WO2018147689A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2018147689A1
WO2018147689A1 PCT/KR2018/001776 KR2018001776W WO2018147689A1 WO 2018147689 A1 WO2018147689 A1 WO 2018147689A1 KR 2018001776 W KR2018001776 W KR 2018001776W WO 2018147689 A1 WO2018147689 A1 WO 2018147689A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
plasticizer
terephthalate
normal
weight
Prior art date
Application number
PCT/KR2018/001776
Other languages
English (en)
French (fr)
Inventor
김현규
문정주
정석호
이미연
김주호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63107745&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018147689(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/325,688 priority Critical patent/US11499030B2/en
Priority to EP18750908.8A priority patent/EP3476890B1/en
Priority to ES18750908T priority patent/ES2790276T3/es
Priority to CN201880003086.XA priority patent/CN109563309B/zh
Publication of WO2018147689A1 publication Critical patent/WO2018147689A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition and a resin composition comprising the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plastics is being continued.
  • an appropriate plasticizer should be used in consideration of required properties.
  • additives such as plasticizer, filler, stabilizer and flame retardant are mixed with PVC resin according to the tensile strength, elongation, plasticization efficiency, heating loss, tensile and elongation residual ratio which are required in the standard. .
  • Diisodecyl phthalate which is currently used in the cable compound and automotive fabric industries, is an environmental hormone observing substance, and as the use regulations are progressed according to environmental issues, there is a need to develop eco-friendly products to replace it.
  • alternative products also include some phthalate-based materials, and many of them still pose environmental problems.
  • Patent Document 1 Registered Patent No. 10-0957134
  • a plasticizer to be applied to a resin composition it is to provide a plasticizer composition excellent in plasticization efficiency and migration resistance, improved tensile strength and elongation, tensile residual and elongation residual, and improved cold resistance and a resin composition comprising the same.
  • a terephthalate plasticizer having 4 to 10 carbon atoms of each independently bonded to the diester group; And a trimellitate plasticizer represented by the following Formula 1, and does not contain an epoxidized oil.
  • R 1 to R 3 are each independently an alkyl group having 4 to 10 carbon atoms.
  • plasticizer composition of the present invention When the plasticizer composition of the present invention is used in a resin composition, it is possible to improve excellent plasticization efficiency and migration resistance, improve tensile strength and elongation, tensile residual and elongation residual, as well as improve heating loss and cold resistance. Can be.
  • the plasticizer composition includes two or more plasticizers, and the two or more plasticizers each independently have 4 to 10 carbon atoms of two alkyl groups bonded to the diester group; And trimellitate-based plasticizers represented by the following Chemical Formula 1; and essentially include no epoxidized oil.
  • R 1 to R 3 are each independently an alkyl group having 4 to 10 carbon atoms.
  • the weight ratio of the two materials has an upper limit of 99: 1, 95: 5, 90:10, 85:15, 80:20, 70:30 or 60:40, and the lower limit may be 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 or 40:60.
  • 90:10 to 10:90 more preferably 70:30 to 10:90.
  • the plasticizer composition may include three plasticizers, and in this case, a citrate plasticizer represented by the following Chemical Formula 2 may be further included.
  • R 4 to R 6 are each independently an alkyl group having 5 to 9 carbon atoms, and R 7 is hydrogen.
  • the weight ratio of the terephthalate-based plasticizer and trimellitate-based plasticizer may be the same weight ratio as the case where two species are selected, and the citrate-based plasticizer is a terephthalate-based plasticizer and 5 parts by weight to 150 parts by weight with respect to 100 parts by weight of the total weight of the trimellitate-based plasticizer, and preferably 10 parts by weight to 100 parts by weight.
  • the migration resistance can be improved and the tensile residual and elongation and the plasticization efficiency can be expected to be improved.
  • the plasticizer composition according to one embodiment of the present invention is characterized in that it does not contain an epoxidized oil.
  • the fact that the epoxidized oil is not added is to refrain from applying the epoxidized oil as a constituent of the plasticizer composition.
  • the content in the resin composition is also plasticizer. It may mean an amount of less than 5 parts by weight, preferably less than 3 parts by weight, more preferably less than 1 part by weight with respect to 100 parts by weight of the composition.
  • the volume resistance may be lowered than that of the conventional phthalate product and the eco-friendly plasticizer composition which does not use the epoxidized oil. have.
  • the plasticizer composition according to the present invention essentially includes a terephthalate-based material and trimellitate-based material as described above, but does not include an epoxidized oil, and optionally a citrate-based material. It may further comprise a substance.
  • epoxidized oil when not included, low temperature storage characteristics may be greatly improved, and insulation performance may be expected to be improved by improving cold resistance and volume resistance of the manufactured resin product.
  • the terephthalate-based plasticizer according to an embodiment of the present invention may be 4 to 10 carbon atoms of each of the two alkyl groups bonded to the diester group. Preferably 6-9, or 7-9.
  • Terephthalate-based plasticizers are the most useful plasticizers that can replace phthalate-based plasticizers, and can be applied as environmentally friendly plasticizers because the basic mechanical properties can be represented at the same level as compared with conventional phthalate-based plasticizers.
  • two alkyl groups bonded to the diester group of the terephthalate-based plasticizer are, for example, normal butyl group, isobutyl group, normal pentyl group, isopentyl group, normal hexyl group, normal heptyl group, isoheptyl group, Normal octyl group, isooctyl group, 2-ethylhexyl group, normal nonyl group, isononyl group, 2-propylheptyl group or isodecyl group, preferably normal butyl group, isopentyl group, isoheptyl group, 2- It may be an ethylhexyl group, isononyl group, 2-propylheptyl group, or isodecyl group.
  • the terephthalate plasticizer is dibutyl terephthalate (DBTP), diisopentyl terephthalate (DIPTP), dihexyl terephthalate (DHxTP), diisoheptyl terephthalate (DIHTP), di (2- Ethylhexyl) terephthalate (DEHTP), diisononyl terephthalate (DINTP), di (2-propylheptyl) terephthalate (DPHTP), diisodecyl terephthalate (DIDTP), (2-ethylhexyl) isononyl terephthalate (EHINTP), (2-ethylhexyl) (2-propylheptyl) terephthalate, isononyl (2-propylheptyl) terephthalate, (isodecyl) (isononyl) terephthalate, (2-ethyl
  • the terephthalate-based plasticizer may be prepared by direct esterification of terephthalic acid with at least one alcohol, or may be prepared by trans esterification of dialkyl terephthalate with alcohol.
  • the alcohol is a primary alcohol, in which the alkyl group, the aforementioned normal butyl group, isobutyl group, normal pentyl group, isopentyl group, normal hexyl group, normal heptyl group, isoheptyl group, normal octyl group and isooctyl group, 2- It may be selected from the group consisting of an ethylhexyl group, normal nonyl group, isononyl group, 2-propylheptyl group or isodecyl group.
  • One alcohol may be applied to the direct esterification reaction to apply a single terephthalate, and two or more mixed alcohols may be applied to the direct esterification reaction or a trans esterification reaction may be performed to apply a mixture of two or more terephthalates. have.
  • the mixed terephthalate plasticizer when the mixed terephthalate plasticizer is applied by performing the trans esterification reaction, the mixed terephthalate plasticizer may have a specific composition ratio between each terephthalate, for example, having an alkyl group as an alkyl group.
  • Di (alkylA) terephthalate and (alkylB) alcohol having alkylB as alkyl group are reactants, when the trans esterification reaction is carried out, di (alkylA) terephthalate 3.0 to 99.0 mol%;
  • Mixed terephthalates of (alkyl A) (alkyl B) terephthalate and 0.5 to 96.5 mol% of di (alkyl B) terephthalate may be formed.
  • the composition ratio may be a mixture composition ratio produced by the esterification reaction, and may be an intended composition ratio by additionally mixing a specific compound, and the mixture composition ratio may be appropriately adjusted to suit desired physical properties.
  • the plasticizer composition may include a trimellitate plasticizer, the trimellitate plasticizer may be represented by the following formula (1).
  • R 1 to R 3 are each independently an alkyl group having 4 to 10 carbon atoms.
  • the trimellitate plasticizer is a material that can supplement the terephthalate-based plasticizer as described above, and the terephthalate-based plasticizer is an effect that cannot be achieved as compared to the phthalate-based plasticizer. Rather, it may be possible to improve the overall physical properties.
  • R 1 to R 3 of Formula 1 may have 4 to 10 carbon atoms, each may be identical to each other, and when different from each other, two of R 1 to R 3 may be identical. And the other one may be a different alkyl group.
  • the plasticizer composition may further include a citrate-based plasticizer as a third mixture, including the terephthalate-based plasticizer and trimellitate-based plasticizer, and the citrate-based plasticizer May be represented by the following Chemical Formula 2.
  • R 4 to R 6 are each independently an alkyl group having 5 to 9 carbon atoms, and R 7 is hydrogen.
  • R 4 to R 6 of Formula 2 are each independently a pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group, normal octyl group, 2-ethylhexyl group, and normal It may be a nonyl group or isononyl group, and each of R 4 to R 6 may be the same as or different from each other.
