WO2017018740A1 - 가소제 조성물, 수지 조성물 및 이들의 제조 방법 - Google Patents

가소제 조성물, 수지 조성물 및 이들의 제조 방법 Download PDF

Info

Publication number
WO2017018740A1
WO2017018740A1 PCT/KR2016/008043 KR2016008043W WO2017018740A1 WO 2017018740 A1 WO2017018740 A1 WO 2017018740A1 KR 2016008043 W KR2016008043 W KR 2016008043W WO 2017018740 A1 WO2017018740 A1 WO 2017018740A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalate
epoxidized
epoxy
alcohol
oil
Prior art date
Application number
PCT/KR2016/008043
Other languages
English (en)
French (fr)
Inventor
김현규
이미연
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160092873A external-priority patent/KR101793383B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16830773.4A priority Critical patent/EP3327074B1/en
Priority to CN202010024857.2A priority patent/CN111218031B/zh
Priority to CN201680017114.4A priority patent/CN107428992B/zh
Priority to US15/557,773 priority patent/US10584229B2/en
Priority to ES16830773T priority patent/ES2961732T3/es
Priority to EP23182563.9A priority patent/EP4242254A3/en
Publication of WO2017018740A1 publication Critical patent/WO2017018740A1/ko
Priority to US16/748,190 priority patent/US11597815B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/06Electrical wire insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition, a resin composition and a method for producing the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plastics is being continued.
  • plasticizers in order to manufacture products such as flooring, wallpaper, sheets, interior and exterior materials of automobiles, films, and wires, appropriate plasticizers should be used in consideration of transferability, heating loss, tensile strength, elongation, and plasticization efficiency.
  • Plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. may be blended with PVC resins according to the tensile strength, elongation, light resistance, transferability, gelling properties, etc., which are required for various types of industries.
  • the plasticizer efficiency is low, the plasticizer absorption rate is relatively slow, and the light resistance and the transferability are not good.
  • the inventors have identified a plasticizer composition that can improve the poor physical properties caused by structural limitations while continuing to study the plasticizer, and have completed the present invention.
  • an object of the present invention is to provide a plasticizer capable of improving the physical properties such as plasticization efficiency, transferability, gelling property, light resistance, etc. required in the formulation of a sheet, etc., when used as a plasticizer of the resin composition, a method for producing the same, and a resin composition comprising the same. I'm trying to provide.
  • a terephthalate-based material comprising: an epoxy-based alkyl ester compound represented by Formula 1; wherein the weight ratio of the terephthalate-based material to the epoxy-based alkyl ester compound is 99: 1 to 1:99, and the epoxy-based alkyl ester compound is a single compound or A plasticizer composition is provided that is a mixture containing two or more species.
  • R1 is an alkyl group having 8 to 20 carbon atoms or an alkyl group containing at least one epoxy group
  • R2 is an alkyl group having 4 or 8 carbon atoms.
  • the weight ratio of the terephthalate-based material to the epoxy-based alkyl ester compound may be 95: 5 to 5:95.
  • the terephthalate-based material is di (2-ethylhexyl) terephthalate (DEHTP), diisononyl terephthalate (DINTP), dibutyl terephthalate (DBTP), butyl isononyl terephthalate (BINTP), butyl (2- It may be a single compound selected from the group consisting of ethylhexyl) terephthalate (BEHTP) and (2-ethylhexyl) isononyl terephthalate (EHINTP) or a mixture of two or more compounds.
  • DEHTP di (2-ethylhexyl) terephthalate
  • DINTP diisononyl terephthalate
  • DBTP dibutyl terephthalate
  • BINTP butyl isononyl terephthalate
  • butyl (2- It may be a single compound selected from the group consisting of ethylhex
  • the terephthalate-based material is a first mixture of di (2-ethylhexyl) terephthalate, butyl (2-ethylhexyl) terephthalate and dibutyl terephthalate, or diisononyl terephthalate and butyl isononyl terephthalate. And a second mixture in which dibutyl terephthalate is mixed, or a third mixture in which di (2-ethylhexyl) terephthalate, (2-ethylhexyl) isononyl terephthalate and diisononyl terephthalate are mixed.
  • the epoxy alkyl ester compounds may be iodine value of less than 4 g I 2/100 g.
  • the epoxidation alkyl ester compound may have an epoxidation index (E.I.) of 1.5 or more.
  • the plasticizer composition may further comprise an epoxidized oil.
  • the epoxidized oil may include 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of the terephthalate-based material and the epoxy-based alkyl ester compound.
  • the epoxidized oil is epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized stearic acid acid), epoxidized oleic acid, epoxidized tall oil, and epoxidized linoleic acid.
  • obtaining a terephthalate-based material Esterifying a epoxidized oil with a primary alkyl alcohol having 4 or 8 carbon atoms to obtain an epoxy-based alkyl ester compound represented by Formula 1 below; And mixing the terephthalate-based material and the epoxy-based alkyl ester compound in a weight ratio of 99: 1 to 1:99, wherein the epoxy-based alkyl ester compound is a single compound or a mixture of two or more thereof.
  • a method for preparing is provided.
  • R1 is an alkyl group containing 8 to 20 carbon atoms or an alkyl group containing at least one epoxy group
  • R2 is an alkyl group having 4 or 8 carbon atoms.
  • the primary alkyl alcohol may be one or more selected from the group consisting of butyl alcohol, isobutyl alcohol, 2-ethylhexyl alcohol and octyl alcohol.
  • the terephthalate-based material is a direct esterification reaction of terephthalic acid and at least two alcohols selected from primary alkyl alcohols having 4 to 12 carbon atoms; Or it may be prepared through a trans esterification reaction of terephthalate and primary alkyl alcohol having 4 to 12 carbon atoms.
  • the primary alkyl alcohol having 4 to 12 carbon atoms may be one or more selected from the group consisting of butyl alcohol, isobutyl alcohol, 2-ethylhexyl alcohol, octyl alcohol, and isononyl alcohol.
  • the epoxidized oil is epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized stearic acid acid), epoxidized oleic acid, epoxidized tall oil, and epoxidized linoleic acid.
  • 100 parts by weight of resin; And 5 to 150 parts by weight of the above-described plasticizer composition is provided.
  • the resin may be one or more selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomers.
  • the plasticizer composition according to an embodiment of the present invention can provide excellent physical properties such as migration resistance and volatility, as well as excellent plasticization efficiency and tensile strength and elongation. It can be suitably used for resin products that have excellent absorption rate and require eco-friendly plasticizers using vegetable raw materials.
  • Figure 1 is an image of the results of the thermal stability test for the samples of the Examples and Comparative Examples.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
  • the filtrate was added to the reaction solution from which the water was removed, and the resultant was stirred for a while, and then filtered to obtain 1326.7 g (yield: 99.0%) of di (2-ethylhexyl) terephthalate.
  • DINTP was prepared in the same manner as in Preparation Example 1, except for using isononyl alcohol instead of 2-ethylhexyl alcohol in the esterification reaction.
  • the reaction product was mixed and distilled to remove butanol and 2-ethylhexyl alcohol and finally to prepare a first mixture.
  • TPA purified terephthalic acid
  • 2-EH 2-ethylhexyl alcohol
  • a molar ratio of -EH (1.0) :( 2.5)) and 216.5 g of isononyl alcohol (INA) (molar ratio of TPA: INA (1.0) :( 0.5)) were added, and a titanium-based catalyst (TIPT, tetra isopropyl titanate) as a catalyst ) was added 1.54 g (0.31 parts by weight based on 100 parts by weight of TPA), and the temperature was gradually raised to about 170 ° C.
  • the production of water was started at about 170 ° C., and the reaction was carried out for about 4.5 hours while nitrogen gas was continuously added at a reaction temperature of about 220 ° C. and atmospheric pressure. The reaction was terminated when the acid value reached 0.01.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction liquid temperature is cooled to about 90 ° C, and neutralization treatment is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
  • the filtrate was added to the reaction solution from which the water had been removed, stirred for a predetermined time, and filtered to obtain a third mixture.
  • the mixture of Preparation Example 4 may be prepared even when using a trans esterification reaction using isononyl alcohol instead of 2-ethylhexyl alcohol in Preparation Example 3.
  • the transesterification reaction was carried out using 500 g of epoxidized soybean oil and 490 g of butanol as a reaction raw material, and finally 510 g (yield: 95%) of epoxidized butyl soyate was obtained.
  • Example 2-1 DINTP eFABE 7: 3
  • Example 2-2 DINTP eFABE 5: 5
  • Example 2-3 DINTP eFAEHE 7: 3
  • Example 2-4 DINTP eFAEHE 5: 5
  • Example 2-5 DINTP eFAEHE + eFABE (5: 5) 7: 3
  • Example 4-1 DEHTP eFABE 7: 3 ESO (60 parts by weight)
  • Example 4-2 DINTP eFAEHE 7: 3 ESO (100 parts by weight)
  • Example 4-3 DEHTP / BEHTP / DBTP eFABE 7: 3 ESO (40 parts by weight)
  • Shore (shore “A) hardness at 25 ° C. was measured using ASTM D2240.
  • Elongation (%) calculated after elongation / initial length x 100.
  • Test specimens having a thickness of 2 mm or more were obtained according to KSM-3156, and a PS plate was attached to both sides of the specimens, and a load of 1 kgf / cm 2 was applied thereto.
  • the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the PS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Absorption rate was evaluated by measuring the time required for the resin and the ester compound to be in a state of stabilizing the torque of the mixer by using a Planatary mixer (Brabender, P600) under the conditions of 77 °C, 60 rpm.
  • the prepared specimen was heated to 230 ° C. in a Mathis oven to check the burned degree of the specimen.
  • Example 1-1 85.6 230.2 335.6 4.12 2.77 4:57
  • Example 1-2 84.3 232.4 314.2 4.35 3.08 4:03
  • Example 1-3 86.2 247.8 325.6 4.32 2.62 6:08
  • Example 1-4 85.1 250.3 339.5 4.56 2.84 6:49
  • Example 1-5 85.8 241.5 331.8 4.18 2.68 5:11
  • Example 2-1 87.9 234.4 320.0 5.33 1.74 5:35
  • Example 2-2 86.4 232.8 325.2 5.67 2.11 4:22
  • Example 2-3 88.3 253.3 309.2 5.02 1.52 7:10
  • Example 2-4 87.3 250.1 321.7 5.42 1.89 6:10
  • Example 2-5 88.1 247.9 315.4 5.24 1.58 6:15
  • Example 3-1 83.4 232.5 352.1 2.25 3.56 4:43
  • Example 3-2 82.1 235.6 356.8 2.39 3.21 4:03
  • Example 3-3 84.4 250.1 360.2 2.51 3.08 5:02
  • Example 3-4 84.2 255.7 362.8 2.74 2.83 4:42
  • Example 3-5 83.0 250.2 360.9 2.44 2.91 4:21
  • Example 4-1 85.0 252.6 359.7 3.16 1.88 5:12
  • Example 4-2 86.7 258.9 342.1 3.41 1.02 6:45
  • Example 4-3 83.8 254.1 357.8 1.78 2.52 5:10
  • Comparative Examples 1 to 3 in which the epoxy-based alkyl ester compound is not added, are conventionally used as general-purpose products, and have excellent basic physical properties but problems such as price competitiveness and limited use.
  • the specimens of the examples had almost the same mechanical properties as those of the examples, and in terms of absorption rate, significant improvements were made, and also in the case of transition loss or heating loss. It can be confirmed.
  • Examples 1-1 to 1-5 and Examples 3-1 to 3-5 when comparing Examples 1-1 to 1-5 and Examples 3-1 to 3-5, it can be seen that in Examples 3-1 to 3-5, the hardness is low and the elongation is high. It can also be seen that the plasticizer compositions of Examples 3-1 to 3-5 can be suitably used for specific applications.
  • Example 1-1 which does not include the epoxidized oil
  • Example 4-1 which included the epoxidized oil
  • the degree of combustion is considerably smaller than that of the combustion.
  • butyl refers to an alkyl group having 4 carbon atoms, and may be used as a term including both straight and branched chains, and may be, for example, n-butyl, isobutyl, or t-butyl. But preferably n-butyl or isobutyl.
  • octyl and “2-ethylhexyl” are alkyl groups having 8 carbon atoms, and may be mixed with octyl as an abbreviation of 2-ethylhexyl, and in some cases, may mean octyl which is a linear alkyl group. However, it can be interpreted to mean a branched alkyl group, 2-ethylhexyl.
  • a terephthalate-based material comprising: and an epoxy-based alkyl ester compound, wherein the weight ratio of the terephthalate-based material to the epoxy-based alkyl ester compound is 99: 1 to 1:99, and the epoxy-based alkyl ester compound includes a single compound or two or more kinds thereof.
  • a plasticizer composition is provided that is a mixture.
  • the terephthalate-based material has a content selected from the range of 1 to 99% by weight, 20 to 99% by weight, 40 to 99% by weight, 50 to 95% by weight or 60 to 90% by weight, based on the total weight of the composition. Can be applied.
  • the terephthalate-based material is di (2-ethylhexyl) terephthalate (DEHTP), diisononyl terephthalate (DINTP), dibutyl terephthalate (DBTP), butyl isononyl terephthalate (BINTP), butyl (2- It may be a single compound selected from the group consisting of ethylhexyl) terephthalate (BEHTP) and (2-ethylhexyl) isononyl terephthalate (EHINTP) or a mixture of two or more compounds.
  • DEHTP di (2-ethylhexyl) terephthalate
  • DINTP diisononyl terephthalate
  • DBTP dibutyl terephthalate
  • BINTP butyl isononyl terephthalate
  • butyl (2- It may be a single compound selected from the group consisting of ethylhex
  • the terephthalate-based material may be a mixture of three terephthalate-based materials, for example, di (2-ethylhexyl) terephthalate, butyl (2-ethylhexyl) terephthalate and dibutyl terephthalate crab mixed First mixture, diisononyl terephthalate, butylisononyl terephthalate and dibutyl terephthalate mixed second mixture, di (2-ethylhexyl) terephthalate, (2-ethylhexyl) isononyl terephthalate and It may be a third mixture in which diisononyl terephthalate is mixed.
  • the first mixture is di (2-ethylhexyl) terephthalate 3.0 to 99.0 mol%; Butyl (2-ethylhexyl) terephthalate 0.5 to 96.5 mol% and dibutyl terephthalate 0.5 to 96.5 mol%; wherein the second mixture is diisononyl terephthalate 3.0 to 99.0 mol%; Butyl isononyl terephthalate 0.5 to 96.5 mol% and dibutyl terephthalate 0.5 to 96.5 mol%; wherein the third mixture is di (2-ethylhexyl) terephthalate 3.0 to 99.0 mol%; 0.5 to 96.5 mol% of (2-ethylhexyl) isononyl terephthalate and 0.5 to 96.5 mol% of diisononyl terephthalate;
  • the composition ratio may be a mixture composition ratio produced by the esterification reaction, and may be an intended composition ratio by additionally mixing a specific compound, and the mixture composition ratio may be appropriately adjusted to suit desired physical properties.
  • the plasticizer composition includes a terephthalate-based material and includes an epoxy-based alkyl ester compound.
  • the epoxy alkyl ester compound may be represented by the following general formula (1), the iodine value may be less than (Iodine Value, IV) a 4 g I 2/100 g.
  • R1 is an alkyl group having 8 to 20 carbon atoms or an alkyl group having at least one epoxy group
  • R2 is an alkyl group having 4 or 8 carbon atoms.
  • the epoxy-based alkyl ester compound may have an oxirane value (Oxirane Value, O.V.) of 6.0% or more, 6.3% or more, and preferably 6.5% or more.
  • O.V. oxirane Value
  • the oxirane can be changed according to the number of epoxy groups contained in the substituent represented by R1 in the formula (1), can be measured by a titration method, the method of ASTM D1562-04 using a sample and an acid solution It may be measured by.
  • the epoxy alkyl ester compound but the iodine can be less than 4 g I 2/100 g, can be not more than preferably 3.8 I 2/100 g.
  • the iodine number represents the content of the double bond present in the molecule, and may be derived from a value measured by a titration method through iodization of the double bond.
  • the epoxy-based alkyl ester compound may be an important element when the measured iodine and oxirane are applied to the plasticizer composition.
  • the iodine value is 4 g I 2/100 g, if more than this out, the compatibility with the resin is significantly reduced, and can not be used in the plasticizer purpose, incidentally it is iodine value is 4 g I 2
  • the mechanical and physical properties such as tensile strength, elongation and absorption rate may also be improved.
  • oxiraga can also have similar technical significance and similar effects as iodine number.
  • the iodine number may represent the content of the double bond, and the content of the double bond may be the content of the double bond remaining after the epoxidation reaction such as epoxidation of vegetable oil or epoxidation of fatty acid alkyl ester is performed. That is, the oxirags and iodines may be indicative of how much epoxidation has been performed, and thus may be partially related to each other, and in theory, may be inversely related to each other.
  • the double bonds of vegetable oils or fatty acid alkyl esters may vary from material to material, so the two parameters do not form an exact inverse relationship or trade off relationship, and a higher iodine value between the two materials.
  • the material may also be higher in oxirane at the same time. Therefore, it may be preferable to apply to the plasticizer composition that the iodine number and the oxirane value of an epoxy-type alkyl ester compound satisfy the above-mentioned range.
  • the epoxidation index (E.I.) of the epoxy-based alkyl ester compound may be 1.5 or more.
  • the 'epoxidation index' is a ratio of oxirane to iodine number of the epoxy-based alkyl ester compound, and may be a ratio of remaining double bonds that do not react with the double bonds epoxidized by the epoxidation reaction.
  • the hardness may increase and the plasticization efficiency may be greatly deteriorated. And heat loss characteristics may be greatly deteriorated.
  • the epoxidation index may be 1.5 or more as the ratio of oxiraga to iodine number (oxiraga / iodine number). That is, when the oxirane value of the epoxy-based alkyl ester divided by iodine number is 1.5 or more, a more optimized plasticizer composition can be obtained, and in particular, the compatibility with the resin may be improved.
  • the epoxy-based alkyl ester compound may be an epoxidized Fatty Acid Alkyl Ester (eFAAE), specifically, may be represented by Formula 1, 'alkyl' of the epoxy-based alkyl ester compound has 4 carbon atoms Or eight.
  • eFAAE epoxidized Fatty Acid Alkyl Ester
  • R 2 may have 4 to 8 carbon atoms, and preferably, a butyl group or a 2-ethylhexyl group.
  • the epoxy-based alkyl ester compound represented by the formula (1) may include two or more kinds to form a mixed composition, when two or more kinds are included is a mixture of 4 and 8 carbon atoms It may be preferable, when the carbon number of R2 of Formula 1 is 4 or 8, the absorption characteristics are excellent to reduce the gelling phenomenon, the processability can be improved, and the mechanical properties such as basic tensile strength and elongation is also excellent In particular, excellent performance can be exhibited in transitional performance and heat loss characteristics.
  • the terephthalate-based material and the epoxy-based alkyl ester compound in the plasticizer composition may be included in a weight ratio of 99: 1 to 1:99, 99: 1 to 20:80, or 99: 1 to 40:60 days It may be, preferably contained in a ratio of 95: 5 to 50:50, or 90:10 to 60:40.
  • the tensile strength and elongation may be excellent, and an improved effect may be observed in the transition and heating loss, and the absorption rate It can be controlled so that the workability can be improved together.
  • obtaining a terephthalate-based material Esterifying a epoxidized oil with a primary alkyl alcohol having 4 or 8 carbon atoms to obtain an epoxy-based alkyl ester compound represented by Formula 1 below; And mixing the terephthalate-based material and the epoxy-based alkyl ester compound in a weight ratio of 99: 1 to 1:99, wherein the epoxy-based alkyl ester compound is a single compound or a mixture of two or more thereof.
  • a method for preparing is provided.
  • terephthalate-based material and the epoxy-based alkyl ester compound may be performed respectively, and the materials may be prepared through direct esterification reaction and / or trans esterification reaction.
  • the terephthalate-based material may be prepared through a direct esterification reaction of terephthalic acid and at least one alcohol selected from primary alkyl alcohols having 4 to 12 carbon atoms, and the terephthalate and primary alkyl alcohols having 4 to 12 carbon atoms. It can be prepared by trans esterification reaction.
  • the epoxy-based alkyl ester compound may be prepared by the trans esterification reaction of the epoxidized oil and the primary alkyl alcohol having 4 or 8 carbon atoms.
  • Terephthalate which is used as a raw material for preparing the terephthalate-based material, may be one having 12 to 12 carbon atoms, preferably 4 to 12 alkyl groups of ester groups substituted on both sides of a benzene ring, and having 4 to 12 carbon atoms.
  • the alkyl alcohol may be one or more selected from the group consisting of butyl alcohol, isobutyl alcohol, 2-ethylhexyl alcohol, octyl alcohol and isononyl alcohol.
  • the primary alkyl alcohol having 4 or 8 carbon atoms used as a raw material for producing the epoxy-based alkyl ester compound may be one or more selected from the group consisting of butyl alcohol, isobutyl alcohol, 2-ethylhexyl alcohol and octyl alcohol. have.
  • the alkyl group of the alcohol may correspond to R2 of Formula 1 in the epoxy-based alkyl ester compound represented by Formula 1 after the reaction is completed.
  • the epoxidized oil for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized palm oil, epoxidized palm oil Stearic acid (epoxidized stearic acid), epoxidized oleic acid, epoxidized tall oil, epoxidized linoleic acid, or mixtures thereof.
  • the compound may be introduced into a certain amount of epoxy group.
  • the epoxidized oil may be represented by the following Chemical Formula 2, and may include three ester groups in one molecule, and may contain a certain amount of epoxy groups.
  • the epoxidized oil represented by Formula 2 corresponds to one example.
  • the epoxidized oil can be a iodine value is 4 g I 2/100 g is less than can there, iodine value and substantially the same level of iodine transesterification reaction varied potential is lowered product of epoxy alkyl esters for compound The characteristics thereof are the same as those of the iodine number of the above-mentioned epoxy-based alkyl ester compound.
  • trans-esterification reaction refers to a reaction in which an alcohol reacts with an ester as shown in Scheme 1, where R " of the ester is interchanged with R ′ of the alcohol as shown in Scheme 1 below:
  • the trans esterification reaction has an advantage that the reaction rate is faster than the acid and alcohol esterification reaction without causing a waste water problem.
  • di (2-ethylhexyl) terephthalate and butyl alcohol may be prepared by di- (2-ethylhexyl) terephthalate and butyl (2-
  • a mixture of ethylhexyl) terephthalate and dibutylterephthalate may be produced, wherein the three terephthalates are 3.0 wt% to 70 wt%, 0.5 wt% to 50 wt%, and 0.5 wt%, respectively, based on the total weight of the mixture It may be formed in an amount of% to 85% by weight, specifically, may be formed in an amount of 10% to 50% by weight, 0.5% to 50% by weight, and 35% to 80% by weight. Within this range, there is an effect of obtaining a terephthalate-based material (mixture) having high process efficiency and excellent processability and absorption rate.
  • the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
  • the addition amount of the alcohol may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of terephthalate.
  • the molar ratio of the reactant terephthalate and alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, within this range, the process efficiency is high and the processability is improved. There is an effect of obtaining a plasticizer having an excellent effect.
  • composition ratio of the mixture of the three terephthalate-based materials is not limited to the above range, and the composition ratio may be changed by additionally adding one of the three terephthalates, and the possible mixed composition ratio may be As shown.
  • the trans-esterification reaction is carried out at a reaction temperature of 120 to 190, preferably 135 to 180, more preferably 141 to 179 for 10 minutes to 10 hours, preferably for 30 minutes to Preference is given to performing at 8 hours, more preferably 1 to 6 hours. It is possible to effectively obtain a mixture that is a terephthalate-based material of a desired composition ratio within the temperature and time range.
  • the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the trans-esterification reaction may be carried out under an acid catalyst or a metal catalyst, in which case the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • trans-esterification reaction may further comprise the step of distilling off the unreacted alcohol and reaction by-products, for example, the ester compound represented by the formula (3).
  • the distillation may be, for example, two-stage distillation that is separated by using a difference between the break points of the alcohol and the reaction by-product.
  • the distillation may be mixed distillation.
  • the mixed distillation means distilling butanol and reaction by-products simultaneously.
  • the trans esterification reaction for preparing the epoxy-based alkyl ester compound is also applied in the same manner as the reaction for producing the terephthalate-based material, but the specific reaction conditions may be different.
  • the difference can be:
  • the trans esterification reaction is 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 4 under a reaction temperature of 40 to 230, preferably 50 to 200, more preferably 70 to 200. May be performed in time. It is possible to effectively obtain the desired epoxy-based alkyl ester compound within the above temperature and time range. In this case, the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • polyhydric alcohol and the reaction by-products and the unreacted alcohol produced after the trans-esterification reaction may further comprise the step of separating, washing and distilling the reaction by-products.
  • the purification process may be performed after the trans esterification reaction for a certain period of time to cool and settle at a temperature of 80 to 100 °C, in which case layer separation occurs, the upper layer includes an epoxy-based alkyl ester and alcohol
  • the lower layer may contain glycerin and other byproducts.
  • neutralization and water washing can be induced by adding a catalyst neutralization aqueous solution to neutralize the catalyst.
  • the neutralization and washing process may be performed after first separating the lower layer containing mainly by-products, and may be discharged by dissolving the by-products of the lower layer in water during the neutralization and washing process, and then unreacted after the repeated washing process Alcohol and water can be recovered and removed.
  • 2-ethylhexyl alcohol having 8 carbon atoms when 2-ethylhexyl alcohol having 8 carbon atoms is used, 2-ethylhexyl alcohol has low solubility in water, and there is no problem of waste water generation. Therefore, in this case, the alcohol is removed after neutralization and washing with water. In the case of the removal, the neutralization and washing with water after removing the byproduct layer of the lower layer may be advantageous without proceeding with a fatal problem.
  • the physical properties of the epoxy-based alkyl ester compound to be produced may vary depending on the type and content of the catalyst to be used, the reaction time or 1 to react with the epoxidized oil Depending on the content of the primary alkyl alcohol, the physical properties, yield or quality of the product may also be modified.
  • NaOMe is preferably used as a catalyst in the process of preparing the epoxy-based alkyl ester compound, and the color of the prepared epoxy-based alkyl ester compound does not meet the standard compared to a catalyst such as sodium hydroxide or potassium hydroxide.
  • a catalyst such as sodium hydroxide or potassium hydroxide.
  • the epoxidation index, oxirane content, etc. of an epoxy-type alkyl ester compound may not produce the target numerical value.
  • the catalyst may be the most effective in terms of reaction rate of 0.1 to 2.0% by weight, preferably 0.1 to 1.0% by weight relative to the total weight of the epoxidized oil as a reaction raw material, the content of the catalyst when out of this range Failure to control may not meet the quality standards of epoxy-based alkyl ester compounds such as epoxidation indexes.
  • the addition amount of the epoxidized oil and the primary alkyl alcohol may also be an important factor.
  • the primary alkyl alcohol it is preferable to add 30 to 100 parts by weight relative to the epoxidized oil, and 30 parts by weight.
  • impurities such as residual epoxidized oil or dimerized material of epoxidized oil may remain excessively. There are many concerns about energy and process efficiency issues during the process.
  • the mixing ratio may be suitably selected within the range of 99: 1 to 1:99, and may be mixed by applying the above-described mixing weight ratio.
  • plasticizer composition according to the present invention may further include an epoxidized oil in addition to the terephthalate-based material and the epoxy-based alkyl ester compound.
  • heat resistance may not be excellent among various physical properties, and the heat resistance may be compensated by further including the epoxidized oil.
  • the epoxidized oil is, for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized palm oil, epoxidized stearic acid (epoxidized stearic acid), epoxidized oleic acid, epoxidized tall oil, epoxidized linoleic acid, or mixtures thereof.
  • epoxidized soybean oil (ESO), or epoxidized linseed oil (ELO) may be applied, but is not limited thereto.
  • the epoxidized oil may include 1 to 100 parts by weight, preferably 10 to 100 parts by weight, preferably 20 to 100 parts by weight of the mixed weight of the terephthalate-based material and the epoxy-based alkyl ester compound. To 100 parts by weight may be included. When included within the above range, a plasticizer composition having suitably superior physical properties between mechanical properties and heat resistance properties can be obtained.
  • the overall freezing point of the plasticizer composition can be further lowered, and thus, the freezing point is lower than that of the epoxy-based plasticizer composition.
  • a composition can be provided.
  • 100 parts by weight of the resin 100 parts by weight of the resin; And 5 to 150 parts by weight of the above-described plasticizer composition.
  • the resin may be at least one resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer, wherein the plasticizer composition is based on 100 parts by weight of the resin, 5 It may be included in the range of from 150 to 150 parts by weight, 40 to 100 parts by weight, or 40 to 50 parts by weight to provide a resin composition effective for all compound formulations, sheet formulations and plastisol formulations.
  • the resin composition includes the plasticizer composition as described above, and can be applied to various applications such as flooring, wallpaper, automobile interior, sheet, film, hose, or electric wire, and has tensile strength and elongation, plasticization efficiency and heating loss.
  • the same basic mechanical properties may also exhibit physical properties equivalent to those of conventional plasticizers.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may be a filler known in the art, it is not particularly limited.
  • it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers as necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • Stabilizers that can be used can be used, for example, calcium-zinc-based (Ca-Zn-based) stabilizers, such as calcium-zinc complex stearic acid salt, but is not particularly limited thereto.
  • Ca-Zn-based stabilizers such as calcium-zinc complex stearic acid salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

테레프탈레이트계 물질; 및 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물;을 포함하고, 상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 99:1 내지 1:99이며, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상이 포함된 혼합물인 것인 가소제 조성물, 그의 제조방법 및 그 가소제 조성물을 포함하는 수지 조성물을 제공한다. (상기 화학식 1에서, R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 함유하는알킬기이고, R2는 탄소수 4 또는 8의 알킬기이다.) 본 발명은 구조적인 한계로 인해 발생되던 불량한 물성들을 개선함으로써 수지 조성물의 가소제로서 사용시 요구되는 인장강도, 내이행성, 가열감량 등의 물성을 개선시킬 수 있는 가소제 및 이들을 포함한 수지 조성물을 제공할 수 있다.

Description

가소제 조성물, 수지 조성물 및 이들의 제조 방법
관련출원과의 상호인용
본 출원은 2015년 07월 24일자 한국 특허 출원 제10-2015-0105323호 및 2016년 07월 21일자 한국 특허 출원 제10-2016-0092873호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 시트, 자동차 내외장재, 필름, 전선 등의 제품을 제조하기 위해서는 이행성, 가열감량, 인장, 신율 및 가소화 효율 등을 고려하여 적절한 가소제를 사용하여야 한다. 이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 저렴한 디에틸헥실테레프탈레이트를 적용할 경우, 가소화 효율이 낮고 가소제의 흡수 속도가 상대적으로 느리며, 내광성 및 이행성도 양호하지 않았다.
이에 상기 디에틸헥실테레프탈레이트보다 우수한 제품 등의 신규 조성물의 제품을 개발함으로써, 염화비닐계 수지에 대한 가소제로서 최적 적용할 수 있는 기술에 대한 연구가 계속 필요한 실정이다.
이에 본 발명자들은 가소제에 대한 연구를 계속하던 중 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물을 확인하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 수지 조성물의 가소제로서 사용시 시트 등의 처방에서 요구되는 가소화 효율, 이행성, 겔링성, 내광성 등의 물성을 개선시킬 수 있는 가소제와 그 제조 방법 및 이들을 포함한 수지 조성물을 제공하려는데 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질; 및 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물;을 포함하고, 상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 99:1 내지 1:99 이며, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상이 포함된 혼합물인 것인 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2016008043-appb-I000001
상기 화학식 1에서, R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 함유하는 알킬기이고, R2는 탄소수 4 또는 8의 알킬기이다.
상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 95:5 내지 5:95인 것일 수 있다.
상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 (2-에틸헥실)이소노닐테레프탈레이트(EHINTP)로 이루어진 군에서 선택된 단일 화합물 또는 2 종 이상의 화합물이 혼합된 혼합물인 것일 수 있다.
상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제1혼합물이거나, 디이소노닐테레프탈레이트, 부틸이소노닐테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제2혼합물이거나, 디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐테레프탈레이트 및 디이소노닐테레프탈레이트가 혼합된 제3혼합물인 것일 수 있다.
상기 에폭시계 알킬 에스테르 화합물은 요오드가가 4 g I2/100 g미만인 것일 수 있다.
상기 에폭시화 알킬 에스테르 화합물은 에폭시화 인덱스(Epoxidation Index, E.I.)가 1.5 이상인 것일 수 있다.
상기 가소제 조성물은 에폭시화 오일을 더 포함할 수 있다.
상기 에폭시화 오일은 상기 테레프탈레이트계 물질 및 에폭시계 알킬 에스테르 화합물의 혼합 중량 100 중량부 대비, 1 내지 100 중량부를 포함하는 것일 수 있다.
상기 에폭시화 오일은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil) 및 에폭시화 리놀산(epoxidized linoleic acid)로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 얻는 단계; 에폭시화 오일과 탄소수가 4 또는 8인 1차 알킬 알코올을 에스테르화 반응시켜 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물을 얻는 단계; 및 상기 테레프탈레이트계 물질 및 에폭시계 알킬 에스테르 화합물을 99:1 내지 1:99의 중량비로 혼합하는 단계;를 포함하고, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상의 혼합물인 것인 가소제 조성물의 제조방법이 제공된다.
[화학식 1]
Figure PCTKR2016008043-appb-I000002
상기 화학식 1에서, R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 함유하는 알킬기이고, R2는 탄소수 4 또는 8의 알킬기다.
상기 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올 및 옥틸 알코올로 이루어진 군에서 선택된 1 이상인 것일 수 있다.
상기 테레프탈레이트계 물질은 테레프탈산과 탄소수 4 내지 12인 1차 알킬 알코올 중에서 선택된 2 종 이상의 알코올의 직접 에스테르화 반응; 또는 테레프탈레이트와 탄소수 4 내지 12인 1차 알킬 알코올의 트랜스 에스테르화 반응을 통하여 제조되는 것일 수 있다.
상기 탄소수가 4 내지 12인 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올, 옥틸 알코올 및 이소노닐 알코올로 이루어진 군에서 선택된 1 이상인 것일 수 있다.
상기 에폭시화 오일은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil) 및 에폭시화 리놀산(epoxidized linoleic acid)로 이루어진 군에서 선택된 1 이상을 포함하는 것일 수 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 전술한 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다,
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 우수한 가소화 효율 및 인장강도와 신율 뿐만 아니라, 내이행성 및 내휘발성 등의 우수한 물성을 제공할 수 있으며, 특히 가소화 효율, 흡수속도 등이 우수하고 식물성 원료 사용에 따른 친환경 가소제가 요구되는 수지 제품에 적합하게 사용될 수 있다.
도 1은 실시예 및 비교예의 시료들에 대하여 열안정성을 테스트한 결과를 촬영한 이미지이다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1: DEHTP의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; TPA) 498.0 g, 2-에틸헥실 알코올(2-EH) 1170 g (TPA: 2-EH의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54 g(TPA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-에틸헥실)테레프탈레이트 1326.7 g(수율: 99.0 %)을 얻었다.
제조예 2: DINTP의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 이소노닐 알코올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 DINTP를 제조하였다.
제조예 3: DEHTP/ BEHTP/ DBTP 혼합물(제1혼합물)의 제조
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실)테레프탈레이트 2000g 및 n-부탄올 340g (DEHTP 100 중량부를 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160의 반응온도에서 2 시간 동안 트랜스-에스테르화 반응시켜, 디부틸테레프탈레이트(DBTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 4.0 중량%, 35.0 중량% 및 61.0 중량% 범위로 포함하는 에스테르계 가소제 조성물을 얻었다.
상기 반응 생성물을 혼합 증류하여 부탄올 및 2-에틸헥실 알코올을 제거하고 최종적으로 제1혼합물을 제조하였다.
제조예 4: DINTP/ EHINTP/ DEHTP 혼합물(제3혼합물)의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; TPA) 498.0 g, 2-에틸헥실 알코올(2-EH) 975 g (TPA:2-EH의 몰비 (1.0):(2.5)) 및 이소노닐 알코올(INA) 216.5 g (TPA:INA의 몰비 (1.0):(0.5))을 첨가하고, 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54 g(TPA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알칼리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 제3혼합물을 얻었다.
참고로, 본 제조예 4의 혼합물은 상기 제조예 3에서 2-에틸헥실 알코올 대신, 이소노닐 알코올을 사용하여 트랜스 에스테르화 반응을 이용하는 경우에도 제조될 수 있다.
제조예 5: 에폭시화 지방산 부틸 에스테르(eFABE)의 제조
반응 원료로서 에폭시화 대두유(epoxidized soybean oil) 500 g과 부탄올 490 g을 사용하여, 트랜스 에스테르화 반응을 수행하였고, 최종적으로 에폭시화 부틸 소이에이트 510 g(수율: 95%)을 얻었다.
제조예 6: 에폭시화 지방산 2-에틸헥실 에스테르(eFAEHE)의 제조
부탄올 490 g 대신 2-에틸헥실 알코올 490 g을 사용한 것을 제외하고는 상기 제조예 5와 동일한 방법으로 에폭시화 2-에틸헥실 소이에이트 584 g(수율: 95%)을 얻었다.
상기 제조예 1 내지 6에서 제조된 물질들을 이용하여 하기 표 1 내지 5와 같이 실시예 및 비교예를 구성하였다.
TP계 물질 eFAAE 물질 혼합 중량비
실시예 1-1 DEHTP eFABE 7:3
실시예 1-2 DEHTP eFABE 5:5
실시예 1-3 DEHTP eFAEHE 7:3
실시예 1-4 DEHTP eFAEHE 5:5
실시예 1-5 DEHTP eFAEHE + eFABE(5:5) 7:3
TP계 물질 eFAAE 물질 혼합 중량비
실시예 2-1 DINTP eFABE 7:3
실시예 2-2 DINTP eFABE 5:5
실시예 2-3 DINTP eFAEHE 7:3
실시예 2-4 DINTP eFAEHE 5:5
실시예 2-5 DINTP eFAEHE + eFABE(5:5) 7:3
TP계 물질 eFAAE 물질 혼합 중량비
실시예 3-1 DEHTP/BEHTP/DBTP eFABE 7:3
실시예 3-2 DEHTP/BEHTP/DBTP eFABE 5:5
실시예 3-3 DEHTP/BEHTP/DBTP eFAEHE 7:3
실시예 3-4 DEHTP/BEHTP/DBTP eFAEHE 5:5
실시예 3-5 DEHTP/BEHTP/DBTP eFAEHE + eFABE(5:5) 5:5
TP계 물질 eFAAE 물질 혼합 중량비 제3조성
실시예 4-1 DEHTP eFABE 7:3 ESO(60중량부)
실시예 4-2 DINTP eFAEHE 7:3 ESO(100중량부)
실시예 4-3 DEHTP/BEHTP/DBTP eFABE 7:3 ESO(40중량부)
제1조성 제2조성 혼합 중량비
비교예 1 DEHTP - -
비교예 2 DINTP - -
비교예 3 DEHTP/BEHTP/DBTP - -
비교예 4 DEHTP eFAME 5:5
비교예 5 DINTP eFAME 5:5
비교예 6 DIDP eFAME 7:3
비교예 7 DOP eFAME 7:3
비교예 8 DIDP eFAINE 5:5
비교예 9 DEHTP/BEHTP/DBTP eFAINE 7:3
비교예 10 DEHTP/BEHTP/DBTP eFAINE 5:5
실험예 1: 시편 제작 및 성능 평가
상기의 실시예 및 비교예의 가소제 조성물을 이용하여 실험용 시편을 제작하였다. 상기 시편 제작은 ASTM D638을 참조하여, PVC 100 중량부에 가소제 40 중량부, 바륨-아연 안정제 3 중량부를 3L 슈퍼 믹서(super mixer)에서 100℃ 하에 700 rpm 하에 2 분, 1300 rpm 하에 약 10분간 배합한 다음 롤 밀을 160℃에서 3 분간 작업하여 5 mm 시트를 제작하였다.
프레스 작업은 180℃에서 저압 2,5분, 고압 2분, 냉각 3분간 작업 후, 1~3 mm 시트를 만들어 타입 C (type C) 형으로 몇 개의 아령형 시편을 제작하였다. 각 시편을 사용하여 다음과 같은 물성 시험을 수행하였다.
<시험 항목>
경도(hardness) 측정
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore "A")경도를 측정하였다.
인장강도(tensile strength) 측정
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min (1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드(load) 값(kgf) / 두께(cm) x 폭(cm)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min (1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 PS Plate를 붙인 후 1 kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 PS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
가열 감량(volatile loss) 측정
상기 제작된 시편을 100℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (100℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
흡수 속도 측정
흡수 속도는 77℃, 60 rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가하였다.
열 안정성 측정
제작된 시편을 매티스 오븐(Mathis oven)에서 230℃로 가열하여 시편의 연소된 정도를 확인하였다.
상기의 시편들을 상기 항목에 의거하여 성능을 평가한 결과를 하기의 표 6 내지 10에 나타내었고, 내열성 평가 결과를 도 1에 나타내었다.
경도(Shore "A") 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(sec)
실시예 1-1 85.6 230.2 335.6 4.12 2.77 4:57
실시예 1-2 84.3 232.4 314.2 4.35 3.08 4:03
실시예 1-3 86.2 247.8 325.6 4.32 2.62 6:08
실시예 1-4 85.1 250.3 339.5 4.56 2.84 6:49
실시예 1-5 85.8 241.5 331.8 4.18 2.68 5:11
경도(Shore "A") 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(sec)
실시예 2-1 87.9 234.4 320.0 5.33 1.74 5:35
실시예 2-2 86.4 232.8 325.2 5.67 2.11 4:22
실시예 2-3 88.3 253.3 309.2 5.02 1.52 7:10
실시예 2-4 87.3 250.1 321.7 5.42 1.89 6:10
실시예 2-5 88.1 247.9 315.4 5.24 1.58 6:15
경도(Shore "A") 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(sec)
실시예 3-1 83.4 232.5 352.1 2.25 3.56 4:43
실시예 3-2 82.1 235.6 356.8 2.39 3.21 4:03
실시예 3-3 84.4 250.1 360.2 2.51 3.08 5:02
실시예 3-4 84.2 255.7 362.8 2.74 2.83 4:42
실시예 3-5 83.0 250.2 360.9 2.44 2.91 4:21
경도(Shore "A") 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(sec)
실시예 4-1 85.0 252.6 359.7 3.16 1.88 5:12
실시예 4-2 86.7 258.9 342.1 3.41 1.02 6:45
실시예 4-3 83.8 254.1 357.8 1.78 2.52 5:10
경도(Shore "A") 인장강도(kg/cm2) 신율(%) 이행손실(%) 가열감량(%) 흡수속도(sec)
비교예 1 87.4 235.9 310.1 4.00 2.44 7:25
비교예 2 89.1 239.0 303.9 5.35 1.04 8:05
비교예 3 84.7 230.8 332.3 2.11 3.84 5:32
비교예 4 83.2 215.6 308.2 8.41 6.14 2:17
비교예 5 85.1 217.4 310.5 10.52 5.88 2:28
비교예 6 88.7 234.8 284.5 5.62 4.21 9:34
비교예 7 82.4 218.4 312.4 4.33 9.51 4:22
비교예 8 86.4 238.2 265.9 4.37 3.34 11:49
비교예 9 85.2 234.1 312.5 4.15 3.08 5:25
비교예 10 85.7 238.1 310.2 5.65 3.03 5:11
상기 표 6 내지 10을 참조하면, 에폭시계 알킬 에스테르 화합물을 첨가하지 않은 비교예 1 내지 3의 경우, 기존에 범용 제품으로 사용되던 물질로서, 기본적인 물성은 우수하나 가격 경쟁력이나, 한정된 용도 등의 문제를 갖고 있는 물질이나, 이를 실시예들과 비교하여 보면, 실시예들의 시편은 이들과 거의 동등한 기계적인 물성을 갖고 있고, 흡수 속도 측면에서 상당한 개선이 이루어졌고, 이행손실이나 가열감량의 경우에도 개선되었음을 확인할 수 있다.
또한, 에폭시계 알킬 에스테르 화합물 중 탄소수가 4 또는 8인 것이 아닌 에폭시화 메틸 에스테르 화합물이나, 에폭시화 이소노닐 에스테르 화합물을 사용한 비교예 4 내지 10의 경우, 기본적인 기계적 물성이 실시예들에 비하여 상당히 열악함을 확인할 수 있다. 특히 인장강도나 신율과 같은 물성이 크게 떨어져 제품으로 사용하기에 문제가 있음을 알 수 있고, 비교예 4 및 5의 경우 이행 손실 특성이, 비교예 4, 5 및 7의 경우 가열 감량 특성이, 비교예 8의 경우 흡수 속도가 상당히 열악한 수준임을 확인할 수 있다.
이를 통해서, 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물을 혼용하여 사용하되, 에폭시계 알킬 에스테르 화합물 중 알킬의 탄소수를 4 또는 8인 것을 사용하는 경우에는 기계적인 물성의 개선뿐만 아니라, 이행 특성이나 가열감량 특성에서 상당한 수준의 개선이 있다는 점을 확인할 수 있다.
그리고, 실시예 1-1 내지 1-5와 실시예 3-1 내지 3-5를 비교하여 보면, 실시예 3-1 내지 3-5에서 경도가 낮고 신율이 높게 나타남을 확인할 수 있는데, 이를 통해서 실시예 3-1 내지 3-5의 가소제 조성물의 경우, 특정 용도에 적합하게 사용될 수 있다는 점도 확인할 수 있다.
또한, 실시예 4-1 내지 4-3의 에폭시화 오일을 추가 조성물로 포함하는 경우, 기계적 물성의 저하 없이 이행감량과 가열감량이 큰 폭으로 개선됨을 확인 할 수 있다.
나아가, 도 1을 참조하는 경우, 에폭시화 오일을 부가적으로 첨가하는 경우에는 열안정성의 개선이 이루어질 수 있다는 점을 확인할 수 있는데, 비교예 1이나 2의 경우, 시편이 전부 연소되어 검게 그을린 것을 확인할 수 있고, 에폭시화 오일을 포함하지 않은 실시예 1-1의 경우 비교예들에 비해서는 연소가 덜 되었으나, 에폭시화 오일을 포함한 실시예 4-1의 경우에는 비교예나 실시예 1-1에 비하여 연소의 정도가 상당히 적다는 것을 확인할 수 있다.
이하, 본 발명에 대하여 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어 "부틸"은 탄소수가 4개인 알킬기를 의미하고, 직쇄 및 분지쇄를 모두 포함하는 용어로 사용될 수 있으며, 예를 들면, n-부틸, 이소부틸, 또는 t-부틸일 수 있으나, 바람직하게는 n-부틸 또는 이소부틸일 수 있다.
본 명세서에서 사용되는 용어 "옥틸" 및 "2-에틸헥실"은 탄소수가 8개인 알킬기로서, 2-에틸헥실의 약어로 옥틸이 혼용될 수 있고, 경우에 따라서는 직쇄 알킬기인 옥틸을 의미할 수 있으나, 분지쇄 알킬기인 2-에틸헥실을 의미하는 것으로 해석될 수 있다.
가소제 조성물
본 발명의 일 실시예에 따르면 테레프탈레이트계 물질; 및 에폭시계 알킬 에스테르 화합물;을 포함하고, 상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 99:1 내지 1:99 이며, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상이 포함된 혼합물인 것인 가소제 조성물이 제공된다.
상기 테레프탈레이트계 물질이 포함된 가소제 조성물을 제공할 수 있다. 구체적으로, 상기 테레프탈레이트계 물질은 조성물 총 중량 기준으로 1 내지 99 중량%, 20 내지 99 중량%, 40 내지 99 중량%, 50 내지 95 중량% 또는 60 내지 90 중량% 등의 범위에서 선택된 함량이 적용될 수 있다.
상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 (2-에틸헥실)이소노닐테레프탈레이트(EHINTP)로 이루어진 군에서 선택된 단일 화합물 또는 2 종 이상의 화합물이 혼합된 혼합물일 수 있다.
상기 테레프탈레이트계 물질은 3 종의 테레프탈레이트계 물질이 혼합된 것일 수 있고, 예를 들면, 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트게 혼합된 제1혼합물, 디이소노닐테레프탈레이트, 부틸이소노닐테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제2혼합물, 디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐테레프탈레이트 및 디이소노닐테레프탈레이트가 혼합된 제3혼합물일 수 있다.
구체적으로, 상기 제1 내지 제3혼합물의 경우, 특정 조성 비율을 가질 수 있으며, 제1혼합물은 디(2-에틸헥실)테레프탈레이트 3.0 내지 99.0 몰%; 부틸(2-에틸헥실)테레프탈레이트 0.5 내지 96.5 몰% 및 디부틸테레프탈레이트 0.5 내지 96.5 몰%;일 수 있고, 상기 제2혼합물은 디이소노닐테레프탈레이트 3.0 내지 99.0 몰%; 부틸이소노닐테레프탈레이트 0.5 내지 96.5 몰% 및 디부틸테레프탈레이트 0.5 내지 96.5 몰%;일 수 있으며, 상기 제3혼합물은 디(2-에틸헥실)테레프탈레이트 3.0 내지 99.0 몰%; (2-에틸헥실)이소노닐테레프탈레이트 0.5 내지 96.5 몰% 및 디이소노닐테레프탈레이트 0.5 내지 96.5 몰%;일 수 있다.
상기 조성 비율은 에스테르화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
상기 가소제 조성물은 테레프탈레이트계 물질을 포함하며, 에폭시계 알킬 에스테르 화합물을 포함한다. 상기 에폭시계 알킬 에스테르 화합물은 하기 화학식 1로 표시될 수 있으며, 요오드가(Iodine Value, I.V.)가 4 g I2/100 g 미만일 수 있다.
[화학식 1]
Figure PCTKR2016008043-appb-I000003
상기 화학식 1에서, R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 포함하는 알킬기이고, R2는 탄소수 4 또는 8의 알킬기이다.
상기 에폭시계 알킬 에스테르 화합물은 옥시란가(Oxirane Value, O.V.)이 6.0% 이상일 수 있으며, 6.3% 이상일 수 있고, 바람직하게는 6.5% 이상일 수 있다. 또한, 상기 옥시란가는 상기 화학식 1에서 R1으로 표시되는 치환기가 함유하고 있는 에폭시기의 수에 따라 변화될 수 있고, 적정법에 의하여 측정될 수 있고, 시료와 산 용액을 이용한 ASTM D1562-04의 방법에 의하여 측정되는 것일 수 있다.
또한, 상기 에폭시계 알킬 에스테르 화합물은 상기 요오드가가 4 g I2/100 g 미만일 수 있지만, 바람직하게는 3.8 I2/100 g 이하일 수 있다. 상기 요오드가는 분자 내 존재하는 이중 결합의 함유량을 나타내는 것으로서, 상기 이중 결합의 요오드화를 통하여 적정법으로 측정되는 값으로부터 도출되는 것일 수 있다.
상기 에폭시계 알킬 에스테르 화합물은 측정되는 요오드가와 옥시란가가 가소제 조성물에 적용될 경우 중요한 요소가 될 수 있다. 특히, 요오드가의 수치가 4 g I2/100 g 이상이 나오는 경우, 수지와의 상용성이 현저하게 저하되어 가소제 용도로의 사용이 불가할 수 있으며, 부수적으로는 요오드가가 4 g I2/100 g 미만인 경우 인장 강도와 신율, 흡수속도 등의 기계적, 물리적 물성도 함께 개선될 수 있다. 또한, 옥시란가 역시 요오드가와 유사한 기술적 의의를 갖고 유사한 영향을 미칠 수 있다.
상기 요오드가는 이중 결합의 함유량을 나타낼 수 있고, 상기 이중 결합의 함유량은 식물성 오일의 에폭시화 또는 지방산 알킬 에스테르의 에폭시화 등 에폭시화 반응이 수행된 후 잔존하고 있는 이중 결합의 함유량일 수 있다. 즉, 옥시란가와 요오드가는 에폭시화가 어느 정도 수행되었는지에 대한 지표일 수 있어서, 서로 일정 부분 연관될 수 있으며, 이론적으로는 서로 반비례하는 관계가 될 수 있다.
그러나, 실질적으로 식물성 오일이나 지방산 알킬 에스테르의 이중 결합은 물질마다 다양할 수 있으므로 상기 두 파라미터는 정확하게 반비례 관계 또는 트레이드 오프(trade off) 관계를 형성하는 것은 아니며, 두 물질 사이에서 요오드가가 더 높은 물질이 옥시란가도 동시에 더 높을 수도 있다. 따라서, 가소제 조성물에는 에폭시계 알킬 에스테르 화합물의 요오드가 및 옥시란가가 전술한 범위를 만족하는 것을 적용하는 것이 바람직할 수 있다.
한편, 상기 에폭시계 알킬 에스테르 화합물의 에폭시화 인덱스(Epoxidation Index, E.I.)는 1.5 이상인 것일 수 있다.
전술한 바와 같이, 요오드가 및 옥시란가의 관계가 상기와 같으나, 그와 동시에 에폭시화 인덱스가 1.5 이상인 것을 만족하는 것이 바람직할 수 있다. 상기 '에폭시화 인덱스'는 상기 에폭시계 알킬 에스테르 화합물의 요오드가에 대한 옥시란가의 비율로서, 에폭시화 반응으로 에폭시화 된 이중 결합과 반응하지 않은 잔존 이중 결합의 비율일 수 있다.
상기와 같이 옥시란 함량이 작거나, 요오드가가 커서 에폭시화 인덱스가 1.5 보다 작게 되는 경우, 또는 에폭시화 자체가 이루어지지 않은 경우에는 경도가 상승하여 가소화 효율이 크게 열화될 수 있고, 이행 손실 및 가열 감량 특성도 크게 열화될 우려가 있다.
구체적으로, 상기 에폭시화 인덱스는 요오드가에 대한 옥시란가의 비율(옥시란가/요오드가)로서 1.5 이상인 것일 수 있다. 즉, 에폭시계 알킬 에스테르의 옥시란가를 요오드가로 나눈 값이 1.5 이상인 경우에는 보다 최적화된 가소제 조성물을 얻을 수 있으며, 구체적으로 수지와의 상용성이 좋아지는 경향을 가질 수 있다.
상기 에폭시계 알킬 에스테르 화합물은 에폭시화 지방산 알킬 에스테르(epoxidized Fatty Acid Alkyl Ester, eFAAE)일 수 있고, 구체적으로, 상기 화학식 1로 표시될 수 있으며, 에폭시계 알킬 에스테르 화합물의 '알킬'은 탄소수가 4 또는 8인 것일 수 있다.
그러나, 본 발명에서는 상기 화학식 1에서 R2의 탄소수는 4 내지 8일 수 있으며, 바람직하게, 부틸기 또는 2-에틸헥실기일 수 있다. 또한, 상기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물은 2 종 이상이 포함되어 혼합 조성물을 형성할 수 있고, 2 종 이상이 포함되는 경우에는 탄소수가 4인 것과 탄소수가 8인 것의 혼합물인 경우가 바람직할 수 있고, 상기 화학식 1의 R2의 탄소수가 4 또는 8인 경우에는 흡수 특성이 우수하여 겔링 현상을 저감할 수 있고, 가공성이 개선될 수 있으며, 기본적인 인장강도나 신율과 같은 기계적 물성도 우수할 수 있고, 특히 이행성이나 가열감량 특성에서 우수성을 보일 수 있다.
여기서, 상기 가소제 조성물 내에 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물은 중량비로 99:1 내지 1:99로 포함되는 것일 수 있고, 99:1 내지 20:80, 또는 99:1 내지 40:60일 수 있으며, 바람직하게는 95:5 내지 50:50, 또는 90:10 내지 60:40의 비율로 포함되는 것일 수 있다.
상기와 같이, 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물을 혼합한 가소제 조성물을 적용하는 경우에는 인장강도와 신율이 우수할 수 있고, 이행성과 가열 감량에 있어서 개선된 효과를 볼 수 있으며, 흡수 속도를 제어할 수 있어 가공성도 함께 향상될 수 있다.
가소제 조성물의 제조방법
본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 얻는 단계; 에폭시화 오일과 탄소수가 4 또는 8인 1차 알킬 알코올을 에스테르화 반응시켜 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물을 얻는 단계; 및 상기 테레프탈레이트계 물질 및 에폭시계 알킬 에스테르 화합물을 99:1 내지 1:99의 중량비로 혼합하는 단계;를 포함하고, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상의 혼합물인 것인 가소제 조성물의 제조방법이 제공된다.
테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물을 얻는 단계는 각각 수행될 수 있으며, 상기 물질들은 직접 에스테르화 반응 및/또는 트랜스 에스테르화 반응을 통해 제조될 수 있다.
상기 테레프탈레이트계 물질은 테레프탈산과 탄소수 4 내지 12인 1차 알킬 알코올 중에서 선택된 1 종 이상의 알코올이 반응하는 직접 에스테르화 반응을 통해서 제조될 수 있고, 테레프탈레이트와 탄소수 4 내지 12인 1차 알킬 알코올의 트랜스 에스테르화 반응으로 제조될 수 있다. 또한, 상기 에폭시계 알킬 에스테르 화합물은 에폭시화 오일과 탄소수 4 또는 8인 1차 알킬 알코올의 트랜스 에스테르화 반응으로 제조될 수 있다.
상기 테레프탈레이트계 물질을 제조하는 원료로 사용되는 테레프탈레이트는 벤젠 고리의 양측에 치환된 에스테르기의 알킬기 탄소수가 1 내지 12, 바람직하게 4 내지 12인 것일 수 있으며, 탄소수가 4 내지 12인 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올, 옥틸 알코올 및 이소노닐 알코올로 이루어진 군에서 선택된 1 이상인 것일 수 있다.
또한, 상기 에폭시계 알킬 에스테르 화합물을 제조하는 원료로 사용되는 탄소수가 4 또는 8인 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올 및 옥틸 알코올로 이루어진 군에서 선택된 1 이상인 것일 수 있다. 이 경우 상기 알코올의 알킬기는 반응이 완료된 후의 상기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물에서, 화학식 1의 R2에 해당되는 것일 수 있다.
상기 에폭시화 오일은, 예를 들면, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil), 에폭시화 리놀산(epoxidized linoleic acid), 또는 이들의 혼합물일 수 있으며, 식물성 오일을 에폭시화 반응을 통하여, 일정량의 에폭시기를 도입한 화합물일 수 있다.
상기 에폭시화 오일은 예를 들면, 하기 화학식 2로 표시될 수 있으며, 한 분자 내 3 개의 에스테르기가 포함되어 있을 수 있고, 일정량의 에폭시기가 함유되어 있을 수 있다.
[화학식 2]
Figure PCTKR2016008043-appb-I000004
상기 화학식 2로 표시되는 에폭시화 오일은 하나의 예시에 해당되는 것이다.
또한, 상기 에폭시화 오일은 요오드가가 4 g I2/100 g 미만일 수 있는데, 이 요오드가는 트랜스 에스테르화 반응 동안 변동될 가능성이 낮아 생성물인 에폭시계 알킬 에스테르 화합물의 요오드가와 거의 동등한 수준일 수 있으며, 이에 관한 특징은 전술한 에폭시계 알킬 에스테르 화합물의 요오드가와 동일하다.
상기 에폭시화 오일과 탄소수 4 또는 8인 알킬 알코올이 트랜스 에스테르화 반응을 하게 되면, 상기 3 개의 에스테르기가 모두 분리될 수 있으며, 그에 따라 알코올의 알킬기가 새로이 결합된 3 종 이상의 에폭시계 에스테르 화합물이 형성될 수 있다.
본 발명에서 사용되는 "트랜스-에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2016008043-appb-I000005
본 발명의 일 실시예에 따르면, 상기 트랜스 에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스 에스테르화 반응은 산 및 알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않고 반응속도가 빠르다는 장점이 있다.
예를 들어, 테레프탈레이트계 물질을 제조하는 방법으로서, 디(2-에틸헥실)테레프탈레이트와 부틸 알코올은 상기 트랜스-에스테르화 반응에 의해, 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트의 혼합물이 생성될 수 있고, 상기 3 종의 테레프탈레이트는 혼합물 총 중량에 대해 각각 3.0 중량% 내지 70 중량%, 0.5 중량% 내지 50 중량%, 및 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 10 중량% 내지 50 중량%, 0.5 중량% 내지 50 중량%, 및 35 중량% 내지 80 중량%의 양으로 형성될 수 있다. 상기 범위 내에서는 공정 효율이 높고 가공성 및 흡수속도가 우수한 테레프탈레이트계 물질(혼합물)을 수득하는 효과가 있다.
또한, 상기 트랜스-에스테르화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 테레프탈레이트 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 테레프탈레이트는 알코올의 첨가량이 많을수록, 트랜스-에스테르화 반응에 참여하는 테레프탈레이트의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 테레프탈레이트의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 테레프탈레이트의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 테레프탈레이트와 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 가소제를 수득하는 효과가 있다.
다만, 상기 3 종의 테레프탈레이트계 물질의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 테레프탈레이트 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응은 120 내지 190, 바람직하게는 135 내지 180, 더욱 바람직하게는 141 내지 179의 반응 온도 하에서 10 분 내지 10 시간, 바람직하게는 30 분 내지 8 시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 테레프탈레이트계 물질인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스-에스테르화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 미반응 알코올과 반응 부산물, 예를 들면 화학식 3으로 표시되는 에스테르계 화합물을 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 증류는 일례로 상기 알코올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다.
또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스테르계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 부탄올과 반응 부산물을 동시에 증류하는 것을 의미한다.
일반적으로 에폭시계 알킬 에스테르 화합물을 제조하는 트랜스 에스테르화 반응도 상기 테레프탈레이트계 물질을 제조하는 반응과 동일하게 적용되지만, 구체적인 반응 조건 등이 상이할 수 있다. 예를 들면 다음과 같은 차이점이 있을 수 있다.
상기 트랜스 에스테르화 반응은 40 내지 230, 바람직하게는 50 내지 200, 더욱 바람직하게는 70 내지 200의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 4 시간에서 수행되는 것일 수 있다. 상기 온도 및 시간 범위 내에서 원하는 에폭시계 알킬 에스테르 화합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 생성된 다가 알코올과 반응 부산물 및 미반응 알코올을 반응 부산물을 분리, 수세 및 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 정제 과정은 구체적으로, 상기 트랜스 에스테르화 반응 이후 80 내지 100℃의 온도로 일정시간 냉각 및 정치하는 단계를 수행할 수 있고, 이 경우 층 분리가 일어나는데, 상층에는 에폭시계 알킬 에스테르 및 알코올이 포함될 수 있으며, 하층에는 글리세린과 기타 부산물들이 포함될 수 있다. 다음으로, 촉매를 중화하기 위하여 촉매 중화용 수용액을 투입함으로써 중화 및 수세를 유도할 수 있다.
상기 중화 및 수세 과정은 부산물이 주로 포함된 하층을 먼저 분리한 후 수행할 수 있고, 중화 및 수세 과정에서 하층의 부산물들을 물에 용해시켜 배출할 수도 있으며, 이후 반복적인 수세 과정을 거친 후에 미반응 알코올과 수분을 회수 및 제거할 수 있다.
다만, 상기 트랜스 에스테르화 반응에 사용하는 알코올의 탄소수에 따라서 상기 중화 및 수세 과정을 달리하여야 할 필요성이 발생할 수 있다.
예를 들어, 탄소수가 4인 부탄올을 사용하는 경우 중화 및 수세 과정을 바로 수행하게 되면 폐수 발생 문제가 있어서 부탄올을 증류하여 우선 제거하는 것이 바람직할 수 있다. 그러나, 이 경우에는 촉매의 활성이 남아 있기 때문에 부산물인 글리세롤과 생성물인 에폭시계 알킬 에스테르가 역반응하여 다시 디글리세라이드 또는 트리글리세라이드 등의 에폭시화 오일 유사 물질을 생성할 수 있는 이중적인 문제점도 내포할 수 있기 때문에, 공정의 설계를 유의할 필요가 있다.
또한, 다른 예로, 탄소수가 8개인 2-에틸헥실 알코올을 사용하는 경우에는 2-에틸헥실 알코올이 물에 대한 용해도가 낮아서, 폐수의 발생 문제가 없으며, 따라서, 이 경우에는 중화 및 수세 후에 알코올을 제거하는 경우, 하층의 부산물 층을 제거한 후 중화 및 수세하는 경우 모두 치명적인 문제 없이 진행할 수 있다는 장점이 있을 수 있다.
또한, 상기 에폭시계 알킬 에스테르 화합물을 제조하는 경우, 사용하는 촉매의 종류나, 함량에 따라서, 제조되는 에폭시계 알킬 에스테르 화합물의 물성이 변화될 수 있으며, 반응 시간이나, 에폭시화 오일과 반응시키는 1차 알킬 알코올의 함량에 따라서도 제품의 물성이나, 수율 또는 품질이 변형될 수 있다.
구체적으로, 상기 에폭시계 알킬 에스테르 화합물을 제조하는 과정에서는 촉매로써 NaOMe를 사용하는 것이 바람직하며, 수산화 나트륨이나 수산화 칼륨과 같은 촉매와 비교하여, 제조되는 에폭시계 알킬 에스테르 화합물의 색상이 기준에 미치지 못할 수 있고, 에폭시계 알킬 에스테르 화합물의 에폭시화 인덱스, 옥시란 함량 등이 목적하는 수치가 나오지 않을 우려가 있다.
또한, 상기의 촉매는 반응 원료인 에폭시화 오일 총 중량 대비 0.1 내지 2.0 중량%, 바람직하게 0.1 내지 1.0 중량%로 포함되는 것이 반응 속도 측면에서 가장 효과적일 수 있고, 이 범위를 벗어나는 경우 촉매의 함량 조절 실패로 인해 에폭시화 인덱스 등의 에폭시계 알킬 에스테르 화합물의 품질 기준을 충족시키지 못할 수 있다.
상기 에폭시계 알킬 에스테르 화합물 제조시, 에폭시화 오일과 1차 알킬 알코올의 투입량도 중요한 요소일 수 있는데, 상기 1차 알킬 알코올의 경우 에폭시화 오일 대비 30 내지 100 중량부를 투입하는 것이 좋고, 30 중량부 미만의 경우에는 효율적인 반응이 진행되지 않아 잔류 에폭시화 오일이나 에폭시화 오일의 2량체화 물질 등의 불순물이 과도하게 잔존할 수 있으며, 100 중량부 이상에서는 정제 공정에서 제품보다 분리하여야 알코올 잔량이 더 많아 공정 중 에너지 및 공정 효율성의 문제가 발생할 우려가 있다.
상기와 같이 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물을 제조한 후에는 이를 혼합하는 단계를 수행할 수 있다. 혼합 비율은 99:1 내지 1:99의 범위 내에서 적의 선택될 수 있고, 전술한 혼합 중량비가 적용되어 혼합되는 것일 수 있다.
또한, 본 발명에 따른 가소제 조성물은 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물 외에도 추가로 에폭시화 오일을 더 포함할 수 있다.
상기 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물의 혼합 가소제 조성물의 경우, 다양한 물성들 중에서 상대적으로 내열 특성이 우수하지 못할 수 있고, 이러한 내열 특성은 상기 에폭시화 오일을 더 포함함으로써 보완이 가능하다.
상기 에폭시화 오일은, 예컨대, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil), 에폭시화 리놀산(epoxidized linoleic acid) 또는 이들의 혼합물일 수 있다. 바람직하게는, 에폭시화 대두유(ESO), 또는 에폭시화 아마인유(ELO)가 적용될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 에폭시화 오일은 테레프탈레이트계 물질과 에폭시계 알킬 에스테르 화합물의 혼합 중량 100 중량부 대비, 1 내지 100 중량부가 포함될 수 있고, 바람직하게는 10 내지 100 중량부가 포함될 수 있으며, 바람직하게는 20 내지 100 중량부가 포함될 수 있다. 상기 범위 내에서 포함시키는 경우에 기계적 물성과 내열 특성 사이에서 적절히 우수한 물성을 갖는 가소제 조성물을 얻을 수 있다.
나아가, 테레프탈레이트계 제품과 에폭시화 오일을 혼용하여 사용하는 경우에는 가소제 조성물의 전체적인 어는점을 더욱 낮출 수 있어서, 에폭시계 가소제 조성물의 어는점에 비하여 더욱 낮은 어는점을 갖게 되므로, 동절기에도 사용상 제약이 없는 가소제 조성물을 제공할 수 있다.
수지 조성물
본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 전술한 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄, 및 열가소성 엘라스토머 중에서 선택된 1 종 이상의 수지일 수 있고, 상기 가소제 조성물은 상기 수지 100 중량부에 대하여, 5 내지 150 중량부, 40 내지 100 중량부, 혹은 40 내지 50 중량부 범위 내로 포함되어 컴파운드 처방, 시트 처방 및 플라스티졸 처방에 모두 효과적인 수지 조성물을 제공할 수 있다.
상기 수지 조성물은 전술한 바와 같은 가소제 조성물을 포함함으로써, 바닥재, 벽지, 자동차 내장재, 시트, 필름, 호스 또는 전선 등의 다양한 용도에 적용될 수 있고, 인장강도와 신율, 그리고 가소화 효율 및 가열 감량과 같은 기본적인 기계적 물성 또한 기존의 가소제와 동등 수준 이상의 물성을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 충진제를 더 포함할 수 있다.
상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다.
상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
사용될 수 있는 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.

Claims (16)

  1. 테레프탈레이트계 물질; 및 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물;을 포함하고,
    상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 99:1 내지 1:99 이며, 상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상이 포함된 혼합물인 것인 가소제 조성물.
    [화학식 1]
    Figure PCTKR2016008043-appb-I000006
    상기 화학식 1에서,
    R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 함유하는 알킬기이고, R2는 탄소수 4 또는 8의 알킬기이다.
  2. 제1항에 있어서,
    상기 테레프탈레이트계 물질 대 에폭시계 알킬 에스테르 화합물의 중량비는 95:5 내지 20:80인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트(DEHTP), 디이소노닐테레프탈레이트(DINTP), 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP), 부틸(2-에틸헥실)테레프탈레이트(BEHTP) 및 (2-에틸헥실)이소노닐테레프탈레이트(EHINTP)로 이루어진 군에서 선택된 단일 화합물 또는 2 종 이상의 화합물이 혼합된 혼합물인 것인 가소제 조성물.
  4. 제3항에 있어서,
    상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제1혼합물이거나,
    디이소노닐테레프탈레이트, 부틸이소노닐테레프탈레이트 및 디부틸테레프탈레이트가 혼합된 제2혼합물이거나,
    디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐테레프탈레이트 및 디이소노닐테레프탈레이트가 혼합된 제3혼합물인 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 에폭시계 알킬 에스테르 화합물은 요오드가가 4 g I2/100 g미만인 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 에폭시화 알킬 에스테르 화합물은 에폭시화 인덱스(Epoxidation Index, E.I.)가 1.5 이상인 것인 가소제 조성물.
  7. 제1항에 있어서,
    에폭시화 오일을 더 포함하는 것인 가소제 조성물.
  8. 제7항에 있어서,
    상기 에폭시화 오일은 테레프탈레이트계 물질 및 에폭시계 알킬 에스테르화합물의 혼합 중량 대비 1 내지 100 중량부로 포함되는 것인 가소제 조성물.
  9. 제7항에 있어서,
    상기 에폭시화 오일은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil) 및 에폭시화 리놀산(epoxidized linoleic acid)로 이루어진 군에서 선택된 1 이상을 포함하는 것인 가소제 조성물.
  10. 테레프탈레이트계 물질을 얻는 단계;
    에폭시화 오일과 탄소수가 4 또는 8인 1차 알킬 알코올을 에스테르화 반응시켜 하기 화학식 1로 표시되는 에폭시계 알킬 에스테르 화합물을 얻는 단계; 및
    상기 테레프탈레이트계 물질 및 에폭시계 알킬 에스테르 화합물을 99:1 내지 1:99의 중량비로 혼합하는 단계;를 포함하고,
    상기 에폭시계 알킬 에스테르 화합물은 단일 화합물 또는 2 종 이상의 혼합물인 것인 가소제 조성물의 제조방법.
    [화학식 1]
    Figure PCTKR2016008043-appb-I000007
    상기 화학식 1에서, R1은 탄소수 8 내지 20의 알킬기 또는 1 이상의 에폭시기를 함유하는 알킬기이고, R2는 탄소수 4 또는 8의 알킬기다.
  11. 제10항에 있어서,
    상기 탄소수가 4 또는 8인 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올 및 옥틸 알코올로 이루어진 군에서 선택된 1 이상인 것인 가소제 조성물의 제조방법.
  12. 제10항에 있어서,
    상기 테레프탈레이트계 물질은 테레프탈산과 탄소수 4 내지 12인 1차 알킬 알코올 중에서 선택된 1 종 이상의 알코올의 직접 에스테르화 반응; 또는
    테레프탈레이트와 탄소수 4 내지 12인 1차 알킬 알코올의 트랜스 에스테르화 반응을 통하여 제조되는 것인 가소제 조성물의 제조방법.
  13. 제10항에 있어서,
    상기 탄소수가 4 내지 12인 1차 알킬 알코올은 부틸 알코올, 이소부틸 알코올, 2-에틸헥실 알코올, 옥틸 알코올 및 이소노닐 알코올로 이루어진 군에서 선택된 1 이상인 것인 가소제 조성물의 제조방법.
  14. 제10항에 있어서,
    상기 에폭시화 오일은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아르산(epoxidized stearic acid), 에폭시화 올레산(epoxidized oleic acid), 에폭시화 톨유(epoxidized tall oil) 및 에폭시화 리놀산(epoxidized linoleic acid)로 이루어진 군에서 선택된 1 이상을 포함하는 것인 가소제 조성물의 제조방법.
  15. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  16. 제15항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2016/008043 2015-07-24 2016-07-22 가소제 조성물, 수지 조성물 및 이들의 제조 방법 WO2017018740A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16830773.4A EP3327074B1 (en) 2015-07-24 2016-07-22 Plasticizer composition, resin composition, and preparation methods therefor
CN202010024857.2A CN111218031B (zh) 2015-07-24 2016-07-22 增塑剂组合物、树脂组合物及其制备方法
CN201680017114.4A CN107428992B (zh) 2015-07-24 2016-07-22 增塑剂组合物、树脂组合物及其制备方法
US15/557,773 US10584229B2 (en) 2015-07-24 2016-07-22 Plasticizer composition, resin composition, and method of preparing the same
ES16830773T ES2961732T3 (es) 2015-07-24 2016-07-22 Composición plastificante, composición de resina y procedimientos de preparación para las mismas
EP23182563.9A EP4242254A3 (en) 2015-07-24 2016-07-22 Plasticizer composition, resin composition, and preparation methods therefor
US16/748,190 US11597815B2 (en) 2015-07-24 2020-01-21 Plasticizer composition, resin composition, and method of preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150105323 2015-07-24
KR10-2015-0105323 2015-07-24
KR1020160092873A KR101793383B1 (ko) 2015-07-24 2016-07-21 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR10-2016-0092873 2016-07-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/557,773 A-371-Of-International US10584229B2 (en) 2015-07-24 2016-07-22 Plasticizer composition, resin composition, and method of preparing the same
US16/748,190 Continuation US11597815B2 (en) 2015-07-24 2020-01-21 Plasticizer composition, resin composition, and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2017018740A1 true WO2017018740A1 (ko) 2017-02-02

Family

ID=57884740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008043 WO2017018740A1 (ko) 2015-07-24 2016-07-22 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Country Status (5)

Country Link
EP (1) EP4242254A3 (ko)
KR (1) KR102405076B1 (ko)
CN (2) CN111218031B (ko)
ES (1) ES2961732T3 (ko)
WO (1) WO2017018740A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231838A1 (en) * 2021-04-27 2022-11-03 Eastman Chemical Company Terephthalate and benzoate based esters and epoxidized oil compositions
US11702529B2 (en) * 2017-10-13 2023-07-18 Lg Chem, Ltd. Plasticizer composition and resin composition including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059691A1 (ko) 2017-09-22 2019-03-28 주식회사 엘지화학 편광판 및 이를 포함하는 화상표시장치
KR102195328B1 (ko) * 2018-08-27 2020-12-28 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051155A (ja) * 1991-06-26 1993-01-08 Lonseal Corp 塩化ビニル系樹脂フイルム及びビニル被覆鋼板
KR20130067510A (ko) * 2011-12-14 2013-06-25 주식회사 엘지화학 테레프탈산 유래 에스테르의 제조방법
KR20140052838A (ko) * 2012-10-25 2014-05-07 애경유화주식회사 에폭시계 에스테르 화합물을 포함한 복합 가소제 조성물 및 이를 이용한 고분자 수지 조성물
KR20140116371A (ko) * 2011-10-14 2014-10-02 갈라타 케미컬스, 엘엘씨 재생가능한 원료로부터 유도된 가소제
KR101447376B1 (ko) * 2013-06-14 2014-12-18 주식회사 엘지화학 에스테르계 가소제의 제조방법 및 이로부터 제조된 에스테르계 가소제

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372912B2 (en) * 2005-08-12 2013-02-12 Eastman Chemical Company Polyvinyl chloride compositions
CN103756127A (zh) * 2013-11-27 2014-04-30 芜湖跃飞新型吸音材料股份有限公司 一种lldpe改性等规聚丙烯无纺布及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051155A (ja) * 1991-06-26 1993-01-08 Lonseal Corp 塩化ビニル系樹脂フイルム及びビニル被覆鋼板
KR20140116371A (ko) * 2011-10-14 2014-10-02 갈라타 케미컬스, 엘엘씨 재생가능한 원료로부터 유도된 가소제
KR20130067510A (ko) * 2011-12-14 2013-06-25 주식회사 엘지화학 테레프탈산 유래 에스테르의 제조방법
KR20140052838A (ko) * 2012-10-25 2014-05-07 애경유화주식회사 에폭시계 에스테르 화합물을 포함한 복합 가소제 조성물 및 이를 이용한 고분자 수지 조성물
KR101447376B1 (ko) * 2013-06-14 2014-12-18 주식회사 엘지화학 에스테르계 가소제의 제조방법 및 이로부터 제조된 에스테르계 가소제

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702529B2 (en) * 2017-10-13 2023-07-18 Lg Chem, Ltd. Plasticizer composition and resin composition including the same
WO2022231838A1 (en) * 2021-04-27 2022-11-03 Eastman Chemical Company Terephthalate and benzoate based esters and epoxidized oil compositions

Also Published As

Publication number Publication date
CN111218031A (zh) 2020-06-02
ES2961732T3 (es) 2024-03-13
KR102405076B1 (ko) 2022-06-07
EP4242254A2 (en) 2023-09-13
CN107428992A (zh) 2017-12-01
EP4242254A3 (en) 2023-10-25
CN107428992B (zh) 2020-02-07
KR20170122706A (ko) 2017-11-06
CN111218031B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018147689A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016129876A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019240405A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016153236A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018128314A1 (ko) 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022035138A1 (ko) 아세틸 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830773

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016830773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557773

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE