WO2013054793A1 - セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体 - Google Patents

セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体 Download PDF

Info

Publication number
WO2013054793A1
WO2013054793A1 PCT/JP2012/076140 JP2012076140W WO2013054793A1 WO 2013054793 A1 WO2013054793 A1 WO 2013054793A1 JP 2012076140 W JP2012076140 W JP 2012076140W WO 2013054793 A1 WO2013054793 A1 WO 2013054793A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic honeycomb
outer peripheral
honeycomb structure
ceramic
honeycomb body
Prior art date
Application number
PCT/JP2012/076140
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201280050065.6A priority Critical patent/CN103889929B/zh
Priority to JP2013538545A priority patent/JP6028735B2/ja
Priority to US14/350,925 priority patent/US9840444B2/en
Priority to EP12840385.4A priority patent/EP2767527B1/en
Publication of WO2013054793A1 publication Critical patent/WO2013054793A1/ja
Priority to US15/728,674 priority patent/US10377673B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a method for manufacturing a ceramic honeycomb structure and a ceramic honeycomb structure.
  • a catalytic converter for purifying exhaust gas In order to reduce harmful substances contained in the exhaust gas of internal combustion engines such as automobiles, a catalytic converter for purifying exhaust gas, a filter for collecting particulate matter (PM), and nitrogen oxides (NOx) A ceramic honeycomb structure is used as a catalyst carrier for reduction.
  • the ceramic honeycomb structure 1 includes a ceramic honeycomb body 10 having a large number of axially extending cells 14 formed by porous partition walls 13, and the ceramic. It consists of an outer peripheral wall 11 formed on the outer periphery of the honeycomb body 10, and the shape of the cross section perpendicular to the flow path direction is usually substantially circular or elliptical (see FIG. 1 (a)).
  • the ceramic honeycomb structure 1 is firmly held so as not to move during use by a holding member (not shown) formed of a metal mesh or ceramic mat or the like, and is placed in a metal storage container (not shown). It is stored. Therefore, the outer peripheral wall 11 needs to have an isostatic strength that can withstand a thermal shock in a state where the ceramic honeycomb structure 1 is held.
  • a ceramic honeycomb structure with NOx catalyst supported on partition walls is used.
  • the partition walls must have a high porosity of, for example, 50% or more.
  • Japanese Patent Laid-Open No. 05-269388 has a large number of cells extending in the axial direction formed by porous partition walls, a ceramic honeycomb body having grooves on the outer peripheral surface that are open to the outside and extend in the axial direction;
  • a ceramic honeycomb structure including an outer peripheral wall formed by filling the groove with a coating material is disclosed.
  • This ceramic honeycomb structure is a ceramic honeycomb having a groove on the outer peripheral surface obtained by producing a ceramic honeycomb fired body having an outer peripheral wall integrally formed by a known method and then grinding and removing cells on the outer peripheral portion.
  • the outer peripheral wall is formed by applying and drying a paste-like coating material made of ceramic particles and / or ceramic fibers and colloidal silica or colloidal alumina on the body so as to fill the grooves on the outer peripheral surface.
  • Japanese Patent Laid-Open No. 05-269388 describes that a ceramic honeycomb structure excellent in heat resistance and thermal shock can be obtained by reinforcing the outer peripheral surface by such a method.
  • Japanese Patent Application Laid-Open No. 2004-175654 has a ceramic honeycomb body having a large number of cells extending in the axial direction formed by porous partition walls and having grooves on the outer peripheral surface that are open to the outside and extend in the axial direction.
  • a ceramic honeycomb structure having an outer peripheral wall that fills the groove to form an outer surface, and has a stress release portion (gap) in at least a part of the outer peripheral wall or between the outer peripheral wall and the groove.
  • This ceramic honeycomb structure is obtained by manufacturing a ceramic honeycomb fired body with an outer peripheral wall integrally formed by a known method, and grinding and removing a part of the partition walls of the outer peripheral cell.
  • a coating material made of a ceramic aggregate and an inorganic binder is applied to the honeycomb body having grooves so that the grooves are almost filled, and moisture contained in the coating material is rapidly removed in a drying furnace heated to 70 ° C. or higher. Manufactured by drying.
  • the ceramic honeycomb structure described in Japanese Patent Application Laid-Open No. 2004-175654 has the stress release portion (a crack-like void in the outer peripheral wall opened on the outer surface, or a void formed between the ceramic honeycomb body and the outer peripheral wall. ),
  • the outer peripheral wall is easy to peel off from the ceramic honeycomb body, and in particular, when the method described in Japanese Patent Application Laid-Open No. 2004-175654 is applied to a ceramic honeycomb body including partition walls having a high porosity of 50% or more, for example, Sufficient isostatic strength cannot be obtained.
  • Japanese Patent Laid-Open No. 2006-255542 discloses a cell structure having a plurality of cells formed by porous partition walls, and ceramic particles having an average particle diameter of 20 to 50 ⁇ m disposed on the outer peripheral surface of the cell structure.
  • a ceramic honeycomb structure having an outer wall made of a coating material, and having a smaller porosity at a portion outside the central portion than a porosity at a central portion in the thickness direction of the outer wall is disclosed. It is described that there is little detachment of the ceramic particles, excellent durability and wear resistance, and wear damage of the print on the outer wall surface hardly occurs.
  • 2006-255542 is obtained by grinding and removing the outer peripheral portion of the sintered body of the honeycomb structure obtained by a known method, and applying a coating material to the outer peripheral surface. After forming the coating layer and drying or semi-drying the outer peripheral coating layer, a coating material for forming a dense layer mainly composed of colloidal ceramic such as colloidal silica or colloidal alumina is applied to the surface of the outer peripheral coating layer. Manufactured by.
  • the outer peripheral wall having a porosity gradient described in Japanese Patent Application Laid-Open No. 2006-255542 is excellent in abrasion damage resistance of printing on the outer wall surface.
  • a ceramic comprising a partition wall having a high porosity of 50% or more.
  • the partition walls are very fragile, so that the applied outer peripheral coat layer is easily peeled off from the outer peripheral surface of the ceramic honeycomb body, and there is a problem in the bondability between the outer peripheral wall and the ceramic honeycomb body.
  • JP 2003-284923 A out of the cells of the ceramic honeycomb body 51, the outermost peripheral cell located on the outermost periphery and at least one end of a predetermined number of cells located on the inner side thereof, and Disclosed is a ceramic honeycomb structure 50 in which an intermediate portion is sealed by an inner peripheral surface of an outer peripheral wall 52 and constitutes a shielding cell 54 through which fluid does not flow. It is described that due to the heat insulating effect of the shielding cell 54 formed by the outer peripheral wall 52, the temperature rise time from the start of operation can be shortened, and the catalytic activity of the supported catalyst can be increased in a short time. Japanese Patent Laid-Open No.
  • this ceramic honeycomb structure 50 is obtained by drying and firing a formed body having a honeycomb structure manufactured by extrusion molding so that the shrinkage rate at one end is different from that of the other.
  • a coating material such as ceramic cement
  • As the material of the outer peripheral wall 52 ceramics made of cordierite, ceramics made of cordierite and / or ceramic fibers and an amorphous oxide matrix (colloidal silica, colloidal alumina, etc.), etc. are mentioned. ing.
  • an object of the present invention is to solve the above-mentioned problems, and has sufficient isostatic strength even when formed from a high-porosity partition wall, and an outer peripheral wall formed of a coating material has an outer periphery of the honeycomb structure. It is an object of the present invention to provide a ceramic honeycomb structure that is difficult to peel from a part.
  • the present inventor when forming the outer peripheral wall in the ceramic honeycomb body, by applying a coating material after applying a colloidal metal oxide, from the high porosity partition wall The present inventors have found that sufficient isostatic strength can be obtained even with the formed ceramic honeycomb body, and have arrived at the present invention.
  • the method of the present invention includes a ceramic honeycomb body having a large number of cells extending in the axial direction, which is formed by a porous partition wall having a porosity of 50% or more, and an outer periphery formed on the outer periphery of the ceramic honeycomb body.
  • a method for producing a ceramic honeycomb structure comprising walls, A step of extruding a ceramic clay to form a molded body having a ceramic honeycomb structure; Ceramic having a groove extending in the axial direction on the outer peripheral surface by removing a part of the partition wall of the cell located on the outer peripheral portion by processing the outer peripheral portion of the molded body or the fired body after firing the molded body A step of obtaining a honeycomb body, and a colloidal metal oxide is applied to the outer peripheral surface of the ceramic honeycomb body, and after drying, a coating material containing a ceramic aggregate having an average particle diameter of 1 ⁇ m or more is further applied to form an outer peripheral wall It has the process to perform.
