WO2013046871A1 - 自動変速機の変速制御装置 - Google Patents

自動変速機の変速制御装置 Download PDF

Info

Publication number
WO2013046871A1
WO2013046871A1 PCT/JP2012/068163 JP2012068163W WO2013046871A1 WO 2013046871 A1 WO2013046871 A1 WO 2013046871A1 JP 2012068163 W JP2012068163 W JP 2012068163W WO 2013046871 A1 WO2013046871 A1 WO 2013046871A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
automatic transmission
gear
motor
torque
Prior art date
Application number
PCT/JP2012/068163
Other languages
English (en)
French (fr)
Inventor
良平 豊田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/347,200 priority Critical patent/US9002604B2/en
Priority to CN201280046913.6A priority patent/CN103827551B/zh
Priority to EP12836310.8A priority patent/EP2762753B1/en
Publication of WO2013046871A1 publication Critical patent/WO2013046871A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/10Controlling shift hysteresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2710/00Control devices for speed-change mechanisms, the speed change control is dependent on function parameters of the gearing
    • F16H2710/24Control dependent on torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a shift control device for an automatic transmission, and more particularly to a technique for improving the shift quality of an automatic transmission inserted in a transmission system that transmits power from an electric motor.
  • the conventional shift control technology represented by the one described in Patent Document 1 is a target deceleration to be realized by regenerative braking (negative required motor torque) of an electric motor based on a brake operation during braking. Based on the map of the relationship between the gear position of the automatic transmission that can achieve this and the transmission output rotation speed, the required shift speed that can achieve the target deceleration is calculated from the current transmission output rotation speed. The automatic transmission is shifted to the required shift speed. In other words, when the target deceleration is large, the automatic transmission is downshifted to a lower gear than the current level.
  • the target driving force that should be realized by the driving torque of the electric motor (positive required motor torque) is obtained based on the accelerator operation, and the automatic transmission is shifted to the low-side gear that can achieve this. It is. In other words, even when the target driving force is increased by the accelerator operation, the automatic transmission is downshifted to a lower gear than the current level.
  • the present invention avoids the above-mentioned problem relating to the deterioration of the transmission quality by preventing the automatic transmission from performing the above-mentioned repetitive shifting within a short time even when the above-described driving operation is performed. It is an object of the present invention to provide a shift control device for an automatic transmission that is obtained.
  • the shift control device for an automatic transmission according to the present invention is constituted as follows. First, to explain a shift control device for an automatic transmission that is a premise of the present invention, The automatic transmission is used in an automatic transmission that is inserted in a transmission system that transmits power from an electric motor, and the automatic transmission is shift-controlled according to the absolute value of the motor torque of the electric motor.
  • the gear change control device of the present invention is characterized by a configuration provided with the following torque reduction response shift request determination means and torque reduction response shift delay means in addition to the above.
  • the former torque reduction response shift request determination means determines a shift request of the automatic transmission accompanying a decrease in the absolute value of the motor torque.
  • the latter torque decrease response shift delay means delays the start of execution of the torque decrease response shift determined by the former means until the set time elapses from the determination.
  • FIG. 1 is a schematic diagram showing a drive device for a hybrid vehicle including an automatic transmission having a shift control device according to an embodiment of the present invention, together with a shift control system for the automatic transmission.
  • FIG. 2 is a shift diagram illustrating a shift pattern of the automatic transmission in FIG.
  • FIG. 3 is a speed change operation time chart when the operating point changes in the order of A1 ⁇ A2 ⁇ A3 ⁇ A4 in FIG.
  • FIG. 6 is a flowchart showing a subroutine related to torque reduction response upshift processing in FIG.
  • FIG. 6 is a change characteristic diagram showing a shift delay time corresponding to an accelerator pedal operation speed set in the control program of FIG.
  • FIG. 6 is a change characteristic diagram showing a shift delay time corresponding to a brake pedal operation speed set in the control program of FIG.
  • FIG. 6 is a time chart illustrating a speed change operation by the speed change control of FIG. 5.
  • FIG. 1 shows a drive device for a hybrid vehicle including an automatic transmission having a shift control device according to an embodiment of the present invention, which is configured as described below.
  • This drive device has, as a power source, an engine (ENG) 1 that is an internal combustion engine, a first motor / generator MG1 mainly used as a generator, and a second motor / generator MG2 used as an electric motor.
  • the engine 1 and the first motor / generator MG1 are arranged coaxially and face to face with each other, and the power distribution device 2 is disposed coaxially between them.
  • the power distribution device 2 includes a central sun gear SG, a concentric ring gear RG that surrounds the central sun gear SG, a plurality of pinion PGs that mesh with the sun gear SG and the ring gear RG, and a pinion carrier PC that rotatably supports the pinion PG. It consists of a simple planetary gear set consisting of
  • Engine 1 has its output shaft (crankshaft) 4 coupled to pinion carrier PC of power distribution device 2, and first motor / generator MG1 has its output shaft 5 coupled to sun gear SG of power distribution device 2.
  • the first shaft 6 and the second shaft 7 are juxtaposed in parallel with the arrangement axis of the engine 1, the power distribution device 2 and the motor / generator MG1 arranged coaxially.
  • the second motor / generator MG2 used as an electric motor is drivingly coupled to the second shaft 7, and is used when the motor / generator MG2 outputs motor power through the second shaft 7 and the first shaft 6 in order.
  • the low-side transmission mechanism 8 and the high-side transmission mechanism 9 are configured as follows.
  • the low-side transmission mechanism 8 is for selecting a low-side transmission path when the motor power is output, and is disposed on the first shaft 6.
  • the high-side transmission mechanism 9 is for selecting a high-side transmission path when the motor power is output, and is disposed on the second shaft 7.
  • the low-side transmission mechanism 8 includes a gear 8a rotatably supported on the first shaft 6 and a low-speed gear set composed of a gear 8b that rotates together with the second shaft 7 between the first shaft 6 and the second shaft 7.
  • the gear 8a is rotationally engaged with or disengaged from the first shaft 6 so as to be drivingly coupled.
  • the gear 8a is constituted by a dog clutch 8c as an engaging transmission element as described below.
  • the dog clutch 8c includes a clutch gear 8d provided on the gear 8a, a clutch hub 8e coupled to the first shaft 6, and a coupling sleeve 8f. Forming teeth.
  • the dog clutch 8c couples the gear 8a to the first shaft 6 to connect the motor / generator MG2. From the second shaft 7 to the first shaft 6 is transmitted by the gears 8b and 8a, and the meshed state is obtained.
  • the axial shift of the coupling sleeve 8f is performed by a hydraulic actuator (not shown).
  • the high-side speed change mechanism 9 includes a gear 9a rotatably supported on the second shaft 7 and a high-speed gear set composed of a gear 9b that rotates together with the first shaft 6 between the first shaft 6 and the second shaft 7.
  • the gear 9a is coupled to the second shaft 7 so as to be drivingly coupled, or the gear 9a is separated from the second shaft 7.
  • the gear 9a is configured by a friction clutch 9c as a friction transmission element as described below.
  • the friction clutch 9c includes a driven clutch disk 9d that rotates with the gear 9a, a drive clutch disk 9e that rotates with the second shaft 7, and a hydraulic clutch piston 9f, and functions as follows.
  • the friction clutch 9c drives the motor 9 from the motor / generator MG2 by drivingly coupling the gear 9a to the second shaft 7.
  • the gears 9a and 9b are brought into a fastened state that can be transmitted from the second shaft 7 to the first shaft 6 and output.
  • the friction clutch 9c does not drive-couple the gear 9a to the second shaft 7, thereby preventing the motor / generator MG2. In this state, the motor power cannot be transmitted from the second shaft 7 to the first shaft 6 by the gears 9a and 9b.
  • the gear ratio of the gears 9a and 9b is set smaller than the gear ratio between the gears 8b and 8a constituting the low-speed gear set so as to function as a high-speed gear set. Then, a gear is set on the outer periphery of the ring gear RG that constitutes the power distribution device 2, and the gear 9b that constitutes the high-speed gear set is meshed with this gear so that the first shaft 6 and the ring gear RG of the power distribution device 2 Power transmission between them.
  • a gear 11 is coupled to the first shaft 6, and the differential gear device 13 is drivingly coupled to the first shaft 6 via a final drive gear set including the gear 11 and a gear 12 meshing with the gear 11.
  • the motor power of the motor / generator MG2 reaching the first shaft 6 passes through the final drive gear sets 11, 12 and the differential gear device 13 to the left and right drive wheels 14 (only one drive wheel is shown in FIG. 1). To be communicated.
  • the engine 1 drives the motor / generator MG1 through the power distribution device 2, and stores the electric power generated by the motor / generator MG1 in a battery (not shown).
  • the motor / generator MG2 is driven by obtaining the electric power of the battery, and the motor power from the motor / generator MG2 is transmitted as follows.
  • the dog clutch 8c is in a non-engagement state in which the gear 8a is not rotationally engaged with the first shaft 6, and the motor power from the motor / generator MG2 can be transmitted from the second shaft 7 to the first shaft 6 by the gears 8b and 8a.
  • the friction clutch 9c is in a disengaged state in which the gear 9a is not drivingly coupled to the second shaft 7, and the motor power from the motor / generator MG2 is transmitted from the second shaft 7 to the first shaft 6 by the gears 9a and 9b. If not, The automatic transmission is in a neutral state in which the motor power is not directed to the drive wheels, and can stop the vehicle.
  • the dog clutch 8c is in a meshed state in which the gear 8a is rotationally engaged with the first shaft 6, and the motor power from the motor / generator MG2 can be transmitted from the second shaft 7 to the first shaft 6 by the gears 8b and 8a.
  • the motor power to the second shaft 7 is directed to the drive wheels 14 through the gears 8b and 8a, the meshed dog clutch 8c, the first shaft 6, the final drive gear sets 11 and 12, and the differential gear device 13, and automatic transmission
  • the machine can drive the wheel 14 at a low speed to drive the vehicle at a low speed.
  • the friction clutch 9c is in an engaged state in which the gear 9a is drivingly coupled to the second shaft 7, and the motor power from the motor / generator MG2 can be transmitted from the second shaft 7 to the first shaft 6 by the gears 9a and 9b.
  • Motor power to the second shaft 7 is directed to the drive wheel 14 through the gears 9a, 9b, the friction clutch 9c in the engaged state, the first shaft 6, the final drive gear sets 11, 12, and the differential gear device 13, and automatically
  • the transmission can drive the wheels 14 at a high speed to drive the vehicle at a high speed.
  • the motor / generator MG1 is driven via the power distribution device 2 by the gear 9b that rotates with the first shaft 6 that is always coupled to the wheels 14 by applying a power generation load to the motor / generator MG1.
  • the motor / generator MG1 can generate electric power according to the power generation load to perform predetermined regenerative braking, and can store the generated power at this time in the battery.
