WO2013061959A1 - クラッチ装置 - Google Patents

クラッチ装置 Download PDF

Info

Publication number
WO2013061959A1
WO2013061959A1 PCT/JP2012/077351 JP2012077351W WO2013061959A1 WO 2013061959 A1 WO2013061959 A1 WO 2013061959A1 JP 2012077351 W JP2012077351 W JP 2012077351W WO 2013061959 A1 WO2013061959 A1 WO 2013061959A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment member
wedge ring
adjustment
clutch
clutch device
Prior art date
Application number
PCT/JP2012/077351
Other languages
English (en)
French (fr)
Inventor
彰一 山崎
時義 喜田
今井 宏
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to EP12842996.6A priority Critical patent/EP2772658B1/en
Priority to CN201280052672.6A priority patent/CN103890431B/zh
Publication of WO2013061959A1 publication Critical patent/WO2013061959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/75Features relating to adjustment, e.g. slack adjusters
    • F16D13/757Features relating to adjustment, e.g. slack adjusters the adjusting device being located on or inside the clutch cover, e.g. acting on the diaphragm or on the pressure plate

Definitions

  • the present invention relates to a clutch device having a mechanism that compensates for the wear of the friction material of a clutch disk.
  • a clutch device is provided on a power transmission path between the engine and the transmission in order to prevent the rotational power of the engine from being transmitted to the transmission at the time of engine start-up or gear change.
  • the clutch operating force is transmitted through a release mechanism such as a hydraulic mechanism or a link mechanism by manual operation (manual operation, stepping-on operation, etc.) of an operating mechanism such as a clutch lever or a clutch pedal. And can be intermittent.
  • the clutch device generally has a mechanism for pressing a clutch disk, which transmits rotational power to the transmission, with a pressure plate against a flywheel to which rotational power of the engine is transmitted.
  • the pressure plate is biased toward the clutch disc by a diaphragm spring operable by a release mechanism.
  • the diaphragm spring is pivotally supported by a clutch cover fixed to the flywheel at a fulcrum.
  • the clutch device changes the posture of the diaphragm spring in accordance with the wear of the friction material (fading) provided on the friction surface of the clutch disk, and therefore, the clutch device is necessary for disengaging the clutch device when the friction material wears. Operation force, that is, the load on the clutch cover is increased. For this reason, there is one provided with a mechanism that compensates for the wear of the friction material.
  • the first and second fulcrum rings are disposed between the pressure plate and the diaphragm spring, and the inclined plate is formed on the pressure plate side of each fulcrum ring.
  • First and second slide keys biased radially outward between the inclined surface of the fulcrum ring and the pressure plate are disposed.
  • Patent Document 1 The entire disclosure of Patent Document 1 is incorporated herein by reference. The following analysis is given by the present invention.
  • the members (slide key, fulcrum ring) are arranged in series in the axial direction between the pressure plate and the diaphragm spring, the axial dimension becomes large.
  • the centrifugal force causes the first and second slide keys to move radially outward, and the gap between the diaphragm spring and the pressure plate is filled more than necessary. There is a risk of malfunction.
  • the number of parts is large, and there is a possibility that the cost is increased.
  • the main object of the present invention is to provide a clutch device capable of avoiding malfunction due to centrifugal force while suppressing increase in size and cost.
  • the clutch device includes a wear adjusting mechanism, and the wear adjusting mechanism is a first adjusting member that receives an operating force of a lever member swingably supported by the clutch cover;
  • the operating force of the lever member is arranged via the second adjusting member which is disposed radially outside the first adjusting member and receives the operating force of the lever member, and the first adjusting member or the second adjusting member. From the third adjusting member by relatively moving the first adjusting member or the second adjusting member in one of the circumferential directions with respect to the third adjusting member. It is characterized in that the length to the contact portion between the lever member and the first adjustment member or the second adjustment member is adjusted.
  • the axial length adjustment is performed by the circumferential movement of the first adjusting member or the second adjusting member with respect to the third adjusting member, malfunction due to centrifugal force can be eliminated. Further, since the length adjustment is performed using the engagement between the third adjustment member and the first adjustment member or the second adjustment member in the wear adjustment mechanism, the third adjustment member and the first adjustment member or the second adjustment member As a result, the axial dimension of the clutch cover can be reduced, and the cost can be reduced by reducing the number of parts.
  • FIG. 3 is an axial sectional view of a portion corresponding to between XX ′ in FIG. 2 schematically showing the configuration of the clutch device in accordance with the first embodiment of the present invention. It is the top view seen from the back side which showed typically the structure of the pressure plate in the clutch apparatus which concerns on Example 1 of this invention.
  • FIG. 2 is a partial enlarged cross-sectional view in the axial direction, showing the vicinity of the wear adjustment mechanism of FIG. 1 schematically showing the configuration of a clutch device according to a first embodiment of the present invention.
  • A A partial sectional view in the circumferential direction of a portion corresponding to YY 'in FIG. 3 schematically showing the configuration of the clutch device according to the first embodiment of the present invention
  • FIG. 4C is a partial cross-sectional view in the circumferential direction of a portion corresponding to the Y-Y 'line of 3;
  • FIG. (A) At the time of disconnection operation for explaining the operation of the clutch device according to the first embodiment of the present invention (A) A partial sectional view in the axial direction of a portion corresponding to the line XX 'in FIG. It is a fragmentary sectional view of a peripheral direction of a portion equivalent to YY ', a fragmentary sectional view of a peripheral direction of a portion equivalent to ZZ' of Drawing 3 (C). (A) A partial sectional view in the axial direction of a portion corresponding to the line XX 'in FIG.
  • FIG. 4C is a partial cross-sectional view in the circumferential direction of a portion corresponding to the Y-Y 'line of 3;
  • FIG. 7 is a partial enlarged cross-sectional view in the axial direction, showing the vicinity of a wear adjustment mechanism schematically showing the configuration of a clutch device according to a second embodiment of the present invention.
  • A A partial sectional view in the circumferential direction of a portion corresponding to YY 'in FIG. 10 schematically showing the configuration of a clutch device according to a second embodiment of the present invention;
  • B ZZ in FIG.
  • FIG. 11 A partial sectional view in the axial direction of an initial state for explaining the operation of the clutch device according to the second embodiment of the present invention
  • FIG. 11 A circumferential portion of a portion corresponding to YY 'of FIG. FIG. 11
  • C is a partial cross-sectional view in the circumferential direction of a portion corresponding to the line ZZ ′ in FIG.
  • A A partial sectional view in the axial direction at the time of friction material wear for explaining the operation of the clutch device according to the second embodiment of the present invention
  • B The circumferential direction of the portion corresponding to YY 'in FIG.
  • FIG. 10 (C) is a circumferential partial cross-sectional view of a portion corresponding to the line ZZ ′ in FIG.
  • A A partial cross-sectional view in the axial direction at the time of inner wedge ring operation for explaining the operation of the clutch device according to the second embodiment of the present invention
  • B the periphery of a portion corresponding to YY 'in FIG.
  • FIG. 11 (C) is a partial cross-sectional view in the circumferential direction of a portion corresponding to the line ZZ ′ in FIG. 10
  • A A partial cross-sectional view in the axial direction at the time of disconnection operation for explaining the operation of the clutch device according to the second embodiment of the present invention
  • B FIG.
  • FIG. 11 (C) is a partial cross-sectional view in the circumferential direction of a portion corresponding to the line ZZ ′ in FIG.
  • A A partial cross-sectional view in the axial direction at the time of outer wedge ring operation for explaining the operation of the clutch device according to the second embodiment of the present invention
  • B the periphery of a portion corresponding to YY 'in FIG.
  • FIG. 11 (C) is a partial cross-sectional view in the circumferential direction of a portion corresponding to the line ZZ ′ in FIG. 10;
  • the clutch device includes a wear adjusting mechanism, and the wear adjusting mechanism (2 of FIG. 1) is swingably supported by a clutch cover (13 of FIG. 1)
  • a first adjusting member (18 in FIG. 1) for receiving the operating force of the lever member (15 in FIG. 1) and a radially outer side of the first adjusting member, and receiving the operating force of the lever member A second adjustment member (19 in FIG. 1) and a third adjustment member (17 in FIG. 1) that receives the operation force of the lever member via the first adjustment member or the second adjustment member;
  • the third adjustment member is a pressure plate that presses the clutch disc against a flywheel.
  • the lever member is a diaphragm spring capable of axially biasing the third adjustment member via the first adjustment member or the second adjustment member.
  • the wear adjusting mechanism is one in an axial direction along with a change in one of the circumferential directions on the contact surface between the first adjusting member or the second adjusting member and the third adjusting member. It is preferable to use the engagement of the inclined surfaces which changes into.
  • the wear adjusting mechanism utilizes a screw engagement at an abutment surface between the first adjusting member or the second adjusting member and the third adjusting member. .
  • the wear adjusting mechanism is configured to apply a first elastic member for urging the first adjusting member in one circumferential direction with respect to the third adjusting member, and a third adjusting member for the third adjusting member. It is preferable to have the 2nd elastic member which biases the said 2nd adjustment member to one side of the circumferential direction.
  • the wear adjusting mechanism is configured to apply a first elastic member for urging the first adjusting member in one circumferential direction with respect to the second adjusting member, and a third adjusting member
  • the second elastic member biases the second adjustment member in one of the circumferential directions, and the biasing force of the first elastic member is smaller than the biasing force of the second elastic member.
  • the wear adjustment mechanism is configured such that the second adjustment member and the lever member abut each other when the clutch is engaged, and a gap is formed between the first adjustment member and the lever member When the first adjustment member rotates in one circumferential direction with respect to the third adjustment member, the first adjustment member and the lever member abut each other, and the first adjustment member is not engaged.
  • the adjustment member and the lever member abut, and a gap is generated between the second adjustment member and the lever member, the second adjustment member rotates in the circumferential direction with respect to the third adjustment member. It is preferable to operate so as to abut on the lever member.
  • the second adjustment member has a recess
  • the first adjustment member protrudes radially outward and is inserted into the recess and is in contact with the recess. It is preferable to have the stopper part which controls rotation of the said 2nd adjustment member with respect to 1 adjustment member.
  • the concave portion and the stopper portion are inclined surfaces that change in the other axial direction along with a change in one of the circumferential direction on the contact surface between the concave portion and the stopper portion during regulation. It is preferable to have
  • FIG. 1 is an axial sectional view of a portion corresponding to the line XX ′ of FIG. 2 schematically showing the configuration of a clutch device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view seen from the back side schematically showing the configuration of the pressure plate in the clutch device according to the first embodiment of the present invention.
  • FIG. 3 is a partially enlarged cross-sectional view in the axial direction, showing the vicinity of the wear adjusting mechanism of FIG. 1 schematically showing the configuration of the clutch device according to the first embodiment of the present invention.
  • FIG. 4 schematically shows the configuration of the clutch device according to the first embodiment of the present invention (A) a partial cross-sectional view in the circumferential direction of a portion corresponding to YY 'in FIG. 3; Is a partial cross-sectional view in the circumferential direction of a portion corresponding to the space between ZZ 'and Z'.
  • the clutch device 1 is a device for rotatably transmitting rotational power from a crankshaft 10 of an engine (not shown) to a transmission input shaft 41 (see FIG. 1).
  • the clutch device 1 moves the release bearing 26 to the engine side (right side in FIG. 1) in the axial direction to cut off the rotational power from the crankshaft 10 to the transmission input shaft 41 (for example, a lever mechanism, It can be operated by a hydraulic piston mechanism etc.).
  • the clutch device 1 has a wear adjustment mechanism 2 that compensates for the wear of the friction material 31 provided on the friction surface of the clutch disc 30.
  • the wear adjusting mechanism 2 is a mechanism for adjusting the length from the pressure plate 17 to the contact portion between the diaphragm spring 15 and the inner wedge ring 18 and the outer wedge ring 19 (see FIGS. 3 and 4).
  • two wedge rings 18, 19 are concentrically arranged between the pressure plate 17 and the diaphragm spring 15 in parallel with a difference in length and diameter.
  • the wear adjustment mechanism 2 is configured such that the diaphragm spring 15 and the inner wedge ring 18 or the outer wedge ring 19 from the pressure plate 17 when the inner wedge ring 18 or the outer wedge ring 19 rotates in one circumferential direction with respect to the pressure plate 17. It is engaged so as to increase the length (axial length) to the abutment portion with the.
  • the wear adjusting mechanism 2 has a plurality of saw-tooth-like inclined surfaces 17 d that change in one axial direction with a change in one of the circumferential directions at the contact surface with the inner wedge ring 18 and the outer wedge ring 19 in the pressure plate 17.
  • Length adjustment can be made.
  • the wear adjusting mechanism 2 uses the screw engagement between the inner wedge ring 18 and the outer wedge ring 19 and the pressure plate 17 other than the type utilizing the slidable engagement of the inclined surfaces to the pressure plate 17.
  • the length adjustment may be performed by rotating the inner wedge ring 18 or the outer wedge ring 19 in one of the circumferential directions.
  • each of the wedge rings 18, 19 may be a circular arc-shaped member divided in the circumferential direction, or may be a linear member arranged to relatively move in the tangential direction in contact with the circumferential direction. .
  • the wear adjusting mechanism 2 is configured to press the pressure plate 17 so as to close the gap when there is a gap (backlash) between the diaphragm spring 15 and the inner wedge ring 18 due to the wear of the friction material 31 of the clutch disc 30.
  • the inner wedge ring 18 is biased by the elastic member 20 in one circumferential direction.
  • the wear adjusting mechanism 2 is configured to press the pressure plate 17 so as to close the gap when there is a gap (backlash) between the diaphragm spring 15 and the outer wedge ring 19 due to the wear of the friction material 31 of the clutch disc 30.
  • the outer wedge ring 19 is urged by the elastic member 21 in one circumferential direction.
  • the wear adjustment mechanism 2 has a gap between the diaphragm spring 15 and the inner wedge ring 18 due to the difference in diameter between the inner wedge ring 18 and the outer wedge ring 19 and the swing of the diaphragm spring 15, and the diaphragm spring 15 and the outer wedge
  • the gap filling with the ring 19 is alternately performed, and the length adjustment is performed so that the gap filling with the diaphragm spring 15 and the outer wedge ring 19 follows the gap filling with the diaphragm spring 15 and the inner wedge ring 18.
  • the wear adjusting mechanism 2 may be disposed not only in the vicinity of the pressure plate 17 as in the embodiment but also so as to adjust the axial position of the fulcrum member 16.
  • the release bearing 26 and the diaphragm spring 15 And may be disposed in the vicinity of the release bearing 26 so as to follow changes in the relative distance between them.
  • the clutch device 1 includes, as main components, a flywheel 11, a bolt 12, a clutch cover 13, a bolt 14, a diaphragm spring 15, a fulcrum member 16, a pressure plate 17, and an inner wedge ring 18.
  • the outer wedge ring 19 the elastic members 20 and 21, the strap 22, the rivet 23, the tubular member 24, the sleeve 25, the release bearing 26, and the clutch disc 30.
  • the flywheel 11 is an annular inertial body (see FIG. 1).
  • the flywheel 11 is attached and fixed to the crankshaft 10 by a plurality of bolts 12 at an inner peripheral portion, and rotates integrally with the crankshaft 10.
  • the clutch cover 13 is attached and fixed to the outer peripheral portion of the flywheel 11 by a plurality of bolts 14 and rotates integrally with the clutch cover 13.
  • the clutch cover 13 is an annular member formed to cover the outer peripheral portion of the clutch disc 30 (see FIGS. 1 and 3).
  • the clutch cover 13 is attached and fixed to the flywheel 11 by bolts 14 at an outer peripheral portion, and rotates integrally with the flywheel 11.
  • the clutch cover 13 is separated from the flywheel 11 at the inner peripheral portion, and covers the outer peripheral portion of the clutch disc 30 and the pressure plate 17.
  • the clutch cover 13 supports, at its inner circumferential end, two fulcrum members 16 disposed so as to sandwich both sides of the middle portion of the diaphragm spring 15.
  • the clutch cover 13 crimps and supports the two fulcrum members 16 at a plurality of spaces between the lever portions of the diaphragm spring 15.
  • the clutch cover 13 pivotally supports the diaphragm spring 15 with the fulcrum member 16 as a fulcrum.
  • the clutch cover 13 is elastically connected to the pressure plate 17 via the strap 22 and rotates integrally with the pressure plate 17.
  • the diaphragm spring 15 is an elastic member in which a plurality of lever portions extend radially inward from an annular disc spring portion (see FIGS. 1, 3 and 4).
  • the diaphragm spring 15 is pivotally held between two fulcrum members 16 supported by the clutch cover 13 at an intermediate portion.
  • the diaphragm spring 15 is a lever member with the fulcrum member 16 as a fulcrum.
  • the diaphragm spring 15 is in contact with the inner wedge ring 18 and / or the outer wedge ring 19 at the surface on the engine side (right side in FIG. 1) of the outer peripheral portion.
  • the diaphragm spring 15 is in contact with the rotating wheel of the release bearing 26 on the surface on the transmission side (left side in FIG. 1) of the inner peripheral portion.
  • the diaphragm spring 15 biases the pressure plate 17 toward the flywheel 11 through the inner wedge ring 18 and / or the outer wedge ring 19 by tilting the fulcrum member 16 as a fulcrum.
  • the inner peripheral portion of the diaphragm spring 15 biases the release bearing 26 to the transmission side (left side in FIG. 1).
  • the diaphragm spring 15 urges the pressure plate 17 via the inner wedge ring 18 and / or the outer wedge ring 19 to press the portion of the friction material 31 of the clutch disc 30 against the flywheel 11.
  • the outer peripheral portion is displaced away from the flywheel 11, and the biasing of the pressure plate 17 toward the flywheel 11 is released.
  • the fulcrum member 16 is an annular member serving as a fulcrum of swinging of the diaphragm spring 15 (see FIG. 1).
  • Two fulcrum members 16 are disposed on both sides of the middle portion of the diaphragm spring 15, and are crimped and supported by the clutch cover 13 at a plurality of spaces between the lever portions of the diaphragm spring 15.
  • the pressure plate 17 is an annular integral plate that presses the friction sliding portion of the clutch disc 30 against the flywheel 11 (see FIGS. 1 to 4).
  • the pressure plate 17 has a surface on the engine side (right side in FIG. 1) that forms a friction surface that frictionally slides on the friction material 31 of the clutch disk 30.
  • the pressure plate 17 is biased toward the flywheel 11 by the diaphragm spring 15 via the inner wedge ring 18 or the outer wedge ring 19.
  • the pressure plate 17 is a base ring member of the inner wedge ring 18 or the outer wedge ring 19 in the wear adjusting mechanism 2.
  • the pressure plate 17 has a plurality of seats 17a at the outer peripheral end.
  • the seat 17 a is a portion for connecting the strap 22 to the pressure plate 17 by the rivet 23.
  • the pressure plate 17 is elastically connected to the clutch cover 13 via a leaf spring strap 22 and rotates integrally with the clutch cover 13.
  • the pressure plate 17 is biased by the strap 22 in a direction away from the flywheel 11 in the axial direction (biased with a smaller force than the diaphragm spring 15).
  • the pressure plate 17 has guide portions 17b and 17c that protrude on the transmission side (left side in FIG. 1) on the transmission side (left side in FIG. 1) surface (rear surface; opposite surface to the friction surface).
  • the guide portion 17 b extends in the circumferential direction and is formed in an annular shape.
  • the guide portion 17c is formed in an annular shape extending in the circumferential direction on the radially outer side of the guide portion 17b.
  • the pressure plate 17 has a groove extending in the circumferential direction between the guide portions 17b and 17c, and the inner wedge ring 18 and the outer wedge ring 19 are inserted in parallel in the groove.
  • the guide portion 17 b regulates the radial movement of the inner wedge ring 18.
  • the guide portion 17 c regulates the radial movement of the outer wedge ring 19.
  • the pressure plate 17 has a plurality of inclined surfaces 17 d formed on the bottom surface of the groove between the guide portions 17 b and 17 c.
  • the inclined surface 17 d is an inclined surface that changes in the axial direction with a change in one of the circumferential directions, and corresponds to the inclined surfaces 18 a and 19 a of the inner wedge ring 18 and the outer wedge ring 19.
  • the inclined surface 17 d slidably engages with the inclined surfaces 18 a and 19 a of the inner wedge ring 18 and the outer wedge ring 19.
  • One end of each of the elastic members 20 and 21 is swingably connected to the pressure plate 17.
  • the inner wedge ring 18 is an annular member disposed radially inward of the outer wedge ring 19 (see FIGS. 1, 3 and 4).
  • the inner wedge ring 18 is disposed between the pressure plate 17 and the diaphragm spring 15, and abuts on the point of action of the diaphragm spring 15 to receive the biasing force of the diaphragm spring 15 toward the engine side (right side in FIG. 1). .
  • the inner wedge ring 18 has a plurality of inclined surfaces 18 a formed on the surface on the pressure plate 17 side.
  • the inclined surface 18 a is an inclined surface that changes in the axial direction with a change in one of the circumferential directions, and corresponds to the inclined surface 17 d of the pressure plate 17.
  • the inclined surface 18 a slidably engages with the inclined surface 17 d of the pressure plate 17.
  • the inner wedge ring 18 has one or more protrusions 18 b protruding radially outward on the outer peripheral surface.
  • the protruding portion 18 b is a stopper portion that restricts the displacement of the outer wedge ring 19 by coming into contact with the recess 19 b of the outer wedge ring 19 when the outer wedge ring 19 is displaced away from the pressure plate 17.
  • the surface of the projection 18 b in contact with the recess 19 b of the outer wedge ring 19 is an inclined surface 18 c.
  • the inclined surface 18 c is an inclined surface (surface inclined in the opposite direction to the inclined surface 18 a) which changes in the axial direction with one change in the circumferential direction, and corresponds to the inclined surface 19 c of the outer wedge ring 19.
  • the outer wedge ring 19 is an annular member disposed radially outward of the inner wedge ring 18 (see FIGS. 1, 3 and 4).
  • the outer wedge ring 19 is disposed between the pressure plate 17 and the diaphragm spring 15, is in contact with the point of action of the diaphragm spring 15, and receives an urging force of the diaphragm spring 15 toward the engine side (right side in FIG. 1). .
  • the outer wedge ring 19 has a plurality of inclined surfaces 19 a formed on the surface on the pressure plate 17 side.
  • the inclined surface 19 a is an inclined surface that changes in the axial direction with a change in one of the circumferential directions, and corresponds to the inclined surface 17 d of the pressure plate 17.
  • the inclined surface 19 a slidably engages with the inclined surface 17 d of the pressure plate 17.
  • the outer wedge ring 19 has one or more recesses 19 b that are recessed radially outward on the inner circumferential surface.
  • the recess 19 b abuts on the projection 18 b of the inner wedge ring 18 to restrict the displacement of the outer wedge ring 19.
  • the surface of the concave portion 19 b in contact with the protrusion 18 b of the inner wedge ring 18 is an inclined surface 19 c.
  • the inclined surface 19 c is an inclined surface (surface inclined in the opposite direction to the inclined surface 19 a) which changes in the axial direction with one change in the circumferential direction, and corresponds to the inclined surface 18 c of the inner wedge ring 18.
  • the elastic member 20 is a member that biases the inner wedge ring 18 in one circumferential direction with respect to the pressure plate 17 (see FIG. 4).
  • a coil spring, a leaf spring or the like can be used as the elastic member 20, one end of which is swingably connected to the pressure plate 17 and the other end is swingably connected to the inner wedge ring 18.
  • the elastic member 20 is used as a pressing spring in FIG. 4, you may make it bias the inner wedge ring 18 with respect to the pressure plate 17 to one side of the circumferential direction using a pulling spring.
  • the elastic member 21 urges the outer wedge ring 19 in one circumferential direction with respect to the pressure plate 17 (bias in the same direction as the elastic member 20) (see FIG. 4).
  • a coil spring, a leaf spring or the like can be used as the elastic member 21, one end of which is swingably connected to the pressure plate 17 and the other end is swingably connected to the outer wedge ring 19.
  • the elastic member 21 is a pressing spring in FIG. 4, the outer wedge ring 19 may be biased in one circumferential direction with respect to the pressure plate 17 using a pulling spring.
  • the cylindrical member 24 is a cylindrical member disposed on the outer periphery of the transmission input shaft 41.
  • the tubular member 24 is supported by a transmission housing (not shown) (see FIG. 1).
  • the cylindrical member 24 is separated from the transmission input shaft 41 on the inner circumferential surface.
  • the sleeve 25 is slidably disposed in the axial direction on the outer peripheral surface of the tubular member 24.
  • the sleeve 25 is a tubular member, and the fixed ring of the release bearing 26 is fixed (see FIG. 1).
  • the sleeve 25 is axially slidable in response to an operating force of a release mechanism (hydraulic mechanism, link mechanism, etc.).
  • the release bearing 26 is a ball bearing for pressing the inner peripheral portion of the rotating diaphragm spring 15 to disengage the clutch device (see FIG. 1).
  • the release bearing 26 is configured such that a rotating wheel in contact with the diaphragm spring 15 is supported by the fixed wheel via a plurality of balls.
  • the release bearing 26 can slide integrally with the sleeve 25.
  • the clutch disc 30 is a circular disc-like assembly disposed between the flywheel 11 and the pressure plate 17 (see FIGS. 1 and 3).
  • the clutch disc 30 has a friction sliding portion in which the friction material 31 is attached and fixed to both surfaces of the lining plate 32 by rivets 33 at the outer peripheral portion, and the friction sliding portion It is sandwiched between.
  • the clutch disc 30 is attached and fixed to the side plates 34, 35 by rivets 33 at the inner peripheral portion of the lining plate 32, and the hub member 36 is disposed between the side plates 34, 35. And the hub member 36 are buffered (absorbed) by the elastic force of the elastic member 37 (torque fluctuation).
  • the clutch disk 30 has a thrust member 38 disposed between the side plate 34 and the hub member 36, and a thrust member 39 and a disc spring 40 disposed between the side plate 35 and the hub member 36. 35 and the hub member 36 (a torque fluctuation) is buffered (absorbed) by the frictional force between the thrust members 38, 39 and the hub member 36.
  • the clutch disc 30 is in splined engagement with the transmission input shaft 41 at the inner periphery of the hub member 36 so as to be non-rotatable and axially movable.
  • the transmission input shaft 41 is rotatably supported by a transmission housing (not shown) via a bearing (not shown), and the rotational power from the clutch disc 30 is transmitted to the transmission (not shown).
  • FIG. 5 to 9 are (A) an axial partial sectional view of a portion corresponding to the line XX 'in FIG. 2 for explaining the operation of the clutch device according to the first embodiment of the present invention, (B) FIG. 4 is a partial cross-sectional view in the circumferential direction of a portion corresponding to YY ′ in FIG. 3; FIG.
  • the projection 18b (inclined surface 18c) of the inner wedge ring 18 is a recess 19b of the outer wedge ring 19 ( In some cases, excessive displacement of the outer wedge ring 19 can be suppressed by contacting the inclined surface 19c).
  • the length adjustment of the action point of the diaphragm spring 15 is performed by the circumferential movement of the inner wedge ring 18 or the outer wedge ring 19 with respect to the pressure plate 17, malfunction due to centrifugal force can be eliminated.
  • the displacement of the outer wedge ring 19 is regulated by the projection 18 b of the inner wedge ring 18 and the recess 19 b of the outer wedge ring 19 to adjust the length of the operating point of the diaphragm spring 15.
  • the length of wear of the friction material 31 can be adjusted with certainty.
  • the contact surfaces of the projection 18b and the recess 19b of the outer wedge ring 19 be inclined surfaces 18c and 19c, the outer wedge ring 19 may be deviated and misadjusted if vibration enters in the axial direction. It can prevent.
  • the length of the point of action of the diaphragm spring 15 is adjusted by providing the inclined surfaces 18a, 19a, 17d on the contact surfaces of the inner wedge ring 18 and the outer wedge ring 19 and the pressure plate 17.
  • the diameter of contact between 19 and the diaphragm spring 15 can be made the same, and the difference between the diameter of contact between the outer wedge ring 19 and the diaphragm spring 15 and the diameter of contact between the inner wedge ring 18 and the diaphragm spring 15 It can be made smaller.
  • FIG. 10 is a partial enlarged cross-sectional view in the axial direction, showing the vicinity of a wear adjustment mechanism schematically showing the configuration of a clutch device according to a second embodiment of the present invention.
  • FIG. 11 schematically shows the configuration of a clutch device according to a second embodiment of the present invention (A) a partial sectional view in the circumferential direction of a portion corresponding to YY ′ in FIG. 10, (B) FIG. Is a partial cross-sectional view in the circumferential direction of a portion corresponding to the space between ZZ 'and Z'.
  • the second embodiment is a modification of the first embodiment, in which a pin portion 18d is used instead of the projection (18b in FIG. 3) of the inner wedge ring 18, and an elastic member is formed between the pressure plate 17 and the inner wedge ring 18. Instead of providing (20 in FIG. 4), an elastic member 28 is provided between the inner wedge ring 18 (pin portion 18 d) and the outer wedge ring 19.
  • the inner wedge ring 18 has one or more pin portions 18 d projecting radially outward on the outer peripheral surface.
  • the pin portion 18 d is a stopper portion that restricts the displacement of the outer wedge ring 19 by coming into contact with the recess 19 d of the outer wedge ring 19 when the outer wedge ring 19 is displaced away from the pressure plate 17.
  • the other end of the elastic member 28 is connected swingably at the pin portion 18d, and when a gap (backlash) between the diaphragm spring 15 and the inner wedge ring 18 is formed, The elastic member 28 is biased in one circumferential direction so as to close the gap.
  • the other configuration of the inner wedge ring 18 is the same as that of the inner wedge ring (18 in FIGS. 1, 3 and 4) of the first embodiment.
  • the outer wedge ring 19 has one or more recesses 19 d axially recessed from the contact surface with the diaphragm spring 15.
  • the recess 19 d abuts on the pin portion 18 d of the inner wedge ring 18 when the outer wedge ring 19 is displaced away from the pressure plate 17, thereby restricting the displacement of the outer wedge ring 19.
  • the other end of the elastic member 27 is swingably connected to the outer wedge ring 19 so as to close the gap when there is a gap (backlash) between the diaphragm spring 15 and the outer wedge ring 19.
  • the elastic member 27 is biased in one circumferential direction.
  • the other configuration of the outer wedge ring 19 is the same as that of the outer wedge ring (19 of FIGS. 1, 3 and 4) of the first embodiment.
  • the elastic member 27 is a member that biases the outer wedge ring 19 in one circumferential direction with respect to the pressure plate 17.
  • a coil spring, a plate spring or the like can be used as the elastic member 27, one end of which is swingably connected to the pressure plate 17 and the other end is swingably connected to the outer wedge ring 19.
  • the biasing force of the elastic member 27 is set larger than the biasing force of the elastic member 28.
  • the elastic member 27 is a pressing spring in FIG. 11, the outer wedge ring 19 may be biased in one circumferential direction with respect to the pressure plate 17 using a pulling spring.
  • the elastic member 28 is a member that biases the inner wedge ring 18 in one circumferential direction with respect to the outer wedge ring 19.
  • a coil spring, a plate spring or the like can be used as the elastic member 28, one end of which is swingably connected to the outer wedge ring 19 and the other end is swingably connected to the pin portion 18d of the inner wedge ring 18.
  • the biasing force of the elastic member 28 is set smaller than the biasing force of the elastic member 27.
  • the elastic member 28 is a push spring in FIG. 11, but a pull spring may be used to bias the inner wedge ring 18 in one circumferential direction with respect to the outer wedge ring 19.
  • the other configuration of the clutch device according to the second embodiment is the same as that of the first embodiment.
  • FIG. 12 to 16 are (A) axial partial sectional views for explaining the operation of the clutch device according to the second embodiment of the present invention, and (B) a portion corresponding to YY 'of FIG.
  • FIG. 11 is a partial cross-sectional view in the circumferential direction, and FIG.
  • the resilient member 27 acts as a reaction force, but the biasing force of the elastic member 28 Since it is larger than the biasing force, as a result, the outer wedge ring 19 can be rotated in one of the circumferential directions with respect to the pressure plate 17. Further, at the time of the outer wedge ring operation, the pin portion 18 d of the inner wedge ring 18 is brought into contact with the recess 19 d of the outer wedge ring 19 before the gap between the diaphragm spring 15 and the outer wedge ring 19 disappears. Excessive displacement of the outer wedge ring 19 may be suppressed.
  • clutch device 2 wear adjustment mechanism 10 crank shaft 11 flywheel 12 bolt 13 clutch cover 14 bolt 15 diaphragm spring (lever member) 16 fulcrum member 17 pressure plate (third adjustment member) 17a seat portion 17b, 17c guide portion 17d inclined surface 18 inner wedge ring (first adjusting member) 18a inclined surface 18b protrusion (stopper) 18c inclined surface 18d pin part (stopper part) 19 Outer wedge ring (2nd adjustment member) 19a inclined surface 19b recess 19c inclined surface 19d recess 20 elastic member (first elastic member) 21 Elastic member (second elastic member) 22 strap 23 rivet 24 cylindrical member 25 sleeve 26 release bearing 27 elastic member (first elastic member) 28 Elastic member (second elastic member) Reference Signs List 30 clutch disc 31 friction material 32 lining plate 33 rivet 34, 35 side plate 36 hub member 37 elastic member 38, 39 thrust member 40 disc spring 41 transmission input shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 寸法増大及びコスト高を抑えつつ、遠心力による誤動作を回避することができるクラッチ装置を提供すること。摩耗調整機構は、クラッチカバーに揺動可能に支持されたレバー部材の操作力を受ける第1調整部材と、第1調整部材よりも径方向外側に配されるとともに、レバー部材の操作力を受ける第2調整部材と、第1調整部材又は第2調整部材を介してレバー部材の操作力を受ける第3調整部材と、を有し、第3調整部材に対して第1調整部材又は第2調整部材が周方向の一方に相対移動することにより、第3調整部材から、レバー部材と第1調整部材又は第2調整部材との当接部分までの長さを調整する(図1)。