  • the citrate wherein R 4 to R 6 is an alkyl group having 5 to 9 carbon atoms and differs from each other in the alkyl group is, for example, a citrate having a combined substituent of isononyl group and 2-propylheptyl group, 2-ethylhexyl group and 2 Citrate having a combined substituent of -propylheptyl group, citrate having a combined substituent of isodecyl group and 2-ethylhexyl group, and the like. Citrate having a combination substituent of an alkyl group may be applied, and the alkyl group may be linear or branched.
  • the citrate wherein R 4 to R 6 are alkyl groups having 5 to 9 carbon atoms and different alkyl groups are, for example, citrate having a combination substituent of isopentyl group and isononyl group, 2-ethylhexyl group and isosonyl group.
  • a combination substituent of two alkyl groups having 5 to 9 carbon atoms and having different carbon atoms may be selected.
  • Citrate having, and the like can be applied, the alkyl group may be linear or branched chain.
  • the citrate wherein R 4 to R 6 are alkyl groups having 5 to 9 carbon atoms and the same alkyl group is, for example, triisopentyl citrate (TIPC), trihexyl citrate (THxC), triheptyl citrate (THpC) ), Triisoheptyl citrate (TIHpC), tri (2-ethylhexyl) citrate (TEHC), triisononyl citrate (TINC) and the like can be applied, in addition to the alkyl group having 5 to 9 carbon atoms can be applied. .
  • TIPC triisopentyl citrate
  • TxC trihexyl citrate
  • TpC triheptyl citrate
  • THC tri (2-ethylhexyl) citrate
  • THC triisononyl citrate
  • a carbon number of 5 or more may be applied, and in the case of using an alcohol having 5 to 9 carbon atoms, even in the use of a relatively small amount compared to the carbon number of more than can be seen to be equivalent to excellent effects in the plasticization efficiency and absorption rate, etc. have.
  • the upper limit of the number of carbon atoms of the alkyl group is preferably 9, and when the number of carbon atoms exceeds 9, there is a fear of deterioration of characteristics such as absorption rate and plasticization efficiency due to excessive increase in molecular weight.
  • the citrate-based plasticizer R 7 of Formula 2 is an acetyl group
  • the citrate-based plasticizer in which R 7 is an acetyl group may not be superior to R 7 in hydrogen in various aspects such as marketability, economical efficiency, and physical properties.
  • a method of preparing the plasticizer composition may be applied to a blending method, and the composition may be prepared by mixing the terephthalate-based plasticizer, the citrate-based plasticizer, and the trimellitate-based plasticizer, respectively, and then mixing them. can do.
  • At least one alcohol among butyl alcohol, isopentyl alcohol, hexyl alcohol, isoheptyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, and 2-propylheptyl alcohol may be used.
  • the reaction process can be carried out.
  • the direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
  • the alcohol is 150 mol% to 500 mol%, 200 mol% to 400 mol%, 200 mol% to 350 mol%, 250 mol% to 400 mol%, or 270 mol% to 330 mol based on 100 mol% of terephthalic acid. Can be used in the range of%.
  • the catalyst of the esterification reaction is, for example, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid and other acid catalysts, aluminum lactate, lithium fluoride, potassium chloride Selected from metal salts such as cesium chloride, calcium chloride, iron chloride and aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, organic metals such as tetraalkyl titanate and polymers thereof It may be more than one species. As a specific example, the catalyst may use tetraalkyl titanate.
  • the amount of catalyst used may vary depending on the type. For example, in the case of a homogeneous catalyst, 0.01 wt% to 5 wt%, 0.01 wt% to 3 wt%, 1 wt% to 5 wt%, or 100 wt% of the total reactants, or In the range from 2% to 4% by weight and, in the case of heterogeneous catalysts, from 5% to 200%, 5% to 100%, 20% to 200%, or 20% to 150% by weight of the total amount of reactants. Can be in the% range.
  • reaction temperature may be in the range of 180 ° C to 280 ° C, 200 ° C to 250 ° C, or 210 ° C to 230 ° C.
  • the terephthalate compound may be prepared and mixed through the aforementioned direct esterification reaction, or a method of applying two or more alcohols in the direct esterification reaction may be applied.
  • trans esters in which a terephthalate compound such as di (2-ethylhexyl) terephthalate or diisononyl terephthalate and an alcohol such as butyl alcohol, isopentyl alcohol, hexyl alcohol, isoheptyl alcohol and 2-propylheptyl are reacted Through the reaction; can be prepared terephthalate compound, wherein the order of introduction of alcohol can be changed according to the preparation method.
  • trans esterification reaction means a reaction in which an alcohol reacts with an ester as shown in Scheme 1 below, whereby R " of the ester is interchanged with R ′ of the alcohol as shown in Scheme 1 below:
  • the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
  • the mixture prepared by the trans esterification reaction may control the composition ratio of the mixture according to the amount of alcohol added.
  • the addition amount of the alcohol may be 0.1 part by weight to 89.9 parts by weight, specifically 3 parts by weight to 50 parts by weight, and more specifically 5 parts by weight to 40 parts by weight based on 100 parts by weight of the terephthalate compound.
  • the content of the two terephthalate compounds as a product in the mixture may increase.
  • the content of unreacted terephthalate compound may tend to decrease.
  • the molar ratio of the reactant terephthalate compound and the alcohol is, for example, 1: 0.005 to 1: 5.0, 1: 0.05 to 1: 2.5, or 1: 0.1 to 1: 1, within this range.
  • the process efficiency is high and has an effect of obtaining an ester plasticizer composition excellent in workability improvement effect.
  • composition ratio of the mixture of the three terephthalate-based plasticizers is not limited to the above range, and may be added to any one of the three terephthalates to change the composition ratio, and the possible mixture composition ratio is described above. As shown.
  • the trans-esterification reaction is carried out for 10 minutes to 10 hours under a reaction temperature of 120 °C to 190 °C, preferably 135 °C to 180 °C, more preferably 141 °C to 179 °C, Preferably it is carried out in 30 minutes to 8 hours, more preferably 1 hour to 6 hours. It is possible to effectively obtain a mixture which is a terephthalate plasticizer of a desired composition ratio within the temperature and time range.
  • the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the trans-esterification reaction may be carried out under an acid catalyst or a metal catalyst, in which case the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
  • the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • the direct esterification reaction and the trans esterification reaction may also be used to prepare the above-mentioned citrate plasticizer (using citric acid instead of terephthalic acid) and trimellitate plasticizer (using trimellitic acid instead of terephthalic acid).
  • the citrate-based plasticizer or trimellitate-based plasticizer may also be prepared in a mixture of a predetermined ratio, and the composition ratio of the resulting mixture may be controlled by adjusting the content of alcohol as a reaction raw material.
  • the citrate or trimellitate is produced through a direct esterification reaction or a trans esterification reaction, the contents thereof may be applied in the same manner as the contents applied to the preparation of the terephthalate plasticizer.
  • terephthalic acid, citric acid and trimellitic acid may use acid anhydride as a substitute material instead of such a carboxylic acid-based material.
  • the method of preparing the plasticizer composition may be applied to the method of blending after each preparation, but may also be applied to the method of producing a mixture of raw materials by the esterification reaction at the same time.
  • an acid mixture such as terephthalic acid, citric acid, trimellitic acid and the like has an alcohol It can be prepared by direct esterification, and in this case, a plasticizer composition having the same carbon number of all alkyl groups of terephthalate, citrate and trimellitate can be obtained.
  • the same alcohol may be a commercially economical way to react two or more acids or acid anhydrides and alcohol at the same time in the manufacturing process.
  • the prepared plasticizer composition is 5 parts by weight to 150 parts by weight, 20 parts by weight to 100 parts by weight, 30 to 80 parts by weight or 40 parts by weight to 70 parts by weight relative to 100 parts by weight of the resin. And mixed with the resin to provide a resin composition.
  • the resin can be selected from ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomers.
  • the resin composition may be mixed with various additives such as heat stabilizers, stabilizers, lubricants or fillers, the type or content may be applied as known in the art.
  • the resin composition prepared as described above can provide, for example, a resin composition that is effective for both calendaring and compound prescription, and the like, and for example, through the resin composition, wires, flooring materials, automotive interior materials, films, sheets, or tubes. It can be applied to manufacture.
  • distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
  • steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
  • washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
  • the filtrate was added to the reaction solution from which the water was removed, and the resultant was stirred for a while, and then filtered to obtain 1326.7 g (yield: 99.0%) of di (2-ethylhexyl) terephthalate.
  • Diisononyl terephthalate was prepared in the same manner as in Preparation Example 1, except that 1,296 g of isononyl alcohol was used instead of 2-ethylhexyl alcohol during the esterification reaction.
  • Di (2-propylheptyl) terephthalate was prepared in the same manner as in Preparation Example 1, except that 1,422 g of 2-propylheptyl alcohol was used instead of 2-ethylhexyl alcohol in the esterification reaction.
  • Dibutyl was prepared in the same manner as in Preparation Example 1, except that 670 g of normal butyl alcohol and 5 g of methanesulfonic acid as a catalyst were used instead of 2-ethylhexyl alcohol during the esterification reaction. Terephthalate was prepared.
  • Diisopentyl terephthalate was prepared in the same manner as in Preparation Example 1, except that 792 g of isopentyl alcohol was used instead of 2-ethylhexyl alcohol in the esterification reaction.
  • Dihexyl terephthalate was prepared in the same manner as in Preparation Example 1, except that 918 g of normal hexyl alcohol was used instead of 2-ethylhexyl alcohol in the esterification reaction.
  • the plasticizer compositions of Examples were prepared by mixing the materials prepared in Preparation Examples 1 to 16, and the plasticizer compositions of Examples and Comparative Examples were summarized in Tables 1 and 2 below, and the physical properties of the plasticizer composition were evaluated. It was performed according to the following test items. All materials other than the materials prepared in the above production examples are LG Chemicals or commercially available products.
  • GL100 LG Chemical Co., Ltd.: terephthalate composition having a weight ratio of diisononyl terephthalate, isononyl (2-ethylhexyl) terephthalate and di (2-ethylhexyl) terephthalate of about 10:50:40
  • GL520 LG Chemical Co., Ltd.: terephthalate composition having a weight ratio of dibutyl terephthalate, butyl (2-ethylhexyl) terephthalate and di (2-ethylhexyl) terephthalate of about 5:25:70
  • EEO epoxidized soybean oil
  • Elongation (%) [length after extension / initial length] x 100.
  • Specimens of 2 mm or more were obtained according to KSM-3156. Glass plates and oil paper were attached to both sides of the specimen, and a load of 2 kgf / cm 2 was applied. The specimen was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the PS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
  • the measurement of tensile and elongation is to measure the tensile and elongation properties remaining in the specimen after applying heat for 121 °C, 168 hours, the measurement method is the same as the method of measuring the above tensile strength and elongation.
  • Specimens were prepared using the mixed plasticizer compositions of Examples and Comparative Examples described in Tables 1 and 2.
  • the specimen is prepared by referring to ASTM D638, based on 100 parts by weight of polyvinyl chloride resin (PVC (LS100)), 50 parts by weight of the plasticizer composition prepared in Examples and Comparative Examples, RUP-144 (adeca) as a stabilizer Korea) 5 parts by weight, 40 parts by weight of Omya 1T (Omiya) as a filler, 0.3 parts by weight of St-A (Isu Chemical) as a lubricant, and mixed at 98 ° C. at 700 rpm.
  • the specimen was prepared by using a roll mill for 4 minutes at 160 ° C. and a press at 180 ° C. for 3 minutes (low pressure) and 2.5 minutes (high pressure).
  • test items were evaluated for each of the specimens, and the results are shown in Table 3 below.
  • Example 1-1 92.0 164.3 111.6 301.3 78.5 -29
  • Example 1-2 90.3 170.2 102.4 306.8 86.4 -32
  • Example 1-3 89.2 172.6 105.0 314.5 96.4 -32
  • Example 1-4 89.3 170.1 102.0 300.2 93.4 -31
  • Example 1-5 90.6 165.9 98.2 295.6 92.3 -33
  • Example 1-6 88.5 167.5 96.7 290.3 80.6 -35
  • Example 1-7 89.2 170.3 102.0 304.6 94.2 -32
  • Example 1-8 89.0 172.0 98.8 310.5 92.6 -33
  • Example 1-10 89.0 177.5 97.8 295.7 95.8 -36
  • Example 1-11 90.7 198.7 98.7 314.8 88.5 -29 Comparative Example 1-1 91.3 158.7 9
  • Comparative Example 1-1 and Comparative Example 1- 2 in selecting a terephthalate-based plasticizer and trimellitate-based plasticizer, by controlling the carbon number to 4 to 10 and appropriately controlling the content ratio, Comparative Example 1-1 and Comparative Example 1- 2, it can be seen that the performance is significantly improved, and compared to DEHTP (Comparative Example 1-2) plasticizer, Comparative Example 1-2, which is widely used as an eco-friendly product, it can be confirmed that all the physical properties are significantly improved. In addition, it can be confirmed that the plasticizer exhibiting better performance than the DIDP plasticizer (Comparative Example 1-1) due to environmental problems, thereby confirming that the product is a perfect substitute for the DIDP.
  • Example 1-1 92.0 164.3 111.6 301.3 78.5 -29 Comparative Example 1-4 91.6 160.2 95.6 287.3 75.1 -23 Example 1-3 89.2 172.6 105.0 314.5 96.4 -32 Comparative Example 1-5 89.5 170.0 92.5 295.8 89.3 -27
  • Comparative Examples 1-4 and 1-5 epoxidized soybean oil was further added as a plasticizer in Examples 1-1 and 1-3, respectively.
  • Table 4 above when the epoxidized oil is mixed together as a plasticizer, it is possible to noticeably decrease the physical properties.
  • Comparative Example 1-4 in which epoxidized soybean oil is mixed with Example 1-1, tensile strength , Elongation and elongation residual performance was reduced, and the tensile residual and cold resistance were significantly poor.
  • the plasticizer composition preferably shows that the epoxidized oil is not contained.
  • Example 2-1 91.3 164.6 100.9 293.3 83.0 1.98 -31
  • Example 2-2 90.7 166.2 102.6 297.3 85.2 1.73 -30
  • Example 2-3 89.4 159.6 112.8 309.3 82.3 1.66 -31
  • Example 2-4 89.9 168.5 102.5 303.3 82.7 1.80 -30
  • Example 2-5 91.0 168.9 102.0 305.7 88.5 1.88 -31
  • Example 2-6 87.2 162.8 98.0 325.4 86.4 0.88 -35
  • Example 2-7 87.5 169.8 103.5 308.4 88.0 0.73 -35
  • Example 2-8 91.0 173.4 102.3 310.0 92.5 1.32 -33
  • Comparative Example 2-1 91.3 158.7 95.6 280.1 74.3 1.79 -28
  • Comparative Example 2-2 94.5 167.0 96.5 281.0 85.1 5.65 -28 Comparative Example 2-3 95.0 150.2 88.
  • Examples 2-1 to 2-8 was confirmed to secure the same level or more in terms of all physical properties compared to the comparative example 2-1 of the existing product, thus terephthalate-based plasticizer and trimellitate
  • citrate-based plasticizers are used in addition to the mixed plasticizers of the plasticizers, they can be used as replacement products of existing products without deteriorating specific physical properties and improved physical properties can also be achieved.
  • Comparative Example 2-4 is to replace the citrate plasticizer applied in Example 2-3 with an acetyl group bonded, referring to Table 6, it is confirmed that all physical properties are reduced. That is, it can be seen that the tensile strength and elongation are lowered, the plasticization efficiency is lowered (hardness is increased), and the tensile residual rate and elongation residual rate are lowered. Furthermore, by applying the acetyl group combined, the physical properties are worse than the conventional products in terms of transfer loss and tensile strength. That is, in the case of the citrate bonded to the acetyl group, it was confirmed that the damage in terms of physical properties as well as the damage in terms of economics and environmental aspects as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 테레프탈레이트계 가소제와 트리멜리테이트계 가소제를 포함하고, 시트레이트계 가소제를 선택적으로 포함하며, 에폭시화 오일을 함유하지 않는 가소제 조성물로서, 기존의 가소제에 내포된 문제점을 개선함으로써 수지 조성물의 가소제로 사용시 요구되는 내이행성, 인장강도, 신율, 잔율 특성 및 내한성 등의 물성을 개선시킬 수 있는 가소제 조성물 및 이를 포함하는 수지 조성물을 제공할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련출원과의 상호인용
본 출원은 2017년 02월 10일자 한국 특허 출원 제10-2017-0018590호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스테르를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 고내열, 저 가열감량을 주요 요구물성으로 하는 컴파운드 업종에서는 요구 물성을 고려하여 적절한 가소제를 사용하여야 한다. 전선 및 케이블용도의 PVC 컴파운드 경우에 해당 규격에서 요구되는 특성인 인장강도, 신율, 가소화효율, 가열감량, 인장 및 신율 잔율 등에 따라 PVC 수지에 가소제, 충진제, 안정제 및 난연제 등의 첨가제를 혼용한다.
현재 전선 컴파운드 및 자동차 원단용 업종에서 대표적으로 사용하고 있는 디이소데실프탈레이트(DIDP)는 환경호르몬 관찰물질이며, 환경이슈에 따라 사용 규제가 진행되고 있기 때문에, 이를 대체하고자 하는 친환경 제품의 개발 요구가 증대되고 있으나, 대체 제품들 역시도 프탈레이트계 물질을 일부라도 포함하는 제품들이 많아 여전히 환경 문제를 내포하고 있는 제품들이 대다수이다.
이에 상기 디이소데실프탈레이트(DIDP)보다 우수한 물성을 가지며, 환경 친화적인 신규 가소제 조성물의 제품을 개발함으로써, 환경이슈에서 자유롭고, 품질적인 측면에서 우수한 염화비닐계 수지 조성물을 확보해 나가는 연구가 진행중이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 등록특허 제10-0957134호
본 발명에서는 수지 조성물에 적용되는 가소제로서, 가소화 효율과 내이행성이 우수하고 인장강도와 신율, 인장잔율과 신장잔율이 향상되며 내한성이 개선된 가소제 조성물 및 이를 포함하는 수지 조성물을 제공하고자 한다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 디에스테르기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 4 내지 10인 테레프탈레이트계 가소제; 및 하기 화학식 1로 표시되는 트리멜리테이트계 가소제;를 포함하고 에폭시화 오일을 함유하지 않는 것을 특징으로 하는 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2018001776-appb-I000001
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 4 내지 10의 알킬기이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 전술한 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.
본 발명의 가소제 조성물은, 수지 조성물에 사용할 경우, 우수한 가소화 효율과 내이행성이 개선될 수 있고, 인장강도와 신율, 인장잔율과 신장잔율이 향상되며, 뿐만 아니라 가열감량과 내한성의 향상을 기대할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
2 종 또는 3 종의 가소제를 포함하는 가소제 조성물
본 발명의 일 실시예에 따르면, 가소제 조성물은 2 종 이상의 가소제를 포함하며, 상기 2 종 이상의 가소제는 디에스테르기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 4 내지 10인 테레프탈레이트계 가소제; 및 하기 화학식 1로 표시되는 트리멜리테이트계 가소제;를 필수적으로 포함하며 에폭시화 오일을 함유하지 않는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2018001776-appb-I000002
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 4 내지 10의 알킬기이다.
상기 가소제 조성물에 상기 테레프탈레이트계 가소제 및 트리멜리테이트계 가소제가 포함되는 경우 두 물질의 중량비는 상한이 99:1, 95:5, 90:10, 85:15, 80:20, 70:30 또는 60:40일 수 있고, 하한이 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 또는 40:60일 수 있다. 바람직하게는 90:10 내지 10:90, 더 바람직하게는 70:30 내지 10:90일 수 있다.
상기 가소제 조성물은 3 종의 가소제를 포함할 수 있고, 이 경우에는 하기 화학식 2로 표시되는 시트레이트계 가소제가 더 포함될 수 있다.
[화학식 2]
Figure PCTKR2018001776-appb-I000003
상기 화학식 2에서, R4 내지 R6은 각각 독립적으로, 탄소수가 5 내지 9인 알킬기이고, R7은 수소이다.
상기 가소제 조성물이 3 종의 가소제로 이루어지는 경우, 상기 테레프탈레이트계 가소제 및 트리멜리테이트계 가소제의 중량비는 2 종이 선택되는 경우와 동일한 중량비가 적용될 수 있으며, 상기 시트레이트계 가소제는 테레프탈레이트계 가소제 및 트리멜리테이트계 가소제의 총 중량의 100 중량부에 대하여, 5 내지 150 중량부로 포함될 수 있고, 바람직하게 10 내지 100 중량부가 포함될 수 있다.
상기 가소제 조성물에 상기와 같이 3 종의 가소제가 포함되고, 이 때의 혼합 비율이 상기 범위를 만족하는 경우에는 내이행성이 개선될 수 있고 인장잔율과 신율, 그리고 가소화 효율의 향상을 기대할 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 에폭시화 오일을 포함하지 않는 것을 특징으로 한다. 이 때, 에폭시화 오일이 투입되지 않는다는 의미는 가소제 조성물의 구성 성분으로 에폭시화 오일을 적용하는 것을 지양한다는 것으로서, 가소제 조성물이 가공시 수지와 혼합되는 경우에 있어서도, 수지 조성물 내에서의 함량 역시 가소제 조성물 100 중량부 대비, 5 중량부 미만, 바람직하게는 3 중량부 미만, 더 바람직하게는 1 중량부 미만의 양이 되는 것을 의미할 수 있다.
상기 에폭시화 오일의 경우 내열성이나 내유성과 같은 특성에 있어서 특정 효과를 볼 수 있으나, 저온, 예컨대 약 -5℃ 이하의 온도에서 가소제 액상이 슬러리화 되는 현상이 발생할 수 있어 제품의 보관 및 이송에 있어서 큰 문제를 야기할 수 있고, 이에 따라 에폭시화 오일이 포함된 가소제로 수지를 가공하게 되는 경우 가소제 조성물의 이송, 운반, 가공 및 수지 조성물의 내한 특성이 열화될 우려가 있다.
나아가, 상기 문제점 외에도 절연 성능을 필요로 하는 제품에 적용시 가소제에 에폭시화 오일이 포함되는 경우, 체적 저항이 기존 프탈레이트 제품 및 에폭시화 오일을 사용하지 않는 친환경 가소제 조성물에 비하여 저하되는 현상이 발생할 수 있다.
이에, 상기와 같은 문제점을 해결하기 위하여 본 발명에 따른 가소제 조성물에는 전술한 것과 같이 테레프탈레이트계 물질과 트리멜리테이트계 물질을 필수적으로 포함하되, 에폭시화 오일이 포함되지 않으며, 선택적으로 시트레이트계 물질을 추가로 포함할 수 있다. 이와 같이 에폭시화 오일이 포함되지 않는 경우에는 저온 저장 특성이 크게 향상될 수 있고, 제조된 수지 제품의 내한성 개선과 체적 저항 향상으로 절연 성능 개선을 기대할 수 있다.