  • the motor / generator MG1 is not only used as a generator in this way, but also functions as an electric motor to compensate for the power shortage when it is in an operating state where the power from the motor / generator MG2 alone is insufficient. And At this time, the engine 1 is also operated so as to compensate for the power shortage as necessary.
  • the controller 21 includes a signal from the vehicle speed VSP sensor 22 that detects the vehicle speed VSP, a signal from the accelerator sensor 23 that detects the depression stroke amount STacc of the accelerator pedal, and a brake that detects the depression stroke amount STbrk of the brake pedal.
  • the signal from the sensor 24 is input.
  • the controller 21 controls the shift of the automatic transmission based on the shift map illustrated in FIG. 2 as follows.
  • the thick solid line connects the maximum motor drive torque line obtained by connecting the maximum motor drive torque value of the motor / generator MG2 for each vehicle speed VSP and the maximum motor regenerative torque value of the motor / generator MG2 for each vehicle speed VSP.
  • the maximum motor regenerative torque line obtained in (1) is shown, and the area surrounded by these is the practical area.
  • the (Low ⁇ High) upshift line indicated by the alternate long and short dash line and the (High ⁇ Low) downshift indicated by the dashed line Set the line.
  • the (Low ⁇ High) upshift line is located on the higher vehicle speed side by the hysteresis than the (High ⁇ Low) downshift line.
  • the controller 21 uses the required motor drive torque obtained from the accelerator pedal depression stroke amount STacc and the vehicle speed VSP, and is suitable for the current driving state based on the shift map of FIG. Find the target gear (low speed or high speed).
  • the controller 21 uses the required motor regeneration torque obtained from the brake pedal depression stroke amount STbrk and the vehicle speed VSP, and is suitable for the current driving state based on the shift map of FIG. Find the target gear (low speed or high speed).
  • the controller 21 rotates the dog clutch 8c in the above-described meshing state to rotationally engage the gear 8a with the first shaft 6, and the friction clutch 9c.
  • the gear 9a is disconnected from the second shaft 7, so that the motor power from the motor / generator MG2 is transmitted to the first shaft 6 from the second shaft 7 via the gears 8b and 8a.
  • the controller 21 drives the gear 9a to the second shaft 7 with the friction clutch 9c in the engaged state, and the dog clutch 8c is By disengaging the gear 8a from the first shaft 6 in a non-engaged state, the motor power from the motor / generator MG2 is transmitted to the first shaft 6 from the second shaft 7 via the gears 9a and 9b, so that the high speed stage selection state is achieved. To do.
  • the controller 21 enters the high speed range area where the operating point in the practical range exceeds the (Low ⁇ High) upshift line.
  • the target gear is switched to the low gear and the automatic transmission is downshifted from the high gear to the low gear.
  • the automatic transmission is in the low speed stage selected state, and the motor drive torque from the motor / generator MG2 is directed to the drive wheel 14 via the low speed stage selected automatic transmission.
  • the target gear is set to the low speed as shown in Fig. 3 and the downshift to the low speed is requested. Is generated, and the automatic transmission is downshifted from the high speed stage selection state to the low speed stage.
  • the automatic transmission is set to the low speed stage selection state in response to the low speed stage, and the motor regeneration torque from the motor / generator MG2 is directed to the drive wheel 14 via the automatic transmission of the low speed stage selection state. State.
  • the operating point B1 is the motor regeneration torque generated by the motor / generator MG2 when the brake pedal is depressed (brake pedal depression stroke amount STbrk> 0) as before the moment t1 in FIG. Accordingly, the automatic transmission is in the low speed stage selected state, and the motor regeneration torque from the motor / generator MG2 is directed to the drive wheel 14 via the automatic transmission in the low speed stage selected state.
  • the target gear is set to the low speed as shown in Fig. 4 and the downshift to the low speed is requested. Occurs, and the automatic transmission is downshifted from the high speed stage selection state to the low speed stage.
  • the automatic transmission is in the low speed stage selection state in response to the low speed stage, and the motor drive torque from the motor / generator MG2 is directed to the drive wheel 14 via the automatic transmission in the low speed stage selection state. State.
  • the automatic transmission performs the above-mentioned repetitive shift within a short time even when the above-described driving operation (A1 ⁇ A2 ⁇ A3 ⁇ A4 or B1 ⁇ B2 ⁇ B3 ⁇ B4) is performed. 1 so that the controller 21 in FIG. 1 executes the control program shown in FIGS. 5 and 6 to control the shift of the automatic transmission so that the problem concerning the deterioration of the shift quality can be avoided. It is.
  • step S11 of FIG. 5 it is checked based on the internal information of the controller 21 itself whether or not the current gear position selection state (actual gear position) of the automatic transmission is the low speed (Low). If the actual gear stage is not the low speed stage, that is, if the actual gear stage is the high speed stage, the repetitive shift cannot occur and the above problem does not occur, so the control is terminated as it is.
  • step S11 If it is determined in step S11 that the actual shift speed is the low speed, there is a possibility that a repetitive shift causing the above problem may occur. Therefore, in step S12, this possibility is determined based on the target shift speed determined based on FIG. Is determined by whether or not is a high speed stage.
  • step S14 the automatic transmission is maintained in the current low speed selection state.
  • step S11 The fact that it is determined in step S11 that the actual gear is low and the target gear is determined in step S12 is that the motor driving torque is reduced by releasing the accelerator pedal (indicated by A1 ⁇ A2 in FIG. 2).
  • the accelerator pedal Indicated by A1 ⁇ A2 in FIG. 2
  • step S11 and step S12 correspond to the torque reduction response shift request determination means in the present invention.
  • step S11 If it is determined in step S11 that the actual shift speed is the low speed and the target shift speed is determined in step S12 to be the high speed, the repetitive shift (low speed ⁇ high speed ⁇ low speed) occurs and the above-described problem occurs. Since this may occur, the control proceeds to step S15 and subsequent steps so that this repetitive shift does not occur.
  • a shift delay time TMs is set, and this shift delay time TMs is set as follows.
  • an upshift request due to a decrease in motor drive torque (indicated by A1 ⁇ A2 in Fig. 2) due to the release of the accelerator pedal from the accelerator pedal release speed (d / dt) STacc based on the map in Fig. 7
  • the shift delay time TMs In the case of an upshift request due to a decrease in motor regenerative torque due to the release of the brake pedal (shown as B1 ⁇ B2 in Fig. 2), the brake pedal release speed (d / dt) STbrk based on the map in Fig. 8 Set the shift delay time TMs.
  • the shift delay time TMs is increased as the accelerator pedal release speed (d / dt) STacc and the brake pedal release speed (d / dt) STbrk are increased.
  • the shift request of the automatic transmission is also generated by a change in the vehicle speed VSP (transmission output rotation speed), and the shift delay time TMs illustrated in FIGS. Longer than the shift delay time at the time of shifting according to the machine output rotation speed).
  • step S16 the timer TM that has been reset to 0 in step S13 is incremented (stepped), and after a torque reduction response upshift request accompanying a reduction in motor torque is determined in steps S11 and S12, Measure the elapsed time.
  • step S17 it is checked whether or not the measurement time of the timer TM (indicated by the same symbol TM in the drawing for the sake of convenience) has reached the shift delay time TMs set in step S15. Is returned to step S16, and the above-described timing is continued.
  • step S18 When it is determined in step S17 that the measured time of the timer TM has reached the shift delay time TMs, in step S18, the upshift shift request for the torque reduction response is executed, and the automatic transmission is set to the current low speed selection state. Upshift from to high speed stage. Therefore, steps S16 to S18 correspond to the torque reduction response shift delay means in the present invention.
  • step S18 The torque reduction response upshift performed in step S18 when the shift delay time TMs has elapsed is as shown in detail in FIG.
  • step S21 it is checked whether or not the torque reduction response upshift is being executed. If the torque reduction response upshift is not being executed, the control of FIG. 6 is unnecessary, and the control program of FIG. 6 is immediately exited.
  • step S21 When it is determined in step S21 that the torque reduction response upshift is being executed, it is checked in step S22 whether or not the target shift speed based on the shift pattern of FIG. If the target shift speed is not a low speed but a high speed, the control is finished because it is a forward speed with respect to the upshift determined in step S21 and the upshift can be continued. By doing so, the upshift is continued.
  • step S23 when performing a shift to cancel the upshift currently in progress and return to the low gear selection state, the engaging force of the friction clutch 9c that was in the engaging transition period during the upshift is immediately held, By increasing the motor torque of the motor / generator MG2 in this state, the dog clutch 8c is rotationally synchronized via the slip of the friction clutch 9c, and after engaging the dog clutch 8c in this rotationally synchronized state, the friction clutch 9c is released. Thus, the ongoing upshift can be stopped and the return shift to the low speed stage selected state can be performed.
  • the automatic transmission is not immediately upshifted from the low speed selected state to the high speed stage at the torque reduction response upshift request instant t2 in FIG. 9, and the execution of the torque reduction response upshift request is started.
  • Delay as follows:
  • the elapsed time from the torque reduction response upshift request instant t2 in FIG. 9 is measured by incrementing (stepping) the timer TM as shown in FIG. 9 (step S16).
  • the measured value of the timer TM (the elapsed time from the torque drop response upshift request instant t2) reaches the instant t3 in FIG. 9 where the delay time TMs set in step S15 in FIG. S17)
  • the torque reduction response upshift request is executed to upshift the automatic transmission from the current low speed selection state to the high speed (step S18).
  • the shift delay time TMs is made longer than the shift start response delay at the time of shift accompanying a change in the vehicle speed VSP (transmission output rotation speed), so that the above-described effects can be further ensured. Can do.
  • the shift delay time TMs is set so that the faster the accelerator pedal release speed (d / dt) STacc and the brake pedal release speed (d / dt) STbrk, the lower the motor torque absolute value. Since the longer the is, the longer the effect is, the following effects can be obtained.
  • the shift delay time TMs should be longer as the accelerator pedal release speed (d / dt) STacc and the brake pedal release speed (d / dt) STbrk are faster, although the probability of changing is high and the above-mentioned repetitive shift is likely to occur. Thus, it is possible to reliably prevent the occurrence of repetitive shifts and make the above-described effect even more remarkable.
  • the automatic transmission is a two-stage automatic transmission having only a low speed stage and a high speed stage has been described, but it can be similarly applied to a multi-stage automatic transmission. In this case as well, it is possible to prevent the repeated shift between adjacent gears and achieve the same effect.
  • the shift pattern is as shown in FIG. 2, the case where the repetitive shift is the low speed stage ⁇ the high speed stage ⁇ the low speed stage has been described as a technique for preventing this, the shift pattern Depending on the situation, the repetitive shift may be changed from high speed ⁇ low speed ⁇ high speed, and the same effect can be obtained even if it is configured as a technique for preventing such repetitive shift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

t1より、アクセルペダル釈放操作(アクセルペダルストローク量STaccの0への低下)によりモータトルクを0に向け低下させる間、t2に、目標変速段が高速段となり、トルク低下に伴うアップシフト変速要求が発生する。しかし、この変速要求を、t2から遅延時間TMsが経過するt3まで実行せず、t3に至ってはじめて当該変速要求を実行し、自動変速機を現在の低速段選択状態からから高速段へとアップシフトさせる。よって、トルク低下(アクセルペダル釈放)応答のアップシフト変速要求瞬時t2の直後(t2~t3)に、ブレーキ操作によるモータ回生トルクの増大要求があっても、これに呼応した変速が発生せず、低速段→高速段→低速段の反復変速が短時間のうちに発生するのを回避可能である。

Description

自動変速機の変速制御装置
 本発明は、自動変速機の変速制御装置に関し、特に、電動モータからの動力を伝達する伝動系に挿置された自動変速機の変速品質を向上させる技術に関するものである。
 かようにモータ伝動系に挿置した自動変速機の変速制御技術としては従来、例えば特許文献1に記載のごとく、電動モータの要求モータトルクに応じて自動変速機を変速制御する技術が知られている。
 この特許文献1に記載のものに代表される従来の変速制御技術は、制動時であれば、ブレーキ操作に基づいて、電動モータの回生制動(負の要求モータトルク)により実現すべき目標減速度を求め、これを実現可能な自動変速機の変速段と、変速機出力回転速度との関係マップを基に、現在の変速機出力回転速度から、目標減速度を実現可能な要求変速段を求め、この要求変速段へ自動変速機を変速させるものである。
 換言すれば、目標減速度が大きいとき、自動変速機を現在よりもロー側変速段へダウンシフトさせるというものである。
 また加速時は、アクセル操作に基づいて、電動モータの駆動トルク(正の要求モータトルク)により実現すべき目標駆動力を求め、これを実現可能なロー側変速段へ自動変速機を変速させるものである。
 換言すれば、アクセル操作によって目標駆動力が増大するときも、自動変速機を現在よりもロー側変速段へダウンシフトさせるというものである。
特開2000-224713号公報
 しかし上記した従来の変速制御技術では、ブレーキ操作の解除により目標減速度が小さくなるとき、自動変速機をハイ側変速段へとアップシフトさせることとなる。
 ところで、ブレーキ操作の解除により目標減速度が小さくなった後は、その直後にアクセル操作による加速要求(目標駆動力の増大)が発生する可能性が高く、これに呼応して自動変速機のダウンシフト要求が高い確率で発生することを意味する。
 従って従来の変速制御技術によると、上記のような運転操作が行われたとき、自動変速機が一旦アップシフトしたものの、その直後にダウンシフトするというような反復変速(例えば1速→2速→1速のような変速)が短時間のうちに繰り返され、違和感を与えるだけでなく、短時間のうちに複数回の変速ショックが発生し、いずれにしても変速品質の低下に関する問題を免れない。
 本発明は、上記のような運転操作が行われたときも、自動変速機が短時間のうちに上記の反復変速を行うことのないようにして、変速品質の低下に関する上記の問題を回避し得るようにした自動変速機の変速制御装置を提供することを目的とする。
 この目的のため、本発明による自動変速機の変速制御装置は、以下のごとくにこれを構成する。
 先ず、本発明の前提となる自動変速機の変速制御装置を説明するに、これは、
 電動モータからの動力を伝達する伝動系に挿置された自動変速機に用いられ、該自動変速機を、上記電動モータのモータトルク絶対値に応じ変速制御するようにしたものである。
 本発明の変速制御装置は、上記に付加して以下のようなトルク低下応答変速要求判定手段およびトルク低下応答変速遅延手段を設けた構成に特徴づけられる。
 前者のトルク低下応答変速要求判定手段は、上記モータトルク絶対値の低下に伴う上記自動変速機の変速要求を判定するものであり、また、
 後者のトルク低下応答変速遅延手段は、前者の手段により判定したトルク低下応答変速の実行開始を、該判定時から設定時間が経過する時まで遅延させるものである。
 かかる本発明による自動変速機の変速制御装置にあっては、
 モータトルク絶対値の低下に伴う自動変速機の変速要求があっても、これを直ちに実行せず、その実行開始を、当該変速要求時から設定時間が経過する時まで遅延させるため、以下のような効果を得ることができる。
 つまり、モータトルク絶対値の低下に伴う自動変速機の変速要求があったときは、その直後にモータトルク絶対値の増大を要求する操作を行う可能性が高く、これに呼応して自動変速機の戻り方向への変速要求が高い確率で発生するため、前記したような反復変速が短時間のうちに繰り返され、違和感を与えるだけでなく、短時間のうちに複数回の変速ショックが発生し、いずれにしても変速品質の低下に関する問題を生ずる。
 しかるに本発明によれば、モータトルク絶対値の低下に伴う変速要求の実行開始を、上記の設定時間だけ遅延させるため、
 モータトルク絶対値の低下に伴う変速要求があった直後に、モータトルク絶対値の増大を要求する操作が行われても、これに呼応した自動変速機の変速が生起されことがなく、前記したような反復変速が短時間のうちに繰り返されるのを回避することができる。
 従って、かかる反復変速による違和感や、短時間内における複数回の変速ショックに関する問題を生ずることがなく、変速品質を向上させることができる。
本発明の一実施例になる変速制御装置を具えた自動変速機を内包するハイブリッド車両の駆動装置を、自動変速機の変速制御システムと共に示す略線図である。 図1における自動変速機の変速パターンを例示する変速線図である。 図2において運転点がA1→A2→A3→A4のように変化する場合における変速動作タイムチャートである。 図2において運転点がB1→B2→B3→B4のように変化する場合における変速動作タイムチャートである。 図1におけるコントローラが、反復変速防止用に実行する変速制御プログラムを示すフローチャートである。 図5におけるトルク低下応答アップシフト変速処理に関したサブルーチンを示すフローチャートである。 図5の制御プログラムにおいて設定する、アクセルペダル操作速度対応の変速遅延時間を示す変化特性図である。 図5の制御プログラムにおいて設定する、ブレーキペダル操作速度対応の変速遅延時間を示す変化特性図である。 図5の変速制御による変速動作タイムチャートである。
 1 エンジン
 MG1 第1のモータ/ジェネレータ(発電機)
 MG2 第2のモータ/ジェネレータ(電動モータ)
 2 動力分配装置
 6 第1軸
 7 第2軸
 8 ロー側変速機構
 8a,8b 低速段歯車組
 8c ドグクラッチ
 9 ハイ側変速機構
 9a,9b 高速段歯車組
 9c 摩擦クラッチ
 11,12 ファイナルドライブギヤ組
 13 ディファレンシャルギヤ装置
 14 駆動車輪
 21 コントローラ
 22 車速センサ
 23 アクセルペダルセンサ
 24 ブレーキセンサ
 以下、この発明の実施例を添付の図面に基づいて説明する。
<構成>
 図1は、本発明の一実施例になる変速制御装置を具えた自動変速機を内包するハイブリッド車両の駆動装置を示し、これを以下に説明するような構成となす。
 この駆動装置は動力源として、内燃機関であるエンジン(ENG)1と、主に発電機として用いる第1のモータ/ジェネレータMG1と、電動モータとして用いる第2のモータ/ジェネレータMG2とを有する。
 エンジン1および第1のモータ/ジェネレータMG1は相互に同軸にして向かい合わせに配置し、これら両者間に動力分配装置2を、同軸に配して介在させる。
 動力分配装置2は、中心のサンギヤSGと、これを包囲する同心のリングギヤRGと、これらサンギヤSGおよびリングギヤRGに噛合する複数個のピニオンPGと、これらピニオンPGを回転自在に支持するピニオンキャリアPCとから成る単純遊星歯車組で構成する。
 エンジン1は、その出力軸(クランクシャフト)4を動力分配装置2のピニオンキャリアPCに結合し、第1のモータ/ジェネレータMG1は、その出力軸5を動力分配装置2のサンギヤSGに結合する。
 上記のごとく同軸に配置したエンジン1、動力分配装置2およびモータ/ジェネレータMG1の配列軸線に平行に配置して第1軸6および第2軸7をそれぞれ並置する。
 電動モータとして用いる第2のモータ/ジェネレータMG2は第2軸7に駆動結合し、該モータ/ジェネレータMG2から第2軸7および第1軸6を順次経てモータ動力を出力する際に用いる自動変速機を、以下のようなロー側変速機構8およびハイ側変速機構9により構成する。
 ロー側変速機構8は、上記モータ動力の出力に際しロー側伝動経路を選択するためのもので、第1軸6上に配置して設ける。
 ハイ側変速機構9は、上記モータ動力の出力に際しハイ側伝動経路を選択するためのもので、第2軸7上に配置して設ける。
 ロー側変速機構8は、第1軸6上に回転自在に支持した歯車8a、および第2軸7と共に回転する歯車8bより成る低速段歯車組が、第1軸6および第2軸7間を駆動結合するよう、歯車8aを第1軸6に回転係合させたり、この回転係合を解くためのもので、以下のような係合式変速要素としてのドグクラッチ8cにより構成する。
 ドグクラッチ8cは、歯車8aに設けたクラッチギヤ8dと、第1軸6に結合したクラッチハブ8eと、カップリングスリーブ8fとを具え、クラッチギヤ8dおよびクラッチハブ8eの外周にそれぞれ、同仕様のクラッチ歯を形成する。
 カップリングスリーブ8fが、クラッチギヤ8dおよびクラッチハブ8eの外周クラッチ歯の双方に噛合した図示の噛み合い位置にあるとき、ドグクラッチ8cは、歯車8aを第1軸6に結合して、モータ/ジェネレータMG2からのモータ動力を歯車8b,8aにより第2軸7から第1軸6へ伝達して出力可能な噛み合い状態となる。
 カップリングスリーブ8fが図示位置から軸線方向へのシフトにより、クラッチギヤ8dおよびクラッチハブ8eの外周クラッチ歯の一方と噛合しなくなった非噛み合い位置になるとき、ドグクラッチ8cは、歯車8aを第1軸6から切り離して、モータ/ジェネレータMG2からのモータ動力を歯車8b,8aにより第2軸7から第1軸6へ伝達することができない非噛み合い状態となる。
 カップリングスリーブ8fの軸線方向シフトは、図示せざる油圧アクチュエータによりこれを行うこととする。
 ハイ側変速機構9は、第2軸7上に回転自在に支持した歯車9a、および第1軸6と共に回転する歯車9bより成る高速段歯車組が、第1軸6および第2軸7間を駆動結合するよう歯車9aを第2軸7に結合したり、歯車9aを第2軸7から切り離すためのもので、以下のような摩擦式変速要素としての摩擦クラッチ9cにより構成する。
 摩擦クラッチ9cは、歯車9aと共に回転するドリブン側クラッチディスク9dと、第2軸7と共に回転するドライブ側クラッチディスク9eと、油圧式クラッチピストン9fとを具え、以下のように機能するものである。
 クラッチピストン9fが油圧により、クラッチディスク9d, 9eを相互に摩擦接触させるよう作動するとき、摩擦クラッチ9cは歯車9aを第2軸7に駆動結合させることにより、モータ/ジェネレータMG2からのモータ動力を歯車9a,9bにより第2軸7から第1軸6へ伝達して出力可能な締結状態となる。
 クラッチピストン9fが作動油圧の消失により作動しないことによって、クラッチディスク9d, 9eが相互に摩擦接触されないとき、摩擦クラッチ9cは歯車9aを第2軸7に駆動結合させないことにより、モータ/ジェネレータMG2からのモータ動力を歯車9a,9bにより第2軸7から第1軸6へ伝達することができない解放状態となる。
 なお、歯車9a,9bのギヤ比は高速段歯車組として機能するよう、低速段歯車組を構成する歯車8b,8a間のギヤ比よりも小さく設定すること勿論である。
 そして、動力分配装置2を構成するリングギヤRGの外周に歯車を設定し、この歯車に、高速段歯車組を構成する歯車9bを噛合させて、第1軸6と動力分配装置2のリングギヤRGとの間で動力伝達を行い得るようになす。
 第1軸6に歯車11を結着し、この歯車11と、これに噛合する歯車12とからなるファイナルドライブギヤ組を介して、ディファレンシャルギヤ装置13を第1軸6に駆動結合する。
 これにより、第1軸6に達したモータ/ジェネレータMG2のモータ動力がファイナルドライブギヤ組11,12およびディファレンシャルギヤ装置13を経て左右駆動車輪14(図1では一方の駆動車輪のみを示した)に伝達されるようにする。
<実施例の作用>
 エンジン1は動力分配装置2を介してモータ/ジェネレータMG1を駆動し、このモータ/ジェネレータMG1が発電した電力を図示せざるバッテリに蓄電する。
 モータ/ジェネレータMG2は上記バッテリの電力を得て駆動され、モータ/ジェネレータMG2からのモータ動力が以下のように伝達される。
 ドグクラッチ8cが、歯車8aを第1軸6に回転係合させない非噛み合い状態であって、モータ/ジェネレータMG2からのモータ動力を歯車8b,8aにより第2軸7から第1軸6へ伝達し得ず、且つ、摩擦クラッチ9cが歯車9aを第2軸7に駆動結合させない解放状態であって、モータ/ジェネレータMG2からのモータ動力を歯車9a,9bにより第2軸7から第1軸6へ伝達し得ない場合、
 自動変速機は、モータ動力を駆動車輪に向かわせることのないニュートラル状態であって、車両を停止させることができる。
 ドグクラッチ8cが、歯車8aを第1軸6に回転係合させた噛み合い状態であって、モータ/ジェネレータMG2からのモータ動力を歯車8b,8aにより第2軸7から第1軸6へ伝達し得る低速段選択時は、
 第2軸7へのモータ動力が歯車8b,8a、噛み合い状態のドグクラッチ8c、第1軸6、ファイナルドライブギヤ組11,12、およびディファレンシャルギヤ装置13を経て駆動車輪14に向かうこととなり、自動変速機は低速段で車輪14を駆動して車両を低速走行させることができる。
 摩擦クラッチ9cが、歯車9aを第2軸7に駆動結合させた締結状態であって、モータ/ジェネレータMG2からのモータ動力を歯車9a,9bにより第2軸7から第1軸6へ伝達し得る高速段選択時は、
 第2軸7へのモータ動力が歯車9a,9b、締結状態の摩擦クラッチ9c、第1軸6、ファイナルドライブギヤ組11,12、およびディファレンシャルギヤ装置13を経て駆動車輪14に向かうこととなり、自動変速機は高速段で車輪14を駆動して車両を高速走行させることができる。
 上記の低速・高速走行中における回生制動時はモータ/ジェネレータMG1に発電負荷を与えることで、車輪14に常時結合されている第1軸6と共に回転する歯車9bにより動力分配装置2を介して駆動されるモータ/ジェネレータMG1が、発電負荷に応じた発電を行って所定の回生制動を行うと共に、このときの発電電力を前記のバッテリに蓄電することができる。
 なお、モータ/ジェネレータMG1はかように発電機として用いるだけでなく、モータ/ジェネレータMG2からの動力のみでは動力不足になる運転状態であるとき、動力不足を補完するよう電動モータとしても機能するものとする。
 このとき、必要に応じてエンジン1も、当該動力不足を補完するよう運転するものとする。
<変速制御システム>
 上記した自動変速機の低速段および高速段間での変速を司る変速制御システムを、図1に基づき以下に説明する。
 自動変速機の変速に際して行うべき、ドグクラッチ8c(カップリングスリーブ8f)の噛み合い状態および非噛み合い状態間におけるシフト切り替え制御と、摩擦クラッチ9c(クラッチピストン9f)の解放状態および締結状態間における油圧作動制御とを遂行するコントローラ21を設ける。
 そしてこのコントローラ21には、車速VSPを検出する車速VSPセンサ22からの信号と、アクセルペダルの踏み込みストローク量STaccを検出するアクセルセンサ23からの信号と、ブレーキペダルの踏み込みストローク量STbrkを検出するブレーキセンサ24からの信号とを入力する。
 コントローラ21は、これら入力情報を用いて、図2に例示する変速マップを基に、以下のごとくに自動変速機を変速制御する。
 図2において、太い実線は、車速VSPごとのモータ/ジェネレータMG2の最大モータ駆動トルク値を結んで得られる最大モータ駆動トルク線と、車速VSPごとのモータ/ジェネレータMG2の最大モータ回生トルク値を結んで得られる最大モータ回生トルク線を示し、これらにより囲まれた領域が実用可能領域である。
 この実用可能領域内に、自動変速機の変速機損失およびモータ/ジェネレータMG2のモータ損失を考慮して、一点鎖線で示す(Low→High)アップシフト線および破線で示す(High→Low)ダウンシフト線を設定する。
 (Low→High)アップシフト線は(High→Low)ダウンシフト線よりも、ヒステリシス分だけ高車速側に位置する。
 アクセルペダルが踏み込まれていればコントローラ21は、アクセルペダル踏み込みストローク量STaccから求めた要求モータ駆動トルクと、車速VSPとを用いて、図2の変速マップを基に、現在の運転状態に好適な目標変速段(低速段または高速段)を求める。
 ブレーキペダルが踏み込まれていればコントローラ21は、ブレーキペダル踏み込みストローク量STbrkから求めた要求モータ回生トルクと、車速VSPとを用いて、図2の変速マップを基に、現在の運転状態に好適な目標変速段(低速段または高速段)を求める。
 そしてコントローラ21は、上記のようにして求めた目標変速段が低速段であれば、ドグクラッチ8cを前記の噛み合い状態にして歯車8aを第1軸6に回転係合させると共に、摩擦クラッチ9cを前記の解放状態にして歯車9aを第2軸7から切り離すことにより、モータ/ジェネレータMG2からのモータ動力が歯車8b,8aを経て第2軸7から第1軸6へ伝達される低速段選択状態にする。
 またコントローラ21は、上記のようにして求めた目標変速段が高速段であれば、摩擦クラッチ9cを前記の締結状態にして歯車9aを第2軸7に駆動結合させると共に、ドグクラッチ8cを前記の非噛み合い状態にして歯車8aを第1軸6から切り離すことにより、モータ/ジェネレータMG2からのモータ動力が歯車9a,9bを経て第2軸7から第1軸6へ伝達される高速段選択状態にする。
 そしてコントローラ21は、低速段選択状態(実変速段=低速段)である場合、実用可能領域内の運転点が(Low→High)アップシフト線を超えてハイ(High)側変速段領域に入るとき、目標変速段を高速段に切り替えて、自動変速機を低速段から高速段へアップシフトさせ、高速段選択状態(実変速段=高速段)である場合、実用可能領域内の運転点が(High→Low)ダウンシフト線を超えてロー(Low)側変速段領域に入るとき、目標変速段を低速段に切り替えて、自動変速機を高速段から低速段へダウンシフトさせる。
