WO2013061484A1 - 鞍乗型電動乗物 - Google Patents

鞍乗型電動乗物 Download PDF

Info

Publication number
WO2013061484A1
WO2013061484A1 PCT/JP2012/001156 JP2012001156W WO2013061484A1 WO 2013061484 A1 WO2013061484 A1 WO 2013061484A1 JP 2012001156 W JP2012001156 W JP 2012001156W WO 2013061484 A1 WO2013061484 A1 WO 2013061484A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage battery
low
control unit
battery
power
Prior art date
Application number
PCT/JP2012/001156
Other languages
English (en)
French (fr)
Inventor
松田 義基
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP12844113.6A priority Critical patent/EP2778032B1/en
Priority to JP2013540611A priority patent/JP5632976B2/ja
Priority to US14/354,555 priority patent/US9656551B2/en
Priority to CN201280051706.XA priority patent/CN103874625B/zh
Publication of WO2013061484A1 publication Critical patent/WO2013061484A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/16Arrangements of batteries for propulsion on motorcycles or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/20Arrangements of batteries characterised by the mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/30Means for ventilation within devices provided on the cycle, e.g. ventilation means in a battery container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • B62K11/04Frames characterised by the engine being between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/30Frame parts shaped to receive other cycle parts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention is a straddle-type vehicle in which a driver takes a posture straddling a vehicle, such as a motorcycle, an ATV (All Terrain Vehicle), a small planing boat, etc., and a battery that stores electric power supplied to an electric motor Further, the present invention relates to a straddle-type electric vehicle that is also an electric vehicle separately including a battery that stores electric power supplied to an auxiliary machine.
  • a straddle-type vehicle that is also an electric vehicle separately including a battery that stores electric power supplied to an auxiliary machine.
  • a high voltage battery is electrically connected to a low voltage battery, and the low voltage battery can be charged with electric power stored in the high voltage battery.
  • the low voltage battery can be charged with electric power stored in the high voltage battery.
  • an object of the present invention is to shorten a high-voltage electric wire as much as possible among power lines for connecting batteries.
  • a straddle-type electric vehicle includes an electric motor that is a driving source of the vehicle, a high-voltage battery that stores electric power supplied to the electric motor, and a low voltage that stores electric power supplied to the auxiliary equipment of the vehicle.
  • the saddle riding type electric vehicle has a small vehicle body and a limited space for mounting devices, compared to a large vehicle such as a general four-wheeled vehicle.
  • the low voltage battery may be detachably attached to the vehicle body.
  • the work of replacing the low voltage battery can be easily performed. Therefore, it is possible to apply a battery that is relatively easily deteriorated to a low-voltage battery. If the low-voltage battery is removed from the main body as necessary, it is possible to prevent dark current from flowing from the low-voltage battery and to prevent the low-voltage battery from undesirably rising.
  • a control unit for controlling the vehicle a first power line connecting the control unit to the low voltage battery, a connection state provided on the first power line and connecting the control unit to the low voltage battery and the control A relay that switches between a non-connected state that shuts off a unit from the low-voltage battery, and the auxiliary machine includes the control unit, the control unit from the low-voltage battery via the first power line It operates by receiving power supply, and the state of the relay may be switched in response to a command from the control unit.
  • a second power line that connects the control unit to the low voltage battery, a connection state that is provided on the second power line and connects the control unit to the low voltage battery, and the control unit
  • a switch that switches between a disconnected state and a disconnected state that is cut off from the low-voltage battery, and the state of the switch may be switched according to the operation of the driver.
  • the control unit since two systems for supplying power to the control unit are prepared, it is possible to suitably supply power to the control unit. For example, after the driver switches the switch state to the disconnected state, the control unit switches the relay state to the disconnected state after a lapse of a predetermined time, and the control unit performs a required process during the predetermined time. Will also be possible.
  • a control for controlling whether the high voltage battery or the electric motor is provided in the auxiliary machine comprising an abnormality detector for detecting whether or not an abnormality has occurred in a system for supplying electric power from the high voltage battery to the electric motor.
  • the control unit cuts off power supply from the high voltage battery to the electric motor or the low voltage battery, and supplies power from the low voltage battery. In response, the control unit may operate.
  • the control unit can continue to operate by receiving power from the low voltage battery. For this reason, even if an abnormality occurs in the system, the control using the control unit can be continued.
  • the auxiliary machine includes a control unit that controls the high-voltage battery or the electric motor.
  • the control unit operates by receiving power from the low-voltage battery, and the control unit issues an off command. Upon receipt, the power supply from the high voltage battery to the electric motor or the low voltage battery may be cut off, and then the power supply from the low voltage battery to the control unit may be cut off.
  • the control unit that operates by receiving power from the low voltage battery first cuts off the power supply from the high voltage battery and then supplies the power from the low voltage battery. Cut off. For this reason, the power supply from the high voltage battery can be cut off more reliably.
  • the auxiliary machine can be driven by the low voltage battery, and the auxiliary machine can be prevented from being erroneously stopped.
  • the control unit When the control unit receives the off command during traveling, the control unit cuts off the power supply from the high voltage battery to the electric motor or the low voltage battery and detects the stop of the vehicle, and then from the low voltage battery. The power supply to the control unit may be cut off.
  • the auxiliary machine can be operated during traveling even after the off command.
  • the control unit may detect whether or not the vehicle has stopped in response to an input from a speed sensor attached to a wheel.
  • the stop of the vehicle can be detected more reliably as compared with the configuration in which the stop of the vehicle is detected using the rotation speed of the electric motor.
  • the high-voltage electric wire among the power lines for connecting the batteries can be made as short as possible.
  • FIG. 1 is a left side view of an electric motorcycle shown as an example of a saddle riding type electric vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing an electrical configuration of the electric motorcycle shown in FIG. 1.
  • FIG. 2 is a plan view showing a state in which a seat is removed from the electric motorcycle shown in FIG. 1. It is a right side view of an electric motorcycle shown as an example of a saddle riding type electric vehicle according to a second embodiment of the present invention.
  • FIG. 1 is a left side view of an electric motorcycle 1 shown as an example of a saddle riding type electric vehicle according to a first embodiment of the present invention.
  • an electric motorcycle 1 includes a front wheel 2 that is a driven wheel, a rear wheel 3 that is a driving wheel, a vehicle body frame 4 that is disposed between the front wheel 2 and the rear wheel 3, and the electric motorcycle. 1 and an electric motor 5 as a traveling drive source.
  • the electric motorcycle 1 according to this embodiment does not include an internal combustion engine, and can run by rotating the rear wheel 3 with power generated by the electric motor 5.
  • the front wheel 2 is rotatably supported by a lower portion of a front fork 6 that extends substantially in the vertical direction.
  • a steering shaft 7 for steering the front wheels is connected to the upper part of the front fork 6, and a bar-type handle 8 is provided on the upper part of the steering shaft 7.
  • the vehicle body frame 4 includes a head pipe 11, a pair of left and right main frames 12, a pair of left and right down frames 13, and a pair of left and right pivot frames 14.
  • the head pipe 11 supports the steering shaft 7 to be rotatable.
  • Each of the left and right main frames 12 has an upper frame portion 12a and a lower frame portion 12b.
  • the upper frame portion 12a extends substantially parallel to the lower frame portion 12b.
  • the upper frame portion 12a and the lower frame portion 12b extend rearward while inclining downward from the head pipe 11.
  • the upper frame portion 12a is bent at the rear end portion thereof so as to be directed downward and connected to the lower frame portion 12b.
  • the down frame 13 includes a vertical frame portion 13a that extends substantially downward as viewed from the head pipe 11, and a lower frame portion 13b that extends rearward substantially horizontally from the lower end of the vertical frame portion 13a.
  • the pivot frame 14 is connected to the rear end portion of the main frame 12 and the rear end portion of the lower frame portion 13b.
  • the pivot frame 14 is also connected to the swing arm 15 and the seat frame 16.
  • the swing arm 15 extends substantially in the front-rear direction, and is pivotally connected to the pivot frame 14 at a front end portion thereof, and rotatably supports the rear wheel 3 at a rear end portion thereof.
  • the seat frame 16 extends rearward from the rear end portion of the upper frame portion 12a and the upper end portion of the pivot frame 14 while being inclined upward.
  • the seat frame 16 supports a tandem seat 9 on which a driver and a passenger are seated side by side.
  • the front side of the seat 9 is a driver's seat 9a
  • the rear side seat is a passenger's seat 9b.
  • the electric motorcycle 1 is a so-called straddle-type vehicle, and the driver is seated in a posture straddling the seat 9 (driver's seat 9a).
  • a pair of left and right foot steps 10 (not shown on the right side in FIG. 1) are provided at the lower ends of the left and right pivot frames 14, respectively.
  • the seat 9 is disposed behind the steering shaft 7 and the head pipe 11. The driver who faces forward across the seat 9 can hold the handle 8 by extending both hands forward.
  • the driver straddling the seat 9 places the left leg on the left side of the left pivot frame 14, places the left foot on the left foot step 10, positions the right leg on the right side of the right pivot frame 14, and places the right foot on the right side. Place it on the footstep 10.
  • the vehicle width dimension of the saddle riding type vehicle is small at least around the seat 9.
  • the width of the motorcycle is small overall, coupled with its straddle type. .
  • the traveling drive source of the electric motorcycle 1 is the electric motor 5. Therefore, the electric motorcycle 1 includes a high voltage battery unit 60 that stores electric power supplied to the electric motor 5.
  • the high voltage battery unit 60 is accommodated in the battery case 80.
  • the battery case 80 according to the present embodiment is made of an insulating material.
  • the battery case 80 accommodates electrical components such as the high voltage battery unit 60.
  • the electrical components housed in the battery case 80 include, for example, a DCDC converter 45.
  • the electric motorcycle 1 includes a motor case 18 and an inverter case 19 in addition to the battery case 80.
  • the motor case 18 accommodates the electric motor 5, and the inverter case 19 accommodates electrical components such as the inverter 20.
  • the high voltage battery unit 60 can store DC power.
  • the inverter 20 converts the DC power stored in the high voltage battery unit 60 into AC power.
  • the electric motor 5 operates by receiving the supply of AC power converted by the inverter 20 and generates traveling power.
  • the traveling power generated by the electric motor 5 is transmitted to the rear wheel 3 via the power transmission mechanism 17.
  • the power transmission mechanism 17 may include a transmission 17a (see FIG. 2). In this case, the transmission 17a may be housed in the motor case 18 together with the electric motor 5 (see FIG. 2).
  • the motor case 18 is supported by the down frame 12 and the pivot frame 14 and is disposed in a region below the down frame 12 and in front of the pivot frame 14.
  • the battery case 80 is disposed between the steering shaft 7 and the seat 9 in the front-rear direction, is placed on the lower frame portion 13b, and is disposed so as to be sandwiched between the left and right main frames 12.
  • the inverter case 19 is located behind the lower rear end of the battery case 80 and below the front end of the seat 9, and is an inverted triangular space surrounded by the main frame 12, the pivot frame 14, and the seat frame 16. Is placed inside.
  • the intake duct 21 is connected to the front surface of the battery case 80, and the exhaust duct 22 is connected to the rear surface of the battery case 80.
  • the intake duct 21 extends forward from the front surface of the battery case 80.
  • the exhaust duct 22 extends downward from the upper rear surface of the battery case 80 and is connected to the upper surface of the inverter case 19.
  • traveling wind from the front is taken into the intake duct 21 and sent into the battery case 80 via the intake duct 21.
  • Air in the battery case 80 is sent to the inverter case 19 through the exhaust duct 22.
  • a fan 55 is attached to the rear part of the battery case 80. When the fan 55 operates, it is possible to favorably assist the air in the battery case 80 to be sent to the exhaust duct 22.
  • the electric motorcycle 1 is equipped with an electric motor 5 and a plurality of auxiliary machines driven by the supply of electric power.
  • the electric motorcycle 1 includes a low voltage battery 43 that stores electric power supplied to these auxiliary machines.
  • the low voltage battery 43 can store DC power having a lower voltage (for example, 12 V) than the high voltage battery unit 60.
  • the low voltage battery 43 is disposed outside the battery case 80, and is detachably attached to the vehicle body (vehicle body in the present embodiment).
