WO2013042426A1 - 親和性複合体に対する抗体 - Google Patents
親和性複合体に対する抗体 Download PDFInfo
- Publication number
- WO2013042426A1 WO2013042426A1 PCT/JP2012/067062 JP2012067062W WO2013042426A1 WO 2013042426 A1 WO2013042426 A1 WO 2013042426A1 JP 2012067062 W JP2012067062 W JP 2012067062W WO 2013042426 A1 WO2013042426 A1 WO 2013042426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- affinity complex
- vitamin
- complex
- affinity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/26—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/743—Steroid hormones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/78—Thyroid gland hormones, e.g. T3, T4, TBH, TBG or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/82—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/32—Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to an antibody against an affinity complex, and an assay of factors constituting the affinity complex using an antibody against the affinity complex.
- the measurement sensitivity of the competitive inhibition method depends on the affinity of the antibody used for the antigen, but it is generally known that when an antibody against a low-molecular substance is prepared, a high-affinity antibody is difficult to obtain. ing. Further, in the competitive inhibition method, the specificity is exhibited based on the reactivity of one kind of antibody, so it is necessary to obtain a highly specific antibody, but it is difficult to obtain such an antibody. Accompany. That is, in the measurement by the competitive inhibition method, a great deal of labor is required for selecting an antibody that satisfies the sensitivity and specificity of the measurement.
- the competitive inhibition method has a low measurement accuracy and measurement sensitivity when the measurement target substance is at a low concentration and a high concentration, and it is difficult to determine the competition conditions between the sample and the labeled antigen. There are drawbacks.
- Non-Patent Document 1 discloses that a low molecular hapten ( ⁇ 9-tetrahydrocannabinol: MW314.5) -antibody complex antibody was successfully obtained by mouse immunization, and about five fusion experiments were conducted. It has been described that 200 anti-mouse antibody (idiotype) antibodies have been established, but only 1 clone of the complex recognition antibody.
- Patent Documents 1 and 2 and Non-Patent Documents 1 to 4 are known.
- a method for producing antibodies and antibody-producing cells a method disclosed in Patent Document 3 is known.
- An object of the present invention is to measure a substance such as a low molecular substance with high sensitivity and specificity by a sandwich method.
- an affinity complex for example, a complex containing a low molecular weight substance and an antibody thereto
- a predetermined method to specifically identify the affinity complex.
- the factors that constitute affinity complexes for example, substances such as low-molecular substances
- the present invention has been completed.
- the present invention is as follows.
- [6] The antibody according to any one of [1] to [5], wherein at least one factor constituting the affinity complex is a protein.
- the affinity complex is a complex comprising a low molecular weight substance and an antibody thereto.
- the low molecular substance is (a) a steroid compound, (b) an amino acid compound, or (c) a vitamin.
- An affinity complex comprising estrone and the anti-estradiol antibody (affinity complex I ′), an affinity complex comprising estriol and the anti-estradiol antibody (affinity complex I ′′), an estradiol conjugate And an affinity complex comprising the anti-estradiol antibody (affinity complex I ′ ′′), an affinity complex comprising estramustine and the anti-estradiol antibody (affinity complex I ′′ ′′), or est
- the binding rate of antibody I to an affinity complex comprising lomustine and the anti-estradiol antibody (affinity complex I ′ ′′ ′′) is 10% or less;
- Binding of an antibody (antibody II) capable of specifically binding to affinity complex II to an affinity complex (affinity complex II) comprising triiodothyronine and an anti-triiodothyronine antibody When the ratio was calculated as 100%, an affinity complex containing diiodothyronine and the anti-triiodothyronine antibody (affinity complex II
- [12] including culturing antibody-producing cells capable of producing an antibody capable of specifically binding to the affinity complex to obtain an antibody capable of specifically binding to the affinity complex
- the antibody of any one of [1] to [11] produced by the method.
- [13] Set including: (I) an antibody capable of specifically binding to the affinity complex; and (ii) at least one factor constituting the affinity complex.
- a method for measuring an affinity complex comprising measuring the affinity complex using an antibody capable of specifically binding to the affinity complex.
- the method according to [15], wherein the affinity complex is measured by a sandwich method.
- the present invention provides an antibody that can specifically bind to an affinity complex such as an antigen (eg, low molecular weight substance) antibody complex.
- an affinity complex such as an antigen (eg, low molecular weight substance) antibody complex.
- a low molecular weight substance that has been conventionally measured by a competitive inhibition method can be measured by a sandwich method. Measurement using the sandwich method can be expected to increase measurement sensitivity, improve specificity, improve measurement accuracy, and speed up measurement system construction.
- the antibody acquisition operation is simple, it is easy to reduce the cost and speed up by automating the operation.
- the present invention is useful not only for the measurement of low-molecular substances, but also for the measurement of factors other than low-molecular substances, and the development of drugs that target a predetermined factor as a therapeutic target.
- FIG. 1 is a view showing cell clones (No. 1 to 43) obtained by the method of the present invention. Two cell clones produced antibodies that could specifically bind to antigen-antibody complexes (affinity complexes including estrogen and anti-estrogen antibodies).
- FIG. 2 is a diagram showing cell clones (No. 44 to 88) obtained by the method of the present invention. One cell clone produced an antibody that could specifically bind to the antigen-antibody complex (affinity complex including estrogen and anti-estrogen antibody).
- FIG. 3 is a view showing cell clones (No. 1 to 56) obtained by the method of the present invention.
- FIG. 5 is a graph showing the sensitivity to T3 in the measurement using the antibody of the present invention.
- FIG. 6 is a view showing cell clones (No. 1 to 86) obtained by the method of the present invention.
- FIG. 7 is a view showing cell clones (Nos. 87 to 174) obtained by the method of the present invention.
- Two cell clones produced antibodies that could specifically bind to the antigen-antibody complex (affinity complex comprising 25OH vitamin D3 and anti-25OH vitamin D antibody).
- FIG. 8 is a diagram showing the sensitivity to 25OH vitamin D3 in the measurement using the antibody of the present invention.
- FIG. 9 is a diagram showing evaluation of the specificity of a solid phase antibody (primary antibody: anti-E2 antibody) by a competitive system.
- FIG. 10 is a diagram showing improvement in specificity in E2 measurement by the sandwich method.
- FIG. 11 is a diagram showing the evaluation of the specificity of a solid phase antibody (primary antibody: anti-25 (OH) vitamin D2 antibody) by a competitive system.
- FIG. 12 is a diagram showing improvement in specificity in the measurement of anti-25 (OH) vitamins D2 and D3 by the sandwich method.
- the present invention provides an antibody that can specifically bind to an affinity complex.
- affinity complex refers to a complex formed by the association or aggregation (ie, non-covalent bonding) of two or more factors.
- examples of the complex different from the affinity complex include a covalent complex.
- covalent complex refers to a complex formed by the covalent binding of two or more factors. Examples of such a covalent complex include, for example, a conjugate in which a low-molecular substance having no immunogenicity (that is, a hapten) and a carrier (for example, a protein such as BSA or KLH) are bound via a covalent bond. -Conjugate.
- covalent conjugates have traditionally been used in animals to elicit immunity in animals against non-immunogenic small molecules (ie, haptens), thereby obtaining antibodies to small molecules. It can be the complex to be immunized (ie, the immune complex) being administered.
- an antibody against a low molecular weight substance has been prepared using such a covalent complex, but as a by-product, an antibody that can specifically bind to the covalent complex (around the covalent binding moiety) It is thought that an antibody that recognizes
- an antibody against a covalent complex produced by using such a conjugate as an antigen is different from the antibody of the present invention produced by using the affinity complex itself as an antigen.
- the three-dimensional structure of a covalent complex produced by artificial introduction of a covalent bond moiety depends on the presence and position of the covalent bond moiety and the three-dimensional structure resulting from the introduction of the covalent bond moiety (eg, , Folding and / or conformation) due to potential changes, etc., due to differences from those of affinity complexes formed by natural association (ie, non-covalent binding).
- the affinity complex is a homo-complex in which the same type of factors are associated or aggregated, or a hetero-complex in which different types of factors are associated or aggregated.
- the affinity complex may also be a naturally occurring affinity complex or an artificially generated affinity complex that cannot occur naturally.
- Naturally occurring affinity complexes include, for example, affinity complexes found in viruses or organisms (eg, microorganisms, insects, plants, animals), and affinity complexes that may be present in the environment.
- Affinity complexes are further multimers (eg, dimers, trimers, tetramers).
- the factor constituting the affinity complex include proteins, low molecular weight substances, sugars, nucleic acids (eg, DNA, RNA), metals, and derivatives thereof.
- the factor constituting the affinity complex may preferably be a protein.
- proteins having affinity binding ability include proteins having affinity binding ability and proteins having aggregation ability.
- the protein having affinity binding ability include ligand-dependent proteins [eg, receptors on cell membranes such as G protein-coupled receptors, and soluble receptors (eg, immunoglobulins, extracellular domains cleaved from receptors on cell membranes) ), And nuclear receptors], nucleic acid binding proteins (eg, transcription factors, nucleic acid protection or transport proteins), proteins that form protein complexes (eg, adapter proteins), extracellular matrix proteins (eg, intercellular adhesion proteins) ), Enzymes [eg, kinases such as tyrosine kinases (receptor or non-receptor), serine / threonine kinases], glycoproteins.
- the protein having an aggregating ability include denatured proteins and pathogenic proteins (eg, neurodegenerative proteins such as ⁇ amyloid).
- the protein that is a factor constituting the affinity complex may preferably be an antibody.
- the antibody constituting the affinity complex may be any isotype such as IgG, IgM, IgA, IgD, IgE, IgY, and the like. Such antibodies may also be polyclonal antibodies or monoclonal antibodies (eg, chimeric antibodies, humanized antibodies, human antibodies).
- the antibody constituting the affinity complex may be an antibody against a self antigen. Such an antibody may also be a full-length antibody or an antibody fragment as described below. Examples of the antibody fragment include F (ab ′) 2 , Fab ′, Fab, Fv, and a single chain antibody.
- the factor constituting the affinity complex may also preferably be a low-molecular substance.
- small substance refers to a compound having a molecular weight of less than 1,500.
- the low molecular weight substance is a natural substance or a synthetic substance.
- the molecular weight of the low molecular weight substance may be less than 1,200, less than 1,000, less than 800, less than 700, less than 600, less than 500, less than 400, or less than 300.
- the molecular weight of the low molecular weight substance may also be 50 or more, 100 or more, 150 or more, or 200 or more.
- low molecular weight substances include ligands, hormones, lipids, fatty acids, vitamins, opioids, neurotransmitters (eg, catecholamines), nucleosides, nucleotides, oligonucleotides, monosaccharides, oligosaccharides, amino acids, and oligopeptides, or pharmaceuticals. , Toxicants, and metabolites.
- hormones include steroid hormones, thyroid hormones, and peptide hormones.
- the low molecular weight substance may be a steroid compound.
- a steroid compound refers to a compound having a steroid skeleton (cyclopentanoperhydrophenanthrene skeleton).
- Steroid compounds include steroid hormones and derivatives thereof that retain the steroid skeleton (eg, synthetic steroids such as anabolic steroids, anti-androgenic and anti-follicular hormone agents).
- steroid hormones include male hormones, follicular hormones, luteinizing hormones, and corticoids (eg, glucocorticoids and mineralocorticoids), with follicular hormones being preferred.
- Examples of follicular hormones include estrone, estradiol, and estriol.
- the low molecular weight substance may also be a metabolite of a steroid compound.
- the metabolite of the steroid compound include a compound in which a hydroxyl group is added to the steroid compound as described above, and a conjugate.
- the conjugate for example, a glucuronic acid conjugate, a sulfate conjugate (eg, a hydroxyl group at either the 3-position or 17-position of estradiol, or a hydroxyl group at both the 3-position and 17-position was conjugated with a sulfate group).
- Compound glutathione conjugates, acetyl conjugates, and amino acid conjugates.
- the low molecular weight substance may further be a steroid compound-like therapeutic drug (eg, estramustine) or a metabolite thereof (eg, estromustine).
- the low molecular weight substance may be an amino acid compound.
- An amino acid compound refers to a compound having an amino group and a carboxyl group.
- amino acid compounds include ⁇ -amino acids (eg, glycine, alanine, asparagine, cysteine, glutamine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, aspartic acid, glutamic acid, arginine, Histidine, lysine, ornithine, citrulline), ⁇ -amino acids (eg, ⁇ -alanine), ⁇ -amino acids (eg, ⁇ -aminobutyric acid), and derivatives thereof that retain amino and carboxyl groups.
- ⁇ -amino acids eg, glycine, alanine, asparagine, cysteine, glutamine, isoleucine, le
- the amino acid compound may be L-form or D-form.
- the low molecular weight substance may also be a metabolite of an amino acid compound. Examples of the metabolite of the amino acid compound include a compound in which a hydroxyl group is added to the amino acid compound as described above, and a conjugate as described above.
- the low molecular weight substance may further be an amino acid compound-like therapeutic drug or a metabolite thereof.
- the amino acid compound may be a compound represented by the formula (I): R—CH 2 CH (NH 2 ) COOH.
- R includes the following: (I) a hydrocarbon group; (Ii) an aryl group; (Iii) a hydrocarbon-aryl group; (Iv) an aryl-hydrocarbon group; (V) a hydrocarbonoxy-hydrocarbon group, an aryloxy-hydrocarbon group, a hydrocarbonoxy-aryl group, or an aryloxy-aryl group; (Vi) a hydrocarbon thio-hydrocarbon group, an arylthio-hydrocarbon group, a hydrocarbon thio-aryl group, or an arylthio-aryl group; (Vii) mono or di (hydrocarbon) amino-hydrocarbon group, mono or di (aryl) amino-hydrocarbon group, mono or di (hydrocarbon) amino-aryl group, or mono or di (aryl) amino-aryl Group.
- the hydrocarbon group is a linear, branched or cyclic non-aromatic hydrocarbon group, and the number of carbon atoms thereof is, for example, 1 to 15, preferably 1 to 12, more preferably 1 to 9, particularly The number is preferably 1 to 6.
- hydrocarbon groups include alkyl groups (eg, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl, isohexyl).
- alkenyl groups eg, ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 3- Hexenyl, 5-hexenyl
- alkynyl groups eg, ethynyl, 1-propynyl, 2 (Propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexy
- the aryl group is an aromatic hydrocarbon group, and the number of carbon atoms is, for example, 1 to 14.
- Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group, and a biphenyl group.
- Aryl is the same as the aryl group.
- R may have 1 to 8, preferably 1 to 6 substituents.
- substituents include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), hydroxyl group, amino group, thiol group, cyano group, nitro group, oxo group, imide group, carboxyl group, amide Groups, sulfonyl groups, nitro groups, formyl groups, and hydrocarbon groups having 1 to 6 carbon atoms.
- the compound represented by the formula (I) may be a compound represented by the formula (II): R 1 —X—R 2 —CH 2 CH (NH 2 ) COOH.
- R 1 and R 2 each independently represent the above-described hydrocarbon group or the above-described aryl group, preferably the above-described cycloalkyl group or the above-described aryl group, and particularly preferably the above-described aryl group.
- —X— represents —O—, —S—, —NH— or a bond, preferably —O—, —S— or —NH—, more preferably —O— or —S—.
- R 1 may have 1 to 4, preferably 1 to 3 substituents.
- R 2 may have 1 to 4, preferably 1 to 3, more preferably 1 to 2 substituents.
- the substituents for R 1 and R 2 are the same as those described above for R.
- the compound represented by the formula (II) may be a tyrosine derivative biosynthesized from tyrosine as shown below.
- the tyrosine derivative include thyroid hormone (eg, triiodothyronine, thyroxine).
- the tyrosine derivative may also be a metabolite of thyroid hormone.
- thyroid hormone metabolites include compounds in which a hydroxyl group is added to thyroid hormone and conjugates as described above.
- the low molecular weight substance may further be a thyroid hormone-like therapeutic drug or a metabolite thereof.
- the low molecular weight substance may be a vitamin.
- vitamins include vitamins A, B1, B2, B6, B12, C, D, E, and K.
- the vitamin is a fat-soluble vitamin (eg, vitamins A, D, E, K), more preferably vitamin D as shown below.
- the low molecular weight substance may also be a metabolite of a vitamin. Examples of vitamin metabolites include compounds in which a hydroxyl group is added to vitamins as described above, and conjugates as described above.
- the low molecular weight substance may further be a vitamin-like therapeutic drug or a metabolite thereof.
- the affinity complex is a complex containing two or more factors as described above.
- the affinity complex includes a complex including a low-molecular substance and a protein (eg, an antibody), a protein complex including two or more proteins, a complex including a protein and a nucleic acid, a protein and a metal.
- a protein complex including two or more proteins e.g. an antibody
- a protein complex including two or more proteins e.g. an antibody
- a complex including a protein and a nucleic acid eg., an antibody
- metal include metal-requiring protein complexes, protein aggregates, nucleic acid complexes containing two or more complementary nucleic acids (eg, duplex, triplex), and metal complexes.
- the affinity complex is preferably one having a strong binding affinity between the factors constituting the affinity complex. . Therefore, from the viewpoint of efficient production of antibodies, the affinity complex may be specified by the binding affinity between the factors constituting the affinity complex.
- Preferred binding affinities are less than 10 ⁇ 5 M, less than 5 ⁇ 10 ⁇ 5 M, less than 10 ⁇ 6 M, less than 5 ⁇ 10 ⁇ 7 M, less than 10 ⁇ 7 M, less than 5 ⁇ 10 ⁇ 8 M, 10 Less than ⁇ 8 M, less than 5 ⁇ 10 ⁇ 9 M, less than 10 ⁇ 9 M, less than 5 ⁇ 10 ⁇ 10 M, less than 10 ⁇ 10 M, less than 5 ⁇ 10 ⁇ 11 M or less than 10 ⁇ 11 M That is, the affinity having Kd) is mentioned.
- the dissociation constant is also 10 ⁇ 15 M or more, 5 ⁇ 10 ⁇ 15 M or more, 10 ⁇ 14 M or more, 5 ⁇ 10 ⁇ 14 M or more, 10 ⁇ 13 M or more, 5 ⁇ 10 ⁇ 13 M or more, 10 ⁇ 12 It may be M or more, 5 ⁇ 10 ⁇ 12 M or more, 10 ⁇ 11 M or more, 5 ⁇ 10 ⁇ 11 M or more, 10 ⁇ 10 M or more, or 5 ⁇ 10 ⁇ 10 M or more.
- the binding affinity between the factors constituting the affinity complex is not necessarily important.
- the expression “capable of specifically binding to an (the) affinity complex” for the affinity complex is derived from each factor constituting the affinity complex. Also means having the ability to bind preferentially.
- the antibody of the present invention has the ability to bind to the affinity complex and cannot substantially have the ability to bind to each factor constituting the affinity complex. Therefore, the antibody of the present invention is identified by the cross-reactivity to each factor (eg, low molecular weight substance, protein) constituting the affinity complex or a similar factor (eg, low molecular weight substance analog, homologous protein). Also good.
- each factor constituting the affinity complex or its similar factor, or an affinity complex containing a similar factor is 20% or less, 15% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, It may be 3% or less, 2% or less, 1% or less, 0.5%, 0.1%, or 0.05% or less.
- the antibody of the present invention may exhibit the following binding ratios (a) to (c): (A) The binding rate of an antibody (antibody I) that can specifically bind to affinity complex I to an affinity complex (affinity complex I) containing estradiol and an anti-estradiol antibody is calculated as 100%.
- An affinity complex comprising estrone and the anti-estradiol antibody (affinity complex I ′), an affinity complex comprising estriol and the anti-estradiol antibody (affinity complex I ′′), an estradiol conjugate And an affinity complex comprising the anti-estradiol antibody (affinity complex I ′ ′′), an affinity complex comprising estramustine and the anti-estradiol antibody (affinity complex I ′′ ′′), or est
- the binding rate of antibody I to an affinity complex containing lomustine and the anti-estradiol antibody (affinity complex I ′ ′′ ′′) is not more than the above value;
- Binding of an antibody (antibody II) capable of specifically binding to affinity complex II to an affinity complex (affinity complex II) comprising triiodothyronine and an anti-triiodothyronine antibody When the ratio is calculated as 100%, an affinity complex containing diiodothyronine and the anti-triiodothyronine antibody (affin
- an antibody that can specifically bind to an affinity complex is also capable of binding to a covalent complex (each factor constituting the covalent complex constitutes an affinity complex. May have the ability to bind preferentially over (identical to each factor). Since the antibody of the present invention is produced using the affinity complex itself as an antigen, the antibody of the present invention specifically binds to the affinity complex rather than the covalent complex. Can do. Thus, the antibodies of the present invention may be identified by their binding affinity for the affinity complex.
- the binding affinity of the antibody of the present invention for the affinity complex is less than 10 ⁇ 5 M, less than 5 ⁇ 10 ⁇ 5 M, less than 10 ⁇ 6 M, less than 5 ⁇ 10 ⁇ 7 M, less than 10 ⁇ 7 M, Less than 5 ⁇ 10 ⁇ 8 M, less than 10 ⁇ 8 M, less than 5 ⁇ 10 ⁇ 9 M, less than 10 ⁇ 9 M, less than 5 ⁇ 10 ⁇ 10 M, less than 10 ⁇ 10 M, less than 5 ⁇ 10 ⁇ 11 M Affinities having a dissociation constant (ie, Kd) of less than 10 ⁇ 11 M are mentioned.
- Kd dissociation constant
- the dissociation constant of the antibody of the present invention for the affinity complex is also 10 ⁇ 15 M or more, 5 ⁇ 10 ⁇ 15 M or more, 10 ⁇ 14 M or more, 5 ⁇ 10 ⁇ 14 M or more, 10 ⁇ 13 M or more, 5 ⁇ 10 ⁇ 13 M or more, 10 ⁇ 12 M or more, 5 ⁇ 10 ⁇ 12 M or more, 10 ⁇ 11 M or more, 5 ⁇ 10 ⁇ 11 M or more, 10 ⁇ 10 M or more, 5 ⁇ 10 ⁇ 10 M or more, 10 It may be ⁇ 9 M or more or 5 ⁇ 10 ⁇ 9 M or more.
- the antibody of the present invention may be a monoclonal antibody.
- the antibody of the present invention may be any isotype such as IgG, IgM, IgA, IgD, IgE, IgY, and is, for example, IgG or IgM.
- the antibody of the present invention may have a region (eg, variable region, complementarity determining region, framework region, constant region) derived from an animal immunoglobulin having gene conversion ability.
- regions derived from animal immunoglobulins capable of gene conversion include variable regions (VR) and constant regions (CR), and complementarity determining regions (CDR) and framework regions (FR) found in VR. Is mentioned.
- VR include a heavy chain variable region (VH) and a light chain variable region (VL).
- CR include a heavy chain constant region (CH including CH1, CH2, CH3 and CH4) and a light chain constant region (CL).
- variable region gene conversion refers to the replacement of a variable region gene that has undergone V (D) J rearrangement with a pseudogene present upstream of the V gene.
- animals such as chickens such as chickens, mammals such as cows, sheep, and rabbits (animals having the ability of gene conversion)
- the variable region of the antibody gene in antibody-producing cells is site-specific recombination V (D) It can be diversified by both J rearrangement and gene conversion, a type of homologous recombination.
- mammals such as humans and mice (animals that do not have gene conversion ability)
- the variable regions of antibody genes in antibody-producing cells are diversified by V (D) J rearrangement. It cannot be diversified.
- a diverse population of antibody-producing cells that is, a diverse population of antibody-producing cells having the ability to produce various antibodies
- the antibody of the present invention produced by such an antibody-producing cell may have a region derived from animal immunoglobulin having gene conversion ability.
- an animal having the ability of gene conversion may be abbreviated as “animal X”.
- animal Y An animal that does not have the ability of gene conversion
- the antibody of the present invention having a region derived from the immunoglobulin of animal X is considered to be novel with respect to the conventional antibody produced in vivo.
- the antibody of the present invention comprises a first region derived from an animal X immunoglobulin (eg, VR, CR, CDR, FR) and / or a second region derived from an animal Y immunoglobulin (eg, VR, CR, CDR, FR).
- the antibody of the present invention has, as a first region derived from an animal X immunoglobulin, a CDR, FR, or a VR containing both CDR and FR, and a first region derived from an animal Y immunoglobulin.
- the region 2 may have CR, FR, or both CR and FR.
- Such an antibody can correspond to an antibody described below.
- the antibody of the present invention comprises (I) (a) a first region (eg, VR, CDR, FR) derived from an animal X immunoglobulin (eg, IgM), and an animal Y immunoglobulin (eg, , IgG) a second region derived from (eg, CR, CH1, CH2, CH3), and (b) a first region derived from an animal X immunoglobulin (eg, IgM) (eg, VR, CDR, FR), and light chain (eg, ⁇ chain, ⁇ chain, and ⁇ chain and ⁇ chain) with a second region (eg, CR) derived from animal Y immunoglobulin (eg, IgG) Chimeric region), or (II) (a) a first region derived from an animal X immunoglobulin (eg, IgM) (eg, VR, CDR, FR, CR, CH1), and an animal Y immunoglobulin (eg, , Ig, Ig
- the antibody of the present invention comprises (I ′) (a ′) VR derived from chicken IgM, and CR (CH1, CH2) derived from animal Y (eg, mouse, human) IgG (eg, IgG1). A heavy chain with CH3), and (b ′) a VR derived from chicken IgM, and a light chain with a CR derived from animal Y (eg, mouse, human) IgG (eg, IgG1) (eg, ⁇ chain, ⁇ ) Chain, and chimeric chain of ⁇ and ⁇ chains), or (II ′) (a ′) VR and CH1 derived from chicken IgM, and animal Y (eg, mouse, human) IgG (eg, IgG1) And (b ′) a light chain (eg, ⁇ chain, ⁇ chain) having VR and CR derived from chicken IgM.
- a ′ VR derived from chicken IgM
- CR CH1, CH2
- IgG
- the antibodies (I) and (I ′) can correspond to the chimeric type I antibody described below.
- the antibodies (II) and (II ′) can correspond to the chimeric type II antibody described below.
- the antibody of the present invention may be a full-length antibody.
- full length antibody refers to an antibody comprising heavy and light chains, each comprising a variable region and a constant region (eg, an antibody comprising two Fab portions and an Fc portion).
- the antibody of the present invention may also be an antibody fragment derived from such a full-length antibody.
- the antibody fragment is a part of the full-length antibody of the present invention, and examples thereof include F (ab ′) 2 , Fab ′, Fab, and Fv.
- the method of the present invention described later can obtain full-length antibodies, can prepare a diverse population of antibody-producing cells (antibody library) in a short period (several days), and can be truly positive in a single screening operation.
- antibody library antibody-producing cells
- the antibody of the present invention can also be an antibody that can specifically bind to a portion exposed on the surface of the affinity complex (ie, a neutralizing antibody against the complex). According to the method of the present invention as described later, such an antibody can be prepared. For example, when the affinity complex exhibits a function by forming a heteromultimer (eg, heterotrimer by three kinds of proteins) in vivo, the dimers that associate with each other among the heteromultimers By using antibodies that can specifically bind to (affinity complexes), the generation of biological signals mediated by heteromultimer formation can be prevented.
- a heteromultimer eg, heterotrimer by three kinds of proteins
- the antibody of the present invention can also be an antibody that can specifically bind to an immunogenic affinity complex or a non-immunogenic affinity complex (ie, a hapten).
- Immunogenicity refers to the ability to elicit an antibody response in an animal.
- an antibody capable of specifically binding to an immunogenic affinity complex but also an affinity complex having no immunogenicity (ie, a hapten).
- Antibodies that can specifically bind can also be generated.
- the method of the present invention obtains antibody-producing cells producing an antibody that can bind to an affinity complex from a diverse population of antibody-producing cells (synonymous with a library of diverse antibodies). Therefore, even when the affinity complex itself is not immunogenic, an antibody-producing cell producing an antibody that can bind to the affinity complex can be obtained.
- the antibody of the present invention can also be an antibody that can specifically bind to a complex containing a factor derived from any animal. According to the method of the present invention as described later, even if a part or all of the factors constituting the affinity complex are derived from any animal, specific to such an affinity complex. Antibodies that can bind to can be made. Since conventional methods using animals cannot induce an immune response against a factor derived from the same species of animal (eg, when a mouse is immunized with a complex comprising an antigen and a mouse antibody to it), such a factor An antibody against can not be produced. However, according to the method of the present invention, an antibody capable of specifically binding to a complex containing a factor derived from any animal can be produced.
- the antibodies of the present invention also specifically recognize association sites between factors in the affinity complex and / or altered conformations of the factors (eg, folding and / or conformation) caused by the association. Thus, it may be an antibody that can specifically bind to the affinity complex.
- the antibody of the present invention may be a chimeric antibody, a humanized antibody or a human antibody.
- Chimeric antibody means a monoclonal antibody derived from immunoglobulins of animal species having different VR and CR.
- the chimeric antibody is a chimeric (animal X / animal Y) antibody having VR derived from immunoglobulin of animal X (eg, chicken) and CR derived from immunoglobulin of animal Y (eg, human). obtain.
- the CR derived from immunoglobulin of animal Y has a unique amino acid sequence depending on isotypes such as IgG, IgM, IgA, IgD, IgE and IgY.
- the CR of the chimeric antibody of the present invention may belong to any isotype.
- Chimeric antibodies can be prepared by methods known per se (eg, Morrison, Science 229: 1202 (1985); Oi et al., BioTechniques 4: 214 (1986); Gillies et al. (1989) J. Immunol. Methods 125: 191- 202; U.S. Pat. Nos. 5,807,715; 4,816,567; and 4,816,397). Specifically, a chimeric antibody can be prepared as follows.
- VDJ gene encoding H chain VR DNA encoding animal Y immunoglobulin downstream of the V H gene obtained from DNA encoding animal X monoclonal antibody isolated from antibody-producing cells derived from animal X connecting a C H gene obtained (C gene encoding the H chain CR) from, V L gene obtained from DNA encoding the animal X monoclonal antibodies isolated from antibody-producing cells derived from animals X (L chain VR connecting the C gene) encoding the C L gene (L chain CR obtained from DNA encoding the animal Y immuno Guromu phosphorus downstream of VJ gene) encoding.
- the present invention also provides a method for producing a chimeric antibody comprising converting the antibody of the present invention into a chimeric antibody.
- a humanized antibody is a monoclonal antibody produced by genetic engineering.
- part or all of a CDR is derived from an animal X (eg, chicken) monoclonal antibody
- FR and CR are derived from a human immunoglobulin.
- a CDR is a portion (eg, CDR1, CDR2, CDR3) that binds complementarily to an antigen present in a hypervariable region (HVR) in the VR of an antibody
- FR is a relatively conserved intervening before and after the CDR.
- a humanized antibody means a monoclonal antibody in which all regions other than part or all of the CDRs of an animal X (eg, chicken) monoclonal antibody are replaced with corresponding regions of human immunoglobulin.
- Humanized antibodies can be produced by methods known per se [eg, CDR grafting (European Patent No. 239,400; WO 91/09967; US Pat. No. 5,225,539; No. 5,530,101 and No. 5,585,089), veneering or resurfacing (European Patent No. 592,106; No. 519,596; Padlan, Molecular Immunology 28 (4/5): 489- 498 (1991); Studnikka et al., Protein Engineering 7 (6): 805-814 (1994); Roguska et al., PNAS 91: 969-973 (1994)), and chain shufflin. ) (See U.S. Pat. No. 5,565,332)].
- An amino acid residue in FR may be substituted with a corresponding residue derived from a CDR donor antibody from the viewpoint of maintaining (preferably improving) antigen binding.
- the amino acid residue to be substituted in the FR can be determined by methods well known in the art, eg, the interaction of CDR and FR to identify amino acid residues in the FR that are important for antigen binding. It can be determined by modeling, as well as sequence comparisons to identify unusual FR amino acid residues at specific positions [eg, Queen et al., US Pat. No. 5,585,089; Riechmann et al., Nature 332: 323. (1988)].
- humanized antibodies can be produced as follows.
- the animal X heavy chain CDR gene and the corresponding animal X light chain CDR gene are isolated, and from the human immunoglobulin gene, the animal X heavy chain A human H chain gene encoding the entire region other than the human H chain CDR corresponding to the CDR, and a human L chain gene encoding the entire region other than the human L chain CDR corresponding to the L chain CDR of animal X are isolated.
- the CDRs are then transplanted.
- the human H chain gene grafted with CDR and the human L chain gene grafted with CDR are inserted into one or separate expression vectors so that each can be expressed. It can be produced by transforming and culturing the resulting transformed cells.
- the present invention also provides a method for producing a humanized antibody, comprising converting the antibody of the present invention into a humanized antibody.
- human antibody refers to an antibody in which all regions including the H and L chain VRs and CRs constituting the immunoglobulin are derived from a gene encoding human immunoglobulin.
- a human antibody can be prepared by a method known per se.
- human antibodies are produced by integrating human immunoglobulin genes or chromosomes containing them into non-human animals (eg, animal X, non-human animal Y) (eg, by homologous recombination in the locus of non-human animals). It can be produced by using an antibody-producing cell isolated from the produced transgenic animal) or a transgenic antibody-producing cell into which a human immunoglobulin gene or a chromosome containing the antibody is introduced.
- the transgenic animal may be an animal that is transgenic for human immunoglobulin and does not express endogenous immunoglobulin.
- Transgenic animals that produce human antibodies are known for animals such as mice and cows (and / or antibody-producing cells).
- Such transgenic animals (and / or cells) and / or human antibodies can be prepared, for example, by WO98 / 37757, WO00 / 10383, WO00 / 075300, WO2002 / 070648, WO2003 / 047336, WO2003 / 085107, WO2005 / 104835, WO2006 / 047367, JP2001231403, JP2009-82033, US Pat. No. 5,939,598, and / or Lonberg and Huszar, Int. Rev. Immunol.
- the antibody of the present invention may be a recycling antibody that can repeatedly block an antigen / antibody reaction, which is prepared so as to impart pH dependence to the antigen / antibody reaction. Good (see, for example, Nature Biotechnology, 28, 1203-1207 (2010)).
- the present invention also provides a method for producing a human antibody.
- the antibody of the present invention can be determined by determining its nucleotide sequence, and methods known in the art (for example, recombinant DNA technology, site-directed mutagenesis, PCR, etc. (for example, Sambrook et al., 1990, Molecular Cloning, A Laboratory). Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., 1998, Current Protocols in Molecular Biology, John Wily & Sons, etc.) Groups may be mutated (eg, substitutions, deletions, and / or insertions)
- the antibodies of the present invention may also have other Min or substance, or a solid phase support such as may be connected.
- the antibody of the present invention can be isolated or purified by a known method for proteins such as immunoglobulins. Such methods include, for example, chromatography (eg, ion exchange chromatography, affinity chromatography, size column chromatography), centrifugation, dialysis, and methods utilizing differences in solubility.
- the antibody of the present invention can also be easily obtained by using a substance (eg, protein) having affinity for the constant region of an antibody (eg, a constant region of a specific isotype) or by fusing to a heterologous polypeptide sequence. Can be purified.
- the present invention provides antibody producing cells that have the ability to produce antibodies that can specifically bind to affinity complexes.
- the antibody that can specifically bind to the affinity complex that can be produced by the antibody-producing cell is as described above.
- antibody-producing cell refers to a cell having the ability to produce antibodies.
- Antibody-producing cells are cells that can be derived from animals that have the ability to produce antibodies, and include B cells.
- Antibody-producing cells can be cells derived from animals such as mammals (eg, human, mouse, rat, cow, sheep), birds (eg, chicken) and the like. Examples of antibody-producing cells include primary cultured cells and cell lines, with cell lines being preferred.
- the antibody-producing cells may preferably be antibody-producing cells that can cause further mutations in the variable region in addition to V (D) J rearrangement.
- An example of an antibody producing cell that can cause further mutations in the variable region is an antibody producing cell that retains such ability, derived from an animal that has the ability of gene conversion.
- Another example of an antibody producing cell that can cause further mutations in the variable region is an antibody producing cell that can cause somatic mutation in the variable region.
- Antibody-producing cells that can significantly increase the frequency of somatic mutations in the variable region have been reported as antibody-producing cells that can cause somatic mutation in the variable region.
- lymphomas eg, Burkitt lymphoma, Cells derived from follicular lymphoma, diffuse large cell lymphoma
- Such antibody-producing cells can be prepared by, for example, Buerstedde et al. [EMBO J. (1990) 9: 921-927], WO 2004/011644, WO 2004/058964, WO 2002/100998 and the
- Antibody-producing cells can be preferably derived from animals having gene conversion ability.
- the antibody-producing cell derived from an animal having the ability of gene conversion may be a knockout cell.
- knockout cells include XRCC (eg, one or more XRCC molecular species such as XRCC1, XRCC2, and XRCC3) knockout cells.
- the antibody-producing cells are Fabricius sac lymphoma cells such as DT40 cells.
- DT40 cells are chicken-derived B cell strains, and derivative strains and sub-strains (Sublines) into which mutations (eg, recombination, insertion, deletion, etc. of specific genes) have been introduced into the chromosomes of the cells are also included. Included (eg, see WO 2004/011644).
- the antibody-producing cell may be a cell in which homologous recombination occurs at the antibody locus so as to produce an immunoglobulin of a specific isotype.
- Specific isotypes include, for example, IgG, IgM, IgA, IgD, IgE, and IgY.
- the antibody-producing cell may also be a transformant produced by introducing the antibody of the present invention or another protein expression vector into a host cell.
- Expression of the foreign gene by the expression vector can be transient or constitutive (ie stable).
- host cells include microorganisms such as bacteria (eg, E. coli) and yeast, and animal cells such as insect cells, avian cells, and mammalian cells (eg, CHO cells, MDCK cells).
- the present invention also provides such an expression vector for use in producing a transformant.
- the promoter used in the expression vector is not particularly limited as long as it can function in the introduced cells, and examples thereof include promoters that can function in microorganisms and animal cells.
- promoters include viral promoters (eg, SV40-derived early promoter, cytomegalovirus LTR, Rous sarcoma virus LTR, MoMuLV-derived LTR, adenovirus-derived early promoter), mammalian-derived constitutive gene promoters (eg, ⁇ -actin gene promoter, PGK gene promoter, transferrin gene promoter).
- the expression vector preferably contains a transcription termination signal (ie, terminator region) downstream of the oligo (poly) nucleotide encoding the nucleic acid molecule. Further, the expression vector may contain a gene resistant to drugs (eg, ampicillin, kanamycin, G418).
- a transcription termination signal ie, terminator region
- the expression vector may contain a gene resistant to drugs (eg, ampicillin, kanamycin, G418).
- the basic vector of an expression vector used for introducing a foreign gene into a cancer cell is, for example, a plasmid or a viral vector (eg, adenovirus, retrovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus). , Virus-derived vectors such as Sindbis virus, Sendai virus, and lentivirus).
- a viral vector eg, adenovirus, retrovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus.
- Virus-derived vectors such as Sindbis virus, Sendai virus, and lentivirus.
- the present invention provides a method for producing an antibody-producing cell having the ability to produce an antibody that can specifically bind to an affinity complex.
- the method comprises using the affinity complex to prepare an antibody producing cell having the ability to produce an antibody that can specifically bind to the affinity complex from a diverse population of antibody producing cells. .
- the affinity complex, the antibody that can specifically bind to the affinity complex, and the antibody-producing cell are as described above. For example, such a preparation is based on whether various antibody-producing cells are seeded in different wells and cultured, and then antibodies in the culture supernatant are present that can specifically bind to the affinity complex.
- Such preparation is performed by selecting antibody producing cells having the ability to bind to the affinity complex from a diverse population of antibody producing cells.
- Such preparation may be performed in a solution such as a medium, a buffer solution, or water. That is, such preparation can be performed in vitro.
- any appropriate medium according to the target process is used.
- the basal medium used for the preparation of the medium include MEM, IMDM, DMEM, ⁇ MEM, ham medium, RPMI medium, Fischer's medium, and mixed media thereof.
- the medium is, for example, serum (eg, bovine serum such as chicken serum, FCS), serum substitute (eg, KSR), fatty acid or lipid, amino acid, vitamin, growth factor, cytokine, antioxidant, 2-mercaptoethanol, It may contain pyruvic acid, buffering agents, inorganic salts and the like.
- Other culture conditions such as culture temperature and CO 2 concentration can be set as appropriate.
- the culture temperature is not particularly limited and is, for example, about 30 to 40 ° C., preferably about 39.5 ° C.
- the CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
- Other conditions such as the number of cells in culture and the concentration of various factors can be appropriately set.
- Examples of the predetermined cell that can be used in the present invention include cells (eg, CHO cells, MDCK cells) derived from mammals (eg, humans, dogs, mice, rats, rabbits, hamsters), birds (eg, chickens). Derived cells (eg, DT40 cells) and insect-derived cells.
- any appropriate buffer according to the target process is used.
- buffers include phosphate buffers (eg, PBS, PBST), Tris buffers (eg, Tris-HCl), carbonate buffers, acetate buffers, citrate buffers, and borate buffers. And tartaric acid buffer.
- the buffer may further contain a substance such as a salt.
- the pH of the buffer is appropriately adjusted according to the target step, for example, pH 4.0 to 10.0, preferably pH 5.0 to 9.0, more preferably pH 6.0 to 8.0, and even more preferably The pH is 6.5 to 7.5.
- the preparation of antibody producing cells having the ability to produce an antibody capable of specifically binding to the affinity complex from a population of diverse antibody producing cells can be performed using a variety of affinity complexes. This is done by selecting antibody producing cells having the ability to bind to the affinity complex from a population of antibody producing cells.
- Antibody-producing cells that have the ability to produce antibodies that can specifically bind to affinity complexes are those parts of the natural factor that retain the ability to associate (eg, ligand binding domain, extracellular domain, soluble Alternatively, an affinity complex containing a receptor) may be used.
- the affinity complex may be labeled with a detection substance as described later.
- the affinity complex may be fixed to the solid directly or indirectly via a linker (eg, protein G).
- the solid may be labeled with a detection substance as described later.
- the solid to which the affinity complex can be fixed include particles (eg, magnetic particles, fluorescently labeled particles).
- the preparation may be performed as follows. First, a variety of antibody-producing cell populations are mixed with a solid to which an affinity complex has been immobilized in a solution (eg, a buffer solution), and a predetermined temperature (eg, 0 to 40 ° C., preferably 2 to 10). (C) for a predetermined time (for example, 5 to 300 minutes, preferably 15 to 60 minutes).
- the concentration of antibody-producing cells in the solution is, for example, 1.0 ⁇ 10 5 to 1.0 ⁇ 10 10 cells / ml, 1.0 ⁇ 10 6 to 1.0 ⁇ 10 9 cells / ml, or 1.0 It may be ⁇ 10 7 to 5.0 ⁇ 10 8 cells / ml.
- the reaction solution may contain at least one or more factors constituting the affinity complex in addition to the affinity complex.
- the antibody producing cells bound to the affinity complex immobilized on the solid are then recovered from the diverse population of antibody producing cells by any technique (eg, magnetic or fluorescent methods).
- the collected antibody-producing cells are dispersed in a medium to dissociate the antibody-producing cells from the solid on which the affinity complex is fixed, and then the antibody-producing cells are cultured.
- the resulting antibody-producing cells can produce antibodies that can specifically bind to the affinity complex.
- Whether the obtained antibody-producing cells produce an antibody that can specifically bind to the affinity complex may be confirmed.
- Such confirmation can be performed, for example, using an affinity complex.
- confirmation may be performed as follows. First, at least one factor constituting the affinity complex is immobilized on a support (eg, plate). Subsequently, the culture supernatant of the antibody-producing cells is added in the presence and absence of other factors that form an affinity complex.
- an antibody that can specifically bind to the affinity complex eg, an enzyme (eg, HRP) bound to an anti-immunoglobulin (eg, IgM) antibody that can bind to the constant region of the antibody) And its substrate (eg, TMB)] are used to evaluate whether antibodies capable of specifically binding to the affinity complex are contained in the culture supernatant of antibody-producing cells.
- an enzyme eg, HRP
- TMB substrate
- the specificity of the antibody produced by the antibody-producing cell for the heterocomplex can be confirmed by the methodology described above.
- the specificity of the antibody produced by the antibody-producing cell for the homocomplex cannot be confirmed by the above-described methodology. This is because the same type of factor (monomer) constituting the homocomplex cannot autonomously associate in solution to form a complex and exist as a monomer. Therefore, further evaluation is required that antibodies produced by antibody-producing cells are specific for homocomplexes and cannot bind to monomers that can form homocomplexes.
- Such evaluation is made by, for example, i) preparing a mutation factor into which an amino acid mutation (for example, substitution, deletion, insertion) that cannot be associated with the association portion between the factors is introduced, and applying the present invention to the mutation factor.
- a fusion factor in which a protein (eg, GFP, GST) is added to the factor so as to inhibit the association between the factors is confirmed by (Iii) by confirming that the antibody does not bind, or iii) by using a solution prepared so that the factor does not form an affinity complex.
- a heterogeneous factor b that can exhibit higher binding strength with factor a than binding strength between the same type of factor a is used. It can be carried out by adding it to the solution, or by adding excessively a different kind of factor b capable of associating with the factor a into the solution.
- the method of the present invention may further comprise preparing an affinity complex by associating two or more factors having affinity to each other.
- the association can be performed in solution (eg, buffer).
- the factors constituting the affinity complex are as described above. At least one of the two or more factors may be fixed to the solid in advance.
- the prepared affinity complex may be immobilized on a solid.
- the agent may be fixed to the solid via, for example, a linker.
- the factor is an immunoglobulin
- the factor may be immobilized on a solid via a protein having affinity for the immunoglobulin (eg, protein G).
- the concentration of each factor in the solution is not particularly limited as long as an affinity complex is formed.
- the affinity complex used in the method of the present invention may be a library containing various types of affinity complexes or may be used in an array format.
- the method of the present invention may further comprise providing a diverse population of antibody producing cells.
- a variety of antibody-producing cell populations may be prepared in advance or newly prepared.
- the diverse population of antibody-producing cells can preferably be a population of antibody-producing cells that can cause further mutations in the variable region in addition to V (D) J rearrangements.
- Examples of diverse antibody-producing cell populations include, for example, a population of antibody-producing cells that retain such ability, as described above, derived from animals that have the ability of gene conversion, as well as causing somatic mutations in the variable region. And a population of antibody-producing cells that can be obtained. These populations can be prepared, for example, by the methods described in the literature listed above.
- the method of the present invention further comprises preparing a diverse population of antibody-producing cells by treating antibody-producing cells capable of gene conversion in a medium with an inhibitor of histone deacetylase. Also good.
- By such treatment first, relaxation of the chromatin structure in the chromosome of the antibody-producing cell is promoted. The relaxation of the chromatin structure then promotes homologous recombination at the antibody locus, resulting in a diverse population of antibody-producing cells that produce diverse antibodies.
- inhibitors of histone deacetylase include protein factors such as antibodies that have the activity of suppressing the activity of histone deacetylase (HDAC), and compounds such as trichostatin A, butyric acid and valproic acid. It is done. See, for example, WO2004 / 011644 for details on how to prepare diverse populations of antibody-producing cells from antibody-producing cells that have the ability to convert genes.
- An example of such a technique is known as an ADLib (Autonomous Diversifying Library) system.
- an antibody-producing cell having an ability to produce an antibody capable of specifically binding to the factor constituting the affinity complex from a diverse population of antibody-producing cells using the factor constituting the affinity complex May be included.
- antibody-producing cells having the ability to produce an antibody that can specifically bind to the affinity complex can be efficiently obtained.
- the removal may be performed as follows. First, in the solution, the factor constituting the affinity complex is immobilized on a support (eg, plate).
- affinity complexes can be used to specifically bind to the affinity complex from a diverse population of antibody-producing cells.
- Antibody-producing cells having the ability to produce antibodies are prepared. The removal may be performed on one type of factor constituting the affinity complex, or two or more (eg, all) types of factor constituting the affinity complex by being repeated a plurality of times. May be performed.
- the antibody of the present invention is specific to an association part between factors in an affinity complex and / or an altered conformation (eg, folding and / or conformation) of the factor caused by the association. May be recognized.
- the methods of the invention provide antibodies that are capable of specifically binding an antibody of the invention to an association moiety between factors in an affinity complex, or an altered conformation of factors (eg, folding and And / or classification into antibodies that can specifically bind to (or conformation), or antibodies having both of the above properties.
- the method of the present invention may be performed by repeating all or part of the above steps. For example, by repeating the above steps two or more times, antibody-producing cells that produce better quality antibodies against the affinity complex can be prepared.
- the method of the present invention may also be performed by a combination of different methodologies. For example, preparing antibody-producing cells that produce antibodies optimized for affinity complexes by combining the methodology inherent in the ADLib system with methods of inducing somatic mutation as described above Can do. Of course, since the method of the present invention is excellent in itself, it need not be used in combination with other methodologies. From the viewpoint of obtaining the target antibody more rapidly, the method of the present invention can be used alone.
- the present invention provides a method for producing an antibody capable of specifically binding to an affinity complex.
- an antibody capable of specifically binding to the affinity complex is obtained by culturing antibody-producing cells having an ability to produce an antibody capable of specifically binding to the affinity complex.
- the affinity complex, the antibody that can specifically bind to the affinity complex, and the antibody-producing cell are as described above.
- Antibody-producing cells can be cultured in a medium.
- the medium described above can be used for animal cells.
- the medium preferably contains a carbon source, a nitrogen source, an inorganic substance and the like necessary for the growth of the microorganism.
- the carbon source include glucose, dextrin, soluble starch, and sucrose
- examples of the nitrogen source include ammonium salts, nitrates, corn steep liquor, peptone, casein, meat extract, large extract, and the like.
- examples include inorganic or organic substances such as bean paste and potato extract.
- examples of inorganic substances include calcium chloride, sodium dihydrogen phosphate, and magnesium chloride.
- you may add a yeast extract, vitamins, etc. to a culture medium. Culture conditions such as temperature, medium pH and culture time are appropriately selected so that a large amount of antibody is produced from antibody-producing cells.
- the culture temperature is, for example, 30 to 40 ° C.
- the method for producing an antibody further comprises obtaining an antibody-producing cell having an ability to produce an antibody capable of specifically binding to an affinity complex from a diverse population of antibody-producing cells in a medium. Also good. Such a step can be performed in the same manner as the method for producing antibody-producing cells of the present invention.
- the antibodies of the present invention are useful, for example, as reagents (eg, diagnostic reagents, laboratory reagents) and pharmaceuticals, and for screening factors.
- the antibody of the present invention can be used as a reagent in an immunoassay (qualitative or quantitative measurement) of an affinity complex.
- Immunoassays include enzyme immunoassay (EIA) (eg, direct competition ELISA, indirect competition ELISA, sandwich ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), immunochromatography, luminescence immunoassay. , Spin immunoassay, Western blot, and immunohistochemical staining.
- the antibody of the present invention may be linked to a detection substance.
- the antibody of the present invention may be linked directly or indirectly (ie, by use of a linker) to the detection substance.
- detection substances include enzymes (eg, horseradish peroxidase, alkaline phosphatase), affinity substances (eg, streptavidin, biotin), fluorescent substances (eg, fluorescein, fluorescein isothiocyanate, rhodamine), and luminescent substances (eg, , Luciferin, aequorin) and radioactive substances (eg, 125 I, 131 I, 111 In, 99 Tc).
- the antibody of the present invention linked to a detection substance is useful for immunoassay.
- the antibody of the present invention may be immobilized on a support.
- the support include a membrane (eg, nitrocellulose membrane), glass, plastic, metal, and plate (eg, multiwell plate).
- the antibodies of the present invention immobilized on a support are useful, for example, for immunoassays and purification of affinity complexes.
- the antibody of the present invention is used in a non-competitive measurement method.
- the non-competitive measurement method include a sandwich method.
- a first antibody against a factor eg, low molecular weight substance, protein
- an affinity complex comprising the factor and the first antibody thereto
- a second antibody ie, a combination of antibodies
- the antibody of the present invention can also lose the function of the affinity complex by binding to the affinity complex existing in the living body as a pharmaceutical, or alter the pharmacokinetics of the affinity complex. obtain.
- the antibody of the present invention can be used to inhibit the formation of an affinity complex composed of at least three factors existing in vivo.
- the affinity complex present in the living body is composed of factor a (eg, ligand), factor b (eg, receptor) and factor c (eg, cofactors such as coactivators and corepressors).
- the antibody of the present invention binds competitively to the affinity complex composed of factor a and factor b, whereby the affinity complex composed of factor a and factor b and factor c Can regulate the biological signal mediated by the formation of an affinity complex composed of factor a, factor b and factor c (eg, proliferation signal).
- factor c is a coactivator
- an antibody of the invention can reduce a biological signal.
- the factor c is a corepressor
- the antibody of the present invention can enhance a biological signal.
- a mutation that enhances a biological signal eg, a proliferation signal
- the antibody of the present invention forms an affinity complex. Inhibiting can reduce biological signals.
- the antibody of the present invention may be linked to a substance useful for treatment.
- the antibodies of the present invention can be linked directly or indirectly (ie, through the use of linkers) to therapeutically useful substances.
- useful substances for treatment include anticancer agents, toxins (eg, cytostatic or cell killing), proteins (eg, growth factors, cytokines), radioactive metals [eg, ⁇ emitter (eg, 213 Bi)] , Apoptosis promoters, and stabilizers (eg, PEG).
- Techniques for linking such substances to antibodies are well known, for example, Arnon et al., “Monoclonal Antibodies for Immunological Of Drugs In Cancer Therapies”, Monoclonal Antibodies Andalc.
- the antibody of the present invention is administered as a pharmaceutical composition containing a pharmaceutically acceptable carrier.
- the pharmaceutical composition is administered orally or parenterally (eg, intravenous injection, subcutaneous injection, intramuscular injection, local infusion, intraperitoneal administration).
- pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate and other excipients, cellulose, methylcellulose, hydroxypropylcellulose, polypropylpyrrolidone.
- the dose of the antibody of the present invention varies depending on the activity and type of the active ingredient, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc. However, it is usually about 0.001 to about 500 mg / kg as an active ingredient amount per day for an adult.
- the antibody of the present invention may be used in combination with at least one factor constituting the affinity complex.
- the antibody of the present invention is provided as a set comprising (i) an antibody capable of specifically binding to the affinity complex, and (ii) at least one factor constituting the affinity complex.
- At least one factor constituting the affinity complex is the same as the above-described factor constituting the affinity complex.
- the set of the invention also includes (i ′) an antibody that can specifically bind to an affinity complex comprising a factor (eg, small molecule, protein) and an antibody thereto, and (ii ′) a factor ( For example, it may contain an antibody that can specifically bind to a low-molecular substance, protein).
- the set of the present invention may be provided as a kit.
- the set of the present invention is useful for, for example, detection and / or quantification of factors that can constitute an affinity complex.
- the antibody of the present invention may be linked to a detection substance as described above.
- the set of the present invention includes a detection substance and / or a detection protein (eg, An anti-immunoglobulin antibody or protein G) may further be included.
- the set of the present invention is useful for the sandwich method when at least one factor constituting the affinity complex is a protein.
- the set of the present invention can treat another factor (eg, low molecular weight substance, protein) constituting the affinity complex as a therapeutic target.
- another factor eg, low molecular weight substance, protein
- sandwich therapy eg, double antibody therapy
- antibodies do not necessarily have a high specificity for small molecule substances.
- an antibody that can specifically bind to a low molecular weight substance is combined with an antibody that can specifically bind to an affinity complex comprising a low molecular weight substance and an antibody that can specifically bind to it.
- double specificity is achieved and specificity is amplified.
- Such antibody combinations are more specific for low molecular weight substances than antibodies alone.
- the set of the present invention is useful for antibody therapy against low molecular weight substances.
- An antibody does not necessarily have high specificity for a specific target protein among a plurality of proteins having a high degree of homology.
- the therapeutic target is natural protein a and high homology to natural protein a (for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98
- a natural protein b homologue having a% or greater or 99% or greater amino acid sequence identity
- the set of the present invention is useful for antibody therapy targeting a specific natural protein among a plurality of natural proteins having a high degree of homology.
- antibodies do not necessarily have a high specificity for mutant proteins.
- a mutant protein include a protein in which one or several amino acid residues are mutated (eg, substituted, deleted, inserted, and / or added) with respect to a natural protein.
- mutated protein a naturally protein a
- such antibody combinations can be used to act more selectively on the mutated protein a ′. Therefore, the set of the present invention is useful for antibody therapy that targets only mutant proteins as therapeutic targets.
- the set of the present invention is useful for screening factors that can form an affinity complex.
- the set of the present invention is also useful for screening ligands (eg, low molecular weight substances, proteins) having different mechanisms of action.
- ligands for predetermined receptors those having different mechanisms of action (eg, agonists, antagonists, reverse agonists) are known. Differences in the mechanism of action of such ligands for a given receptor may be due to changes in receptor conformation (eg, folding and / or conformation) that can be caused by receptor and ligand association. Therefore, when an antibody of the present invention is used that can specifically recognize the altered three-dimensional structure (eg, folding and / or conformation) of factors caused by association, the mechanism of action of the ligand is used. May help identify the type of
- Example 1 Acquisition of an antibody against an affinity complex (E2 anti-E2 antibody complex) Using in vitro chicken IgM acquisition technology [(ADLib (Autonomous Diversifying Library) system: see, for example, WO2004 / 011644)]
- ADLib Autonomous Diversifying Library
- E2 anti-E2 antibody complex was obtained, and in the following description of this specification, it may be expressed as E1 (estrone), E2 (estradiol), or E3 (estriol).
- 1 ⁇ g / mL corresponds to 3.7 ⁇ M
- 1 ⁇ g / mL corresponds to 6.7 nM
- 1 ⁇ g / mL corresponds to 6.7 nM
- 1 ⁇ g for trichostatin A (TSA) mL is equivalent to 3.3 ⁇ M.
- DT40 cells were prepared by the following procedure. -IMDM medium containing 9% FBS and 1% chicken serum [CS (Chicken Serum) + medium] 50 mL was weighed and added to a 15 cm dish. Trichostatin A (TSA) was added to 2.5 ng / mL. -1.5 ⁇ 10 7 DT40 cells were added and cultured in a CO 2 incubator set at 39.5 ° C. for 1 day.
- TSA Trichostatin A
- DT40 cells were passaged by the following procedure. -The cell suspension cultured for one day was taken in a 50 mL tube and centrifuged at 4 ° C, 1000 rpm, 10 min. -After removing the supernatant, it was resuspended in 10 mL of CS + medium. -50 ⁇ L of cell suspension was added to 950 ⁇ L of CS + medium, diluted 20 times, and stirred. ⁇ The number of viable cells was counted. -Add 50 mL of CS + medium to a new 15 cm dish. -1.5 ⁇ 10 7 DT40 cells were added and cultured in a CO 2 incubator set at 39.5 ° C. for 1 day. -TSA treatment was performed twice before selection of cells producing the target antibody. TSA treatment was performed by culturing overnight at 39.5 ° C. in CS + medium containing 2.5 ng / mL TSA.
- Antigen-binding particles were prepared by the following procedure. -Phosphate buffered saline (PBS) (13.5 mg / mL) containing magnetic particles [Dynabeads Protein G (particle size: 2.8 ⁇ m), obtained from Invitrogen, catalog number: 100.03D] to which Protein G is immobilized ) was added 300 ⁇ g / mL anti-E2 antibody (F18-3).
- the anti-E2 antibody (F18-3) is a mouse monoclonal antibody established in-house. The binding of the anti-E2 antibody (F18-3) to E2 is estimated to be about 10 ⁇ 9 M to 10 ⁇ 12 M from various data.
- -F18-3 was immobilized on the particles by reaction at 4 ° C for 1 h.
- the particles were washed 4 times with 0.1% BSA / PBS.
- Particles were dispersed in PBS containing 1.1 ⁇ g / mL E2.
- the mixture was allowed to stand at 4 ° C for 1 h to form an antigen-antibody complex (affinity complex containing E2 and anti-E2 antibody) in which the antigen and the antibody were associated.
- the particles were washed 4 times with 0.1% BSA / PBS.
- Cells producing the target antibody were cultured by the following procedure. -50 mL of CS + medium was added to each of two 15 cm dishes. -1.5 ⁇ 10 7 cells were added to each medium and cultured for 1 day. -The cell suspension was collected in a 50 mL tube and centrifuged at 4 ° C, 1000 rpm, 10 min. -After removing the supernatant, it was washed twice with 1% BSA / PBS and collected in a 1.5 mL tube. -The supernatant was removed by centrifugation at 4 ° C, 3500 rpm, 5 min.
- the antigen-binding particles prepared in (3) were washed 4 times with 1% BSA / PBS.
- -Cells (9 ⁇ 10 7 cells / mL) and antigen-binding particles (75 ⁇ g / mL) were mixed and reacted at 4 ° C. for 30 min.
- Cells and particles were dispersed in CS - medium.
- -It was seeded in a 96-well plate and cultured for 1 week.
- -A primary reaction was performed by adding 25 ⁇ L of culture supernatant. -Washed 3 times with PBST. ⁇ Anti-Chicken IgM-HRP was added to carry out a secondary reaction. -Washed 3 times with PBST. -TMB (3,3 ', 5,5'-tetramethylbenzidine) was added to perform a color reaction. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 2 Evaluation of Specificity of Target Antibody for Anti-E2 Antibody and E2 Anti-E2 Antibody Complex (1) Method ELISA was performed according to the following procedure to evaluate specificity. Two types of anti-E2 antibody (F18-3, F12-33) and anti-AFP antibody (negative control) were added to the assay plate at a concentration of 2 ⁇ g / mL, respectively, and incubated at 37 ° C. for 1 hour to be immobilized.
- the anti-E2 antibodies (F18-3, F12-33) are mouse monoclonal antibodies established in-house. -Washed 3 times with PBST. Blocked with 1% skim milk / PBS. -Washed 3 times with PBST.
- Example 3 Evaluation of Specificity of Target Antibody for E2 (1) Method The specificity of the target antibody for E2 was evaluated by performing ELISA according to the following procedure. E2-BSA (bovine serum albumin) complex was added to the assay plate at each concentration, and incubated at 37 ° C. for 1 hour to immobilize. The reason for using E2-BSA complex instead of E2 is that E2 is a low molecular weight compound and does not adsorb on the assay plate by itself. -Washed 3 times with PBST. Blocked with 1% skim milk / PBS. -Washed 3 times with PBST. • 100 ng / mL E2 or buffer alone was added in 25 ⁇ L aliquots.
- E2-BSA bovine serum albumin
- Example 2 Add 25 ⁇ L of the culture supernatant of the clones (2-1, 2-2, 2-3, 2-4, 2-5 and 2-6) established in Example 1 and evaluated in Example 2, The next reaction was performed. -Washed 3 times with PBST. ⁇ Anti-chicken IgM-HRP was added to conduct a secondary reaction. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD 450 was measured.
- Example 4 Evaluation of cross-reactivity to similar substances (1)
- the ELISA was performed according to the following procedure to evaluate the cross-reactivity of antibodies to similar substances.
- -5 ⁇ g / mL anti-E2 antibody (F18-3) was immobilized.
- -Washed 3 times with PBST. Blocked with 1% skim milk / PBS.
- E1, E3, and E2 were prepared at each concentration, and 25 ⁇ L was added.
- -25 ⁇ L each of culture supernatants (clones 2-1, 2-3, 2-5) containing 3 kinds of antibodies were added to carry out the primary reaction.
- Anti-chicken IgM-HRP was added to conduct a secondary reaction. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD 450 was measured.
- the three types of antibodies (clones 2-1, 2-3, 2-5) can specifically bind to the antigen-antibody complex [complex including E2-anti-E2 antibody (F18-3)]. Indicated. Therefore, it was demonstrated by the present invention that it is possible to develop an antibody that can specifically bind to the affinity complex. It was also demonstrated that low-molecular substances can be measured by the sandwich method.
- a chicken IgM antibody was converted to a mouse IgG antibody to produce a recombinant type I chimeric antibody.
- a recombinant type I chimeric antibody is an antibody in which mouse constant regions (CH, CL) are linked downstream of the ⁇ - and ⁇ -chain variable regions (VH and VL) of chicken IgM antibody against the E2-anti-E2 antibody complex.
- CH, CL mouse constant regions
- VH and VL variable regions
- a chimeric type I heavy chain expression vector was prepared by the following procedure. a) PCR was performed using primer A and primer B using the ⁇ -chain cDNA of E2-anti-E2 antibody complex-bound chicken IgM antibody (clone 2-3) as a template to amplify the chicken ⁇ -chain variable region. b) Using the ⁇ chain cDNA of anti-TNF mouse IgG1 antibody as a template, PCR was performed using primer C and primer D to amplify the constant region of mouse IgG1.
- chimeric type I light chain expression vector was prepared by the following procedure. e) PCR was performed using primer E and primer F with the ⁇ chain cDNA of E2-anti-E2 antibody complex-bound chicken IgM antibody (clone 2-3) as a template to amplify the chicken ⁇ chain variable region. f) PCR was performed using primer G and primer H using the kappa chain cDNA of anti-TNF mouse IgG1 antibody as a template to amplify the mouse kappa chain constant region.
- a recombinant chimeric type I antibody was produced by the following procedure. i) E. coli colonies transformed with a chimeric type I heavy chain expression vector and a chimeric type I light chain expression vector were each shake-cultured at 37 ° C. overnight in 150 ml of LB medium containing 100 ⁇ g / ml ampicillin, and then Qiagen Plasmids were prepared using the company's Plasmid Midi Kit. j) 10 6 CHO cells were transformed with Lipofectamine 2000 of Invitrogen using 4 ⁇ g each of the chimeric type I heavy chain expression vector prepared in i) and the chimeric type I light chain expression vector.
- CHO cells transformed in j) were cultured at 37 ° C. for 24 hours in a CO 2 incubator using Ham F-12 medium containing 10% fetal calf serum.
- l) To confirm the expression of the chimeric type I antibody, it was confirmed by ELISA whether the chimeric type I antibody was secreted in the culture supernatant of k). That is, anti-mouse IgG was immobilized on an ELISA plate (Nunc), and the culture supernatant diluted with (1/2) n was reacted therewith, and then detected with POD-labeled anti-mouse IgG (DAKO). A mouse monoclonal antibody (anti TNF36) was used as a positive control, and a CHO culture supernatant was used as a negative control. As a result, expression of the chimeric type I antibody was confirmed (Table 4).
- Recombinant type II chimeric antibody is a region of chicken IgG1 Hinge region after mouse IgG1 downstream of ⁇ chain (VL and CL) and ⁇ chain variable region (VH) and CH1 domain of E2-anti-E2 antibody complex. (Hinge region, CH2 and CH3) linked antibodies [heavy chain: chicken IgM ( ⁇ chain) -derived VH and CH1-mouse IgG1 ( ⁇ 1 chain) -derived Hinge region, CH2 and CH3; light chain: chicken IgM VL and CL from ( ⁇ chain)].
- chimeric type II (antibody) it will be referred to as “chimeric type II (antibody)” as necessary.
- chimeric type II heavy chain expression vector A chimeric type II heavy chain expression vector was prepared by the following procedure.
- a ′) PCR was performed using Primer I and Primer J using the ⁇ -chain cDNA of chicken IgM antibody (clone 2-3) bound to E2-anti-E2 antibody complex as a template to amplify the chicken ⁇ -chain variable region and CH1.
- b ′) PCR was carried out using primer K and primer D using ⁇ chain cDNA of anti-TNF mouse IgG1 antibody as a template to amplify the regions after the Hinge region of the mouse ⁇ chain (Hinge region, CH2 and CH3).
- c ′ Using the mixture of DNA fragments amplified in a ′) and b ′) as a template, assembly PCR is performed using Primer I and Primer D, and the chicken ⁇ -chain variable region and the region after the Hinge region of CH1 and mouse ⁇ One DNA fragment to which (Hinge region, CH2 and CH3) were linked was prepared.
- d ′ The DNA fragment obtained in c ′) was treated with restriction enzymes Nhe I and Not I, and then inserted into the Nhe I-Not I site of a commercially available (Invitrogen) expression vector pcDNA3.1.
- chimeric type II light chain expression vector was prepared by the following procedure.
- e ′ PCR was performed using primers E and L using the ⁇ chain cDNA of E2-anti-E2 antibody complex-bound chicken IgM antibody (clone 2-3) as a template to amplify the chicken ⁇ chain.
- f ′ The DNA fragment amplified in e ′) was treated with Hind III and Not I, and then inserted into the Hind III-Not I site of a commercially available (Invitrogen) expression vector pcDNA3.1 / Zeo.
- a recombinant chimeric type II antibody was produced by the following procedure.
- g ′ After shaking culture of a chimeric type II heavy chain expression vector and an E. coli colony transformed with the chimeric type II light chain expression vector in a 150 ml LB medium containing 100 ⁇ g / ml ampicillin overnight at 37 ° C. Plasmids were prepared using Qiagen's Plasmid Midi Kit. The h ') g') Invitrogen Corporation Lipofectamin 2000 using 4 ⁇ g chimeric II type heavy chain expression vector was prepared, and chimeric type II light chain expression vector, respectively, the 10 6 CHO cells were transformed.
- CHO cells transformed in i ′) h ′) were cultured for 24 hours at 37 ° C. in a CO 2 incubator using Ham F-12 medium containing 10% fetal calf serum.
- j ′ In order to confirm the expression of the chimeric type II antibody, it was confirmed by ELISA whether the chimeric type II antibody was secreted in the culture supernatant of i ′). That is, anti-mouse IgG was immobilized on an ELISA plate (Nunc), and the culture supernatant diluted with (1/2) n was reacted therewith, and then detected with POD-labeled anti-mouse IgG (DAKO). A mouse monoclonal antibody (anti TNF36) was used as a positive control, and a CHO culture supernatant was used as a negative control. As a result, expression of the chimeric type II antibody was confirmed (Table 5).
- Example 7 Acquisition of antibody against affinity complex (T3-anti-T3 antibody complex)
- T3-anti-T3 antibody complex By using the in vitro chicken IgM acquisition technology (ADLib system), the following method was performed to obtain T3-anti-T3 antibody complex. Obtained antibodies against the body. In the following description of the present specification, it may be expressed as T2 (diiodothyronine), T3 (triiodothyronine), or T4 (thyroxine).
- T3-92 antibody 1 ⁇ g / mL corresponds to 6.7 nM
- T3-31 antibody 1 ⁇ g / mL corresponds to 6.7 nM. Equivalent to.
- Antigen-binding particles were prepared by the following procedure. -300 ⁇ g / mL anti-T3 antibody (T3-92) was added to magnetic particles on which Protein G was immobilized. -T3-92 was immobilized by reaction at 4 ° C for 1 h. -The particles were washed 4 times with 0.1% BSA / PBS. -The particles were dispersed in PBS containing 300 ⁇ g / mL T3. ⁇ An antigen-antibody complex was formed by reaction at 4 ° C. for 1 h. -The particles were washed 4 times with 0.1% BSA / PBS.
- Cells producing the target antibody were cultured by the following procedure. -50 mL of CS + medium was added to each of two 15 cm dishes. -1.5 ⁇ 10 7 cells were added and cultured for 1 day. -The cell suspension was collected in a 50 mL tube and centrifuged at 4 ° C, 1000 rpm, 10 min. -After removing the supernatant, it was washed twice with 1% BSA / PBS and collected in a 1.5 mL tube. -The supernatant was removed by centrifugation at 4 ° C, 3500 rpm, 5 min. -The antigen-binding particles prepared in (3) were washed 4 times with 1% BSA / PBS.
- -Cells and antigen-binding particles were mixed and reacted at 4 ° C for 30 min. -Washed 5 times with 1% BSA / PBS to remove excess cells. • Cells and particles were dispersed in CS - medium. -It was seeded in a 96-well plate and cultured for 1 week.
- -Primary reaction was performed by adding 50 ⁇ L of DT40 culture supernatant. -Washed 3 times with PBST. Anti-Chicken IgM-HRP was added and a secondary reaction was performed. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 8 Evaluation of Specificity of Affinity Complex (T3-Anti-T3 Antibody Complex) Antibody (1) Method An ELISA was performed according to the following procedure to evaluate specificity. Two kinds of anti-T3 antibodies (T3-92, T3-31) and anti-AFP antibody were immobilized on the assay plate at 2 ⁇ g / mL, respectively. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -T3, T2, and T4 were adjusted to 100 ng / mL, and 50 ⁇ L each was added and incubated. -Washed 3 times with PBST.
- the antibody established by the above method was added by 50 ⁇ L of each clone and incubated. -Washed 3 times with PBST. AntiChicken IgM-HRP was added and incubated. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- 5-32 was a clone that specifically bound to the T3-92 antibody from here, which did not bind to the T3-31 antibody.
- the clones 6-19, 5-3, 5-6, 5-13 and 5-22 correspond to the clones 23, 91, 94, 101 and 110 of Example 7, respectively, and the clone 5-33 Corresponding to clone 121 of Example 7, clone 5-32 corresponds to clone 120 of Example 7.
- Example 9 Evaluation of Specificity of Target Antibody for T3 (1) Method The specificity of the target antibody for T3 was evaluated by performing ELISA according to the following procedure. -T3-BSA conjugate was immobilized on an assay plate at 5 ⁇ g / mL. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -The antibody established by the said method was added 50 microliters of each clone at a time, and the primary reaction was performed. -Washed 3 times with PBST. Anti-Chicken IgM-HRP was added and a secondary reaction was performed.
- mouse antibody When mouse antibody was used for the primary reaction, anti mouse Ig-HRP was added to perform the secondary reaction. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 10 Evaluation of cross-reactivity to similar substances (1)
- Method ELISA was performed according to the following procedure to evaluate cross-reactivity of antibodies to similar substances: 2 ⁇ g / mL anti-T3 antibody (T3-92) on the assay plate ) was immobilized. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -T3, T2, and T4 were prepared at each concentration, and 50 ⁇ L each was added and incubated. -Washed 3 times with PBST. -The antibody established by the above method was added by 50 ⁇ L of each clone and incubated. -Washed 3 times with PBST.
- AntiChicken IgM-HRP was added and incubated. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- the five types of antibodies are antigen-antibody complexes [T3-anti-T3 antibody (T3-92) -containing complex]. It was shown that it can be specifically bound to. Therefore, it was demonstrated by the present invention that it is possible to develop an antibody that can specifically bind to the affinity complex. It was also demonstrated that low-molecular substances can be measured by the sandwich method.
- Example 11 Evaluation of sensitivity to T3 (1) Method The sensitivity to T3 was evaluated by performing ELISA according to the following procedure. -2 ⁇ g / mL anti-T3 antibody (T3-92) was immobilized on the assay plate. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -T3 was adjusted to each concentration, 50 ⁇ L was added and incubated. -Washed 3 times with PBST. -50 ⁇ L of the antibody established by the above method was added and incubated. -Washed 3 times with PBST. AntiChicken IgM-HRP was added and incubated. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 12 Acquisition of antibody to affinity complex (25OH vitamin D3-anti-25OH vitamin D antibody complex)
- 25OH vitamin An antibody against the D3-anti-25OH vitamin D antibody complex was obtained.
- 1 ⁇ g / mL corresponds to 2.5 ⁇ M
- 1 ⁇ g / mL corresponds to 6.7 nM.
- Antigen-binding particles were prepared by the following procedure. -300 ⁇ g / mL anti-25OH vitamin D antibody was added to magnetic particles on which Protein G was immobilized. -The antibody was immobilized by reaction at 4 ° C for 1 h. -The particles were washed 4 times with 0.1% BSA / PBS. The particles were dispersed with PBS containing 300 ⁇ g / mL 25OH vitamin D3. ⁇ An antigen-antibody complex was formed by reaction at 4 ° C. for 1 h. -The particles were washed 4 times with 0.1% BSA / PBS.
- Cells producing the target antibody were cultured by the following procedure. -50 mL of CS + medium was added to each of two 15 cm dishes. -1.5 ⁇ 10 7 cells were added and cultured for 1 day. -The cell suspension was collected in a 50 mL tube and centrifuged at 4 ° C, 1000 rpm, 10 min. -After removing the supernatant, it was washed twice with 1% BSA / PBS and collected in a 1.5 mL tube. -The supernatant was removed by centrifugation at 4 ° C, 3500 rpm, 5 min. -The antigen-binding particles prepared in (3) were washed 4 times with 1% BSA / PBS.
- -Cells and antigen-binding particles were mixed and reacted at 4 ° C for 30 min. -Washed 5 times with 1% BSA / PBS to remove excess cells. • Cells and particles were dispersed in CS - medium. -It was seeded in a 96-well plate and cultured for 1 week.
- -Primary reaction was performed by adding 50 ⁇ L of DT40 culture supernatant. -Washed 3 times with PBST. Anti-Chicken IgM-biotin was added and a secondary reaction was performed. -Washed 3 times with PBST. -StreptAvidin-HRP was added to carry out the tertiary reaction. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 13 Affinity complex (25OH vitamin D3-anti-25OH vitamin D antibody complex) Evaluation of antibody specificity (1) Method An ELISA was performed according to the following procedure to evaluate specificity. The anti-25OH vitamin D antibody and the anti-T3 antibody were immobilized on the assay plate at 1 ⁇ g / mL, respectively. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. ⁇ 25OH vitamin D3, and 25OH vitamin D2,1,25 (OH) 2 vitamin D3,1,25 (OH) 2 vitamin D2 which is a similar material, vitamin D3, by 50 ⁇ L prepare vitamin D2 respectively 200 ng / mL Incubated.
- -Washed 3 times with PBST The antibody established by the above method was added by 50 ⁇ L of each clone and incubated. -Washed 3 times with PBST. Anti-Chicken IgM-biotin was added and a secondary reaction was performed. -Washed 3 times with PBST. -StreptAvidin-HRP was added to carry out the tertiary reaction. -Washed 3 times with PBST. -TMB was added and a color reaction was performed. -1N sulfuric acid was added to stop the color reaction. -OD450 was measured.
- Example 14 Evaluation of Specificity of Target Antibody to 25OH Vitamin D3 (1)
- the ELISA was performed according to the following procedure to evaluate the specificity of the target antibody to 25OH vitamin D3. • 1 ⁇ g / mL of 25OH vitamin D3-BSA conjugate was immobilized on the assay plate. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -The antibody established by the said method was added 50 microliters of each clone at a time, and the primary reaction was performed. -Washed 3 times with PBST. Anti-Chicken IgM-biotin was added and a secondary reaction was performed.
- anti-IgG-HRP was added to conduct the secondary reaction.
- PBST PBST
- -StreptAvidin-HRP was added to carry out the tertiary reaction.
- -TMB was added and a color reaction was performed.
- -1N sulfuric acid was added to stop the color reaction.
- -OD450 was measured.
- Reference Example 1 Confirmation of cross-reactivity of anti-25OH vitamin D antibody (1)
- Method An ELISA was performed according to the following procedure to evaluate the cross-reactivity of anti-25OH vitamin D antibody to similar substances. -1 ⁇ g / mL anti-25OH vitamin D antibody was immobilized on the assay plate. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST.
- Example 15 Evaluation of cross-reactivity of target antibody to similar substance (1)
- Method ELISA was performed according to the following procedure to evaluate the cross-reactivity of target antibody to similar substance.
- -1 ⁇ g / mL anti-25OH vitamin D antibody was immobilized on the assay plate.
- PBST -Blocked with 1% BSA / PBS.
- PBST -Washed 3 times with PBST.
- -25OH vitamin D3, 25OH vitamin D2, 1,25 (OH) 2 vitamin D3 or 1,25 (OH) 2 vitamin D2 was prepared to each concentration, 50 ⁇ L each was added and incubated.
- Clone 3-2D1-12 was added to each 50 ⁇ L and incubated.
- Example 16 Sensitivity to 25OH Vitamin D3 in Measurement Using Target Antibody (1) Method The ELISA was performed according to the following procedure to evaluate the sensitivity to 25OH vitamin D3 in the measurement using the target antibody. -1 ⁇ g / mL anti-25OH vitamin D antibody was immobilized on the assay plate. -Washed 3 times with PBST. -Blocked with 1% BSA / PBS. -Washed 3 times with PBST. -25OH vitamin D3 was prepared to each concentration, 50 ⁇ L was added and incubated. -Washed 3 times with PBST. Clone 3-2D1-12 was added in 50 ⁇ L aliquots and incubated. -Washed 3 times with PBST.
- Example 17 Specificity of Antibody of the Present Invention to Complex of E2 and Anti-E2 Antibody (17-1) Evaluation of Specificity of Solid Phase Antibody (Primary Antibody) by Competition Method Evaluation of Specificity of Antibody of the Present Invention Therefore, first, the specificity of the primary antibody against E2 was evaluated.
- E2 (6 ng / ml to 3 n-fold dilution) and similar antigen: E1, E3, E2-3 sulfate (54 ng / ml to 3 n-fold dilution) were prepared.
- -Labeled antigen E2-3 position ALP (alkaline phosphatase) fusion (46 ng / ml) was prepared.
- Antigen or similar antigen 50 ⁇ l each
- labeled antigen 50 ⁇ l
- the solid phase plate was incubated for 1 h at 37 ° C.
- the solid phase plate was washed 3 times with PBS-tween20 (0.05%).
- -Color was developed with pNPP and the absorbance was measured.
- -The percentage of inhibition (% Reaction) when each concentration of antigen or similar antigen was added was calculated with 100% as the absence of antigen or similar antigen.
- ELISA ELISA was performed according to the following procedure.
- Antigen: E2 (2 ng / ml to 3n dilution) and similar antigen: E1, E3, E2-3s (54 ng / ml to 3n dilution) were prepared.
- Antigen, similar antigen (50 ⁇ l each) and secondary antibody (chicken-derived E2 anti-E2 antibody complex antibody (clone 2-1): 50 ⁇ l) were added to the solid phase plate. • The solid phase plate was incubated for 1 h at 37 ° C. -The solid phase plate was washed 3 times with PBS-tween20 (0.05%).
- E2 (2 ng / ml to 3 n-fold dilution) and E2-like therapeutic drug (100 ng / ml) were prepared. Estromustine and estramustine were used as drugs for E2-like treatment.
- Example 18 Specificity of antibody of the present invention to complex of 25 (OH) vitamin D2 or D3 and antibody thereto (18-1) Evaluation of specificity of solid phase antibody (primary antibody) by competition method First, the specificity of the primary antibody against 25 (OH) vitamin D2 was evaluated.
- the antibody of the present invention can discriminate between “25OH vitamin D2 or D3 and primary antibody complex” and “1,25 (OH) 2 vitamin D2 or D3 and primary antibody complex”.
- FIG. 12 the antibody of the present invention specifically determines the presence or absence of the OH group at the 1-position of 1,25 (OH) 2 vitamin D2 or D3 in the complex of 1,25 (OH) 2 vitamin D2 or D3 and the primary antibody. It is thought that it is recognized. Therefore, it was shown that the specific measurement of 1,25 (OH) 2 vitamins D2 and D3 with respect to in-vivo analogs is improved by using the antibody of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Endocrinology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
〔1〕親和性複合体に対して特異的に結合し得る抗体。
〔2〕前記抗体が全長抗体である、〔1〕の抗体。
〔3〕前記抗体が、遺伝子変換の能力を有する動物のイムノグロブリンに由来する領域を有する、〔1〕の抗体。
〔4〕遺伝子変換の能力を有する動物のイムノグロブリンに由来する領域が、相補性決定領域、枠組み領域、または可変領域である、〔3〕の抗体。
〔5〕親和性複合体を構成する少なくとも1つの因子が低分子物質である、〔1〕~〔4〕のいずれかの抗体。
〔6〕親和性複合体を構成する少なくとも1つの因子がタンパク質である、〔1〕~〔5〕のいずれかの抗体。
〔7〕親和性複合体が、低分子物質およびそれに対する抗体を含む複合体である、〔1〕~〔6〕のいずれかの抗体。
〔8〕低分子物質が、(a)ステロイド化合物、(b)アミノ酸化合物、または(c)ビタミンである、〔7〕の抗体。
〔9〕以下(a)~(c)のいずれかである、〔8〕の抗体:
(a)ステロイド化合物が卵胞ホルモンである;
(b)アミノ酸化合物が甲状腺ホルモンである;または
(c)ビタミンがビタミンDである。
〔10〕以下(a)~(c)のいずれかである、〔9〕の抗体:
(a)卵胞ホルモンがエストラジオールである;
(b)甲状腺ホルモンがトリヨードチロニンである;または
(c)ビタミンDが25OHビタミンD3または25OHビタミンD2である。
〔11〕以下(a)~(c)の結合率を示す、〔10〕の抗体:
(a)エストラジオールおよび抗エストラジオール抗体を含む親和性複合体(親和性複合体I)に対する、親和性複合体Iに対して特異的に結合し得る抗体(抗体I)の結合率を100%として算出した場合、エストロンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’)、エストリオールおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’)、エストラジオール抱合体および該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’)、エストラムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’)、またはエストロムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’’)に対する抗体Iの結合率が10%以下である;
(b)トリヨードチロニンおよび抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II)に対する、親和性複合体IIに対して特異的に結合し得る抗体(抗体II)の結合率を100%として算出した場合、ジヨードチロニンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’)、またはチロキシンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’’)に対する抗体IIの結合率が10%以下である;あるいは
(c)25OHビタミンD3および抗25OHビタミンD3抗体を含む親和性複合体(親和性複合体III-1)または25OHビタミンD2および抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III-2)に対する、親和性複合体III-1またはIII-2に対して特異的に結合し得る抗体(抗体III)の結合率を100%として算出した場合、1,25(OH)2ビタミンD3および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’)、あるいは1,25(OH)2ビタミンD2および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’’)に対する抗体IIIの結合率が10%以下である。
〔12〕親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞を培養して、親和性複合体に対して特異的に結合し得る抗体を得ることを含む方法により作製される、〔1〕~〔11〕のいずれかの抗体。
〔13〕以下を含む、セット:
(i)親和性複合体に対して特異的に結合し得る抗体;および
(ii)親和性複合体を構成する少なくとも1つの因子。
〔14〕下記である、〔13〕のセット:
(i’)低分子物質またはタンパク質、およびそれに対する抗体を含む親和性複合体に対して特異的に結合し得る抗体;ならびに
(ii’)低分子物質またはタンパク質に対して特異的に結合し得る抗体。
〔15〕親和性複合体に対して特異的に結合し得る抗体を用いて、親和性複合体を測定することを含む、親和性複合体の測定方法。
〔16〕親和性複合体がサンドイッチ法により測定される、〔15〕の方法。
本発明により、競合阻害法で従来測定していた低分子物質を、サンドイッチ法で測定することができる。サンドイッチ法での測定により、測定感度の上昇、特異性の向上、測定精度の改善、測定系構築の迅速化などが期待できる。また、抗体取得の操作が簡便であるため、操作の自動化による低コスト化、迅速化が容易である。
本発明はまた、低分子物質の測定のみならず、低分子物質以外の因子の測定、および所定の因子を治療標的とする医薬の開発に有用である。
本発明は、親和性複合体に対して特異的に結合し得る抗体を提供する。
(i)炭化水素基;
(ii)アリール基;
(iii)炭化水素-アリール基;
(iv)アリール-炭化水素基;
(v)炭化水素オキシ-炭化水素基、アリールオキシ-炭化水素基、炭化水素オキシ-アリール基、またはアリールオキシ-アリール基;
(vi)炭化水素チオ-炭化水素基、アリールチオ-炭化水素基、炭化水素チオ-アリール基、またはアリールチオ-アリール基;
(vii)モノまたはジ(炭化水素)アミノ-炭化水素基、モノまたはジ(アリール)アミノ-炭化水素基、モノまたはジ(炭化水素)アミノ-アリール基、あるいはモノまたはジ(アリール)アミノ-アリール基。
(a)エストラジオールおよび抗エストラジオール抗体を含む親和性複合体(親和性複合体I)に対する、親和性複合体Iに対して特異的に結合し得る抗体(抗体I)の結合率を100%として算出した場合、エストロンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’)、エストリオールおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’)、エストラジオール抱合体および該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’)、エストラムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’)、またはエストロムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’’)に対する抗体Iの結合率が上記値以下である;
(b)トリヨードチロニンおよび抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II)に対する、親和性複合体IIに対して特異的に結合し得る抗体(抗体II)の結合率を100%として算出した場合、ジヨードチロニンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’)、またはチロキシンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’’)に対する抗体IIの結合率が上記値以下である;あるいは
(c)25OHビタミンD3および抗25OHビタミンD3抗体を含む親和性複合体(親和性複合体III-1)または25OHビタミンD2および抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III-2)に対する、親和性複合体III-1またはIII-2に対して特異的に結合し得る抗体(抗体III)の結合率を100%として算出した場合、1,25(OH)2ビタミンD3および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’)、あるいは1,25(OH)2ビタミンD2および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’’)に対する抗体IIIの結合率が上記値以下である。
本明細書中以降、遺伝子変換の能力を有する動物を、動物Xと省略することがある。また、遺伝子変換の能力を有しない動物を、動物Yと省略することがある。
好ましくは、本発明の抗体は、(I)(a)動物Xのイムノグロブリン(例、IgM)に由来する第1の領域(例、VR、CDR、FR)、および動物Yのイムノグロブリン(例、IgG)に由来する第2の領域(例、CR、CH1、CH2、CH3)を有する重鎖、ならびに(b)動物Xのイムノグロブリン(例、IgM)に由来する第1の領域(例、VR、CDR、FR)、および動物Yのイムノグロブリン(例、IgG)に由来する第2の領域(例、CR)を有する軽鎖(例、λ鎖、κ鎖、ならびにλ鎖およびκ鎖のキメラ鎖)、あるいは(II)(a)動物Xのイムノグロブリン(例、IgM)に由来する第1の領域(例、VR、CDR、FR、CR、CH1)、および動物Yのイムノグロブリン(例、IgG)に由来する第2の領域(例、CR、CH2、CH3)を有する重鎖、ならびに(b)動物Xのイムノグロブリン(例、IgM)に由来するVRおよびCRを有する軽鎖(例、λ鎖、κ鎖)を有していてもよい。
より好ましくは、本発明の抗体は、(I’)(a’)ニワトリIgMに由来するVR、および動物Y(例、マウス、ヒト)IgG(例、IgG1)に由来するCR(CH1、CH2、CH3)を有する重鎖、ならびに(b’)ニワトリIgMに由来するVR、および動物Y(例、マウス、ヒト)IgG(例、IgG1)に由来するCRを有する軽鎖(例、λ鎖、κ鎖、ならびにλ鎖およびκ鎖のキメラ鎖)、あるいは(II’)(a’)ニワトリIgMに由来するVRおよびCH1、および動物Y(例、マウス、ヒト)のIgG(例、IgG1)に由来するCH2およびCH3を有する重鎖、ならびに(b’)ニワトリIgMに由来するVRおよびCRを有する軽鎖(例、λ鎖、κ鎖)を有していてもよい。
上述した動物のイムノグロブリン遺伝子のヌクレオチド配列が知られているため、当業者は、遺伝子工学的な手法を用いることにより、このような抗体を適宜作製することができる(例、実施例5、6を参照)。(I)および(I’)の抗体は、後述するキメラI型抗体に対応し得る。(II)および(II’)の抗体は、後述するキメラII型抗体に対応し得る。
本発明は、親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞を提供する。当該抗体産生細胞により産生され得る、親和性複合体に対して特異的に結合し得る抗体は、上述したとおりである。
本発明は、親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞の作製方法を提供する。本方法は、親和性複合体を用いて、多様な抗体産生細胞の集団から、親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞を調製することを含む。親和性複合体、親和性複合体に対して特異的に結合し得る抗体、および抗体産生細胞は、上述したとおりである。例えば、このような調製は、多様な抗体産生細胞を異なるウェル中に播種し、培養した後、親和性複合体に対して特異的に結合し得る抗体が培養上清中に存在するか否かを評価することにより、行われる。あるいは、このような調製は、多様な抗体産生細胞の集団から、親和性複合体に結合する能力を有する抗体産生細胞を選別することにより、行われる。このような調製は、培地、緩衝液、水等の溶液中で行われ得る。すなわち、このような調製は、インビトロで行われ得る。
本発明は、親和性複合体に対して特異的に結合し得る抗体の作製方法を提供する。本方法では、親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞を培養することにより、親和性複合体に対して特異的に結合し得る抗体が得られる。親和性複合体、親和性複合体に対して特異的に結合し得る抗体、および抗体産生細胞は、上述したとおりである。
本発明の抗体は、例えば、試薬(例、診断試薬、実験試薬)および医薬として、ならびに因子のスクリーニングに有用である。
例えば、抗体は、低分子物質に対する高い特異性を必ずしも有しない。しかしながら、低分子物質に対して特異的に結合し得る抗体を、低分子物質およびそれに対して特異的に結合し得る抗体を含む親和性複合体に対して特異的に結合し得る抗体と組み合せることで、2重の特異性が達成され、特異性が増幅される。このような抗体の組合せは、低分子物質に対して、抗体単独よりも特異的である。したがって、本発明のセットは、低分子物質に対する抗体療法に有用である。
また、抗体は、高度の相同性を有する複数のタンパク質のうちの特定の標的タンパク質に対して高い特異性を必ずしも有しない。例えば、治療標的が天然タンパク質aであり、かつ、天然タンパク質aに対して高い相同性(例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上または99%以上のアミノ酸配列同一性)を有する天然タンパク質b(ホモログ)が存在する場合、天然タンパク質aに対してより選択的に作用させるため、このような抗体の組合せを用いることができる。したがって、本発明のセットは、高度の相同性を有する複数の天然タンパク質のうち、特定の天然タンパク質を治療標的とする抗体療法に有用である。
さらに、抗体は、変異タンパク質に対して高い特異性を必ずしも有しない。このような変異タンパク質としては、例えば、天然タンパク質に対して、1または数個のアミノ酸残基が変異(例、置換、欠失、挿入、および/または付加)したタンパク質が挙げられる。例えば、癌において、正常細胞に発現している非変異タンパク質a(天然タンパク質a)を治療標的とすることが所望されておらず、かつ、異常細胞に発現している変異タンパク質a’のみを治療標的とすることが所望されている場合、変異タンパク質a’に対してより選択的に作用させるため、このような抗体の組合せを用いることができる。したがって、本発明のセットは、変異タンパク質のみを治療標的とする抗体療法に有用である。
in vitroニワトリIgM取得技術〔(ADLib(Autonomously Diversifying Library)システム:例えば、WO2004/011644を参照〕を利用して、以下の方法を行なうことにより、E2抗E2抗体複合体に対する抗体を取得した。なお、本明細書中以降において、E1(エストロン)、E2(エストラジオール)、E3(エストリオール)と表記することがある。また、以下において、E2について、1μg/mLは3.7μMに相当し、F18-3抗体について、1μg/mLは6.7nMに相当し、F12-33抗体について、1μg/mLは6.7nMに相当し、トリコスタチンA(TSA)について、1μg/mLは3.3μMに相当する。
多様化させたDT40細胞は、以下の手順により作製されたものを用いた。
・9%FBS,1%ニワトリ血清含有IMDM培地〔CS(Chicken Serum)+培地〕50mLを計り取り、15cmディッシュに加えた。
・トリコスタチンA(TSA)を2.5ng/mLとなるように加えた。
・1.5×107個のDT40細胞を加え、39.5℃に設定したCO2インキュベータ内で1日培養した。
以下の手順により、DT40細胞を継代した。
・1日培養した細胞懸濁液を50mLチューブに取り、4℃,1000rpm,10minで遠心した。
・上清除去後、10mLのCS+培地で再び懸濁した。
・CS+培地950μLに細胞懸濁液50μLを加えて20倍希釈し、撹拌した。
・生細胞数をカウントした。
・新しい15cmディッシュにCS+培地50mLを加えた。
・1.5×107個のDT40細胞を加え、39.5℃に設定したCO2インキュベータ内で1日培養した。
・目的抗体を産生する細胞の選択前に、TSA処理を2回行った。TSA処理は、2.5ng/mL TSAを含有するCS+培地中で、39.5℃で一晩培養することにより、行った。
以下の手順により、抗原結合粒子を調製した。
・ProteinGが固定されている磁性粒子〔Dynabeads ProteinG(粒子径:2.8μm)、Invitrogen社から入手、カタログ番号:100.03D〕を含むリン酸緩衝生理食塩水(PBS)(13.5mg/mL)に、300μg/mLの抗E2抗体(F18-3)を加えた。なお、抗E2抗体(F18-3)は、自社において樹立したマウスモノクローナル抗体である。なお、E2に対する抗E2抗体(F18-3)の結合は、種々のデータより、10-9Mから10-12M程度と類推される。
・4℃,1hで反応させてF18-3を粒子上に固相化した。
・0.1% BSA/PBSで粒子を4回洗浄した。
・1.1μg/mLのE2を含むPBS中に粒子を分散させた。
・4℃,1hで放置して、抗原および抗体が会合した抗原抗体複合体(E2および抗E2抗体を含む親和性複合体)を形成させた。
・0.1% BSA/PBSで粒子を4回洗浄した。
以下の手順により、目的抗体を産生する細胞を培養した。
・15cmディッシュ2枚にCS+培地50mLをそれぞれ加えた。
・1.5×107個の細胞を各培地に加え、1日培養した。
・細胞懸濁液を50mLチューブに回収し、4℃,1000rpm,10minで遠心した。
・上清除去後、1% BSA/PBSで2回洗浄して1.5mLチューブに回収した。
・4℃,3500rpm,5minで遠心して上清を除去した。
・(3)で調製した抗原結合粒子を1% BSA/PBSで4回洗浄した。
・細胞(9x107細胞/mL)と抗原結合粒子(75μg/mL)とを混合し、4℃,30min反応させた。
・1% BSA/PBSで5回洗浄し、余剰の細胞を除去した。
・CS-培地で細胞・粒子を分散させた。
・96wellプレートにまき、1週間培養した。
選別は、抗原抗体複合体固相ELISAにより実施した。E2を加えた場合と加えなかった場合での発色の差によって、細胞が目的抗体を産生しているか否かを評価した。手順は、以下のとおりであった。
・アッセイプレートに1μg/mLの抗E2抗体を加え、37℃で1時間インキュベートして固相化した。
・0.05%Tween20含有リン酸緩衝生理食塩水(0.05%PBST)で3回洗浄した。
・1% スキムミルク/PBSでブロッキングした。
・PBSTで3回洗浄した。
・200ng/mL E2またはバッファーのみを25μL加えた。
・培養上清25μLを加えて1次反応を行った。
・PBSTで3回洗浄した。
・抗ニワトリ(anti Chicken)IgM-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMB(3,3’,5,5’-tetramethylbenzidine)を加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
E2非存在下、E2存在下(100ng/mL)において、抗原抗体複合体(E2および抗E2抗体を含む親和性複合体)に結合する抗体を産生する細胞クローンを高率に得ることに成功した(3/88=3.4%:図1、2を参照)。このような抗体作製効率は、従来の抗体作製方法では達成し得ない。例えば、従来の動物免疫法(ハイブリドーマ法)による抗体作製効率は、上記効率に到底及ばない。また、従来の動物免疫法では、そもそも、親和性複合体そのものに対する抗体を作製し得ない。したがって、本発明の方法は、効率的に親和性複合体そのものに対する抗体を作製できることが示された。
(1)方法
ELISAを以下の手順により行って、特異性を評価した。
・アッセイプレートに2種の抗E2抗体(F18-3、F12-33)、抗AFP抗体(ネガティブコントロール)をそれぞれ2μg/mLの濃度で加え、37℃で1時間インキュベートして固相化した。なお、抗E2抗体(F18-3、F12-33)は、自社において樹立したマウスモノクローナル抗体である。
・PBSTで3回洗浄した。
・1% スキムミルク/PBSでブロッキングした。
・PBSTで3回洗浄した。
・2ng/mL E1、2ng/mL E2またはバッファーのみを25μL加えた。
・上記手法で樹立したクローン(2-1、2-2、2-3、2-4、2-5および2-6)の培養上清を25μL加え、1次反応を行った。
・PBSTで3回洗浄した。
・抗ニワトリIgM-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表1に示したとおりである。クローン2-1、2-3および2-5は、抗原〔E2抗E2抗体(F18-3)複合体〕に対して特異的に結合した(*を参照)。一方、クローン2-2、2-4および2-6は、抗原〔E2抗E2抗体(F18-3)複合体〕に対して結合せず、F18-3抗体に結合した。なお、クローン2-1、2-3および2-5は、実施例1のクローン4、9および46にそれぞれ対応し、クローン2-2、2-4および2-6は、実施例1のクローン8、34および77にそれぞれ対応していた。
以上より、本発明の方法により、複合体に特異的に結合し得る抗体が得られることが確認された。
(1)方法
ELISAを以下の手順により行って、E2に対する目的抗体の特異性を評価した。
・アッセイプレートにE2-BSA(ウシ血清アルブミン)複合体を各濃度で加え、37℃で1時間インキュベートして固相化した。E2ではなく、E2-BSA複合体を用いた理由は、E2は低分子化合物であり、単独ではアッセイプレート上に吸着しないためである。
・PBSTで3回洗浄した。
・1% スキムミルク/PBSでブロッキングした。
・PBSTで3回洗浄した。
・100ng/mL E2またはバッファーのみを25μLずつ加えた。
・実施例1で樹立し、実施例2で評価されたクローン(2-1、2-2、2-3、2-4、2-5および2-6)の培養上清を25μL加え、1次反応を行った。
・PBSTで3回洗浄した。
・抗ニワトリIgM-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表2に示したとおりである。E2(E2-BSA)単独を固相したELISAでは、陽性を示すクローンは見出されなかった。したがって、クローン2-1、2-2、2-3、2-4、2-5および2-6は、E2に対して結合し得る抗体を産生しないと考えられる。
(1)方法
ELISAを以下の手順により行って、類似物質に対する抗体の交差反応性を評価した。
・5μg/mL 抗E2抗体(F18-3)を固相化した。
・PBSTで3回洗浄した。
・1% スキムミルク/PBSでブロッキングした。
・PBSTで3回洗浄した。
・E1,E3,E2を各濃度で調製し、25μLずつ加えた。
・3種の抗体を含む培養上清(クローン2-1、2-3、2-5)を各25μLずつ加え、1次反応を行った。
・PBSTで3回洗浄した。
・抗ニワトリIgM-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表3に示したとおりである。表3では、交差反応性(%)は、目的の親和性複合体に対する本発明の抗体の結合率を100%として算出した場合、親和性複合体を構成する各因子またはその類似因子に対する本発明の抗体の結合率に基づき算出している。3種の抗体(クローン2-1、2-3、2-5)は、E1、E3に殆ど結合しなかった。
ニワトリIgM抗体をマウスIgG抗体に変換して、組換えI型キメラ抗体を作製した。組換えI型キメラ抗体は、E2-抗E2抗体複合体に対するニワトリIgM抗体のμ鎖およびλ鎖可変領域(VHおよびVL)の下流に、マウス定常領域(CH、CL)を連結した抗体である〔重鎖:ニワトリIgM(μ鎖)由来のVH-マウスIgG1(γ1鎖)由来のCH;軽鎖:ニワトリIgM(λ鎖)由来のVL-マウスIgG1(κ鎖)由来のCL〕。以下、必要に応じて、「キメラI型(抗体)」と呼称する。
以下の手順により、キメラI型重鎖発現ベクターを作製した。
a)E2-抗E2抗体複合体結合ニワトリIgM抗体(クローン2-3)のμ鎖cDNAを鋳型としてプライマーAとプライマーBを用いてPCRを行い、ニワトリμ鎖可変領域を増幅した。
b)抗TNFマウスIgG1抗体のγ鎖cDNAを鋳型として、プライマーCとプライマーDを用いてPCRを行い、マウスIgG1の定常領域を増幅した。
c)a)およびb)で増幅したDNA断片の混合物を鋳型としてプライマーAとプライマーDを用いてアセンブルPCRを行い、ニワトリμ鎖可変領域とマウスIgG1 γ鎖定常領域が連結された1本のDNA断片を調製した。
d)c)で得られたDNA断片を制限酵素Hind IIIとNot Iで処理した後、市販(Invitrogen社)の発現ベクターpcDNA3.1のHind III-Not I部位に挿入した。
以下の手順により、キメラI型軽鎖発現ベクターを作製した。
e)E2-抗E2抗体複合体結合ニワトリIgM抗体(クローン2-3)のλ鎖cDNAを鋳型としてプライマーEとプライマーFを用いてPCRを行い、ニワトリλ鎖可変領域を増幅した。
f)抗TNFマウスIgG1抗体のκ鎖cDNAを鋳型として、プライマーGとプライマーHを用いてPCRを行い、マウスκ鎖定常領域を増幅した。
g)e)およびf)で増幅したDNA断片の混合物を鋳型として、プライマーEとプライマーHを用いてアセンブルPCRを行い、ニワトリλ鎖可変領域とマウスκ鎖定常領域が連結された1本のDNA断片を調製した。
h)g)で得られたDNA断片を制限酵素Hind IIIとNot Iで処理した後、市販(Invitrogen社)の発現ベクターpcDNA3.1/ZeoのHind III-Not I部位に挿入した。
以下の手順により、組換えキメラI型抗体を作製した。
i)キメラI型重鎖発現ベクター、およびキメラI型軽鎖発現べクターで形質転換された大腸菌コロニーをそれぞれ100μg/mlアンピシリンを含む150mlのLB培地中で37℃一晩振蕩培養した後、Quiagen社のPlasmid Midi Kitを用いてプラスミドを調製した。
j)i)で調製したキメラI型重鎖発現ベクター、およびキメラI型軽鎖発現べクターをそれぞれ4μg用いてInvitrogen社のLipofectamin 2000により、106個のCHO細胞を形質転換した。
k)j)で形質転換したCHO細胞を10%ウシ胎児血清を含むHam F-12倍地を用いて、CO2インキュベータ中、37℃で24時間培養した。
l)キメラI型抗体の発現を確認するため、k)の培養上清中にキメラI型抗体が分泌されているかを、ELISA法にて確認した。すなわちELISA plate(Nunc社)に抗マウスIgGを固相化し、これに(1/2)n希釈した培養上清を反応させ、次いでPOD標識された抗マウスIgG(DAKO社)で検出した。なお、陽性対照としてマウスモノクロ抗体(anti TNF36)を、陰性対照としてCHO培養上清を用いた。その結果、キメラI型抗体の発現が確認された(表4)。
ニワトリIgM抗体をマウスIgG抗体に変換して、組換えII型キメラ抗体を作製した。組換えII型キメラ抗体は、E2-抗E2抗体複合体に対するニワトリIgM抗体のλ鎖(VLおよびCL)とμ鎖可変領域(VH)およびCH1ドメインの下流に、マウスIgG1のHinge領域以降の領域(Hinge領域、CH2およびCH3)を連結した抗体である〔重鎖:ニワトリIgM(μ鎖)由来のVHおよびCH1-マウスIgG1(γ1鎖)由来のHinge領域、CH2およびCH3;軽鎖:ニワトリIgM(λ鎖)由来のVLおよびCL〕。以下、必要に応じて、「キメラII型(抗体)」と呼称する。
以下の手順により、キメラII型重鎖発現ベクターを作製した。
a’)E2-抗E2抗体複合体結合ニワトリIgM抗体(クローン2-3)のμ鎖cDNAを鋳型としてプライマーIとプライマーJを用いてPCRを行い、ニワトリμ鎖可変領域およびCH1を増幅した。
b’)抗TNFマウスIgG1抗体のγ鎖cDNAを鋳型として、プライマーKとプライマーDを用いてPCRを行い、マウスγ鎖のHinge領域以降の領域(Hinge領域、CH2およびCH3)を増幅した。
c’)a’)およびb’)で増幅したDNA断片の混合物を鋳型として、プライマーIとプライマーDを用いてアセンブルPCRを行い、ニワトリμ鎖可変領域およびCH1とマウスγのHinge領域以降の領域(Hinge領域、CH2およびCH3)が連結された1本のDNA断片を調製した。
d’)c’)で得られたDNA断片を制限酵素Nhe IとNot Iで処理した後、市販(Invitrogen社)の発現ベクターpcDNA3.1のNhe I-Not I部位に挿入した。
以下の手順により、キメラII型軽鎖発現ベクターを作製した。
e’)E2-抗E2抗体複合体結合ニワトリIgM抗体(クローン2-3)のλ鎖cDNAを鋳型としてプライマーEとプライマーLを用いてPCRを行い、ニワトリλ鎖を増幅した。
f’)e’)で増幅したDNA断片をHind IIIとNot Iで処理した後、市販(Invitrogen社)の発現ベクターpcDNA3.1/ZeoのHind III-Not I部位に挿入した。
以下の手順により、組換えキメラII型抗体を作製した。
g’)キメラII型重鎖発現ベクター、およびキメラII型軽鎖発現ベクターで形質転換された大腸菌コロ二ーをそれぞれ100μg/mlアンピシリンを含む150mlのLB培地中で37℃一晩振蕩培養した後、Quiagen社のPlasmid Midi Kitを用いてプラスミドを調製した。
h’)g’)で調製したキメラII型重鎖発現ベクター、およびキメラII型軽鎖発現べクターをそれぞれ4μg用いてInvitrogen社のLipofectamin 2000により、106個のCHO細胞を形質転換した。
i’)h’)で形質転換したCHO細胞を10%ウシ胎児血清を含むHam F-12倍地を用いて、CO2インキュベータ中、37℃で24時間培養した。
j’)キメラII型抗体の発現を確認するため、i’)の培養上清中にキメラII型抗体が分泌されているかを、ELISA法にて確認した。すなわちELISA plate(Nunc社)に抗マウスIgGを固相化し、これに(1/2)n希釈した培養上清を反応させ、次いでPOD標識された抗マウスIgG(DAKO社)で検出した。なお、陽性対照としてマウスモノクロ抗体(anti TNF36)を、陰性対照としてCHO培養上清を用いた。その結果、キメラII型抗体の発現が確認された(表5)。
in vitro ニワトリIgM取得技術(ADLibシステム)を利用して、以下の方法を行なうことにより、T3-抗T3抗体複合体に対する抗体を取得した。なお、本明細書中以降において、T2(ジヨードチロニン)、T3(トリヨードチロニン)、T4(チロキシン)と表記することがある。また、以下において、T3について、1μg/mLは1.5μMに相当し、T3-92抗体について、1μg/mLは6.7nMに相当し、T3-31抗体について、1μg/mLは6.7nMに相当する。
多様化されたDT40細胞は、実施例1(1)の手順により調製した。
DT40細胞の継代は、実施例1(2)の手順により行った。
以下の手順により、抗原結合粒子を調製した。
・ProteinGが固定化してある磁性粒子に300μg/mLの抗T3抗体(T3-92)を加えた。
・4℃,1hで反応させてT3-92を固相化した。
・0.1% BSA/PBSで粒子を4回洗浄した。
・300μg/mLのT3を含むPBSで粒子を分散させた。
・4℃,1hで反応させて抗原抗体複合体を形成させた。
・0.1% BSA/PBSで粒子を4回洗浄した。
以下の手順により、目的抗体を産生する細胞を培養した。
・15cmディッシュ2枚にCS+培地50mLをそれぞれ加えた。
・1.5X107個の細胞を加え、1日培養した。
・細胞懸濁液を50mLチューブに回収し、4℃,1000rpm,10minで遠心した。
・上清除去後、1% BSA/PBSで2回洗浄して1.5mLチューブに回収した。
・4℃,3500rpm,5minで遠心して上清を除去した。
・(3)で調製した抗原結合粒子を1% BSA/PBSで4回洗浄した。
・細胞と抗原結合粒子とを混合し、4℃,30min反応させた。
・1% BSA/PBSで5回洗浄し、余剰の細胞を除去した。
・CS-培地で細胞・粒子を分散させた。
・96wellプレートにまき、1週間培養した。
選別は、抗原抗体複合体固相ELISAにより実施した。T3を加えた場合と加えなかった場合での発色の差によって、細胞が目的抗体を産生しているか否かを評価した。手順は、以下のとおりであった。
・アッセイプレートに1μg/mLの抗T3抗体を加え、固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・50ng/mL T3またはバッファーのみを50μL加え、T3を固相抗体に結合させた。
・PBSTで3回洗浄した。
・DT40培養上清50μLを加えて1次反応を行った。
・PBSTで3回洗浄した。
・anti Chicken IgM-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
T3非存在下、T3存在下(50ng/mL)で反応性に顕著な差のあるクローン(Well No.23,91,94,101,110,121)を高率に得ることに成功した(6クローン/144=4.2%:図3、4を参照)。
(1)方法
ELISAを以下の手順により行って、特異性を評価した。
・アッセイプレートに2種の抗T3抗体(T3-92,T3-31)、抗AFP抗体をそれぞれ2μg/mLで固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・T3,T2,T4を100ng/mLに調製し、それぞれ50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を各クローン50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-HRPを加え、インキュベーションした。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表7に示したとおりである。クローン6-19、5-3、5-6、5-13および5-22は、抗原〔T3抗T3抗体(T3-92)複合体〕に対して特異的に結合した(*を参照)。クローン5-33はT2抗T3抗体(T3-92)複合体と弱い交差反応があった。検出抗体にクローン5-33を用いた場合はT2との交差反応性が認められたことから、固相抗体T3-92がT2にも弱く交差反応することを示唆している。一方、クローン5-32は、抗原〔T3抗T3抗体(T3-92)複合体〕だけではなく、T3-92抗体のみにも結合した。5-32はT3-31抗体には結合しなかったこことからT3-92抗体に特異的に結合するクローンであった。なお、クローン6-19、5-3、5-6、5-13および5-22は、実施例7のクローン23、91、94、101および110にそれぞれ対応し、クローン5-33は、実施例7のクローン121に対応し、クローン5-32は、実施例7のクローン120に対応する。
(1)方法
ELISAを以下の手順により行って、T3に対する目的抗体の特異性を評価した。
・アッセイプレートにT3-BSAコンジュゲートを5μg/mL固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を各クローン50μLずつ加え、1次反応を行った。
・PBSTで3回洗浄した。
・anti Chicken IgM-HRPを加え、2次反応を行った。
・1次反応にマウス抗体を用いた場合は、anti mouse Ig-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表8に示したとおりである。T3(T3-BSA)単独を固相したELISAでは、陽性を示すクローンは見出されなかった。したがって、クローン6-19、5-3、5-6、5-13、5-22および5-33は、T3に対して結合し得る抗体を産生しないと考えられる。
(1)方法
ELISAを以下の手順により行って、類似物質に対する抗体の交差反応性を評価した・アッセイプレートに2μg/mL 抗T3抗体(T3-92)を固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・T3、T2、T4を各濃度に調製し、それぞれ50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を各クローン50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-HRPを加え、インキュベーションした。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表9に示したとおりである。表9では、交差反応性(%)は、目的の親和性複合体に対する本発明の抗体の結合率を100%として算出した場合、親和性複合体を構成する各因子またはその類似因子に対する本発明の抗体の結合率に基づき算出している。5種の抗体(クローン5-3、5-6、5-13、6-19および5-22)は、T2、T4に殆ど結合しなかった。検出抗体にクローン5-33を用いた場合はT2と弱い交差反応があった。この結果は、固相抗体T3-92がT2にも交差反応することを示しており、5種の抗体(クローン5-3、5-6、5-13、6-19および5-22)は類似親和性複合体と親和性複合体を識別していることを示している。
(1)方法
ELISAを以下の手順により行って、T3に対する感度を評価した。
・アッセイプレートに2μg/mL 抗T3抗体(T3-92)を固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・T3を各濃度に調整し、50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-HRPを加え、インキュベーションした。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加え、発色反応を停止した。
・OD450を測定した。
結果は、表10、図5に示したとおりである。作製した抗体(クローン5-3-1)を用いたサンドイッチ法により、1pg/mL以下のT3の検出が可能であった。なお、クローン5-3-1は、実施例7のクローン5-3に対応する。
in vitro ニワトリIgM取得技術(ADLibシステム)を利用して、以下の方法を行なうことにより、25OHビタミンD3-抗25OHビタミンD抗体複合体に対する抗体を取得した。また、以下において、25OHビタミンD3について、1μg/mLは2.5μMに相当し、抗25OHビタミンD抗体について、1μg/mLは6.7nMに相当する。
多様化されたDT40細胞は、実施例1(1)の手順により調製した。
DT40細胞の継代は、実施例1(2)の手順により行った。
以下の手順により、抗原結合粒子を調製した。
・ProteinGが固定化してある磁性粒子に300μg/mLの抗25OHビタミンD抗体を加えた。
・4℃,1hで反応させて抗体を固相化した。
・0.1% BSA/PBSで粒子を4回洗浄した。
・300μg/mLの25OHビタミンD3を含むPBSで粒子を分散させた。
・4℃,1hで反応させて抗原抗体複合体を形成させた。
・0.1% BSA/PBSで粒子を4回洗浄した。
以下の手順により、目的抗体を産生する細胞を培養した。
・15cmディッシュ2枚にCS+培地50mLをそれぞれ加えた。
・1.5X107個の細胞を加え、1日培養した。
・細胞懸濁液を50mLチューブに回収し、4℃,1000rpm,10minで遠心した。
・上清除去後、1% BSA/PBSで2回洗浄して1.5mLチューブに回収した。
・4℃,3500rpm,5minで遠心して上清を除去した。
・(3)で調製した抗原結合粒子を1% BSA/PBSで4回洗浄した。
・細胞と抗原結合粒子とを混合し、4℃,30min反応させた。
・1% BSA/PBSで5回洗浄し、余剰の細胞を除去した。
・CS-培地で細胞・粒子を分散させた。
・96wellプレートにまき、1週間培養した。
選別は、抗原抗体複合体固相ELISAにより実施した。25OHビタミンD3を加えた場合と加えなかった場合での発色の差によって、細胞が目的抗体を産生しているか否かを評価した。手順は、以下のとおりであった。
・アッセイプレートに1μg/mLの抗25OHビタミンD抗体を加え、固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・1μg/mL 25OHビタミンD3またはバッファーのみを50μL加え、25OHビタミンD3を固相抗体に結合させた。
・PBSTで3回洗浄した。
・DT40培養上清50μLを加えて1次反応を行った。
・PBSTで3回洗浄した。
・anti Chicken IgM-biotinを加え、2次反応を行った。
・PBSTで3回洗浄した。
・StreptAvidin-HRPを加え、3次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
25OHビタミンD3非存在下、存在下(1μg/mL)で反応性に顕著な差のあるクローン(Well No.4, 52, 80, 81, 94, 120)を高率に得ることに成功した(6クローン/174=3.4%:図6、7を参照)。
(1)方法
ELISAを以下の手順により行って、特異性を評価した。
・アッセイプレートに抗25OHビタミンD抗体、抗T3抗体をそれぞれ1μg/mLで固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・25OHビタミンD3、ならびにその類似物質である25OHビタミンD2、1,25(OH)2ビタミンD3、1,25(OH)2ビタミンD2、ビタミンD3、ビタミンD2をそれぞれ200ng/mLに調製し50μLずつ加えインキュベーションした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を各クローン50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-biotinを加え、2次反応を行った。
・PBSTで3回洗浄した。
・StreptAvidin-HRPを加え、3次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
結果は、表11に示したとおりである。クローン3-2D1-12および3-2D1-22は、抗原とした25OHビタミンD3-抗25OHビタミンD抗体複合体および25OHビタミンD2-抗25OHビタミンD抗体複合体に対して特異的に結合した(*を参照)。クローン3-2D1-12および3-2D1-22は、ネガティブコントロールとして用いた抗T3抗体には結合しなかった。なお、クローン3-2D1-12および3-2D1-22は、実施例12で得られたクローン4のサブクローンに対応する。
(1)方法
ELISAを以下の手順により行って、25OHビタミンD3に対する目的抗体の特異性を評価した。
・アッセイプレートに25OHビタミンD3-BSAコンジュゲートを1μg/mL固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・上記手法で樹立した抗体を各クローン50μLずつ加え、1次反応を行った。
・PBSTで3回洗浄した。
・anti Chicken IgM-biotinを加え、2次反応を行った。
・1次反応に抗25OHビタミンD抗体を用いた場合は、抗IgG-HRPを加え、2次反応を行った。
・PBSTで3回洗浄した。
・StreptAvidin-HRPを加え、3次反応を行った。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
結果は、表12に示したとおりである。クローン3-2D1-12および3-2D1-12は、25OHビタミンD3-BSA固相ELISAでは反応しなかった。このことは、これらのクローンが、25OHビタミンD3単独と結合しないことを示す。
(1)方法
ELISAを以下の手順により行って、類似物質に対する抗25OHビタミンD抗体の交差反応性を評価した。
・アッセイプレートに1μg/mL 抗25OHビタミンD抗体を固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・アルカリホスファターゼ標識-25OHビタミンD3 200ng/mlと25OHビタミンD3、25OHビタミンD2、1,25(OH)2ビタミンD3、1,25(OH)2ビタミンD2、ビタミンD3またはビタミンD2を各濃度に調製して混合し、それぞれ50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・ミリQ水で2回洗浄した。
・PNPPを加えて、発色反応を行った。
・2.5mM EDTAを加えて発色反応を停止した。
・OD405を測定した。
結果は、表13に示したとおりである。表13では、交差反応性(%)は、25OHビタミンD3に対する抗25OHビタミンD抗体の結合率を100%として算出した場合、25OHビタミンD3類似因子に対する抗25OHビタミンD抗体の結合率に基づき算出している。抗25OHビタミンD抗体は、25OHビタミンD2、1,25(OH)2ビタミンD3、および1,25(OH)2ビタミンD2と高い交差反応性を示したが、ビタミンD3およびビタミンD2とは実質的に交差反応性を示さなかった。
(1)方法
ELISAを以下の手順により行って、類似物質に対する目的抗体の交差反応性を評価した。
・アッセイプレートに1μg/mL 抗25OHビタミンD抗体を固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・25OHビタミンD3、25OHビタミンD2、1,25(OH)2ビタミンD3または1,25(OH)2ビタミンD2を各濃度に調製し、それぞれ50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・クローン3-2D1-12をそれぞれに50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-biotinを加え、インキュベーションした。
・PBSTで3回洗浄した。
・StreptAvidin-HRPを加え、インキュベーションした。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
結果は、表14に示したとおりである。表14では、交差反応性(%)は、目的の親和性複合体(25OHビタミンD3-抗25OHビタミンD抗体複合体)に対する本発明の抗体の結合率を100%として算出した場合、親和性複合体を構成する各因子またはその類似因子に対する本発明の抗体の結合率に基づき算出している。単独の抗25OHビタミンD抗体のみを使用する競合阻害アッセイでは、25OHビタミンD3、25OHビタミンD2、1,25(OH)2ビタミンD2、および1,25(OH)2ビタミンD3を識別することができなかったが、本発明の抗体を用いたサンドイッチアッセイにより、25OHビタミンD3および25OHビタミンD2を識別して測定することができた。
(1)方法
ELISAを以下の手順により行って、目的抗体を用いた測定における25OHビタミンD3に対する感度を評価した。
・アッセイプレートに1μg/mL 抗25OHビタミンD抗体を固相化した。
・PBSTで3回洗浄した。
・1% BSA/PBSでブロッキングした。
・PBSTで3回洗浄した。
・25OHビタミンD3を各濃度に調製し、50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・クローン3-2D1-12を50μLずつ加え、インキュベーションした。
・PBSTで3回洗浄した。
・anti Chicken IgM-biotinを加え、インキュベーションした。
・PBSTで3回洗浄した。
・StreptAvidin-HRPを加え、インキュベーションした。
・PBSTで3回洗浄した。
・TMBを加え、発色反応を行った。
・1N 硫酸を加えて発色反応を停止した。
・OD450を測定した。
結果は、表15、図8に示したとおりである。樹立した抗体、クローン3-2D1-12を用いたサンドイッチ法により、3ng/ml以下の25OHビタミンD3の検出が可能であった。
(17-1)競合法による固相抗体(1次抗体)の特異性の評価
本発明の抗体の特異性を評価するため、先ず、E2に対する一次抗体の特異性を評価した。
(i)1次抗体の固相化
以下の手順により、抗E2抗体(F18-3)を固相化した。
・NUNC Polysorpに抗E2抗体(0.5μg/ml)を加え、一晩インキュベートした。
・抗E2抗体を固相化したプレートを5%スキムミルクでブロッキングした(37C,1hr)。
(ii)ELISA
以下の手順により、ELISAを行った。なお、E2-3 sulfateは、E2の3位の水酸基中の水素原子が硫酸基で置換された化合物である。
・抗原:E2(6ng/mlから3n倍希釈)と類似抗原:E1,E3,E2-3 sulfate(54ng/mlから3n倍希釈)を調製した。
・標識抗原:E2-3位ALP(アルカリホスファターゼ)融合体(46ng/ml)を調製した。
・固相プレートに抗原または類似抗原(各50μl)と標識抗原(50μl)を添加した。
・固相プレートを37℃で1hインキュベートした。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・pNPPで発色させ、吸光度を測定した。
・抗原または類似抗原の添加なしを100%として、各濃度の抗原または類似抗原を添加した際の阻害率(% Reaction)を算出した。
本測定法に用いた1次抗体は、E1およびE3への交差反応性は認められなかったが(図9)、E2-3 sulfateには10%程度の交差反応性が認められた(図9)。したがって、この一次抗体は、E2に対する特異性が必ずしも高くないことが示された。
本発明の抗体を用いることで、生体内類似物質に対するE2の特異的な測定の改善が可能かどうかを評価した。
(i)1次抗体の固相化
以下の手順により、抗E2抗体〔上記(17-1)で用いたものと同じ〕を固相化した。
・NUNC Polysorpに抗E2抗体(2.5μg/ml)を加え、一晩インキュベートした。
・抗E2抗体を固相化したプレートを5%スキムミルクでブロッキングした(37C,1hr)。
以下の手順により、ELISAを行った。
・抗原:E2(2ng/mlから3n倍希釈)と類似抗原:E1,E3,E2-3s(54ng/mlから3n倍希釈)を調製した。
・固相プレートに抗原、類似抗原(各50μl)と2次抗体(ニワトリ由来E2抗E2抗体複合体抗体(クローン2-1):50μl)を添加した。
・固相プレートを37℃で1hインキュベートした。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・固相プレートに抗ニワトリ(anti Chicken) IgM-HRPを加え、2次反応を行った。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・TMB(3,3’,5,5’-テトラメチルベンジジン)で発色させ、吸光度を測定した。
本発明の抗体は、「E2および1次抗体の複合体」と「E2-3 sulfateおよび1次抗体の複合体」を判別可能であった(図10)。すなわち、本発明の抗体は、E2+1次抗体の複合体中のE2-3位のsulfate基の有無を特異的に認識していると考えられる。したがって、本発明の抗体を用いることで、生体内類似物質に対するE2の特異的な測定が改善されることが示された。
本発明の抗体を用いることで、治療用薬物に対するE2の特異的な測定の改善が可能かどうかを評価した。
(i)1次抗体の固相化
以下の手順により、抗E2抗体〔上記(17-1)で用いたものと同じ〕を固相化した。
・NUNC Polysorpに抗E2抗体(2.5μg/ml)を加え、一晩インキュベートした。
・抗E2抗体を固相化したプレートを5%スキムミルクでブロッキングした(37C,1hr)。
・抗原:E2(2ng/mlから3n倍希釈)とE2類似治療用薬物(100ng/ml)を調製した。E2類似治療用薬物としては、エストロムスチンおよびエストラムスチンを用いた。
・固相プレートに抗原、類似抗原(各50μl)と2次抗体(ニワトリ由来E2抗E2抗体複合体抗体(クローン2-1):50μl)を添加した。
・固相プレートを37℃で1hインキュベートした。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・固相プレートに抗ニワトリ(anti Chicken) IgM-HRPを加え、2次反応を行った。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・TMBで発色させ、吸光度を測定した。
・E2測定時の吸光度に基づき類似薬物への交差反応性(%)を計算した。
本発明の抗体は、「E2および1次抗体の複合体」と「E2類似治療用薬物および1次抗体の複合体」を判別可能であった(表16)。したがって、本発明の抗体を用いることで、E2類似治療用薬物に対するE2の特異的な測定が改善されることが示された。
(18-1)競合法による固相抗体(1次抗体)の特異性の評価
本発明の抗体の特異性を評価するため、先ず、25(OH)ビタミンD2に対する一次抗体の特異性を評価した。
(i)1次抗体の固相化
以下の手順により、抗25OHビタミンD抗体を固相化した。
・NUNC Maxisorpに抗25OHビタミンD抗体(1μg/ml)を加え、37℃で1hrインキュベートした。
・抗25OHビタミンD抗体を固相化したプレートを1% BSA-PBSでブロッキングした(37C,1hr)。
・抗原:25OHビタミンD3(111ng/mlから3n倍希釈)と類似抗原:25OHビタミンD2、1,25(OH)2ビタミンD3、1,25(OH)2ビタミンD2(111ng/mlから3n倍希釈)を調製した。
・標識抗原:25OHビタミンD3-3位ALP融合体(20ng/ml)を調製した。
・固相プレートに抗原、類似抗原(各50μl)と標識抗原(50μl)を添加した。
・37℃,1hrインキュベーション
・PBS-tween20(0.05%)でwashx3
・pNPPで発色させ、吸光度を測定した。
・抗原または類似抗原の添加なしを100%として、各濃度の抗原または類似抗原を添加した際の阻害率(% Reaction)を算出した。
本測定法に用いた1次抗体は、25(OH)ビタミンD2、25(OH)ビタミンD3、1,25(OH)2ビタミンD2、および1,25(OH)2ビタミンD3に対して同程度の反応性を示した(図11)。したがって、この一次抗体は、特定のビタミンDに対する特異性が低いことが示された。
本発明の抗体を用いることで、生体内類似物質に対する特定のビタミンDの特異的な測定の改善が可能かどうかを評価した。
(i)1次抗体の固相化
以下の手順により、抗25OHビタミンD抗体〔上記(18-1)で用いたものと同じ〕を固相化した。
・NUNC Maxisorpに抗25OHビタミンD抗体(1μg/ml)を加え、37℃で1hrインキュベートした。
・抗25OHビタミンD抗体を固相化したプレートを1% BSA-PBSでブロッキングした(37C,1hr)。
・抗原:25OHビタミンD3(370ng/mlから5n希釈)と類似抗原:25(OH)ビタミンD2(370ng/mlから5n希釈)、1,25(OH)2ビタミンD3、1,25(OH)2ビタミンD2(37000ng/mlから5n希釈)を調製した。
・固相プレートに抗原、類似抗原(各50μl)を添加した。
・PBS-tween20(0.05%)でwashx3
・固相プレートに二次抗体(ニワトリ由来25(OH)ビタミンD抗25(OH)ビタミンD複合体抗体:50μl)を添加した。
・固相プレートを37℃で1hrインキュベーションした。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・固相プレートに抗ニワトリIgG抗体-ストレプトアビジン(50μl)を添加した。
・固相プレートを37℃で1hrインキュベーションした。
・固相プレートをPBS-tween20(0.05%)で3回洗浄した。
・固相プレートにストレプトアビジン-HRP(西洋ワサビペルオキシダーゼ)(50μl)を添加した。
・固相プレートを37℃で1hrインキュベーションした。
・TMBで発色させ、吸光度を測定した。
本発明の抗体は、「25OHビタミンD2またはD3および1次抗体の複合体」と「1,25(OH)2ビタミンD2またはD3および1次抗体の複合体」を判別可能であった(図12)。すなわち、本発明の抗体は、1,25(OH)2ビタミンD2またはD3および1次抗体の複合体中の1,25(OH)2ビタミンD2またはD3の1位のOH基の有無を特異的に認識していると考えられる。したがって、本発明の抗体を用いることで、生体内類似物質に対する1,25(OH)2ビタミンD2およびD3の特異的な測定が改善されることが示された。
Claims (16)
- 親和性複合体に対して特異的に結合し得る抗体。
- 前記抗体が全長抗体である、請求項1記載の抗体。
- 前記抗体が、遺伝子変換の能力を有する動物のイムノグロブリンに由来する領域を有する、請求項1記載の抗体。
- 遺伝子変換の能力を有する動物のイムノグロブリンに由来する領域が、相補性決定領域、枠組み領域、または可変領域である、請求項3記載の抗体。
- 親和性複合体を構成する少なくとも1つの因子が低分子物質である、請求項1記載の抗体。
- 親和性複合体を構成する少なくとも1つの因子がタンパク質である、請求項1記載の抗体。
- 親和性複合体が、低分子物質およびそれに対する抗体を含む複合体である、請求項1記載の抗体。
- 低分子物質が、(a)ステロイド化合物、(b)アミノ酸化合物、または(c)ビタミンである、請求項7記載の抗体。
- 以下(a)~(c)のいずれかである、請求項8記載の抗体:
(a)ステロイド化合物が卵胞ホルモンである;
(b)アミノ酸化合物が甲状腺ホルモンである;または
(c)ビタミンがビタミンDである。 - 以下(a)~(c)のいずれかである、請求項9記載の抗体:
(a)卵胞ホルモンがエストラジオールである;
(b)甲状腺ホルモンがトリヨードチロニンである;または
(c)ビタミンDが25OHビタミンD3または25OHビタミンD2である。 - 以下(a)~(c)の結合率を示す、請求項10記載の抗体:
(a)エストラジオールおよび抗エストラジオール抗体を含む親和性複合体(親和性複合体I)に対する、親和性複合体Iに対して特異的に結合し得る抗体(抗体I)の結合率を100%として算出した場合、エストロンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’)、エストリオールおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’)、エストラジオール抱合体および該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’)、エストラムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’)、またはエストロムスチンおよび該抗エストラジオール抗体を含む親和性複合体(親和性複合体I’’’’’)に対する抗体Iの結合率が10%以下である;
(b)トリヨードチロニンおよび抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II)に対する、親和性複合体IIに対して特異的に結合し得る抗体(抗体II)の結合率を100%として算出した場合、ジヨードチロニンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’)、またはチロキシンおよび該抗トリヨードチロニン抗体を含む親和性複合体(親和性複合体II’’)に対する抗体IIの結合率が10%以下である;あるいは
(c)25OHビタミンD3および抗25OHビタミンD3抗体を含む親和性複合体(親和性複合体III-1)または25OHビタミンD2および抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III-2)に対する、親和性複合体III-1またはIII-2に対して特異的に結合し得る抗体(抗体III)の結合率を100%として算出した場合、1,25(OH)2ビタミンD3および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’)、あるいは1,25(OH)2ビタミンD2および該抗25OHビタミンD3抗体または該抗25OHビタミンD2抗体を含む親和性複合体(親和性複合体III’’)に対する抗体IIIの結合率が10%以下である。 - 親和性複合体に対して特異的に結合し得る抗体を産生する能力を有する抗体産生細胞を培養して、親和性複合体に対して特異的に結合し得る抗体を得ることを含む方法により作製される、請求項1~11のいずれか一項記載の抗体。
- 以下を含む、セット:
(i)親和性複合体に対して特異的に結合し得る抗体;および
(ii)親和性複合体を構成する少なくとも1つの因子。 - 下記である、請求項13記載のセット:
(i’)低分子物質またはタンパク質、およびそれに対する抗体を含む親和性複合体に対して特異的に結合し得る抗体;ならびに
(ii’)低分子物質またはタンパク質に対して特異的に結合し得る抗体。 - 親和性複合体に対して特異的に結合し得る抗体を用いて、親和性複合体を測定することを含む、親和性複合体の測定方法。
- 親和性複合体がサンドイッチ法により測定される、請求項15記載の方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013534624A JP6156144B2 (ja) | 2011-09-21 | 2012-07-04 | 親和性複合体に対する抗体 |
KR1020147006583A KR101720394B1 (ko) | 2011-09-21 | 2012-07-04 | 친화성 복합체에 대한 항체 |
US14/346,615 US9599608B2 (en) | 2011-09-21 | 2012-07-04 | Antibody against affinity complex |
RU2014115676/10A RU2014115676A (ru) | 2011-09-21 | 2012-07-04 | Антитела против аффинного комплекса |
EP12833103.0A EP2759551B1 (en) | 2011-09-21 | 2012-07-04 | Antibodies binding to an affinity complex comprising 25oh vitamin d2 or d3 and an antibody thereto |
BR112014006405A BR112014006405A2 (pt) | 2011-09-21 | 2012-07-04 | anticorpo, conjunto, e, método para medir um complexo de afinidade |
IN2113CHN2014 IN2014CN02113A (ja) | 2011-09-21 | 2012-07-04 | |
AU2012310880A AU2012310880B2 (en) | 2011-09-21 | 2012-07-04 | Antibody against affinity complex |
CA2849274A CA2849274C (en) | 2011-09-21 | 2012-07-04 | Antibody against affinity complex |
CN201280045570.1A CN103827145A (zh) | 2011-09-21 | 2012-07-04 | 相对于亲和性复合物的抗体 |
IL231404A IL231404A0 (en) | 2011-09-21 | 2014-03-06 | Antibody against affinity conjugate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-206162 | 2011-09-21 | ||
JP2011206162 | 2011-09-21 | ||
JP2012006359 | 2012-01-16 | ||
JP2012-006359 | 2012-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042426A1 true WO2013042426A1 (ja) | 2013-03-28 |
Family
ID=47914207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067062 WO2013042426A1 (ja) | 2011-09-21 | 2012-07-04 | 親和性複合体に対する抗体 |
Country Status (13)
Country | Link |
---|---|
US (1) | US9599608B2 (ja) |
EP (1) | EP2759551B1 (ja) |
JP (1) | JP6156144B2 (ja) |
KR (1) | KR101720394B1 (ja) |
CN (1) | CN103827145A (ja) |
AU (1) | AU2012310880B2 (ja) |
BR (1) | BR112014006405A2 (ja) |
CA (1) | CA2849274C (ja) |
IL (1) | IL231404A0 (ja) |
IN (1) | IN2014CN02113A (ja) |
RU (1) | RU2014115676A (ja) |
TW (1) | TW201313743A (ja) |
WO (1) | WO2013042426A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129651A1 (ja) * | 2014-02-25 | 2015-09-03 | 富士レビオ株式会社 | 改変単量体IgM |
CN106244562A (zh) * | 2016-05-20 | 2016-12-21 | 杭州奥泰生物技术有限公司 | 杂交瘤细胞株及其分泌的抗25羟基维生素d3单克隆抗体和应用 |
JP2019507890A (ja) * | 2016-01-22 | 2019-03-22 | アフィメディックス, インコーポレイテッド | ビタミンd代謝産物の検出のためのデバイス |
WO2019131380A1 (ja) | 2017-12-25 | 2019-07-04 | 富士レビオ株式会社 | マクロライド系免疫抑制剤についての血液検査方法 |
JP2021081317A (ja) * | 2019-11-20 | 2021-05-27 | 東ソー株式会社 | 抗イムノコンプレックス抗体を用いた測定方法 |
WO2021100459A1 (ja) * | 2019-11-20 | 2021-05-27 | 東ソー株式会社 | 抗イムノコンプレックス抗体を用いた測定法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11261257B2 (en) | 2013-01-28 | 2022-03-01 | Diasorin S.P.A. | Methods for detecting 1,25-dihydroxyvitamin D and related antibodies |
EP2759550B1 (en) | 2013-01-28 | 2018-08-15 | DiaSorin S.p.A. | Method and kit for detecting 1,25-dihydroxyvitamin D and related antibodies |
US10983136B2 (en) | 2013-01-28 | 2021-04-20 | Diasorin S.P.A. | Use of 1,25-dihydroxyvitamin D values in ratio with PTH as a prognostic biomarker |
CN104969067A (zh) | 2013-02-06 | 2015-10-07 | 富士瑞必欧株式会社 | 维生素d的测定方法及测定用试剂盒 |
US10808024B2 (en) | 2015-12-21 | 2020-10-20 | Turun Yliopisto | Antibodies against immunocomplexes comprising cyanobacterial cyclic peptide hepatotoxins |
CN109863406B (zh) * | 2016-07-29 | 2023-04-14 | Diazyme研究室有限公司 | 用于测定维生素d的方法和成分 |
US11939379B2 (en) | 2017-05-19 | 2024-03-26 | The Regents Of The University Of California | Antibody chemically induced dimerizer (AbCID) as molecular switches for regulating cellular therapies |
CN113125696B (zh) * | 2019-12-31 | 2024-03-26 | 科美博阳诊断技术(上海)有限公司 | 一种雌二醇均相化学发光检测试剂盒及其应用 |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61501657A (ja) * | 1984-03-30 | 1986-08-07 | ケンブリツジ パテント デベロツプメンツ エルテイデイ | 抗体、製法と用途 |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4816397A (en) | 1983-03-25 | 1989-03-28 | Celltech, Limited | Multichain polypeptides or proteins and processes for their production |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
EP0598877A1 (en) | 1992-06-09 | 1994-06-01 | Hoppe Ag | Latch and lockset system |
US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
WO1998037757A1 (fr) | 1997-02-28 | 1998-09-03 | Kirin Beer Kabushiki Kaisha | Cellules multipotentes comprenant des genes intrinseques dissocies |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5885793A (en) | 1991-12-02 | 1999-03-23 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
US5939598A (en) | 1990-01-12 | 1999-08-17 | Abgenix, Inc. | Method of making transgenic mice lacking endogenous heavy chains |
WO2000010383A1 (en) | 1998-08-21 | 2000-03-02 | Kirin Beer Kabushiki Kaisha | Method for modifying chromosomes |
WO2000075300A2 (en) | 1999-06-04 | 2000-12-14 | Tranxenogen, Inc. | Methods for manipulating the avian genome |
JP2001174460A (ja) | 1999-12-17 | 2001-06-29 | Tosoh Corp | 免疫測定方法および免疫測定試薬 |
JP2001231403A (ja) | 2000-02-18 | 2001-08-28 | Kirin Brewery Co Ltd | 改変された外来染色体あるいはその断片を保持する非ヒト動物 |
WO2002070648A2 (en) | 2000-11-17 | 2002-09-12 | Hematech, Llc | Expression of xenogenous (human) immunoglobulins in cloned, transgenic ungulates |
WO2002100998A2 (en) | 2001-06-11 | 2002-12-19 | Medical Research Council | Method for generating diversity |
WO2003047336A2 (en) | 2001-11-30 | 2003-06-12 | Abgenix, Inc. | TRANSGENIC ANIMALS BEARING HUMAN Igμ LIGHT CHAIN GENES |
WO2003085107A1 (fr) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cellules à génome modifié |
WO2004011644A1 (ja) | 2002-07-30 | 2004-02-05 | Riken | 体細胞相同組換えの促進方法及び特異的抗体の作製方法 |
WO2004058964A1 (ja) | 2002-12-26 | 2004-07-15 | Riken | 体細胞相同組換えの誘発方法 |
WO2005104835A2 (en) | 2004-04-22 | 2005-11-10 | Kirin Beer Kabushiki Kaisha | Transgenic animals and uses thereof |
JP2006506634A (ja) * | 2002-11-18 | 2006-02-23 | ヴァルション テクニリネン ツッキムスケスクス | 小さな分析物のための非競合的な免疫アッセイ法 |
WO2006047367A2 (en) | 2004-10-22 | 2006-05-04 | Therapeutic Human Polyclonals, Inc. | Suppression of endogenous immunoglubolin expression in non-human transgenic animals |
JP2006282521A (ja) * | 2005-03-31 | 2006-10-19 | Hiroshima Univ | ニワトリキメラ抗体およびその利用 |
WO2008125733A1 (en) | 2007-04-13 | 2008-10-23 | Hytest Ltd. | Immunoassay for quantification of an unstable antigen selected from bnp and probnp |
JP2009082033A (ja) | 2007-09-28 | 2009-04-23 | Kaneka Corp | 完全ヒト型抗体生産法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3364347D1 (en) * | 1982-04-09 | 1986-08-07 | Fujirebio Kk | Anti immune complex antibody and preparation thereof |
US5223441A (en) * | 1986-10-09 | 1993-06-29 | Syntex (U.S.A.) Inc. | Receptors for immune complexes |
US5187065A (en) * | 1989-12-22 | 1993-02-16 | Schutzer Steven E | Method and materials for detecting lyme disease |
CA2624124A1 (en) * | 2005-09-29 | 2007-04-12 | F. Hoffmann-La Roche Ag | Antibodies against 25-hydroxyvitamin d |
FI20085579A0 (fi) * | 2008-06-12 | 2008-06-12 | Valtion Teknillinen | Kannabiskäytön toteaminen |
US20110097733A1 (en) * | 2009-10-27 | 2011-04-28 | Michel Anciaux | Process for the production of a hybridoma and antibody obtained therefrom, able to recognize more than one vitamin d metabolite |
-
2012
- 2012-07-04 JP JP2013534624A patent/JP6156144B2/ja active Active
- 2012-07-04 WO PCT/JP2012/067062 patent/WO2013042426A1/ja active Application Filing
- 2012-07-04 BR BR112014006405A patent/BR112014006405A2/pt not_active IP Right Cessation
- 2012-07-04 CN CN201280045570.1A patent/CN103827145A/zh active Pending
- 2012-07-04 RU RU2014115676/10A patent/RU2014115676A/ru not_active Application Discontinuation
- 2012-07-04 KR KR1020147006583A patent/KR101720394B1/ko active IP Right Grant
- 2012-07-04 US US14/346,615 patent/US9599608B2/en active Active
- 2012-07-04 EP EP12833103.0A patent/EP2759551B1/en active Active
- 2012-07-04 CA CA2849274A patent/CA2849274C/en active Active
- 2012-07-04 IN IN2113CHN2014 patent/IN2014CN02113A/en unknown
- 2012-07-04 AU AU2012310880A patent/AU2012310880B2/en not_active Ceased
- 2012-07-11 TW TW101124860A patent/TW201313743A/zh unknown
-
2014
- 2014-03-06 IL IL231404A patent/IL231404A0/en unknown
Patent Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816397A (en) | 1983-03-25 | 1989-03-28 | Celltech, Limited | Multichain polypeptides or proteins and processes for their production |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
JPS61501657A (ja) * | 1984-03-30 | 1986-08-07 | ケンブリツジ パテント デベロツプメンツ エルテイデイ | 抗体、製法と用途 |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
US5939598A (en) | 1990-01-12 | 1999-08-17 | Abgenix, Inc. | Method of making transgenic mice lacking endogenous heavy chains |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5885793A (en) | 1991-12-02 | 1999-03-23 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
EP0598877A1 (en) | 1992-06-09 | 1994-06-01 | Hoppe Ag | Latch and lockset system |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
WO1998037757A1 (fr) | 1997-02-28 | 1998-09-03 | Kirin Beer Kabushiki Kaisha | Cellules multipotentes comprenant des genes intrinseques dissocies |
WO2000010383A1 (en) | 1998-08-21 | 2000-03-02 | Kirin Beer Kabushiki Kaisha | Method for modifying chromosomes |
WO2000075300A2 (en) | 1999-06-04 | 2000-12-14 | Tranxenogen, Inc. | Methods for manipulating the avian genome |
JP2001174460A (ja) | 1999-12-17 | 2001-06-29 | Tosoh Corp | 免疫測定方法および免疫測定試薬 |
JP2001231403A (ja) | 2000-02-18 | 2001-08-28 | Kirin Brewery Co Ltd | 改変された外来染色体あるいはその断片を保持する非ヒト動物 |
WO2002070648A2 (en) | 2000-11-17 | 2002-09-12 | Hematech, Llc | Expression of xenogenous (human) immunoglobulins in cloned, transgenic ungulates |
WO2002100998A2 (en) | 2001-06-11 | 2002-12-19 | Medical Research Council | Method for generating diversity |
WO2003047336A2 (en) | 2001-11-30 | 2003-06-12 | Abgenix, Inc. | TRANSGENIC ANIMALS BEARING HUMAN Igμ LIGHT CHAIN GENES |
WO2003085107A1 (fr) | 2002-04-09 | 2003-10-16 | Kyowa Hakko Kogyo Co., Ltd. | Cellules à génome modifié |
WO2004011644A1 (ja) | 2002-07-30 | 2004-02-05 | Riken | 体細胞相同組換えの促進方法及び特異的抗体の作製方法 |
JP2006506634A (ja) * | 2002-11-18 | 2006-02-23 | ヴァルション テクニリネン ツッキムスケスクス | 小さな分析物のための非競合的な免疫アッセイ法 |
WO2004058964A1 (ja) | 2002-12-26 | 2004-07-15 | Riken | 体細胞相同組換えの誘発方法 |
WO2005104835A2 (en) | 2004-04-22 | 2005-11-10 | Kirin Beer Kabushiki Kaisha | Transgenic animals and uses thereof |
WO2006047367A2 (en) | 2004-10-22 | 2006-05-04 | Therapeutic Human Polyclonals, Inc. | Suppression of endogenous immunoglubolin expression in non-human transgenic animals |
JP2006282521A (ja) * | 2005-03-31 | 2006-10-19 | Hiroshima Univ | ニワトリキメラ抗体およびその利用 |
WO2008125733A1 (en) | 2007-04-13 | 2008-10-23 | Hytest Ltd. | Immunoassay for quantification of an unstable antigen selected from bnp and probnp |
JP2010523994A (ja) * | 2007-04-13 | 2010-07-15 | ヒュテスト アエルテーデー. | BNPおよびproBNPからなる群より選ばれる不安定な抗原を定量するための免疫アッセイ |
JP2009082033A (ja) | 2007-09-28 | 2009-04-23 | Kaneka Corp | 完全ヒト型抗体生産法 |
Non-Patent Citations (23)
Title |
---|
ARNON ET AL.: "Monoclonal Antibodies And Cancer Therapy", 1985, ALAN R. LISS, INC., article "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", pages: 243 - 56 |
AUSUBEL ET AL.,: "Current Protocols in Molecular Biology", 1998, JOHN WILEY & SONS |
BUERSTEDDE ET AL., EMBO J., vol. 9, 1990, pages 921 - 927 |
GILLIES ET AL., J. IMMUNOL. METHODS, vol. 125, 1989, pages 191 - 202 |
HELLSTROM ET AL.: "Controlled Drug Delivery", 1987, MARCEL DEKKER, INC., article "Antibodies For Drug Delivery", pages: 623 - 53 |
IHARA M. ET AL.: "Open-sandwich enzyme immunoassay for one-step noncompetitive detection of corticosteroid 11-deoxycortisol", ANAL. CHEM., vol. 81, no. 20, 2009, pages 8298 - 8304, XP055145692 * |
LONBERG; HUSZAR, INT. REV. IMMUNOL., vol. 13, 1995, pages 65 - 93 |
MORRISON, SCIENCE, vol. 229, 1985, pages 1202 |
NATURE BIOTECHNOLOGY, vol. 28, 2010, pages 1203 - 1207 |
OGURI ET AL., JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 125, no. 25, 2003, pages 7608 - 7612 |
OI ET AL., BIOTECHNIQUES, vol. 4, 1986, pages 214 |
PADLAN, MOLECULAR IMMUNOLOGY, vol. 28, no. 4/5, 1991, pages 489 - 498 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 |
ROGUSKA ET AL., PNAS, vol. 91, 1994, pages 969 - 973 |
ROSSOTTI ET AL., ANAL. CHEM., vol. 82, 2010, pages 8838 - 8843 |
ROSSOTTI MA. ET AL.: "Phage Anti-Immunocomplex Assay for Clomazone: Two-Site Recognition Increasing Assay Specificity and Facilitating Adaptation into an On-Site Format", ANAL. CHEM., vol. 82, no. 21, 2010, pages 8838 - 8843, XP055145690 * |
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual, 2nd Edition,", 1990, COLD SPRING HARBOR LABORATORY |
See also references of EP2759551A4 |
SELF ET AL., CLINICAL CHEMISTRY, vol. 40, no. 11, 1994, pages 2035 - 2041 |
STUDNICKA ET AL., PROTEIN ENGINEERING, vol. 7, no. 6, 1994, pages 805 - 814 |
TAMM, CLINICAL CHEMISTRY, vol. 54, no. 9, 2008, pages 1511 - 1518 |
THORPE ET AL.: "Monoclonal Antibodies' 84: Biological And Clinical Applications", 1985, article "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", pages: 475 - 506 |
ULMAN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 90, 1993, pages 1184 - 89 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129651A1 (ja) * | 2014-02-25 | 2015-09-03 | 富士レビオ株式会社 | 改変単量体IgM |
JPWO2015129651A1 (ja) * | 2014-02-25 | 2017-03-30 | 富士レビオ株式会社 | 改変単量体IgM |
JP2019507890A (ja) * | 2016-01-22 | 2019-03-22 | アフィメディックス, インコーポレイテッド | ビタミンd代謝産物の検出のためのデバイス |
CN106244562A (zh) * | 2016-05-20 | 2016-12-21 | 杭州奥泰生物技术有限公司 | 杂交瘤细胞株及其分泌的抗25羟基维生素d3单克隆抗体和应用 |
CN106244562B (zh) * | 2016-05-20 | 2019-07-23 | 杭州奥泰生物技术股份有限公司 | 杂交瘤细胞株及其分泌的抗25羟基维生素d3单克隆抗体和应用 |
WO2019131380A1 (ja) | 2017-12-25 | 2019-07-04 | 富士レビオ株式会社 | マクロライド系免疫抑制剤についての血液検査方法 |
JP2021081317A (ja) * | 2019-11-20 | 2021-05-27 | 東ソー株式会社 | 抗イムノコンプレックス抗体を用いた測定方法 |
WO2021100459A1 (ja) * | 2019-11-20 | 2021-05-27 | 東ソー株式会社 | 抗イムノコンプレックス抗体を用いた測定法 |
JP7434824B2 (ja) | 2019-11-20 | 2024-02-21 | 東ソー株式会社 | 抗イムノコンプレックス抗体を用いた測定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2759551A1 (en) | 2014-07-30 |
IN2014CN02113A (ja) | 2015-05-29 |
EP2759551B1 (en) | 2019-05-22 |
TW201313743A (zh) | 2013-04-01 |
AU2012310880B2 (en) | 2015-12-03 |
KR20140044940A (ko) | 2014-04-15 |
KR101720394B1 (ko) | 2017-03-27 |
US20150037813A1 (en) | 2015-02-05 |
CN103827145A (zh) | 2014-05-28 |
BR112014006405A2 (pt) | 2017-04-04 |
CA2849274C (en) | 2018-12-04 |
US9599608B2 (en) | 2017-03-21 |
RU2014115676A (ru) | 2015-10-27 |
JPWO2013042426A1 (ja) | 2015-03-26 |
IL231404A0 (en) | 2014-04-30 |
EP2759551A4 (en) | 2015-03-04 |
CA2849274A1 (en) | 2013-03-28 |
JP6156144B2 (ja) | 2017-07-05 |
AU2012310880A1 (en) | 2014-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6156144B2 (ja) | 親和性複合体に対する抗体 | |
TWI784976B (zh) | 抗lag-3抗體及組成物 | |
JP7192092B2 (ja) | 抗ヒトclaudin18.2モノクローナル抗体及びその使用 | |
WO2021063336A1 (zh) | 靶向cldn18.2的抗体及其制备方法和应用 | |
JP6993992B2 (ja) | 抗pd-1抗体、その産生方法及びその使用方法 | |
JP6980075B2 (ja) | がん細胞特異的な抗体、抗がん剤、及びがんの検査方法 | |
EP3575318A1 (en) | Anti-pd-1 antibody and use thereof | |
JP2021527441A (ja) | Cldn18.2を標的とする抗体、二重特異性抗体、adc及びcarならびにその使用 | |
KR20200061320A (ko) | 세포독성 t-림프구-관련 단백질 4 (ctla-4)에 대한 신규의 단일클론 항체 | |
RU2488593C2 (ru) | Человеческое опухолеспецифическое моноклональное антитело | |
JP2018529359A (ja) | 抗pd−1抗体および組成物 | |
JP7457822B2 (ja) | 抗cd3および抗cd123二重特異性抗体およびその使用 | |
WO2022089392A1 (zh) | 抗tigit抗体、其药物组合物及用途 | |
JP2021531825A (ja) | 葉酸受容体アルファに特異的な抗体 | |
JP6749901B2 (ja) | モノクローナル抗gpc−1抗体およびその使用 | |
JP2018519832A (ja) | 多重特異的結合タンパク質 | |
WO2003080115A1 (fr) | Complexes peptide hydrophile - immunoglobuline | |
JP2007075115A (ja) | 甲状腺機能を刺激する活性を持つ抗体 | |
WO2022171104A1 (zh) | 抗pd-1抗体及其用途 | |
WO2022171108A1 (zh) | 抗pd-l1抗体及其用途 | |
WO2024032664A1 (zh) | 一种靶向pd-l1和vegf的抗体及其应用 | |
WO2024165031A1 (zh) | 三特异性抗原结合分子及其应用 | |
WO2023081806A2 (en) | Anti-mesothelin antibody reagents | |
TW202434644A (zh) | 三特異性抗原結合分子及其應用 | |
JP2023500110A (ja) | Pd-l1結合分子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833103 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013534624 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 231404 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 20147006583 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2849274 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012310880 Country of ref document: AU Date of ref document: 20120704 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014115676 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014006405 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14346615 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 112014006405 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140318 |