<通常の変速制御の問題点と対策>
 上記した変速制御は通常の変速制御であるが、この場合、以下に説明するような問題を生ずる。
 先ず、運転点が図2のA1からA2,A3を経てA4に至るような運転を行った場合につき、問題点を説明する。
 運転点A1は、図3の瞬時t1以前におけるごとく、アクセルペダルの踏み込み(アクセルペダル踏み込みストローク量STacc>0)によってモータ/ジェネレータMG2がモータ駆動トルクを発生しており、また目標変速段=(Low)に呼応して自動変速機が低速段選択状態にされており、モータ/ジェネレータMG2からのモータ駆動トルクが低速段選択状態の自動変速機を経て駆動車輪14へ向かっている状態である。
 この状態(運転点A1)から、図3の瞬時t1以降におけるごとく、アクセルペダルの釈放(アクセルペダル踏み込みストローク量STaccの低下)によりモータ駆動トルクを0に向け低下させると、運転点が図2のA1からA2を経て更に低下し、A0に達するる。
 運転点がA2を通過する図3の瞬時t2に、図2のハイ(High)側変速段領域に入るため、目標変速段が図3のごとく高速段となり、当該高速段へのアップシフト変速要求が発生して、自動変速機は低速段選択状態から高速段へアップシフトされる。
 その後、図3の瞬時t3以降におけるごとく、ブレーキペダルの踏み込みによりブレーキペダル踏み込みストローク量STbrkが発生すると、モータ/ジェネレータMG2は、ブレーキペダル踏み込みストローク量STbrkの増大と共に大きくなるモータ回生トルクを発生するようになり、運転点が図2のA3を経て最終的にA4に至る。
 運転点A3に至る図3の瞬時t4までは、未だ図2のハイ(High)側変速段領域にあるため、目標変速段が高速段のままであって自動変速機は高速段選択状態を維持する。
 従って、モータ/ジェネレータMG2からの上記モータ回生トルクは高速段選択状態の自動変速機を経て駆動車輪14に向かっている。
 運転点がA3を通過する図3の瞬時t4に、図2のロー(Low)側変速段領域に入るため、目標変速段が図3のごとく低速段となり、当該低速段へのダウンシフト変速要求が発生して、自動変速機は高速段選択状態から低速段へとダウンシフトされる。
 運転点A4は、図3の瞬時t4以降におけるごとく、ブレーキペダルの踏み込み(ブレーキペダル踏み込みストローク量STbrk>0)によってモータ/ジェネレータMG2が上記の通りモータ回生トルクを発生しており、また目標変速段=低速段に呼応して自動変速機が上記の通り低速段選択状態にされており、モータ/ジェネレータMG2からのモータ回生トルクが低速段選択状態の自動変速機を経て駆動車輪14へ向かっている状態である。
 以上の説明から明らかなように、アクセルペダルを踏み込み状態から釈放し、その後ブレーキペダルを踏み込んで、運転点が図2のA1からA2,A3を経てA4に至るような運転を行った場合、
 自動変速機が一旦、低速段選択状態から高速段選択状態へとアップシフトしても、その直後に高速段選択状態から低速段選択状態へとダウンシフトするというような反復変速を短時間のうちに繰り返し、運転者に違和感を与えるだけでなく、短時間のうちに複数回の変速ショックが発生し、いずれにしても変速品質の低下を免れない。
 運転点が図2のB1からB2,B3を経てB4に至るような運転を行った場合も、以下に説明するように同様な問題を生ずる。
 運転点B1は、図4の瞬時t1以前におけるごとく、ブレーキペダルの踏み込み(ブレーキペダル踏み込みストローク量STbrk>0)によってモータ/ジェネレータMG2がモータ回生トルクを発生しており、また目標変速段=低速段に呼応して自動変速機が低速段選択状態にされており、モータ/ジェネレータMG2からのモータ回生トルクが低速段選択状態の自動変速機を経て駆動車輪14に向かっている状態である。
 この状態(運転点B1)から、図4の瞬時t1以降におけるごとく、ブレーキペダルの釈放(ブレーキペダル踏み込みストローク量STbrkの低下)によりモータ回生トルクを0に向け低下させると、運転点が図2のB1からB2を経て更に上昇する。
 運転点がB2を通過する図4の瞬時t2に、図2のハイ(High)側変速段領域に入るため、目標変速段が図4のごとく高速段となり、当該高速段へのアップシフト変速要求が発生して、自動変速機は低速段選択状態から高速段へアップシフトされる。
 その後、図4の瞬時t3以降におけるごとく、アクセルペダルの踏み込みによりアクセルペダル踏み込みストローク量STaccが発生すると、モータ/ジェネレータMG2は、アクセルペダル踏み込みストローク量STaccの増大と共に大きくなるモータ駆動トルクを発生するようになり、運転点が図2のB3を経て最終的にB4に至る。
 運転点B3に至る図4の瞬時t4までは、未だ図2のハイ(High)側変速段領域にあるため、目標変速段が高速段のままであって自動変速機は高速段選択状態を維持する。
 従って、モータ/ジェネレータMG2からの上記モータ駆動トルクは高速段選択状態の自動変速機を経て駆動車輪14へ向かっている。
 運転点がB3を通過する図4の瞬時t4に、図2のロー(Low)側変速段領域に入るため、目標変速段が図4のごとく低速段となり、当該低速段へのダウンシフト変速要求が発生して、自動変速機は高速段選択状態から低速段へダウンシフトされる。
 運転点B4は、図4の瞬時t4以降におけるごとく、アクセルペダルの踏み込み(アクセルペダル踏み込みストローク量STacc>0)によってモータ/ジェネレータMG2が上記の通りモータ駆動トルクを発生しており、また目標変速段=低速段に呼応して自動変速機が上記の通り低速段選択状態にされており、モータ/ジェネレータMG2からのモータ駆動トルクが低速段選択状態の自動変速機を経て駆動車輪14へ向かっている状態である。
 以上の説明から明らかなように、ブレーキペダルを踏み込み状態から釈放し、その後アクセルペダルを踏み込んで、運転点が図2のB1からB2,B3を経てB4に至るような運転を行った場合も、
 自動変速機が一旦、低速段選択状態から高速段選択状態へとアップシフトした直後に、高速段選択状態から低速段選択状態へとダウンシフトするというような反復変速を短時間のうちに繰り返し、運転者に違和感を与えるだけでなく、短時間のうちに複数回の変速ショックが発生し、いずれにしても変速品質の低下を免れない。
 本実施例は、上記のような運転操作(A1→A2→A3→A4、またはB1→B2→B3→B4)が行われたときも、自動変速機が短時間のうちに上記の反復変速を行うことのないようにして、変速品質の低下に関する問題を回避し得るよう、図1におけるコントローラ21が図5,6に示す制御プログラムを実行して、自動変速機を変速制御するようにしたものである。
 図2の変速マップに基づく変速の場合、前記の問題を生じさせる反復変速は、低速段→高速段→低速段のみであり、高速段→低速段→高速段の反復変速が存在しないことから、先ず図5のステップS11においては、コントローラ21自身の内部情報を基に、現在における自動変速機の変速段選択状態(実変速段)が低速段(Low)か否かをチェックする。
 実変速段が低速段でなければ、つまり実変速段が高速段である場合は、反復変速が起きえず、前記の問題を生じないことから、制御をそのまま終了する。
 ステップS11で実変速段=低速段と判定する場合は、前記問題の原因となる反復変速が起きる可能性があることから、ステップS12においてこの可能性を、図2に基づいて求めた目標変速段が高速段か否かにより判定する。
 目標変速段が高速段でなければ、つまり低速段であれば、実減速段=目標変速段=低速段であって変速の必要がないことから、ステップS13において、後述する制御のための計時タイマTMを0にリセットした後、ステップS14において、自動変速機を現在の低速段選択状態のままに維持する。
 ステップS11で実変速段=低速段と判定し、且つステップS12で目標変速段=高速段と判定したということは、アクセルペダルの釈放による(図2のA1→A2で示す)モータ駆動トルクの低下に伴って、またはブレーキペダルの釈放による(図2のB1→B2で示す)モータ回生トルクの低下に伴って実変速段(低速段)に対する目標変速段の乖離(トルク低下応答アップシフト変速要求)が発生したことを意味する。
 従ってステップS11およびステップS12は、本発明におけるトルク低下応答変速要求判定手段に相当する。
 ステップS11で実変速段=低速段と判定し、且つステップS12で目標変速段=高速段と判定した場合は、前記の反復変速(低速段→高速段→低速段)が起きて前記の問題を生ずる可能性があることから、この反復変速が起きないよう、制御をステップS15以降に進める。
 ステップS15においては変速遅延時間TMsを設定し、かかる変速遅延時間TMsの設定に際しては、これを以下のごとくに行う。
 アクセルペダルの釈放による(図2のA1→A2で示す)モータ駆動トルクの低下に伴うアップシフト変速要求である場合は、図7のマップを基にアクセルペダルの釈放速度(d/dt)STaccから変速遅延時間TMsを設定し、
 ブレーキペダルの釈放による(図2のB1→B2で示す)モータ回生トルクの低下に伴うアップシフト変速要求である場合は、図8のマップを基にブレーキペダルの釈放速度(d/dt)STbrkから変速遅延時間TMsを設定する。