  • the colloidal metal oxide is preferably colloidal silica or colloidal alumina.
  • the coating amount of the colloidal metal oxide is preferably 2.0 ⁇ 10 ⁇ 3 to 150 ⁇ 10 ⁇ 3 g / cm 3 in terms of solid content per unit volume of the ceramic honeycomb body.
  • the average particle size of the colloidal metal oxide is preferably 5 to 100 nm.
  • the ceramic honeycomb structure of the present invention comprises a ceramic honeycomb body having a large number of cells extending in the axial direction formed by porous partition walls, and an outer peripheral wall formed on the outer peripheral surface of the ceramic honeycomb body,
  • the ceramic honeycomb body has a groove extending in the axial direction on the outer peripheral surface;
  • the outer peripheral wall is formed by filling a groove extending in the axial direction,
  • the porosity of the partition walls constituting the groove on the outer peripheral surface is smaller than the porosity of the partition walls in the central part of the ceramic honeycomb body.
  • the present invention it is possible to obtain a ceramic honeycomb structure having sufficient isostatic strength even if it is composed of partition walls having a high porosity of 50% or more. Peeling of the outer peripheral wall from the honeycomb body hardly occurs.
  • FIG. 1 is a schematic cross-sectional view parallel to an axial direction showing an example of a ceramic honeycomb structure manufactured by the method of the present invention. It is a schematic diagram which expands and shows a part of end surface of the ceramic honeycomb body manufactured by the method of the present invention. It is a fragmentary sectional view parallel to the axial direction which expands and shows the ceramic honeycomb body manufactured by the method of this invention. It is the schematic diagram seen from the axial direction which shows the state which apply
  • FIG. 3 is a partial cross-sectional view parallel to the axial direction showing a state where a colloidal metal oxide and a coating material are applied to grooves on the outer peripheral surface of a ceramic honeycomb body.
  • 1 is a schematic cross-sectional view showing a ceramic honeycomb structure described in JP-A-2003-284923.
  • the manufacturing method of the present invention is formed of porous partition walls 13 having a porosity of 50% or more as shown in FIGS. 1 (a) and 1 (b).
  • a method for manufacturing a ceramic honeycomb structure 1 comprising a ceramic honeycomb body 10 having a large number of cells 14 extending in the axial direction and an outer peripheral wall 11 formed on the outer periphery of the ceramic honeycomb body 10, (a) a step of extruding a ceramic clay to form a formed body having a ceramic honeycomb structure; (b) A groove extending in the axial direction on the outer peripheral surface by removing a part of the partition walls of the cells located on the outer peripheral portion by processing the outer peripheral portion of the molded body or the fired body after the molded body is fired.
  • Obtaining a ceramic honeycomb body having (c) a step of applying a colloidal metal oxide to the outer peripheral surface of the ceramic honeycomb body, drying, and further applying a coating material containing a ceramic aggregate having an average particle diameter of 1 ⁇ m or more to form an outer peripheral wall; .
  • a formed body having a ceramic honeycomb structure is produced by extrusion molding of ceramic clay. First, a binder, a lubricant, and a pore former are added to the ceramic powder, and after thoroughly mixing in a dry process, water is added and sufficient kneading is performed to produce a plasticized ceramic clay. The ceramic clay is extruded, cut into a predetermined length, and dried to obtain a formed body having a ceramic honeycomb structure in which the outer peripheral wall and the partition wall are integrally formed.
  • Preferred materials for the ceramic honeycomb body 10 include cordierite, alumina, silica, silicon nitride, silicon carbide, aluminum titanate, LAS, etc.
  • a ceramic having cordierite as a main crystal phase is inexpensive and heat resistant. It is most preferable because of its excellent properties and chemical stability.
  • colloidal metal oxide 21 colloidal silica, colloidal alumina, titania sol, water glass, or the like can be used. Of these, colloidal silica or colloidal alumina is preferred.
  • the colloidal metal oxide 21 is preferably used as a dispersion of water or the like, and the solid content concentration is appropriately adjusted so as to have a viscosity suitable for coating.
  • the coating amount of the colloidal metal oxide 21 is preferably 2.0 ⁇ 10 ⁇ 3 to 150 ⁇ 10 ⁇ 3 g / cm 3 in solid content per unit volume of the ceramic honeycomb body 10.
  • the coating amount is less than 2.0 ⁇ 10 ⁇ 3 g / cm 3 in terms of solid content, the pores of the partition wall 13a forming the groove 140 and the partition wall 13b of the inner peripheral side cell are insufficiently blocked, and sufficient isostatic In some cases, strength cannot be obtained.
  • it exceeds 150 ⁇ 10 ⁇ 3 g / cm 3 a large amount of the colloidal metal oxide 21 fills the groove 140 itself, thereby reducing the thermal shock resistance.
  • the coating amount is preferably 4.0 ⁇ 10 ⁇ 3 to 90 ⁇ 10 ⁇ 3 g / cm 3 in terms of solid content.
  • the solid content coating amount [g / cm 3 ] per unit volume means the solid content amount [g] of the applied colloidal metal oxide 21 and the volume [cm 3 ] of the ceramic honeycomb body [for example, outer diameter D
  • the value is divided by ⁇ value represented by ⁇ ( ⁇ / 4) ⁇ D 2 ⁇ L ⁇ ].
  • the particle size of the colloidal metal oxide 21 is preferably 5 to 100 nm.
  • the colloidal metal oxide 21 can easily penetrate into the pores of the partition wall 13a forming the groove 140, and sufficient isostatic strength is obtained. be able to.
  • a particle diameter of less than 5 nm is not preferable because the thermal shock resistance is lowered.
  • the particle diameter exceeds 100 nm, it becomes difficult for the colloidal metal oxide to penetrate into the pores of the partition wall 13a forming the groove 140, and the pores of the partition wall 13a are not sufficiently blocked, and sufficient isostatic strength is obtained. It may not be possible.
  • the particle size is preferably 10 to 90 nm.
  • a paste obtained by kneading a ceramic aggregate having an average particle diameter of 1 ⁇ m or more, colloidal silica or colloidal alumina, a binder, water and, if necessary, a dispersant, ceramic fiber, or the like is used.
  • the average particle diameter of the ceramic aggregate used for the coating material 22 is 1 ⁇ m or more, the strength of the outer peripheral wall 11 is improved, and the isostatic strength of the ceramic honeycomb structure 1 is improved.
  • the average particle diameter of the ceramic aggregate is less than 1 ⁇ m, a large amount of colloidal silica or colloidal alumina to be added to bind the ceramic aggregate is required, so that the thermal shock resistance of the outer peripheral wall 11 is lowered.
  • the average particle diameter of the ceramic aggregate is too large, the strength of the outer peripheral wall 11 is reduced, and the outer peripheral wall 11 is easily peeled off from the outer peripheral surface of the ceramic honeycomb structure. It is preferably ⁇ 50 ⁇ m.
  • the ceramic aggregate used for the coating material 22 may be the same material as the ceramic honeycomb body 10 or a different material, and cordierite, alumina, mullite, silica, or the like can be used.
  • Use of a material having a smaller thermal expansion coefficient than that of the ceramic honeycomb body 10 is preferable because the thermal shock resistance during use is improved.
  • amorphous silica is preferable.
  • the partition wall 13a, the colloidal metal oxide 21, and the coating material This is preferable because the bonding property to the wall 22 is improved and the bonding strength between the partition wall 13a and the outer peripheral wall 11 is improved.
  • the colloidal metal oxide 21 applied to the partition walls 13a constituting the grooves 140 extending in the axial direction of the outer peripheral surface 11a includes the partition walls 13a and the cells inside thereof.
  • the partition wall 13a, the colloidal metal oxide 21, and the coating material 22 applied on the colloidal metal oxide 21 are integrated into the partition wall 13b so as to penetrate and firmly bond into the pores of the partition wall 13b.
  • the bonding strength with the wall 11 is improved. Therefore, even in the ceramic honeycomb structure 1 including the high-density partition walls 13 having a porosity of 50% or more, the outer periphery including the colloidal metal oxide 21 and the coating material 22 formed thereon.
  • the isostatic strength is remarkably improved, and the outer peripheral wall 11 is difficult to peel off from the outer peripheral surface 11a of the ceramic honeycomb structure.
  • the method of the present invention is applied to the manufacture of a ceramic honeycomb structure 50 having a shielding cell 54 whose one end is sealed by the inner peripheral surface of the outer peripheral wall 52 as shown in FIG.
  • the colloidal metal oxide applied to the groove of the shielding cell 54 penetrates into the pores of the partition wall forming the groove, and further, the partition wall is formed by the coating material applied thereon. Therefore, the heat insulating effect of the shielding cell formed by the outer peripheral wall is further improved. For this reason, the temperature rise of the ceramic honeycomb structure 50 is accelerated, and the catalytic activity can be increased in a short time from the start of operation.
  • the ceramic honeycomb structure 1 of the present invention has a porous partition wall 13 as shown in FIG.
  • a ceramic honeycomb structure 1 comprising a ceramic honeycomb body 10 having a large number of cells 14 extending in the axial direction formed by the outer peripheral wall 11 formed on the outer peripheral surface 11a of the ceramic honeycomb body 10,
  • the ceramic honeycomb body 10 has a groove 140 extending in the axial direction on the outer peripheral surface 11a,
  • the outer peripheral wall 11 is formed by filling a groove 140 extending in the axial direction,
  • the porosity of the partition walls 13a constituting the groove 140 of the outer peripheral surface 11a is smaller than the porosity of the partition walls 13 at the center of the ceramic honeycomb body 10.
  • the porosity of the partition walls 13 of the ceramic honeycomb structure 1 is preferably 50% or more. In order to ensure the strength of the ceramic honeycomb structure 1, it is preferably 80% or less. Since the colloidal metal oxide 21 penetrates into the partition walls 13a constituting the grooves 140 on the outer peripheral surface 11a of the ceramic honeycomb body 10, the porosity thereof is smaller than the porosity of the partition walls 13 at the center of the ceramic honeycomb body 10. In order to have sufficient isostatic strength, the partition wall 13a constituting the groove 140 of the outer peripheral surface 11a is preferably 0.9 times or less, more preferably 0.8 times or less of the porosity of the partition wall 13 in the center of the ceramic honeycomb body 10.
  • the partition wall 13a constituting the groove 140 of the outer peripheral surface 11a should be 0.1 times or more the porosity of the partition wall 13 at the center of the ceramic honeycomb body 10. preferable.
  • the colloidal metal oxide 21 penetrates into the pores of the partition wall 13a constituting the groove 140 of the outer peripheral surface 11a of the ceramic honeycomb body 10, and further penetrates into the pores of the partition wall 13b of the inner peripheral side cell.
  • the porosity of the partition wall 13b of the peripheral cell is preferably smaller than the porosity of the partition wall 13 at the center of the ceramic honeycomb body 10 as well as the porosity of the partition wall 13a constituting the groove 140 of the outer peripheral surface 11a.
  • the range of the inner peripheral side cells constituted by the partition walls 13b having a lower porosity than the partition walls 13 in the center of the ceramic honeycomb body 10 is preferably up to 20 cells on the inner peripheral side excluding the outer peripheral surface 11a. When the inner peripheral cell range exceeds 20 cells, pressure loss increases. Preferably up to 15 cells, more preferably up to 10 cells.
  • the porosity of the partition wall 13b is preferably increased gradually or stepwise from the outer peripheral surface 11a side to the center portion side.
  • the partition wall 13 of the ceramic honeycomb body 10 preferably has a thickness of 0.1 to 0.4 mm and a cell pitch of 1 to 3 mm.
  • Example 1 Fabrication of ceramic honeycomb body Raw material for cordierite formation by preparing powders of kaolin, talc, silica, and alumina and containing 50% by mass of SiO 2 , 36% by mass of Al 2 O 3 , and 14% by mass of MgO To this powder, add methylcellulose and hydroxypropylmethylcellulose as a binder, lubricant, and foamed resin as a pore former, mix thoroughly in a dry process, add water, knead thoroughly, and plasticize Ceramic clay was made. The ceramic clay was extruded, cut to a predetermined length, and then dried to obtain a formed body having a ceramic honeycomb structure in which the peripheral edge portion and the partition walls were integrally formed.
  • the outer peripheral portion is processed to remove a part of the partition walls of the cells located in the outer peripheral portion, and the outer peripheral surface has an axially extending groove, an outer diameter of 266 mm, an overall length of 305
  • a cordierite ceramic honeycomb body having a diameter of 0.3 mm, a partition wall thickness of 0.3 mm, a cell pitch of 1.57 mm, and a partition wall porosity of 61% was obtained.
  • the fabricated ceramic honeycomb structure was evaluated for isostatic strength, outer wall bondability, and thermal shock resistance. Furthermore, the porosity of the partition walls of the ceramic honeycomb structure main body and the porosity of the partition walls constituting the outer peripheral surface grooves are cut out from the central partition wall and the outer peripheral surface partition walls of the ceramic honeycomb structure that have been evaluated. And measured by mercury porosimetry. In addition, the partition walls near the outer periphery were cut out and observed with an electron microscope, and the number of cells on the inner peripheral side excluding the outer peripheral surface, which were composed of the partition walls infiltrated with the colloidal metal oxide, was counted.
  • Isostatic strength The isostatic strength test was conducted based on the automobile standard (JASO) M505-87 issued by the Japan Society for Automotive Engineers. A 20 mm thick aluminum plate is in contact with both axial end faces of the ceramic honeycomb structure to seal both ends, and a sample with a 2 mm thick rubber sheet in close contact with the outer wall surface is placed in a pressure vessel. Water was injected into the container, and hydrostatic pressure was applied from the outer wall surface, and the pressure when the ceramic honeycomb structure broke was measured to obtain isostatic strength.
  • JASO automobile standard
  • Isostatic strength is Those with an isostatic strength of 2 MPa or more are ⁇ Excellent ( ⁇ ) '', Those with an isostatic strength of 1.5 MPa to less than 2 MPa “Impossible ( ⁇ )” if the isostatic strength is 1.0 MPa or more and less than 1.5 MPa, and “No ( ⁇ )” if the isostatic strength is less than 1.0 MPa. As evaluated. The results are shown in Table 1.
  • the bondability between the outer peripheral wall and the ceramic honeycomb body is determined by cutting the ceramic honeycomb structure at any three points perpendicular to the axial direction and visually observing these three cross sections. Evaluation was made according to the following criteria in the gaps between: ⁇ Excellent ( ⁇ ) '' means that there are no gaps in all three sections. If there is a gap in one of the three cross-sections, If there are gaps in two of the three cross-sections, ⁇ Yes ( ⁇ ) '', and “No ( ⁇ )” means that there are gaps in all three sections.
  • thermal shock resistance was performed by inserting three ceramic honeycomb structures into an electric furnace heated to a constant temperature and holding them for 30 minutes, and then rapidly cooling them to room temperature to prevent cracks from occurring. It was performed by visually observing the presence or absence. Since cracks are more likely to occur as the heating temperature is higher, the evaluation was repeated while the constant temperature was increased by 25 ° C. until cracks occurred.
  • the thermal shock temperature is 600 ° C or higher, 550 ° C or higher and lower than 600 ° C “Available ( ⁇ )” above 500 ° C and below 550 ° C, and Less than 500 °C is ⁇ impossible (x) '' As evaluated.
  • Examples 2 to 15 and Comparative Examples 3 to 7 A ceramic honeycomb structure was produced in the same manner as in Example 1 except that the type of colloidal metal oxide and the solid content coating amount, the type of ceramic aggregate of the coating material, and the average particle size were changed as shown in Table 1. They were then evaluated for their isostatic strength, outer wall bondability, and thermal shock resistance.
  • the colloidal metal oxide used in these examples was an aqueous dispersion having a solid content concentration of 20% by mass.
  • Comparative Example 1 Example in which the coating material prepared by changing the average particle diameter of the silica powder used as the ceramic aggregate from 15 ⁇ m to 20 ⁇ m without directly applying the colloidal metal oxide was directly applied to the outer peripheral surface of the ceramic honeycomb body Ceramic honeycomb structures were prepared in the same manner as in No. 1, and their isostatic strength, bondability of the outer peripheral wall, and thermal shock resistance were evaluated.
  • Comparative Example 2 After the coating material applied directly to the outer peripheral surface of the ceramic honeycomb body is dried, a colloidal metal oxide (colloidal silica having an average particle diameter of 20 nm and a solid content concentration of 20% by mass) is further formed thereon. Ceramic honeycomb structures were prepared in the same manner as in Comparative Example 1 except that the solid content applied per unit volume was 50 ⁇ 10 ⁇ 3 g / cm 3 and dried, and their isostatic strength, The jointability of the outer peripheral wall and the thermal shock resistance were evaluated.
  • a colloidal metal oxide colloidal silica having an average particle diameter of 20 nm and a solid content concentration of 20% by mass
  • the ceramic honeycomb structures of Comparative Examples 3 to 7 in which a colloidal metal oxide is applied to the groove on the outer peripheral surface and a coating material containing ceramic particles having an average particle diameter of less than 1 ⁇ m are applied thereon have isostatic strength.
  • the bondability of the outer peripheral wall was good as it was, but the thermal shock resistance was bad.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Catalysts (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

50%以上の気孔率を有する多孔質の隔壁により形成された軸方向に延びる多数のセルを有するセラミックハニカム体と、前記セラミックハニカム体の外周に形成された外周壁とからなるセラミックハニカム構造体を製造する方法であって、 セラミック坏土を押出し、セラミックハニカム構造を有する成形体を形成する工程、 前記成型体、又は前記成形体を焼成した後の焼成体の外周部を加工することにより、外周部に位置するセルの隔壁の一部を除去し、外周面に軸方向に延びる溝を有するセラミックハニカム体を得る工程、及び 前記セラミックハニカム体の外周面にコロイド状金属酸化物を塗布し、乾燥後、平均粒子径1μm以上のセラミックス骨材を含むコート材を、さらに塗布して外周壁を形成する工程 を有することを特徴とするセラミックハニカム構造体の製造方法。

Description

セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
 本発明は、セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体に関するものである。
 自動車などの内燃機関の排気ガス中に含まれる有害物質を減少させるため、排気ガス浄化用の触媒コンバータ、粒子状物質(PM:Particulate Matter)捕集用のフィルタ、及び窒素酸化物(NOx)を低減するための触媒の担体としてセラミックハニカム構造体が使用されている。
 セラミックハニカム構造体1は、図1(a)及び図1(b)に示すように、多孔質の隔壁13により形成された軸方向に延びる多数のセル14を有するセラミックハニカム体10と、前記セラミックハニカム体10の外周に形成された外周壁11とからなり、その流路方向に垂直な断面の形状は通常ほぼ円形又は楕円形をしている(図1(a)参照)。セラミックハニカム構造体1は、金属メッシュ又はセラミックス製のマット等で形成された把持部材(図示せず)で使用中に動かないように強固に把持され、金属製収納容器(図示せず)内に収納されている。従って、外周壁11は、セラミックハニカム構造体1を把持した状態での熱衝撃に耐えうるアイソスタティック強度が必要である。
 ディーゼルエンジンの排気ガスに含まれている窒素酸化物(NOx)を低減するために、隔壁にNOx触媒を担持させたセラミックハニカム構造体が使用されている。このセラミックハニカム構造体のNOx浄化性能を高めるためには、担持させる触媒量を増加させることが有効であり、そのためには隔壁を、例えば50%以上の高気孔率とする必要がある。
 特開平05-269388号は、多孔質の隔壁により形成された軸方向に延びる多数のセルを有し、外部に開口して軸方向に延びる溝を外周面に有しているセラミックハニカム体と、前記溝をコート材で充填して形成された外周壁とからなるセラミックハニカム構造体を開示している。このセラミックハニカム構造体は、外周壁が一体的に形成されたセラミックハニカム焼成体を公知の方法で作製した後、外周部のセルを研削除去して得られた、外周面に溝を有するセラミックハニカム体に、セラミック粒子及び又はセラミックファイバーとコロイダルシリカ又はコロイダルアルミナとからなるペースト状コート材を、前記外周面の溝に充填するように塗布及び乾燥して外周壁を形成することにより製造される。特開平05-269388号は、このような方法により、外周面が補強され、耐熱性及び耐熱衝撃に優れたセラミックハニカム構造体が得られると記載している。
 しかしながら、特開平05-269388号に記載された外周壁を、例えば50%以上の高気孔率の隔壁からなるセラミックハニカム構造体に適用した場合、前記隔壁の強度が非常に低いため、前記外周壁による強度向上効果が十分に発揮されず、得られるセラミックハニカム焼成体は使用時の熱衝撃に十分耐え得るほどのアイソスタティック強度を有さない。
 特開2004-175654号は、多孔質の隔壁により形成された軸方向に延びる多数のセルを有し、外部に開口して軸方向に延びる溝を外周面に有しているセラミックハニカム体と、前記溝を充填して外表面を形成する外周壁とを有し、前記外周壁又は外周壁と溝との間の少なくとも一部に応力開放部(空隙部)を有するセラミックハニカム構造体を開示しており、熱衝撃が発生しても、熱衝撃によるクラックが隔壁にまで進展しにくくした、耐熱衝撃性に優れると記載している。このセラミックハニカム構造体は、外周壁が一体的に形成されたセラミックハニカム焼成体を公知の方法で作製した後、外周部のセルの隔壁の一部を研削除去して得られた、外周面に溝を有するハニカム体に、セラミック骨材及び無機バインダーからなるコート材を、前記溝をほぼ充填するように塗布し、70℃以上に加熱させられた乾燥炉でコート材中に含まれる水分を急速乾燥することにより製造される。
 しかしながら、特開2004-175654号に記載されたセラミックハニカム構造体は、前記応力開放部(外表面に開口した外周壁のクラック状空隙、又はセラミックハニカム体と外周壁との間に形成された空隙)を有することから、外周壁がセラミックハニカム体から剥離し易く、特に特開2004-175654号に記載の方法を、例えば50%以上の高気孔率の隔壁からなるセラミックハニカム体に適用した場合、十分なアイソスタティック強度を得られない。
 特開2006-255542号は、多孔質の隔壁により形成された複数のセルを有するセル構造体と、前記セル構造体の外周面上に配設された、平均粒径20~50μmのセラミック粒子を含むコート材からなる外壁を有し、前記外壁の厚み方向中央部分の気孔率よりも、前記中央部分よりも外側の部分の気孔率のほうが小さいセラミックハニカム構造体を開示しており、外壁を構成するセラミック粒子の離脱が少なく、耐久性及び耐磨耗性に優れ、外壁表面にした印字の磨耗損傷が起こり難いと記載している。特開2006-255542号に記載のセラミックハニカム構造体は、公知の方法で得られたハニカム構造の焼結体の外周部を研削加工して除去し、その外周面にコート材を塗布して外周コート層を形成し、前記外周コート層を乾燥又は半乾燥した後に、外周コート層の表面にコロイダルシリカ、コロイダルアルミナ等のコロイド状セラミックを主成分とする緻密層形成用のコート材を塗布することで製造される。
 しかしながら、特開2006-255542号に記載された気孔率勾配を有する外周壁は、外壁表面の印字の耐磨耗損傷性は優れているが、例えば50%以上の高気孔率の隔壁からなるセラミックハニカム体に適用した場合、隔壁が非常に脆いため、塗布された外周コート層がセラミックハニカム体の外周面から剥離し易く、外周壁とセラミックハニカム体との接合性に問題がある。
 特開2003-284923号は、図5に示すように、セラミックハニカム体51のセルのうち、最外周に位置する最外周セル及びそれから内部側に位置する所定数のセルの少なくとも一方の端部及び/又は中間部が、外周壁52の内周面によって封止されて、流体が流れない遮蔽セル54を構成してなるセラミックハニカム構造体50を開示しており、このセラミックハニカム構造体50は、外周壁52により形成された遮蔽セル54の断熱効果により、運転開始からの温度上昇時間を短くでき、担持した触媒の触媒活性を短時間で高めることができると記載している。特開2003-284923号は、このセラミックハニカム構造体50は、押出成形により作製したハニカム構造を有する成形体を、一方の端部の収縮率が他方と異なるように乾燥及び焼成することにより円錐台状のセラミックハニカム体51を形成し、前記セラミックハニカム体の円錐台状の外周面を円筒状に加工し、その外周面51aにセラミックセメント等のコート材で外周壁52を形成することにより製造されると記載しており、前記外周壁52の材料として、コージェライトからなるセラミック、コージェライト及び/又はセラミックファイバーと非晶質酸化物マトリックス(コロイダルシリカ、コロイダルアルミナ等)とからなるセラミック等を挙げている。
 しかしながら、特開2003-284923号に記載の発明を、例えば50%以上の高気孔率の隔壁からなるセラミックハニカム体に適用した場合、隔壁が非常に脆いため、特開2003-284923号に記載された外周壁ではセラミックハニカム構造体のアイソスタティック強度を十分に保つことができない。
 従って本発明の目的は、上記課題を解決するものであり、高気孔率の隔壁から形成されていても十分なアイソスタティック強度を有し、コート材で形成された外周壁がハニカム構造体の外周部から剥離し難いセラミックハニカム構造体を提供することにある。
 上記目的に鑑み鋭意研究の結果、本発明者は、セラミックハニカム体に外周壁を形成する際に、コロイド状金属酸化物を塗布した後でコート材を塗布することにより、高気孔率の隔壁から形成されたセラミックハニカム体であっても十分なアイソスタティック強度が得られることを見出し、本発明に想到した。
 すなわち、本発明の方法は、50%以上の気孔率を有する多孔質の隔壁により形成された、軸方向に延びる多数のセルを有するセラミックハニカム体と、前記セラミックハニカム体の外周に形成された外周壁とからなるセラミックハニカム構造体を製造する方法であって、
セラミック坏土を押出し、セラミックハニカム構造を有する成形体を形成する工程、
前記成型体、又は前記成形体を焼成した後の焼成体の外周部を加工することにより、外周部に位置するセルの隔壁の一部を除去し、外周面に軸方向に延びる溝を有するセラミックハニカム体を得る工程、及び
前記セラミックハニカム体の外周面にコロイド状金属酸化物を塗布し、乾燥後、平均粒子径1μm以上のセラミックス骨材を含むコート材を、さらに塗布して外周壁を形成する工程
を有することを特徴とする。
 前記コロイド状金属酸化物はコロイダルシリカ又はコロイダルアルミナであるのが好ましい。
 前記コロイド状金属酸化物の塗布量は、前記セラミックハニカム体の単位容積当たり、固形分で2.0×10-3~150×10-3 g/cm3であるのが好ましい。
 前記コロイド状金属酸化物の平均粒子径は、5~100 nmであるのが好ましい。
 本発明のセラミックハニカム構造体は、多孔質の隔壁により形成された軸方向に延びる多数のセルを有するセラミックハニカム体と、前記セラミックハニカム体の外周面に形成された外周壁とからなり、
前記セラミックハニカム体は、外周面に軸方向に延びる溝を有し、
前記外周壁は、前記軸方向に延びる溝を充填して形成されており、
前記外周面の溝を構成する隔壁の気孔率が、前記セラミックハニカム体中心部の隔壁の気孔率よりも小さいことを特徴とする。
 本発明によれば、50%以上の高気孔率を有する隔壁からなっていても十分なアイソスタティック強度を有するセラミックハニカム構造体を得ることができるので、使用時に熱衝撃を受けた場合でも、セラミックハニカム体からの外周壁の剥離が起こり難い。
本発明の方法により製造したセラミックハニカム構造体の一例を示す軸方向から見た模式図である。 本発明の方法により製造したセラミックハニカム構造体の一例を示す軸方向に平行な模式断面図である。 本発明の方法により製造したセラミックハニカム体の端面の一部を拡大して示す模式図である。 本発明の方法により製造したセラミックハニカム体を拡大して示す軸方向に平行な部分断面図である。 セラミックハニカム体の外周面の溝にコロイド状金属酸化物を塗布した状態を示す軸方向から見た模式図である。 セラミックハニカム体の外周面の溝にコロイド状金属酸化物を塗布した状態を示す軸方向に平行な部分断面図である。 セラミックハニカム体の外周面の溝にコロイド状金属酸化物及びコート材を塗布した状態を示す軸方向から見た模式図である。 セラミックハニカム体の外周面の溝にコロイド状金属酸化物及びコート材を塗布した状態を示す軸方向に平行な部分断面図である。 特開2003-284923号に記載のセラミックハニカム構造体を示す模式断面図である。
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものでなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基いて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に含まれる。
[1]セラミックハニカム構造体の製造方法
 本発明の製造方法は、図1(a)及び図1(b)に示すような、50%以上の気孔率を有する多孔質の隔壁13により形成された、軸方向に延びる多数のセル14を有するセラミックハニカム体10と、前記セラミックハニカム体10の外周に形成された外周壁11とからなセラミックハニカム構造体1を製造する方法であって、
(a)セラミック坏土を押出し、セラミックハニカム構造を有する成形体を形成する工程、
(b)前記成型体、又は前記成形体を焼成した後の焼成体の外周部を加工することにより、外周部に位置するセルの隔壁の一部を除去し、外周面に軸方向に延びる溝を有するセラミックハニカム体を得る工程、及び
(c)前記セラミックハニカム体の外周面にコロイド状金属酸化物を塗布し、乾燥後、平均粒子径1μm以上のセラミックス骨材を含むコート材を、さらに塗布して外周壁を形成する工程
を有する。
(a) 成形体の形成
 セラミックハニカム構造を有する成形体は、セラミック坏土の押出成形によって作製する。まずセラミックス粉末に、バインダー、潤滑剤、及び造孔材を添加し、乾式で十分混合した後、水を添加し、十分な混練を行って可塑化したセラミック坏土を作製する。このセラミック坏土を押出して、所定長さに切断し、乾燥することにより、外周壁と隔壁とが一体に形成されたセラミックハニカム構造を有する成形体を得る。
(b) セラミックハニカム体の作製
 得られたセラミックハニカム構造を有する成形体を焼成し、気孔率が50%以上の焼成体とする。この焼成体の外周部を加工により除去して、図2(a)及び図2(b)に示すように、外周部に位置するセルの隔壁の一部が除去されたことにより、外周面11aに軸方向に延びる溝140が形成されたセラミックハニカム体10を作製する。なお、この方法では、成形体を焼成した後に外周面を加工する例を示したが、焼成前の成形体に加工を施して、その後焼成してセラミックハニカム体10を作製してもよい。
 セラミックハニカム体10の好ましい材質としては、コーディエライト、アルミナ、シリカ、窒化珪素、炭化珪素、チタン酸アルミニウム、LAS等が挙げられ、中でもコーディエライトを主結晶相とするセラミックは、安価で耐熱性に優れ、化学的にも安定なため最も好ましい。
(c)外周壁の形成
(i) コロイド状金属酸化物の塗布
 得られたセラミックハニカム体10の外周面11aの溝140に、図3(a)及び図3(b)に示すように、コロイド状金属酸化物21を、刷毛、ローラー等を用いて塗布する。コロイド状金属酸化物21を塗布することにより、外周面11aの溝140を形成する隔壁13a及びその内周側セルの隔壁13bの気孔にコロイド状金属酸化物が浸透して気孔が塞がれ、外周面11aの隔壁13aの強度が向上する。前記溝140に塗布されたコロイド状金属酸化物21は、自然乾燥、乾燥炉での熱風乾燥等の方法で乾燥させる。
 コロイド状金属酸化物21としては、コロイダルシリカ、コロイダルアルミナ、チタニアゾル、水ガラス等を用いることができる。中でもコロイダルシリカ又はコロイダルアルミナが好ましい。コロイド状金属酸化物21は、水等の分散物として使用するのが好ましく、固形分濃度は、塗布に適した粘度になるように適宜調節する。
 コロイド状金属酸化物21の塗布量は、セラミックハニカム体10の単位容積当たり、固形分で2.0×10-3~150×10-3 g/cm3であるのが好ましい。前記塗布量が、固形分で2.0×10-3g/cm3未満の場合、溝140を形成する隔壁13aとその内周側セルの隔壁13bの気孔の塞がりが不十分となり、十分なアイソスタティック強度を得ることができない場合がある。一方、150×10-3 g/cm3を超える場合、多量のコロイド状金属酸化物21が、溝140そのものを埋めてしまい耐熱衝撃性を低下させる。前記塗布量は、好ましくは固形分で4.0×10-3~90×10-3 g/cm3である。ここで単位容積当たりの固形分塗布量[g/cm3]とは、塗布したコロイド状金属酸化物21の固形分量[g]を、セラミックハニカム体の容積[cm3][例えば、外径D及び長さLの円柱状の場合、{(π/4)×D2×L}で表される値]で除した値である。
 コロイド状金属酸化物21の粒子径は5~100 nmであるのが好ましい。このような範囲の粒子径を有するコロイド状金属酸化物21を使用することで、溝140を形成する隔壁13aの気孔にコロイド状金属酸化物21が浸透し易くなり、十分なアイソスタティック強度を得ることができる。粒子径が5 nm未満の場合、耐熱衝撃性が低下するので好ましくない。一方、粒子径が100 nmを超える場合、溝140を形成する隔壁13aの気孔にコロイド状金属酸化物が浸透し難くなり、隔壁13aの気孔の塞がりが不十分となり、十分なアイソスタティック強度を得ることができない場合がある。前記粒子径は、好ましくは10~90 nmである。
(ii)コート剤の塗布
 乾燥したコロイド状金属酸化物21の上から、図4(a)及び図4(b)に示すように、前記セラミックハニカム体10の外周面11aの溝140を充填するようにコート材22を0.1~3 mmの厚さに塗布する。塗布したコート材22を、熱風乾燥、マイクロ波乾燥等の公知の方法で乾燥させ、コート材22中の水分を除去することにより、外周壁11が形成されてなるセラミックハニカム構造体1を得る。
 コート材22は、平均粒子径1μm以上のセラミックス骨材、コロイダルシリカ又はコロイダルアルミナ、バインダー、水、及び必要に応じて分散剤、セラミックファイバー等を混練して、ペースト状にしたものを使用する。コート材22に用いるセラミックス骨材の平均粒子径が1μm以上であることで、外周壁11の強度が向上し、セラミックハニカム構造体1のアイソスタティック強度が向上する。しかし、セラミックス骨材の平均粒子径が1μm未満の場合、セラミックス骨材を結合するために添加するコロイダルシリカ又はコロイダルアルミナが多量に必要になるため、外周壁11の耐熱衝撃性が低下する。一方、セラミックス骨材の平均粒子径が大きすぎると、外周壁11の強度が低下し、外周壁11がセラミックハニカム構造体の外周面から剥離し易くなるので、セラミックス骨材の平均粒子径は2~50μmであるのが好ましい。
 コート材22に用いるセラミックス骨材は、セラミックハニカム体10と同材質であっても、異なる材質であっても良く、コーディエライト、アルミナ、ムライト、シリカ等が使用できる。セラミックハニカム体10よりも熱膨張係数の小さい材質を用いると、使用時の耐熱衝撃性が良好となるので好ましい。例えば、非晶質シリカが好ましい。
 前記溝140に塗布されるコロイド状金属酸化物21と、その上に塗布されるコート材22のセラミックス骨材とが同材質であると、隔壁13aと、コロイド状金属酸化物21と、コート材22との接合性が良好となり、隔壁13aと外周壁11との接合強度を向上させるので好ましい。
 本発明の方法により作製されたセラミックハニカム構造体1は、外周面11aの軸方向に延びる溝140を構成する隔壁13aに塗布されたコロイド状金属酸化物21が、前記隔壁13a及びその内側のセルの隔壁13bの気孔内に浸透し強固に接合するため、隔壁13aと、コロイド状金属酸化物21と、コロイド状金属酸化物21の上に塗布したコート材22とが一体となり、隔壁13aと外周壁11との接合強度を向上させる。そのため、気孔率が50%以上の高気孔率の隔壁13からなるセラミックハニカム構造体1であっても、このようなコロイド状金属酸化物21と、その上に形成したコート材22とからなる外周壁11を有することにより、アイソスタティック強度が著しく向上し、セラミックハニカム構造体の外周面11aから外周壁11が剥離し難くなる。
 本発明の方法を、図5に示すような、一方の端部が外周壁52の内周面によって封止された遮蔽セル54を有するセラミックハニカム構造体50の製造へ適用した場合、外周壁の剥離を防止することができるだけでなく、前記遮蔽セル54の溝に塗布されたコロイド状金属酸化物が前記溝を形成する隔壁の気孔内に浸透し、さらにその上に塗布されたコート材によって隔壁の気孔が塞がれるため、外周壁により形成された遮蔽セルの断熱効果がより向上する。このため、セラミックハニカム構造体50の温度上昇が速くなり、運転開始から短時間で触媒活性を高めることができる。
[2]セラミックハニカム構造体
 本発明のセラミックハニカム構造体1は、図1(a)、図1(b)、図2(a)及び図2(b)に示すように、多孔質の隔壁13により形成された軸方向に延びる多数のセル14を有するセラミックハニカム体10と、前記セラミックハニカム体10の外周面11aに形成された外周壁11とからなるセラミックハニカム構造体1であって、
前記セラミックハニカム体10は、外周面11aに軸方向に延びる溝140を有し、
前記外周壁11は、前記軸方向に延びる溝140を充填して形成されており、
前記外周面11aの溝140を構成する隔壁13aの気孔率が、前記セラミックハニカム体10中心部の隔壁13の気孔率よりも小さいことを特徴とする。
 セラミックハニカム構造体1の隔壁13の気孔率は50%以上であるのが好ましく、セラミックハニカム構造体1の強度を確保ためには80%以下であるのが好ましい。セラミックハニカム体10の外周面11aの溝140を構成する隔壁13aは、コロイド状金属酸化物21が浸透するため、その気孔率は、セラミックハニカム体10中心部の隔壁13の気孔率よりも小さい。十分なアイソスタティック強度を有するためには、前記外周面11aの溝140を構成する隔壁13aは、セラミックハニカム体10中心部の隔壁13の気孔率の0.9倍以下であるのが好ましく、0.8倍以下であるのがより好ましい。ただし、耐熱衝撃性が悪化するのを防止するためには、前記外周面11aの溝140を構成する隔壁13aは、セラミックハニカム体10中心部の隔壁13の気孔率の0.1倍以上であるのが好ましい。
 なおコロイド状金属酸化物21は、セラミックハニカム体10の外周面11aの溝140を構成する隔壁13aの気孔に浸透し、さらに、その内周側セルの隔壁13bの気孔にも浸透するため、内周側セルの隔壁13bの気孔率も、前記外周面11aの溝140を構成する隔壁13aの気孔率と同様、セラミックハニカム体10中心部の隔壁13の気孔率よりも小さいことが好ましい。セラミックハニカム体10中心部の隔壁13よりも気孔率が小さい隔壁13bにより構成される内周側セルの範囲は、外周面11aを除いた内周側の20セルまでであるのが好ましい。前記内周側セルの範囲が20セルを超えると圧力損失が大きくなる。好ましくは15セルまで、さらに好ましくは10セルまでである。隔壁13bの気孔率は、外周面11a側から中心部側へ徐々に、又は段階的に大きくなっているのが好ましい。
 セラミックハニカム体10の隔壁13厚さは0.1~0.4 mm、及びセルピッチは1~3 mmであるのが好ましい。このような構成を有するセラミックハニカム体10を用いることにより、より効果的に、アイソスタティック強度の向上効果を発揮させることができる。
[3]実施例
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
(1)セラミックハニカム体の作製
 カオリン、タルク、シリカ、及びアルミナの粉末を調整し、50質量%のSiO2、36質量%のAl2O3、及び14質量%のMgOを含むコージェライト生成原料粉末とし、この原料粉末にバインダーとしてメチルセルロース及びヒドロキシプロピルメチルセルロース、潤滑剤、並びに造孔材として発泡済み樹脂を添加し、乾式で十分混合した後、水を添加して十分な混練を行い、可塑化したセラミック杯土を作製した。このセラミック坏土を押出成形し、所定長さに切断後、乾燥し、周縁部と隔壁とが一体に形成されたセラミックハニカム構造を有する成形体を得た。この成形体を焼成した後、外周部を加工することにより、外周部に位置するセルの隔壁の一部を除去し、外周面に軸方向に延びる溝を有し、外径266 mm、全長305 mm、隔壁厚さ0.3 mm、セルピッチが1.57 mm、及び隔壁の気孔率が61%のコーディエライト質のセラミックハニカム体を得た。
(2)外周壁の作製
 得られたセラミックハニカム体の外周面に、コロイド状金属酸化物としてコロイダルシリカ(平均粒径15 nm及び固形分濃度20質量%の水分散物)を、セラミックハニカム体の単位容積当たりの固形分塗布量が20×10-3 g/cm3になるよう塗布した。塗布したコロイド状金属酸化物を室温で2時間乾燥させた後、その上に、セラミックス骨材(平均粒子径15μmのシリカ粉末)100質量部に対して、コロイダルシリカを固形分で12質量部配合し、さらにセラミックス骨材及びコロイダルシリカの合計100質量部に対して1.2質量部のメチルセルロースを配合し、水と共に混練して作製したコート材を塗布した。塗布したコート材を130℃で2時間乾燥させて、4個のセラミックハニカム構造体を作製した。
 作製したセラミックハニカム構造体の、アイソスタティック強度、外周壁の接合性、及び耐熱衝撃性を評価した。さらにセラミックハニカム構造体本体の隔壁の気孔率、及び外周面の溝を構成する隔壁の気孔率を、評価済みのセラミックハニカム構造体の中心部の隔壁、及び外周面の溝部の隔壁から試料を切り出して、水銀圧入法で測定した。また外周付近の隔壁を切り出して電子顕微鏡で観察し、コロイド状金属酸化物が浸透した隔壁により構成されるセルが、外周面を除いて内周側の何セルまで存在するかをカウントした。
アイソスタティック強度
 アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505-87に基づいて行った。セラミックハニカム構造体の軸方向両端面に厚さ20 mmのアルミ板を当接して両端を密閉するとともに、外壁部表面に厚さ2 mmのゴムシートを密着させた試料を圧力容器に入れ、圧力容器内に水を注入して、外壁部表面から静水圧を加えてゆき、セラミックハニカム構造体が破壊した時の圧力を測定して、アイソスタティック強度とした。アイソスタティック強度は、
アイソスタティック強度が2 MPa以上有するものを「優(◎)」、
アイソスタティック強度が1.5 MPa以上2 MPa未満有するものを「良(○)」、
アイソスタティック強度が1.0 MPa以上1.5 MPa未満有するものを「可(△)」、及び
アイソスタティック強度が1.0 MPa未満のものを「不可(×)」
として評価した。その結果を表1に示す。
接合性
 外周壁とセラミックハニカム体との接合性は、セラミックハニカム構造体を軸方向に垂直な任意の3か所で切断し、それらの3つの断面を目視で観察し、外周壁とセラミックハニカム体との間の隙間で以下の基準で評価した。
3つの断面全てに隙間が無いものを「優(◎)」、
3つの断面のうち1つの断面に隙間があるものを「良(○)」、
3つの断面のうち2つの断面に隙間があるものを「可(△)」、及び
3つの断面全てに隙間があるものを「不可(×)」。
耐熱衝撃性の評価
 耐熱衝撃性の評価は、3個のセラミックハニカム構造体を、一定温度に加熱した電気炉中に挿入して30分間保持し、その後室温に急冷して、き裂の発生の有無を目視で観察することにより行った。き裂は加熱温度が高いほど発生しやすくなるので、前記一定温度を25℃ずつ上げながら、き裂が発生するまで評価を繰り返した。3個の試料について同じ評価を行い、3個のうち最も低い温度でき裂が発生した試料の加熱温度と室温との温度差を耐熱衝撃温度とし、
耐熱衝撃温度が600℃以上を「優(◎)」、
550℃以上で600℃未満を「良(○)」、
500℃以上で550℃未満を「可(△)」、及び
500℃未満を「不可(×)」
として評価した。
実施例2~15及び比較例3~7
 コロイド状金属酸化物の種類及び固形分塗布量、並びにコート材のセラミック骨材の種類及び平均粒子径を表1に示すように変更した以外は実施例1と同様にしてセラミックハニカム構造体を作製し、それらのアイソスタティック強度、外周壁の接合性、及び耐熱衝撃性を評価した。なおこれらの実施例で使用したコロイド状金属酸化物は、20質量%の固形分濃度を有する水分散物であった。
比較例1
 コロイド状金属酸化物を塗布しないで、セラミックス骨材として使用したシリカ粉末の平均粒子径を15μmから20μmに変更して作製したコート材を、セラミックハニカム体の外周面に直接塗布した以外は実施例1と同様にしてセラミックハニカム構造体を作製し、それらのアイソスタティック強度、外周壁の接合性、及び耐熱衝撃性を評価した。
比較例2
 セラミックハニカム体の外周面に直接塗布したコート材を乾燥させた後、さらにその上にコロイド状金属酸化物(平均粒子径20 nm及び固形分濃度20質量%のコロイダルシリカ)を、セラミックハニカム体の単位容積当たりの固形分塗布量が50×10-3 g/cm3となるように塗布して乾燥した以外は比較例1と同様にしてセラミックハニカム構造体を作製し、それらのアイソスタティック強度、外周壁の接合性、及び耐熱衝撃性を評価した。
表1
Figure JPOXMLDOC01-appb-I000001
注(1):セラミックハニカム体の単位容積当たりの固形分塗布量
表1(続き)
Figure JPOXMLDOC01-appb-I000002
注(2):コート材を塗布乾燥した後、さらにコロイド状金属酸化物を塗布した。
表1(続き)
Figure JPOXMLDOC01-appb-I000003
 表1から明らかなように、外周面の溝にコロイド状金属酸化物を塗布し、その上に平均粒子径1μm以上のセラミックス粒子を含むコート材を塗布してなる実施例1~15のセラミックハニカム構造体は、十分なアイソスタティック強度、外周壁の接合性、及び耐熱衝撃性を有していた。一方、外周面の溝にコロイド状金属酸化物を塗布しないで前記コート材を直接塗布してなる比較例1は、十分なアイソスタティック強度を有しておらず、外周壁の接合性、及び耐熱衝撃性も低かった。外周面の溝にコート材を直接塗布した後、その上にコロイド状金属酸化物を塗布してなる比較例2は、比較例1と同様、十分なアイソスタティック強度を有していなかった。外周面の溝にコロイド状金属酸化物を塗布したが、その上に平均粒子径1μm未満のセラミックス粒子を含むコート材を塗布してなる比較例3~7のセラミックハニカム構造体は、アイソスタティック強度、及び外周壁の接合性はそれなりに良かったが、耐熱衝撃性が悪かった。

Claims (5)

  1.  50%以上の気孔率を有する多孔質の隔壁により形成された軸方向に延びる多数のセルを有するセラミックハニカム体と、前記セラミックハニカム体の外周に形成された外周壁とからなるセラミックハニカム構造体を製造する方法であって、
    セラミック坏土を押出し、セラミックハニカム構造を有する成形体を形成する工程、
    前記成型体、又は前記成形体を焼成した後の焼成体の外周部を加工することにより、外周部に位置するセルの隔壁の一部を除去し、外周面に軸方向に延びる溝を有するセラミックハニカム体を得る工程、及び
    前記セラミックハニカム体の外周面にコロイド状金属酸化物を塗布し、乾燥後、平均粒子径1μm以上のセラミックス骨材を含むコート材を、さらに塗布して外周壁を形成する工程
    を有することを特徴とするセラミックハニカム構造体の製造方法。
  2.  請求項1に記載のセラミックハニカム構造体の製造方法において、前記コロイド状金属酸化物がコロイダルシリカ又はコロイダルアルミナであることを特徴とするセラミックハニカム構造体の製造方法。
  3.  請求項1又は2に記載のセラミックハニカム構造体の製造方法において、前記コロイド状金属酸化物の塗布量が、前記セラミックハニカム体の単位容積当たり、固形分で2.0×10-3~150×10-3 g/cm3 であることを特徴とするセラミックハニカム構造体の製造方法。
  4.  請求項1~3のいずれかに記載のセラミックハニカム構造体の製造方法において、前記コロイド状金属酸化物の平均粒子径が5~100 nmであることを特徴とするセラミックハニカム構造体の製造方法。
  5.  多孔質の隔壁により形成された軸方向に延びる多数のセルを有するセラミックハニカム体と、前記セラミックハニカム体の外周面に形成された外周壁とからなるセラミックハニカム構造体であって、
    前記セラミックハニカム体は、外周面に軸方向に延びる溝を有し、
    前記外周壁は、前記軸方向に延びる溝を充填して形成されており、
    前記外周面の溝を構成する隔壁の気孔率が、前記セラミックハニカム体中心部の隔壁の気孔率よりも小さいことを特徴とするセラミックハニカム構造体。
PCT/JP2012/076140 2011-10-11 2012-10-09 セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体 WO2013054793A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280050065.6A CN103889929B (zh) 2011-10-11 2012-10-09 陶瓷蜂窝结构体的制造方法和陶瓷蜂窝结构体
JP2013538545A JP6028735B2 (ja) 2011-10-11 2012-10-09 セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
US14/350,925 US9840444B2 (en) 2011-10-11 2012-10-09 Production method of ceramic honeycomb structure, and ceramic honeycomb structure
EP12840385.4A EP2767527B1 (en) 2011-10-11 2012-10-09 Method for producing ceramic honeycomb structure, and ceramic honeycomb structure
US15/728,674 US10377673B2 (en) 2011-10-11 2017-10-10 Production method of ceramic honeycomb structure, and ceramic honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-224389 2011-10-11
JP2011224389 2011-10-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/350,925 A-371-Of-International US9840444B2 (en) 2011-10-11 2012-10-09 Production method of ceramic honeycomb structure, and ceramic honeycomb structure
US15/728,674 Division US10377673B2 (en) 2011-10-11 2017-10-10 Production method of ceramic honeycomb structure, and ceramic honeycomb structure

Publications (1)

Publication Number Publication Date
WO2013054793A1 true WO2013054793A1 (ja) 2013-04-18

Family

ID=48081848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076140 WO2013054793A1 (ja) 2011-10-11 2012-10-09 セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体

Country Status (5)

Country Link
US (2) US9840444B2 (ja)
EP (1) EP2767527B1 (ja)
JP (1) JP6028735B2 (ja)
CN (1) CN103889929B (ja)
WO (1) WO2013054793A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085432A1 (en) * 2012-11-29 2014-06-05 Corning Incorporated A honeycomb structure comprising a multilayer cement skin
JP2017514780A (ja) * 2014-05-01 2017-06-08 コーニング インコーポレイテッド 結晶性無機繊維材料を含むセメント外皮組成物を備えたハニカム構造体
USD789505S1 (en) * 2015-06-17 2017-06-13 Ngk Insulators, Ltd. Filter for removing particle matter
JP2018126869A (ja) * 2017-02-06 2018-08-16 日本碍子株式会社 目封止ハニカム構造体の製造方法
JP2020164379A (ja) * 2019-03-29 2020-10-08 株式会社Soken ハニカム構造体
JP2021528354A (ja) * 2018-06-29 2021-10-21 コーニング インコーポレイテッド 高強度のスキンを有するセラミックハニカム体およびその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603633B2 (en) 2012-02-24 2020-03-31 Corning Incorporated Honeycomb structure comprising a cement skin composition with crystalline inorganic fibrous material
US10093587B2 (en) * 2013-06-18 2018-10-09 Robin Crawford Processes for the manufacture of lightweight ceramic materials and articles produced thereby
WO2015183980A1 (en) * 2014-05-30 2015-12-03 Eaton Corporation Integrated pressure plate and port plate for pump
EP2993323B1 (en) * 2014-09-04 2017-07-19 3M Innovative Properties Company Mounting mat for a pollution control element or a chemical reactor
JP6389134B2 (ja) * 2015-03-20 2018-09-12 日本碍子株式会社 目封止ハニカム構造体の製造方法、及び目封止ハニカム構造体
JP6335823B2 (ja) * 2015-03-25 2018-05-30 日本碍子株式会社 ハニカム構造体、及びハニカム構造体の製造方法
DE102015004006A1 (de) * 2015-03-30 2016-10-06 Man Diesel & Turbo Se Katalysatoreinheit und Abgaskatalysator
JP2018158859A (ja) * 2017-03-22 2018-10-11 日本碍子株式会社 外周コート材、及び外周コートハニカム構造体
CN107445626A (zh) * 2017-06-20 2017-12-08 上海极率科技有限公司 一种孔径梯度分布的氮化硅多孔陶瓷制备方法
JP7030588B2 (ja) * 2018-03-23 2022-03-07 日本碍子株式会社 ハニカム構造体
EP4143149A1 (en) * 2020-04-30 2023-03-08 Corning Incorporated Ceramic cement mixture and ceramic honeycomb with ceramic cement skin
CN117019153B (zh) * 2023-09-07 2024-02-02 安徽华钛高新材料有限公司 一种臭氧消除催化剂及其制备装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269388A (ja) 1992-01-30 1993-10-19 Ngk Insulators Ltd セラミックハニカム構造体及びその製造法並びにそのためのコート材
JP2003284923A (ja) 2002-03-27 2003-10-07 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びにそれを使用した触媒体
JP2004175654A (ja) 2002-11-11 2004-06-24 Hitachi Metals Ltd セラミックハニカム構造体
JP2006255542A (ja) 2005-03-16 2006-09-28 Ngk Insulators Ltd セラミックハニカム構造体
JP2011194317A (ja) * 2010-03-19 2011-10-06 Ngk Insulators Ltd ハニカム触媒体及び排ガス浄化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893837A (ja) * 1981-11-30 1983-06-03 Toyota Motor Corp 複合材料及びその製造方法
US5334570A (en) * 1991-07-25 1994-08-02 Corning Incorporated Pore impregnated catalyst device
US5629067A (en) 1992-01-30 1997-05-13 Ngk Insulators, Ltd. Ceramic honeycomb structure with grooves and outer coating, process of producing the same, and coating material used in the honeycomb structure
CA2396471C (en) * 1999-12-23 2009-06-16 The Dow Chemical Company Catalytic devices
JP4474633B2 (ja) * 2002-06-17 2010-06-09 日立金属株式会社 セラミックハニカム構造体の製造方法
US7727613B2 (en) 2002-06-17 2010-06-01 Hitachi Metals, Ltd. Ceramic honeycomb structure, process for producing the same and coat material for use in the production
JP4457338B2 (ja) * 2002-06-17 2010-04-28 日立金属株式会社 セラミックハニカム構造体、その製造方法及びそのためのコート材
JP4216174B2 (ja) * 2003-01-09 2009-01-28 日本碍子株式会社 コート材、セラミックスハニカム構造体及びその製造方法
JP4357379B2 (ja) * 2003-11-10 2009-11-04 三菱製紙株式会社 インクジェット記録媒体の製造方法
JP4550434B2 (ja) * 2004-01-15 2010-09-22 日本碍子株式会社 セル構造体及びその製造方法
JP2006298745A (ja) * 2005-03-24 2006-11-02 Ngk Insulators Ltd ハニカム構造体の製造方法及びハニカム構造体
EP2130808A4 (en) * 2007-03-28 2014-11-05 Hitachi Metals Ltd METHOD FOR PRODUCING A CERAMIC WAVE STRUCTURE
US8642137B2 (en) 2007-05-18 2014-02-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
CN104909831A (zh) * 2009-06-29 2015-09-16 陶氏环球技术有限责任公司 具有涂敷的无机表皮的陶瓷蜂窝结构体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269388A (ja) 1992-01-30 1993-10-19 Ngk Insulators Ltd セラミックハニカム構造体及びその製造法並びにそのためのコート材
JP2003284923A (ja) 2002-03-27 2003-10-07 Ngk Insulators Ltd ハニカム構造体及びその製造方法、並びにそれを使用した触媒体
JP2004175654A (ja) 2002-11-11 2004-06-24 Hitachi Metals Ltd セラミックハニカム構造体
JP2006255542A (ja) 2005-03-16 2006-09-28 Ngk Insulators Ltd セラミックハニカム構造体
JP2011194317A (ja) * 2010-03-19 2011-10-06 Ngk Insulators Ltd ハニカム触媒体及び排ガス浄化装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085432A1 (en) * 2012-11-29 2014-06-05 Corning Incorporated A honeycomb structure comprising a multilayer cement skin
US9067831B2 (en) 2012-11-29 2015-06-30 Corning Incorporated Honeycomb structure comprising a multilayer cement skin
US9833927B2 (en) 2012-11-29 2017-12-05 Corning Incorporated Method for making a honeycomb structure comprising coating a honeycomb body with cement skin layers
JP2017514780A (ja) * 2014-05-01 2017-06-08 コーニング インコーポレイテッド 結晶性無機繊維材料を含むセメント外皮組成物を備えたハニカム構造体
USD789505S1 (en) * 2015-06-17 2017-06-13 Ngk Insulators, Ltd. Filter for removing particle matter
JP2018126869A (ja) * 2017-02-06 2018-08-16 日本碍子株式会社 目封止ハニカム構造体の製造方法
JP2021528354A (ja) * 2018-06-29 2021-10-21 コーニング インコーポレイテッド 高強度のスキンを有するセラミックハニカム体およびその製造方法
JP7399121B2 (ja) 2018-06-29 2023-12-15 コーニング インコーポレイテッド 高強度のスキンを有するセラミックハニカム体およびその製造方法
JP2020164379A (ja) * 2019-03-29 2020-10-08 株式会社Soken ハニカム構造体

Also Published As

Publication number Publication date
EP2767527A4 (en) 2015-05-27
EP2767527A1 (en) 2014-08-20
US10377673B2 (en) 2019-08-13
CN103889929A (zh) 2014-06-25
EP2767527B1 (en) 2019-12-25
CN103889929B (zh) 2015-11-25
US20140295132A1 (en) 2014-10-02
JPWO2013054793A1 (ja) 2015-03-30
US9840444B2 (en) 2017-12-12
US20180044250A1 (en) 2018-02-15
JP6028735B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6028735B2 (ja) セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
JP4516017B2 (ja) セラミックハニカム構造体
KR100855167B1 (ko) 벌집형 구조체
KR100831836B1 (ko) 벌집형 유닛 및 벌집형 구조체
KR101025465B1 (ko) 허니컴 구조체 및 허니컴 구조체의 제조 방법
EP1982767B1 (en) Honeycomb segment, honeycomb structure and process for producing the same
US10232299B2 (en) Honeycomb structure
WO2009101683A1 (ja) ハニカム構造体の製造方法
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
KR101108902B1 (ko) 허니컴 필터
JP6654085B2 (ja) 多孔質材料、及び多孔質材料の製造方法並びにハニカム構造体
WO2005108328A1 (ja) ハニカム構造体及びその製造方法
JPWO2008117621A1 (ja) セラミックハニカム構造体の製造方法
WO2013125713A1 (ja) ハニカム構造体
JP6075291B2 (ja) セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
WO2009118810A1 (ja) ハニカム構造体
WO2009101691A1 (ja) ハニカム構造体
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
EP2221099B1 (en) Honeycomb structure
JP4616752B2 (ja) ハニカム構造体
JP2010234243A (ja) ハニカム構造体及びその製造方法
WO2009118811A1 (ja) ハニカム構造体
JPWO2008096569A1 (ja) Dpf用ハニカムセグメント接合体及び該接合体用接合材組成物
KR100607476B1 (ko) 벌집형 구조체 및 그 제조 방법
JP2009215153A (ja) ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538545

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012840385

Country of ref document: EP