Description

クラッチ装置
 本発明は、クラッチディスクの摩擦材の摩耗を補償する機構を有するクラッチ装置に関する。
 本発明は、日本国特許出願:特願2011-235695号(2011年10月27日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 車両においては、エンジン始動時や変速時などにおいてエンジンの回転動力を変速機に伝達しないようにするために、エンジンと変速機との間の動力伝達系路上にクラッチ装置が設けられている。クラッチ装置は、クラッチレバー、クラッチペダル等の操作機構のマニュアル操作(手動操作、踏込操作等)により、油圧機構、リンク機構等のレリーズ機構を介してクラッチ操作力が伝達されて、エンジンと変速機とが断続可能になっている。クラッチ装置は、一般的に、変速機に回転動力を伝達するクラッチディスクを、エンジンの回転動力が伝達されるフライホイールに対して、プレッシャプレートで押付ける機構を有する。プレッシャプレートは、レリーズ機構によって操作可能なダイヤフラムスプリングによってクラッチディスク側に付勢されている。ダイヤフラムスプリングは、支点にて、フライホイールに固定されたクラッチカバーに揺動可能に支持されている。
 クラッチ装置は、クラッチディスクの摩擦面に設けられた摩擦材(フェーシング)の摩耗に伴ってダイヤフラムスプリングの姿勢が変化するため、当該摩擦材が摩耗するとクラッチ装置を非係合状態にするために必要な操作力、すなわちクラッチカバーにかかる荷重が増大する。このため、摩擦材の摩耗を補償する機構を備えたものがある。
 例えば、特許文献1に記載のクラッチカバーアッセンブリでは、第1、第2ファルクラムリングをプレッシャプレートとダイヤフラムスプリングとの間に配置し、各ファルクラムリングのプレッシャプレート側の面に傾斜面を形成し、各ファルクラムリングの傾斜面とプレッシャプレートとの間にて径方向外側に付勢された第1、第2スライドキーを配置している。これにより、フェーシングが摩耗して、プレッシャプレートが初期位置からフライホイール側へ移動した時に内側の第1ファルクラムリングを開放し、レリーズした時(解放時)に外側の第2ファルクラムリングを開放することを繰り返すことで、フェーシングの摩耗により発生したダイヤフラムスプリングとプレッシャプレートとの間の隙間を埋めるようにしている。
特公平5-59283号公報
 以下の分析は、本願発明者により与えられる。
 なお、上記特許文献1の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 しかしながら、特許文献1に記載のクラッチカバーアッセンブリでは、プレッシャプレートとダイヤフラムスプリングとの間で軸方向に部材(スライドキー、ファルクラムリング)を直列配置しているため、軸方向の寸法が大きくなってしまう。また、特許文献1に記載のクラッチカバーアッセンブリでは、遠心力で第1、第2スライドキーが径方向外側に移動してしまい、ダイヤフラムスプリングとプレッシャプレートとの間の隙間を必要以上に埋めて、誤動作してしまうおそれがある。また、特許文献1に記載のクラッチカバーアッセンブリでは、部品点数が多く、コスト高になるおそれがある。
 本発明の主な課題は、寸法増大及びコスト高を抑えつつ、遠心力による誤動作を回避することができるクラッチ装置を提供することである。
 本発明の一視点においては、摩耗調整機構を備えたクラッチ装置であって、前記摩耗調整機構は、クラッチカバーに揺動可能に支持されたレバー部材の操作力を受ける第1調整部材と、前記第1調整部材よりも径方向外側に配されるとともに、前記レバー部材の操作力を受ける第2調整部材と、前記第1調整部材又は前記第2調整部材を介して前記レバー部材の操作力を受ける第3調整部材と、を有し、前記第3調整部材に対して前記第1調整部材又は前記第2調整部材が周方向の一方に相対移動することにより、前記第3調整部材から、前記レバー部材と前記第1調整部材又は前記第2調整部材との当接部分までの長さを調整することを特徴とする。
 本発明によれば、第3調整部材に対する第1調整部材又は第2調整部材の周方向の移動によって軸方向の長さ調整を行うので、遠心力による誤動作をなくすことができる。また、摩耗調整機構において第3調整部材と第1調整部材又は第2調整部材との係合を利用して長さ調整を行うので、第3調整部材と第1調整部材又は第2調整部材との間に他の部材を設ける必要がなくなり、クラッチカバーの軸方向の寸法を低減できるとともに、部品点数の減少によりコストを低減できる。
本発明の実施例1に係るクラッチ装置の構成を模式的に示した図2のX-X´間に相当する部分の軸方向の断面図である。 本発明の実施例1に係るクラッチ装置におけるプレッシャプレートの構成を模式的に示した背面側から見た平面図である。 本発明の実施例1に係るクラッチ装置の構成を模式的に示した図1の摩耗調整機構付近を拡大した軸方向の部分拡大断面図である。 本発明の実施例1に係るクラッチ装置の構成を模式的に示した(A)図3のY-Y´間に相当する部分の周方向の部分断面図、(B)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例1に係るクラッチ装置の動作を説明するための初期状態の(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例1に係るクラッチ装置の動作を説明するための摩擦材摩耗時の(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例1に係るクラッチ装置の動作を説明するためのインナウェッジリング作動時の(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例1に係るクラッチ装置の動作を説明するための断動作時の(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例1に係るクラッチ装置の動作を説明するためのアウタウェッジリング作動時の(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の構成を模式的に示した摩耗調整機構付近を拡大した軸方向の部分拡大断面図である。 本発明の実施例2に係るクラッチ装置の構成を模式的に示した(A)図10のY-Y´間に相当する部分の周方向の部分断面図、(B)図10のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の動作を説明するための初期状態の(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の動作を説明するための摩擦材摩耗時の(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の動作を説明するためのインナウェッジリング作動時の(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の動作を説明するための断動作時の(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。 本発明の実施例2に係るクラッチ装置の動作を説明するためのアウタウェッジリング作動時の(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。
 本発明の実施形態に係るクラッチ装置では、摩耗調整機構を備えたクラッチ装置であって、前記摩耗調整機構(図1の2)は、クラッチカバー(図1の13)に揺動可能に支持されたレバー部材(図1の15)の操作力を受ける第1調整部材(図1の18)と、前記第1調整部材よりも径方向外側に配されるとともに、前記レバー部材の操作力を受ける第2調整部材(図1の19)と、前記第1調整部材又は前記第2調整部材を介して前記レバー部材の操作力を受ける第3調整部材(図1の17)と、を有し、前記第3調整部材に対して前記第1調整部材又は前記第2調整部材が周方向の一方に相対移動することにより、前記第3調整部材から、前記レバー部材と前記第1調整部材又は前記第2調整部材との当接部分までの長さを調整する。
 本発明の前記クラッチ装置において、前記第3調整部材は、クラッチディスクをフライホイールに押付けるプレッシャプレートであることが好ましい。
 本発明の前記クラッチ装置において、前記レバー部材は、前記第1調整部材又は前記第2調整部材を介して前記第3調整部材を軸方向に付勢することが可能なダイヤフラムスプリングであることが好ましい。
 本発明の前記クラッチ装置において、前記摩耗調整機構は、前記第1調整部材又は前記第2調整部材と前記第3調整部材との当接面にて周方向の一方の変化に伴い軸方向の一方に変化する傾斜面同士の係合を利用したものであることが好ましい。
 本発明の前記クラッチ装置において、前記摩耗調整機構は、前記第1調整部材又は前記第2調整部材と前記第3調整部材との当接面にてねじ係合を利用したものであることが好ましい。
 本発明の前記クラッチ装置において、前記摩耗調整機構は、前記第3調整部材に対して前記第1調整部材を周方向の一方に付勢する第1弾性部材と、前記第3調整部材に対して前記第2調整部材を周方向の一方に付勢する第2弾性部材と、を有することが好ましい。
 本発明の前記クラッチ装置において、前記摩耗調整機構は、前記第2調整部材に対して前記第1調整部材を周方向の一方に付勢する第1弾性部材と、前記第3調整部材に対して前記第2調整部材を周方向の一方に付勢する第2弾性部材と、を有し、前記第1弾性部材の付勢力は、前記第2弾性部材の付勢力よりも小さいことが好ましい。
 本発明の前記クラッチ装置において、前記摩耗調整機構は、クラッチ係合状態時に、前記第2調整部材と前記レバー部材とが当接し、かつ、前記第1調整部材と前記レバー部材との間に隙間が発生すると、前記第3調整部材に対して前記第1調整部材が周方向の一方に回転して前記第1調整部材と前記レバー部材とが当接し、クラッチ非係合状態時に、前記第1調整部材と前記レバー部材とが当接し、かつ、前記第2調整部材と前記レバー部材との間に隙間が発生すると、前記第3調整部材に対して前記第2調整部材が周方向の一方回転して前記レバー部材に当接するように動作することが好ましい。
 本発明の前記クラッチ装置において、前記第2調整部材は、凹部を有し、前記第1調整部材は、径方向外側に突出して前記凹部に挿入されるとともに前記凹部と当接したときに前記第1調整部材に対する前記第2調整部材の回転を規制するストッパ部を有することが好ましい。
 本発明の前記クラッチ装置において、前記凹部及び前記ストッパ部は、それぞれ規制時の前記凹部と前記ストッパ部との当接面にて周方向の一方の変化に伴い軸方向の他方に変化する傾斜面を有することが好ましい。
 なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。