 なお、変速遅延時間TMsは図7,8に示すごとく、アクセルペダル釈放速度(d/dt)STaccおよびブレーキペダルの釈放速度(d/dt)STbrkが速いほど長くする。
 ところで、図2から明らかなように自動変速機の変速要求は、車速VSP(変速機出力回転速度)の変化によっても発生し、図7,8に例示する変速遅延時間TMsは、車速VSP(変速機出力回転速度)に応じた変速時の変速遅れ時間よりも長くする。
 次のステップS16においては、ステップS13で0にリセットさせたタイマTMをインクリメント(歩進)させて、ステップS11およびステップS12でモータトルクの低下に伴うトルク低下応答アップシフト変速要求が判定されてからの経過時間を計測する。
 ステップS17においては、当該タイマTMの計測時間(図面では便宜上、同じ符号TMによって示す)が、ステップS15で設定した変速遅延時間TMsに達したか否かをチェックし、達していない間は、制御をステップS16に戻して上記の計時を引き続き行う。
 ステップS17で、上記タイマTMの計測時間が変速遅延時間TMsに達したと判定するとき、ステップS18において、上記トルク低下応答のアップシフト変速要求を実行し、自動変速機を現在の低速段選択状態からから高速段へとアップシフトさせる。
 従ってステップS16~ステップS18は、本発明におけるトルク低下応答変速遅延手段に相当する。
 変速遅延時間TMsの経過時にステップS18で実行されるトルク低下応答アップシフト変速は、詳しくは図6に示すごときものである。
 ステップS21においては、上記のトルク低下応答アップシフト変速が実行されているか中か否かをチェックする。
 トルク低下応答アップシフト変速が実行中でなければ、図6の制御が不要であるから、そのまま図6の制御プログラムから抜ける。
 ステップS21でトルク低下応答アップシフト変速が実行中と判別するときは、ステップS22において、図2の変速パターンに基づく目標変速段が低速段か否かをチェックする。
 目標変速段が低速段でなく高速段であれば、ステップS21で判別したアップシフト変速に対し順方向の変速段であって、当該アップシフトを継続しても差し支えないことから、制御をそのまま終了することにより、当該アップシフトを引き続き進行させる。
 しかし、ステップS22で目標変速段が低速段(アクセルペダルまたはブレーキペダルの踏み込みによるモータトルク絶対値の増大で目標変速段=低速段になった)と判定する場合は、ステップS21で判別したアップシフト変速に対し逆方向の変速段であって、当該アップシフトを継続すると、この変速が目標変速段=低速段に逆らう変速であることから、ステップS23において、現在行われているアップシフトを中止し、自動変速機を低速段選択状態に戻す変速を行うこととする。
 従って、ステップS22は本発明における逆方向変速要求判定手段に相当し、またステップS23は、本発明における逆方向変速実行手段に相当する。
 なおステップS23で、現在進行中のアップシフトを中止して低速段選択状態に戻す変速を行うに当たっては、アップシフト中に締結過渡期であった摩擦クラッチ9cの締結力を即座に保持し、この状態でモータ/ジェネレータMG2のモータトルクを増大させることにより摩擦クラッチ9cのスリップを介してドグクラッチ8cを回転同期させ、この回転同期状態でドグクラッチ8cを係合させた後、摩擦クラッチ9c解放させることにより、進行中のアップシフトの中止および低速段選択状態への復帰変速を行わせることができる。
<実施例の効果>
 図5,6につき上述した本実施例の変速制御によれば、以下のような効果を得ることができる。
 図9に示すごとく瞬時t1より、図3と同様なアクセルペダル釈放操作(アクセルペダル踏み込みストローク量STaccの0への低下)によりモータ駆動トルクを0に向け低下させたことで、運転点が図2のA1からA2を経て、モータ駆動トルク=0に対応したA0に至った場合につき説明すると、
 運転点がA2を通過する図9の瞬時t2に、図2のハイ(High)側変速段領域に入るため、目標変速段が図9のごとく高速段となり、トルク低下に伴う当該高速段へのトルク低下応答アップシフト変速要求が発生する。
 しかし本実施例では、図9のトルク低下応答アップシフト変速要求瞬時t2に自動変速機を即座に低速段選択状態から高速段へアップシフトさせず、当該トルク低下応答アップシフト変速要求の実行開始を以下のように遅延させる。
 つまり、図9のトルク低下応答アップシフト変速要求瞬時t2からの経過時間を、同図に示すようなタイマTMのインクリメント(歩進)により計測する(ステップS16)。
 そしてタイマTMの計測値(トルク低下応答アップシフト変速要求瞬時t2からの経過時間)が、図5のステップS15で設定した遅延時間TMsを示すようになる図9の瞬時t3に至ったとき(ステップS17)、
 上記トルク低下応答アップシフト変速要求を実行して、自動変速機を現在の低速段選択状態からから高速段へとアップシフトさせる(ステップS18)。
 ところで、上記のごとくトルク低下(アクセルペダル釈放)応答のアップシフト変速要求があったときは、その直後に、ブレーキ操作によりモータ回生トルクの増大を要求する可能性が高く、これに呼応して自動変速機の戻り方向へのダウンシフト変速要求が高い確率で発生する。
 そのため、トルク低下(アクセルペダル釈放)応答のアップシフト変速要求が発生したとき直ちにこの変速要求を実行すると、図3につき前述した通り反復変速が短時間のうちに繰り返され、違和感を与えるだけでなく、短時間のうちに複数回の変速ショックが発生し、いずれにしても変速品質の低下に関する問題を生ずる。
 しかるに本実施例によれば、トルク低下(アクセルペダル釈放)応答のアップシフト変速要求が発生しても(図9の瞬時t2)、直ちにこの変速要求を実行せず、この変速要求から遅延時間TMsが経過した瞬時t3に至ってはじめて変速要求を実行するため、
 トルク低下(アクセルペダル釈放)応答のアップシフト変速要求瞬時t2の直後(t2~t3)に、ブレーキ操作によるモータ回生トルクの増大要求があっても、これに呼応した変速が発生せず、上記したような反復変速が短時間のうちに繰り返されるのを回避することができる。
 従って、かかる反復変速による違和感や、短時間内における複数回の変速ショックに関する問題を生ずることがなく、変速品質を向上させることができる。
 なお、図9につき上述したアクセルペダル釈放時の作用効果は、図4につき前述したと同様なブレーキペダル釈放操作(ブレーキペダル踏み込みストローク量STbrkの0への低下)によりモータ回生トルクを0に向け低下させたことで、運転点が図2のB1からB2を経て、モータ回生トルク=0に対応した運転点に至った時においても同様に奏し得られること勿論である。
 また本実施例においては、変速遅延時間TMsを、車速VSP(変速機出力回転速度)の変化に伴う変速時の変速開始応答遅れよりも長くしたため、上記の作用効果を一層確実なものにすることができる。
 更に変速遅延時間TMsを、図7,8につき前述したごとく、アクセルペダル釈放速度(d/dt)STaccおよびブレーキペダルの釈放速度(d/dt)STbrkが速いほど、つまりモータトルク絶対値の低下速度が速いほど長くしたため、以下のような効果を得ることができる。
 つまり、アクセルペダル釈放速度(d/dt)STaccおよびブレーキペダルの釈放速度(d/dt)STbrkが速いほど、その直後にアクセルペダルからブレーキペダルへの、またブレーキペダルからアクセルペダルへのペダルの踏み替えを行う確率が高く、前記の反復変速が生じやすいところながら、変速遅延時間TMsをアクセルペダル釈放速度(d/dt)STaccおよびブレーキペダルの釈放速度(d/dt)STbrkが速いほど長くすることで、反復変速の発生を確実に防止して前記の効果を一層顕著なものにし得る。
 そして、アクセルペダル釈放速度(d/dt)STaccおよびブレーキペダルの釈放速度(d/dt)STbrkがゆっくりである場合は、変速遅延時間TMsが不必要に長くなることがなくなり、変速遅延時間TMsによる変速応答遅れを必要最小限にとどめつつ上記の効果を達成することができる。
 更に本実施例では、ステップS18でのトルク低下応答変速(アップシフト)中に、これとは逆方向への変速要求をもたらす目標変速段=低速段となった場合は(ステップS22)、上記のトルク低下応答変速(アップシフト)を中断して、目標変速段=低速段に呼応した逆方向変速を実行させるようにしたため、
 トルク低下応答変速(アップシフト)でも、目標変速段=低速段に呼応した逆方向変速が保証されることとなり、運転者のペダル操作通りの駆動力を実現して走行性能が犠牲になるのを防止することができる。
その他の実施例
 なお上記した図示の実施例では、自動変速機が低速段と高速段しか持たない2段自動変速機である場合について説明したが、それより多段の自動変速機にも同様にして適用可能であり、この場合も隣接変速段間における反復変速を防止して、同様な効果を達成することができる。
 また上記した図示の実施例では、変速パターンが図2に示すものであるが故に、反復変速が低速段→高速段→低速段である場合につき、これを防止する技術として説明したが、変速パターンによっては反復変速が高速段→低速段→高速段となることがあり、このような反復変速を防止する技術として構成しても同様な作用効果を奏し得る。