  • FIG. 2 is a conceptual diagram showing an electrical configuration of the electric motorcycle 1 shown in FIG.
  • the high power system power supply system
  • the weak power system signal system
  • the mechanical connection is indicated by a double line.
  • the electrical configuration of the electric motorcycle 1 will be briefly described with reference to FIG. 2, focusing on the high power system, and then the arrangement of the battery case 80 and the low voltage battery 43 will be described with reference to FIG. 1 again. Thereafter, returning to FIG. 2 again, the electrical configuration of the electric motorcycle 1 will be described in detail including the weak power system.
  • the electric motorcycle 1 includes the high voltage battery unit 60, the inverter 20, the electric motor 5, the low voltage battery 43, and a plurality of auxiliary machines described above.
  • the electric motorcycle 1 includes a DCDC converter 45 and a charging connector 49.
  • the high voltage battery unit 60 has a plurality of battery modules 61.
  • Each battery module 61 is an assembled battery formed by housing a plurality of battery cells in a box-shaped module housing. The plurality of battery cells are aligned and electrically connected in the module housing.
  • the battery cell is a secondary battery capable of storing DC power, and for example, a lithium ion battery or a nickel metal hydride battery can be suitably applied.
  • the plurality of battery modules 61 are electrically connected in series. As a result, the high voltage battery unit 60 functions as a high voltage DC secondary battery in which a large number of battery cells are connected to each other (for example, 60 V to 200 V). ).
  • the high voltage battery unit 60 is connected to the inverter 20 via the high voltage wiring 31.
  • the inverter 20 is connected to the electric motor 5 via the three-phase wiring 32.
  • the inverter 20 receives supply of DC power from the high voltage battery unit 60 via the high voltage wiring 31.
  • the electric motor 5 is supplied with AC power converted by the inverter 20 via the three-phase wiring 32.
  • the DCDC converter 45 is connected to the high voltage battery unit 60 via the first converter wiring 46.
  • the low voltage battery 43 is connected to the DCDC converter 45 via the second converter wiring 47.
  • the low voltage battery 43 is electrically connected to the high voltage battery unit 60 via the second converter wiring 47, the DCDC converter 45, and the first converter wiring 46.
  • the DCDC converter 45 converts the voltage of the DC power supplied from the high voltage battery unit 60 to the low voltage battery 43 to a charge voltage of the low voltage battery 43.
  • the low voltage battery 43 can be charged with the electric power stored in the high voltage battery unit 60.
  • the high voltage battery unit 60 is connected to the charging connector 49 via the charging wiring 50.
  • the charging connector 49 can be connected to an external power source.
  • an external power source is connected to the charging connector 49, the power of the external power source is supplied to the high voltage battery unit 60 via the charging wiring 50, whereby the high voltage battery 60 can be charged.
  • the power of the external power supply can be stepped down by the DCDC converter 45 and the low voltage battery 43 can be charged with the power of the external power supply.
  • the low voltage battery 43 is connected to a plurality of auxiliary machines, and functions as a power source for electrical equipment other than these auxiliary machines, that is, the electric motor 5 for driving.
  • the plurality of auxiliary devices using the low-voltage battery 43 as a power source include a controller, a display 91, a lighting device 92, an alarm device 93, a fan 55, and the like.
  • the indicator 91 displays a running state such as a vehicle speed and a gear position, or when a certain abnormality occurs.
  • the lighting device 92 includes a headlight, a tail lamp, a direction indicator, and a gear position lamp.
  • the controller includes an electric control unit (ECU) 57, a battery monitoring system (BMS) 58, and an inverter controller 59.
  • ECU electric control unit
  • BMS battery monitoring system
  • the ECU 57 comprehensively controls the operation of the electric motorcycle 1.
  • the BMS 58 controls whether or not the high voltage battery unit 60 is charged, monitors the charge state and temperature state of the high voltage battery unit 60, and operates the fan according to the temperature state of the high voltage battery unit 60. Control.
  • the high voltage battery unit 60 includes a plurality of cell monitoring units (CMU) 62 corresponding to the respective battery modules 61, and the BMS 58 determines the charge state of the high voltage battery unit 60 based on information from the CMU 61. Can do.
  • the inverter controller 59 controls the switching operation of the inverter 20 and thus controls the operation of the electric motor 5.
  • the ECU 57 is connected to an accelerator sensor (not shown) that detects the amount of operation of the accelerator grip, and gives a control command to the inverter controller 59 according to the detected value of the accelerator sensor.
  • Inverter controller 59 controls inverter 20 in accordance with a control command from ECU 57. Thereby, the electric motor 5 can generate
  • the electrical equipment included in the auxiliary machine includes various sensors such as a speed sensor, a rotation speed sensor, and a current sensor.
  • the low voltage battery 43 may be used for supplying power to the oil pump.
  • the low voltage battery 43 may be used for supplying power to a hydraulic unit for ABS, an electronically controlled steering damper, an electric windshield, an ETC device, and an audio device.
  • the low voltage battery may be selected so that the driving power of various electrical components matches the output power of the battery.
  • a motorcycle equipped with an engine is also equipped with a battery that serves as a power source for electrical components. However, if the same voltage is used for the low-voltage battery 43 as the battery installed in the previous engine vehicle, the electric motorcycle and the engine are installed. This is useful because the electric equipment can be shared with the motorcycle.
  • the DCDC converter 45 is accommodated in the battery case 80.
  • the inverter 20 is accommodated in an inverter case 19 different from the battery case 80, and the electric motor 5 is accommodated in a motor case 18 different from the battery case 80.
  • the low voltage battery 43 is also disposed outside the battery case 80. Therefore, a part of the high-voltage wiring 31, the whole first converter wiring 46 and a part of the second converter wiring 47 are accommodated in the battery case 80.
  • the first converter wiring 46 constitutes a wiring body for connecting the DCDC converter 45 to the high voltage battery unit 60
  • the second converter wiring 47 constitutes a wiring body for connecting the DCDC converter 45 to the low voltage battery 43. is doing.
  • a low-voltage current after step-down conversion by the DCDC converter 45 flows through the second converter wiring 47, while a high-voltage current before the step-down conversion flows through the first converter wiring 46.
  • the DCDC converter 45 since the DCDC converter 45 is housed in the battery case 80 together with the high voltage battery unit 60, the entire first converter wiring 46 can be housed in the battery case 80. For this reason, the first converter wiring 46 through which a high-voltage current flows can be shortened. Since the battery case 80 has insulating properties, the first converter wiring 46 can be isolated from the user both electrically and mechanically. If the first converter wiring 46 is relatively long and the second converter wiring 47 is relatively short, the cost required for the entire wiring body connecting the high voltage battery unit 60 to the low voltage battery 43 increases. In addition, if the first converter wiring 46 is exposed outside the battery case 80, the first converter wiring 46 must have a structure for isolating the wiring from the user. A structure for isolating one converter wiring 46 from the user must be provided, and the manufacturing cost increases accordingly.
  • the second converter wiring 47 is relatively moved even if the low voltage battery 43 is separated from the high voltage battery unit 60. Since it only becomes long, the increase in manufacturing cost can be suppressed. Then, it becomes unnecessary to arrange the low voltage battery 43 close to the high voltage battery unit 60 in view of the manufacturing cost, and the degree of freedom of arrangement of the low voltage battery 43 is improved.
  • a saddle-ride type vehicle particularly a motorcycle, has a smaller vehicle body than a general vehicle such as a four-wheeled vehicle, and thus a space for mounting equipment is limited. For this reason, the possibility of improving the degree of freedom of arrangement of the low-voltage battery 43 is very useful for a saddle riding type vehicle, particularly a motorcycle.
  • the first converter wiring 46 through which the high-voltage current flows is accommodated in the battery case 80 having insulation, it is possible to prevent the leakage from the first converter wiring 46 from affecting the outside of the battery case 80.
  • a converter relay 48 that opens and closes the first converter wiring 46 is provided on the first converter wiring 46, and this converter relay 48 is also accommodated in the battery case 80. Therefore, even if leakage occurs in converter relay 48, it is possible to prevent the outside of battery case 80 from being affected. If the DCDC converter 45 and the converter relay 48 are arranged in the battery case 80, the DCDC converter 45 is arranged in the vicinity of the high voltage battery unit 60, so the converter relay 48 is also in the vicinity of the high voltage battery unit 60. Can be arranged.
  • the entire charging wiring 50 can be accommodated in the battery case 80. This is advantageous because the charging wiring 50 can be mechanically and electrically isolated from the user. Further, since the inverter case 19 is close to the battery case 80, even if the inverter 20 is arranged outside the battery case 80, the portion of the high-voltage wiring 31 arranged outside the battery case 80 is made as short as possible. Can do. An inverter relay 33 that opens and closes the high-voltage wiring 31 is provided on the high-voltage wiring 31, and a charging relay 51 that opens and closes the charging wiring 50 is provided on the charging wiring 50. These relays 33 and 51 are also accommodated in the battery case 80.
  • the battery case 80 is disposed between the steering shaft 7 and the seat 9 in the front-rear direction, placed on the lower frame portion 13 b, and between the left and right main frames 12. It is sandwiched.
  • the battery case 80 has an upper lid 83 that opens and closes the upper part of the battery case 80.
  • the upper lid 83 is usually firmly attached to the main body portion of the battery case 80 with bolts or the like, whereby the internal space of the battery case 80 is sealed.
  • the user can be mechanically and electrically isolated from the electrical components housed in the battery case 80.
  • the upper lid 83 is removed, the maintenance worker can access the battery case 80, and the electrical components in the battery case 80 can be easily maintained.
  • the front surface of the battery case 80 is offset later in stages as it goes upward. Therefore, it is possible to prevent the portion disposed above the main frame 12 from interfering with the handle 8. At the same time, the portion disposed below the main frame 12 is enlarged to the front so as to fill the dead space behind the front wheel 2, thereby contributing to an increase in battery capacity.
  • the DCDC converter 45 is accommodated in the upper front part of the battery case 80.
  • the front wall of the battery case 80 includes a converter cover portion 80a that covers the DCDC converter 45 from the front, and the intake duct 21 is connected to the converter cover portion 80a.
  • the DCDC converter 45 is a component that generates a large amount of heat during operation. By blowing air to such a DCDC converter 45 at the initial stage of inflow into the battery case 80, the DCDC converter 45 can be suitably cooled by air, and as a result, the temperature inside the battery case 80 rises. Can be suppressed.
  • the low voltage battery 43 is disposed outside the battery case 80. For this reason, the high voltage battery unit 60 (module housing
  • the low-voltage battery 43 is disposed at a position different from that between the head pipe 11 and the seat 9, whereby more battery cells can be disposed between the head pipe 11 and the seat 9.
  • the low voltage battery 43 is disposed under the seat 9 and is disposed away from the battery case 80. For this reason, it is possible to suppress the low voltage battery 43 from being affected by heat generated during the operation of the high voltage battery unit 60.
  • the low-voltage battery 43 can be arranged away from the exhaust duct 22. For this reason, it is possible to suppress the low voltage battery 43 from being affected by the hot air flowing through the exhaust duct 22.
  • the low voltage battery 43 is disposed outside the battery case 80 and is detachably attached to the vehicle body (vehicle body).
  • the low voltage battery 43 is accommodated in the battery accommodating space 101 formed under the passenger seat 9b.
  • the electric motorcycle 1 is provided with a seat side cover 102 so as to cover a side portion and an upper portion of the seat frame 16.
  • the driver's seat 9a is attached to the front upper part of the seat side cover 102
  • the passenger's seat 9b is detachably attached to the rear upper part of the seat side cover 102.
  • the case where the driver's seat 9a and the passenger's seat 9b are configured by separate components is illustrated, but may be configured by a single component.
  • the battery housing space 101 is formed at the rear portion of the seat side cover 102 and is opened and closed by a passenger seat 9b.
  • FIG. 3 is a plan view of the electric motorcycle 1 shown with the passenger seat 9b removed from the electric motorcycle 1 shown in FIG.
  • an opening 103 opened upward is provided at the rear upper part of the seat side cover 102, and the user can access the battery housing space 101 through the opening 103.
  • the low voltage battery 43 is disposed so as to overlap the opening 103 in plan view. For this reason, when the passenger seat 9 b is removed, the user can easily see the low voltage battery 43 through the opening 103, and easily access the low voltage battery 43 through the opening 103. be able to.
  • the low voltage battery 43 is detachably attached to the seat frame 16 and the seat side cover 102. For this reason, if the user removes the passenger seat 9b and removes the wiring connected to the low voltage battery 43, the maintenance work and the replacement work of the low voltage battery 43 can be easily performed. Thus, since the low voltage battery 43 can be easily replaced, it becomes possible to easily cope with the deterioration of the low voltage battery 43. In other words, a lead-acid battery that is relatively easily deteriorated can be applied to the low-voltage battery 43, and the manufacturing cost can be suppressed.
  • the battery housing space 101 is formed between a pair of left and right body frames (for example, the seat frame 16).
  • the low voltage battery 43 is housed in such a battery housing space 101 and is disposed between a pair of left and right body frames (for example, the seat frame 16). Thereby, the wiring 47 that connects the low-voltage battery 43 and the DCDC converter 45 can be arranged inside the left and right vehicle body frames (for example, the seat frame 16), and even if the vehicle body falls down, the wiring 47 is disconnected. Can be prevented.
  • the low voltage battery 43 can be charged with the power of the high voltage battery unit 60, the capacity of the low voltage battery 43 can be reduced. For this reason, the manufacturing cost of the low voltage battery 43 can be further suppressed.
  • the small degree of space existing under the passenger seat 9b is combined with the improvement in the degree of freedom of arrangement of the low-voltage battery 43 and the ability to reduce the size of the low-voltage battery 43. Can be used to accommodate the low-voltage battery 43.
  • a lead storage battery tends to generate a dark current, and the battery will rise if the vehicle is not used for a long period.
  • the low voltage battery 43 can be easily removed. For this reason, when the user determines that the vehicle is not used for a long period of time, the user can prevent unnecessary discharge of the low voltage battery 43 if the user removes and stores the low voltage battery 43 from the vehicle. Can do.
  • other batteries such as a capacitor may be applied to the low voltage battery 43.
  • the battery housing space 101 is locked by the lock mechanism 104.
  • the passenger's seat 9b cannot be removed again unless the main mechanical key of the vehicle is inserted into the cylinder lock 105 provided on the seat side cover 102 and the lock mechanism 104 is unlocked.
  • the battery housing space 101 can be locked, it is possible to prevent the low voltage battery 43 from being undesirably removed.
  • the low voltage battery 43 is connected to the ECU 57 via two high power systems. That is, the low voltage battery 43 is connected to the low voltage battery 43 via the first power line 94. A second power line 95 different from the first power line 94 branches off from the first power line 94, and the second power line 95 is connected to the first power line 94 again. As a result, the ECU 57 is also connected to the low voltage battery 43 via the second power line 95.
  • the first power line 94 has two connection points connected to the second power line 95.
  • the inverter controller 59 is connected to the second power line 95, and the inverter controller 59 can receive power from the low voltage battery 43 via the second power line 95.
  • the BMS 58 is connected to the ECU 57 and can receive power from the low voltage battery 43 via the ECU 57.
  • the fan 55 is connected to the BMS 58 and can receive power from the low voltage battery 43 via the ECU 57 and the BMS 58.
  • the display device 91, the lighting device 92, and the alarm device 93 are connected to the ECU 57, and can receive power from the low voltage battery 43 through the ECU 57.
  • CAN Controller Area Network
  • the power supply to the ECU 57 and the inverter controller 59 is cut off, so the electric motor 5 does not operate no matter how much power is stored in the high voltage battery unit 60. For this reason, if the user removes the low voltage battery 43 from the vehicle, the vehicle is less likely to be stolen, which is beneficial.
  • the charging relay 51 that opens and closes the charging wiring 50
  • the inverter relay 36 that opens and closes the high-voltage wiring 31
  • a main relay 96 that opens and closes the first power line 94
  • the converter relay 48 that opens and closes one converter wiring 46 and the main switch 97 that opens and closes a second power line 95 are illustrated.
  • a state in which the corresponding wiring is closed is referred to as a “connection state”
  • a state in which the corresponding wiring is open is referred to as a “non-connection state”.
  • the main relay 96 is provided between two connection points on the first power line 94 and is connected to the ECU 57.
  • the ECU 57 can control the main relay 96 and switch the main relay 96 from the connected state to the disconnected state. As a result, power supply from the low voltage battery 43 to the ECU 57 via the first power line 94 can be stopped under the voluntary determination of the ECU itself.
  • the main switch 97 is provided on the second power line 95 and is mechanically connected to the main key 98.
  • the main key 98 is used for locking the vehicle body.
  • the main key 98 may be mechanically configured, such as a cylinder lock and a mechanical key that matches the cylinder key, or may have an electrically controlled configuration such as a so-called smart key. In any case, the main key 98 is manually operated by the driver to lock and release the vehicle body.
  • the main switch 97 is connected.
  • the electric power of the low voltage battery 43 can be supplied to the ECU 57 and the inverter controller 59 via the second power line 95.
  • the main switch 97 is disconnected. Thereby, the electric power feeding from the low voltage battery 43 to the ECU 57 via the second power line 95 can be stopped.
  • the ECU 57 since two systems for supplying electric power to the ECU 57 are prepared, it is possible to suitably supply electric power to the ECU 57, and to supply electric power to the ECU 57. Diversity can be provided. For example, after the main switch 97 is turned off, the ECU can maintain the main relay 96 in the connected state. Thereby, even if the main switch 97 is disconnected, the ECU 57 can continue to operate by receiving power from the low voltage battery 43 via the first power line 94. In the meantime, the ECU 57 executes a required end process, and after executing the end process, the main relay 96 can be disconnected and the power supply to itself can be cut off.
  • the charging relay 51 is connected to the BMS 58.
  • the BMS 58 detects that an external power supply is connected to the charging connector 49, the BMS 58 sets the charging relay 51 in a connected state and enables power supply from the external power supply to the high voltage battery unit 60.
  • Converter relay 48 is connected to ECU 57.
  • the BMS 58 detects that the external power source is connected to the charging connector 49, the BMS 58 transmits the fact to the ECU 57.
  • the ECU 57 sets the converter relay 48 in a connected state in accordance with the input from the BMS 58 and controls the DCDC converter 45, thereby enabling power supply from the external power source or the high voltage battery unit 60 to the low voltage battery 43.
  • the inverter relay 36 is mechanically or electrically connected to the kill switch 99.
  • the kill switch 99 is manually operated by the driver and is automatically operated by the ECU 57.
  • the kill switch 99 is operated manually or automatically, the inverter relay 36 is disconnected, and the power supply from the high voltage battery unit 60 to the inverter 20 and the power supply to the electric motor 5 are stopped.
  • the electric motorcycle 1 includes a leakage detector 53 that detects a leakage in the high voltage battery unit 60 and a leakage in the high voltage wiring that is a system for supplying power from the high voltage battery unit 60 to the inverter 20.
  • the earth leakage detector 53 is connected to the BMS 58, and when any abnormality is detected by the earth leakage detector 53, the BMS 58 transmits the fact to the ECU 57.
  • the ECU 57 brings the converter relay 48 into a disconnected state. Thereby, the supply of electric power from the high voltage battery unit 60 to the low voltage battery 43 is cut off, and the low voltage battery 43 is electrically independent from the high voltage battery unit 60.
  • the ECU 57 operates by receiving power supplied from the low voltage battery 43 via the first power line 94 or the second power line 95. In this way, even if an abnormality occurs in the system for supplying power from the high voltage battery unit 60 to the electric motor 5, the power supply from the high voltage battery unit 60 to the low voltage battery 43 is cut off to reduce the low voltage. Since the battery 43 is independent from the high voltage battery unit 60, it is possible to avoid the influence of the abnormality on the low voltage battery 43. Even in such a state where the power supply is cut off, the ECU 57 can continue to operate by receiving power from the low voltage battery 43.
  • the control using the ECU 57 can be continuously performed.
  • the display device 91 or the alarm device 93 can be operated to allow the user to recognize the occurrence of an abnormality.
  • the state in which the handle lock is released can be maintained, or the regenerative braking can be released, so that the vehicle can be moved manually or pulled. It can be done easily.
  • the ECU 57 may operate the kill switch 99 to make the inverter relay 36 unconnected. Thereby, the supply of electric power from the high voltage battery unit 60 to the electric motor 5 can be cut off. Further, the BMS 58 may bring the charging relay 51 into a disconnected state. Thereby, it can suppress that the influence of the electric leakage in the high voltage battery unit 60 reaches the charge connector 49 with which the accessibility to a user is ensured to a certain extent.
  • the inverter relay 36 When the kill switch 99 is manually operated by the driver, the inverter relay 36 is disconnected in accordance with this, and the power supply from the high voltage battery unit 60 to the electric motor 5 is cut off. Also at this time, the ECU 57 can continue to operate while receiving power supply from the low-voltage battery 43, and can prevent the auxiliary machine from malfunctioning or stopping. At this time, the ECU 57 may disconnect the converter relay 48 and make the low voltage battery 43 electrically independent from the high voltage battery unit 60. Thereafter, the ECU 57 can appropriately cut off the power supply from the low voltage battery 43 to the ECU 57.
  • the ECU 57 is connected to a speed sensor 71 attached to a wheel (either the front wheel 2 or the rear wheel 3 or both), and determines whether or not the vehicle has stopped in response to an input from the speed sensor 71. It may be configured to detect. According to this structure, compared with the case where the same detection is performed according to the rotation speed of the electric motor 5, the stop of the vehicle can be detected more reliably.
  • the ECU 57 and the BMS 58 are disposed outside the battery case 80. For this reason, the system for connecting the low voltage battery 43 to the ECU 57 and the system for connecting the ECU 57 to the BMS 58 can be routed only outside the battery case 80, and the wiring can be simplified. Further, since the system for connecting the low voltage battery 43 to the ECU 57 is arranged outside the battery case 80, the main switch 96 and the main relay 96 are also arranged outside the battery case 80. Since the ECU 57 and the main key 98 are disposed outside the battery case 80, wiring between the main switch 96 and the main key 98 and between the ECU 57 and the main relay 97 is also simplified.
  • FIG. 4 is a side view of an electric motorcycle 201 shown as an example of a straddle-type electric vehicle according to the second embodiment of the present invention.
  • the arrangement of the DCDC converter 245 is different from the above embodiment.
  • the second embodiment will be described focusing on differences from the above embodiment.
  • the DCDC converter 245 is disposed in the upper space in the battery case 280. Specifically, the DCDC converter 245 is provided on the upper rear portion of the high voltage battery unit 260. On the other hand, the low voltage battery 43 is also arranged under the passenger seat 9b. The passenger seat 9b is provided at a rear portion of the seat frame 16 that extends rearward while being inclined upward, and the passenger seat 9b is also disposed relatively upward. Moreover, in the present embodiment, there is a step between the passenger seat 9b and the driver seat 9a, and the passenger seat 9b is disposed higher than the driver seat 9a. For this reason, the battery accommodating space 102 can be enlarged in the height direction, and can be arranged at a high level. Thus, when the DCDC converter 245 and the low-voltage battery 43 are arranged above, the length of the second converter wiring can be shortened.
  • the battery case 80 does not necessarily have to be manufactured from an insulating material, and may be manufactured from a metal material such as an aluminum alloy.
  • a metal material such as an aluminum alloy.
  • the high-voltage electric wire can be shortened in the same manner as described above, and the thickness can be reduced while reducing the thickness while obtaining the required strength.
  • the DCDC converter 45 may be covered with a case different from the battery case 80.
  • the case is preferably insulated from the outer space, so that the DCDC converter can be mechanically and electrically isolated from the user.
  • the present invention is applied to any straddle-type electric vehicle including a high voltage battery for driving an electric motor and a low voltage battery for driving an auxiliary machine.
  • the present invention can be applied to other riding type vehicles such as a four wheel buggy (ATV: All Terrain Vehicle), a motor tricycle, and a small planing boat.
  • ATV All Terrain Vehicle
  • a motor tricycle a motor tricycle
  • a small planing boat a small planing boat.
  • an electric vehicle a vehicle that travels only by power generated by an electric motor without an internal combustion engine is illustrated, but the present invention can also be applied to a so-called hybrid vehicle that includes an internal combustion engine in addition to an electric motor. It is.
  • the present invention has an effect that a high-voltage electric wire among power lines for connecting batteries can be shortened as much as possible, and is advantageous when applied to a straddle-type electric vehicle such as an electric motorcycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 鞍乗型電動乗物(1)が、乗物(1)の駆動源である電気モータ(5)と、電気モータ(5)に供給される電力を蓄える高電圧バッテリ(60)と、補機(55、57~59、91~93)に供給される電力を蓄える低電圧バッテリ(43)と、高電圧バッテリ(60)から低電圧バッテリ(43)へ供給される電力の電圧を低電圧バッテリ(43)の充電電圧に変換するコンバータ(45)と、高電圧バッテリ(60)を収容して絶縁性を有するケース(80)と、を備える。低電圧バッテリ(43)がケース(80)外に配設され、コンバータ(45)がケース(80)内に収容される。

Description

鞍乗型電動乗物
 本発明は、自動二輪車やATV(All Terrain Vehicle)や小型滑走艇等のように運転者が車両に跨った姿勢をとる鞍乗型の乗物であって、電気モータに供給される電力を蓄えるバッテリと、補機に供給される電力を蓄えるバッテリとを別々に備えた電動式の乗物でもある鞍乗型電動乗物に関する。
 近年、電気モータを走行動力源とする鞍乗型電動乗物が開発されている。鞍乗型電動乗物の一例である電動二輪車では、電気モータに電力を供給するためのバッテリを搭載する必要がある。また、電動二輪車は、電気モータに供給される電力を蓄えた駆動用の高電圧バッテリとは別に、補機用の低電圧バッテリを搭載するものがある(例えば、特許文献1参照)。
特開2011-131701号公報
 特許文献1によれば、高電圧バッテリが低電圧バッテリと電気的に接続され、高電圧バッテリに蓄えられている電力で低電圧バッテリを充電することができる。この場合、高電圧バッテリから低電圧バッテリに向けて配線された高圧電線に高圧電流が流れるので、バッテリ同士が離反しているほど、高圧電線が長くなって電動二輪車の製造コストの増加を招く。
 そこで本発明は、バッテリ同士を接続するための電力線のうち高圧電線をなるべく短くすることを目的としている。
 本発明は上記目的を達成すべくなされたものである。本発明に係る鞍乗型電動乗物は、乗物の駆動源である電気モータと、前記電気モータに供給される電力を蓄える高電圧バッテリと、前記乗物の補機に供給される電力を蓄える低電圧バッテリと、前記高電圧バッテリから前記低電圧バッテリへ供給される電力の電圧を前記低電圧バッテリの充電電圧に変換するコンバータと、前記高電圧バッテリを収容するケースと、を備え、前記低電圧バッテリが前記ケース外に配設され、前記コンバータが前記ケース内に収容される。
 前記構成によれば、高電圧バッテリをコンバータに繋ぐ配線には高圧電流が流れるのに対し、コンバータを低電圧バッテリに繋ぐ配線には低圧電流が流れる。コンバータをケースに収容すると、高圧電流が流れる配線も一緒にケース内に収容することが可能になる。よって、高圧電流が流れる配線を短く取り回すことができる。また、高圧電流が流れる配線を短くしながら、低電圧バッテリを高電圧バッテリから離反させることが可能になり、低電圧バッテリの配置自由度が向上する。特に、鞍乗型電動乗物は、一般的な四輪車等の大型車両に比べ、車体が小型で機器を搭載するスペースも限られている。このため、鞍乗型電動乗物においては、低電圧バッテリの配置自由度が向上すると非常に有益である。また、高圧電流が流れる配線がケースに収容されるので、このような配線をユーザから隔離することができる。
 前記低電圧バッテリが、前記乗物の本体に着脱可能に取り付けられていてもよい。
 前記構成によれば、低電圧バッテリを交換する作業を容易に行うことができる。よって、低電圧バッテリに、比較的劣化しやすいタイプのバッテリを適用することが可能になる。必要に応じて低電圧バッテリを本体から取り外しておけば、低電圧バッテリから暗電流が流れるのを防ぐことができ、不所望に低電圧バッテリが上がってしまうのを防ぐことも可能になる。
 乗物を制御するための制御ユニットと、前記制御ユニットを前記低電圧バッテリに接続する第1電力線と、前記第1電力線に設けられ、前記制御ユニットを前記低電圧バッテリに接続させる接続状態と前記制御ユニットを前記低電圧バッテリから遮断する非接続状態とを切り替えるリレーと、を備え、前記補機は、前記制御ユニットを含み、前記制御ユニットは、前記第1電力線を介して前記低電圧バッテリからの電力供給を受けて動作し、前記リレーの状態が、前記制御ユニットからの指令に応じて切り替えられてもよい。
 前記構成によれば、制御ユニットの判断で、制御ユニットに電力供給をするか否かを切り替えることができる。
 前記第1電力線とは別に、前記制御ユニットを前記低電圧バッテリに接続する第2電力線と、前記第2電力線に設けられ、前記制御ユニットを前記低電圧バッテリに接続する接続状態と前記制御ユニットを前記低電圧バッテリから遮断する非接続状態とを切り替えるスイッチと、を備え、前記スイッチの状態が、運転者の操作に応じて切り替えられてもよい。
 前記構成によれば、制御ユニットに電力を供給するための系統が2つ用意されるので、制御ユニットへの電力供給を好適に行うことができる。例えば、運転者がスイッチの状態を非接続状態に切り替えた後に、所定時間の経過後に制御ユニットがリレーの状態を非接続状態に切り替え、当該所定時間の間に制御ユニットが所要の処理を行うことも可能になる。
 前記高電圧バッテリから前記電気モータに電力を供給するための系統に異常が生じているか否かを検知する異常検知器を備え、前記補機に、前記高電圧バッテリ又は前記電気モータを制御する制御ユニットが含まれ、前記異常検知器が異常を検知すると、前記制御ユニットは、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断し、前記低電圧バッテリからの電力の供給を受けて前記制御ユニットが動作してもよい。
 前記構成によれば、万が一高電圧バッテリから高電圧バッテリから電気モータに電力を供給するための系統に異常が生じたとしても、高電圧バッテリからの電力供給を遮断するので、低電圧バッテリに当該異常の影響が及ぶのを避けることができる。このように電力供給を遮断した状態であっても、制御ユニットは、低電圧バッテリからの給電を受けて動作し続けることができる。このため、前記系統に異常が生じたとしても、制御ユニットを用いた制御を継続することができる。
 前記補機に、前記高電圧バッテリ又は前記電気モータを制御する制御ユニットが含まれ、前記制御ユニットは、前記低電圧バッテリからの電力の供給を受けて動作し、前記制御ユニットが、オフ指令を受けると、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断してから、前記低電圧バッテリから前記制御ユニットへの電力供給を遮断してもよい。
 前記構成によれば、スイッチが操作されると、低電圧バッテリからの給電を受けて動作する制御ユニットが、まず、高電圧バッテリからの電力供給を遮断してから低電圧バッテリからの電力供給を遮断する。このため、高電圧バッテリからの給電の遮断をより確実に行うことができる。また、高電圧バッテリからの電力供給を遮断した直後でも、低電圧バッテリにより補機を駆動することができ補機の誤停止を防止することができる。
 前記制御ユニットは、走行中に前記オフ指令を受けると、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断し且つ車両の停止を検知してから、前記低電圧バッテリから前記制御ユニットへの電力供給を遮断してもよい。
 前記構成によれば、オフ指令後も走行中は補機を動作させることができる。
 前記制御ユニットは、車輪に取り付けた速度センサからの入力に応じて前記車両が停止したか否かを検知してもよい。
 前記構成によれば、電気モータの回転数を用いて車両停止を検知する構成と対比して、車両の停止をより確実に検知することができる。
 本発明の上記及び他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 以上の説明から明らかなように、本発明によれば、バッテリ同士を接続するための電力線のうち高圧電線をなるべく短くすることができる。
本発明の第1実施形態に係る鞍乗型電動乗物の一例として示す電動二輪車の左側面図である。 図1に示す電動二輪車の電気的構成を示す概念図である。 図1に示す電動二輪車からシートを取り外した状態にして示す平面図である。 本発明の第2実施形態に係る鞍乗型電動乗物の一例として示す電動二輪車の右側面図である。
 以下、図面を参照しながら本発明の実施形態について説明する。なお、全ての図を通じて同一又は相当する要素には同一の符号を付し、重複する詳細な説明を省略する。以下の説明における方向の概念は、本発明の実施形態に係る鞍乗型電動乗物の一例として示す電動二輪車に搭乗した運転者から見る方向を基準としている。
 図1は、本発明の第1実施形態に係る鞍乗型電動乗物の一例として示す電動二輪車1の左側面図である。図1に示すように、電動二輪車1は、従動輪である前輪2と、駆動輪である後輪3と、前輪2と後輪3との間に配置される車体フレーム4と、当該電動二輪車1の走行駆動源である電気モータ5とを備えている。本実施形態に係る電動二輪車1は、内燃機関を備えておらず、電気モータ5により発生された動力で後輪3を回転駆動することによって走行可能である。
 前輪2は、略上下方向に延びるフロントフォーク6の下部に回転可能に支持されている。フロントフォーク6の上部には、前輪操舵用のステアリングシャフト7が接続され、ステアリングシャフト7の上部にはバー型のハンドル8が設けられている。車体フレーム4は、ヘッドパイプ11、左右一対のメインフレーム12、左右一対のダウンフレーム13及び左右一対のピボットフレーム14を有している。
 ヘッドパイプ11は、ステアリングシャフト7を回転可能に支持している。左右のメインフレーム12各々が、上フレーム部12a及び下フレーム部12bを有している。上フレーム部12aは下フレーム部12bと概略平行に延びている。上フレーム部12a及び下フレーム部12bは、ヘッドパイプ11から下向きに傾斜しながら後方へと延びている。上フレーム部12aは、その後端部において、下に向かうように屈曲して下フレーム部12bに接続されている。ダウンフレーム13は、ヘッドパイプ11から見て略下方に延びるバーティカルフレーム部13aと、バーティカルフレーム部13aの下端から略水平に後向きに延びるロアフレーム部13bとを有している。ピボットフレーム14は、メインフレーム12の後端部及びロアフレーム部13bの後端部に接続されている。
 ピボットフレーム14は、スイングアーム15及びシートフレーム16にも接続されている。スイングアーム15は、略前後方向に延び、その前端部でピボットフレーム14に揺動可能に連結され、その後端部で後輪3を回転可能に支持している。シートフレーム16は、上フレーム部12aの後端部及びピボットフレーム14の上端部から上向きに傾斜しながら後方へと延びている。
 シートフレーム16は、運転者及び同乗者を前後に並べて着座させるタンデム型のシート9を支持している。このシート9のうち前側が運転者用シート9a、後側のシートが同乗者用シート9bである。本実施形態では、運転者用シート9aと同乗者用シート9bとの間に段差があり、同乗者用シート9bが運転者用シート9aよりも高位に配置されている。
 電動二輪車1は、いわゆる鞍乗型の乗物であり、運転者は、シート9(運転者用シート9a)に跨った姿勢で着座する。左右のピボットフレーム14の下端部にそれぞれ、左右一対のフットステップ10(図1では右側の図示を省略する)が設けられている。シート9は、ステアリングシャフト7及びヘッドパイプ11よりも後に配置されている。シート9に跨って前を向いた運転者は、両手を前に延ばしてハンドル8を握ることができる。シート9に跨った運転者は、左脚を左側のピボットフレーム14よりも左側に位置させ左足を左側のフットステップ10に置き、右脚を右側のピボットフレーム14よりも右側に位置させ右足を右側のフットステップ10に置く。運転者がこのようにして車体を跨ぐので、鞍乗型乗物の車幅寸法は、少なくともシート9周辺において小型である。特に、自動二輪車は、車体の傾斜により生まれる向心力を遠心力とバランスさせることによって高速旋回するので、自動二輪車の車幅寸法は、鞍乗型であることとも相俟って全体的に小型である。
 前述のとおり、本実施形態に係る電動二輪車1の走行駆動源は電気モータ5である。そこで電動二輪車1は、電気モータ5に供給する電力を蓄える高電圧バッテリユニット60を備えている。高電圧バッテリユニット60は、バッテリケース80に収容される。本実施形態に係るバッテリケース80は、絶縁性を有する材料で製作されている。バッテリケース80は、高電圧バッテリユニット60をはじめとする電装品を収容している。バッテリケース80に収容される電装品には、例えばDCDCコンバータ45が含まれる。
 電動二輪車1は、バッテリケース80のほか、モータケース18及びインバータケース19を搭載している。モータケース18は、電気モータ5を収容し、インバータケース19は、インバータ20をはじめとする電装品を収容している。高電圧バッテリユニット60は、直流電力を蓄えることができる。インバータ20は、高電圧バッテリユニット60に蓄えられている直流電力を交流電力に変換する。電気モータ5は、インバータ20により変換された交流電力の供給を受けて動作し、走行動力を発生する。電気モータ5により発生された走行動力は、動力伝達機構17を介して後輪3に伝達される。動力伝達機構17には変速機17a(図2参照)が含まれていてもよく、この場合、変速機17aは電気モータ5と共にモータケース18に収容されていてもよい(図2参照)。
 本実施形態では、モータケース18がダウンフレーム12及ピボットフレーム14に支持され、ダウンフレーム12の下方且つピボットフレーム14の前方の領域に配置されている。バッテリケース80は、前後方向においてステアリングシャフト7とシート9との間に配置され、ロアフレーム部13bの上に載せ置かれ、左右のメインフレーム12の間に挟まれるように配置されている。インバータケース19は、バッテリケース80の下後端部の後方且つシート9の前端部の下方に位置し、メインフレーム12とピボットフレーム14とシートフレーム16とにより囲まれた側面視逆三角形状の空間内に配置されている。
 バッテリケース80の前面には、吸気ダクト21が接続され、バッテリケース80の後面には、排気ダクト22が接続されている。吸気ダクト21は、バッテリケース80の前面から前方に延びている。排気ダクト22は、バッテリケース80の後面上部から下方に延び、インバータケース19の上面に接続されている。これらダクト21,22を設けたことにより、前からの走行風が吸気ダクト21に取り込まれ、吸気ダクト21を介してバッテリケース80内へと送られる。バッテリケース80内のエアは、排気ダクト22を介してインバータケース19に送られる。これにより、バッテリケース80及びインバータケース19に収容された電装品を空冷することができ、これら電気部品の動作信頼性を維持することができる。また、バッテリケース80の後部には、ファン55が取り付けられている。ファン55が動作すると、バッテリケース80内のエアを排気ダクト22へ送るのを良好にアシストすることができる。
 電動二輪車1は、電気モータ5の他、電力の供給を受けて駆動される複数の補機を搭載している。電動二輪車1は、これら補機に供給される電力を蓄える低電圧バッテリ43を備えている。低電圧バッテリ43は、高電圧バッテリユニット60よりも低圧(例えば、12V)の直流電力を蓄えることができる。低電圧バッテリ43は、バッテリケース80の外に配置されており、また、乗物の本体(本実施形態では車体)に着脱可能に取り付けられている。
 図2は、図1に示す電動二輪車1の電気的構成を示す概念図である。図2では、強電系統(電力供給系統)を太線、弱電系統(信号系統)を細線、機械的連結を二重線で示している。以下、図2を参照しながら電動二輪車1の電気的構成について強電系統を中心に簡単に説明した後、図1に戻ってバッテリケース80及び低電圧バッテリ43の配置について説明する。その後、再び図2に戻り、電動二輪車1の電気的構成について弱電系統を含めて詳細に説明する。
 図2に示すように、電動二輪車1は、前述した高電圧バッテリユニット60、インバータ20、電気モータ5、低電圧バッテリ43及び複数の補機を備えている。また、電動二輪車1は、DCDCコンバータ45及び充電コネクタ49を備えている。
 高電圧バッテリユニット60は、複数のバッテリモジュール61を有している。各バッテリモジュール61は、箱状のモジュール筐体に複数のバッテリセルを収容して成る組電池である。複数のバッテリセルは、モジュール筐体内で整列配置され且つ電気的に接続される。バッテリセルは、直流電力を蓄えることができる二次電池であり、例えば、リチウムイオン電池やニッケル水素電池を好適に適用することができる。複数のバッテリモジュール61は、電気的に直列接続されており、その結果、高電圧バッテリユニット60は、多数のバッテリセルを互いに接続してなる高圧直流二次電池として機能する(例えば、60V~200V)。
 高電圧バッテリユニット60は、インバータ20と高圧配線31を介して接続されている。インバータ20は、電気モータ5と三相配線32を介して接続されている。インバータ20は、高圧配線31を介して高電圧バッテリユニット60から直流電力の供給を受ける。電気モータ5は、三相配線32を介してインバータ20により変換された交流電力の供給を受ける。
 DCDCコンバータ45は、第1コンバータ配線46を介して高電圧バッテリユニット60に接続されている。低電圧バッテリ43は、第2コンバータ配線47を介してDCDCコンバータ45に接続されている。このように低電圧バッテリ43は、第2コンバータ配線47、DCDCコンバータ45及び第1コンバータ配線46を介して高電圧バッテリユニット60に電気的に接続されている。これにより、高電圧バッテリユニット60に蓄えられている電力を低電圧バッテリ43に供給可能になる。DCDCコンバータ45は、高電圧バッテリユニット60から低電圧バッテリ43へ供給される直流電力の電圧を低電圧バッテリ43の充電電圧へと降圧変換する。これにより、高電圧バッテリユニット60に蓄えられている電力で、低電圧バッテリ43を充電することができる。
 高電圧バッテリユニット60は、充電配線50を介して充電コネクタ49と接続されている。充電コネクタ49は、外部電源と接続可能である。外部電源が充電コネクタ49に接続されたときには、充電配線50を介して外部電源の電力を高電圧バッテリユニット60に供給し、それにより高電圧バッテリ60を充電することができる。このとき、外部電源の電力をDCDCコンバータ45で降圧し、当該外部電源の電力で低電圧バッテリ43を充電することもできる。
 低電圧バッテリ43は、複数の補機に接続されており、これら補機、すなわち駆動用の電気モータ5以外の電装品の電源として機能する。低電圧バッテリ43を電源とする複数の補機には、制御器、表示器91、灯火器92、警報器93、ファン55等が含まれる。表示器91は、車速及びギヤ位置などの走行状態や、何らかの異常が発生したときにその旨を表示する。灯火器92は、ヘッドライト、テールランプ、方向指示器及びギヤポジションランプが含まれる。制御器には、電気制御ユニット(ECU)57、バッテリ監視システム(BMS)58及びインバータコントローラ59が含まれる。ECU57は、電動二輪車1の動作を統括的に制御する。BMS58は、高電圧バッテリユニット60の充電許否を制御したり、高電圧バッテリユニット60の充電状態や温度状態を監視したりし、また、高電圧バッテリユニット60の温度状態に応じてファンの動作を制御する。高電圧バッテリユニット60は、バッテリモジュール61それぞれに対応する複数のセル監視ユニット(CMU)62を備えており、BMS58は、CMU61からの情報を基に高電圧バッテリユニット60の充電状態を判定することができる。インバータコントローラ59は、インバータ20のスイッチング動作を制御し、ひいては電気モータ5の動作を制御する。ECU57は、アクセルグリップの操作量を検出するアクセルセンサ(図示せず)と接続されており、アクセルセンサの検出値に応じてインバータコントローラ59に制御指令を与える。インバータコントローラ59は、ECU57からの制御指令に応じてインバータ20を制御する。これにより、電気モータ5が運転者の要求に応じた走行動力を発生することができる。
 補機に含まれる電装品には、上記以外に、スピードセンサ、回転数センサ、電流センサなど各種センサも含まれる。また、潤滑及び冷却用のオイルを循環させるオイルポンプを電動式とした場合に、低電圧バッテリ43が、該オイルポンプへの電力供給に用いられてもよい。また、低電圧バッテリ43が、ABS用の油圧ユニット、電子制御ステアリングダンパ、電動ウインドシールド、ETC装置、オーディオ装置への電力供給に用いられてもよい。各種電装品の駆動電力とバッテリの出力電力が一致するように、低電圧バッテリが選択されてもよい。エンジンを搭載した自動二輪車にも電装品の電源となるバッテリが装備されるが、低電圧バッテリ43を従前のエンジン車に装備されていたバッテリと同じ電圧を用いると、電動式自動二輪車とエンジン搭載の自動二輪車とで電装品を共通化することができるので有用である。
 ここまで説明した電装品のうち、DCDCコンバータ45はバッテリケース80の内部に収容される。一方、インバータ20は、バッテリケース80とは別のインバータケース19に収容され、電気モータ5は、バッテリケース80とは別のモータケース18に収容される。低電圧バッテリ43もバッテリケース80の外に配置される。このため、高圧配線31の一部、第1コンバータ配線46の全部及び第2コンバータ配線47の一部がバッテリケース80内に収容される。
 ここで、第1コンバータ配線46は、DCDCコンバータ45を高電圧バッテリユニット60に接続する配線体を構成し、第2コンバータ配線47は、DCDCコンバータ45を低電圧バッテリ43に接続する配線体を構成している。低電圧バッテリ43を充電するとき、第2コンバータ配線47には、DCDCコンバータ45による降圧変換後の低圧電流が流れる一方、第1コンバータ配線46には、当該降圧変換前の高圧電流が流れる。
 本実施形態では、DCDCコンバータ45が、高電圧バッテリユニット60と共にバッテリケース80に収容されているので、第1コンバータ配線46の全部をバッテリケース80に収容することができる。このため、高圧電流が流れる第1コンバータ配線46を短くすることができる。そして、バッテリケース80は絶縁性を有しているので、第1コンバータ配線46をユーザから電気的にも機械的にも隔離することができる。仮に第1コンバータ配線46が相対的に長くなり第2コンバータ配線47が相対的に短くなると、高電圧バッテリユニット60を低電圧バッテリ43に接続する配線体全体に要するコストが増大する。また、第1コンバータ配線46がバッテリケース80外に露出すれば、第1コンバータ配線46が当該配線をユーザから隔離するための構造を有していなくてはならず、必要に応じて車体に第1コンバータ配線46をユーザから隔離するための構造を設けなくてはならず、その分製造コストが増大する。
 本実施形態のように、第1コンバータ配線46をバッテリケース80に収容してユーザから隔離すると、低電圧バッテリ43を高電圧バッテリユニット60から離反させても、第2コンバータ配線47が相対的に長くなるだけであるので、製造コストの増大を抑えることができる。すると、製造コストに照らして低電圧バッテリ43を高電圧バッテリユニット60に近くに配置する必要性がなくなり、低電圧バッテリ43の配置自由度が向上する。前述したとおり、鞍乗型乗物、特に自動二輪車は、一般的な四輪車等の車両に比べて車体が小型であり、そのため機器を搭載するスペースも限られている。このため、低電圧バッテリ43の配置自由度の向上が可能であることは、鞍乗型乗物、特に自動二輪車にとって非常に有益である。
 また、高圧電流が流れる第1コンバータ配線46が絶縁性を有するバッテリケース80に収容されるので、第1コンバータ配線46からの漏電がバッテリケース80外に影響が及ぶのを防止することができる。第1コンバータ配線46上には、当該第1コンバータ配線46を開閉するコンバータ用リレー48が設けられ、このコンバータ用リレー48もバッテリケース80内に収容される。よって、コンバータ用リレー48において漏電が生じても、バッテリケース80外に影響が及ぶのを防止することができる。DCDCコンバータ45と共にコンバータ用リレー48をバッテリケース80内に配置していれば、DCDCコンバータ45が高電圧バッテリユニット60の近傍に配置されるため、コンバータ用リレー48も高電圧バッテリユニット60の近傍に配置することができる。
 なお、充電コネクタ49をバッテリケース80に内蔵し又はバッテリケース80の外面に取り付けると、充電配線50の全部をバッテリケース80に収容することができる。すると、充電配線50をユーザから機械的にも電気的にも隔離することができるので有益である。また、インバータケース19はバッテリケース80に近接しているので、インバータ20をバッテリケース80の外に配置していても、高圧配線31のうちバッテリケース80外に配置された部分を極力短くすることができる。そして、高圧配線31上には当該高圧配線31を開閉するインバータ用リレー33が設けられ、充電配線50上には当該充電配線50を開閉する充電用リレー51が設けられている。これらリレー33,51も、バッテリケース80内に収容される。このように、高圧電流が流れる配線上のリレー33,48,51が全てバッテリケース80内に収容されるので、高圧電流の漏電がバッテリケース80外に影響を及ぶのを好適に防止することができる。
 図1に戻り、本実施形態に係るバッテリケース80は、前後方向においてステアリングシャフト7とシート9との間に配置され、ロアフレーム部13bの上に載せ置かれ、左右のメインフレーム12の間に挟まれている。
 バッテリケース80は、バッテリケース80の上部を開閉する上蓋83を有している。上蓋83は、通常はボルト等で強固にバッテリケース80の本体部分に取り付けられ、それによりバッテリケース80の内部空間は密閉される。これにより、ユーザをバッテリケース80内に収容された電気部品から機械的にも電気的にも隔離することができる。ただし、上蓋83を取り外せば、メンテナンス作業員がバッテリケース80内にアクセス可能になり、バッテリケース80内の電気部品を容易にメンテナンス可能にもなっている。
 バッテリケース80の前面は、上方に向かうにつれて段階的に後にオフセットしている。よって、メインフレーム12よりも上に配置される部分がハンドル8と干渉するのを防ぐことができる。同時にメインフレーム12よりも下に配置される部分が、前輪2の後のデッドスペースを埋めるように前方に大型化し、バッテリ容量の拡大に貢献する。
 本実施形態では、DCDCコンバータ45は、バッテリケース80の前上部に収容されている。バッテリケース80の前壁は、DCDCコンバータ45を前から覆うコンバータカバー部80aを含み、吸気ダクト21は、このコンバータカバー部80aに接続されている。これにより、吸気ダクト21からバッテリケース80内に流入するエアを、まず、DCDCコンバータ45に吹き付けることができる。DCDCコンバータ45は、動作中の発熱量が大きい部品である。このようなDCDCコンバータ45に、エアをバッテリケース80への流入初期段階で吹き付けることで、DCDCコンバータ45を好適に空冷することができるし、ひいてはバッテリケース80の内部全体の温度が上昇するのを抑制することができる。
 そして、低電圧バッテリ43は、バッテリケース80の外に配置されている。このため、バッテリケース80内に収納される高電圧バッテリユニット60(モジュール筐体61又はバッテリセル)を増やすことができる。低電圧バッテリ43はこのヘッドパイプ11とシート9との間とは異なる位置に配置されており、それにより、より多くのバッテリセルをヘッドパイプ11とシート9との間に配置することができる。特に、本実施形態では、後述のとおり、低電圧バッテリ43がシート9下に配置されており、バッテリケース80と離れて配置されている。このため、低電圧バッテリ43が高電圧バッテリユニット60の動作時発熱の影響を受けるのを抑えることができる。また、空冷用の排気ダクト22がバッテリケース80に接続されているところ、低電圧バッテリ43をこの排気ダクト22からも離して配置することができる。このため、低電圧バッテリ43が排気ダクト22を流れる熱気の影響を受けるのを抑えることができる。
 また、低電圧バッテリ43は、バッテリケース80の外に配置され且つ乗物の本体(車体)に着脱可能に取り付けられる。本実施形態では、低電圧バッテリ43が、同乗者用シート9bの下に形成されたバッテリ収容空間101に収容されている。電動二輪車1には、シートフレーム16の側部及び上部を覆うようにして、シートサイドカバー102が設けられている。運転者用シート9aは、シートサイドカバー102の前上部に装着され、同乗者用シート9bは、シートサイドカバー102の後上部に着脱可能に装着される。なお、本実施形態では、運転者用シート9aと同乗者用シート9bとを別個の部品で構成する場合を例示しているが、単一の部品で構成してもよい。バッテリ収容空間101は、シートサイドカバー102の後部に形成され、同乗者用シート9bにより開閉される。
 図3は、図1に示す電動二輪車1から同乗者用シート9bを取り外した状態にして示す電動二輪車1の平面図である。図3に示すように、シートサイドカバー102の後上部には、上に開放された開口103が設けられており、ユーザは、この開口103を介してバッテリ収容空間101にアクセス可能である。低電圧バッテリ43は、開口103と平面視で重なるように配置されている。このため、同乗者用シート9bが取り外されると、ユーザは、開口103を介して低電圧バッテリ43を容易に視認することができ、また、開口103を介して低電圧バッテリ43に容易にアクセスすることができる。