 本発明の実施例1に係るクラッチ装置について図面を用いて説明する。図1は、本発明の実施例1に係るクラッチ装置の構成を模式的に示した図2のX-X´間に相当する部分の軸方向の断面図である。図2は、本発明の実施例1に係るクラッチ装置におけるプレッシャプレートの構成を模式的に示した背面側から見た平面図である。図3は、本発明の実施例1に係るクラッチ装置の構成を模式的に示した図1の摩耗調整機構付近を拡大した軸方向の部分拡大断面図である。図4は、本発明の実施例1に係るクラッチ装置の構成を模式的に示した(A)図3のY-Y´間に相当する部分の周方向の部分断面図、(B)図3のZ-Z´間に相当する部分の周方向の部分断面図である。
 クラッチ装置1は、エンジン(図示せず)のクランクシャフト10から変速機入力軸41への回転動力を断接可能に伝達する装置である(図1参照)。クラッチ装置1は、レリーズベアリング26を軸方向のエンジン側(図1の右側)へ移動させてクランクシャフト10から変速機入力軸41への回転動力を遮断状態にするレリーズ装置(例えば、レバー機構、油圧ピストン機構等)によって操作可能である。クラッチ装置1は、クラッチディスク30の摩擦面に設けられた摩擦材31の摩耗を補償する摩耗調整機構2を有する。
 摩耗調整機構2は、プレッシャプレート17から、ダイヤフラムスプリング15とインナウェッジリング18及びアウタウェッジリング19との当接部分までの長さを調整する機構である(図3、図4参照)。摩耗調整機構2は、プレッシャプレート17とダイヤフラムスプリング15との間に2つのウェッジリング18、19が同心、かつ、長さ及び径に差をもたせて並列に配置されている。
 摩耗調整機構2は、プレッシャプレート17に対してインナウェッジリング18又はアウタウェッジリング19が周方向の一方に回転することにより、プレッシャプレート17から、ダイヤフラムスプリング15とインナウェッジリング18又はアウタウェッジリング19との当接部分までの長さ(軸方向の長さ)を高くするように係合している。摩耗調整機構2は、プレッシャプレート17においてインナウェッジリング18及びアウタウェッジリング19との当接面にて周方向の一方の変化に伴い軸方向の一方に変化する鋸刃状の複数の傾斜面17dを設け、インナウェッジリング18及びアウタウェッジリング19においてプレッシャプレート17の傾斜面17dに対応する鋸刃状の複数の傾斜面18a、19aを設け、傾斜面同士のスライド可能な係合を利用して長さ調整を行うようにすることができる。摩耗調整機構2は、傾斜面同士のスライド可能な係合を利用する形式以外にも、インナウェッジリング18及びアウタウェッジリング19とプレッシャプレート17とのねじ係合を利用して、プレッシャプレート17に対してインナウェッジリング18又はアウタウェッジリング19を周方向の一方に回転させて長さ調整を行うようにしてもよい。また、各ウェッジリング18、19は、周方向に分割された円弧状の部材であってもよく、周方向に接する接線方向に相対移動するように配置された直線状の部材であってもよい。
 摩耗調整機構2は、クラッチディスク30の摩擦材31の摩耗により、ダイヤフラムスプリング15とインナウェッジリング18との間の隙間(ガタ)ができたときに、当該隙間を詰めるようにプレッシャプレート17に対してインナウェッジリング18が弾性部材20によって周方向の一方に付勢されている。摩耗調整機構2は、クラッチディスク30の摩擦材31の摩耗により、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間(ガタ)ができたときに、当該隙間を詰めるようにプレッシャプレート17に対してアウタウェッジリング19が弾性部材21によって周方向の一方に付勢されている。摩耗調整機構2は、インナウェッジリング18とアウタウェッジリング19との径の違いや、ダイヤフラムスプリング15の揺動により、ダイヤフラムスプリング15とインナウェッジリング18との隙間詰めと、ダイヤフラムスプリング15とアウタウェッジリング19との隙間詰めとを交互に行い、ダイヤフラムスプリング15とインナウェッジリング18との隙間詰めに、ダイヤフラムスプリング15とアウタウェッジリング19との隙間詰めが追従するように長さ調整を行う。また、摩耗調整機構2は、実施例のようにプレッシャプレート17付近に配置されるだけでなく、支点部材16の軸方向位置を調整するように配置されてもよく、レリーズベアリング26とダイヤフラムスプリング15との相対距離の変化に追従するようレリーズベアリング26近傍に配置されてもよい。
 クラッチ装置1は、主な構成部として、フライホイール11と、ボルト12と、クラッチカバー13と、ボルト14と、ダイヤフラムスプリング15と、支点部材16と、プレッシャプレート17と、インナウェッジリング18と、アウタウェッジリング19と、弾性部材20、21と、ストラップ22と、リベット23と、筒状部材24と、スリーブ25と、レリーズベアリング26と、クラッチディスク30と、を有する。
 フライホイール11は、環状の慣性体である(図1参照)。フライホイール11は、内周部分にて複数のボルト12によってクランクシャフト10に取付固定されており、クランクシャフト10と一体に回転する。フライホイール11は、外周部分にて複数のボルト14によってクラッチカバー13が取付固定されており、クラッチカバー13と一体に回転する。
 クラッチカバー13は、クラッチディスク30の外周部分をカバーするように形成された環状の部材である(図1、図3参照)。クラッチカバー13は、外周部分にてボルト14によってフライホイール11に取付固定されており、フライホイール11と一体に回転する。クラッチカバー13は、内周部分にてフライホイール11から離間しており、クラッチディスク30の外周部分、及びプレッシャプレート17をカバーしている。クラッチカバー13は、内周端部にて、ダイヤフラムスプリング15の中間部の両側を挟むように配された2つの支点部材16を支持している。クラッチカバー13は、ダイヤフラムスプリング15のレバー部分間における複数の空所にて2つの支点部材16をかしめて支持している。クラッチカバー13は、支点部材16を支点にダイヤフラムスプリング15を揺動可能に支持する。クラッチカバー13は、ストラップ22を介してプレッシャプレート17と弾性的に連結されており、プレッシャプレート17と一体に回転する。
 ダイヤフラムスプリング15は、環状の皿ばね部分から径方向内側に複数のレバー部分が延在した弾性部材である(図1、図3、図4参照)。ダイヤフラムスプリング15は、中間部分にて、クラッチカバー13に支持された2つの支点部材16の間に揺動可能に挟持されている。ダイヤフラムスプリング15は、支点部材16を支点としたレバー部材となる。ダイヤフラムスプリング15は、外周部分のエンジン側(図1の右側)の面にて、インナウェッジリング18及び(又は)アウタウェッジリング19と当接している。ダイヤフラムスプリング15は、内周部分の変速機側(図1の左側)の面にて、レリーズベアリング26の回転輪と当接している。ダイヤフラムスプリング15は、支点部材16を支点に傾くことで、ダイヤフラムスプリング15の外周部分がインナウェッジリング18及び(又は)アウタウェッジリング19を介してプレッシャプレート17をフライホイール11側に付勢するとともに、ダイヤフラムスプリング15の内周部分がレリーズベアリング26を変速機側(図1の左側)に付勢する。ダイヤフラムスプリング15は、インナウェッジリング18及び(又は)アウタウェッジリング19を介してプレッシャプレート17を付勢することで、クラッチディスク30の摩擦材31の部分をフライホイール11に圧接させる。ダイヤフラムスプリング15は、内周部分をレリーズベアリング26によってフライホイール11側に押付けることで、外周部分がフライホイール11から離れるように変位し、プレッシャプレート17のフライホイール11側への付勢を解除する。
 支点部材16は、ダイヤフラムスプリング15の揺動の支点となる環状の部材である(図1参照)。支点部材16は、ダイヤフラムスプリング15の中間部分の両側に2つ配され、ダイヤフラムスプリング15のレバー部分間の複数の空所にてクラッチカバー13によってかしめられて支持されている。
 プレッシャプレート17は、クラッチディスク30の摩擦摺動部分をフライホイール11に押付ける環状の一体型のプレートである(図1~図4参照)。プレッシャプレート17は、エンジン側(図1の右側)の面がクラッチディスク30の摩擦材31と摩擦摺動する摩擦面となっている。プレッシャプレート17は、ダイヤフラムスプリング15によってインナウェッジリング18又はアウタウェッジリング19を介してフライホイール11側に付勢されている。プレッシャプレート17は、摩耗調整機構2におけるインナウェッジリング18又はアウタウェッジリング19のベースリング部材となる。プレッシャプレート17は、外周端部に複数の座部17aを有する。座部17aは、リベット23によってストラップ22をプレッシャプレート17に連結するための部分である。プレッシャプレート17は、板ばね状のストラップ22を介してクラッチカバー13と弾性的に連結されており、クラッチカバー13と一体に回転する。プレッシャプレート17は、ストラップ22によってフライホイール11から軸方向に離れる方向に付勢(ダイヤフラムスプリング15よりも小さい力で付勢)されている。
 プレッシャプレート17は、変速機側(図1の左側)の面(背面;摩擦面に対する反対面)において変速機側(図1の左側)に突出したガイド部17b、17cを有する。ガイド部17bは、周方向に延在して環状に形成されている。ガイド部17cは、ガイド部17bよりも径方向外側にて周方向に延在して環状に形成されている。プレッシャプレート17は、ガイド部17b、17c間にて周方向に延在した溝を有し、当該溝にインナウェッジリング18及びアウタウェッジリング19が並列に挿入されている。ガイド部17bは、インナウェッジリング18の径方向の移動を規制する。ガイド部17cは、アウタウェッジリング19の径方向の移動を規制する。
 プレッシャプレート17は、ガイド部17b、17c間の溝の底面に複数の傾斜面17dが形成されている。傾斜面17dは、周方向の一方の変化に伴い軸方向の一方に変化する傾斜面であり、インナウェッジリング18及びアウタウェッジリング19の傾斜面18a、19aと対応する。傾斜面17dは、インナウェッジリング18及びアウタウェッジリング19の傾斜面18a、19aとスライド可能に係合する。これにより、プレッシャプレート17に対してインナウェッジリング18又はアウタウェッジリング19を周方向の一方に回転させると、インナウェッジリング18又はアウタウェッジリング19をプレッシャプレート17から離れるように変位させることができる。プレッシャプレート17には、弾性部材20、21のそれぞれの一端が揺動可能に接続されている。
 インナウェッジリング18は、アウタウェッジリング19よりも径方向内側に配された環状の部材である(図1、図3、図4参照)。インナウェッジリング18は、プレッシャプレート17とダイヤフラムスプリング15との間に配されており、ダイヤフラムスプリング15の作用点に当接し、ダイヤフラムスプリング15のエンジン側(図1の右側)への付勢力を受ける。
 インナウェッジリング18は、プレッシャプレート17側の面に複数の傾斜面18aが形成されている。傾斜面18aは、周方向の一方の変化に伴い軸方向の一方に変化する傾斜面であり、プレッシャプレート17の傾斜面17dと対応する。傾斜面18aは、プレッシャプレート17の傾斜面17dとスライド可能に係合する。これにより、プレッシャプレート17に対してインナウェッジリング18を周方向の一方に回転させると、インナウェッジリング18をプレッシャプレート17から離れるように変位させることができる。インナウェッジリング18は、弾性部材20の他端が揺動可能に接続されており、ダイヤフラムスプリング15とインナウェッジリング18との間の隙間(ガタ)ができたときに、当該隙間を詰めるように弾性部材20によって周方向の一方に付勢されている。
 インナウェッジリング18は、外周面において径方向外側に突出した1又は複数の突起部18bを有する。突起部18bは、アウタウェッジリング19がプレッシャプレート17から離れるように変位するときに、アウタウェッジリング19の凹部19bと当接することで、アウタウェッジリング19の変位を規制するストッパ部である。突起部18bは、アウタウェッジリング19の凹部19bと当接する面が傾斜面18cとなっている。傾斜面18cは、周方向の一方の変化に伴い軸方向の他方に変化する傾斜面(傾斜面18aとは逆に傾斜した面)であり、アウタウェッジリング19の傾斜面19cと対応する。
 アウタウェッジリング19は、インナウェッジリング18よりも径方向外側に配された環状の部材である(図1、図3、図4参照)。アウタウェッジリング19は、プレッシャプレート17とダイヤフラムスプリング15との間に配されており、ダイヤフラムスプリング15の作用点に当接し、ダイヤフラムスプリング15のエンジン側(図1の右側)への付勢力を受ける。
 アウタウェッジリング19は、プレッシャプレート17側の面に複数の傾斜面19aが形成されている。傾斜面19aは、周方向の一方の変化に伴い軸方向の一方に変化する傾斜面であり、プレッシャプレート17の傾斜面17dと対応する。傾斜面19aは、プレッシャプレート17の傾斜面17dとスライド可能に係合する。これにより、プレッシャプレート17に対してアウタウェッジリング19を周方向の一方に回転させると、アウタウェッジリング19をプレッシャプレート17から離れるように変位させることができる。アウタウェッジリング19は、弾性部材21の他端が揺動可能に接続されており、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間(ガタ)ができたときに、当該隙間を詰めるように弾性部材21によって周方向の一方に付勢されている。
 アウタウェッジリング19は、内周面において径方向外側に凹んだ1又は複数の凹部19bを有する。凹部19bは、アウタウェッジリング19がプレッシャプレート17から離れるように変位するときに、インナウェッジリング18の突起部18bと当接することで、アウタウェッジリング19の変位を規制する。凹部19bは、インナウェッジリング18の突起部18bと当接する面が傾斜面19cとなっている。傾斜面19cは、周方向の一方の変化に伴い軸方向の他方に変化する傾斜面(傾斜面19aとは逆に傾斜した面)であり、インナウェッジリング18の傾斜面18cと対応する。
 弾性部材20は、プレッシャプレート17に対してインナウェッジリング18を周方向の一方に付勢する部材である(図4参照)。弾性部材20には、例えば、コイルスプリング、板バネ等を用いることができ、一端が揺動可能にプレッシャプレート17に接続され、他端が揺動可能にインナウェッジリング18に接続される。なお、弾性部材20は、図4では押しバネとしているが、引きバネを用いてプレッシャプレート17に対してインナウェッジリング18を周方向の一方に付勢するようにしてもよい。
 弾性部材21は、プレッシャプレート17に対してアウタウェッジリング19を周方向の一方に付勢(弾性部材20と同じ方向に付勢)する部材である(図4参照)。弾性部材21には、例えば、コイルスプリング、板バネ等を用いることができ、一端が揺動可能にプレッシャプレート17に接続され、他端が揺動可能にアウタウェッジリング19に接続される。なお、弾性部材21は、図4では押しバネとしているが、引きバネを用いてプレッシャプレート17に対してアウタウェッジリング19を周方向の一方に付勢するようにしてもよい。
 筒状部材24は、変速機入力軸41の外周に配された筒状の部材である。筒状部材24は、変速機ハウジング(図示せず)に支持されている(図1参照)。筒状部材24は、内周面にて、変速機入力軸41と離間している。筒状部材24は、外周面にて、スリーブ25が軸方向にスライド可能に配されている。スリーブ25は、筒状の部材であり、レリーズベアリング26の固定輪が固定されている(図1参照)。スリーブ25は、レリーズ機構(油圧機構、リンク機構等)の操作力を受けて軸方向にスライド可能である。レリーズベアリング26は、回転するダイヤフラムスプリング15の内周部分を押付けてクラッチ装置を断状態にするためのボールベアリングである(図1参照)。レリーズベアリング26は、ダイヤフラムスプリング15と当接する回転輪が複数のボールを介して固定輪に支持された構成となっている。レリーズベアリング26は、スリーブ25と一体にスライド可能である。
 クラッチディスク30は、フライホイール11とプレッシャプレート17との間に配された円形でディスク状の組立体である(図1、図3参照)。クラッチディスク30は、外周部分にてライニングプレート32の両面に摩擦材31がリベット33によって取付固定された摩擦摺動部分を有し、当該摩擦摺動部分にてフライホイール11とプレッシャプレート17との間に挟み込まれている。クラッチディスク30は、ライニングプレート32の内周部分にてリベット33によってサイドプレート34、35に取付固定されており、サイドプレート34、35間にハブ部材36が配されており、サイドプレート34、35とハブ部材36との間の捩れ(トルク変動)を弾性部材37の弾性力により緩衝(吸収)する機能を有する。クラッチディスク30は、サイドプレート34とハブ部材36の間にスラスト部材38が配されており、サイドプレート35とハブ部材36の間にスラスト部材39及び皿ばね40が配されており、サイドプレート34、35とハブ部材36との捩れ(トルク変動)を、スラスト部材38、39とハブ部材36との間の摩擦力により緩衝(吸収)する機能を有する。クラッチディスク30は、ハブ部材36の内周にて変速機入力軸41に対して回転不能かつ軸方向移動可能にスプライン係合している。なお、変速機入力軸41は、ベアリング(図示せず)を介して回動可能に変速機ハウジング(図示せず)に支持されており、クラッチディスク30からの回転動力を変速機(図示せず)に伝達する。
 次に、本発明の実施例1に係るクラッチ装置の動作について図面を用いて説明する。図5~図9は、本発明の実施例1に係るクラッチ装置の動作を説明するための(A)図2のX-X´間に相当する部分の軸方向の部分断面図、(B)図3のY-Y´間に相当する部分の周方向の部分断面図、(C)図3のZ-Z´間に相当する部分の周方向の部分断面図である。
[初期状態]
 図5を参照すると、組立後の初期状態のクラッチ係合状態では、クラッチディスク30の摩擦材31が摩耗しておらず、インナウェッジリング18及びアウタウェッジリング19とダイヤフラムスプリング15との間に隙間がなく、摩耗調整機構2においてインナウェッジリング18及びアウタウェッジリング19がプレッシャプレート17に対して最も接近した状態にある。
[摩擦材摩耗]
 初期状態からクラッチ装置を使用してゆくと、図6のように、クラッチディスク30の摩擦材31が摩耗して薄くなり、クラッチ係合状態においては、ダイヤフラムスプリング15の押付けによってプレッシャプレート17がフライホイール11側に変位し、ダイヤフラムスプリング15の作用点がフライホイール11側に変位してダイヤフラムスプリング15が鋭角化し、ダイヤフラムスプリング15の作用点ではアウタウェッジリング19のみと接触し、ダイヤフラムスプリング15とインナウェッジリング18との間に隙間(ガタ)ができる。
[インナウェッジリング作動]
 クラッチ係合状態において、ダイヤフラムスプリング15とインナウェッジリング18との間に隙間ができて、インナウェッジリング18の拘束がなくなると、図7のように、弾性部材20の付勢力によってプレッシャプレート17に対してインナウェッジリング18が周方向の一方に回転することで、インナウェッジリング18が軸方向の一方に移動(インナウェッジリング18がプレッシャプレート17から離れる方向に移動)して、ダイヤフラムスプリング15とインナウェッジリング18との間の隙間がなくなり、ダイヤフラムスプリング15の作用点ではインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態となる。
[断動作]
 ダイヤフラムスプリング15の作用点でインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態で、クラッチ係合状態から断状態に動作させると、図8のように、ダイヤフラムスプリング15の作用点がフライホイール11から離れる位置に変位してダイヤフラムスプリング15が平坦化し、ダイヤフラムスプリング15の作用点ではインナウェッジリング18のみと接触し、ダイヤフラムスプリング15とアウタウェッジリング19との間に隙間(ガタ)ができる。
[アウタウェッジリング作動]
 クラッチ係合状態において、ダイヤフラムスプリング15とアウタウェッジリング19との間に隙間ができて、アウタウェッジリング19の拘束がなくなると、図9のように、弾性部材21の付勢力によってプレッシャプレート17に対してアウタウェッジリング19が周方向の一方に回転することで、アウタウェッジリング19が軸方向の一方に移動(アウタウェッジリング19がプレッシャプレート17から離れる方向に移動)して、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間がなくなりダイヤフラムスプリング15の作用点ではインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態となる。なお、アウタウェッジリング作動時においては、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間がなくなる前に、インナウェッジリング18の突起部18b(傾斜面18c)をアウタウェッジリング19の凹部19b(傾斜面19c)に当接させて、アウタウェッジリング19の過剰な変位を抑える場合がある。
 以上の摩擦材摩耗(図6参照)、インナウェッジリング作動(図7参照)、断動作(図8参照)、アウタウェッジリング作動(図9参照)の動作を繰り返すことで、クラッチディスク30の摩擦材31の摩耗分と同じだけインナウェッジリング18及びアウタウェッジリング19がダイヤフラムスプリング15に対する隙間を埋めて、ダイヤフラムスプリング15が摩擦材31の摩耗後も同じ姿勢を保持できるようになる。
 実施例1によれば、プレッシャプレート17に対するインナウェッジリング18又はアウタウェッジリング19の周方向の移動によってダイヤフラムスプリング15の作用点の長さ調整を行うので、遠心力による誤動作をなくすことができる。
