WO2013032142A2 - 고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법 - Google Patents

고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법 Download PDF

Info

Publication number
WO2013032142A2
WO2013032142A2 PCT/KR2012/006220 KR2012006220W WO2013032142A2 WO 2013032142 A2 WO2013032142 A2 WO 2013032142A2 KR 2012006220 W KR2012006220 W KR 2012006220W WO 2013032142 A2 WO2013032142 A2 WO 2013032142A2
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
seed
polymerization
monomer
aliphatic
Prior art date
Application number
PCT/KR2012/006220
Other languages
English (en)
French (fr)
Other versions
WO2013032142A3 (ko
WO2013032142A9 (ko
Inventor
이현섭
육경석
김한홍
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120051703A external-priority patent/KR20130127872A/ko
Priority claimed from KR1020120051705A external-priority patent/KR101413780B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2014525923A priority Critical patent/JP5904345B2/ja
Priority to CN201280039654.4A priority patent/CN103732668B/zh
Priority to DE112012003654.9T priority patent/DE112012003654B4/de
Publication of WO2013032142A2 publication Critical patent/WO2013032142A2/ko
Publication of WO2013032142A9 publication Critical patent/WO2013032142A9/ko
Publication of WO2013032142A3 publication Critical patent/WO2013032142A3/ko
Priority to US14/178,044 priority patent/US9163134B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/006Removal of residual monomers by chemical reaction, e.g. scavenging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size

Definitions

  • the present invention relates to a monomer absorption accelerator for producing a vinyl chloride-based resin (monomer absorption accelerator) and a method for producing a vinyl chloride-based seed using the same, and more specifically to act as a monomer absorption accelerator for producing a vinyl chloride-based resin
  • a monomer absorption accelerator for producing a vinyl chloride-based resin that increases the consumption efficiency and polymerization reactivity of the monomer during polymerization and the use thereof.
  • Paste vinyl chloride-based resin is the most widely used general-purpose resin in the world as a living and industrial materials, it is usually produced by emulsion polymerization, fine suspension polymerization, seed emulsion polymerization method.
  • the paste vinyl chloride resin is prepared by injecting seeds having two kinds of average particle diameters different from each other at the initial stage of polymerization, and growing the vinyl chloride monomer while reacting with the seed to produce final latex particles.
  • the first seed is prepared by adding a vinyl chloride monomer, an emulsifier and a oil-soluble initiator, homogenizing by using a homogenizer pump of a rotor-stator type, and then polymerizing the second seed by emulsion polymerization. do. Since the first seed contains the oil-soluble initiator in the particle, it has a reaction site by itself. Therefore, it is necessary to add an excessive amount of the initiator during the first seed polymerization to leave an appropriate amount of the initiator content in the particles in which the polymerization is completed so that the polymerization start is well activated during the seed emulsion polymerization.
  • the polymerization temperature is lowered to 50 ° C. or lower in order to leave undecomposed initiator in the particles of the first seed, and an initiator also uses a slow half-life such as LPO (lauryl peroxide).
  • LPO latryl peroxide
  • various additives are used in the polymerization for producing the vinyl chloride resin, depending on the intended use or desired physical properties.
  • Ionic or nonionic emulsifiers can be added to improve latex stability or acids or bases can be used for hydrogen ion concentration control.
  • the materials used as nonionic emulsifiers are very diverse and the results are very different. Therefore, it is very important to select a suitable material according to the desired purpose and can easily express the desired physical properties.
  • An object of the present invention to solve the problems of the prior art as described above is to minimize the amount of residual monomer affecting the properties of the final latex after the completion of the polymerization of the vinyl chloride-based resin to obtain a more stable latex, additionally polymerization It is to provide a monomer absorption accelerator for producing a vinyl chloride-based resin used in the production method of a vinyl chloride-based resin that can increase the consumption efficiency of heavy monomers, improve productivity and reduce scale generation.
  • An object of the present invention is to prepare a seed having excellent polymerization reactivity in seed emulsion polymerization by adding a specific type of monomer absorption accelerator before homogenizing a vinyl chloride-based seed for paste vinyl chloride-based resin.
  • the monomer absorption promoter added to the group gives droplet stabilization effect during the seed emulsion polymerization, and the reactivity is increased by increasing the rate and concentration at which the vinyl chloride monomer enters the seed particles during the polymerization of the seed. It can play a role of making a paste vinyl chloride-based resin having a large average particle diameter without increasing the generation of scale. In addition, the viscosity properties of the plastisol can be improved from this.
  • a monomer absorption accelerator for producing a vinyl chloride-based resin represented by the following formula (1).
  • n is an integer of 4 to 24.
  • a vinyl chloride monomer, an emulsifier, and a polymerization initiator are added to an aqueous medium, and homogenized into a droplet using a homogenizer pump, followed by polymerization to produce a vinyl chloride-based seed, which is represented by Chemical Formula 1 before homogenization.
  • a vinyl chloride-based seed production method characterized by adding a monomer absorption promoter for producing a vinyl chloride-based resin, and performing polymerization after homogenization.
  • the present invention is prepared by the above-described method for producing a vinyl chloride-based seed vinyl chloride-based seed, characterized in that obtained by different particle diameters (MV) under the same homogenization conditions according to the type and amount of the monomer absorption promoter to provide.
  • 1 is a graph showing the total cumulative heat removal graph according to polymerization time when monomer absorption accelerator is used and when it is not, according to Examples and Comparative Examples of the present invention.
  • FIG. 2 is a view showing a manufacturing process of the vinyl chloride seed according to an embodiment of the present invention.
  • Figure 3 is a graph showing the change in average particle diameter according to the monomer absorption promoter type. STD shows the particle diameter when a monomer absorption promoter is not introduce
  • a monomer absorption accelerator for producing a vinyl chloride-based resin represented by the following formula (1).
  • n is an integer of 4 to 24.
  • an aliphatic higher alcohol acting as a monomer absorption accelerator is added before polymerization to minimize the amount of residual monomer.
  • the structure of the aliphatic higher alcohol used for the polymerization is as follows. The following aliphatic higher alcohols are added to the polymerization of the vinyl chloride-based resin and polymerized.
  • n is an integer of 4 to 24, and includes both an unsaturated state and a saturated state.
  • n is an integer of 4 to 24 specifically, more specifically, an integer of 8 to 18, and there is an effect of facilitating the penetration of latex particles into the inside within this range.
  • the aliphatic higher alcohol is C 8 to C 18 aliphatic higher alcohol, specifically C 8 aliphatic higher alcohol, C 10 aliphatic higher alcohol, C 12 aliphatic higher alcohol, C 14 aliphatic higher alcohol, C 16 aliphatic higher alcohol and C One or more selected from the group consisting of 18 aliphatic higher alcohols may be used alone or in combination.
  • C 12 ⁇ C 18 aliphatic alcohol compound alone or a mixture may be used, wherein the content ratio of each aliphatic alcohol compound may be 0 to 100% by weight, in particular the ratio of C 12 or C 14 is 60% by weight or more to be.
  • the present invention can control the solubility in water by variously selecting the alkyl chain length of the monomer absorption promoter.
  • the vinyl chloride monomer (VCM) used in the PVC polymerization has a useful property that is almost insoluble in water, and thus is difficult to penetrate into or on the surface of PVC particles covered with a general emulsifier.
  • VCM vinyl chloride monomer
  • the use of monomer absorption accelerators facilitates access to the surface of the monomers by locating oil-soluble promoters between the emulsifiers. At this time, the position where the particles are positioned depends on the chain length of the monomer absorption accelerator used. Therefore, the solubility was controlled by controlling the chain length of the monomer absorption promoter and finally placed on the particle surface.
  • each vinyl chloride resin seed polymerization is polymerized by adding monomer absorption accelerators having different chain lengths. At this time, by controlling the number of homogenizer cycles to produce the same particle size to exclude the effect of reducing the reaction time by reducing the particle size. After the polymerization of the polymerized seed, seed emulsion polymerization is performed to compare the effect of shortening the polymerization time according to the chain length.
  • the present invention provides a monomer absorption accelerator for producing a vinyl chloride-based resin, which is an aliphatic higher alcohol having a solubility in water of 10000 to 0.001 mg / 1 L-water.
  • the monomer absorption promoter for preparing the vinyl chloride-based resin may have a solubility in water of 800 to 0.1 mg / 1 L-water.
  • an aliphatic higher alcohol having a solubility in the above range it is possible to obtain a reaction time reduction and productivity improvement effect in the present polymerization, and latex stability may also be improved.
  • the monomer absorption accelerator for producing the vinyl chloride-based resin used in the production of the vinyl chloride-based polymer of 0.1 to 10phm (to the vinyl chloride monomer) amount of the residual monomer affecting the properties of the final latex after completion of the polymerization of the vinyl chloride-based resin
  • it is used at 0.5 to 3phm. Below the lower limit, the particle size control effect of the final paste vinyl chloride-based resin is insignificant, and if the upper limit is exceeded, the existing emulsifier occupies a position to be located, and thus the stability is lowered.
  • the higher alcohol is C08 to C10 alcohol (in the following example, LG Household Health Co., Ltd., 'ELOCOL C0810'), C12 to C14 alcohol (in the following example, LG Household Health Co., Ltd., 'ELOCOL C1214' C12 to C18 alcohol (stripped palm kernel lauryl alcohol, LG Household & Health Care, trade name 'ELOCOL C1218') or stearyl alcohol (C18 99%, solid, LG Household & Health Care, trade name ' Equivalent to ELOCOL C1899 ').
  • the chlorinated paraffin include Plastoil 152 manufactured by Handy Chemical Corporation, such as those used in the examples below.
  • the present invention provides a method for preparing a vinyl chloride seed by adding a vinyl chloride monomer, an emulsifier, and a polymerization initiator to an aqueous medium and homogenizing the droplets using a homogenizer pump to polymerize the monomers. It provides a method for producing a vinyl chloride seed, characterized in that the addition of (monomer absorption accelerator), and performing polymerization after homogenization.
  • n is an integer of 4 to 24, and includes both an unsaturated state and a saturated state.
  • the method for preparing the vinyl chloride-based seed may include a swelling promotion step of obtaining a mixture by adding polymerization water, a vinyl chloride monomer, an emulsifier, and the monomer absorption accelerator to a pre-mixing tank and stirring; Homogenization step of passing the mixture through a rotary homogenizer; And a polymerization step of polymerizing the homogenized mixture in a reactor.
  • the manufacturing method it is possible to manufacture the particles by adjusting the rotational speed of the rotary homogenizer.
  • the monomer absorption promoter, the subsidiary material and the monomer are added to the pre-mixing tank, followed by stirring for a predetermined time in a vacuum state.
  • the rotary homogenizer can then be passed to form a droplet and then polymerized to produce a seed of the desired size.
  • particles of a desired particle size are manufactured by controlling the number of cycles in the homogenization process and adjusting the rotor stator gap.
  • Swelling is a process in which the fat-soluble monomer absorption accelerator is sufficiently stirred for about 5 to 60 minutes under a pressure of about 0.1 to 5 kg / cm 2 before passing through the homogenizer.
  • the latex produced through this method is highly stable in droplets and can produce particles of a size that was difficult to obtain stably with conventional emulsion control methods.
  • the polymerization time may be shortened by about 30 minutes or more.
  • the swelling promotion step is performed by stirring for 5 to 60 minutes under 0.1 to 5kg / cm 2 pressure.
  • the homogenization step is performed for 1 to 3 hours using a homogenization pump, the number of cycles of the rotary homogenizer may be 10 to 150 times, specifically 20 to 85 times.
  • the rotor stator interval may be 0.05 to 10 mm, specifically 0.1 to 1 mm. Circulating too few times can result in a somewhat larger particle size and a somewhat wider distribution. Cycling too many times can lead to time-consuming and too narrow distribution of particles. The narrower the spacing, the smaller the particle size. Too wide the spacing can make it difficult to obtain uniform particles and reduce stability.
  • the emulsifier is sodium lauryl sulfate (SLS), sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl alkylsulfate (SDS), ammonium lauryl sulfate sulfate, ALS), sodium cetyl stearyl sulfate, sodium lauryl ether sulfate (SLES) and succinate, but may be selected from the group consisting of Uses sodium dodecyl benzene sulfonate, but is not limited thereto.
  • anionic emulsifiers or nonionic emulsifiers may be used alone or in combination of two or more thereof.
  • anionic emulsifier carboxylic acid, alkyl sulfonic acid, alkyl benzene sulfonic acid, sulfo succinic acid, ⁇ -olefin sulfonic acid, or alkyl phosphoric acid may be used.
  • the anionic emulsifier may be used in an amount of up to 1 part by weight based on 100 parts by weight of the vinyl chloride monomer. When used in the above content has excellent effects such as mechanical stability of the polymerization and latex.
  • nonionic emulsifier examples include polyoxyethylene ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkenyl ether, polyoxyethylene derivative, glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene fatty acid ester, silicone emulsifier, polyethylene Glycol (polyethylene-glycol) and derivatives thereof, or polypropylene glycol (polypropylene-glycol) and derivatives thereof may be used.
  • the nonionic emulsifier is not particularly limited in content, and may be used in an amount of up to 3 parts by weight based on 100 parts by weight of the vinyl chloride monomer.
  • the emulsifier may be added in an aqueous medium before the seed emulsion polymerization reaction, may be continuously added to the aqueous medium during the polymerization reaction, may be added to the latex after completion of the polymerization reaction may be used in combination with the above method if necessary. .
  • the first seed may be prepared by microsuspension polymerization. That is, it is obtained by adding a vinyl chloride monomer, an emulsifier, a polymerization initiator and a swelling accelerator to the aqueous medium, homogenizing the droplets using a homogenizer pump and then polymerizing.
  • Polymerization initiators used herein include oil-soluble polymerization initiators such as peroxy dicarbonates such as diisopropyl peroxy dicarbonate; organic peroxide initiators such as peroxy esters such as t-butyl peroxy pivalate and t-butyl peroxy neodecanoate, or azo (azo) such as 2,2-azobisisobutyronitrile. ) Initiator or the like can be used alone or in combination.
  • the polymerization initiator is preferably used within the range of 0.01 to 10 phm based on 100 phm of the vinyl chloride monomer.
  • the above components may be added to an aqueous medium to homogenize the droplets using a rotor-stator type homogenizer pump, and then polymerized to prepare a vinyl chloride-based seed.
  • the homogenization is not limited thereto, but may be performed for 1 hour to 3 hours, and the homogenizer pump may be a rotor-stator type.
  • the polymerization may be carried out for 9 to 12 hours at a temperature of 40 to 50 °C.
  • a vinyl chloride-based resin composition comprising a vinyl chloride-based monomer, an emulsifier, an initiator, and a polymerization inhibitor, according to an embodiment of the present invention, wherein the monomer absorption accelerator-based vinyl chloride comprises an aliphatic higher alcohol of Formula 1
  • a composition for resin comprising a vinyl chloride-based monomer, an emulsifier, an initiator, and a polymerization inhibitor
  • the aliphatic higher alcohol is characterized in that the auxiliary emulsifier combined monomer absorption promoter.
  • a latex polymerization method using a monomer absorption accelerator-based vinyl chloride-based resin composition characterized in that the polymerization process is carried out after the addition and homogenization.
  • the monomer absorption promoter may adjust the type and amount of the input according to the particle diameter of the final paste vinyl chloride resin to be obtained.
  • One embodiment of the present invention provides a paste vinyl chloride-based resin obtained by a latex polymerization method, which can be obtained at different particle diameters (MV) under the same homogenization conditions depending on the type and amount of aliphatic higher alcohol.
  • an embodiment of the present invention provides a vinyl chloride seed, characterized in that prepared by the method for producing a vinyl chloride seed. And it provides a paste vinyl chloride-based resin, characterized in that by the seed emulsion polymerization within the range of 50 to 65 °C using the above-mentioned vinyl chloride-based seed 3 to 15phm as the first seed.
  • a vinyl chloride seed having an average particle diameter of 0.3 to 1.5 ⁇ m can be produced.
  • the seed is applied to the seed emulsion polymerization method of the paste vinyl chloride-based resin, it is possible to prepare a paste vinyl chloride-based resin in which the generation of scale is not increased while the polymerization time is shortened and the average particle diameter is increased.
  • the use of such a resin can improve the viscosity physical properties of the plastisol.
  • the seed emulsion polymerization method of such a paste vinyl chloride-based resin is to polymerize the vinyl chloride monomer by adding an emulsifier, a first seed, a second seed, a buffer, a redox catalyst and the like in an aqueous medium.
  • the vinyl chloride monomer used in the polymerization of the paste vinyl chloride resin is generally 80 to 98 wt% of the paste vinyl chloride resin and the remaining unreacted monomer is removed.
  • the latex of the paste vinyl chloride resin after polymerization is obtained by spray drying. In drying, dehydration filtration or the like is not generally performed. Thus, raw materials such as an emulsifier remain in the resin.
  • the paste vinyl chloride type resin the particle size of 0.1-50 micrometers is favorable for the dispersibility of a plasticizer, and it is suitable for paste processing.
  • the aliphatic higher alcohol may obtain different sized particles when the aliphatic higher alcohol is prepared in the same cycle number by adjusting the type and the dosage according to the particle diameter of the final paste vinyl chloride resin.
  • a vinyl chloride seed having an average particle diameter of 0.4 to 1.5 ⁇ m can be produced.
  • the average particle diameter decreased by about 25 ⁇ 6%, C1214 by 14 ⁇ 7%, C1218 by 11 ⁇ 9%, and C1899 by 0.5 ⁇ 2.5%.
  • the internal temperature of the reactor was lowered to 20 ° C. or lower, and homogenization was performed for 2 hours using a rotor-stator type homogenizer. Upon completion of homogenization, the reactor temperature was adjusted to 43 ° C. and polymerization was carried out.
  • the reaction was terminated, and the first seed latex having an average particle diameter of 0.52 ⁇ m was obtained after recovering and removing the unreacted vinyl chloride monomer.
  • Example 2 The same experiment was repeated except that 1 phm was added instead of 2 phm of ELOCOL C0810 in Example 1, and the reaction was terminated after 595 minutes when the reactor pressure reached 3.5 kg / cm 2 , and the unreacted vinyl chloride monomer was recovered and removed. After that, a first seed latex having an average particle diameter of 0.62 ⁇ m was obtained.
  • Example 2 The same experiment as in Example 1 was repeated except that 2 ⁇ m of ELOCOL C0810 was not added in Example 1, and the reaction was terminated after 558 minutes when the reactor pressure reached 3.5 kg / cm 2 , and the unreacted vinyl chloride monomer After recovery and removal, the first seed latex having an average particle diameter of 0.68 ⁇ m was obtained.
  • a deionized water 75phm (part per hundred monomer) and 4.6phm of the first seed of Example 2 were added to a 500L high-pressure reactor, and a vacuum was applied to the reactor while stirring.
  • Example 4 was added instead of the first seed of Example 2 in Example 11, and the reaction was terminated after 300 minutes when the reactor pressure reached 3.5 kg / cm 2 . After recovering and removing the unreacted vinyl chloride monomer, a scale 800 g seed emulsion latex was obtained.
  • Example 5 was added instead of the first seed of Example 2 in Example 11, and the reaction was terminated after 294 minutes when the reactor pressure reached 3.5 kg / cm 2 . After recovering and removing the unreacted vinyl chloride monomer, a scale 940 g seed emulsion latex was obtained.
  • Example 6 was added instead of the first seed of Example 2 in Example 11, and the reaction was terminated after 275 minutes when the reactor pressure reached 3.5 kg / cm 2 . After recovering and removing the unreacted vinyl chloride monomer, the scale emulsion seeding latex of 780 g was obtained.
  • Example 8 was added instead of the first seed of Example 2 in Example 11, and the reaction was terminated after 326 minutes when the reactor pressure reached 3.5 kg / cm 2 .
  • a scale emulsion 900 g seed emulsion latex was obtained.
  • Example 10 was added instead of the first seed of Example 2 in Example 11, and the reaction was terminated after 340 minutes when the reactor pressure reached 3.5 kg / cm 2 . After recovering and removing the unreacted vinyl chloride monomer, a scale 240g seed emulsion latex was obtained.
  • Example 10 Comparative Example 1 Comparative Example 2 LPO input (phm) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Polymer
  • Example 1-10 and Comparative Example 1-2 in the case of Example it was confirmed that the particle size decreases.
  • Example 11-16 and Comparative Example 3-4 it was also confirmed that the effect of the polymerization time is shortened.
  • a vinyl chloride polymer was prepared in the same manner as in Example 17, except that the amount of aliphatic higher alcohol was 1 phm and the number of cycles was 50 times in Example 17.
  • the vinyl chloride polymer was prepared in the same manner as in Example 17, except that the amount of aliphatic higher alcohol was 2phm and the number of cycles was 40.
  • the vinyl chloride polymer was prepared in the same manner as in Example 17, except that the number of cycles was 55 times without adding the aliphatic higher alcohol in Example 17.
  • Residual monomer After completion of the polymerization, the amount was confirmed by a flow meter installed in the residual monomer recovery line.
  • Cumulative heat removal The amount of heat removed every minute during the polymerization was displayed over time until the completion of the reaction.
  • Example 17 Example 18 Example 19 Comparative Example 5 Seed Aliphatic alcohol (phm) 0.5 One 2 Not input Cycle count 65 50 40 55 Main polymerization Residual Monomer (kg) 2.9 3 3.2 5.2
  • a vinyl chloride-based latex and a powdery paste vinyl chloride resin were prepared in the same manner as in Example 20 except that the number of cycles of the rotor-stator was 80.
  • a vinyl chloride-based latex and a powdery paste vinyl chloride resin were prepared in the same manner as in Example 20 except that the number of cycles of the rotor-stator was 20.
  • Vinyl chloride-based latex and powdery paste vinyl chloride resin were prepared in the same manner as in Example 20, except that the rotor-stator spacing was 0.3 mm.
  • a vinyl chloride-based latex and a powdery paste vinyl chloride resin were prepared in the same manner as in Example 20 except that the swelling promotion step was not performed.
  • a vinyl chloride-based latex and a powdery paste vinyl chloride resin were prepared in the same manner as in Example 20 except that the emulsifier input amount was 0.4 phm without performing the swelling promotion step.
  • a vinyl chloride-based latex and a powdery paste vinyl chloride resin were prepared in the same manner as in Example 20 except that the rotor-stator interval was adjusted to 1.5 mm without performing the swelling promotion process.
  • the vinyl chloride polymer was prepared in the same manner as in Example 24, except that the aliphatic higher alcohol was C1214 and the homogenous cycle was 50 times.
  • the vinyl chloride polymer was prepared in the same manner as in Example 24, except that the aliphatic higher alcohol in Example 24 was C1218 and the homogenization cycle was 55.
  • the vinyl chloride polymer was prepared in the same manner as in Example 24, except that the aliphatic higher alcohol in Example 24 was C1299 and the homogenization cycle was 70 times.
  • the vinyl chloride polymer was prepared in the same manner as in Example 24 except that the aliphatic higher alcohol was paraffin chloride (plastoil 152) and the homogenous cycle was 70 times in Example 24.
  • a vinyl chloride polymer was prepared in the same manner as in Example 24, except that the homogenizer cycle was 60 times without adding an aliphatic higher alcohol in Example 24.
  • the polymerization was carried out in the same manner as in Example 29, except that the amount of aliphatic higher alcohol was 1 phm.
  • Polymerization was carried out in the same manner as in Example 29, except that the aliphatic higher alcohol was C1218 (65 wt% C1214, 35 wt% C1618).
  • Polymerization was carried out in the same manner as in Example 33, except that the amount of the aliphatic higher alcohol was 1 phm.
  • the polymerization was carried out in the same manner as in Example 35, except that the amount of aliphatic higher alcohol was 2phm.
  • the particle size (MV) of the prepared vinyl chloride latex was measured using a Microtrac nanotrac150.
  • Example 31 Example 32
  • Example 33 Example 34
  • Example 36 Comparative Example 10
  • C810 2 One 0 0 0 0 0 0 0 0 C1214 0 0 2
  • Circulating number 45 45 45 45 45 45 45 45 45 45 45 45 MV ( ⁇ m) 0.527 0.599 0.594 0.638 0.615 0.65 0.691 0.704 0.688 scale 100g or less 100g or less 100g or less 100g or less 100g or less 100g or less 100g or less 100g or less 100g or less 240 g
  • the particle size (MV) of the final paste vinyl chloride resin was adjusted according to the type and amount of aliphatic higher alcohol.
  • the polymerization reactivity is superior to that of the prior art, and thus the effect of shortening the polymerization time can be confirmed.
  • the amount of residual monomer affecting the properties of the final latex after the completion of the polymerization of the vinyl chloride-based resin it is possible to obtain a latex with more polymerization stability, additionally increases the consumption efficiency of the monomer during the polymerization and the reaction time Shorten, increase productivity and reduce scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 염화비닐 모노머, 유화제, 중합 개시제를 수성 매체에 첨가하고 로터-스테이터(rotor-stator) 타입의 균질기 펌프를 이용하여 액적을 균질화 한 후 염화비닐계 시드를 제조하는 방법에 있어서, 상기 균질화 전 모노머 흡수 촉진제로 작용하는 지방족 고급 알코올을 첨가하고, 균질화 후 중합을 수행함으로써 잔류 모노머의 양을 최소화하여 보다 안정한 라텍스를 얻을 수 있으며, 부가적으로 중합 중 모노머의 소비 효율을 증가시켜 생산성 향상 및 스케일 발생량을 줄일 수 있다. 또한, 본 발명의 염화비닐계 시드를 염화비닐계 수지의 시드 유화중합에 적용하면, 중합 반응성을 개선시켜 시드유화중합의 반응 시간을 효과적으로 단축시킬 수 있으며, 작은 입자와 큰 입자의 사이즈 조절을 가능하게 하여 염화비닐 수지의 입경을 조절할 수 있다.

Description

고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법
본 발명은 염화비닐계 수지 제조용 모노머 흡수 촉진제(monomer absorption accelerator) 및 이를 이용한 염화비닐계 시드의 제조방법에 관한 것으로, 보다 구체적으로는 염화비닐계 수지 제조용 모노머 흡수 촉진제(monomer absorption accelerator)로 작용하는 지방족 고급 알코올을 중합 전에 투입하여 잔류 모노머의 양을 최소화하여 보다 안정한 라텍스를 얻을 수 있으며, 부가적으로는 중합 중 모노머의 소비 효율 및 중합 반응성을 증가시키는 염화비닐계 수지 제조용 모노머 흡수 촉진제 및 이를 이용한 염화비닐계 시드의 제조 방법에 관한 것이다.
페이스트 염화비닐계 수지는 생활 및 산업용 소재로 전 세계적으로 가장 널리 사용되는 범용 수지로 통상 유화중합, 미세 현탁중합, 시드 유화중합 방법 등으로 제조된다.
시드 유화중합법은 페이스트 염화비닐계 수지는 2가지 종류의 평균 입경이 다른 시드를 중합 초기에 투입하여, 염화비닐 단량체가 시드와 반응하면서 성장하여 최종 라텍스 입자를 제조하는 것이다.
두 가지 종류의 시드 중 제1 시드는 염화비닐계 단량체, 유화제, 유용성 개시제를 첨가하고 로터-스테이터(rotor-stator) 타입의 균질기 펌프를 이용해 균질화한 후 중합하여 제조되고 제2 시드는 유화중합으로 제조한다. 제1 시드는 입자 내에 유용성 개시제를 포함하고 있기 때문에 그 자체로 반응 사이트를 가지게 된다. 따라서 제1 시드 중합 시에 개시제를 과량 투입하여 중합이 완료된 입자 내에 개시제 함량을 적정량 남겨 시드 유화중합시 중합 개시가 잘 활성화되도록 할 필요가 있다.
일반적으로 제1 시드의 입자 내에 분해되지 않은 개시제를 잔류시키기 위해 중합 온도를 50℃ 이하로 낮게 하고, 개시제도 LPO(라우릴 퍼옥사이드) 등 반감기가 느린 것을 사용한다. 이 같은 제1 시드의 입자 크기 혹은 잔류 개시제의 종류 혹은 함량 등이 중합 반응성에 큰 영향을 미치는 요인에 해당한다. 이에 중합 반응성을 개선하기 위해서는 이들을 효과적으로 제어할 수 이는 기술이 필요한 실정이다.
염화비닐계 수지를 제조하는 중합에는 모노머와 유화제 외에도 사용 용도나 원하는 물성에 따라서 다양한 첨가제들이 사용되고 있다. 이온성 혹은 비이온성 유화제를 넣어 라텍스 안정성을 향상시키기도 하고 수소이온 농도 조절 목적으로 산이나 염기를 사용하기도 한다. 그 중에서도 비이온성 유화제로 쓰이는 물질은 종류가 매우 다양하며 그에 따른 결과도 매우 다르게 나타난다. 따라서 원하는 목적에 따라 적절한 물질을 선택하는 것이 매우 중요하며 간단하게 원하는 물성을 쉽게 발현시킬 수 있다.
상기와 같은 종래 기술의 문제점을 해결하고자 본 발명의 목적은 염화비닐계 수지의 중합 완료 후 최종 라텍스의 물성에 영향을 끼치는 잔류 모노머의 양을 최소화하여 보다 안정한 라텍스를 얻을 수 있으며, 부가적으로 중합 중 모노머의 소비 효율을 증가시키며 생산성 향상 및 스케일 발생량을 줄일 수 있는 염화비닐계 수지의 제조방법에 사용되는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 제공하기 위한 것이다.
본 발명은 페이스트 염화비닐계 수지용 염화비닐계 시드를 균질화하기 전에 특정 종류의 모노머 흡수 촉진제를 투입하여 시드 유화중합 적용시 중합 반응성이 우수한 시드를 제조하는 것을 목적으로 한다.
본 발명으로부터 제조되는 시드를 사용하면 기 첨가해놓은 모노머 흡수 촉진제가 시드 유화 중합 도중 액적(droplet) 안정화 효과를 부여하고, 본 중합 적용시 염화비닐 모노머가 시드 입자 내로 들어가는 속도와 농도를 높여서 반응성을 강하게 해주는 역할을 수행할 수 있어 스케일 발생이 증가하지 않으면서도 평균 입경이 큰 페이스트 염화비닐계 수지를 제조할 수 있다. 또한, 이로부터 플라스티졸의 점도 물성을 개선할 수 있다.
본 발명의 상기 목적 및 기타 목적은 하기 설명되는 본 발명에 의하여 모두 달성 될 수 있다.
본 발명에 따르면, 하기 화학식 1로 나타내어지는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 제공한다.
화학식 1
Figure PCTKR2012006220-appb-C000001
상기 화학식 1에서 n은 4 내지 24의 정수이다.
그리고 본 발명은 염화비닐 단량체, 유화제, 중합 개시제를 수성 매체에 첨가하고 균질기 펌프를 이용하여 액적을 균질화 후 중합하여 염화비닐계 시드를 제조하는 방법에 있어서, 상기 균질화 전 상기 화학식 1로 나타내어지는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 투입하고, 균질화 후 중합을 수행하는 것을 특징으로 하는 염화비닐계 시드의 제조방법을 제공한다.
또한, 본 발명은 상기한 염화비닐계 시드의 제조방법에 의해 제조되며 상기 모노머 흡수 촉진제의 종류와 사용량에 따라 동일한 균질화 조건 하에 다른 입자 직경(MV)으로 수득한 것을 특징으로 하는 염화비닐계 시드를 제공한다.
도 1은 본 발명의 실시예 및 비교예에 따라 모노머 흡수 촉진제를 사용한 경우와 그렇지 않은 경우의 중합 시간에 따른 총 누적 제열량 그래프를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 염화비닐계 시드의 제조공정을 도시화한 도면이다.
도 3은 모노머 흡수 촉진제 종류에 따른 평균 입경 변화를 도시한 그래프이다. STD은 모노머 흡수 촉진제를 도입하지 않은 경우의 입경을 나타낸 것이다.
본 발명에 따르면, 하기 화학식 1로 나타내어지는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 제공한다.
[화학식 1]
Figure PCTKR2012006220-appb-I000001
상기 화학식 1에서 n은 4 내지 24의 정수이다.
본 발명에서는 모노머 흡수 촉진제(monomer absorption accelerator)로 작용하는 지방족 고급 알코올을 중합 전에 투입하여 잔류 모노머의 양을 최소화한다.
중합에 사용된 지방족 고급 알코올의 구조는 다음과 같다. 염화비닐계 수지의 중합에 하기한 지방족 고급 알코올을 투입하여 중합한다.
[화학식 1]
Figure PCTKR2012006220-appb-I000002
상기 화학식 1에서 n은 4 내지 24의 정수이며, 불포화 상태와 포화 상태 모두를 포함한다.
상기에서 n은 구체적으로 4 내지 24의 정수이며, 더욱 구체적으로는 8 내지 18의 정수이며, 이 범위 내에서 라텍스 입자 내부 침투를 용이하게 하는 효과가 있다.
상기 지방족 고급 알코올은 C8내지 C18의 지방족 고급 알코올이며, 구체적으로는 C8지방족 고급 알코올, C10지방족 고급 알코올, C12지방족 고급 알코올, C14지방족 고급 알코올, C16지방족 고급 알코올 및 C18지방족 고급 알코올로 이루어진 군으로부터 1종 이상 선택되어 단독 또는 혼합되어 사용될 수 있다.
즉, 고급 지방족 알코올의 일례로는 C8지방족 고급 알코올: C10지방족 고급 알코올=0~100:0~100의 중량비로 혼합된 혼합물을 사용할 수 있으며, 보다 구체적으로는 C8:C10=0~55:0~45의 중량비로 혼합된 혼합물을 사용할 수 있다. 또한, C12~C18지방족 알코올 화합물 단독 또는 혼합물을 사용할 수 있으며, 이 때 각 지방족 알코올 화합물의 함량비는 0~100중량%일 수 있는데, 특히 C12또는 C14의 비율이 60중량% 이상이다.
또한, 본 발명은 모노머 흡수 촉진제의 알킬 체인 길이를 다양하게 선택하여 물에 대한 용해도를 조절할 수 있다. PVC 중합에 사용되는 염화비닐 단량체(vinyl chloride monomer, VCM)은 물에 거의 녹지 않는 유용성 특징을 갖고 있기 때문에 일반적인 유화제로 덮여 있는 PVC 입자 표면 혹은 내부로의 침투가 어렵다. 따라서 모노머 흡수 촉진제를 사용하게 되면 유화제 사이사이에 지용성인 촉진제가 배치되어 모노머의 표면으로의 접근을 용이하게 해 준다. 이 때 사용되는 모노머 흡수 촉진제의 체인 길이에 따라서 입자에서 위치하는 곳이 달라지게 된다. 따라서 모노머 흡수 촉진제의 체인 길이 조절을 통해 용해도를 조절하였고, 최종적으로 입자 표면에 위치할 수 있도록 한다.
본 발명에 따르면, 각 염화비닐수지 시드 중합 시 체인 길이가 다른 모노머 흡수 촉진제를 투입하여 각각 중합한다. 이 때 균질기 순환 횟수를 조절하여 입자 사이즈를 동일하게 제조하여 입자 사이즈 감소에 의한 반응 시간 단축 효과를 배제한다. 이렇게 중합된 시드를 투입 후 시드 유화중합을 실시하여 체인 길이에 따른 중합시간 단축 효과를 비교한다.
즉, 본 발명은 10000 내지 0.001mg/1L-water의 물에 대한 용해도를 가진 지방족 고급 알코올인 것을 특징으로 하는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 제공한다. 본 발명의 일례로 상기 염화비닐계 수지 제조용 모노머 흡수 촉진제는 800 내지 0.1mg/1L-water의 물에 대한 용해도를 가질 수 있다. 상기 범위의 용해도를 가진 지방족 고급 알코올을 사용할 경우에 본 중합시 반응 시간 단축 및 생산성 향상 효과를 얻을 수 있으며, 라텍스 안정성 또한 향상될 수 있다.
지방족 고급 알코올의 체인(chain) 길이가 짧을수록 반응시간의 단축에 더욱 효과적인 것을 감안하였을 때, 8 내지 14의 탄소수를 가진 지방족 고급 알코올을 사용하는 것이 좋다.
또한, 상기 염화비닐계 수지 제조용 모노머 흡수 촉진제 염화비닐계 중합체 제조시 0.1 내지 10phm(염화비닐 모노머에 대한)으로 사용되어 염화비닐계 수지의 중합 완료 후 최종 라텍스의 물성에 영향을 끼치는 잔류 모노머의 양을 최소화하여 보다 안정한 라텍스를 얻을 수 있다. 보다 구체적으로는 0.5 내지 3phm로 사용된다. 상기 하한치 미만에서는 최종 페이스트 염화비닐계 수지의 입경 조절 효과가 미미하며, 상한치를 초과하면 기존 유화제가 위치할 자리를 차지하여 오히려 안정성이 떨어지게 되므로 또한 바람직하지 않다.
표 1 알코올의 물에 대한 용해도
알코올 용해도(mg/1L-water)
CH3-OH Water soluble
C2H5-OH
C3H7-OH
C4H9-OH 63200
C5H11-OH 22000
C6H13-OH 6260
C7H15-OH 1800
C8H17-OH 540
C9H19-OH 140 Oil soluble
C10H21-OH 37
C12H25-OH 4
C14H29-OH 0.191
C16H33-OH 0.0412
C18H37-OH 0.0011
구체적으로는 상기 고급 알코올은 C08~C10 알코올(하기 실시예에서는 ㈜LG 생활건강, 상품명 'ELOCOL C0810'에 해당), C12 ~ C14 알코올(하기 실시예에서는 ㈜LG 생활건강, 상품명 'ELOCOL C1214'에 해당), C12 ~ C18 알코올 (stripped palm kernel lauryl alcohol, (주)LG 생활건강, 상품명 'ELOCOL C1218'에 해당), 혹은 스테아릴 알코올(C18 99%, solid, (주)LG 생활건강, 상품명 'ELOCOL C1899'에 해당) 등을 들 수 있다. 상기 염화 파라핀으로는 하기 실시예에서 사용한 것과 같은 Handy chemical corporation사 제 상품명 Plastoil 152 등을 들 수 있다.
본 발명은 염화비닐 단량체, 유화제, 중합 개시제를 수성 매체에 첨가하고 균질기 펌프를 이용하여 액적을 균질화 후 중합하여 염화비닐계 시드를 제조하는 방법에 있어서, 상기 균질화 전 하기 화학식 1의 모노머 흡수 촉진제(monomer absorption accelerator)를 첨가하고, 균질화 후 중합을 수행하는 것을 특징으로 하는 염화비닐계 시드의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2012006220-appb-I000003
상기 화학식 1에서 n은 4 내지 24의 정수이며, 불포화 상태와 포화 상태 모두를 포함한다.
상기 염화비닐계 시드의 제조방법은 구체적으로는 중합수, 염화비닐 단량체, 유화제 및 상기 모노머 흡수 촉진제를 프리-믹싱 탱크(pre-mixing tank)에 투입하고 교반시켜 혼합물을 얻는 팽윤 촉진 단계; 상기 혼합물을 회전형 균질화기를 통과시키는 균질화 단계; 및 상기 균질화된 혼합물을 반응기에서 중합시키는 중합 단계;를 포함하여 이루어지는 것을 특징으로 한다.
상기 제조방법에서 회전형 균질화기의 회전수를 조절하여 입자를 제조할 수 있다. 1차적으로 모노머 흡수 촉진제, 부원료 및 모노머를 프리-믹싱 탱크에 투입한 후 진공 상태에서 일정 시간 교반시켜 준다. 그 후 회전형 균질화기를 통과시켜 드랍렛을 형성한 후 중합하여 원하는 크기의 시드를 만들 수 있다. 이 때 원하는 크기의 입자를 만들기 위해 균질화 과정에서 순환 횟수를 조절 및 로터 스테이터(rotor stator) 간극 조절을 통해 원하는 입자 사이즈의 입자를 제조한다. 균질화기를 통과하기 전 지용성 모노머 흡수 촉진제를 약 0.1~5kg/cm2압력 하에서 5~60분 정도 충분한 교반을 시켜 주는 과정을 팽윤 촉진 공정이라고 한다. 이런 방법을 통해 생성된 라텍스는 액적의 안정성이 높고 기존 유화제 조절 방식으로는 안정적으로 얻기 어려웠던 크기의 입자를 만들어 낼 수 있다. 또한 이렇게 제조된 시드를 사용하여 시드 유화중합을 실시할 경우 약 30분 이상 중합시간을 단축되는 효과를 얻을 수 있다.
상기 염화비닐 단량체 100중량부를 기준으로 상기 중합수는 20 내지 150중량부, 상기 유화제는 0.1 내지 10중량부 및 상기 모노머 흡수 촉진제는 0.1 내지 10중량부를 투입한다.
상기 팽윤 촉진 단계는 0.1 내지 5kg/cm2압력 하에서 5 내지 60분 동안 교반하여 진행된다.
또한, 상기 균질화 단계에서는 균질화 펌프를 사용하여 1 내지 3시간 동안 수행되며, 상기 회전형 균질화기의 순환 횟수는 10 내지 150회일 수 있으며, 구체적으로는 20 내지 85회일 수 있다. 또한 로터-스테이터(rotor stator) 간격은 0.05 내지 10mm일 수 있으며, 구체적으로 0.1 내지 1mm일 수 있다. 너무 적은 회수를 순환하면 입자의 크기가 다소 커지고 분포가 다소 넓어질 수 있으며 너무 많은 횟수를 순환하면 시간이 오래 걸리고 너무 좁은 입자의 분포를 얻을 수 있다. 간격 조절 또한 좁게 할수록 입자 사이즈가 작아지며 간격이 너무 넓으면 균일한 입자를 얻기 어렵고 안정성이 떨어질 수 있다.
상기 유화제는 소디움 라우릴 설페이트(sodium lauryl sulfate, SLS), 소디움 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate, SDBS), 소디움 도데실 알킬설페이트(sodium dodecyl alkylsulfate, SDS), 암모늄 라우릴 설페이트(ammonium lauryl sulfate, ALS), 소디움 세틸 스테아릴 설페이트(sodium cetyl stearyl sulfate), 소디움 라우릴 에테르 설페이트(sodium lauryl ether sulfate, SLES) 및 석시네이트(succinate)로 이루어진 군으로부터 1종 이상 선택될 수 있으나, 구체적으로는 소디움 도데실 벤젠 술포네이트를 사용하나, 이에 한정되는 것은 아니다.
상기 유화제로는 음이온(anion)계 유화제, 또는 비이온(nonionic)계 유화제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 음이온계 유화제로는 카르본산, 알킬 술폰산, 알킬 벤젠 술폰산, 술포 호박산, α-올레핀 술폰산, 또는 알킬 인산 등을 사용할 수 있다. 상기 음이온계 유화제는 염화비닐계 단량체 100중량부에 대하여 최대 1중량부로 사용할 수 있다. 상기 함량으로 사용하는 경우에는 중합 및 라텍스의 기계적 안정성 등이 우수한 효과가 있다.
상기 비이온계 유화제로는 폴리옥시에틸렌 에테르, 폴리옥시에틸렌 알킬 페닐 에테르, 폴리옥시에틸렌알케닐 에테르, 폴리옥시에틸렌 유도체, 글리세린 지방산 에스테르, 소르비탄 지방산 에스테르, 폴리옥시에틸렌 지방산 에스테르, 실리콘계 유화제, 폴리에틸렌 글리콜(polyethylene-glycol) 및 이의 유도체, 또는 폴리프로필렌 글리콜(polypropylene-glycol) 및 이의 유도체 등을 사용할 수 있다. 상기 비이온계 유화제는 그 함량이 특별히 제한되지는 않으며, 염화비닐계 단량체 100 중량부에 대하여 최대 3 중량부로 사용할 수 있다.
상기 유화제는 시드 유화중합 반응 전에 수성 매체 중에 일괄 투입할 수 있으며, 중합반응 중 수성 매체에 연속 투입할 수 있으며, 중합반응 완료 후 라텍스에 첨가할 수도 있으며 필요에 따라 상기 방법을 조합하여 사용할 수 있다.
상기 제1 시드는 미세현탁중합으로 제조할 수 있다. 즉, 염화비닐 모노머, 유화제, 중합개시제 및 팽윤 촉진제를 수성 매체에 첨가하고 균질기 펌프를 이용하여 액적을 균질화 한 후 중합반응시킴으로써 얻어진다.
이때 사용되는 중합개시제는 유용성 중합개시제로 디이소프로필 퍼옥시 디카보네이트 등의 퍼옥시 카보네이트(peroxy dicarbonate)류; t-부틸퍼옥시피발레이트, t-부틸퍼옥시네오데카노에트 등의 퍼옥시 에스테르(peroxy ester)류 등의 유기 과산화물계 개시제, 또는 2,2-아조비스이소부티로니트릴 등의 아조(azo)계 개시제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 중합개시제는 염화비닐계 모노머 100phm 기준 0.01~10phm 범위 내로 사용하는 것이 바람직하다.
상기와 같은 성분들을 수성 매체에 첨가하여 로터-스테이터(rotor-stator) 타입의 균질기 펌프를 이용하여 액적을 균질화 한 후 중합하여 염화비닐계 시드를 제조할 수 있다.
이때 균질화는 이에 한정하는 것은 아니나, 1시간 내지 3시간 진행될 수 있고, 균질기 펌프는 로터-스테이터(rotor-stator) 타입일 수 있다.
또한, 40 내지 50℃ 온도에서 9 내지 12시간 동안 중합이 수행될 수 있다.
그리고 본 발명의 일 실시예에 의하여 염화비닐계 모노머, 유화제, 개시제 및 중합 억제제를 포함하는 염화비닐계 수지용 조성물로서, 화학식 1의 지방족 고급 알코올을 포함하는 것을 특징으로 하는 모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물을 제공한다.
상기 지방족 고급 알코올은 보조 유화제 겸용 모노머 흡수 촉진제 인 것을 특징으로 한다.
또한, 본 발명의 일 실시예에 의하여 염화비닐계 수지용 조성물을 이용하여 라텍스 중합 반응을 수행하되, 라텍스 중합용 반응기에 반응수, 개시제, 중합 억제제, 모노머 흡수 촉진제, 염화비닐계 모노머와 유화제를 투입하여 균질화시킨 다음 중합 공정을 수행하는 것을 특징으로 하는 모노머 흡수 촉진제 기반 염화비닐계 수지 조성물을 이용한 라텍스 중합 방법.
상기 모노머 흡수 촉진제는 수득하고자 하는 최종 페이스트 염화비닐계 수지의 입자 직경에 따라 종류와 투입량을 조절할 수 있다.
본 발명의 일 실시예는 라텍스 중합 방법에 의해 수득되되, 상기 지방족 고급 알코올의 종류와 사용량에 따라 동일한 균질화 조건 하에 다른 입자 직경(MV)으로 수득할 수 있는 페이스트 염화비닐계 수지를 제공한다.
또한, 본 발명의 일 실시예는 상기 염화비닐계 시드의 제조방법에 의해 제조되는 것을 특징으로 하는 염화비닐계 시드를 제공한다. 그리고 상기한 염화비닐계 시드를 제1 시드로 3 내지 15phm 사용하여 50 내지 65℃ 범위 내에서 시드 유화중합함으로써 제조되는 것을 특징으로 하는 페이스트 염화비닐계 수지를 제공한다.
상기 방법으로 염화비닐계 시드를 제조하면, 평균 입경 0.3~1.5㎛의 염화비닐계 시드를 제조할 수 있다. 이러한 시드를 페이스트 염화비닐계 수지의 시드 유화중합법에 적용하면, 중합 시간은 단축하면서 스케일의 발생이 증가하지 않으며 평균 입경이 증가된 페이스트 염화비닐계 수지를 제조할 수 있다. 또한, 이러한 수지를 사용하면 플라스티졸의 점도 물성 개선을 도모할 수 있다.
이 같은 페이스트 염화비닐계 수지의 시드 유화중합법은 염화비닐계 단량체를 수성 매체 중에서 유화제, 제1 시드, 제2시드, 완충제, 산화 환원 촉매 등을 투입해 중합 반응시키는 것이다.
이때 페이스트 염화비닐계 수지 중합에 있어서 사용된 염화비닐계 단량체는 일반적으로 80~98wt%가 페이스트 염화비닐계 수지로 되고 나머지 미 반응의 단량체는 제거한다. 중합 후의 페이스트 염화비닐계 수지의 라텍스를 분무 건조를 통해 얻는다. 건조할 때 일반적으로 탈수 여과 등을 행하지 않기 때문에 유화제 등의 원료는 수지 중에 잔류한다. 페이스트 염화비닐계 수지는 기본적으로 입경이 0.1~50㎛인 것이 가소제의 분산성이 양호하고 페이스트(paste) 가공에 적합하다.
또한, 이를 시드 유화중합에 적용하면, 스케일 발생이 늘어나지 않으면서도 중합안정성이 우수한 평균 입경 0.1~15㎛의 페이스트 염화비닐계 수지를 제조할 수 있다. 구체적으로는 이에 한정하는 것은 아니나, 하기 실시예에서 규명된 바와 같이, 본 발명에 의해 제조된 염화비닐계 시드를 제1 시드로 3 내지 5phm 사용하여 50 내지 65℃ 범위 내에서 시드 유화중합시켜 제조할 수 있다.
상기 지방족 고급 알코올은 수득하고자 하는 최종 페이스트 염화비닐계 수지의 입자 직경에 따라 종류와 투입량을 조절하여 동일한 순환횟수로 제조하였을 때 다른 크기의 입자를 얻을 수 있다.
상기 방법으로 염화비닐계 시드를 제조하면, 평균 입경 0.4~1.5㎛의 염화비닐계 시드를 제조할 수 있다. C810을 사용할 경우 평균 입경이 약 25~6%, C1214는 14~7%, C1218은 11~9% 정도 감소하였으며 C1899는 0.5~2.5% 정도 증가하였다.
이하 본 발명을 상세하게 설명한다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
[제1 시드 중합 관련 실험]
실시예 1
200L의 고압반응기에 교반기(agitator)를 40rpm으로 교반하면서 탈이온수 111phm, 라우릴 퍼옥사이드(lauryl peroxide) 1.8phm, 파라퀴논(paraquinone) 0.001phm, 모노머 흡수 촉진제로서 고급 알코올(㈜LG 생활건강, 상품명 'ELOCOL C0810') 2phm을 투입하고 반응기에 -730mmHg로 진공을 걸었다. 진공상태의 반응기에 염화비닐 모노머 100phm과 소듐 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate, 15%) 1.5phm을 투입 후 15분간 교반하였다.
반응기의 내온을 20℃ 이하로 낮추고 로터-스테이터(rotor-stator) 타입의 균질기를 이용해 균질화를 2시간 동안 실시하였다. 균질화가 완료되면 반응기 온도를 43℃로 맞추고 중합을 실시하였다.
반응기의 압력이 3.5kg/cm2에 도달하는 652분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.52㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 2
상기 실시예 1에서 ELOCOL C0810 2phm 대신 1phm을 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5 kg/cm2에 도달하는 595분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.62㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 3
상기 실시예 1에서 ELOCOL C0810 대신 ELOCOL C1214 (㈜LG 생활건강, 상품명 'ELOCOL C1214')를 2phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 568분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.59㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 4
상기 실시예 3에서 ELOCOL C1214 2phm 대신 ELOCOL C1214 1phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 597분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.63㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 5
상기 실시예 1에서 ELOCOL C0810 대신 ELOCOL C1218 (㈜LG 생활건강, 상품명 'ELOCOL C1219')를 2phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 612분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.63㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 6
상기 실시예 5에서 ELOCOL C1218 2phm 대신 ELOCOL C1218 1phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 526분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.62㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 7
상기 실시예 1에서 ELOCOL C0810 대신 ELOCOL C1899 (㈜LG 생활건강, 상품명 'ELOCOL C1899')를 2phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 579분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.69㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 8
상기 실시예 7에서 ELOCOL C1899 2phm 대신 ELOCOL C1899 1phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 576분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.70㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 9
상기 실시예 1에서 ELOCOL C0810 대신 염화 파라핀 (Handy chemical corporation사 제 상품명 'Plastoil 152')를 2phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 592분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.74㎛인 제1 시드 라텍스를 얻을 수 있었다.
실시예 10
상기 실시예 9에서 염화 파라핀 2phm 대신 염화 파라핀 1phm 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 574분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.71㎛인 제1 시드 라텍스를 얻을 수 있었다.
비교예 1
상기 실시예 1에서 ELOCOL C0810 2phm을 투입하지 않은 것을 제외하고는 상기 실시예 1과 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 558분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.68㎛인 제1 시드 라텍스를 얻을 수 있었다.
비교예 2
상기 비교예 1에서 로터-스테이터(rotor-stator) 타입의 균질기를 이용하여 균질화를 3시간 동안 실시한 것을 제외하고는 상기 비교예 1과 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 541분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 평균 입경은 0.62㎛인 제1 시드 라텍스를 얻을 수 있었다.
[시드 유화중합(페이스트 염화비닐계 수지) 관련 실험]
실시예 11
500ℓ 고압반응기에 탈이온수 75phm(part per hundred monomer), 실시예 2의 제1 시드 4.6phm을 투입 후 교반하면서 반응기에 진공을 걸었다.
진공 상태의 반응기에 염화비닐 단량체 100phm을 투입한 후 반응기의 온도를 55℃로 승온시키고 시드 유화중합을 실시하였다. 상기 중합 반응이 시작되면 유화제로서 소디움 라우릴 설페이트 0.8phm을 연속적으로 반응기에 투입하여 염화비닐계 라텍스를 제조하였다.
260분 후 반응기의 압력이 3.5kg/cm2에 도달하면 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 820g의 시드 유화중합 라텍스를 얻을 수 있었다. 그 후 라텍스를 분무 건조하여 분체상의 페이스트 염화비닐 수지를 제조하였다.
실시예 12
상기 실시예 11에서 실시예 2의 제1 시드 대신 실시예 4의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 300분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 800g의 시드 유화중합 라텍스를 얻을 수 있었다.
실시예 13
상기 실시예 11에서 실시예 2의 제1 시드 대신 실시예 5의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 294분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 940g의 시드 유화중합 라텍스를 얻을 수 있었다.
실시예 14
상기 실시예 11에서 실시예 2의 제1 시드 대신 실시예 6의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 275분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 780g의 시드 유화중합 라텍스를 얻을 수 있었다.
실시예 15
상기 실시예 11에서 실시예 2의 제1 시드 대신 실시예 8의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 326분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 900g의 시드 유화중합 라텍스를 얻을 수 있었다.
실시예 16
상기 실시예 11에서 실시예 2의 제1 시드 대신 실시예 10의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 340분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 240g의 시드 유화중합 라텍스를 얻을 수 있었다.
비교예 3
상기 실시예 11에서 실시예 2의 제1 시드 대신 비교예 1의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 375분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 630g의 시드 유화중합 라텍스를 얻을 수 있었다.
비교예 4
상기 실시예 11에서 실시예 2의 제1 시드 대신 비교예 2의 제1 시드를 투입한 것을 제외하고는 동일한 실험을 반복하고 반응기의 압력이 3.5kg/cm2에 도달하는 326분 후 반응을 종결하고 미반응 염화비닐 단량체를 회수하여 제거한 후 스케일 670g의 시드 유화중합 라텍스를 얻을 수 있었다.
각 실험예에서 평균 입경, 중합 시간을 다음과 같이 측정하였다.
* 평균 입경: Microtrac 사의 NPA150 기기를 사용하여 측정하였다.
* 중합 시간: 중합 반응기의 온도 heat up 완료부터 반응기의 압력이3.5 kg/cm2에 도달할 때까지의 시간을 측정하였다.
측정치는 하기 표 2(제1 시드 중합 결과), 표 3(시드유화 중합 결과)로 나누어 정리하였다.
표 2
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 비교예 1 비교예 2
LPO 투입량(phm) 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
중합온도 (℃) 42 42 42 42 42 42 42 42 42 42 42 42
ELOCOL C0810 (phm) 2 1 0 0 0 0 0 0 0 0 0 0
ELOCOL C1214 (phm) 0 0 2 1 0 0 0 0 0 0 0 0
ELOCOL C1218 (phm) 0 0 0 0 2 1 0 0 0 0 0 0
ELOCOL C1899 (g) 0 0 0 0 0 0 1320 660 0 0 0 0
염화 파라핀(g) 0 0 0 0 0 0 0 0 1320 660 0 0
균질화 시간(hr) 2 2 2 2 2 2 2 2 2 2 2 3
중합 시간(min) 652 595 568 597 612 526 579 576 592 574 558 541
평균 입경(㎛) 0.52 0.62 0.59 0.63 0.61 0.62 0.69 0.7 0.74 0.71 0.68 0.62
표 3
중합 처방 실시예 11 실시예 12 실시예 13 실시예 14 실시예 15 실시예 16 비교예 3 비교예 4
제1 시드(4.6phm) 실시예 2 실시예 4 실시예 5 실시예 6 실시예 8 실시예 10 비교예 1 비교예 2
중합온도(℃) 55 55 55 55 55 55 55 55
중합시간(min) 260 300 294 275 326 340 375 336
스케일(g) 820 800 940 780 900 240 1630 1380
상기 표 2에서 보듯이, 실시예 1-10과 비교예 1-2를 대비하면, 실시예의 경우 입경이 줄어드는 결과를 확인할 수 있었다. 더불어, 표 3에서 보듯이, 실시예 11-16과 비교예 3-4를 대비하면 중합 시간이 단축되는 효과를 또한 확인할 수 있었다.
[모노머 흡수 촉진제의 첨가에 따른 잔류 모노머의 양]
각 중합시 투입량을 변량하였으며, 비교예에서는 지방족 알코올을 투입하지 않았다. 중합 완료 후 모노머 리커버리 공정에서 잔류하는 모노머의 양을 확인하였다.
실시예 17
200L의 고압반응기에 탈이온수 110phm, 라우릴 퍼옥사이드(lauryl peroxide) 1.7phm, 파라퀴논(paraquinone) 0.003phm, 모노머 흡수 촉진제로 지방족 고급 알코올(CO810) 0.5phm을 투입하고 반응기에 -730mmHg로 진공을 걸은 후 염화비닐 모노머 100phm과 소디움 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate) 1.6phm을 투입한 후 3kg/cm2압력에서 20분간 교반하였다. 이후 로터-스테이터(rotor-stator) 타입의 균질기를 이용하여 65회 순환하였다. 균질화가 완료되면 반응기 온도를 42℃로 맞추고 중합을 실시하였다. 이렇게 얻어진 시드를 사용하여 61℃에서 시드 유화중합하였다.
실시예 18
상기 실시예 17에서 지방족 고급 알코올의 투입량이 1phm이고 순환횟수가 50회인 것을 외하고는 실시예 17과 동일한 방법으로 염화비닐계 중합체를 제조하였다.
실시예 19
상기 실시예 17에서 지방족 고급 알코올의 투입량이 2phm이고 순환횟수가 40회인 것을 제외하고는 실시예 17과 동일한 방법으로 염화비닐계 중합체를 제조하였다.
비교예 5
상기 실시예 17에서 지방족 고급 알코올을 투입하지 않고 순환횟수를 55회인 것을 제외하고는 실시예 17과 동일한 방법으로 염화비닐계 중합체를 제조하였다.
[시험예]
상기 실시예 17-19 및 비교예 5에서 제조한 염화비닐계 중합체의 잔류 모노머의 양은 리커버리 라인에 설치된 유량계를 통해 확인하였다.
* 잔류 모노머: 중합 완료 후 잔류 모노머 회수 라인에 설치된 유량계를 통해 양을 확인하였다.
* 누적 제열량: 중합 중 매 분마다 제거된 열량을 시간에 따라 반응 종료시까지 누적 그래프를 표시하였다.
표 4
실시예 17 실시예 18 실시예 19 비교예 5
시드 지방족 알코올 (phm) 0.5 1 2 미투입
순환횟수 65 50 40 55
본중합 잔류 모노머(kg) 2.9 3 3.2 5.2
상기 표 4에서 보는 바와 같이, 실시예 17 내지 실시예 19에 의하여 지방족 고급 알코올을 사용하여 염화비닐계 수지를 중합한 경우 중합 완료 후에 최종 라텍스의 물성에 영향을 미칠 수 있는 잔류 모노머의 양을 상당히 감소시킬 수 있으며, 중합 중 모노머의 소비 효율을 증가시킬 수 있는 것을 확인하였다. 또한, 모노머 흡수 촉진제를 사용한 경우와 그렇지 않은 경우의 총 누적 제열량 그래프를 비교해 보아도 모노머의 소비 효율이 개선되는 것을 확인할 수 있을 뿐만 아니라 잔류 모노머 양의 상대적인 비교가 가능하다.
[로터-스테이터에 의한 균질화]
실시예 20
200L의 고압반응기에 탈이온수 105phm, 라우릴 퍼옥사이드 1.7phm, 파라퀴논(paraquinone) 0.003phm, 모노머 흡수 촉진제로 지방족 고급 알코올 1phm을 투입하고 반응기에 -730mmHg로 진공을 걸은 후 염화비닐 모노머 100phm과 소디움 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate) 1.6phm을 투입한 후 3kg/cm2압력에서 20분간 교반하였다.
이후 로터-스테이터 타입의 균질기를 이용하여 0.5mm 간격으로 40-회 순환하였다. 균질화가 완료되면 반응기 온도를 40℃로 맞추고 중합을 실시하였다.
실시예 21
로터-스테이터의 순환 횟수가 80회인 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
실시예 22
로터-스테이터의 순환 횟수가 20회인 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
실시예 23
로터-스테이터의 간격이 0.3mm인 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
비교예 6
팽윤 촉진 공정을 실시하지 않은 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
비교예 7
팽윤 촉진 공정을 실시하지 않고 유화제 투입량이 0.4phm인 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
비교예 8
팽윤 촉진 공정을 실시하지 않고 로터-스테이터 간격을 1.5mm로 조절한 것을 제외하고는 실시예 20과 동일한 방법으로 염화비닐계 라텍스 및 분체상 페이스트 염화비닐 수지를 제조하였다.
[시험예]
상기 실시예 20-23 및 비교예 6-8에서 제조한 염화비닐계 중합체의 평균입경 및 스케일 양은 아래와 같이 측정하였다.
* 평균입경: 제조된 염화비닐 라텍스의 입경을 Microtrac사 nanotrac150을 이용하여 측정하였다.
* 스케일 양: 중합 후 스트레이너에 걸리는 물질의 무게를 대략적으로 측정하였다.
표 5
실시예 20 실시예 21 실시예 22 실시예 23 비교예 6 비교예 7 비교예 8
순환횟수 40 80 20 40 40 40 40
팽윤 촉진 공정 실시 실시 실시 실시 미실시 미실시 미실시
로터-스테이터 간격(mm) 0.5 0.5 0.5 0.3 0.5 0.5 1.5
유화제 양(phm) 0.8 0.8 0.8 0.8 0.8 0.4 0.8
입경(㎛) 0.65 0.42 0.91 0.58 0.68 - -
스케일 100g 미만 100g 미만 100g 미만 100g 미만 780g 응집 응집
상기 표 5에서 보는 바와 같이, 실시예 20 내지 23을 팽윤 촉진 공정을 실시하지 않은 비교예 6 내지 8과 비교하여 보면, 스케일이 많이 발생하지 않아 액적의 안정성이 높고 기존 유화제 조절 방식으로는 안정적으로 얻기 어려웠던 크기의 입자를 만들어 낼 수 있었다.
[모노머 흡수 촉진제의 체인 길이에 따른 효과]
각 염화비닐수지 시드 중합 시 체인 길이가 다른 모노머 흡수 촉진제를 투입하여 각각 중합하였다. 이 때 균질기 순환 횟수를 조절하여 입자 사이즈를 동일하게 제조하여 (체인이 긴 C1899와 염화파라핀은 작게 제조되지 않았다) 입자 사이즈 감소에 의한 반응 시간 단축 효과를 배제하였다. 이렇게 중합된 시드를 투입 후 시드 유화중합을 실시하여 체인 길이에 따른 중합시간 단축 효과를 비교하였다.
실시예 24
200L의 고압반응기에 탈이온수 110phm, 라우릴 퍼옥사이드 1.7phm, 파라퀴논(paraquinone) 0.003phm, 모노머 흡수 촉진제로 지방족 고급 알코올(C0810) 1phm을 투입하고 반응기에 -730mmHg로 진공을 걸은 후 염화비닐 모노머 100phm과 소디움 도데실 벤젠 설포네이트(sodium dodecyl benzene sulfonate) 1.6phm을 투입한 후 3kg/cm2압력에서 20분간 교반하였다. 이후 로터-스테이터(rotor-stator) 타입의 균질기를 이용하여 45회 순환하였다. 균질화가 완료되면 반응기 온도를 42℃로 맞추고 중합을 실시하였다. 이렇게 얻어진 시드를 500L 반응기에 4.6phm 투입한 후 55℃로 승온 후 시드 유화중합하였다.
실시예 25
상기 실시예 24에서 지방족 고급 알코올이 C1214이고, 균질기 순환횟수가 50회인 것을 제외하고는 실시예 24와 동일한 방법으로 염화비닐계 중합체를 제조하였다.
실시예 26
상기 실시예 24에서 지방족 고급 알코올이 C1218이고, 균질기 순환횟수가 55회인 것을 제외하고는 실시예 24와 동일한 방법으로 염화비닐계 중합체를 제조하였다.
실시예 27
상기 실시예 24에서 지방족 고급 알코올이 C1299이고, 균질기 순환횟수가 70회인 것을 제외하고는 실시예 24와 동일한 방법으로 염화비닐계 중합체를 제조하였다.
실시예 28
상기 실시예 24에서 지방족 고급 알코올이 염화파라핀(plastoil 152)이고, 균질기 순환횟수가 70회인 것을 제외하고는 실시예 24와 동일한 방법으로 염화비닐계 중합체를 제조하였다.
비교예 9
상기 실시예 24에서 지방족 고급 알코올을 투입하지 않고 균질기 순환횟수가 60회인 것을 제외하고는 실시예 24와 동일한 방법으로 염화비닐계 중합체를 제조하였다.
[시험예]
상기 실시예 24-28 및 비교예 9에서 제조한 염화비닐계 중합체의 입자 크기를 확인하기 위하여 아래의 방법을 사용하였고 중합 시간을 측정하였다.
* 평균 입경: 제조된 염화비닐 라텍스의 입경을 Microtrac사 nanotrac150을 이용하여 측정하였다.
* 중합 시간: 가열 완료 시점부터 반응 압력 3.5kg까지 걸린 시간을 측정하였다.
표 6
실시예 24 실시예 25 실시예 26 실시예 27 실시예 28 비교예 9
시드 중합 모노머 흡수 촉진제 C0810 C1214 C1218 C1899 염화파라핀 -
투입량(phm) 1 1 1 1 1 -
사이즈(㎛) 0.63 0.63 0.62 0.7 0.72 0.62
본 중합온도(℃) 55 55 55 55 55 55
시드 투입량(phm) 4.6 4.6 4.6 4.6 4.6 4.6
반응시간(시간:분) 4:20 5:00 4:45 5:26 5:40 5:46
상기 표 6에서 보는 바와 같이, 실시예 24 내지 실시예 28에 의하여 지방족 고급 알코올을 사용하여 염화비닐계 수지를 중합한 경우 반응시간 단축 효과를 나타내어 중합 생산성을 높일 수 있다. 또한, 지방족 고급 알코올의 체인 길이가 짧을수록 반응시간의 단축에 더욱 효과적인 것을 알 수 있다.
[모노머 흡수 촉진제의 첨가에 따른 염화비닐계 수지의 입경 조절]
실시예 29
200L 의 고압 반응기에 탈이온수 110phm, 라우릴 퍼옥사이드 1.7phm, 파라퀴논 0.003ppm, 모노머 흡수 촉진제로 C8:C10=55:45(중량비)로 혼합된 지방족 고급 알코올 혼합물 2phm을 투입하고 반응기에 -730mmHg로 진공을 걸은 후 염화비닐계 모노머 100phm과 소디움 도데실 벤젠 술포네이트 1.6phm을 투입 후 3kg/cm2압력에서 20분간 교반하였다. 이후 로터-스테이터(rotor-stator) 타입의 균질기를 이용해 45회 순환하였다. 균질화가 완료되면 42℃로 맞추고 중합을 실시하였다.
실시예 30
지방족 고급 알코올의 투입량이 1 phm인 것을 제외하고는 실시예 29와 동일한 방법으로 중합하였다.
실시예 31
지방족 고급 알코올이 C12:C14=55:45(중량비)인 것을 제외하고는 실시예 29와 동일한 방법으로 중합하였다.
실시예 32
지방족 고급 알코올의 투입량이 2phm인 것을 제외하고 실시예 29와 동일한 방법으로 중합하였다.
실시예 33
지방족 고급 알코올이 C1218 (C1214 65중량%, C1618 35중량%)인 것을 제외하고는 실시예 29와 동일한 방법으로 중합하였다.
실시예 34
지방족 고급 알코올의 투입량이 1phm인 것을 제외하고는 실시예 33과 동일한 방법으로 중합하였다.
실시예 35
지방족 고급 알코올이 C18=99중량%인 것을 제외하고는 실시예 29와 동일한 방법으로 중합하였다.
실시예 36
지방족 고급 알코올의 투입량이 2phm인 것을 제외하고 실시예 35와 동일한 방법으로 중합하였다.
비교예 10
지방족 고급 알코올을 투입하지 않은 것을 제외하고 실시예 29와 동일한 방법으로 중합하였다.
[시험예]
상기 실시예 , 및 비교예에서 각각 제조한 염화비닐계 중합체의 입자 크기를 확인하기 위해 아래의 방법을 사용하였다.
*평균 입경: 제조된 염화비닐 라텍스의 입경(MV)을 Microtrac사 nanotrac150을 이용하여 측정하였다.
* 입자의 안정성: 중합 완료된 라텍스를 블로우 다운 시 스트레이너에 통과시켜 걸리는 스케일의 양을 측정하였다.
표 7
구분 실시예 29 실시예 30 실시예 31 실시예 32 실시예 33 실시예 34 실시예 35 실시예 36 비교예 10
C810 2 1 0 0 0 0 0 0 0
C1214 0 0 2 1 0 0 0 0 0
C1218 0 0 0 0 2 1 0 0 0
C1899 0 0 0 0 0 0 2 1 0
순환 수 45 45 45 45 45 45 45 45 45
MV(㎛) 0.527 0.599 0.594 0.638 0.615 0.65 0.691 0.704 0.688
스케일 100g 이하 100g 이하 100g 이하 100g 이하 100g 이하 100g 이하 100g 이하 100g 이하 240g
상기 표 7에서 보듯이, 지방족 고급 알코올이 염화비닐계 모노머의 투입 전 투입된 실시예 29 내지 36의 경우에는 지방족 고급 알코올의 투입 종류 및 투입량에 따라, 최종 페이스트 염화비닐계 수지의 입경(MV) 조절을 확인할 수 있었다.
참고로, 지방족 고급 알코올을 투입하지 않은 비교예 10에서는 입경이 0.688㎛이었으나, 지방족 고급 알코올의 투입으로 인하여 동일한 균질화 조건하에 최종 페이스트 염화비닐계 수지의 입경(MV)은 0.527㎛로 조절된 것을 확인할 수 있었다.
또한, 본 발명에서 제조된 최종 페이스트 염화비닐계 수지 입자들은 안정성 측면에서도 비교예 10에 의해 제조된 입자들보다 개선된 안정성을 갖는 것을 확인할 수 있었다.
본 발명의 모노머 흡수 촉진제를 이용하여 제조한 특정 시드를 시드유화중합 도중 제1 시드로 사용한 방법에 따르면, 중합 반응성이 종래 기술 대비 우수하여 중합 시간이 짧아진 효과를 확인할 수 있다. 또한, 염화비닐계 수지의 중합 완료 후 최종 라텍스의 물성에 영향을 끼치는 잔류 모노머의 양을 최소화하여 보다 중합 안정성이 우수한 라텍스를 얻을 수 있으며, 부가적으로 중합 중 모노머의 소비 효율을 증가시키며 반응시간 단축, 생산성 향상 및 스케일 발생량을 줄일 수 있다.
모노머 흡수 촉진제의 도입을 통하여 입자 사이즈 조절을 위해 필요하던 장치 및 순환횟수나 압력 등의 별도의 조절 없이도 입자의 크기를 간단한 방식으로 조절할 수 있게 되어 조절 범위가 넓어진다.

Claims (26)

  1. 하기 화학식 1로 나타내어지는 염화비닐계 수지 제조용 모노머 흡수 촉진제.
    [화학식 1]
    Figure PCTKR2012006220-appb-I000004
    상기 화학식 1에서 n은 4 내지 24의 정수이다.
  2. 제 1항에 있어서,
    상기 n은 8 내지 18의 정수인 것을 특징으로 하는 염화비닐계 수지 제조용 모노머 흡수 촉진제.
  3. 제 1항에 있어서,
    상기 염화비닐계 수지 제조용 모노머 흡수 촉진제는 C8내지 C18의 지방족 고급 알코올인 것을 특징으로 하는 염화비닐계 수지 제조용 모노머 흡수 촉진제.
  4. 제 3항에 있어서,
    상기 고급 지방족 알코올은 C8지방족 고급 알코올, C10지방족 고급 알코올, C12지방족 고급 알코올, C14지방족 고급 알코올, C16지방족 고급 알코올 및 C18지방족 고급 알코올로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 염화비닐계 수지 제조용 모노머 흡수 촉진제.
  5. 제 1항에 있어서,
    상기 모노머 흡수 촉진제는 10000 내지 0.001mg/1L-water의 물에 대한 용해도를 가진 지방족 고급 알코올인 것을 특징으로 하는 염화비닐계 수지 제조용 모노머 흡수 촉진제.
  6. 염화비닐 단량체, 유화제, 중합 개시제를 수성 매체에 첨가하고 균질화 펌프를 이용하여 액적을 균질화 후 중합하여 염화비닐계 시드를 제조하는 방법에 있어서,
    상기 균질화 전 화학식 1로 나타내어지는 염화비닐계 수지 제조용 모노머 흡수 촉진제를 투입하고, 균질화 후 중합을 수행하는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
    [화학식 1]
    Figure PCTKR2012006220-appb-I000005
    상기 화학식 1에서 n은 4 내지 24의 정수이다.
  7. 제 6항에 있어서,
    상기 모노머 흡수 촉진제는 10000 내지 0.001mg/1L-water의 물에 대한 용해도를 가진 지방족 고급 알코올인 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  8. 제 6항에 있어서,
    상기 모노머 흡수 촉진제는 C8내지 C18의 지방족 고급 알코올인 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  9. 제 8항에 있어서,
    상기 지방족 고급 알코올은 C8지방족 고급 알코올, C10지방족 고급 알코올, C12지방족 고급 알코올, C14지방족 고급 알코올, C16지방족 고급 알코올 및 C18지방족 고급 알코올로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  10. 제 6항에 있어서,
    상기 모노머 흡수 촉진제는 염화비닐계 중합체 제조시 0.1 내지 10phm으로 사용하는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  11. 제 6항에 있어서,
    상기 중합은 40 내지 50℃의 온도에서 9 내지 12시간 동안 수행하는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  12. 제 6항에 있어서,
    상기 염화비닐계 시드의 제조방법은
    중합수, 염화비닐 단량체, 유화제 및 모노머 흡수 촉진제를 프리-믹싱 탱크에 투입하고 교반시켜 혼합물을 얻는 팽윤 촉진 단계;
    상기 혼합물을 회전형 균질화기를 통과시키는 균질화 단계; 및
    상기 균질화된 혼합물을 반응기에서 중합시키는 중합 단계;를
    포함하여 이루어지는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  13. 제 12항에 있어서,
    상기 염화비닐 단량체 100중량부를 기준으로 상기 중합수는 20 내지 150중량부, 상기 유화제는 0.1 내지 10중량부 및 상기 모노머 흡수 촉진제는 0.1 내지 10중량부를 투입하는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  14. 제 6항에 있어서,
    상기 유화제는 소디움 라우릴 설페이트(sodium lauryl sulfate, SLS), 소디움 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate, SDBS), 소디움 도데실 알킬설페이트(sodium dodecyl alkylsulfate, SDS), 암모늄 라우릴 설페이트(ammonium lauryl sulfate, ALS), 소디움 세틸 스테아릴 설페이트(sodium cetyl stearyl sulfate), 소디움 라우릴 에테르 설페이트(sodium lauryl ether sulfate, SLES) 및 석시네이트(succinate)로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  15. 제 12항에 있어서,
    상기 팽윤 촉진 단계는 0.1 내지 5kg/cm2압력 하에서 5 내지 60분 동안 교반하는 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  16. 제 12항에 있어서,
    상기 균질화 단계에서는 균질화 펌프를 사용하여 1 내지 3시간 동안 수행하며, 상기 회전형 균질화기의 순환 횟수는 10 내지 150회이고, 로터-스테이터 간격은 0.05 내지 10mm인 것을 특징으로 하는 염화비닐계 시드의 제조방법.
  17. 염화비닐계 모노머, 유화제, 개시제 및 중합 억제제를 포함하는 염화비닐계 수지용 조성물로서, 제 1항에 의한 지방족 고급 알코올을 포함하는 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물.
  18. 제 17항에 있어서,
    상기 지방족 고급 알코올은 보조 유화제 겸용 모노머 흡수 촉진제인 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물.
  19. 제 17항에 있어서,
    상기 지방족 고급 알코올은 C8내지 C18의 지방족 고급 알코올인 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물.
  20. 제 19항에 있어서,
    상기 지방족 고급 알코올은 C8지방족 고급 알코올, C10지방족 고급 알코올, C12지방족 고급 알코올, C14지방족 고급 알코올, C16지방족 고급 알코올 및 C18지방족 고급 알코올로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물.
  21. 제 17항에 있어서,
    상기 지방족 고급 알코올은 염화비닐계 모노머에 대하여 0.1phm 내지 10phm 포함되는 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지용 조성물.
  22. 제 21항의 염화비닐계 수지용 조성물을 이용하여 라텍스 중합 반응을 수행하되, 라텍스 중합용 반응기에 반응수, 개시제, 중합 억제제, 모노머 흡수 촉진제, 염화비닐계 모노머와 유화제를 투입하여 균질화시킨 다음 중합 공정을 수행하는 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지 조성물을 이용한 라텍스 중합 방법.
  23. 제 22항에 있어서,
    상기 모노머 흡수 촉진제는 수득하고자 하는 최종 페이스트 염화비닐계 수지의 입자 직경에 따라 종류와 투입량을 조절한 것을 특징으로 하는
    모노머 흡수 촉진제 기반 염화비닐계 수지 조성물을 이용한 라텍스 중합 방법.
  24. 제 22항의 라텍스 중합 방법에 의해 수득되되, 상기 지방족 고급 알코올의 종류와 사용량에 따라 동일한 균질화 조건 하에 다른 입자 직경(MV)으로 수득한 것을 특징으로 하는
    페이스트 염화비닐계 수지.
  25. 제 6항 내지 제 16항 중 어느 한 항의 제조방법에 의해 제조되는 것을 특징으로 하는 염화비닐계 시드.
  26. 제 25항의 염화비닐계 시드를 제1 시드로 3 내지 5phm 사용하여 4 내지 6시간 동안 50 내지 65℃ 범위 내에서 시드 유화중합함으로써 제조되는 것을 특징으로 하는 페이스트 염화비닐계 수지.
PCT/KR2012/006220 2011-09-02 2012-08-06 고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법 WO2013032142A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014525923A JP5904345B2 (ja) 2011-09-02 2012-08-06 高機能性重合用添加剤、及びそれを用いた塩化ビニル系シードの製造方法
CN201280039654.4A CN103732668B (zh) 2011-09-02 2012-08-06 高功能性聚合用添加剂以及使用该添加剂制备氯乙烯种子的方法
DE112012003654.9T DE112012003654B4 (de) 2011-09-02 2012-08-06 Verfahren zum Herstellen eines Vinylchloridkeims, Vinylchloridkeim sowie Pastenvinylchloridharz
US14/178,044 US9163134B2 (en) 2011-09-02 2014-02-11 Highly functional additive for polymerization and method for preparing vinyl chloride seeds using the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20110088862 2011-09-02
KR10-2011-0088862 2011-09-02
KR10-2012-0011522 2012-02-03
KR20120011522 2012-02-03
KR20120011621 2012-02-06
KR10-2012-0011621 2012-02-06
KR10-2012-0051703 2012-05-15
KR10-2012-0051705 2012-05-15
KR1020120051703A KR20130127872A (ko) 2012-05-15 2012-05-15 고기능성 중합용 첨가제
KR1020120051705A KR101413780B1 (ko) 2012-05-15 2012-05-15 모노머 흡수 촉진제

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/178,044 Continuation US9163134B2 (en) 2011-09-02 2014-02-11 Highly functional additive for polymerization and method for preparing vinyl chloride seeds using the same

Publications (3)

Publication Number Publication Date
WO2013032142A2 true WO2013032142A2 (ko) 2013-03-07
WO2013032142A9 WO2013032142A9 (ko) 2013-04-04
WO2013032142A3 WO2013032142A3 (ko) 2013-06-13

Family

ID=47757005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006220 WO2013032142A2 (ko) 2011-09-02 2012-08-06 고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법

Country Status (5)

Country Link
US (1) US9163134B2 (ko)
JP (1) JP5904345B2 (ko)
CN (1) CN103732668B (ko)
DE (1) DE112012003654B4 (ko)
WO (1) WO2013032142A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150231590A1 (en) * 2012-05-10 2015-08-20 Dow Global Technologies Llc Multi-additive delivery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239145A (ja) * 1992-02-27 1993-09-17 Sumitomo Chem Co Ltd 塩化ビニル系重合体の製造方法
JPH0867705A (ja) * 1994-08-31 1996-03-12 Sumitomo Chem Co Ltd 塩化ビニル系重合体の製造方法
US6949601B1 (en) * 1999-09-13 2005-09-27 Norsk Hydro Asa Single stage seed polymerization for the production of large polymer particles with a narrow size distribution
KR20100042159A (ko) * 2008-10-15 2010-04-23 주식회사 엘지화학 염화비닐계 대구경 시드, 그 제조방법 및 그를 이용하여 제조되는 페이스트 염화비닐계 수지

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL298009A (ko) 1962-09-20 1965-11-10
JPS5339477B2 (ko) * 1971-12-07 1978-10-21
JPS6173714A (ja) * 1984-09-20 1986-04-15 Mitsui Toatsu Chem Inc 塩化ビニル樹脂の製造方法
JPS6470503A (en) * 1987-08-31 1989-03-16 Goodyear Tire & Rubber Microsuspension polymerization of vinyl chloride
JPH10120708A (ja) * 1996-10-22 1998-05-12 Sekisui Chem Co Ltd 塩化ビニル系樹脂の製造方法
JP3610179B2 (ja) * 1997-01-29 2005-01-12 新第一塩ビ株式会社 塩化ビニル系重合体ラテックスの製造方法
JP4192508B2 (ja) * 2002-06-12 2008-12-10 東ソー株式会社 ペースト加工用塩化ビニル系樹脂の製造方法
US20090311531A1 (en) 2008-06-13 2009-12-17 Lg Chem, Ltd. Large-sized vinyl chloride seed, method of preparing the seed, vinyl chloride resin prepared using the seed, and method of preparing the vinyl chloride resin
KR101154469B1 (ko) * 2008-06-13 2012-06-13 주식회사 엘지화학 저점도 특성이 우수한 염화비닐계 수지 및 그 제조 방법
JP5003692B2 (ja) * 2009-01-08 2012-08-15 東ソー株式会社 ペースト用塩化ビニル樹脂の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239145A (ja) * 1992-02-27 1993-09-17 Sumitomo Chem Co Ltd 塩化ビニル系重合体の製造方法
JPH0867705A (ja) * 1994-08-31 1996-03-12 Sumitomo Chem Co Ltd 塩化ビニル系重合体の製造方法
US6949601B1 (en) * 1999-09-13 2005-09-27 Norsk Hydro Asa Single stage seed polymerization for the production of large polymer particles with a narrow size distribution
KR20100042159A (ko) * 2008-10-15 2010-04-23 주식회사 엘지화학 염화비닐계 대구경 시드, 그 제조방법 및 그를 이용하여 제조되는 페이스트 염화비닐계 수지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. TUNCEL ET AL.: 'Carboxyl carrying-large uniform latex particles' COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS vol. 197, no. 1-3, 28 February 2002, pages 79 - 94, XP055071073 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150231590A1 (en) * 2012-05-10 2015-08-20 Dow Global Technologies Llc Multi-additive delivery system
US9821288B2 (en) * 2012-05-10 2017-11-21 Dow Global Technologies Llc Multi-additive delivery system

Also Published As

Publication number Publication date
JP5904345B2 (ja) 2016-04-13
DE112012003654T5 (de) 2014-08-14
DE112012003654B4 (de) 2020-06-18
US9163134B2 (en) 2015-10-20
US20140200309A1 (en) 2014-07-17
CN103732668A (zh) 2014-04-16
WO2013032142A3 (ko) 2013-06-13
WO2013032142A9 (ko) 2013-04-04
CN103732668B (zh) 2016-01-20
JP2014521823A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018030552A1 (ko) 중합성 조성물
WO2018084408A1 (ko) Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2013032142A2 (ko) 고기능성 중합용 첨가제 및 이를 이용한 염화비닐계 시드의 제조방법
WO2018128336A1 (ko) 에멀젼 입자, 이를 포함하는 에멀젼 및 에멀젼의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2009107987A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2020027490A1 (ko) 염화비닐계 공중합체 및 이의 제조 방법
WO2019172512A1 (ko) 대칭형 폴리올레핀 블록 공중합체 및 이의 제조 방법
WO2020091429A1 (ko) 염화비닐계 중합체 제조용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2023033284A1 (ko) 불화알킬글리세린 유도체 및 계면활성제 용도
WO2023033285A1 (ko) 하이브리드형 불소계 비이온 계면활성제의 제조방법
WO2021049836A1 (ko) 염화비닐계 중합체의 제조방법
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2017191899A1 (ko) 염화비닐계 중합체의 제조방법 및 이에 따라 제조된 염화비닐계 중합체
WO2018030605A1 (ko) 짧은 불화 알킬기를 가지는 하이브리드형 폴리비닐리덴 플루오라이드 나노 입자 제조용 계면활성제, 이를 사용한 폴리비닐리덴 플루오라이드 나노 입자의 제조 방법 및 이에 따라 제조되는 폴리비닐리덴 플루오라이드 나노 입자
WO2016047953A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2020091340A1 (ko) 염화비닐계 중합체의 제조방법
WO2020091427A1 (ko) 염화비닐계 중합체의 제조방법
WO2020076023A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2021060909A1 (ko) 염화비닐계 중합체 중합용 조성물 및 이를 이용한 염화비닐계 중합체의 제조방법
WO2021054593A1 (ko) 염화 비닐-아세트산 비닐 공중합체 라텍스의 제조 방법
WO2019098753A1 (ko) 그라프트 공중합체의 제조방법
WO2017105003A1 (ko) 열가소성 중합체, 이의 제조방법 및 이를 포함하는 열가소성 중합체 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828023

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014525923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120036549

Country of ref document: DE

Ref document number: 112012003654

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828023

Country of ref document: EP

Kind code of ref document: A2