an electrolyzed water preparation device which is a diaphragm electrolyzer An antibacterial test using acid water obtained from the side was carried out. Hypochlorous acid produced in acidic water is colored using the commercially available pack test reagent (manufactured by Kyoritsu Riken) by the DPD method (diethyl-p-phenyldiamine method) specified in the water test method. Using an ultraviolet-visible spectrophotometer UV mini 1240 (manufactured by Shimadzu Corporation), the absorbance was determined from 550 nm.
  • FIG. 3 shows the results of determining the hypochlorous acid concentration in the acidic water generated from the anode side of the electrolyzer using an aqueous solution with varying sodium chloride concentration. A correlation was obtained between the sodium chloride concentration and the hypochlorous acid concentration, and it was found that the hypochlorous acid concentration can be changed by changing the sodium chloride concentration.
  • the number of bacteria was measured by the general method for measuring the number of bacteria specified in the water test method. Specifically, it is produced by smearing 0.1 ml of a solution containing 1% by volume of refreshing beauty tea with the above-mentioned various solutions on a standard agar medium (Nissui) and culturing at 37 ° C. for about 24 hours.
  • Table 1 shows the results of examining the antibacterial properties by preparing acidic water of various hypochlorous acid concentrations by diluting the acidic water prepared from diaphragm electrolysis of 0.015% sodium chloride aqueous solution in a timely manner. . It was found that when the concentration of hypochlorous acid in acidic water was 0.6 ppm or more, remarkable antibacterial properties were exhibited, and when there was about 1 ppm of hypochlorous acid, no bacteria remained. It was also found that about 1 ppm of hypochlorous acid is present in tap water, but it does not exhibit antibacterial properties at all.
  • a phosphate buffer solution (manufactured by Horiba) is added to acidic water as needed.
  • Table 2 shows the results of a similar general bacterial count test using a pH-controlled solution. It shows strong antibacterial properties in weak acidity (pH 3.4) obtained by diaphragm electrolysis of dilute sodium chloride aqueous solution of 0.01%, but if it is made neutral by adjusting pH, it is the same as tap water It showed no antibacterial properties.
  • Example 2 A container cleaning test was conducted using reduced water produced on the cathode side by diaphragm electrolysis of a dilute sodium chloride aqueous solution. Evaluation was made using oleic acid contained in a large amount in edible oil as a contaminant. The oleic acid concentration was determined by measuring oleic acid derivatized with a methyl esterification kit (manufactured by Nacalai Tesque) for 3 hours using a gas chromatograph GC-2014 (manufactured by Shimadzu Corporation). As a test method, a beaker was used as a container having an opening.
  • the concentration of sodium chloride used for diaphragm electrolysis is increased.
  • About 90% removal rate has been achieved in reduced water obtained by diaphragm electrolysis of a 0.01% sodium chloride aqueous solution having a hypochlorous acid concentration comparable to tap water.
  • spraying for only 3 seconds ensured high washability with reduced water produced by diaphragm electrolysis of dilute sodium chloride aqueous solution, the amount of solution used for washing can be limited, and finally The amount of waste liquid discharged is also reduced, and the efficiency of treatment with a photocatalyst material and filtration with a filter is improved.
  • Example 3 A pesticide removal test using reduced water produced on the cathode side by diaphragm electrolysis of dilute sodium chloride aqueous solution was carried out.
  • a contaminant Sumithion emulsion (Sumitomo Chemical main component: Fenitrothion C 9 H 12 NO 5 PS) was used.
  • 0.05 ml of a solution obtained by diluting the Sumithion emulsion 10 times with distilled water was attached to a 76 mm ⁇ 26 mm slide glass and dried at room temperature for 1 day to attach the pesticide to the slide glass.
  • a slide glass with this pesticide attached immersed in 200 ml of reducing water for 30 seconds is again immersed in 50 ml of distilled water.
  • Tables 4 and 5 show measurement results of the pesticide removal rate using reduced water generated on the cathode side from a dilute sodium chloride aqueous solution by diaphragm electrolysis. Specifically, as the reducing water in Tables 4 and 5, reducing water produced from the cathode side by diaphragm electrolysis of 0.13% and 0.20% sodium chloride aqueous solution was used. The reducing water produced simultaneously at the acidic water side hypochlorous acid concentration produced at the same time on the anode side during the production of the reduced water was 20 ppm and 40 ppm, respectively. It was found that the pesticide removal rate was improved by increasing the concentration of reduced water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Cleaning In General (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Physical Water Treatments (AREA)

Abstract

洗浄後の廃液が環境に悪影響を与えることなく、比較的低濃度の酸性水、還元水を用いて比較的短時間に、容器に付着する汚れや細菌、また、野菜や果実等の農作物に付着する農薬や細菌を除去することが可能な洗浄装置及び洗浄方法を提供する。洗浄方法は、容器(B)又は農作物(A)を還元水にて洗浄する洗浄工程と、前記洗浄工程後の前記容器(B)または前記農作物(A)に対して酸性水にて消毒を行う消毒工程と、前記消毒工程後の前記容器(B)または前記農作物(A)に対してすすぎ液にてすすぎを行うすすぎ工程と、洗浄に用いた還元水廃液および消毒に用いた酸性水廃液を回収し、前記還元水および前記酸性水を光触媒材料にて浄化処理する浄化処理工程と、前記浄化処理工程後の前記還元水および前記酸性水をフィルターにより濾過する濾過工程と、を備える。フィルターにて濾過した液を、還元水、酸性水用に供することにより循環型の洗浄装置(10)及び洗浄方法を提供することもできる。

Description

洗浄方法及び洗浄装置
 本発明は、開口を有する容器、野菜等の農作物の洗浄方法及び洗浄装置に関する。
 野菜や果実を栽培する際には、農薬を散布しているために、収穫後においても野菜や果実の表面には、農薬が付着している。そのため、調理したり生で食するに先立っては、残留する農薬を除去することが不可欠である。この農薬除去には、各種の手法が採用されており、農薬除去洗剤を用いる手法も採用されているが、この農薬除去洗剤をすすぎ落とすには、多量の水を要するとの問題点があった。特許文献1は、野菜等の農作物の表面に残留する農薬を十分に除去しえる洗浄液として、塩化ナトリウム水溶液を被電解水として隔膜電解することにより陽極側に生成する酸性水を用いた手法である。しかしながら、本手法においては農薬除去後の廃液処理に関する考慮がなされておらず、農作物に付着した農薬成分の除去ができても、農薬が混入された廃液が排出されることにより、環境に悪影響を与える恐れがあった。
 また、近年、エコロジーの意識が高まり、例えばペットボトルやガラスびんといった飲料水用容器を分別回収し、これらを再利用することで、限りある資源をリサイクルする動きが活発化している。しかしながら、飲料水用容器の分別回収や再利用を行う工程には手間がかかり、資源のリサイクルは捗っていないのが現状であるため、簡易化及び効率化の観点から、使用済みの飲料水用容器を洗浄して再使用しようとする動きも出てきている。このように使用済みの飲料水用容器を洗浄する装置として、例えば、特許文献2には、飲料水用容器内にノズルを挿入し、このノズルから噴射される水により、容器の内側底面及び側面を洗浄する装置が提案されている。また、特許文献3には、逆浸透膜モジュールでろ過された水を飲料水用容器内に噴射し、容器内を洗浄する装置が提案されている。しかしながら、上述したような洗浄装置は、単に使用済みの飲料水用容器を水で洗い流すのみであり、容器を消毒することや洗浄後の容器を乾燥することまでは考慮されていなかった。
 ここで、ペットボトル、ガラスびんの洗浄を、界面活性剤が配合された一般的な洗剤にて実施すると、洗剤をすすぎ落とすために多量の水を要し、結果として多量の洗剤が混ざった水が排出されるという問題点がある。そこで、特許文献4では、洗剤を使用することなく、塩化ナトリウム水溶液を隔膜電解することにより陰極側に生成する還元水にて食器類に付着した油脂を微生物分解可能な微粒子状態に乳化させた後、塩化ナトリウム水溶液を隔膜電解することにより陽極側に生成する酸性水にて食器類を洗浄殺菌し、すすぎ洗浄後、排水をためる廃液受け部をつくり、この廃液部にて微粒子状態に乳化させた油脂分を微生物にて分解させた後、分解されなかった油脂分を微小繊維製の綿状部材に吸着させることにより、分解環境に悪影響を与えることのない洗浄技術を提案している。
特開2010-185018号公報 特開平8-309306号公報 特開2004-122000号公報 特開2008-272334号公報
 しかしながら、引用文献4に記載の洗浄技術では、廃液中に洗浄殺菌に用いた酸性水が混入されることにより、微生物に対してもこの酸性水が作用し、微生物分解が十分にいかないとの問題点があった。
上述したように、開口を有する容器に付着する汚れや細菌、また、野菜や果実等の農作物に付着する農薬や細菌を、塩化ナトリウム水溶液の隔膜電解にて生成させた還元水、酸性水にて洗浄、除菌することができても、環境に悪影響を与えるこれらの廃液処理を行うことが十分に実施されていないのが現状である。また、還元水、酸性水は、塩化ナトリウム水溶液の隔膜電解を行うことにより生成しているが、十分な除菌、洗浄を起こすために高濃度の酸性水、還元水を生成し用いていた。この高濃度の酸性水、還元水を用いると、肌荒れ等、人体に悪影響を与える。さらに、高濃度の酸性水、還元水を生成するためには、比較的高濃度の塩化ナトリウム水溶液を隔膜電解する必要があるが、その際に陽極側に有毒な塩素ガスが多量に発生する恐れがあるため、この多量に発生する人体に極めて有害な塩素ガスが外部に漏出しないような工夫が要求されるなどの問題点もある。
 そこで、本発明は、上記従来技術の問題点である洗浄後の廃液が環境に悪影響を与えることなく、比較的低濃度の酸性水、還元水を用いて比較的短時間に、容器に付着する汚れや細菌、また、野菜や果実等の農作物に付着する農薬や細菌を除去することが可能な洗浄装置及び洗浄方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行ったところ、下記に掲げる洗浄方法及び洗浄装置にて上記課題が解決することができることを見出し、本発明に至った。すなわち、本発明に係る洗浄方法は、開口を有する容器又は農作物を洗浄する方法であって、前記容器又は前記農作物を還元水にて洗浄する洗浄工程と、前記洗浄工程後の前記容器または前記農作物に対して酸性水にて消毒を行う消毒工程と、前記消毒工程後の前記容器または前記農作物に対してすすぎ液にてすすぎを行うすすぎ工程と、洗浄に用いた前記還元水にて除去した容器に付着していた油脂等の有機物や農薬が溶解した廃液、消毒に用いた前記酸性水にて除去した細菌等が含まれる洗浄廃液を回収し、光触媒材料にて浄化処理する浄化処理工程と、前記浄化処理工程後の光触媒材料にて除去できなかった農薬、油脂等の汚れ成分、また細菌、食物残渣等の固形物をフィルターにより濾過する濾過工程と、を備えている。
 上記構成の洗浄方法において、前記光触媒材料が、金属チタン又はチタン合金を窒化処理した後、前記金属チタン又はチタン合金に対してエッチング性を有する無機酸、有機酸より選択された1種類以上の酸を含有する電解液中にて火花放電発生電圧以上の電圧を印加する陽極酸化処理を行うことにより形成されていることが好ましい。
 また、前記浄化処理工程において、光触媒材料にて廃液を浄化させるために、前記光触媒材料に近紫外線又は紫外線を放射するランプや蛍光灯を用いて光照射することが好ましい。
 また、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水が、希薄な塩化ナトリウム水溶液を被電解水とする隔膜電解にて生成されることが好ましい。
 また、前記濾過工程後の前記還元水および前記酸性水が、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水の生成のために再利用されることが好ましい。
 また、前記フィルターが、有機物を除去するフィルター、固形物を除去するフィルター、イオン交換樹脂フィルターから選択される少なくとも1種類以上のフィルターにて構成されることが好ましい。
 本発明に係る洗浄装置は、開口を有する容器を洗浄する装置であって、前記開口を介して前記容器内に還元水を供給する洗浄部と、前記開口を介して前記容器内に酸性水を供給する消毒部と、前記開口を介して前記容器内にすすぎ液を供給するすすぎ部と、前記開口を介して前記容器内に送風する乾燥部と、前記洗浄部から排出される前記還元水にて除去した容器に付着していた油脂等の有機物等の汚れ成分を含む廃液及び前記消毒部から排出される前記酸性水にて除去した細菌等が含まれる廃液を回収し、光触媒材料にて浄化処理する浄化処理部と、前記浄化処理部から排出される光触媒材料にて除去できなかったものをフィルターにより濾過する濾過部と、を備えている。
 上記構成の洗浄装置において、前記洗浄部は、還元水供給源、及び前記還元水供給源からの還元水を前記容器内に噴射する第1のノズルを有し、前記消毒部は、酸性水供給源、及び前記酸性水供給源からの酸性水を前記容器内に噴射する第2のノズルを有し、前記すすぎ部は、すすぎ液供給源、及び前記すすぎ液供給源からのすすぎ液を前記容器内に噴射する第3のノズルを有し、前記乾燥部は、気流発生手段、及び前記気流発生手段から送られる空気を前記容器内に噴射する第4のノズルを有することが好ましい。この構成によれば、1つの容器を乾燥しているときに他の容器を洗浄、消毒又はすすぎを行うといったことが可能になるため、効率的且つスピーディーに容器を洗浄することができる。なお、洗浄液供給源及び消毒液供給源としては、例えば、洗浄液及び消毒液を貯留するタンクの他、還元水及び酸性水を希薄な塩化ナトリウム水溶液を被電解水とする隔膜電解にて生成する電解水製造装置の陰極側槽及び陽極側槽であってもよい。
 また、前記第1~第4のノズルが上方に突出するよう設置されるとともに光触媒材料で構成される設置面をさらに備えることが好ましい。この構成によれば、容器から排出された還元水、酸性水及びすすぎ液が設置面に付着した場合でも、還元水、酸性水及びすすぎ液の液滴が光触媒材料の超親水性により設置面に残りにくく、設置面を清潔に保つことができる。
 また、本発明に係る洗浄装置は、農作物を洗浄する装置であって、還元水を貯留し、前記農作物を浸漬可能な洗浄部と、酸性水を貯留し、前記農作物を浸漬可能な消毒部と、すすぎ液を貯留し、前記農作物を浸漬可能なすすぎ部と、前記洗浄部から排出される前記還元水や前記消毒部から排出される前記酸性水により農作物から除去された農薬成分や細菌を含む廃液を回収し、光触媒材料にて浄化処理する浄化処理部と、前記浄化処理部から排出される光触媒材料にて除去できなかったものをフィルターにより濾過する濾過部と、を備えている。
 上記構成の洗浄装置において、前記洗浄部、前記消毒部および前記すすぎ部が揺動可能であることが好ましい。また、前記洗浄部、前記消毒部および前記すすぎ部が光触媒材料で構成されていることが好ましい。
 上記したいずれの洗浄装置においても、前記光触媒材料が、金属チタン又はチタン合金を窒化処理した後、前記金属チタン又はチタン合金に対してエッチング性を有する無機酸、有機酸より選択された1種類以上の酸を含有する電解液中にて火花放電発生電圧以上の電圧を印加する陽極酸化処理を行うことにより形成されていることが好ましい。
 また、前記光触媒材料が、超親水性を有する金属チタン又はチタン合金からなることが好ましい。なお、本発明における「超親水性を有する」とは、水との接触角度が10°以下であることを意味している。
本発明の一実施形態に係る洗浄装置の正面概略図である。 本発明の一実施形態に係る洗浄装置の使用方法を示す正面概略図である。 本発明の他の実施形態に係る洗浄装置の正面概略図である。 電解装置に供給された塩化ナトリウム濃度と陽極側から生成される酸性水中の次亜塩化酸濃度との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。本実施形態に係る洗浄装置10は、開口を有するボトルB(容器)に付着する汚れや細菌等を除去してボトルBを洗浄するものであり、図1に示すように、ボトルB内に洗浄液として還元水を供給する洗浄部6と、ボトルB内に消毒液として酸性水を供給する消毒部1と、ボトルB内にすすぎ液を供給するすすぎ部2と、ボトルB内に送風する乾燥部3と、洗浄に用いた還元水および消毒に用いた酸性水等の廃液を回収して光触媒材料にて浄化処理する浄化処理部7と、浄化処理後の光触媒材料にて除去できなかったものを濾過する濾過部8とを備えている。また、洗浄装置10は、後述する第1~第4のノズル61,11,21,31が設置される設置面4を備えている。
 洗浄部6は、設置面4から上方に突出する第1のノズル61と、還元水が貯留される洗浄液貯留タンク(洗浄液供給源)62とを備えており、コンプレッサにより洗浄液貯留タンク62内に圧縮空気が送り込まれることで、洗浄液貯留タンク62内の還元水が第1のノズル61に送られるよう構成されている。第1のノズル61は、洗浄液貯留タンク62からの還元水を先端及び側面からボトルB内に噴射可能であるとともに、軸周りに360°回転可能なよう構成されている。この第1のノズル61は、ボトルB内に挿入可能な形状であればよいが、ボトルB内に噴射された還元水をボトルBの開口から排出することができるよう、ボトルBの開口よりも径が小さくなっている。設置面4には第1の規制具50が設けられており、この第1の規制具50により、第1のノズル61から噴射された還元水の液圧で上方に移動しないようボトルBの動きが規制される。第1の規制具50は、特に限定されるものではないが、例えば、棒材501及び上片材502を備え、上片材502にボトルBの底面が当接するよう構成されたものを挙げることができ、上片材502は、ネジにより棒材501に着脱可能に取り付けられ、あるいは、棒材501との連結部を支点に開くよう棒材501に取り付けられていてもよい。なお、開口を有するボトルBに直接に口をつける場合もあることから、ボトルBの開口の外周面に対しても還元水の噴射ができるように、ノズルを設けるようにしてもよい。
 洗浄部6において噴霧される還元水の温度としては、特に限定されるものではなく、通常5℃~30℃、好ましくは20℃~30℃である。また、還元水の噴霧時間は、ボトルBに付着している油脂等の有機物の量により異なるが、1秒~60秒、好ましくは1秒~30秒、さらに好ましくは3秒~10秒である。噴霧時間を短くすることで、還元水の廃液量を減少させることが可能となり、汚染された還元水の排水処理を行う効率が向上する。
 消毒部1は、設置面4から上方に突出する第2のノズル11と、酸性水が貯留される消毒液貯留タンク(消毒液供給源)12とを備えており、コンプレッサにより消毒液貯留タンク12内に圧縮空気が送り込まれることで、消毒液貯留タンク12内の酸性水が第2のノズル11に送られるよう構成されている。第2のノズル11は、消毒液貯留タンク12からの酸性水を先端及び側面からボトルB内に噴射可能であるとともに、軸周りに360°回転可能なよう構成されている。なお、開口を有するボトルBに直接に口をつける場合もあることから、ボトルBの開口の外周面に対しても酸性水の噴射ができるように、ノズルを設けるようにしてもよい。第2のノズル11及び第2の規制具51の構成については、第1のノズル61及び第1の規制具61と同様であるので説明を省略する。
 消毒部1において噴霧される酸性水の温度としては、特に限定されるものではなく、通常5℃~30℃、好ましくは20℃~30℃である。また、酸性水の噴霧時間は、ボトルBに付着している細菌汚染度により異なるが、1秒~60秒、好ましくは1秒~30秒、さらに好ましくは3秒~10秒である。噴霧時間を短くすることで、酸性水の廃液量を減少させることが可能となり、汚染された酸性水の排水処理を行う効率が向上する。
 上記した還元水及び酸性水は、例えば、次のような方法で生成することができる。すなわち、陰イオン又は陽イオンを透過させるイオン透過膜を介して陽極板及び陰極板を設けた電解槽において塩化ナトリウム水溶液を隔膜電解させることにより、陰極側で還元水が生成されると同時に、陽極側では殺菌消毒性を有する酸性水が生成される。なお、この電解槽中の塩化ナトリウム水溶液としては、その濃度が0.001~0.5%、好ましくは0.01~0.5%、さらに好ましくは0.01~0.2%という希薄な塩化ナトリウム水溶液を用いることができる。これにより、環境負荷が少なく人体に影響を与えない希薄な還元水および酸性水が生成される。なお、この還元水は、pH10.25~12.00且つORP(酸化還元電位)が-121mV~-858mV程度であり、また、酸性水は、pH2.10~3.50且つORP(酸化還元電位)が+746mV~+1171mV程度である。本実施形態では、電解水製造装置9にて、上記した希薄な還元水及び酸性水が生成され、それぞれ洗浄液貯留タンク(洗浄液供給源)62および消毒液貯留タンク(消毒液供給源)12に供給される。
 すすぎ部2は、設置面4から上方に突出する第3のノズル21と、すすぎ液が貯留されるすすぎ液貯留タンク(すすぎ液供給源)22とを備えており、コンプレッサによりすすぎ液貯留タンク22内に圧縮空気が送り込まれることで、すすぎ液貯留タンク22内のすすぎ液が第3のノズル21に送られるよう構成されている。なお、ボトルBの開口の外周面に対してもすすぎ液の噴射ができるように、ノズルを設けるようにしてもよい。第3のノズル21及び第3の規制具52の構成については、第1のノズル61及び第1の規制具61と同様であるので説明を省略する。すすぎ液としては、ボトルBへの残存性がないものであれば特に限定されず、経済性を考慮すると水道水を用いることが好ましい。
 乾燥部3は、設置面4から上方に突出する第4のノズル31と、気流発生手段32と、を備えている。気流発生手段32としては、第4のノズル31に向かう気流を発生させることができるものであれば特に限定されず、例えば、圧縮空気を発生させるコンプレッサや、エアポンプ、ファン等、種々のものを用いることができる。乾燥部3には、ボトルBの乾燥時間を短縮するため、気流発生手段32から第4のノズル31に送られる空気を加熱するヒーター(図示省略)が設けられていることが好ましい。なお、第4のノズル31及び第4の規制具53の構成については、第1のノズル61及び第1の規制具61と同様と同様であるので説明を省略する。
 設置面4は、光触媒材料で構成されていることが好ましい。光触媒材料は、超親水性を有する金属チタン又はチタン合金とすることもできる。具体的には、金属チタン又はチタン合金表面にチタン窒化物を形成させた後、チタンに対してエッチング作用を有する無機酸及び有機酸からなる群から選択された少なくとも1種の酸を含有する電解液中で火花放電発生電位以上の電圧(通常100V以上、好ましくは150V以上)を印加する陽極酸化処理を行うことにより、水との接触角度が10°以下となる超親水性を発揮させる光触媒機能化を金属チタン又はチタン合金表面に施すことが可能である。チタン窒化物を形成させる方法としては、例えば、PVD、CVD、溶射、及び窒素ガス雰囲気下での加熱処理等を挙げることができるが、簡便性、量産性、及び製造コスト等の観点から、窒素ガス雰囲気下での加熱処理が好ましい。陽極酸化処理に使用される電解液としては、チタンに対してエッチング性を有する無機酸及び有機酸から選択すればよく、硫酸、リン酸、フッ化水素酸、塩酸、王水等の無機酸、及びシュウ酸、ギ酸、クエン酸等の有機酸を、1種単独で又は2種以上組み合わせて用いることができる。
 このように、設置面4を光触媒材料で構成することで、ボトルBから排出された還元水、酸性水及びすすぎ液の液滴が設置面4に残りにくく、設置面4を清潔に保つことができる。
 浄化処理部7は、上記した洗浄、消毒及びすすぎに用いられた還元水廃液、酸性水廃液及びすすぎ液(全てまとめて廃液という)を回収して浄化処理を行うものであり、廃液を貯留可能な廃液貯留タンクの内部に光触媒材料を設置した構成のものである。廃液の浄化処理に用いられる光触媒材料としては、金属チタン又はチタン合金表面にチタン窒化物を形成させた後、チタンに対してエッチング作用を有する無機酸、有機酸から選択された少なくとも1種以上の酸を含有する電解液中で火花放電発生電圧以上の電圧を印加させる陽極酸化処理を行うことにより、金属チタン又はチタン合金表面に高性能な光触媒活性を有するアナターゼ型酸化チタンを形成させたものを用いることができる。チタン窒化物を形成させる手法としては、PVD、CVD、溶射、及び窒素ガス雰囲気下での加熱処理があるが、簡便性、量産性、および製造コスト等の観点からは、窒素ガス雰囲気下での加熱処理が好ましい。また陽極酸化処理に使用する酸としては、硫酸、リン酸、フッ化水素酸、塩酸、王水等の無機酸、シュウ酸、ギ酸、クエン酸等の有機酸から選択された1種以上の酸を用いる。
 このようにして作製された光触媒材料を設置した廃液貯留タンクに、廃液を注ぎこみ、光触媒材料にアナターゼ型酸化チタンを光励起できる近紫外線もしくは紫外線をランプや蛍光灯にて照射することにより、極めて活性が高く酸化力の強いOHラジカルやスーパーオキサイドアニオン(O )等の活性酸素が発生し、廃液中の難分解性の有機物の分解が可能となる。よって、廃液中の油脂等の有機物の分解や酸性水にて除菌されなかった細菌の殺菌を行うことができる。この光触媒材料を用いた廃液浄化技術は、従来から実施されている微生物分解とは異なり、抗菌性を有する酸性水が共存しても効果が低下する心配がない。また、微生物分解においては、微生物層を時々入れかれる必要があるのに対して、光触媒反応での廃液浄化技術は、光照射があれば半永久的に効果が持続する。また、通常の酸化チタン粒子をバインダー等にて表面にコーティングしている光触媒材料は、表面に露出している酸化チタン粒子だけが光触媒反応をするだけで高い光触媒活性を示すことがない、基材との密着性も劣る等の問題点もあったが、本実施形態の光触媒材料は金属チタン又はチタン合金表面にチタン窒化物を形成させた後、チタンに対してエッチング作用を有する無機酸、有機酸から選択された少なくとも1種以上の酸を含有する電解液中で火花放電発生電圧以上の電圧を印加させる陽極酸化処理を行うことにて金属チタン又はチタン合金表面を光触媒化させた材料であるために、光触媒活性も高く密着性にも優れているために、長期間にわたり高効率な廃液の有機物分解や細菌の殺菌を行うことも可能である。なお、光触媒反応を向上させるために、微量のオゾンや過酸化水素を添加してもよい。