 また、実施例1によれば、インナウェッジリング18の突起部18bとアウタウェッジリング19の凹部19bとによってアウタウェッジリング19の変位を規制してダイヤフラムスプリング15の作用点の長さ調整をすることで、確実に摩擦材31の摩耗分の長さ調整ができる。また、突起部18bとアウタウェッジリング19の凹部19bとの接触面を傾斜面18c、19cとすることで、軸方向に振動が入った場合に、アウタウェッジリング19が暴れて誤調整することを防止できる。
 また、実施例1によれば、インナウェッジリング18及びアウタウェッジリング19とプレッシャプレート17との当接面に傾斜面18a、19a、17dを設けてダイヤフラムスプリング15の作用点の長さ調整を行うことで、インナウェッジリング18及びアウタウェッジリング19とプレッシャプレート17との間に他の部材を設ける必要がなくなるので、クラッチカバー13の軸方向の寸法を低減できるとともに、部品点数の減少によりコストを低減できる。
 さらに、実施例1によれば、インナウェッジリング18の突起部18bを径方向外側に一部だけ伸ばすことで、突起部18bとアウタウェッジリング19の凹部19bとが接触する径と、アウタウェッジリング19とダイヤフラムスプリング15とが接触する径を同じにできるようになり、アウタウェッジリング19とダイヤフラムスプリング15とが接触する径と、インナウェッジリング18とダイヤフラムスプリング15とが接触する径との差を小さくすることができる。その結果、ダイヤフラムスプリング15の支点と作用点との間の距離変化が少なくなり、アウタウェッジリング19とダイヤフラムスプリング15とが接触した時、インナウェッジリング18とダイヤフラムスプリング15とが接触した時のレリーズ特性の変化を小さくできる。
 本発明の実施例2に係るクラッチ装置について図面を用いて説明する。図10は、本発明の実施例2に係るクラッチ装置の構成を模式的に示した摩耗調整機構付近を拡大した軸方向の部分拡大断面図である。図11は、本発明の実施例2に係るクラッチ装置の構成を模式的に示した(A)図10のY-Y´間に相当する部分の周方向の部分断面図、(B)図10のZ-Z´間に相当する部分の周方向の部分断面図である。
 実施例2は、実施例1の変形例であり、インナウェッジリング18の突起部(図3の18b)とする代わりにピン部18dとし、プレッシャプレート17とインナウェッジリング18との間に弾性部材(図4の20)を設ける代わりにインナウェッジリング18(ピン部18d)とアウタウェッジリング19との間に弾性部材28を設けたものである。
 インナウェッジリング18は、外周面において径方向外側に突出した1又は複数のピン部18dを有する。ピン部18dは、アウタウェッジリング19がプレッシャプレート17から離れるように変位するときに、アウタウェッジリング19の凹部19dと当接することで、アウタウェッジリング19の変位を規制するストッパ部である。インナウェッジリング18は、ピン部18dにて弾性部材28の他端が揺動可能に接続されており、ダイヤフラムスプリング15とインナウェッジリング18との間の隙間(ガタ)ができたときに、当該隙間を詰めるように弾性部材28によって周方向の一方に付勢されている。なお、インナウェッジリング18のその他の構成は、実施例1のインナウェッジリング(図1、図3、図4の18)と同様である。
 アウタウェッジリング19は、ダイヤフラムスプリング15との当接面から軸方向に凹んだ1又は複数の凹部19dを有する。凹部19dは、アウタウェッジリング19がプレッシャプレート17から離れるように変位するときに、インナウェッジリング18のピン部18dと当接することで、アウタウェッジリング19の変位を規制する。アウタウェッジリング19は、弾性部材27の他端が揺動可能に接続されており、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間(ガタ)ができたときに、当該隙間を詰めるように弾性部材27によって周方向の一方に付勢されている。なお、アウタウェッジリング19のその他の構成は、実施例1のアウタウェッジリング(図1、図3、図4の19)と同様である。
 弾性部材27は、プレッシャプレート17に対してアウタウェッジリング19を周方向の一方に付勢する部材である。弾性部材27には、例えば、コイルスプリング、板バネ等を用いることができ、一端が揺動可能にプレッシャプレート17に接続され、他端が揺動可能にアウタウェッジリング19に接続される。弾性部材27の付勢力は、弾性部材28の付勢力よりも大きく設定される。なお、弾性部材27は、図11では押しバネとしているが、引きバネを用いてプレッシャプレート17に対してアウタウェッジリング19を周方向の一方に付勢するようにしてもよい。
 弾性部材28は、アウタウェッジリング19に対してインナウェッジリング18を周方向の一方に付勢する部材である。弾性部材28には、例えば、コイルスプリング、板バネ等を用いることができ、一端が揺動可能にアウタウェッジリング19に接続され、他端が揺動可能にインナウェッジリング18のピン部18dに接続される。弾性部材28の付勢力は、弾性部材27の付勢力よりも小さく設定される。なお、弾性部材28は、図11では押しバネとしているが、引きバネを用いてアウタウェッジリング19に対してインナウェッジリング18を周方向の一方に付勢するようにしてもよい。
 実施例2に係るクラッチ装置のその他の構成は、実施例1と同様である。
 次に、本発明の実施例2に係るクラッチ装置の動作を図面を用いて説明する。図12~図16は、本発明の実施例2に係るクラッチ装置の動作を説明するための(A)軸方向の部分断面図、(B)図10のY-Y´間に相当する部分の周方向の部分断面図、(C)図10のZ-Z´間に相当する部分の周方向の部分断面図である。
[初期状態]
 図12を参照すると、組立後の初期状態のクラッチ係合状態では、クラッチディスク30の摩擦材31が摩耗しておらず、インナウェッジリング18及びアウタウェッジリング19とダイヤフラムスプリング15との間に隙間がなく、摩耗調整機構2においてインナウェッジリング18及びアウタウェッジリング19がプレッシャプレート17に対して最も接近した状態にある。
[摩擦材摩耗]
 初期状態からクラッチ装置を使用してゆくと、図13のように、クラッチディスク30の摩擦材31が摩耗して薄くなり、クラッチ係合状態においては、ダイヤフラムスプリング15の押付けによってプレッシャプレート17がフライホイール11側に変位し、ダイヤフラムスプリング15の作用点がフライホイール11側に変位してダイヤフラムスプリング15が鋭角化し、ダイヤフラムスプリング15の作用点ではアウタウェッジリング19のみと接触し、ダイヤフラムスプリング15とインナウェッジリング18との間に隙間(ガタ)ができる。
[インナウェッジリング作動]
 クラッチ係合状態において、ダイヤフラムスプリング15とインナウェッジリング18との間に隙間ができて、インナウェッジリング18の拘束がなくなると、図14のように、弾性部材28の付勢力によってアウタウェッジリング19に対してインナウェッジリング18が周方向の一方に回転することで、インナウェッジリング18が軸方向の一方に移動(インナウェッジリング18がプレッシャプレート17から離れる方向に移動)して、ダイヤフラムスプリング15とインナウェッジリング18との間の隙間がなくなり、ダイヤフラムスプリング15の作用点ではインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態となる。
[断動作]
 ダイヤフラムスプリング15の作用点でインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態で、クラッチ係合状態から断状態に動作させると、図15のように、ダイヤフラムスプリング15の作用点がフライホイール11から離れる位置に変位してダイヤフラムスプリング15が平坦化し、ダイヤフラムスプリング15の作用点ではインナウェッジリング18のみと接触し、ダイヤフラムスプリング15とアウタウェッジリング19との間に隙間(ガタ)ができる。
[アウタウェッジリング作動]
 クラッチ係合状態において、ダイヤフラムスプリング15とアウタウェッジリング19との間に隙間ができて、アウタウェッジリング19の拘束がなくなると、図16のように、弾性部材28の付勢力によってプレッシャプレート17に対してアウタウェッジリング19が周方向の一方に回転することで、アウタウェッジリング19が軸方向の一方に移動(アウタウェッジリング19がプレッシャプレート17から離れる方向に移動)して、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間がなくなりダイヤフラムスプリング15の作用点ではインナウェッジリング18及びアウタウェッジリング19の両方と接触した状態となる。なお、弾性部材28の付勢力によってプレッシャプレート17に対してアウタウェッジリング19を周方向の一方に回転させる際、弾性部材27が反力となるが、弾性部材28の付勢力は弾性部材27の付勢力よりも大きいので、結果として、プレッシャプレート17に対してアウタウェッジリング19を周方向の一方に回転させることができる。また、アウタウェッジリング作動時においては、ダイヤフラムスプリング15とアウタウェッジリング19との間の隙間がなくなる前に、インナウェッジリング18のピン部18dをアウタウェッジリング19の凹部19dに当接させて、アウタウェッジリング19の過剰な変位を抑える場合がある。
 以上の摩擦材摩耗(図13参照)、インナウェッジリング作動(図14参照)、断動作(図15参照)、アウタウェッジリング作動(図16参照)の動作を繰り返すことで、クラッチディスク30の摩擦材31の摩耗分と同じだけインナウェッジリング18及びアウタウェッジリング19がダイヤフラムスプリング15に対する隙間を埋めて、ダイヤフラムスプリング15が摩擦材31の摩耗後も同じ姿勢を保持できるようになる。
 実施例2によれば、実施例1と同様な効果を奏する。
 なお、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 1 クラッチ装置
 2 摩耗調整機構
 10 クランクシャフト
 11 フライホイール
 12 ボルト
 13 クラッチカバー
 14 ボルト
 15 ダイヤフラムスプリング(レバー部材)
 16 支点部材
 17 プレッシャプレート(第3調整部材)
 17a 座部
 17b、17c ガイド部
 17d 傾斜面
 18 インナウェッジリング(第1調整部材)
 18a 傾斜面
 18b 突起部(ストッパ部)
 18c 傾斜面
 18d ピン部(ストッパ部)
 19 アウタウェッジリング(第2調整部材)
 19a 傾斜面
 19b 凹部
 19c 傾斜面
 19d 凹部
 20 弾性部材(第1弾性部材)
 21 弾性部材(第2弾性部材)
 22 ストラップ
 23 リベット
 24 筒状部材
 25 スリーブ
 26 レリーズベアリング
 27 弾性部材(第1弾性部材)
 28 弾性部材(第2弾性部材)
 30 クラッチディスク
 31 摩擦材
 32 ライニングプレート
 33 リベット
 34、35 サイドプレート
 36 ハブ部材
 37 弾性部材
 38、39 スラスト部材
 40 皿ばね
 41 変速機入力軸

Claims (10)

  1.  摩耗調整機構を備えたクラッチ装置であって、
     前記摩耗調整機構は、
     クラッチカバーに揺動可能に支持されたレバー部材の操作力を受ける第1調整部材と、
     前記第1調整部材よりも径方向外側に配されるとともに、前記レバー部材の操作力を受ける第2調整部材と、
     前記第1調整部材又は前記第2調整部材を介して前記レバー部材の操作力を受ける第3調整部材と、
    を有し、
     前記第3調整部材に対して前記第1調整部材又は前記第2調整部材が周方向の一方に相対移動することにより、前記第3調整部材から、前記レバー部材と前記第1調整部材又は前記第2調整部材との当接部分までの長さを調整するクラッチ装置。
  2.  前記第3調整部材は、クラッチディスクをフライホイールに押付けるプレッシャプレートである請求項1記載のクラッチ装置。
  3.  前記レバー部材は、前記第1調整部材又は前記第2調整部材を介して前記第3調整部材を軸方向に付勢することが可能なダイヤフラムスプリングである請求項1又は2記載のクラッチ装置。
  4.  前記摩耗調整機構は、前記第1調整部材又は前記第2調整部材と前記第3調整部材との当接面にて周方向の一方の変化に伴い軸方向の一方に変化する傾斜面同士の係合を利用したものである請求項1乃至3のいずれか一に記載のクラッチ装置。
  5.  前記摩耗調整機構は、前記第1調整部材又は前記第2調整部材と前記第3調整部材との当接面にてねじ係合を利用したものである請求項1乃至3のいずれか一に記載のクラッチ装置。
  6.  前記摩耗調整機構は、前記第3調整部材に対して前記第1調整部材を周方向の一方に付勢する第1弾性部材と、前記第3調整部材に対して前記第2調整部材を周方向の一方に付勢する第2弾性部材と、を有する請求項1乃至5のいずれか一に記載のクラッチ装置。
  7.  前記摩耗調整機構は、前記第2調整部材に対して前記第1調整部材を周方向の一方に付勢する第1弾性部材と、前記第3調整部材に対して前記第2調整部材を周方向の一方に付勢する第2弾性部材と、を有し、
     前記第1弾性部材の付勢力は、前記第2弾性部材の付勢力よりも小さい請求項1乃至5のいずれか一に記載のクラッチ装置。
  8.  前記摩耗調整機構は、
     クラッチ係合状態時に、前記第2調整部材と前記レバー部材とが当接し、かつ、前記第1調整部材と前記レバー部材との間に隙間が発生すると、前記第3調整部材に対して前記第1調整部材が周方向の一方に回転して前記第1調整部材と前記レバー部材とが当接し、
     クラッチ非係合状態時に、前記第1調整部材と前記レバー部材とが当接し、かつ、前記第2調整部材と前記レバー部材との間に隙間が発生すると、前記第3調整部材に対して前記第2調整部材が周方向の一方回転して前記レバー部材に当接するように動作する請求項1乃至7のいずれか一に記載のクラッチ装置。
  9.  前記第2調整部材は、凹部を有し、
     前記第1調整部材は、径方向外側に突出して前記凹部に挿入されるとともに前記凹部と当接したときに前記第1調整部材に対する前記第2調整部材の回転を規制するストッパ部を有する請求項1乃至8のいずれか一に記載のクラッチ装置。
  10.  前記凹部及び前記ストッパ部は、それぞれ規制時の前記凹部と前記ストッパ部との当接面にて周方向の一方の変化に伴い軸方向の他方に変化する傾斜面を有する請求項9記載のクラッチ装置。
PCT/JP2012/077351 2011-10-27 2012-10-23 クラッチ装置 WO2013061959A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12842996.6A EP2772658B1 (en) 2011-10-27 2012-10-23 Clutch device
CN201280052672.6A CN103890431B (zh) 2011-10-27 2012-10-23 离合器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011235695A JP5974450B2 (ja) 2011-10-27 2011-10-27 クラッチ装置
JP2011-235695 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061959A1 true WO2013061959A1 (ja) 2013-05-02

Family

ID=48167789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077351 WO2013061959A1 (ja) 2011-10-27 2012-10-23 クラッチ装置

Country Status (4)

Country Link
EP (1) EP2772658B1 (ja)
JP (1) JP5974450B2 (ja)
CN (1) CN103890431B (ja)
WO (1) WO2013061959A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009592B1 (fr) * 2013-08-08 2015-07-31 Valeo Embrayages Dispositif d'embrayage a rattrapage d'usure, notamment pour vehicule automobile
CN107407349B (zh) * 2015-01-15 2019-06-28 法雷奥离合器公司 用于离合器装置尤其用于机动车辆的磨损调节机构
FR3031774B1 (fr) * 2015-01-15 2017-01-13 Valeo Embrayages Mecanisme de rattrapage d'usure pour un dispositif d'embrayage, notamment pour vehicule automobile
FR3031775B1 (fr) * 2015-01-15 2018-05-25 Valeo Embrayages Mecanisme de rattrapage d'usure pour un dispositif d'embrayage, notamment pour vehicule automobile
FR3031778B1 (fr) * 2015-01-15 2018-05-25 Valeo Embrayages Mecanisme de rattrapage d'usure pour un dispositif d'embrayage, notamment pour vehicule automobile
FR3031776B1 (fr) * 2015-01-15 2017-01-13 Valeo Embrayages Mecanisme de rattrapage d'usure pour un dispositif d'embrayage, notamment pour vehicule automobile
FR3031777B1 (fr) * 2015-01-15 2017-01-13 Valeo Embrayages Mecanisme de rattrapage d'usure pour un dispositif d'embrayage, notamment pour vehicule automobile
FR3066794B1 (fr) * 2017-05-29 2019-06-14 Valeo Embrayages Dispositif d'embrayage a rattrapage d'usure, notamment pour vehicule automobile
JP7427503B2 (ja) * 2020-03-31 2024-02-05 株式会社エクセディ クラッチレリーズ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105637U (ja) * 1991-02-20 1992-09-11 株式会社大金製作所 クラツチカバー組立体
JPH0559283A (ja) 1991-08-30 1993-03-09 Riken Viny Kogyo Kk ポリアリーレンスルフイド樹脂組成物
JPH06257623A (ja) * 1992-12-22 1994-09-16 Luk Lamellen & Kupplungsbau Gmbh 摩擦クラッチ
JPH07317803A (ja) * 1994-03-29 1995-12-08 Luk Lamellen & Kupplungsbau Gmbh 摩擦クラッチ
JPH09126243A (ja) * 1995-10-31 1997-05-13 Aisin Seiki Co Ltd クラッチ組付体及び支点移動機構
JPH09291948A (ja) * 1996-04-23 1997-11-11 Exedy Corp 摩擦クラッチ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270925A (ja) * 1987-04-27 1988-11-08 Daikin Mfg Co Ltd クラツチカバ−アツセンブリ
JPH02124326U (ja) * 1989-03-24 1990-10-12
JPH0538249Y2 (ja) * 1989-07-06 1993-09-28
JPH041730U (ja) * 1989-12-29 1992-01-08
JPH0399236U (ja) * 1990-01-30 1991-10-16
DE4440412C2 (de) * 1994-11-11 2002-11-14 Zf Sachs Ag Reibungskupplung mit automatischem Verschleißausgleich
US6286651B1 (en) * 1999-12-10 2001-09-11 Pmx, Inc. Clutch adjusting ring
DE10016189B4 (de) * 2000-03-31 2006-02-23 Daimlerchrysler Ag Doppelkupplung für ein Zahnräderwechselgetriebe eines Kraftfahrzeuges

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105637U (ja) * 1991-02-20 1992-09-11 株式会社大金製作所 クラツチカバー組立体
JPH0559283A (ja) 1991-08-30 1993-03-09 Riken Viny Kogyo Kk ポリアリーレンスルフイド樹脂組成物
JPH06257623A (ja) * 1992-12-22 1994-09-16 Luk Lamellen & Kupplungsbau Gmbh 摩擦クラッチ
JPH07317803A (ja) * 1994-03-29 1995-12-08 Luk Lamellen & Kupplungsbau Gmbh 摩擦クラッチ
JPH09126243A (ja) * 1995-10-31 1997-05-13 Aisin Seiki Co Ltd クラッチ組付体及び支点移動機構
JPH09291948A (ja) * 1996-04-23 1997-11-11 Exedy Corp 摩擦クラッチ

Also Published As

Publication number Publication date
EP2772658A4 (en) 2015-09-30
CN103890431B (zh) 2016-08-24
JP2013092226A (ja) 2013-05-16
EP2772658B1 (en) 2019-03-20
EP2772658A1 (en) 2014-09-03
JP5974450B2 (ja) 2016-08-23
CN103890431A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013061959A1 (ja) クラッチ装置
JP4990254B2 (ja) 多板式クラッチ
KR101541661B1 (ko) 건식 더블 클러치
US11661981B2 (en) Power transmission device
JP6914649B2 (ja) 動力伝達装置
EP0789154B1 (en) Stopless self adjusting diaphragm clutch
CN110520644B (zh) 摩擦离合器
JP2009085318A (ja) トルク変動吸収装置
JP4662899B2 (ja) 多板クラッチ
US6039161A (en) Twin-clutch device
WO2013065559A1 (ja) クラッチ装置
JP6892758B2 (ja) 動力伝達装置
EP1630438B1 (en) Clutch device for vehicle
JP5915280B2 (ja) クラッチ装置
JP4414835B2 (ja) クラッチカバー組立体
JP5685176B2 (ja) 摩擦クラッチ
JP2006283943A (ja) トルク伝達装置、クラッチ装置及びトルクリミッタ装置
JP4620403B2 (ja) クラッチカバー組立体
JP4576327B2 (ja) クラッチカバー組立体
JP2012042060A (ja) トルク変動吸収装置
JP6870504B2 (ja) 動力伝達機構
WO2020116505A1 (ja) 動力伝達装置
JP2023115725A (ja) 多板式摩擦クラッチ
JPH10227316A (ja) ツインクラッチ
JP2000266078A (ja) ツインクラッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012842996

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE