WO2013035685A1 - 導電性樹脂組成物及びそれを使用した硬化体 - Google Patents

導電性樹脂組成物及びそれを使用した硬化体 Download PDF

Info

Publication number
WO2013035685A1
WO2013035685A1 PCT/JP2012/072441 JP2012072441W WO2013035685A1 WO 2013035685 A1 WO2013035685 A1 WO 2013035685A1 JP 2012072441 W JP2012072441 W JP 2012072441W WO 2013035685 A1 WO2013035685 A1 WO 2013035685A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
conductive resin
meth
conductive
cured
Prior art date
Application number
PCT/JP2012/072441
Other languages
English (en)
French (fr)
Inventor
宜司 水村
喬 山口
陽子 長柄
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020147008785A priority Critical patent/KR101906644B1/ko
Priority to US14/342,864 priority patent/US9249294B2/en
Priority to JP2013532594A priority patent/JP5997697B2/ja
Priority to SG11201400363TA priority patent/SG11201400363TA/en
Publication of WO2013035685A1 publication Critical patent/WO2013035685A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present invention relates to a conductive resin composition and a cured body using the same.
  • the present invention relates to a conductive resin composition that can be made into a B-stage (appeared cured semi-cured state) by heat and can be cured by heat, and a cured body using the same.
  • the conductive resin composition is supplied and applied by a printing method in order to accurately manufacture complex and fine sensors and semiconductor elements.
  • Patent Documents 1 and 2). a type of conductive resin composition that is made into a B-stage by light irradiation or the like (Patent Document 3) has been proposed.
  • the solvent is distilled off at a relatively low temperature to form a B-stage (semi-curing), or the conductive resin composition is dried to form B
  • staging semi-curing
  • tack-free means a state in which the conductive resin composition loses fluidity but does not stick even when touched by a human finger and no material adheres to the touched finger.
  • the present invention is B-staged (semi-cured) so as to have sufficient tack-free and pressure-sensitive tackiness at a relatively low temperature, without increasing the cost of equipment, without performing solvent distillation or light irradiation.
  • Conductive resin composition that can be cured and then cured (C-staged) to obtain a cured product having sufficient adhesive strength while maintaining a low specific resistance value, and a cured product using the same It is an issue to provide.
  • the present inventors have (A) an epoxy resin, (B) a compound having a (meth) acryloyl group and a glycidyl group, (C) a phenol resin-based curing agent, (D By using a conductive resin composition containing a radical polymerization initiator and (E) conductive particles, B-stage (semi-cured) at a relatively low temperature without solvent evaporation or light irradiation It was found that sufficient adhesive strength can be obtained when cured (C-stage).
  • the present invention includes (A) an epoxy resin, (B) a compound having a (meth) acryloyl group and a glycidyl group, (C) a phenol resin curing agent, (D) a radical polymerization initiator, and (E) conductive particles. It is related with the conductive resin composition to contain.
  • the number of moles of (meth) acryloyl groups in component (B) is preferably 7 to 28 with respect to 100 moles of glycidyl groups in the conductive resin composition.
  • the number of moles of glycidyl groups in the conductive resin composition refers to the number of moles of all glycidyl groups contained in the conductive resin composition.
  • the present invention further relates to a conductive resin composition containing a (F) (meth) acrylate compound.
  • a (F) (meth) acrylate compound in the conductive resin composition of the present invention, the number of moles of the (meth) acryloyl group in the component (B) and the number of (meth) in the component (F) with respect to 100 moles of the glycidyl group in the conductive resin composition.
  • the total number of moles of acryloyl groups is preferably 8 to 36.
  • the (F) (meth) acrylate compound means a compound that does not include a compound having both the (meth) acryloyl group and the glycidyl group as the component (B).
  • the present invention further relates to a conductive resin composition containing (G) an amine curing catalyst.
  • the component (A) is preferably a liquid epoxy resin
  • the component (B) is a partial (meth) acrylate compound and / or bisphenol type of a cresol novolac type epoxy resin.
  • a mono (meth) acrylate compound of an epoxy resin is preferable.
  • the present invention relates to a cured product obtained by converting the conductive resin composition into a B-stage and then curing (C-stage).
  • the present invention relates to a method for producing a cured product, in which the conductive resin composition is B-staged at a temperature of 70 to 110 ° C. and then cured at 130 to 250 ° C. to obtain a cured product.
  • the present invention can be B-staged (semi-cured) to have sufficient tack-free at a relatively low temperature and to have pressure-sensitive tackiness capable of temporarily adhering parts, and then cured ( It is possible to provide a conductive resin composition capable of obtaining a cured body having sufficient adhesive strength while maintaining a low specific resistance value by being C-staged, and a cured body using the same.
  • the present invention includes (A) an epoxy resin, (B) a compound having a (meth) acryloyl group and a glycidyl group, (C) a phenol resin curing agent, (D) a radical polymerization initiator, and (E) conductive particles. It is the conductive resin composition to contain.
  • the conductive resin composition of the present invention has (B) (meth) acryloyl group and glycidyl group in the conductive resin composition at a relatively low temperature (for example, 70 to 110 ° C.) as a first-stage reaction.
  • a relatively low temperature for example, 70 to 110 ° C.
  • a relatively low temperature for example, 70 to 110 ° C.
  • the conductive resin composition of the present invention has a higher temperature (for example, 130 to 250 ° C.) than the reaction temperature at which the first stage is B-staged as the second stage reaction.
  • These resins can be cured (C stage) by reacting an epoxy resin, a compound having (B) a (meth) acryloyl group and a glycidyl group, and (C) a phenolic curing agent, The contact property between the conductive particles becomes good, and a cured product having excellent adhesive strength can be obtained while maintaining a low specific resistance value.
  • (A) Epoxy resin As the (A) epoxy resin contained in the conductive resin composition of the present invention, a liquid epoxy resin can be preferably used.
  • (A) epoxy resin means an epoxy resin that does not contain a compound having both (meth) acryloyl group and glycidyl group as component (B).
  • Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less, bisphenol F type epoxy resins, diglycidyl hexahydrophthalate, diglycidyl 3-methylhexahydrophthalate, diglycidyl hexahydroterephthalate glycidyl neodecanoate Glycidyl ester type epoxy resin such as ester; Glycidyl amine type epoxy such as diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine, tetraglycidyl bis (aminomethyl) cyclohexane Resin, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane, (poly) ethylene glycol diglycidyl ether, (poly) propylene Glycol
  • the content of the epoxy resin (A) in the conductive resin composition is preferably 1 to 15% by mass, more preferably 2 to 12% by mass with respect to 100% by mass of the total amount of the conductive resin composition. Preferably, the content is 3 to 10% by mass.
  • the total amount 100% by mass of the conductive resin composition is 100% of the total amount of the conductive resin composition that does not include the solvent (H) when the conductive resin composition includes the (H) solvent described later. It means mass%.
  • the content of the epoxy resin (A) in the conductive resin composition is within the above range, in the second stage reaction, that is, in the reaction for curing (C stage), for example, at 130 to 250 ° C.
  • the compound having (B) (meth) acryloyl group and glycidyl group contained in the conductive resin composition of the present invention is obtained by reacting one of the glycidyl groups of the bisphenol type bifunctional epoxy resin with (meth) acrylic acid.
  • (Meth) acrylate compound of bisphenol type epoxy resin and / or partial (meth) acrylate of cresol novolac type epoxy resin obtained by reacting a part of glycidyl group of cresol novolak type epoxy resin with (meth) acrylic acid Compounds, glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.
  • the compound (B) having a (meth) acryloyl group and a glycidyl group is preferably a partial (meth) acrylate compound of a cresol novolac type epoxy resin and / or a mono (meth) acrylate compound of a bisphenol type epoxy resin.
  • (B) The compound of a component may be used individually by 1 type, or may use 2 or more types together.
  • (B) component you may use what mixed (A) component and (B) component previously.
  • (meth) acryloyl group is used to mean including one or both of an acryloyl group and a methacryloyl group.
  • (meth) acrylic acid is used to mean one or both of acrylic acid and methacrylic acid
  • (meth) acrylate means one or both of acrylate and methacrylate. Used for.
  • the conductive resin composition of the present invention includes (B) a compound having a (meth) acryloyl group and a glycidyl group, thereby comparing the first stage reaction, that is, the B-stage (semi-curing) reaction.
  • the (meth) acryloyl group of the component (B) in the conductive resin composition undergoes a radical polymerization reaction with the radical polymerization initiator (D) at a low temperature (for example, 70 to 110 ° C.)
  • the conductive resin composition Can be brought into a semi-cured state that is apparently cured, that is, a B-staged state so that the material has sufficient tack-free and pressure-sensitive tackiness.
  • the conductive resin composition of the present invention cures (C-stages) the conductive resin composition at 130 to 250 ° C., for example, as a second-stage reaction, that is, a reaction to cure (C-stage).
  • a second-stage reaction that is, a reaction to cure (C-stage).
  • the compound having (B) (meth) acryloyl group and glycidyl group preferably has the number of moles of (meth) acryloyl group in component (B) with respect to 100 moles of glycidyl group in the conductive resin composition. Is contained in the conductive resin composition so as to be 7 to 28, more preferably 8 to 27, still more preferably 9 to 26.
  • the number of moles of glycidyl groups in the conductive resin composition refers to the number of moles of all glycidyl groups contained in the conductive composition.
  • the reaction at the first stage is relatively low (for example, at 70 to 110 ° C., the conductive resin composition is difficult to be B-staged (semi-cured) so as to have sufficient tack-free and pressure-sensitive tackiness capable of temporarily adhering parts.
  • the number of moles of the (meth) acryloyl group in the component (B) exceeds 28 with respect to the number of moles of glycidyl group in the conductive resin composition, radical polymerization reaction is performed as the first stage reaction.
  • the number of moles of glycidyl group in the conductive resin composition is calculated by the following formula (1), and the number of moles of (meth) acryloyl group in the component (B) is calculated by the following formula (2).
  • the (C) phenol resin-based curing agent contained in the conductive resin composition of the present invention may be a phenol resin initial condensate usually used as a curing agent for epoxy resins, and may be a resol type or a novolac type.
  • the phenol resin-based curing agent include bisphenol resin, allylphenol novolac resin, novolac type phenol resin, phenol aralkyl resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin and the like.
  • curing agent may be used individually by 1 type, or may use 2 or more types together. Of these, o-allylphenol novolac resin and bisphenol resin are preferable.
  • the content of the (C) phenolic resin-based curing agent in the conductive resin composition is 100% of the hydroxyl acid (OH) of the (C) phenolic resin-based curing agent with respect to 100 moles of glycidyl groups in the conductive resin composition.
  • the number of moles of the group is preferably 0.25 to 3.5, more preferably 0.3 to 3, and still more preferably 0.4 to 2.5.
  • the number of moles of glycidyl groups in the conductive resin composition refers to the number of moles of all glycidyl groups contained in the conductive resin composition.
  • the conductive resin composition can be cured at, for example, 130 to 250 ° C.
  • the number of moles of the hydroxyl group (OH) in the component (C) is calculated by the following formula (3).
  • (C) Number of moles of hydroxyl (OH) group in component mass of (C) phenol resin curing agent in conductive resin composition (g) ⁇ (C) water in 1 mol of phenol resin curing agent Number of acid (OH) groups / (C) 1 mol of phenol resin-based curing agent (g) (3)
  • the radical polymerization initiator (D) in the conductive resin composition is not particularly limited, but is preferably a peroxide.
  • the radical polymerization initiator is a peroxide, those having a decomposition temperature of 70 to 110 ° C. are preferred.
  • Specific examples of the peroxide (D) radical polymerization initiator include 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanate, t-butylperoxybenzoate, and t-butylperoxide.
  • the content of the radical polymerization initiator (D) in the conductive resin composition is preferably 0 with respect to the content of the compound having (B) (meth) acryloyl group and glycidyl group in the conductive resin composition. 0.5 to 6% by mass, more preferably 1 to 5% by mass, and still more preferably 2 to 4% by mass. That is, the content of the (D) radical polymerization initiator is preferably 0.8 with respect to 100 parts by mass of the compound having (B) (meth) acryloyl group and glycidyl group contained in the conductive composition. It may be 5 to 6 parts by mass, more preferably 1 to 5 parts by mass, and still more preferably 2 to 4 parts by mass.
  • the conductive resin composition can be B-staged (semi-cured).
  • the content of the radical polymerization initiator (D) in the conductive resin composition is preferably 0.01 to 0.1% by mass, more preferably 0 with respect to 100% by mass of the total amount of the conductive resin composition. 0.03 to 0.08 mass%, more preferably 0.04 to 0.07 mass%.
  • the total amount 100% by mass of the conductive resin composition is 100% of the total amount of the conductive resin composition that does not include the solvent (H) when the conductive resin composition includes the (H) solvent described later. It means mass%.
  • the (E) conductive particles in the conductive resin composition are not particularly limited, but silver (Ag), gold (Au), copper (Cu), nickel (Ni), palladium (Pd), tin (Sn) and Examples thereof include metal fine powders such as these alloys, and inorganic fillers coated with gold, silver, and palladium, and silver or an alloy containing silver is preferable.
  • These shapes are not particularly limited, and examples thereof include a spherical shape and a flake shape (flaky shape).
  • the conductive particles may be used alone or in combination of two or more.
  • the conductive particles may be spherical, but may be a flaky, BET specific surface area, preferably 0.2 ⁇ 1.5m 2 / g, more preferably 0.3 ⁇ 1.2 m 2 / g having a tap density of preferably 1 to 8 g / cm 3 , more preferably 2 to 6 g / cm 3 can be suitably used.
  • the content of the conductive particles (E) in the conductive resin composition is preferably 50 to 95% by mass, more preferably 55 to 90% by mass, with respect to 100% by mass of the total amount of the conductive resin composition. More preferably, it is 60 to 85% by mass.
  • the total amount 100% by mass of the conductive resin composition is 100% of the total amount of the conductive resin composition that does not include the solvent (H) when the conductive resin composition includes the (H) solvent described later. It means mass%.
  • the conductive resin composition of the present invention further contains a (F) (meth) acrylate compound.
  • the conductive resin composition can be semi-cured (B-staged) so as to have excellent tack-free in the first stage reaction.
  • the (F) (meth) acrylate compound means a compound that does not include a compound having both the (meth) acryloyl group and the glycidyl group as the component (B).
  • (F) component you may use what mixed (A) component, (B) component, and (F) component previously.
  • (F) (meth) acrylate compounds include bisphenol A diglycidyl ether methacrylic acid adduct, bisphenol A diglycidyl ether acrylic acid adduct, neopentyl glycol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane dimethacrylate, trimethylolpropane trimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, neopentyl glycol dihydroxypivalate Methacrylate, 2-methacryloyloxyethyl phosphate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydride Xylbutyl methacrylate, 2-methacryloyloxyethyl-succinic acid,
  • the (meth) acrylate compound has a mole number of (meth) acryloyl groups in the component (B) and a (meth) acrylate in the component (F) with respect to the mole number 100 of glycidyl groups in the conductive resin composition.
  • the total number of moles of acryloyl groups is preferably 8 to 36, more preferably 9 to 35, and still more preferably 10 to 34, in the conductive resin composition.
  • the number of moles of glycidyl groups in the conductive resin composition refers to the number of moles of all glycidyl groups contained in the conductive composition.
  • the total number of moles of (meth) acryloyl groups in component (B) and moles of (meth) acryloyl groups in component (F) is less than 8 with respect to 100 moles of glycidyl groups in the conductive resin composition. If this is the case, the conductive resin composition may not be B-staged (semi-cured) so as to be tack-free at a relatively low temperature (eg, 70 to 110 ° C.) as a first-stage reaction. .
  • the total number of moles of the (meth) acryloyl group in the component (B) and the moles of the (meth) acryloyl group in the component (F) with respect to the number 100 of glycidyl groups in the conductive resin composition is If it exceeds 36, the radical polymerization reaction proceeds too much as a first-stage reaction, and it becomes difficult to obtain a desired pressure-sensitive tackiness that enables temporary bonding of components in a B-staged (semi-cured) state.
  • the number of moles of the (meth) acryloyl group in the component (F) is calculated by the following formula (4).
  • (F) Number of moles of (meth) acryloyl group in (meth) acrylate compound mass of (F) (meth) acrylate compound in conductive resin composition (g) ⁇ (F) 1 mole of (meth) acrylate compound Number of (meth) acryloyl groups / mass of 1 mole of (F) (meth) acrylate compound (g) (4)
  • the conductive resin composition of the present invention preferably further contains (G) an amine curing catalyst.
  • the amine-based curing catalyst preferably has a reaction start temperature exceeding 130 ° C.
  • the conductive resin composition further contains (G) an amine curing catalyst, so that the conductive resin composition is cured at, for example, 130 to 250 ° C. in the second stage reaction, that is, C stage. A cured product having excellent adhesive strength can be obtained while maintaining a low specific resistance value.
  • amine-based curing catalysts include dicyandiamide; carboxylic acid hydrazides such as adipic acid hydrazide and isophthalic acid hydrazide; 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole. And imidazole derivatives.
  • An amine curing catalyst may be used individually by 1 type, or may use 2 or more types together. Of these, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, dicyandiamide, and adipic acid hydrazide are preferable.
  • the content of the (G) amine curing catalyst in the conductive resin composition is preferably 0.5 to 15 mass with respect to the total content of the components (A) and (C) in the conductive resin composition. %, More preferably 1 to 10% by mass, still more preferably 2 to 8% by mass. That is, the total amount of (A) epoxy resin and (C) phenol resin curing agent contained in the conductive composition is 100 parts by mass, and the content of (G) amine curing catalyst is preferably 0. 5 to 15 parts by mass, more preferably 1 to 10 parts by mass, still more preferably 2 to 8 parts by mass. (G) If the content of the amine curing catalyst is within the above range, the conductive resin composition can be cured at, for example, 130 to 250 ° C.
  • the content of the (G) amine curing catalyst in the conductive resin composition is preferably 0.3 to 1.5% by mass, more preferably 0 with respect to 100% by mass of the total amount of the conductive resin composition. 0.5 to 1.2% by mass, more preferably 0.7 to 1.0% by mass.
  • the total amount 100% by mass of the conductive resin composition is 100% of the total amount of the conductive resin composition that does not include the solvent (H) when the conductive resin composition includes the (H) solvent described later. It means mass%.
  • the conductive resin composition of the present invention may further contain (H) a solvent.
  • a solvent H
  • the application and supply properties of the conductive resin composition to the substrate and the like by the printing method are improved.
  • the solvent (H) include diethyl diglycol, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, dibasic acid esters such as dimethyl glutarate, benzyl alcohol, and the like. Of these, diethylene glycol diethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monoethyl ether acetate are preferable.
  • the content of the (H) solvent in the conductive resin composition is not particularly limited as long as the conductive resin composition can be uniformly applied and supplied by a printing method, but the total amount of the conductive resin composition 0 to 10 parts by mass of the (H) solvent can be contained with respect to 100 parts by mass.
  • 100 parts by mass of the total amount of the conductive resin composition means (H) 100 parts by mass of the total amount of the conductive resin composition not including the solvent.
  • the conductive resin composition of the present invention may contain (I) a silane coupling agent in order to improve wettability and adhesion to the substrate.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyl. Examples include trimethoxysilane.
  • the content of the (I) silane coupling agent in the conductive resin composition is not particularly limited, but is preferably 0.1 to 1% by mass with respect to 100% by mass of the total amount of the conductive resin composition.
  • the content is preferably 0.2 to 0.8% by mass.
  • 100% by mass of the total amount of the conductive resin composition means (H) 100% by mass of the total amount of the conductive resin composition not including the solvent.
  • the conductive resin composition of the present invention may contain a spacer (J) for maintaining a constant film thickness when the conductive resin composition is applied to and supplied to a substrate.
  • the spacer is preferably spherical with a diameter of 10 to 100 ⁇ m, and the material of the spacer is not particularly limited, and examples thereof include glass, acrylic resin, silica, and styrene / vinylbenzene copolymer. It is done.
  • the content of the (J) spacer in the conductive resin composition is not particularly limited, but is preferably 0.1 to 1% by mass, more preferably 0 with respect to 100% by mass of the total amount of the conductive resin composition. .2 to 0.8% by mass.
  • 100% by mass of the total amount of the conductive resin composition means (H) 100% by mass of the total amount of the conductive resin composition not including the solvent.
  • the conductive resin composition of the present invention has an antifoaming agent for removing entrained bubbles, a dye or pigment for coloring, and the like, which improves the wettability to the adherend.
  • An agent or the like can be added.
  • the method for producing the conductive resin composition of the present invention is not particularly limited, and each component is blended in a predetermined manner, and a meteor type stirrer, dissolver, bead mill, lykai machine, three roll mill, rotary mixer, twin screw mixer Or the like, and can be mixed for production.
  • the conductive resin composition is B-staged (semi-cured) at a temperature of 70 to 110 ° C. and then the second stage reaction.
  • the cured product is preferably obtained by heating the conductive resin composition to 130 to 250 ° C. and curing (C-stage).
  • the conductive resin composition preferably has a viscosity of 50,000 Pa ⁇ s or less at 80 to 100 ° C. after completion of the first stage reaction and during the second stage reaction. More preferably, it is 20,000 Pa ⁇ s or less.
  • the viscosity at 80 to 100 ° C. in the second stage reaction is preferably 50,000 Pa ⁇ s or less, more preferably 20,000 or less, the wettability to the adherend during main curing is improved, Adhesion is improved.
  • the conductive resin composition of the present invention can realize tack-free when B-staged (semi-cured) at 70 to 110 ° C. as a first-stage reaction, and temporarily bonds other components. It has excellent pressure-sensitive tackiness. Furthermore, when the conductive resin composition of the present invention is cured at 130 to 250 ° C. (C-stage) as a second-stage reaction, the contact property between the conductive particles becomes good and the specific resistance value is low. A cured product having excellent adhesive strength can be obtained while maintaining the above.
  • the conductive resin composition of the present invention can realize sufficient tack-free, can be B-staged in a state excellent in pressure-sensitive tackiness capable of temporarily adhering components, and is low. Since a cured body having excellent adhesion strength can be obtained while maintaining the specific resistance value, an Ag paste is pre-printed on the wafer as an alternative material for Au plating of a semiconductor wafer, B-staged, and dying is performed. It can be used for bonding a die bonding agent for bonding to a lead frame and film antennas of various sensors. In addition, the conductive resin composition of the present invention can be suitably used as an adhesive for LID and casing.
  • Examples 1 to 9, Comparative Examples 1 to 4 Each composition was mixed at 25 ° C. using a three roll mill at the blending ratio shown in Table 1 (in Table 1, the numerical value of each component represents parts by mass), and Examples 1 to 9 and Comparative Examples 1 to 4 were mixed.
  • a conductive resin composition was prepared. These conductive resin compositions were measured for tackiness and pressure-sensitive tackiness by finger touch after B-staged (semi-cured) at 70-110 ° C, and then cured at 130-250 ° C (C-staged) ) And then the specific resistance value and the adhesive strength were measured. The measurement method is shown below. The results are shown in Table 1.
  • Example 2 In Example, (A) epoxy resin and (B) (meth) acryloyl group and compound having glycidyl group premixed, and / or (A) epoxy resin and (B) (meth) acryloyl group and glycidyl A mixture in which a compound having a group and (F) (meth) acrylate compound were mixed in advance was used.
  • the conductive resin compositions having the blending ratios shown in Table 1 were B-staged (semi-cured), and then the tackiness and pressure-sensitive tackiness by finger touch were measured as follows.
  • a test piece was prepared by stencil printing of a conductive resin composition having a blending ratio shown in Table 1 to a thickness of 120 ⁇ m on a slide glass of length 76 mm ⁇ width 26 mm ⁇ thickness 1.3 mm. A stencil plate having a thickness of 120 ⁇ m was used. The test piece was dried for 20 minutes using a blower dryer maintained at 90 ⁇ 5 ° C. The part of the conductive resin composition after the B-stage was touched with a finger, and the evaluation was made based on whether or not the conductive resin composition adhered to the finger. When the conductive resin composition did not adhere to the finger, “ ⁇ (tack free)”, and when the conductive resin composition adhered to the finger, “ ⁇ (not tack free)”.
  • Tack force (N) actual value (gf) ⁇ 0.001 ⁇ 9.8 Tack force test conditions
  • the conductive resin compositions having the blending ratios shown in Table 1 were B-staged (semi-cured) and then cured (C-staged), and the specific resistance and adhesive strength were measured as follows.
  • a conductive resin composition having a blending ratio shown in Table 1 having a thickness of 120 ⁇ m is formed on a length 76 mm ⁇ width 26 mm ⁇ thickness 1.3 mm slide glass as shown in FIG.
  • stencil printing was performed to prepare a test piece (see FIG. 1A).
  • the stencil used was a 120 ⁇ m thick film.
  • the test piece was dried for 20 minutes using a blow dryer held at 90 ⁇ 5 ° C., cooled and semi-cured (B-staged). Then, it was made to harden (C stage) for 50 minutes using the ventilation drying machine hold
  • the resistance value X ( ⁇ ) was measured on both end faces of the cured body of the conductive resin composition after curing using a 4261A LCR meter manufactured by YHP.
  • the thickness Z ( ⁇ m) of the cured body was measured using a surface roughness shape measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd., model number: Surfcom 1500SD2).
  • the thickness Z ( ⁇ m) of the cured body was measured from the upper direction of the pattern from both ends of the pattern having a length of 10 mm ⁇ width of 1 mm (see FIGS. 1B and 1C, 2 of the arrow). Place).
  • ⁇ ( ⁇ ⁇ cm) (0.1 / 5.0) ⁇ X ( ⁇ ) ⁇ Z ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm)
  • an alumina plate 3 having a length of 1.5 mm ⁇ width of 3.0 mm ⁇ thickness of 0.5 mm was placed on the conductive resin composition printed in the pattern of the test piece, and the temperature was adjusted to 165 ⁇ 5 ° C. Curing was carried out for 50 minutes using the air blow dryer held.
  • the bonded surface of the cured conductive resin composition (cured body) 2 and the alumina plate 3 having a length of 1.5 mm ⁇ width of 3.0 mm ⁇ thickness of 0.5 mm is used as a MODEL-1605 HTP type strength tester (Iko Engineering). 2 ), the measured value when the bonded alumina plate 3 was peeled off from the side as shown by the thick arrow in FIG. 2 was defined as the adhesive strength (N / mm 2 ).
  • Examples 1 to 9 as a first stage reaction, tack-free was realized after B-stage (semi-curing) at a temperature of 90 ° C. ⁇ 5 ° C., and pressure-sensitive tackiness Also showed a good numerical value capable of temporarily adhering parts of 2 (N) or more.
  • the cured product after curing at a temperature of 165 ⁇ 5 ° C. has a specific resistance of 5 ⁇ 10 ⁇ 4 to 30 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm
  • the adhesive strength was as high as 20 N / mm 2 or more while maintaining a low specific resistance value.
  • Comparative Examples 1 to 3 can achieve tack-free after B-stage (semi-curing), but the pressure-sensitive tackiness is as low as 0.1 (N) or 0.2 (N). It was 1/10 or less of 1-9. In Comparative Examples 1 to 3, although the specific resistance value after curing was large, the adhesive strength was very low. Although Comparative Example 4 has pressure-sensitive tackiness after B-staging (semi-curing), tack-freeness cannot be realized in the tackiness by finger touch.
  • the conductive resin composition of the present invention can achieve sufficient tack-free at a relatively low temperature, and can be B-staged (semi-cured) with excellent pressure-sensitive tackiness capable of temporarily adhering components. ) And then cured (C stage) to obtain a cured body having excellent adhesive strength while maintaining a low specific resistance value, so that a die bonding agent for bonding to a lead frame, It can be used for the purpose of attaching film antennas of various sensors.
  • the conductive resin composition of the present invention can be suitably used as an adhesive for LID and casing, and is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 溶剤の留去や光照射を行うことなく、設備コストの増大を抑制し、比較的低温度で十分なタックフリーを有し、かつ部品を仮接着することができる優れた感圧タック性を有するようにBステージ化(半硬化)することができ、その後に硬化(Cステージ化)させて低い比抵抗値を維持しつつ、十分な接着強度を有する硬化体を得ることができる導電性樹脂組成物及びそれを使用した硬化体を提供する。 (A)エポキシ樹脂、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物、(C)フェノール樹脂系硬化剤、(D)ラジカル重合開始剤、並びに(E)導電性粒子を含有する導電性樹脂組成物及びそれを使用した硬化体である。

Description

導電性樹脂組成物及びそれを使用した硬化体
 本発明は、導電性樹脂組成物及びそれを使用した硬化体に関する。特に、本発明は、熱により、Bステージ化(見かけ上は硬化した半硬化状態)にすることができ、熱により硬化させることができる導電性樹脂組成物及びそれを使用した硬化体に関する。
 近年、電気技術の進歩に伴い、衝突防止センサー、加速度センサー等の各種センサー類、半導体集積回路類等の電気機器の分野において、小型化、軽量化、高機能化が求められている。近年の小型化、軽量化、高機能化の要求に伴い、複雑かつ微細なセンサー類や半導体素子類を正確に製造するために、導電性樹脂組成物を印刷法によって供給・塗布した後、半硬化状態(いわゆるBステージ化)して取り扱い性を向上し、その後に硬化(いわゆるCステージ化)させて、他の電子部品を接着する際に、優れた接着強度を有する導電性樹脂組成物の要求が高まっている。
 このようなBステージ化が可能な導電性樹脂組成物として、導電性樹脂組成物中に溶剤を含み、溶剤を留去させてBステージ化するタイプの導電性樹脂組成物(特許文献1、2)、光照射等によりBステージ化するタイプの導電性樹脂組成物(特許文献3)が提案されている。
特開平10-64331号公報 特開2007-238942号公報 特開2007-270130号公報
 しかしながら、上記特許文献1~3の導電性樹脂組成物のように、比較的低温度で溶剤を留去させてBステージ化(半硬化)させる場合や、導電性樹脂組成物を乾燥させてBステージ化(半硬化)させる場合は、十分なタックフリーを実現しつつ、他の部品の仮接着が可能となる十分な感圧タック性が実現できない。ここでタックフリーとは、導電性樹脂組成物が流動性を失った状態でありながら、人の指で触ってもベトつかず、触った指に材料が付着しない状態のことをいう。また、比較的低温度で溶剤を留去させる場合には、環境への負荷を軽減するために揮発等によって留去した溶剤を回収する装置が必要となり、設備コストが増大する。
 特許文献3の導電性樹脂組成物のように、導電性樹脂組成物中に光開始剤を含み、光照射によってBステージ化(半硬化)させる場合には、光照射するための装置が必要となり、やはり設備コストが増大する。
 本発明は、溶剤の留去や光照射を行うことなく、設備コストの増大を抑制して、比較的低温度で十分なタックフリー及び感圧タック性を有するようにBステージ化(半硬化)することができ、その後に硬化(Cステージ化)させて、低い比抵抗値を維持しつつ、十分な接着強度を有する硬化体を得ることができる導電性樹脂組成物及びそれを使用した硬化体を提供することを課題とする。
 本発明者らは、上記課題を解決すべく検討を重ねた結果、(A)エポキシ樹脂、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物、(C)フェノール樹脂系硬化剤、(D)ラジカル重合開始剤、並びに(E)導電性粒子を含有する導電性樹脂組成物を用いることによって、溶剤の留去や光照射を行うことなく、比較的低温度でBステージ化(半硬化)することができ、その後に硬化(Cステージ化)させた際に十分な接着強度が得られることを見出した。
 本発明は、(A)エポキシ樹脂、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物、(C)フェノール樹脂系硬化剤、(D)ラジカル重合開始剤、並びに(E)導電性粒子を含有する導電性樹脂組成物に関する。本発明の導電性樹脂組成物は、導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数が7~28であることが好ましい。ここで導電性樹脂組成物中のグリシジル基のモル数は、導電性樹脂組成物中に含まれる全てのグリシジル基のモル数をいう。
 本発明は、さらに(F)(メタ)アクリレート化合物を含有する導電性樹脂組成物に関する。本発明の導電性樹脂組成物は、導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数及び(F)成分中の(メタ)アクリロイル基のモル数の合計が8~36であることが好ましい。ここで(F)(メタ)アクリレート化合物は、(B)成分である(メタ)アクリロイル基及びグリシジル基の両方を同時に有する化合物は含まない化合物を意味する。
 本発明は、さらに(G)アミン系硬化触媒を含有する導電性樹脂組成物に関する。
 また、本発明の導電性樹脂組成物は、(A)成分が、液状エポキシ樹脂であることが好ましく、(B)成分が、クレゾールノボラック型エポキシ樹脂の部分(メタ)アクリレート化合物及び/又はビスフェノール型エポキシ樹脂のモノ(メタ)アクリレート化合物であることが好ましい。
 本発明は、上記導電性樹脂組成物をBステージ化し、その後に硬化(Cステージ化)させて得られる、硬化体に関する。
 本発明は、上記導電性樹脂組成物を、70~110℃の温度でBステージ化した後、130~250℃で硬化させて硬化体を得る、硬化体の製造方法に関する。
 本発明は、比較的低温度で十分なタックフリーを有し、かつ部品を仮接着することができる感圧タック性を有するようにBステージ化(半硬化)することができ、その後に硬化(Cステージ化)させて低い比抵抗値を維持しつつ、十分な接着強度を有する硬化体が得られる導電性樹脂組成物及びそれを使用した硬化体を提供することができる。
導電性樹脂組成物を硬化させた硬化体の比抵抗値の測定方法を示す説明図である。 導電性樹脂組成物を硬化させた硬化体の接着強度の測定方法を示す説明図である。
 本発明は、(A)エポキシ樹脂、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物、(C)フェノール樹脂系硬化剤、(D)ラジカル重合開始剤、並びに(E)導電性粒子を含有する導電性樹脂組成物である。
 本発明の導電性樹脂組成物は、第一段階の反応として、比較的低温度(例えば70~110℃)で、導電性樹脂組成物中の(B)(メタ)アクリロイル基及びグリシジル基を有する化合物と、(D)ラジカル重合開始剤とを反応させることにより、十分なタックフリーを有し、かつ他の部品を仮接着することができる感圧タック性を有するようにBステージ化(半硬化)することができる。本発明によれば、溶剤を留去させて半硬化させる場合や乾燥により半硬化させる場合のように、十分なタックフリーを確保することができないということがなく、留去した溶剤を回収するための装置や光照射するための装置が必要ないので、設備コストの増大を十分に抑制することができる。
 さらに、本発明の導電性樹脂組成物は、第二段階の反応として、第一段階のBステージ化する反応温度よりも高温(例えば130~250℃)で、導電性樹脂組成物中の(A)エポキシ樹脂と、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物と、(C)フェノール系硬化剤とを反応させることにより、これらの樹脂を硬化(Cステージ化)させることができ、導電性粒子同士の接触性が良好となり、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができる。
〔(A)エポキシ樹脂〕
 本発明の導電性樹脂組成物に含まれる(A)エポキシ樹脂は、好ましくは液状エポキシ樹脂を用いることができる。ここで(A)エポキシ樹脂は、(B)成分である(メタ)アクリロイル基及びグリシジル基の両方を同時に有する化合物を含まないエポキシ樹脂を意味する。
 液状エポキシ樹脂は、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの、ビスフェノールF型エポキシ樹脂、ヘキサヒドロフタル酸ジグリシジル、3-メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルネオデカン酸グリシジルエステルのようなグリシジルエステル型エポキシ樹脂;ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-シクロへキサンジメタノールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、p-tert―ブチルフェニルグリシジルエーテル、ジシクロペンタジエンジメタノールジグリシジルエーテル、トリメチロールプロパンのグリシジルエーテル、ポリテトラメチレンエーテルグリコールのジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-フェニルジメタノールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなエポキシド化合物等が例示される。これらの中でも、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの、ビスフェノールF型エポキシ樹脂を用いることが好ましい。液状エポキシ樹脂は1種を単独で使用しても、2種以上を併用してもよい。
 導電性樹脂組成物中の(A)エポキシ樹脂の含有量は、導電性樹脂組成物の全体量100質量%に対して、好ましくは1~15質量%、より好ましくは2~12質量%、さらに好ましくは3~10質量%である。ここで導電性樹脂組成物の全体量100質量%は、導電性樹脂組成物中に後述する(H)溶剤を含む場合には、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。導電性樹脂組成物中の(A)エポキシ樹脂の含有量が上記範囲内であると、第二段階の反応において、すなわち、硬化(Cステージ化)させる反応において、例えば130~250℃で、(A)エポキシ樹脂と(C)フェノール系樹脂硬化剤をイオン重合反応させるとともに、(B)成分のグリシジル基と(C)成分のフェノール系樹脂硬化剤をイオン重合反応させて、導電性樹脂組成物を硬化(Cステージ化)させることによって、導電性樹脂組成物に含まれる(E)導電性粒子の接触性が良好となり、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができる。
〔(B)(メタ)アクリロイル基及びグリシジル基を有する化合物〕
 本発明の導電性樹脂組成物に含まれる(B)(メタ)アクリロイル基及びグリシジル基を有する化合物は、ビスフェノール型二官能エポキシ樹脂のグリシジル基の一方が(メタ)アクリル酸と反応することによって得られるビスフェノール型エポキシ樹脂のモノ(メタ)アクリレート化合物及び/又はクレゾールノボラック型エポキシ樹脂の一部のグリシジル基と(メタ)アクリル酸と反応することによって得られるクレゾールノボラック型エポキシ樹脂の部分(メタ)アクリレート化合物、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。中でも、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物は、クレゾールノボラック型エポキシ樹脂の部分(メタ)アクリレート化合物及び/又はビスフェノール型エポキシ樹脂のモノ(メタ)アクリレート化合物が好ましい。(B)成分の化合物は、1種を単独で使用しても、2種以上を併用してもよい。なお、(B)成分としては、(A)成分と(B)成分が予め混合されているものを用いてもよい。本明細書において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の一方又は両方を含む意味に用いる。また、本明細書において「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸の一方又は両方を含む意味に用い、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの一方又は両方を含む意味に用いる。
 本発明の導電性樹脂組成物は、(B)(メタ)アクリロイル基及びグリシジル基を有する化合物を含有することによって、第一段階の反応、すなわち、Bステージ化(半硬化)させる反応として、比較的低温度(例えば70~110℃)で、導電性樹脂組成物中の(B)成分の(メタ)アクリロイル基が(D)ラジカル重合開始剤によってラジカル重合反応することにより、導電性樹脂組成物を十分なタックフリー及び感圧タック性を有するように、見かけ上は硬化した半硬化状態、すなわち、Bステージ化状態にさせることができる。さらに、本発明の導電性樹脂組成物は、第二段階の反応、すなわち、硬化(Cステージ化)させる反応として、例えば130~250℃で、導電性樹脂組成物を硬化(Cステージ化)させることによって、導電性粒子同士の接触性が良好となり、低い比抵抗値を維持したまま、優れた接着強度を得ることができる。
 (B)(メタ)アクリロイル基及びグリシジル基を有する化合物は、導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数が、好ましくは7~28、より好ましくは8~27、さらに好ましくは9~26になるように導電性樹脂組成物中に含有させる。ここで導電性樹脂組成物中のグリシジル基のモル数は、導電性組成物中に含まれる全てのグリシジル基のモル数をいう。導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数が7未満であると、第一段階の反応として、比較的低温度(例えば70~110℃)で、十分なタックフリーを有し、かつ部品を仮接着することができる感圧タック性を有するように導電性樹脂組成物をBステージ化(半硬化)しにくくなる。一方、導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数が28を超えると、第一段階の反応として、ラジカル重合反応が進みすぎて、Bステージ化(半硬化)状態において、部品の仮接着が可能となる所望の感圧タック性が得られにくくなる。なお、導電性樹脂組成物中のグリシジル基のモル数は下記式(1)によって算出し、(B)成分中の(メタ)アクリロイル基のモル数は下記式(2)によって算出する。
導電性樹脂組成物中のグリシジル基のモル数=導電性樹脂組成物中の(A)エポキシ樹脂の質量(g)×(A)エポキシ樹脂1モル中のグリシジル基の数/(A)エポキシ樹脂1モルの質量(g)+導電性樹脂組成物中の(B)(メタ)アクリロイル基及びグリシジル基を有する化合物の質量(g)×(B)(メタ)アクリロイル基及びグリシジル基を有する化合物1モル中のグリシジル基の数/(B)(メタ)アクリロイル基及びグリシジル基を有する1モルの質量(g)・・・(1)
(B)成分中の(メタ)アクリロイル基のモル数=導電性樹脂組成物中の(B)(メタ)アクリロイル基及びグリシジル基を有する1モルの質量(g)×(B)(メタ)アクリロイル基及びグリシジル基を有する化合物1モル中の(メタ)アクリロイル基の数/(B)(メタ)アクリロイル基及びグリシジル基を有する化合物1モルの質量(g)・・・(2)
〔(C)フェノール樹脂系硬化剤〕
 本発明の導電性樹脂組成物に含まれる(C)フェノール樹脂系硬化剤は、エポキシ樹脂の硬化剤として通常用いられるフェノール樹脂初期縮合物であればよく、レゾール型でもノボラック型でもよい。(C)フェノール樹脂系硬化剤としては、ビスフェノール樹脂、アリルフェノールノボラック樹脂、ノボラック型フェノール樹脂、フェノールアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂等が挙げられる。(C)フェノール樹脂系硬化剤は、1種を単独で使用しても、2種以上を併用してもよい。中でも、o-アリルフェノールノボラック樹脂、ビスフェノール樹脂が好ましい。
 導電性樹脂組成物中の(C)フェノール樹脂系硬化剤の含有量は、導電性樹脂組成物中のグリシジル基のモル数100に対して、(C)フェノール樹脂系硬化剤の水酸(OH)基のモル数が、好ましくは0.25~3.5、より好ましくは0.3~3、さらに好ましくは0.4~2.5である。ここで導電性樹脂組成物中のグリシジル基のモル数とは、導電性樹脂組成物中に含まれる全てのグリシジル基のモル数をいう。(C)フェノール樹脂系硬化剤の含有量が上記範囲内であると、第二段階の反応において、例えば130~250℃で、導電性樹脂組成物を硬化させることができ、低い比抵抗値を維持しつつ、優れた接着強度を有する硬化体を得ることができる。なお、(C)成分中の水酸(OH)基のモル数は、下記式(3)によって算出する。
(C)成分中の水酸(OH)基のモル数=導電性樹脂組成物中の(C)フェノール樹脂系硬化剤の質量(g)×(C)フェノール樹脂系硬化剤1モル中の水酸(OH)基の数/(C)フェノール樹脂系硬化剤1モルの質量(g)・・・(3)
〔(D)ラジカル重合開始剤〕
 導電性樹脂組成物中の(D)ラジカル重合開始剤は、特に制限されないが、過酸化物であることが好ましい。(D)ラジカル重合開始剤が過酸化物である場合には、分解温度が70~110℃であるものが好ましい。(D)ラジカル重合開始剤である過酸化物としては、具体的には、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサナート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、2,2-ジ(4,4-ジ-(ブチルパーオキシ)シクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、シクロヘキサノンパーオキサイド、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン等が挙げられる。
 導電性樹脂組成物中の(D)ラジカル重合開始剤の含有量は、導電性樹脂組成物中の(B)(メタ)アクリロイル基及びグリシジル基を有する化合物の含有量に対して、好ましくは0.5~6質量%、より好ましくは1~5質量%、さらに好ましくは2~4質量%である。すなわち、導電性組成物中に含まれる(B)(メタ)アクリロイル基及びグリシジル基を有する化合物の量を100質量部に対して、(D)ラジカル重合開始剤の含有量が、好ましくは0.5~6質量部、より好ましくは1~5質量部、さらに好ましくは2~4質量部であればよい。(D)ラジカル重合開始剤の含有量が、上記範囲内であると、第一段階の反応において、比較的低温度(例えば70~110℃)で、十分なタックフリー及び感圧タック性を有するように導電性樹脂組成物をBステージ化(半硬化)することができる。導電性樹脂組成物中の(D)ラジカル重合開始剤の含有量は、導電性樹脂組成物の全体量100質量%に対して、好ましくは0.01~0.1質量%、より好ましくは0.03~0.08質量%、さらに好ましくは0.04~0.07質量%である。ここで導電性樹脂組成物の全体量100質量%は、導電性樹脂組成物中に後述する(H)溶剤を含む場合には、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。
〔(E)導電性粒子〕
 導電性樹脂組成物中の(E)導電性粒子は、特に制限されないが、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、スズ(Sn)及びこれらの合金等の金属微粉末や金、銀、パラジウムでコーティングされた無機フィラーが挙げられ、好ましくは銀又は銀を含む合金である。これらの形状は、特に限定されず、球状、フレーク状(リン片状)等が挙げられる。導電性粒子は、1種を単独で使用しても、2種以上を併用してもよい。導電性粒子は、球状であっても、フレーク状であってもよいが、BET比表面積が、好ましくは0.2~1.5m/g、より好ましくは0.3~1.2m/gであり、タップ密度が、好ましくは1~8g/cm、より好ましくは2~6g/cmのものが好適に使用できる。
 導電性樹脂組成物中の(E)導電性粒子の含有量は、導電性樹脂組成物の全体量100質量%に対して、好ましくは50~95質量%、より好ましくは55~90質量%、さらに好ましくは60~85質量%である。ここで導電性樹脂組成物の全体量100質量%は、導電性樹脂組成物中に後述する(H)溶剤を含む場合には、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。導電性樹脂組成物中の(E)導電性粒子の含有量が上記範囲内であると、半硬化状態、すなわちBステージ化状態において、タックフリー及び感圧タック性を妨げることなく、硬化時及びその後に導電性粒子同士の接触性が良好となり、低い比抵抗値を維持することができる。
〔(F)(メタ)アクリレート化合物〕
 本発明の導電性樹脂組成物は、さらに(F)(メタ)アクリレート化合物を含有することが好ましい。導電性樹脂組成物は、さらに(F)(メタ)アクリレート化合物を含有することによって、第一段階の反応において、優れたタックフリーを有するように半硬化(Bステージ化)することができる。ここで(F)(メタ)アクリレート化合物は、(B)成分である(メタ)アクリロイル基及びグリシジル基の両方を同時に有する化合物は含まない化合物を意味する。なお、(F)成分としては、(A)成分と(B)成分と(F)成分が予め混合されているものを用いてもよい。(F)(メタ)アクリレート化合物として、具体的には、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ビスフェノールAジグリシジルエーテルアクリル酸付加物、ネオペンチルグリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジメタクリレート、トリメチロールプロパントリメタクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジメタクリレート、2-メタクリロイルオキシエチルリン酸エステル、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイルオキシエチル-コハク酸、グリセリンジメタクリレート、2-メタクリロイルオキシエチル-フタル酸、γ-ブチロラクトンメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-エチル-2-アダマンチルメタクリレート、エトシキ化シクロヘキサンジメタノールジメタクリレート又はそれらのアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、メトキシジプロピレングリコールアクリレート、ネオペンチルグリコールアクリル酸安息香酸エステル、ビスフェノールAのプロピレンオキサイド変性ジアクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。
 (F)(メタ)アクリレート化合物は、導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数及び(F)成分中の(メタ)アクリロイル基のモル数の合計が、好ましくは8~36、より好ましくは9~35、さらに好ましくは10~34になるように導電性樹脂組成物中に含有させる。ここで導電性樹脂組成物中のグリシジル基のモル数は、導電性組成物中に含まれる全てのグリシジル基のモル数をいう。導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数及び(F)成分の(メタ)アクリロイル基のモル数の合計が8未満であると、第一段階の反応として、比較的低温度(例えば70~110℃)で、タックフリーを有するように導電性樹脂組成物をBステージ化(半硬化)することができない場合がある。一方、導電性樹脂組成物中のグリシジル基の数100に対して、(B)成分中の(メタ)アクリロイル基のモル数及び(F)成分中の(メタ)アクリロイル基のモル数の合計が36を超えると、第一段階の反応として、ラジカル重合反応が進みすぎて、Bステージ化(半硬化)状態において、部品の仮接着が可能となる所望の感圧タック性が得られにくくなる。なお、(F)成分中の(メタ)アクリロイル基のモル数は下記式(4)によって算出する。
(F)(メタ)アクリレート化合物中の(メタ)アクリロイル基のモル数=導電性樹脂組成物中の(F)(メタ)アクリレート化合物の質量(g)×(F)(メタ)アクリレート化合物1モル中の(メタ)アクリロイル基の数/(F)(メタ)アクリレート化合物1モルの質量(g)・・・(4)
〔(G)アミン系硬化触媒〕
 本発明の導電性樹脂組成物は、さらに(G)アミン系硬化触媒を含有することが好ましい。(G)アミン系硬化触媒は、反応開始温度が130℃を超えるものであることが好ましい。導電性樹脂組成物は、さらに(G)アミン系硬化触媒を含有することによって、第二段階の反応において、例えば130~250℃で、導電性樹脂組成物を硬化させた状態、すなわち、Cステージ化状態にさせることができ、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができる。(G)アミン系硬化触媒としては、ジシアンジアミド;アジピン酸ヒドラジド、イソフタル酸ヒドラジド等のカルボン酸ヒドラジド;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体が挙げられる。アミン系硬化触媒は、1種を単独で使用しても、2種以上を併用してもよい。中でも、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、ジシアンジアミド、アジピン酸ヒドラジドが好ましい。
 導電性樹脂組成物中の(G)アミン系硬化触媒の含有量は、導電性樹脂組成物中(A)成分と(C)成分の合計含有量に対して、好ましくは0.5~15質量%、より好ましくは1~10質量%、更には好ましくは2~8質量%である。すなわち、導電性組成物中に含まれる(A)エポキシ樹脂と(C)フェノール樹脂系硬化剤の合計量を100質量部に対して、(G)アミン系硬化触媒の含有量が、好ましくは0.5~15質量部、より好ましくは1~10質量部、更に好ましくは2~8質量部であればよい。(G)アミン系硬化触媒の含有量が上記範囲内であると、第二段階の反応において、例えば130~250℃で、導電性樹脂組成物を硬化させることができ、低い比抵抗値を維持しつつ、優れた接着強度を有する硬化体を得ることができる。導電性樹脂組成物中の(G)アミン系硬化触媒の含有量は、導電性樹脂組成物の全体量100質量%に対して、好ましくは0.3~1.5質量%、より好ましくは0.5~1.2質量%、さらに好ましくは0.7~1.0質量%である。ここで導電性樹脂組成物の全体量100質量%は、導電性樹脂組成物中に後述する(H)溶剤を含む場合には、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。
〔(H)溶剤〕
 本発明の導電性樹脂組成物は、さらに(H)溶剤を含有していてもよい。導電性樹脂組成物は、さらに(H)溶剤を含有することによって、基材等に対する導電性樹脂組成物の印刷法による塗布・供給性が良好となる。(H)溶剤としては、例えばジエチルジグリコール、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、グルタル酸ジメチルなどの二塩基酸エステル類、ベンジルアルコール等が挙げられる。中でも、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテートが好ましい。
 導電性樹脂組成物中の(H)溶剤の含有量は、導電性樹脂組成物を印刷法によって均一に塗工・供給できる範囲であれば、特に限定されないが、導電性樹脂組成物の全体量100質量部に対して、(H)溶剤を0~10質量部を含有することができる。ここで導電性樹脂組成物の全体量100質量部は、(H)溶剤を含まない導電性樹脂組成物の全体量100質量部を意味する。
〔(I)シランカップリング剤〕
 本発明の導電性樹脂組成物は、上記成分の他に、基材に対する濡れ性や接着性を改善させるために(I)シランカップリング剤を含有していてもよい。シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。導電性樹脂組成物中の(I)シランカップリング剤の含有量は、特に限定されないが、導電性樹脂組成物の全体量100質量%に対して、好ましくは0.1~1質量%、より好ましくは0.2~0.8質量%である。ここで導電性樹脂組成物の全体量100質量%は、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。
〔(J)スペーサー〕
 本発明の導電性樹脂組成物は、上記成分の他に、基材に導電性樹脂組成物を塗布・供給した場合に、一定の膜厚を維持するための(J)スペーサーを含有してもよい。スペーサーは、直径10~100μmの球状のものであることが好ましく、スペーサーの材料は特に制限されないが、例えばガラス製、アクリル樹脂製、シリカ製、スチレン・ビニルベンゼン共重合体製等のものが挙げられる。導電性樹脂組成物中の(J)スペーサーの含有量は、特に限定されないが、導電性樹脂組成物の全体量100質量%に対して、好ましくは0.1~1質量%、より好ましくは0.2~0.8質量%である。ここで導電性樹脂組成物の全体量100質量%は、(H)溶剤を含まない導電性樹脂組成物の全体量100質量%を意味する。
 本発明の導電性樹脂組成物は、上記成分の他に、巻き込んだ気泡を除去するための消泡剤、着色のための染料や顔料等、被着体への濡れ性を向上させるレべリング剤等を添加することができる。
 本発明の導電性樹脂組成物の製造方法は、特に限定されず、各成分を所定の配合で、流星型攪拌機、ディソルバー、ビーズミル、ライカイ機、三本ロールミル、回転式混合機、二軸ミキサー等の混合機に投入し、混合して製造することができる。
 本発明の導電性樹脂組成物を用いた硬化体は、第一段階の反応として、70~110℃の温度で導電性樹脂組成物をBステージ化(半硬化)した後、第二段階の反応として、130~250℃に昇温して導電性樹脂組成物を硬化(Cステージ化)させて得られる硬化体であることが好ましい。導電性樹脂組成物は、第一段階の反応が終了し、第二段階の反応時に、80~100℃の粘度が50,000Pa・s以下であることが好ましい。更に好ましくは20,000Pa・s以下である。第二段階の反応時のおける80~100℃の粘度が好ましくは50,000Pa・s以下、更に好ましくは20,000以下であると、本硬化時の被着体への濡れ性が向上し、接着性が向上する。
 本発明の導電性樹脂組成物は、第一段階の反応として、70~110℃でBステージ化(半硬化)した際に、タックフリーを実現することができるとともに、他の部品等を仮接着することができる感圧タック性に優れている。さらに、本発明の導電性樹脂組成物は、第二段階の反応として、130~250℃で硬化(Cステージ化)させた際に、導電性粒子同士の接触性が良好となり、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができる。
 本発明の導電性樹脂組成物は、十分なタックフリーを実現することができるとともに、部品を仮接着することができる感圧タック性に優れた状態でBステージ化することができ、さらに、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができるので、半導体ウェハーのAuめっきの代替材料としてAgペーストをウェハーへ予め印刷し、Bステージ化させ、ダインシングを行い、リードフレームにボンディングするダイボンディング剤、各種センサー類のフィルム状アンテナを張り合わせる用途に用いることができる。その他、本発明の導電性樹脂組成物は、LIDやケーシング用の接着剤としても好適に用いることができる。
 以下、実施例及び比較例によって、本発明を更に詳細に説明する。本発明は、これらの実施例に限定されるものではない。
 (実施例1~9、比較例1~4)
 表1に示す配合割合(表1中、各成分の数値は質量部を示す)で、各組成を25℃で3本ロールミルを用いて混合し、実施例1~9及び比較例1~4の導電性樹脂組成物を調製した。これらの導電性樹脂組成物について、70~110℃でBステージ化(半硬化)した後の指触によるタック性及び感圧タック性を測定し、その後、130~250℃で硬化(Cステージ化)させた後の比抵抗値及び接着強度を測定した。以下に測定方法を示す。また、結果を表1に示す。
 以下に、実施例及び比較例で用いた(A)~(J)成分を示す。
(A)エポキシ樹脂
 クレゾールノボラック型エポキシ樹脂、エポキシ当量170
 ビスフェノールF型エポキシ樹脂、エポキシ当量160
 ビフェニル型エポキシ樹脂、エポキシ当量190
 1,6へキサンジオールジグリシジルエーテル、エポキシ当量120
(C)フェノール系硬化剤
 ビスフェノールF、水酸基当量120
(D)ラジカル重合開始剤
 1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート
(E)導電性粒子
 フレーク状銀(Ag)粉、BET比表面積:0.5m/g、タップ(Tap)密度:3.7g/cm
 球状銀(Ag)粉、BET比表面積:1.0m/g、タップ(Tap)密度:5.0g/cm
(F)エポキシ(メタ)アクリレート
 ビスフェノールA型二官能エポキシのジ(メタ)アクリレート、(メタ)アクリレート当量210
(G)アミン系硬化触媒
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール
 2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール
(H)溶剤
 ジエチレングリコールジエチルエーテル
(I)シランカップリング剤
 3-グリシドキシプロピルトリメトキシシラン(オルガノシラン)
(J)スペーサー
 スチレン・ビニルベンゼン共重合体製の直径50μmの球状スペーサー
 実施例において(A)エポキシ樹脂と(B)(メタ)アクリロイル基及びグリシジル基を有する化合物とを予め混合した混合物、並びに/又は、(A)エポキシ樹脂と(B)(メタ)アクリロイル基及びグリシジル基を有する化合物と(F)(メタ)アクリレート化合物とを予め混合した混合物を用いた。
 (A)クレゾールノボラック型エポキシ樹脂と(B)クレゾールノボラック型エポキシ樹脂の部分(メタ)アクリレート化合物の混合物、昭和高分子社製、商品名:SP1504Q、エポキシ当量305、(メタ)アクリレート当量305
 (A)ビスフェノールA型エポキシ樹脂56質量%と(B)ビスフェノールA型モノ(メタ)アクリレート38質量%と(F)ビスフェノールAジグリシジルエーテルジメタクリル酸付加物(Dimethacrylate of bisphenol A diglycidyl ether)6質量%との混合物、エポキシ当量271、(メタ)アクリレート当量271
 表1に示す配合割合の導電性樹脂組成物について、Bステージ化(半硬化)した後、指触によるタック性、感圧タック性を以下のように測定した。
[指触によるタック性]
 たて76mm×よこ26mm×厚さ1.3mmのスライドガラスに、表1に示す配合割合の導電性樹脂組成物を120μmの厚さになるように孔版印刷を行い試験片を作製した。孔版は120μm厚さのものを使用した。試験片を90±5℃に保持した送風乾燥機を用いて20分間乾燥させた。Bステージ化した後の導電性樹脂組成物の部分を指で触り、指に導電性樹脂組成物が付着するか否かで評価した。指に導電性樹脂組成物が付着しない場合は「○(タックフリー)」とし、指に導電性樹脂組成物が付着した場合は「×(タックフリーではない)」とした。
[感圧タック性]
 たて76mm×よこ26mm×厚さ1.3mmのスライドガラスに、表1に示す配合割合の導電性樹脂組成物を120μmの厚さになるように孔版印刷を行い試験片を作製した。孔版は120μm厚さのものを使用した。試験片を90±5℃に保持した送風乾燥機を用いて20分間乾燥させた。この試験片をタック試験機(レスカ社製、商品名:タッキング試験機)を用いて、感圧タック性を測定した。タック力(N)は下記式にて算出した。4つのサンプルの平均値(n=4)を検査値とした。
タック力(N)=実測値(gf)×0.001×9.8
タック力の試験条件
Immersion Speed: 5 mm/min.
Test Speed: 600 mm/min.
Immersion: 250gf
Press Time: 3 sec.
Distance: 5mm
Probe Temp.: 常温
Hot Plate Temp.: 常温
 表1に示す配合割合の導電性樹脂組成物について、Bステージ化(半硬化)した後、硬化(Cステージ化)させて比抵抗値及び接着強度を以下のように測定した。
[比抵抗値]
 たて76mm×よこ26mm×厚さ1.3mmのスライドガラスに、図1に示すように、長さ50mm×幅1mmのパターンで、表1に示す配合割合の導電性樹脂組成物を厚さ120μmとなるように孔版印刷して試験片を作製した(図1(a)参照)。孔版は120μm厚さのフィルムを用いた。試験片を90±5℃に保持した送風乾燥機を用いて20分間乾燥し冷却して半硬化(Bステージ化)させた。その後、165±5℃に保持された送風乾燥機を用いて50分間、硬化(Cステージ化)させた。硬化後の導電性樹脂組成物の硬化体の両端面に抵抗値X(Ω)を、YHP社製、4261A LCRメーターを用いて測定した。硬化体の厚さZ(μm)を、表面粗さ形状測定機(東京精密社製、型番:サーフコム1500SD2)を用いて測定した。硬化体の厚さZ(μm)は、長さ10mm×幅1mmのパターンの両端から長さ10mmの部分をパターンの上方向から測定した(図1(b)及び(c)参照、矢印の2箇所)。比抵抗値はρ(Ω・cm)を次式により算出した。5つのサンプルの平均値(n=5)を検査値とした。
 ρ(Ω・cm)=(0.1/5.0)×X(Ω)×Z×10-4(Ω・cm)
[接着強度]
 たて20mm×よこ20mm×厚さ1.6mmのアルミナ板1に、たて1.5mm×よこ1.5mmのパターンで、表1に示す配合割合の導電性樹脂組成物2を120μmの厚さとなるように孔版印刷して試験片を作製した。孔版は120μm厚さのフィルムを用いた。試験片を90±5℃に保持した送風乾燥機を用いて20分間乾燥し冷却して半硬化(Bステージ化)させた。その後、この試験片のパターン状に印刷された導電性樹脂組成物上に、たて1.5mm×よこ3.0mm×厚さ0.5mmのアルミナ板3を載置し、165±5℃に保持された送風乾燥機を用いて50分間硬化させた。硬化後の導電性樹脂組成物(硬化体)2と、たて1.5mm×よこ3.0mm×厚さ0.5mmのアルミナ板3の接着面を、MODEL-1605HTP型強度試験機(アイコーエンジニアリング社製)を用いて、図2の太線矢印に示すように側面から突き、接着されたアルミナ板3が剥がれた時の測定値を接着強度(N/mm)とした。治具下降速度は12mm/分(細線矢印)で測定した。10つのサンプルの平均値(n=10)を検査値とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~9は、第一段階の反応として、90℃±5℃の温度でBステージ化(半硬化)した後にタックフリーが実現できており、感圧タック性も2(N)以上の部品を仮接着することができる良好な数値を示していた。また、実施例1~9は、第二段階の反応として、165±5℃の温度で硬化した後の硬化体は、比抵抗値が5×10-4~30×10-4(Ω・cm)であり低い比抵抗値を維持しつつ、接着強度も20N/mm以上と優れた数値を示していた。一方、比較例1~3は、Bステージ化(半硬化)した後にタックフリーは実現できているものの、感圧タック性が0.1(N)又は0.2(N)と低く、実施例1~9の1/10以下であった。また、比較例1~3は、硬化後の比抵抗値の数値は大きいものの、接着強度が非常に低かった。比較例4は、Bステージ化(半硬化)後の感圧タック性は有するものの、指触によるタック性においてタックフリーを実現することができなかった。
 本発明の導電性樹脂組成物は、比較的低温度で十分なタックフリーを実現することができるとともに、部品を仮接着することができる感圧タック性に優れた状態でBステージ化(半硬化)することができ、その後に硬化(Cステージ化)させて、低い比抵抗値を維持したまま、優れた接着強度を有する硬化体を得ることができるので、リードフレームにボンディングするダイボンディング剤、各種センサー類のフィルム状アンテナを張り合わせる用途に用いることができる。その他、本発明の導電性樹脂組成物は、LIDやケーシング用の接着剤としても好適に用いることができ、産業上有用である。
[符号の説明]
  1  アルミナ板
  2  導電性樹脂組成物
  3  アルミナ板

Claims (9)

  1.  (A)エポキシ樹脂、
     (B)(メタ)アクリロイル基及びグリシジル基を有する化合物、
     (C)フェノール樹脂系硬化剤、
     (D)ラジカル重合開始剤、並びに
     (E)導電性粒子
    を含有することを特徴とする導電性樹脂組成物。
  2.  導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数が7~28である、請求項1記載の導電性樹脂組成物。
  3.  さらに(F)(メタ)アクリレート化合物を含有する、請求項1又は2記載の導電性樹脂組成物。
  4.  導電性樹脂組成物中のグリシジル基のモル数100に対して、(B)成分中の(メタ)アクリロイル基のモル数及び(F)成分中の(メタ)アクリロイル基のモル数の合計が8~36である、請求項3記載の導電性樹脂組成物。
  5.  さらに(G)アミン系硬化触媒を含有する、請求項1~4のいずれか1項記載の導電性樹脂組成物。
  6.  (A)成分が、液状エポキシ樹脂である、請求項1~5のいずれか1項記載の導電性樹脂組成物。
  7.  (B)成分が、クレゾールノボラック型エポキシ樹脂の部分(メタ)アクリレート化合物及び/又はビスフェノール型エポキシ樹脂のモノ(メタ)アクリレート化合物である、請求項1~6のいずれか1項記載の導電性樹脂組成物。
  8.  請求項1~7のいずれか1項記載の導電性樹脂組成物をBステージ化し、硬化させて得られる、硬化体。
  9.  請求項1~7のいずれか1項記載の導電性樹脂組成物を、70~110℃の温度でBステージ化した後、130~250℃で硬化させて硬化体を得る、硬化体の製造方法。
PCT/JP2012/072441 2011-09-05 2012-09-04 導電性樹脂組成物及びそれを使用した硬化体 WO2013035685A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147008785A KR101906644B1 (ko) 2011-09-05 2012-09-04 도전성 수지 조성물 및 그것을 사용한 경화체
US14/342,864 US9249294B2 (en) 2011-09-05 2012-09-04 Conductive resin composition and cured product thereof
JP2013532594A JP5997697B2 (ja) 2011-09-05 2012-09-04 導電性樹脂組成物及びそれを使用した硬化体
SG11201400363TA SG11201400363TA (en) 2011-09-05 2012-09-04 Conductive resin composition and cured object using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193136 2011-09-05
JP2011-193136 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035685A1 true WO2013035685A1 (ja) 2013-03-14

Family

ID=47832130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072441 WO2013035685A1 (ja) 2011-09-05 2012-09-04 導電性樹脂組成物及びそれを使用した硬化体

Country Status (6)

Country Link
US (1) US9249294B2 (ja)
JP (1) JP5997697B2 (ja)
KR (1) KR101906644B1 (ja)
SG (1) SG11201400363TA (ja)
TW (1) TWI545173B (ja)
WO (1) WO2013035685A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189829A1 (ja) * 2015-05-28 2016-12-01 タツタ電線株式会社 実装用導電性ペースト
KR20210084497A (ko) 2018-10-29 2021-07-07 나믹스 가부시끼가이샤 도전성 수지 조성물, 도전성 접착제, 및 반도체 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983457B2 (ja) 2016-11-25 2021-12-17 エルジー・ケム・リミテッド 硬化性組成物
RU2760687C2 (ru) 2017-06-09 2021-11-29 Хексион Инк. Системы эпоксидных смол для композитов
EP3460959A1 (de) * 2017-09-20 2019-03-27 Siemens Aktiengesellschaft Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
CN113429890B (zh) * 2021-07-14 2023-06-02 嘉兴蓉阳电子科技有限公司 复合型固化剂、胶黏剂、导电胶及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181482A (ja) * 1999-12-27 2001-07-03 Hitachi Chem Co Ltd 樹脂ペースト組成物及びこれを用いた半導体装置
JP2003119248A (ja) * 2001-10-17 2003-04-23 Mitsui Chemicals Inc 液晶封止用樹脂組成物
JP2007270130A (ja) * 2006-03-08 2007-10-18 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、それを用いた半導体装置の製造方法及び半導体装置
JP2010278324A (ja) * 2009-05-29 2010-12-09 Hitachi Chem Co Ltd 接着剤組成物、接着シート及び半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225537A (ja) * 1986-03-27 1987-10-03 Showa Highpolymer Co Ltd 繊維強化樹脂用硬化性組成物
JP3599149B2 (ja) 1996-08-21 2004-12-08 日立化成工業株式会社 導電ペースト、導電ペーストを用いた電気回路及び電気回路の製造法
DE60209864T2 (de) 2001-11-01 2007-01-11 Nippon Shokubai Co. Ltd. (Meth)acryloylgruppe-enthaltende Verbindung und Verfahren zu derer Herstellung
JP2006124531A (ja) * 2004-10-29 2006-05-18 Shin Etsu Chem Co Ltd 異方導電性接着剤
US20070212551A1 (en) 2006-03-10 2007-09-13 Andrew Collins Adhesive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181482A (ja) * 1999-12-27 2001-07-03 Hitachi Chem Co Ltd 樹脂ペースト組成物及びこれを用いた半導体装置
JP2003119248A (ja) * 2001-10-17 2003-04-23 Mitsui Chemicals Inc 液晶封止用樹脂組成物
JP2007270130A (ja) * 2006-03-08 2007-10-18 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト、それを用いた半導体装置の製造方法及び半導体装置
JP2010278324A (ja) * 2009-05-29 2010-12-09 Hitachi Chem Co Ltd 接着剤組成物、接着シート及び半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189829A1 (ja) * 2015-05-28 2016-12-01 タツタ電線株式会社 実装用導電性ペースト
JPWO2016189829A1 (ja) * 2015-05-28 2018-03-15 タツタ電線株式会社 実装用導電性ペースト
KR20210084497A (ko) 2018-10-29 2021-07-07 나믹스 가부시끼가이샤 도전성 수지 조성물, 도전성 접착제, 및 반도체 장치
US11542417B2 (en) 2018-10-29 2023-01-03 Namics Corporation Conductive resin composition, conductive adhesive, and semiconductor device

Also Published As

Publication number Publication date
SG11201400363TA (en) 2014-08-28
JPWO2013035685A1 (ja) 2015-03-23
US20140243453A1 (en) 2014-08-28
TWI545173B (zh) 2016-08-11
JP5997697B2 (ja) 2016-09-28
KR101906644B1 (ko) 2018-10-10
TW201317321A (zh) 2013-05-01
KR20140067087A (ko) 2014-06-03
US9249294B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
JP5997697B2 (ja) 導電性樹脂組成物及びそれを使用した硬化体
JP5892192B2 (ja) 熱重合系開始剤システム及び接着剤組成物
EP2231803B1 (en) Conductive adhesive precursor, method of using the same, and article
WO2016158828A1 (ja) 樹脂組成物、導電性樹脂組成物、接着剤、導電性接着剤、電極形成用ペースト、半導体装置
JP6136101B2 (ja) 感光性樹脂組成物、フィルム状樹脂、樹脂シート、樹脂パターン、樹脂層付半導体ウェハ、樹脂層付透明基板、半導体装置及び半導体装置の製造方法
JP5681432B2 (ja) エポキシ樹脂組成物及びそれを使用した半導体装置
JP6044261B2 (ja) 異方導電性接着剤組成物
JP2010077317A (ja) 接着剤組成物、接着フィルム及びその使用方法
JP4788425B2 (ja) 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP4763876B2 (ja) 熱硬化型接着剤組成物及び接着シート類
TWI775798B (zh) 噴墨用樹脂組成物、電子零件及電子零件的製造方法
JP5894035B2 (ja) 半導体装置の製造方法
JP5837839B2 (ja) 積層構造体
JP2007262328A (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP7340295B2 (ja) 真空印刷用導電性ペースト
WO2022224934A1 (ja) 接着剤組成物及び接続構造体の製造方法
CN111484820A (zh) 光固化粘合剂组合物和光固化胶带
TWI839358B (zh) 真空印刷用導電性糊料
WO2017078087A1 (ja) 接着剤組成物及び構造体
WO2009082005A1 (ja) 表面反応性支持体、それを用いた配線基板及びそれらの製造方法
JPWO2017078157A1 (ja) 接着剤組成物及び構造体
JP6265242B2 (ja) 異方導電性接着剤組成物
WO2020003765A1 (ja) 真空印刷用導電性ペースト
WO2024111333A1 (ja) 絶縁性樹脂組成物、その硬化物及び電子部品
TW201144396A (en) Wafer backside coating containing reactive sulfur compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14342864

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147008785

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12829227

Country of ref document: EP

Kind code of ref document: A1