Claims (4)

  1.  電動モータからの動力を伝達する伝動系に挿置された自動変速機に用いられ、該自動変速機を、前記電動モータのモータトルク絶対値に応じ変速制御するようにした自動変速機の変速制御装置において、
     前記モータトルク絶対値の低下に伴う前記自動変速機の変速要求を判定するトルク低下応答変速要求判定手段と、
     該手段により判定したトルク低下応答変速の実行開始を、該判定時から設定時間が経過する時まで遅延させるトルク低下応答変速遅延手段とを具備してなることを特徴とする自動変速機の変速制御装置。
  2.  前記自動変速機を変速機出力回転速度に応じても変速制御するようにした、請求項1に記載された、自動変速機の変速制御装置において、
     前記変速遅延用の設定時間は、前記変速機出力回転速度に応じた変速時の変速開始遅れ時間よりも長いものであることを特徴とする自動変速機の変速制御装置。
  3.  請求項1または2に記載された、自動変速機の変速制御装置において、
     前記変速遅延用の設定時間は、前記モータトルク絶対値の低下速度が速いほど長いものであるあることを特徴とする自動変速機の変速制御装置。
  4.  請求項1~3のいずれか1項に記載された、自動変速機の変速制御装置において、
     前記設定時間の経過後に遅延して開始された、前記トルク低下応答変速中に、該変速とは逆方向への変速要求が発生したのを判定する逆方向変速要求判定手段と、
     該手段により逆方向変速要求が判定されたとき、前記トルク低下応答変速を中断して、前記逆方向変速要求を実行させる逆方向変速実行手段とを具備してなることを特徴とする自動変速機の変速制御装置。
PCT/JP2012/068163 2011-09-26 2012-07-18 自動変速機の変速制御装置 WO2013046871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/347,200 US9002604B2 (en) 2011-09-26 2012-07-18 Shift control device of automatic transmission
CN201280046913.6A CN103827551B (zh) 2011-09-26 2012-07-18 自动变速器的变速控制装置及方法
EP12836310.8A EP2762753B1 (en) 2011-09-26 2012-07-18 Shift control device and shift control method for an automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011208387A JP5982766B2 (ja) 2011-09-26 2011-09-26 自動変速機の変速制御装置
JP2011-208387 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013046871A1 true WO2013046871A1 (ja) 2013-04-04

Family

ID=47994927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068163 WO2013046871A1 (ja) 2011-09-26 2012-07-18 自動変速機の変速制御装置

Country Status (5)

Country Link
US (1) US9002604B2 (ja)
EP (1) EP2762753B1 (ja)
JP (1) JP5982766B2 (ja)
CN (1) CN103827551B (ja)
WO (1) WO2013046871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179964A (zh) * 2013-05-24 2014-12-03 通用汽车环球科技运作有限责任公司 控制车辆变速器的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003620B1 (fr) * 2013-03-19 2015-03-06 Renault Sas Procede et dispositif de synchronisation d'un pignon fou de boite de vitesse sur son arbre
DE102013218365A1 (de) * 2013-09-13 2015-03-19 Zf Friedrichshafen Ag Verfahren zur Durchführung der Synchronisierung eines formschlüssigen Schaltelementes bei einer Schaltung im Schubbetrieb bei positivem Motoreingriff oder positiver Drehzahlführung
WO2015130614A1 (en) * 2014-02-25 2015-09-03 Cummins, Inc. Power regeneration optimization in a hybrid vehicle
CN104088971A (zh) * 2014-05-09 2014-10-08 天津内燃机研究所 一种车辆及车辆用变速器和离合器
CN104019193B (zh) * 2014-06-17 2016-06-01 西南大学 扭矩回差式两挡自动变速器及换挡控制方法
US9939050B2 (en) * 2016-02-18 2018-04-10 GM Global Technology Operations LLC Pressure sensor for power take off
US11041563B2 (en) * 2017-03-15 2021-06-22 Hitachi Automotive Systems, Ltd. Transmission control device for vehicle
EP3609532A1 (en) 2017-04-13 2020-02-19 Cadila Healthcare Limited Novel peptide based pcsk9 vaccine
JP7052331B2 (ja) * 2017-12-14 2022-04-12 三菱自動車工業株式会社 車両制御装置
CN110953334B (zh) * 2020-02-19 2021-05-28 盛瑞传动股份有限公司 一种防止自动变速器频繁换挡的控制方法
US11731628B2 (en) 2021-03-12 2023-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for high motor speed regenerative breaking

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117776A (ja) * 1989-07-05 1991-05-20 Dr Ing H C F Porsche Ag 自動変速装置の制御方法および制御装置
JPH07322416A (ja) * 1994-05-27 1995-12-08 Honda Motor Co Ltd 電動車両の変速制御方法
JP2000224713A (ja) 1999-02-03 2000-08-11 Toyota Motor Corp ハイブリッド車両及びその制御方法
JP2000274525A (ja) * 1999-03-24 2000-10-03 Aisin Aw Co Ltd 自動変速機の制御装置
JP2008111491A (ja) * 2006-10-31 2008-05-15 Denso Corp 自動変速機の制御装置
JP2009180247A (ja) * 2008-01-29 2009-08-13 Aisin Seiki Co Ltd 自動変速機の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029491A (ja) * 2004-07-20 2006-02-02 Toyota Motor Corp 自動変速機の制御装置
JP4245626B2 (ja) * 2006-10-11 2009-03-25 トヨタ自動車株式会社 車両およびその制御方法
US7637846B2 (en) * 2007-01-23 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for control of transmission shifting
JP4228085B2 (ja) * 2007-02-07 2009-02-25 トヨタ自動車株式会社 車両およびその制御方法、動力出力装置およびその制御方法、ならびに駆動装置およびその制御方法
JP4192992B2 (ja) * 2007-02-15 2008-12-10 トヨタ自動車株式会社 動力出力装置及びその動力出力装置を搭載したハイブリッド車
JP4379498B2 (ja) * 2007-07-18 2009-12-09 トヨタ自動車株式会社 駆動源の制御装置および制御方法
JP5473932B2 (ja) * 2007-11-20 2014-04-16 マグナ パワートレイン ユーエスエー インク 電気自動車用2段変速トランスアクスルギヤボックス
US8070651B2 (en) * 2007-12-07 2011-12-06 Deere & Company Work machine coast and brake control with an infinitely variable transmission
JP5298573B2 (ja) * 2008-03-04 2013-09-25 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5181739B2 (ja) * 2008-03-07 2013-04-10 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5146534B2 (ja) * 2008-11-12 2013-02-20 トヨタ自動車株式会社 車両の制御装置および制御方法
JP5062494B2 (ja) * 2009-10-30 2012-10-31 アイシン・エィ・ダブリュ株式会社 車両用制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117776A (ja) * 1989-07-05 1991-05-20 Dr Ing H C F Porsche Ag 自動変速装置の制御方法および制御装置
JPH07322416A (ja) * 1994-05-27 1995-12-08 Honda Motor Co Ltd 電動車両の変速制御方法
JP2000224713A (ja) 1999-02-03 2000-08-11 Toyota Motor Corp ハイブリッド車両及びその制御方法
JP2000274525A (ja) * 1999-03-24 2000-10-03 Aisin Aw Co Ltd 自動変速機の制御装置
JP2008111491A (ja) * 2006-10-31 2008-05-15 Denso Corp 自動変速機の制御装置
JP2009180247A (ja) * 2008-01-29 2009-08-13 Aisin Seiki Co Ltd 自動変速機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179964A (zh) * 2013-05-24 2014-12-03 通用汽车环球科技运作有限责任公司 控制车辆变速器的方法

Also Published As

Publication number Publication date
EP2762753A1 (en) 2014-08-06
US9002604B2 (en) 2015-04-07
EP2762753B1 (en) 2018-09-12
EP2762753A4 (en) 2015-09-02
CN103827551B (zh) 2016-02-24
JP5982766B2 (ja) 2016-08-31
CN103827551A (zh) 2014-05-28
JP2013068299A (ja) 2013-04-18
US20140236437A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5982766B2 (ja) 自動変速機の変速制御装置
JP4323132B2 (ja) 自動車の制御方法,自動車の制御装置,変速機,変速機の制御装置および車両システム
JP5810662B2 (ja) 自動変速機の変速制御装置
US7841963B2 (en) Shift control apparatus for an automatic transmission
JP5854156B2 (ja) 電動車両の変速制御装置
US20150038296A1 (en) Shift control system for electric vehicle
US9829093B2 (en) Control apparatus for vehicle
JP3675341B2 (ja) 車両用駆動装置
JP3876126B2 (ja) 自動変速機のプリチャージ制御装置
JP2007177925A (ja) 自動車の制御装置,制御方法、及び自動変速機
JP6123518B2 (ja) 自動変速機制御装置
JP4097889B2 (ja) 自動変速機の変速制御装置
US8190340B2 (en) Shift control device for automatic transmission and control method thereof
JP6070294B2 (ja) 車両の変速制御装置
JP2010169162A (ja) 車両の制御装置
JP2005061440A (ja) 変速機,変速機の制御装置、および変速機の制御方法
JP4371269B2 (ja) 自動変速機の制御装置および制御方法
US10821985B2 (en) Gear change control device and gear change control method
US9031751B2 (en) Device for controlling automatic transmission
JP5978911B2 (ja) 車両の走行制御装置
JP5119807B2 (ja) 車両の制御装置
JP7021005B2 (ja) ハイブリッド車両
JP4840195B2 (ja) 自動変速機の制御装置
JP2010180987A (ja) 変速機の制御装置
JP6332317B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280046913.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012836310

Country of ref document: EP