 低電圧バッテリ43は、シートフレーム16及びシートサイドカバー102に対して着脱可能に取り付けられている。このため、ユーザは、同乗者用シート9bを取り外し、低電圧バッテリ43に接続された配線を取り外せば、低電圧バッテリ43のメンテナンス作業及び交換作業を簡単に行うことができる。このように、低電圧バッテリ43を容易に交換することができるので、低電圧バッテリ43が劣化したときに容易に対処可能になる。逆に言えば、低電圧バッテリ43には比較的劣化しやすい鉛蓄電池を適用することができ、製造コストを抑えることができる。また、バッテリ収容空間101は左右一対の車体フレーム(例えば、シートフレーム16)の間に形成されている。低電圧バッテリ43はこのようなバッテリ収容空間101に収容されており左右一対の車体フレーム(例えば、シートフレーム16)の間に配置されている。これにより、低電圧バッテリ43とDCDCコンバータ45とを接続する配線47を左右の車体フレーム(例えば、シートフレーム16)の内側に配置することができ、車体が転倒したとしても当該配線47が断線するのを防ぐことができる。
 特に、本実施形態では、低電圧バッテリ43を高電圧バッテリユニット60の電力で充電することができるので、低電圧バッテリ43の容量を小さくすることができる。このため、低電圧バッテリ43の製造コストを更に抑えることができる。また、前述したように低電圧バッテリ43の配置自由度が向上することと、低電圧バッテリ43を小型化可能であることとが相俟って、同乗者用シート9bの下に存在する小さいスペースを活用して低電圧バッテリ43を収容することが可能になる。
 なお、鉛蓄電池は暗電流を生じやすく、車両を使用しない期間が長期に亘るとバッテリが上がってしまう。本実施形態によれば、低電圧バッテリ43を容易に取り外すことができる。このため、ユーザは、車両を使用しない期間が長期に亘りそうであると判断したときに、ユーザは低電圧バッテリ43を車両から取り外して保管すれば、低電圧バッテリ43の無用な放電を防ぐことができる。なお、低電圧バッテリ43には、鉛蓄電池のほか、キャパシタ等、他の電池を適用してもよい。
 なお、同乗者用シート9bがシートサイドカバー102に装着されると、バッテリ収容空間101はロック機構104により施錠される。シートサイドカバー102に設けられたシリンダ錠105に車両のメインメカニカルキーを差し込んでロック機構104の施錠を解除しなければ、同乗者用シート9bを再び取り外すことができない。このように、バッテリ収容空間101が施錠可能であるので、低電圧バッテリ43が不所望に取り外されるのを防止することができる。
 図2に戻り、低電圧バッテリ43は、2つの強電系統を介してECU57と接続されている。すなわち、低電圧バッテリ43は、第1電力線94を介して低電圧バッテリ43と接続されている。第1電力線94からは第1電力線94とは別の第2電力線95が分岐し、第2電力線95は、第1電力線94に再び接続される。結果、ECU57は、第2電力線95を介しても低電圧バッテリ43と接続されている。第1電力線94は、第2電力線95と接続される2つの接続点を有する。
 本実施形態では、インバータコントローラ59が第2電力線95に接続されており、インバータコントローラ59は、第2電力線95を介して低電圧バッテリ43から給電を受けることができる。BMS58はECU57に接続され、ECU57を介して低電圧バッテリ43から給電を受けることができる。ファン55はBMS58と接続されており、ECU57及びBMS58を介して低電圧バッテリ43から給電を受けることができる。表示器91、灯火器92及び警報器93は、ECU57に接続されており、ECU57を介して低電圧バッテリ43からの給電を受けることができる。このように本実施形態においては、ECU57への給電が停止すると、BMS58、ファン55、表示器91、灯火器92及び警報器93への給電も停止する構成になっている。なお、制御器同士の間、制御器と制御器以外の補機との間の接続は、どのような手段を用いていてもよく、例えば車載LANの一規格であるCAN(Controller Area Network)を用いることができる。
 低電圧バッテリ43を取り外しておけば、ECU57及びインバータコントローラ59への電力供給が断たれるので、高電圧バッテリユニット60にどれだけ電力が蓄えられていても、電気モータ5は作動しない。このため、ユーザが低電圧バッテリ43を車両から取り外しておけば、車両を盗難されにくくなって有益である。
 次に、強電系統上に設けられたリレー及びスイッチについて説明する。図2では、このようなリレー及びスイッチの一例として、充電配線50を開閉する前記充電用リレー51、高圧配線31を開閉する前記インバータ用リレー36、第1電力線94を開閉するメインリレー96、第1コンバータ配線46を開閉する前記コンバータ用リレー48、第2電力線95を開閉するメインスイッチ97を例示している。以降では、各リレー又はスイッチの状態のうち、対応する配線を閉としている状態を「接続状態」と称し、対応する配線を開としている状態を「非接続状態」と称する。
 メインリレー96は、第1電力線94上における2つの接続点間に設けられており、ECU57に接続されている。ECU57は、メインリレー96を制御し、メインリレー96を接続状態から非接続状態へと切り替えることができる。これにより、ECU自身の自発的な判断の下、低電圧バッテリ43からECU57への第1電力線94を介した給電を停止することができる。
 メインスイッチ97は、第2電力線95上に設けられており、メインキー98と機械的に接続されている。メインキー98は、車体の施錠に用いられる。メインキー98は、例えばシリンダ錠及びこれに合致するメカニカルキーのように、機械的に構成されるものでもよいし、いわゆるスマートキーのように電気制御的な構成を併せ持ったものでもよい。いずれにせよメインキー98は、運転者が車体の施錠及びその解除をするため、運転者により手動操作される。運転者がメインキー98をオン操作すると、メインスイッチ97が接続状態になる。メインスイッチ97が接続状態になると、第2電力線95を介して低電圧バッテリ43の電力をECU57及びインバータコントローラ59に供給することができる。運転者がメインキーをオフ操作すると、メインスイッチ97が非接続状態になる。これにより、低電圧バッテリ43からECU57への第2電力線95を介した給電を停止することができる。
 このように、本実施形態では、ECU57に電力を供給するための系統が2つ用意されているので、ECU57への電力供給を好適に行うことができ、また、ECU57への電力供給の態様に多様性を持たせることができる。例えば、メインスイッチ97がオフ操作された後、ECUはメインリレー96を接続状態に維持することができる。これにより、メインスイッチ97が非接続状態になっても、ECU57は第1電力線94を介して低電圧バッテリ43から給電を受けて動作し続けることができる。その間、ECU57が所要の終了処理を実行し、終了処理の実行後にメインリレー96を非接続状態にし、自身への電力供給を遮断することができる。
 そして、充電用リレー51は、BMS58に接続されている。BMS58は、充電コネクタ49に外部電源が接続されている旨検出すると、充電用リレー51を接続状態にし、外部電源から高電圧バッテリユニット60への給電を可能にする。コンバータ用リレー48は、ECU57に接続されている。BMS58は、充電コネクタ49に外部電源が接続されている旨検出すると、その旨ECU57に伝送する。ECU57は、BMS58からの入力に応じてコンバータ用リレー48を接続状態にすると共にDCDCコンバータ45を制御し、それにより外部電源又は高電圧バッテリユニット60から低電圧バッテリ43への給電を可能にする。
 インバータ用リレー36は、キルスイッチ99と機械的に又は電気的に接続されている。キルスイッチ99は、運転者によって手動操作され、また、ECU57によって自動的に操作される。キルスイッチ99が手動で又は自動的に操作されると、インバータ用リレー36が非接続状態になり、高電圧バッテリユニット60からインバータ20への給電、ひいては電気モータ5への給電が停止する。
 電動二輪車1は、高電圧バッテリユニット60における漏電、高電圧バッテリユニット60からインバータ20に電力を供給するための系統である高圧配線における漏電を検知する漏電検知器53を備えている。漏電検知器53はBMS58と接続され、漏電検知器53により何らかの異常が検知されると、BMS58はその旨ECU57に伝送する。
 漏電検知器53により異常が検知されると、ECU57は、コンバータ用リレー48を非接続状態にする。これにより、高電圧バッテリユニット60から低電圧バッテリ43への電力の供給を遮断し、低電圧バッテリ43を高電圧バッテリユニット60から電気的に独立させる。そして、ECU57は、第1電力線94又は第2電力線95を介して低電圧バッテリ43からの電力の供給を受けて動作する。このように、万が一高電圧バッテリユニット60から電気モータ5に電力を供給するための系統に異常が生じたとしても、高電圧バッテリユニット60から低電圧バッテリ43への電力供給を遮断して低電圧バッテリ43を高電圧バッテリユニット60から独立させるので、低電圧バッテリ43に当該異常の影響が及ぶのを避けることができる。このように電力供給を遮断した状態であっても、ECU57は低電圧バッテリ43からの給電を受けて動作し続けることができる。
 このため、当該系統に異常が生じたとしても、ECU57を用いた制御を継続して行うことができる。例えば、表示器91や警報器93を作動させ、ユーザに異常の発生を認知させることができる。その他、高電圧バッテリユニット60から電気モータ5への電力供給を遮断した状態で、ハンドルロックを解除した状態を維持したり、回生制動を解除することもでき、これにより手押し又は牽引による車両移動を容易に行わせることができる。
 このように漏電検知器53により異常が検知されたときに、ECU57は、キルスイッチ99を操作してインバータ用リレー36を非接続状態としてもよい。これにより、高電圧バッテリユニット60から電気モータ5への電力の供給を遮断することができる。また、BMS58が、充電用リレー51を非接続状態にしてもよい。これにより、高電圧バッテリユニット60における漏電の影響が、ユーザへのアクセス性が一定程度確保されている充電コネクタ49に及ぶのを抑制することができる。
 キルスイッチ99が運転者により手動で操作された場合、これに応じてインバータ用リレー36が非接続状態になり、高電圧バッテリユニット60から電気モータ5への給電が遮断される。このときにも、ECU57は、低電圧バッテリ43から給電を受けて動作し続けることができ、補機の誤作動又は誤停止を防ぐことができる。なお、このとき、ECU57はコンバータ用リレー48を非接続状態にし、低電圧バッテリ43を高電圧バッテリユニット60から電気的に独立させてもよい。その後適宜、ECU57は、低電圧バッテリ43からECU57への給電を遮断することができる。キルスイッチ99の操作(オフ指令又はキル指令)が走行中になされたときには、高電圧バッテリユニット60から電気モータ5への給電を遮断しても、ECU57が車両の停止を検出するまで低電圧バッテリ43から給電を受けて動作し続ける状況を維持し、車両の停止を検出すると低電圧バッテリ43からECU57自身への電力供給を遮断するようにしてもよい。これにより、車両が走行している間はオフ指令後であっても補機を動作させ続けることができるので有益である。なお、ECU57は、車輪(前輪2又は後輪3のうちいずれか又は両方)に取り付けられた速度センサ71と接続されており、速度センサ71からの入力に応じて車両が停止したか否かを検知するように構成されていてもよい。この構成によれば、電気モータ5の回転数に応じて同様の検知を行う場合と比べ、車両の停止をより確実に検知することができる。
 ECU57及びBMS58は、バッテリケース80の外に配置されている。このため、低電圧バッテリ43をECU57に接続する系統、ECU57をBMS58に接続する系統をバッテリケース80外でのみ取り回すことができ、配線の取回しを簡素にすることができる。また、低電圧バッテリ43をECU57に接続する系統がバッテリケース80外に配置されるので、メインスイッチ96及びメインリレー96もバッテリケース80外に配置される。ECU57及びメインキー98がバッテリケース80外に配置されているので、メインスイッチ96とメインキー98との間、ECU57とメインリレー97との間の配線の取回しも簡素になる。
 図4は、本発明の第2実施形態に係る鞍乗型電動車両の一例として示す電動二輪車201の側面図である。本実施形態では、DCDCコンバータ245の配置が上記実施形態と相違する。以下、上記実施形態との相違点を中心にして第2実施形態について説明する。
 図4に示すように、DCDCコンバータ245が、バッテリケース280内において上方空間に配置されている。具体的には、DCDCコンバータ245は、高電圧バッテリユニット260の上面後部に設けられている。一方、低電圧バッテリ43も、同乗者用シート9bの下に配置されている。同乗者用シート9bは、上に傾斜しながら後方に延びるシートフレーム16の後部に設けられており、同乗者用シート9bも比較的上方に配置されている。しかも、本実施形態では、同乗者用シート9bと運転者用シート9aとの間に段差があり、同乗者用シート9bが運転者用シート9aに対して高位に配置されている。このため、バッテリ収容空間102を高さ方向に大きくすることができるし、高位に配置することも可能になっている。このように、DCDCコンバータ245も低電圧バッテリ43も上方に配置されていると、第2コンバータ配線の長さを短くすることができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する好適な態様を当業者に教示する目的で提供されたものである。本発明の趣旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 例えば、バッテリケース80は必ずしも絶縁性を有した材料から製作されていなくてもよく、アルミニウム合金等の金属材料から製作されてもよい。アルミニウム合金を適用した場合、上記同様にして高圧電線を短くすることができると共に、必要な強度を得ながら肉厚を薄くして軽量化を図ることができる。また、DCDCコンバータ45は、バッテリケース80とは別のケースに覆われていてもよい。この場合、当該ケースは、外方空間に対して絶縁されていることが好ましく、それにより、DCDCコンバータをユーザから機械的にも電気的にも隔離することができる。
 本発明の実施形態として電動二輪車を例示したが、電気モータを駆動するための高電圧バッテリと補機を駆動するための低電圧バッテリとを備える鞍乗型電動乗物であれば、本発明を適用可能である。例えば、四輪バギー車(ATV:All Terrain Vehicle)や自動三輪車や小型滑走艇など、その他の騎乗型乗物にも本発明を適用可能である。また、電動式乗物として、内燃機関を備えず電気モータにより発生された動力のみによって走行する車両を例示したが、電気モータに加えて内燃機関を備えたいわゆるハイブリッド式乗物にも本発明を適用可能である。
 本発明は、バッテリ同士を接続するための電力線のうち高圧電線をなるべく短くすることができるとの作用効果を奏し、電動二輪車など鞍乗型電動乗物に適用すると有益である。

Claims (8)

  1.  乗物の駆動源である電気モータと、
     前記電気モータに供給される電力を蓄える高電圧バッテリと、
     前記乗物の補機に供給される電力を蓄える低電圧バッテリと、
     前記高電圧バッテリから前記低電圧バッテリへ供給される電力の電圧を前記低電圧バッテリの充電電圧に変換するコンバータと、
     前記高電圧バッテリを収容するケースと、を備え、
     前記低電圧バッテリが前記ケース外に配設され、前記コンバータが前記ケース内に収容される、鞍乗型電動乗物。
  2.  前記低電圧バッテリが、前記乗物の本体に着脱可能に取り付けられている、請求項1に記載の鞍乗型電動乗物。
  3.  乗物を制御するための制御ユニットと、
     前記制御ユニットを前記低電圧バッテリに接続する第1電力線と、
     前記第1電力線に設けられ、前記制御ユニットを前記低電圧バッテリに接続させる接続状態と前記制御ユニットを前記低電圧バッテリから遮断する非接続状態とを切り替えるリレーと、を備え、
     前記補機は、前記制御ユニットを含み、前記制御ユニットは、前記第1電力線を介して前記低電圧バッテリからの電力供給を受けて動作し、
     前記リレーの状態が、前記制御ユニットからの指令に応じて切り替えられる、請求項1又は2に記載の鞍乗型電動乗物。
  4.  前記第1電力線とは別に、前記制御ユニットを前記低電圧バッテリに接続する第2電力線と、
     前記第2電力線に設けられ、前記制御ユニットを前記低電圧バッテリに接続する接続状態と前記制御ユニットを前記低電圧バッテリから遮断する非接続状態とを切り替えるスイッチと、を備え、
     前記スイッチの状態が、運転者の操作に応じて切り替えられる、請求項3に記載の鞍乗型電動乗物。
  5.  前記高電圧バッテリから前記電気モータに電力を供給するための系統に異常が生じているか否かを検知する異常検知器を備え、
     前記補機に、前記高電圧バッテリ又は前記電気モータを制御する制御ユニットが含まれ、
     前記異常検知器が異常を検知すると、前記制御ユニットは、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断し、前記低電圧バッテリからの電力の供給を受けて前記制御ユニットが動作する、請求項1乃至4のいずれか1項に記載の鞍乗型電動乗物。
  6.  前記補機に、前記高電圧バッテリ又は前記電気モータを制御する制御ユニットが含まれ、前記制御ユニットは、前記低電圧バッテリからの電力の供給を受けて動作し、
     前記制御ユニットが、オフ指令を受けると、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断してから、前記低電圧バッテリから前記制御ユニットへの電力供給を遮断する、請求項1乃至5のいずれか1項に記載の鞍乗型電動乗物。
  7.  前記制御ユニットは、走行中に前記オフ指令を受けると、前記高電圧バッテリから前記電気モータ又は前記低電圧バッテリへの電力供給を遮断し且つ車両の停止を検知してから、前記低電圧バッテリから前記制御ユニットへの電力供給を遮断する、請求項6に記載の鞍乗型電動乗物。
  8.  前記制御ユニットは、車輪に取り付けた速度センサからの入力に応じて前記車両が停止したか否かを検知する、請求項7に記載の鞍乗型電動乗物。
PCT/JP2012/001156 2011-10-28 2012-02-21 鞍乗型電動乗物 WO2013061484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12844113.6A EP2778032B1 (en) 2011-10-28 2012-02-21 Straddle electric vehicle
JP2013540611A JP5632976B2 (ja) 2011-10-28 2012-02-21 鞍乗型電動乗物
US14/354,555 US9656551B2 (en) 2011-10-28 2012-02-21 Straddle electric vehicle
CN201280051706.XA CN103874625B (zh) 2011-10-28 2012-02-21 跨乘式电动交通工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/006062 2011-10-28
PCT/JP2011/006062 WO2013061387A1 (ja) 2011-10-28 2011-10-28 鞍乗型電動車両

Publications (1)

Publication Number Publication Date
WO2013061484A1 true WO2013061484A1 (ja) 2013-05-02

Family

ID=48167255

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/006062 WO2013061387A1 (ja) 2011-10-28 2011-10-28 鞍乗型電動車両
PCT/JP2012/001156 WO2013061484A1 (ja) 2011-10-28 2012-02-21 鞍乗型電動乗物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006062 WO2013061387A1 (ja) 2011-10-28 2011-10-28 鞍乗型電動車両

Country Status (5)

Country Link
US (2) US9463695B2 (ja)
EP (2) EP2778031B1 (ja)
JP (1) JP5853025B2 (ja)
CN (1) CN103874625B (ja)
WO (2) WO2013061387A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088285A2 (en) 2015-04-28 2016-11-02 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
EP3088288A2 (en) 2015-04-28 2016-11-02 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
EP3147192A2 (en) 2015-09-28 2017-03-29 Yamaha Hatsudoki Kabushiki Kaisha Straddle-type electric vehicle
JPWO2018051789A1 (ja) * 2016-09-13 2019-06-24 本田技研工業株式会社 自動二輪車の車体フレーム
JP2021084570A (ja) * 2019-11-29 2021-06-03 スズキ株式会社 鞍乗型車両

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011324B2 (en) * 2012-12-25 2018-07-03 Kawasaki Jukogyo Kabushiki Kaisha Electric vehicle
US9579983B2 (en) * 2012-12-25 2017-02-28 Kawasaki Jukogyo Kabushiki Kaisha Electric vehicle
JP5961283B2 (ja) * 2012-12-25 2016-08-02 川崎重工業株式会社 電動車両
JP6399741B2 (ja) * 2013-11-06 2018-10-03 ヤマハ発動機株式会社 鞍乗型電動車両
JP6284746B2 (ja) 2013-11-06 2018-02-28 ヤマハ発動機株式会社 鞍乗型電動車両
JP6245946B2 (ja) 2013-11-06 2017-12-13 ヤマハ発動機株式会社 バッテリ及びそれを備えた鞍乗型電動車両
JP2015089756A (ja) * 2013-11-06 2015-05-11 ヤマハ発動機株式会社 鞍乗型電動車両
JP6245947B2 (ja) 2013-11-06 2017-12-13 ヤマハ発動機株式会社 車両及びバッテリパック
JPWO2015068753A1 (ja) 2013-11-06 2017-03-09 ヤマハ発動機株式会社 鞍乗型電動車両
JP6411053B2 (ja) * 2014-03-31 2018-10-24 矢崎総業株式会社 接続構造
DE102015102410A1 (de) * 2015-02-20 2016-08-25 Vossloh Kiepe Gmbh Batterieanordnung für ein Fahrzeug
US20160303992A1 (en) * 2015-04-14 2016-10-20 Ford Global Technologies, Llc Electrified Vehicle Predictive Low-Voltage Battery Alert
JP6157536B2 (ja) * 2015-04-30 2017-07-05 ヤマハ発動機株式会社 鞍乗型電動車両、及び鞍乗型電動車両の充電システム
US20160352120A1 (en) * 2015-05-26 2016-12-01 Ford Global Technologies, Llc Electric vehicle high-voltage system alert
CN105539652A (zh) * 2015-12-02 2016-05-04 新安乃达驱动技术(上海)有限公司 电动自行车用充电控制集成装置
CN107284580B (zh) * 2016-03-31 2020-01-14 本田技研工业株式会社 鞍乘型车辆
JP6463318B2 (ja) * 2016-03-31 2019-01-30 本田技研工業株式会社 鞍乗り型車両
WO2018033880A2 (en) 2016-08-17 2018-02-22 Shape Corp. Battery support and protection structure for a vehicle
JP6515073B2 (ja) * 2016-08-24 2019-05-15 本田技研工業株式会社 電力機器ユニットのケース構造
JP6433031B2 (ja) * 2016-09-29 2018-12-05 本田技研工業株式会社 鞍乗り型電動車両の燃料電池スタック固定構造
EP3566253B1 (en) 2017-01-04 2022-12-28 Shape Corp. Battery support structure for a vehicle
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
JP6554151B2 (ja) * 2017-08-31 2019-07-31 本田技研工業株式会社 車両の電源システム
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
KR102417897B1 (ko) * 2017-09-07 2022-07-07 현대자동차주식회사 친환경 차량 충전 제어 장치, 그를 포함한 시스템 및 그 방법
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
WO2019064481A1 (ja) * 2017-09-29 2019-04-04 本田技研工業株式会社 鞍乗り型電動車両
DE112018005556T5 (de) 2017-10-04 2020-06-25 Shape Corp. Batterieträger-bodenbaugruppe für elektrofahrzeuge
JP6670814B2 (ja) * 2017-11-21 2020-03-25 本田技研工業株式会社 鞍乗り型車両
US11485213B2 (en) * 2018-02-24 2022-11-01 Ernest Paul Eich, IV Straddle-ridden vehicle frame stiffener
WO2019169080A1 (en) 2018-03-01 2019-09-06 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
US11220307B2 (en) * 2018-07-27 2022-01-11 Harley-Davidson Motor Company Group, LLC Drive assembly for an electric vehicle
US11390350B2 (en) * 2018-08-07 2022-07-19 Harley-Davidson Motor Company Group, LLC Seat caddy for charging cable
WO2020226560A1 (en) * 2019-05-08 2020-11-12 Cake 0 emission AB Power station
JP2021020645A (ja) * 2019-07-30 2021-02-18 ヤマハ発動機株式会社 鞍乗型車両
JP7110167B2 (ja) * 2019-10-21 2022-08-01 ヤマハ発動機株式会社 電動車両用バッテリ及び電動車両
US11973205B2 (en) 2021-09-16 2024-04-30 Lunar Energy, Inc. Cell temperature regulation
DE102021211759A1 (de) * 2021-10-19 2023-04-20 Zf Friedrichshafen Ag Batterie-Terminal für Zweiräder mit elektrischer Antriebseinheit
WO2023162024A1 (ja) * 2022-02-22 2023-08-31 本田技研工業株式会社 鞍乗り型車両
DE102023004562A1 (de) 2023-11-10 2024-09-12 Mercedes-Benz Group AG Elektrisches System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228628A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd 電動車両
JP2011131701A (ja) 2009-12-24 2011-07-07 Honda Motor Co Ltd 電動車両用電力供給装置
JP2011136626A (ja) * 2009-12-28 2011-07-14 Honda Motor Co Ltd 鞍乗型電動車両

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3231067B2 (ja) * 1991-03-05 2001-11-19 本田技研工業株式会社 電動モータ付き車両
EP0539269B1 (en) * 1991-10-19 1997-03-12 Honda Giken Kogyo Kabushiki Kaisha Battery unit in an electric motor vehicle
JPH06233408A (ja) * 1993-02-02 1994-08-19 Honda Motor Co Ltd 電動車用モータ給電装置
JPH1070842A (ja) 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd 電源装置
JPH11178115A (ja) * 1997-12-10 1999-07-02 Nissan Motor Co Ltd 電気自動車のバッテリ冷却構造および冷却方法
JP2001114157A (ja) * 1999-10-19 2001-04-24 Yamaha Motor Co Ltd 電動車両用バッテリアッセンブリ構造
CN1278484C (zh) * 2002-10-15 2006-10-04 雅马哈发动机株式会社 电动车辆及电动车辆的控制图形数据选取方法
JP2004194361A (ja) * 2002-10-15 2004-07-08 Yamaha Motor Co Ltd 電動車両及び電動車両のマップデータ採取方法
JP3867060B2 (ja) * 2003-03-28 2007-01-10 三菱電機株式会社 車両用電源システム
JP2004345451A (ja) 2003-05-21 2004-12-09 Honda Motor Co Ltd 高圧電装部品の冷却構造
JP4790975B2 (ja) * 2003-09-12 2011-10-12 株式会社東京アールアンドデー バッテリ冷却システムおよびそれを備えた電源装置ならびに電動車両
JP4141453B2 (ja) * 2005-03-16 2008-08-27 株式会社シマノ 自転車用電源装置
JP4674722B2 (ja) 2006-03-17 2011-04-20 国立大学法人静岡大学 電動車両の電源供給装置
JP4845571B2 (ja) 2006-04-05 2011-12-28 本田技研工業株式会社 車両用電源装置
TWI338642B (en) * 2008-02-07 2011-03-11 Honda Motor Co Ltd Vehicular power supply system
JP5468228B2 (ja) 2008-09-30 2014-04-09 本田技研工業株式会社 鞍乗型電動車両
JP2010100124A (ja) * 2008-10-22 2010-05-06 Yamaha Motor Co Ltd ハイブリッド式鞍乗型車両
JP5040905B2 (ja) * 2008-12-24 2012-10-03 トヨタ自動車株式会社 蓄電装置の温度調節構造
EP2412622B1 (en) * 2009-03-27 2013-09-11 Honda Motor Co., Ltd. Electric straddled vehicle
JP5778885B2 (ja) * 2009-03-27 2015-09-16 本田技研工業株式会社 電動二輪車のバッテリ装置
CN102481963B (zh) * 2009-08-31 2014-04-16 本田技研工业株式会社 电池充电器及其连接结构
KR101482367B1 (ko) 2010-02-18 2015-01-13 혼다 기켄 고교 가부시키가이샤 스쿠터형 전동 차량
JP5354092B2 (ja) * 2010-04-06 2013-11-27 トヨタ自動車株式会社 走行装置、その制御方法及び制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228628A (ja) * 2009-03-27 2010-10-14 Honda Motor Co Ltd 電動車両
JP2011131701A (ja) 2009-12-24 2011-07-07 Honda Motor Co Ltd 電動車両用電力供給装置
JP2011136626A (ja) * 2009-12-28 2011-07-14 Honda Motor Co Ltd 鞍乗型電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778032A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088285A2 (en) 2015-04-28 2016-11-02 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
EP3088288A2 (en) 2015-04-28 2016-11-02 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
US9669898B2 (en) 2015-04-28 2017-06-06 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
EP3147192A2 (en) 2015-09-28 2017-03-29 Yamaha Hatsudoki Kabushiki Kaisha Straddle-type electric vehicle
US9950641B2 (en) 2015-09-28 2018-04-24 Yamaha Hatsudoki Kabushiki Kaisha Straddle-type electric vehicle
JPWO2018051789A1 (ja) * 2016-09-13 2019-06-24 本田技研工業株式会社 自動二輪車の車体フレーム
US11001331B2 (en) 2016-09-13 2021-05-11 Honda Motor Co., Ltd. Body frame for two-wheeled motor vehicle
JP2021084570A (ja) * 2019-11-29 2021-06-03 スズキ株式会社 鞍乗型車両
JP7367496B2 (ja) 2019-11-29 2023-10-24 スズキ株式会社 鞍乗型車両

Also Published As

Publication number Publication date
US9463695B2 (en) 2016-10-11
EP2778032A4 (en) 2015-08-26
JPWO2013061387A1 (ja) 2015-04-02
US20140292075A1 (en) 2014-10-02
EP2778032A1 (en) 2014-09-17
CN103874625A (zh) 2014-06-18
EP2778031A4 (en) 2015-08-19
US9656551B2 (en) 2017-05-23
EP2778032B1 (en) 2019-01-09
EP2778031A1 (en) 2014-09-17
WO2013061387A1 (ja) 2013-05-02
EP2778031B1 (en) 2019-01-09
JP5853025B2 (ja) 2016-02-09
CN103874625B (zh) 2016-03-16
US20140262568A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
WO2013061484A1 (ja) 鞍乗型電動乗物
JP6002233B2 (ja) 電動車両及びバッテリパック
US8833495B2 (en) Saddle-ride type electric vehicle
JP5513628B2 (ja) 電動式鞍乗り型車両
US7412309B2 (en) Electric vehicle
US9051024B2 (en) Electric vehicle with motor drive section
US8496084B2 (en) Throttle sensor mounting structure
WO2012043643A1 (ja) 電動二・三輪車両用スイングアーム装置
JP2012096596A (ja) 電動車両
JP2012131414A (ja) 電動車両
WO2012117641A1 (ja) 電動式移動体
JP5632976B2 (ja) 鞍乗型電動乗物
JP5492742B2 (ja) 鞍乗り型電動車両の冷却ダクト配索構造
WO2023127088A1 (ja) 鞍乗り型車両
JP7408594B2 (ja) 車両及び制御装置
WO2023127108A1 (ja) 鞍乗り型車両
WO2023162024A1 (ja) 鞍乗り型車両
WO2023127077A1 (ja) 鞍乗り型車両
WO2023127080A1 (ja) 鞍乗り型車両
WO2023127133A1 (ja) 鞍乗り型車両
WO2023127107A1 (ja) 鞍乗り型車両
WO2023127092A1 (ja) 鞍乗り型車両
WO2023161996A1 (ja) 鞍乗り型車両
WO2023127076A1 (ja) 鞍乗り型車両
WO2023127075A1 (ja) 鞍乗り型車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280051706.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012844113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14354555

Country of ref document: US