 濾過部8は、浄化処理後の廃液に含まれる食物残渣や細菌の残骸、光触媒材料にて分解できなかった有機物を廃液中から除去するためのものであり、廃液が通過可能な廃液流通管の内部にフィルターを設置した構成のものである。フィルターとしては、活性炭、中空糸膜、連続多孔体等の多孔質材料を用いることで、光触媒材料にて分解されなかったボトルBの汚れ、油脂分等を濾過することができる。また、イオン性物質が廃液中に含まれている場合には、イオン交換樹脂フィルターを用いることで除去することができる。また、食物残渣、細菌の死骸等の固形物は、その固形物のサイズに合った濾紙を用いることで除去することができる。フィルターは、必要に応じて、上記した複数種類のものを組み合わせて使用することで、廃液を良好に濾過することができ、清浄な状態にて排出することが可能となる。なお、フィルターの濾過性を向上するために、必要に応じてポリ塩化アルミニウム等の凝集剤を併用してもよい。
 浄化処理部7及び濾過部8にて清浄された状態の廃液は、排出してもよいが、電解水製造装置9に導入し、酸性水及び還元水を生成するために再利用するようことが好ましい。このように酸性水及び還元水を循環させることにより、酸性水及び還元水を効率よく使用することができる。また、酸性水及び還元水生成のための再利用に関しては、必要に応じて電解水製造装置9に導入する際に、適時塩化ナトリウムを添加してもよい。
 次に上述したような洗浄装置10の使用方法について図1及び図2を参照しつつ説明する。
 まず、図2に示すように、空のボトルBの開口を下に向け、この開口からボトルB内に洗浄部6の第1のノズル61を挿入し、ボトルBが第1のノズル61から外れないよう、第1の規制具50の上片材502をボトルBの上方に配置する(図2(a))。この状態で、洗浄液貯留タンク62内にコンプレッサで圧縮空気を供給し、洗浄液貯留タンク62内の還元水を第1のノズル50の先端及び側面からボトルB内に噴射させる。このとき、第1のノズル61は、ボトルB内にまんべんなく還元水が行き渡るよう軸周りに360°回転する。還元水を所定時間、ボトルB内に噴射させた後、洗浄液貯留タンク62内への圧縮空気の供給を停止し、第1のノズル61からの還元水の噴射を停止させる。
 次に、第1の規制具50及び第1のノズル61からボトルBを取り外して消毒部1へと移動させる(図2(b))。そして、ボトルB内に消毒部1の第2のノズル11を挿入し、第2のノズル11から外れないよう、第2の規制具51の上片材512をボトルBの上方に配置する(図2(b))。この状態で、消毒液貯留タンク12内にコンプレッサで圧縮空気を供給し、消毒液貯留タンク12内の酸性水を第2のノズル11の先端及び側面からボトルB内に噴射させる。このとき、第2のノズル11は、ボトルB内にまんべんなく酸性水が行き渡るよう軸周りに360°回転する。酸性水を所定時間、ボトルB内に噴射させた後、消毒液貯留タンク12内への圧縮空気の供給を停止し、第2のノズル11からの消毒液の噴射を停止させる。
 次に、第2の規制具51及び第2のノズル11からボトルBを取り外してすすぎ部2へと移動させる(図2(c))。そして、ボトルB内に第3のノズル21を挿入するとともに第3の規制具52をセットし、すすぎ液貯留タンク22内にコンプレッサで圧縮空気を供給することにより、すすぎ液貯留タンク22内のすすぎ液を第3のノズル21の先端及び側面からボトルB内に噴射させる。このとき、第3のノズル21は、ボトルB内にまんべんなくすすぎ液が行き渡るよう軸周りに360°回転する。すすぎ液の温度は、特に限定されるものではなく、ボトルBの材質にもよるが、通常5~80℃、好ましくは20~30℃である。なお、すすぎ液の温度が高い程、次工程の乾燥時間の短縮が図れる。約1秒~60秒の間、ボトルB内にすすぎ液を噴射させた後、すすぎ液貯留タンク22内への圧縮空気の供給を停止し、第3のノズル21からのすすぎ液の噴射を停止させる。
 次に、第3の規制具52及び第3のノズル21からボトルBを取り外して乾燥部3へと移動させ、ボトルB内に第4のノズル31を挿入するとともに第4の規制具53をセットする(図2(d))。そして、気流発生手段32を作動させ、第4のノズル31の先端及び側面からボトルB内に気流発生手段32からの空気を噴射する。このとき、必要に応じて、気流発生手段32から第4のノズル31に送られる空気をヒーターにより加熱してもよく、このときの加熱温度は、洗浄するボトルBの材質にもよるが、30~100℃とすることができる。第4のノズル31は、ボトルB内が均一に乾燥されるよう軸周りに360°回転する。洗浄するボトルBの材質にもよるが、約1秒~60秒の間、ボトルB内に空気を噴射した後気流発生手段32を停止すれば、ボトルBの洗浄が完了し、ボトルBを再使用することが可能となる。
 一方、上記した洗浄、消毒、すすぎに用いられ、ボトルBから排出された還元水廃液、酸性水廃液、すすぎ液廃液(廃液)は、浄化処理部7に回収され、光触媒材料により、有機物の分解や細菌の殺菌等の浄化処理が行われた後、濾過部8に導入されて、濾過処理が行われる。これにより、廃液は清浄な状態となって電解水製造装置9に循環され、再び、ボトルBの洗浄、消毒に供される(図1参照)。なお、必要に応じて電解水製造装置9に導入する際に、適時塩化ナトリウムを添加してもよい。
 以上のように、本実施形態における洗浄装置10は、すすぎ部2の他に、ボトルBを洗浄・消毒する洗浄部6及び消毒部1、さらにボトルBを乾燥する乾燥部3を備えているので、ボトルBをすすぐだけでなく、ボトルBを洗浄・消毒することができ、すすいだ後のボトルBを乾燥することができる。また、洗浄部6、消毒部1、すすぎ部2、及び乾燥部3がそれぞれノズルを備えるよう構成されているため、複数のボトルBの洗浄、消毒、すすぎ、及び乾燥を同時に行うこともでき、効率的且つスピーディーにボトルBを洗浄することができる。なお、本実施形態では、還元水での洗浄、酸性水での除菌、すすぎ及び乾燥をそれぞれ別のノズルを介して行うように構成されているが、複数個のボトルBを同時にまとめて洗浄、除菌、すすぎ及び乾燥するように設計変更することも可能である。
 さらに、希薄な塩化ナトリウム水溶液を隔膜電解することで、希薄な還元水、酸性水を生成し、この希薄な還元水及び酸性水を用いてボトルBに付着した汚れや細菌の洗浄を行っているので、人体に悪影響を与えることを防止できる。加えて、廃液中に含まれる有機物や細菌を光触媒材料にて分解、殺菌を行い、さらに光触媒材料にて除外されなかった有機物、細菌さらに残渣等の固形物をフィルターにて濾過することで、廃液を清浄な状態にすることができるので環境汚染を招くことも防止できる。さらに、最終的にフィルターにて濾過した廃液を電解水製造装置に導入して隔膜電解にて還元水、酸性水を生成すれば、廃液を排水することなく、必要に応じて適時塩化ナトリウムを添加することにて、高効率な循環型の洗浄装置を構築することができる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記実施形態においては、洗浄液供給源及び消毒液供給源として洗浄液貯留タンク62及び消毒液貯留タンク12を用いているが、還元水及び酸性水を第1、第2のノズルに供給することができるものであればよく、例えば、第1、第2のノズルに電解水製造装置を直接連結するようにしてもよい。同様に、すすぎ液供給源は、すすぎ液貯留タンク22に代えて、例えば、第3のノズルに連結された水道とすることもできる。
 また、上記実施形態においては、洗浄部6、消毒部1、すすぎ部2、及び乾燥部3がそれぞれノズルを備えていたがこれに限定されず、例えば、洗浄液供給源、消毒液供給源、すすぎ液供給源、及び気流発生手段を単一のノズルに接続し、切換弁等によって選択的に還元水、酸性水、すすぎ液、又は空気の噴射を行うよう構成してもよい。
 また、上記実施形態においては、ノズルを介してボトルB内に還元水、酸性水及びすすぎ液を供給し、又は送風していたが、容器内に還元水、酸性水又はすすぎ液を供給したり送風したりすることができればノズルを用いなくてもよい。
 また、上記実施形態においては、洗浄装置10は、洗浄部6、消毒部1、すすぎ部2及び乾燥部3を1つずつ備えていたが、洗浄部、消毒部、すすぎ部及び乾燥部を複数備えることもできる。
 また、上記実施形態においては、開口を有するボトルB(容器)を洗浄する場合を例に説明したが、図3に示すように、野菜、果実等の農作物Aを洗浄することもできる。農作物Aを洗浄する場合には、農作物Aに付着した汚れの他、農薬を効果的に除去することができる。
 農作物Aを洗浄するために用いる還元水及び酸性水は、0.001%~0.5%、好ましくは0.01%~0.5%、さらに好ましくは0.1%~0.2%の希薄な塩化ナトリウム水溶液を隔膜電解法にて電解することにより生成される。このようにして生成された還元水を貯留した槽63内に、農作物Aを例えば籠の中に入れて浸漬させて、槽63を揺動させることにより、農作物Aに付着する農薬を除去することができる。この際、農作物Aを超音波洗浄すると、農薬の除去効率が向上する。
 次に、同様に酸性水を貯留した槽13内に、農作物Aを同様に籠等の中に入れて浸漬させて、揺動させることにより、農作物Aに付着した細菌を除菌することができる。次に、すすぎ液として水道水等を貯留した槽23内に農作物Aを同様に籠等の中に入れて浸漬させて、還元水及び酸性水のすすぎを行う。上記した開口を有するボトル(容器)の洗浄では、ノズルからの噴霧にて実施しているために、噴霧量を制限することにて廃液量を制限できる。一方で、農作物Aに付着した農薬の洗浄は、槽63,13内に貯留させた還元水及び酸性水を用いるために、毎回、槽63,13内の還元水及び酸性水を交換するのではなく、槽63,13内の還元水及び酸性水の農薬濃度が高くならないように部分的に還元水及び酸性水を供給、排水することにて廃液量を制限することが好ましい。なお、このようにして排出された廃液(還元水廃液及び酸性水廃液、さらにすすぎ液廃液)は、上記した実施形態と同様に、アナターゼ型酸化チタンを光励起できる近紫外線もしくは紫外線ランプと、光触媒材料とが設置された廃液貯留タンク(浄化処理部7)内に導入され、極めて活性が高く酸化力の強いOHラジカルやスーパーオキサイドアニオン(O )等の活性酸素により、廃液中の難分解性の有機物である農薬の分解や酸性水にて除菌されなかった細菌の殺菌が行われる。また、通常の酸化チタン粒子をバインダー等にて表面にコーティングしている光触媒材料は、表面に露出している酸化チタン粒子だけが光触媒反応をするだけで高い光触媒活性を示すことがない、基材との密着性も劣る等の問題点もあったが、金属チタン又はチタン合金表面にチタン窒化物を形成させた後、チタンに対してエッチング作用を有する無機酸、有機酸から選択された少なくとも1種以上の酸を含有する電解液中で火花放電発生電圧以上の電圧を印加させる陽極酸化処理を行うことにて金属チタン又はチタン合金表面が光触媒化させた材料であるために、光触媒活性も高く密着性にも優れているため、長期間にわたり高効率な廃液の有機物分解や細菌の殺菌を行うことも可能であり、光照射がある限り廃液中の難分解性の農薬分解や酸性水にて除菌されなかった細菌の殺菌が行われことが可能である。また、光触媒反応を向上させるために微量のオゾンや過酸化水素を添加してもよい。
 そして、廃液中の光触媒材料にて分解できなかった有機物、細菌の残骸を濾過部8に導入してフィルターにて濾過することで、清浄な状態にて排出することができ、環境汚染を防止することができる。なお、清浄された状態の廃液を、排出するのではなく、上記した実施形態と同様に、電解水製造装置9に循環させて、還元水及び酸性水の生成に供するようにすれば、水を新たに追加しない循環型の洗浄装置を実現できる。
 また、上記した洗浄部6、消毒部1、すすぎ部2の槽63,13,23を水との接触角度が10°以下の超親水性光触媒材料にて構成することにより、槽63,13,23の内外面に還元水、酸性水、すすぎ液等の液滴が残りにくくなり、槽63,13,23を清潔に保つこともできる。
 本願発明による洗浄方法及び洗浄装置は、開口を有する容器の洗浄、野菜、果実等農作物の農薬洗浄に限定するものではなく、ノズルによる洗浄や浸漬等による洗浄ができるものであればどのようなものに対しても応用することができる。
 以下、実施例を挙げて本発明を説明する。本発明は、これらの実施例に限定されるものではない。
実施例1
 隔膜電解装置である電解水作製装置としてアルテック社製のALTRON-MINI AL-700A(電圧100V,電流0.6A 電解時間10分間)を用いて蒸留水にて希釈した塩化ナトリウム水溶液を電解し、陽極側から得られた酸性水を用いた抗菌性試験を実施した。酸性水中に生成する次亜塩素酸は、上水試験法に規定されているDPD法(ジエチル-p-フェニルジアミン法)により市販のパックテストの試薬(共立理化学研究所製)を用いて発色させ、紫外可視分光光度計UV mini 1240(島津製作所製)を用いて550nmの吸光度から求めた。
 塩化ナトリウム濃度を変化させた水溶液を用いて、前記電解装置の陽極側から生成される酸性水中の次亜塩化酸濃度を求めた結果を図3に示す。塩化ナトリウム濃度と次亜塩素酸濃度には、相関性が得られ、塩化ナトリウム濃度を変化させることにて、次亜塩素酸濃度を変化させることができることが分かった。
 開封後に冷蔵庫に長期間保存して細菌が繁殖した市販の飲料である日本コカコーラ社製の爽健美茶(登録商標)を、希薄な塩化ナトリウム水溶液を隔膜電解にて各種濃度の次亜塩素酸を含む酸性水と、また比較として水道水及び蒸留水とにより、それぞれ1容量%になるように調整し、調整した溶液中に残存する細菌数から抗菌試験を行った。細菌数は、上水試験方法に規定されている一般細菌数測定方法にて測定した。具体的には、上記した各種溶液にて爽健美茶を1容量%にした溶液0.1mlを標準寒天培地(ニッスイ製)に塗抹し、約24時間37℃にて培養させることにて生成するコロニー数から細菌数を求めた。表1に0.015%の塩化ナトリウム水溶液を隔膜電解することから作製した酸性水を適時希釈することにて各種次亜塩素酸濃度の酸性水を作製し、抗菌性を調べた結果を示した。酸性水中の次亜塩素酸濃度が0.6ppm以上にて顕著な抗菌性を発現し、1ppm程度の次亜塩素酸があると、細菌は残存しないことがわかった。また水道水中にも1ppm程度の次亜塩素酸が存在するが、水道水においては全く抗菌性を示さないこともわかった。
Figure JPOXMLDOC01-appb-T000001
 同じ濃度の次亜塩素酸が含まれていても、水道水と酸性水とにおいて抗菌性が異なることに着目し、酸性水にpH調整剤であるリン酸緩衝液(堀場製作所製)を適時添加し、pHをコントロールした溶液にて同様な一般細菌数試験を行った結果を表2に示した。0.01%という希薄な塩化ナトリウム水溶液を隔膜電解して得られた弱酸性(pH3.4)において強い抗菌性を示すが、pHを調整し中性になるようにすると、水道水と同様に全く抗菌性を示さないがわかった。本試験結果から希薄な塩化ナトリウム水溶液を隔膜電解した酸性水は、水道水と同じレベルの人体への為害性がまったく心配ない次亜塩素酸濃度であるにも関わらず、強い抗菌性があることがわかった。
Figure JPOXMLDOC01-appb-T000002
実施例2
 希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を用いた容器の洗浄試験を実施した。汚染物質として食用油に多量に含まれるオレイン酸を用いて評価した。オレイン酸濃度は、オレイン酸をメチルエステル化キット(ナカライテスク製)にて3時間誘導化させたものをガスクロマトグラフGC-2014(島津製作所製)にて測定することから求めた。試験方法としては、開口を有する容器としてビーカーを用いた。オレイン酸を付着させたビーカーに、希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を1800ml/分の噴霧量にて3秒噴霧させた。噴霧後、ビーカーに付着しているオレイン酸を、ヘキサン(和光純薬製)にて溶解させた溶液をメチルエステル化させたものをガスクロマトグラフにて分析し、オレイン酸残存量を求めた。初期付着量とオレイン酸残存量から容器の洗浄性を評価した結果を表3に示した。隔膜電解に用いる塩化ナトリウム濃度を増加させ、陽極側の酸性水の次亜塩素酸が濃い程、またpHが高い程、オレイン酸の洗浄率は向上する結果となっているが、酸性水側にて水道水と同程度の次亜塩素酸濃度を有する0.01%の塩化ナトリウム水溶液を隔膜電解した還元水において約90%の除去率が達成されている。またわずか3秒の噴霧において、希薄な塩化ナトリウム水溶液の隔膜電解にて生成される還元水にて高い洗浄性が確保されたことから、洗浄に用いる溶液量を制限することができ、最終的に排出される廃液の量も減少し、光触媒材料での処理やフィルターでの濾過の効率も向上する。
Figure JPOXMLDOC01-appb-T000003
実施例3
 希薄な塩化ナトリウム水溶液の隔膜電解にて陰極側にて生成する還元水を用いた農薬除去試験を実施した。汚染物質としてスミチオン乳剤(住友化学製 主成分:フェニトロチオンC9H12NO5PS)を用いた。スミチオン乳剤を蒸留水にて10倍希釈した溶液0.05mlを76mm×26mmのスライドガラスに付着し、1日常温にて乾燥させ、農薬をスライドガラスに付着させた。この農薬を付着させたスライドガラスを200mlの還元水中に30秒浸漬したものを改めて50mlの蒸留水中に浸漬、超音波洗浄機ASU CLEANER ASU-3D(アズワン製)を用いて43KHzにて15分間超音波洗浄し、スライドガラスに付着した農薬を溶液中に完全に溶解させた。還元水洗浄前後のスライドガラスに付着している農薬を完全溶解させた溶液をそれぞれ作製、分析した。農薬除去率は、還元水洗浄前後のスライドガラスへの農薬付着量から求めた。
 農薬スミチオン乳剤の分析は、JISK0102 46.3.1ペルオキソ二硫酸カリウム分解法に基づき、フェニトロチオン中のリンをリン酸に変化させる。このリン酸濃度をJISK0102 46.1.1モリブデン青吸光度法にて発色させ、紫外可視分光光度計UV mini 1240(島津製作所製)を用いて880nmの吸光度を測定することから、農薬付着量を求めた。
 表4、5は、希薄な塩化ナトリウム水溶液から隔膜電解にて陰極側に生成された還元水を用いた農薬除去率測定結果である。具体的には、表4、5の還元水は、0.13%、0.20%塩化ナトリウム水溶液の隔膜電解にて陰極側から作製した還元水を用いた。本還元水作製時の陽極側にて同時に生成する酸性水側の次亜塩素酸濃度は、それぞれ20ppm、40ppmの際に同時に生成される還元水を用いた。還元水の濃度を増加させることにより、農薬除去率は向上することがわかった。前記の容器洗浄方法と比較すると、還元水は、高濃度のものを使用しないと農薬は有効に除去できないが、前記した容器洗浄方法が噴霧して洗浄するのに対して、農薬洗浄は還元水を貯めた槽に浸漬することにより洗浄するために一部だけ新たに供給すればよいので、廃液量も制限され光触媒での処理やフィルターでの濾過の効率も向上する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
10   洗浄装置
1     消毒部
11   第2のノズル
12   消毒液貯留タンク(消毒液供給源)
2     すすぎ部
21   第3のノズル
22   すすぎ液貯留タンク(すすぎ液供給源)
3     乾燥部
31   第4のノズル
32   気流発生手段
4     設置面
6     洗浄部
61   第1のノズル
62   洗浄液貯留タンク(洗浄液供給源)
 

Claims (14)

  1.  開口を有する容器又は農作物を洗浄する方法であって、
     前記容器又は前記農作物を還元水にて洗浄する洗浄工程と、
     前記洗浄工程後の前記容器または前記農作物に対して酸性水にて消毒を行う消毒工程と、
     前記消毒工程後の前記容器または前記農作物に対してすすぎ液にてすすぎを行うすすぎ工程と、
     洗浄に用いた還元水廃液および消毒に用いた酸性水廃液を回収し、前記還元水廃液および前記酸性水廃液を光触媒材料にて浄化処理する浄化処理工程と、
     前記浄化処理工程後の前記還元水廃液および前記酸性水廃液をフィルターにより濾過する濾過工程と、を備える洗浄方法。
  2.  前記光触媒材料が、金属チタン又はチタン合金を窒化処理した後、前記金属チタン又はチタン合金に対してエッチング性を有する無機酸、有機酸より選択された1種類以上の酸を含有する電解液中にて火花放電発生電圧以上の電圧を印加する陽極酸化処理を行うことにより形成されている請求項1に記載の洗浄方法。
  3.  前記浄化処理工程において、前記光触媒材料に近紫外線又は紫外線を放射する請求項2に記載の洗浄方法。
  4.  洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水が、希薄な塩化ナトリウム水溶液を被電解水とする隔膜電解にて生成される請求項1に記載の洗浄方法。
  5.  前記濾過工程後の前記還元水および前記酸性水が、洗浄に用いられる前記還元水及び消毒に用いられる前記酸性水の生成のために再利用される請求項4に記載の洗浄方法。
  6.  前記フィルターが、有機物を除去するフィルター、固形物を除去するフィルター、イオン交換樹脂フィルターから選択される少なくとも1種類以上のフィルターにて構成される請求項1に記載の洗浄方法。
  7.  開口を有する容器を洗浄する装置であって、
     前記開口を介して前記容器内に還元水を供給する洗浄部と、
     前記開口を介して前記容器内に酸性水を供給する消毒部と、
     前記開口を介して前記容器内にすすぎ液を供給するすすぎ部と、
     前記開口を介して前記容器内に送風する乾燥部と、
     前記洗浄部から排出される還元水廃液及び前記消毒部から排出される酸性水廃液を回収し、前記還元水廃液および前記酸性水廃液を光触媒材料にて浄化処理する浄化処理部と、
     前記浄化処理部から排出される前記還元水廃液および前記酸性水廃液をフィルターにより濾過する濾過部と、を備える洗浄装置。
  8.  農作物を洗浄する装置であって、
     還元水を貯留し、前記農作物を浸漬可能な洗浄部と、
     酸性水を貯留し、前記農作物を浸漬可能な消毒部と、
     すすぎ液を貯留し、前記農作物を浸漬可能なすすぎ部と、
     前記洗浄部から排出される還元水廃液及び前記消毒部から排出される酸性水廃液を回収し、前記還元水廃液及び前記酸性水廃液を光触媒材料にて浄化処理する浄化処理部と、
     前記浄化処理部から排出される前記還元水廃液および前記酸性水廃液をフィルターにより濾過する濾過部と、を備える洗浄装置。
  9.  前記光触媒材料が、金属チタン又はチタン合金を窒化処理した後、前記金属チタン又はチタン合金に対してエッチング性を有する無機酸、有機酸より選択された1種類以上の酸を含有する電解液中にて火花放電発生電圧以上の電圧を印加する陽極酸化処理を行うことにより形成されている請求項7又は8に記載の洗浄装置。
  10.  前記洗浄部は、還元水供給源、及び前記還元水供給源からの還元水を前記容器内に噴射する第1のノズルを有し、
     前記消毒部は、酸性水供給源、及び前記酸性水供給源からの酸性水を前記容器内に噴射する第2のノズルを有し、
     前記すすぎ部は、すすぎ液供給源、及び前記すすぎ液供給源からのすすぎ液を前記容器内に噴射する第3のノズルを有し、
     前記乾燥部は、気流発生手段、及び前記気流発生手段から送られる空気を前記容器内に噴射する第4のノズルを有する請求項7に記載の洗浄装置。
  11.  前記第1~第4のノズルが上方に突出するよう設置されるとともに光触媒材料で構成される設置面をさらに備える請求項10に記載の洗浄装置。
  12.  前記洗浄部、前記消毒部および前記すすぎ部が揺動可能である請求項8に記載の洗浄装置。
  13.  前記洗浄部、前記消毒部および前記すすぎ部が光触媒材料で形成されている請求項8に記載の洗浄装置。
  14.  前記光触媒材料は、超親水性を有する金属チタン又はチタン合金である請求項11又は13に記載の洗浄装置。
     
PCT/JP2012/077958 2011-11-01 2012-10-30 洗浄方法及び洗浄装置 WO2013065661A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239952 2011-11-01
JP2011239952 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065661A1 true WO2013065661A1 (ja) 2013-05-10

Family

ID=48192008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077958 WO2013065661A1 (ja) 2011-11-01 2012-10-30 洗浄方法及び洗浄装置

Country Status (3)

Country Link
JP (1) JPWO2013065661A1 (ja)
TW (1) TW201334710A (ja)
WO (1) WO2013065661A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197478A (ja) * 2012-03-22 2013-09-30 Hoya Corp ガラス基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び、反射型マスクの製造方法
JP5557969B1 (ja) * 2014-01-29 2014-07-23 株式会社昭和 洗浄装置
CN106391631A (zh) * 2016-11-02 2017-02-15 江苏天凝玻璃科技有限公司 方便清洗玻璃瓶的固定装置
JP2018075346A (ja) * 2016-11-02 2018-05-17 セントラル硝子株式会社 セボフルラン貯蔵容器の洗浄方法およびセボフルランの貯蔵方法
GR1009338B (el) * 2017-04-12 2018-07-31 Ιωαννης Κωνσταντινου Κουκουτσης Ολοκληρωμενο αυτοματο συστημα διαχειρισης κενων πλαστικων δοχειων συσκευασιας φυτοφαρμακων
CN112429861A (zh) * 2020-11-02 2021-03-02 天津渤化永利化工股份有限公司 一种使用反渗透膜技术处理联碱ⅰ过程洗后液的方法
CN114623384A (zh) * 2022-03-14 2022-06-14 长鑫存储技术有限公司 一种储液瓶的处理系统及其处理储液瓶的方法
CN115555362A (zh) * 2022-09-21 2023-01-03 焦作市粮油质量安全检测中心 化学实验的污染物收集回收处理一体化设备及其操作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640372B (zh) * 2017-01-19 2018-11-11 統一企業股份有限公司 Bottle washing and sterilization equipment with automatic dosing function of fungicide

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155546A (ja) * 1997-11-28 1999-06-15 Hitachi Ltd 野菜洗い機
JP2000246206A (ja) * 1999-02-26 2000-09-12 Kuraray Co Ltd 食品搬送用容器洗浄システムおよびその洗浄システムの廃水利用方法
JP2004024993A (ja) * 2002-06-24 2004-01-29 Fuji Electric Holdings Co Ltd 容器類の洗浄装置
JP2004067855A (ja) * 2002-08-06 2004-03-04 Hoshizaki Electric Co Ltd 炭酸飲料水の受注容器用濯ぎ剤および受注容器の洗浄方法
JP2004267956A (ja) * 2003-03-11 2004-09-30 Mikuni Corp 混合電解水の製造方法
JP2006224075A (ja) * 2005-02-21 2006-08-31 Alliance:Kk 洗浄水の噴射装置とボトルの洗浄方法
JP2006320843A (ja) * 2005-05-19 2006-11-30 Nippon Pillar Packing Co Ltd 光触媒材並びにこれを使用する光触媒フィルタ、光触媒フィルタユニット及び光触媒浄化処理装置
JP2008500433A (ja) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 親水性組成物、その生成のための方法、およびそのような組成物でコーティングされた基材
JP2008093511A (ja) * 2006-10-06 2008-04-24 Nippon Rensui Co Ltd リンサー排水回収システム及びリンサー排水回収方法
JP2010246413A (ja) * 2009-04-10 2010-11-04 Hosoda Kogyo Kk 野菜の洗浄方法
JP2011120998A (ja) * 2009-12-10 2011-06-23 Tohoku Univ 可視光応答性ルチル型二酸化チタン光触媒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115588U (ja) * 1984-01-09 1985-08-05 麻野 好康 洗浄装置
JPH06107318A (ja) * 1992-09-30 1994-04-19 Kao Corp 輸送コンテナの洗浄機
JP3062993U (ja) * 1999-04-12 1999-10-15 有限会社立原工業所 容器類の洗浄装置
JP2002307060A (ja) * 2001-04-13 2002-10-22 Nofil Corp 電解水製造装置
JPWO2003007084A1 (ja) * 2001-07-13 2004-11-04 ジプコム株式会社 プリント配線基板の製造方法
JP2004223367A (ja) * 2003-01-21 2004-08-12 Gunze Ltd 洗瓶装置
JP3101256U (ja) * 2003-10-28 2004-06-10 森合精機株式会社 容器洗浄装置
JP3858058B2 (ja) * 2004-02-27 2006-12-13 奈良県 陽極電解酸化処理によるアナターゼ型酸化チタン皮膜の製造方法
JP2009285563A (ja) * 2008-05-29 2009-12-10 Miura Co Ltd 超音波洗浄装置
JP5197766B2 (ja) * 2009-06-01 2013-05-15 新日鐵住金株式会社 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155546A (ja) * 1997-11-28 1999-06-15 Hitachi Ltd 野菜洗い機
JP2000246206A (ja) * 1999-02-26 2000-09-12 Kuraray Co Ltd 食品搬送用容器洗浄システムおよびその洗浄システムの廃水利用方法
JP2004024993A (ja) * 2002-06-24 2004-01-29 Fuji Electric Holdings Co Ltd 容器類の洗浄装置
JP2004067855A (ja) * 2002-08-06 2004-03-04 Hoshizaki Electric Co Ltd 炭酸飲料水の受注容器用濯ぎ剤および受注容器の洗浄方法
JP2004267956A (ja) * 2003-03-11 2004-09-30 Mikuni Corp 混合電解水の製造方法
JP2008500433A (ja) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 親水性組成物、その生成のための方法、およびそのような組成物でコーティングされた基材
JP2006224075A (ja) * 2005-02-21 2006-08-31 Alliance:Kk 洗浄水の噴射装置とボトルの洗浄方法
JP2006320843A (ja) * 2005-05-19 2006-11-30 Nippon Pillar Packing Co Ltd 光触媒材並びにこれを使用する光触媒フィルタ、光触媒フィルタユニット及び光触媒浄化処理装置
JP2008093511A (ja) * 2006-10-06 2008-04-24 Nippon Rensui Co Ltd リンサー排水回収システム及びリンサー排水回収方法
JP2010246413A (ja) * 2009-04-10 2010-11-04 Hosoda Kogyo Kk 野菜の洗浄方法
JP2011120998A (ja) * 2009-12-10 2011-06-23 Tohoku Univ 可視光応答性ルチル型二酸化チタン光触媒

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197478A (ja) * 2012-03-22 2013-09-30 Hoya Corp ガラス基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び、反射型マスクの製造方法
JP5557969B1 (ja) * 2014-01-29 2014-07-23 株式会社昭和 洗浄装置
WO2015114889A1 (ja) * 2014-01-29 2015-08-06 株式会社昭和 洗浄装置
CN106391631A (zh) * 2016-11-02 2017-02-15 江苏天凝玻璃科技有限公司 方便清洗玻璃瓶的固定装置
JP2018075346A (ja) * 2016-11-02 2018-05-17 セントラル硝子株式会社 セボフルラン貯蔵容器の洗浄方法およびセボフルランの貯蔵方法
GR1009338B (el) * 2017-04-12 2018-07-31 Ιωαννης Κωνσταντινου Κουκουτσης Ολοκληρωμενο αυτοματο συστημα διαχειρισης κενων πλαστικων δοχειων συσκευασιας φυτοφαρμακων
CN112429861A (zh) * 2020-11-02 2021-03-02 天津渤化永利化工股份有限公司 一种使用反渗透膜技术处理联碱ⅰ过程洗后液的方法
CN114623384A (zh) * 2022-03-14 2022-06-14 长鑫存储技术有限公司 一种储液瓶的处理系统及其处理储液瓶的方法
CN114623384B (zh) * 2022-03-14 2023-10-20 长鑫存储技术有限公司 一种储液瓶的处理系统及其处理储液瓶的方法
CN115555362A (zh) * 2022-09-21 2023-01-03 焦作市粮油质量安全检测中心 化学实验的污染物收集回收处理一体化设备及其操作方法
CN115555362B (zh) * 2022-09-21 2024-06-07 焦作市粮油质量安全检测中心 化学实验的污染物收集回收处理一体化设备及其操作方法

Also Published As

Publication number Publication date
TW201334710A (zh) 2013-09-01
JPWO2013065661A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2013065661A1 (ja) 洗浄方法及び洗浄装置
JP5557969B1 (ja) 洗浄装置
JP5615718B2 (ja) 電気化学的に活性化された水を使用する飲料の製造、処理、パッケージング及び分注
JP6051426B2 (ja) 浸透性に優れた殺菌剤、及び殺菌方法
JP2017502832A (ja) カート洗浄機
US7015184B2 (en) Cleaning solution, and method and apparatus for cleaning using the same
EP2794976B1 (de) Verfahren zum betrieb eines haushaltsgeräts mit einem speicherbehälter und einem oxidationsmittelgenerator sowie hierfür geeignetes haushaltsgerät
JP2007145961A (ja) 除菌洗浄剤及びこれを用いた汚染物の除去方法
JP2007060950A (ja) 洗浄殺菌装置および洗浄殺菌方法
JP2007006817A (ja) 育苗トレイの洗浄装置
US10993448B2 (en) Method for sanitizing fresh produce
WO2007004274A1 (ja) 清掃対象物の清掃方法
CN104162418A (zh) 一种活性炭负载二氧化钛复合光催化剂及其制备方法
JP3169258U (ja) 除菌洗浄剤
JP3552347B2 (ja) 食物洗浄装置
JPH0975050A (ja) 食物洗浄装置
CN203253674U (zh) 一种食品杀菌消毒清洗机
US20150282690A1 (en) Cleaning device and cleaning method
CN103230896A (zh) 一种食品清洗排毒设备
WO1996011073A1 (de) Verfahren und vorrichtung zum reinigen und sterilisieren von gegenständen
WO2020122258A1 (ja) ラジカル水の製造方法、製造装置及びラジカル水
KR100871416B1 (ko) 오존살균수 생성장치
CN205108478U (zh) 可处理医疗机构污废水中异臭味及杀菌消毒的装置
CN202941370U (zh) 高效节水食品清洗机
CN114680348B (zh) 一种清洗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844766

Country of ref document: EP

Kind code of ref document: A1