테레프탈레이트계 가소제
본 발명의 일 실시예에 따른 테레프탈레이트계 가소제는, 디에스테르기에 결합된 두 개의 알킬기의 탄소수가 각각 4 내지 10인 것일 수 있다. 바람직하게는 6 내지 9일 수 있고, 또는 7 내지 9일 수 있다. 테레프탈레이트계 가소제는 프탈레이트계 가소제를 대체할 수 있는 가장 유용한 가소제로서, 기존의 프탈레이트계 가소제와 비교하여 기본적인 기계적 물성이 동등 수준으로 나타날 수 있어서, 친환경적인 가소제로서 적용이 가능할 수 있다.
또한, 상기 테레프탈레이트계 가소제의 디에스테르기에 결합된 두 개의 알킬기는, 예를 들면, 노말부틸기, 이소부틸기, 노말펜틸기, 이소펜틸기, 노말헥실기, 노말헵틸기, 이소헵틸기, 노말옥틸기, 이소옥틸기, 2-에틸헥실기, 노말노닐기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기일 수 있고, 바람직하게는 노말부틸기, 이소펜틸기, 이소헵틸기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 또는 이소데실기일 수 있다.
구체적으로 예를 들면, 상기 테레프탈레이트계 가소제는 디부틸 테레프탈레이트(DBTP), 디이소펜틸 테레프탈레이트(DIPTP), 디헥실 테레프탈레이트(DHxTP), 디이소헵틸 테레프탈레이트(DIHTP), 디(2-에틸헥실) 테레프탈레이트(DEHTP), 디이소노닐 테레프탈레이트(DINTP), 디(2-프로필헵틸) 테레프탈레이트(DPHTP), 디이소데실 테레프탈레이트(DIDTP), (2-에틸헥실)이소노닐 테레프탈레이트(EHINTP), (2-에틸헥실)(2-프로필헵틸) 테레프탈레이트, 이소노닐(2-프로필헵틸) 테레프탈레이트, (이소데실)(이소노닐) 테레프탈레이트, (2-에틸헥실)이소데실 테레프탈레이트, 이소데실(2-프로필헵틸) 테레프탈레이트, 부틸(2-에틸헥실) 테레프탈레이트 이소헵틸 (2-에틸헥실) 테레프탈레이트, 이소펜틸 이소노닐 테레프탈레이트, 이소펜틸 (2-에틸헥실) 테레프탈레이트, 이소펜틸 (2-프로필헵틸) 테레프탈레이트 또는 부틸 이소헵틸 테레프탈레이트 등일 수 있다.
제조방법 관련하여, 상기 테레프탈레이트계 가소제는 테레프탈산과 1 이상의 알코올의 직접 에스테르화 반응으로 제조될 수 있고, 또는 디알킬 테레프탈레이트와 알코올의 트랜스 에스테르화 반응으로 제조될 수 있다.
즉, 상기 알코올은 1차 알코올로서, 알킬기가 전술한 노말부틸기, 이소부틸기, 노말펜틸기, 이소펜틸기, 노말헥실기, 노말헵틸기, 이소헵틸기, 노말옥틸기, 이소옥틸기, 2-에틸헥실기, 노말노닐기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기로 이루어진 군에서 선택될 수 있다. 1 종의 알코올이 직접 에스테르화 반응에 적용되어 단일 테레프탈레이트가 적용될 수 있고, 2 이상의 혼합 알코올이 직접 에스테르화 반응에 적용되거나 트랜스 에스테르화 반응이 수행되어 2 이상의 테레프탈레이트가 혼합된 혼합물이 적용될 수 있다.
구체적으로, 상기 트랜스 에스테르화 반응이 수행되어 혼합 테레프탈레이트계 가소제가 적용되는 경우, 이 혼합 테레프탈레이트계 가소제는 각각의 테레프탈레이트 사이에서 특정 조성 비율을 가질 수 있으며, 예컨대, 알킬기로 알킬 A를 갖는 디(알킬A) 테레프탈레이트와 알킬기로 알킬B를 갖는 (알킬B)알코올이 반응물로써, 트랜스 에스테르화 반응이 수행되면, 디(알킬A)테레프탈레이트 3.0 내지 99.0 몰%; (알킬A)(알킬B)테레프탈레이트 0.5 내지 96.5 몰% 및 디(알킬B)테레프탈레이트 0.5 내지 96.5 몰%;의 혼합 테레프탈레이트가 형성될 수 있다.
상기 조성 비율은 에스테르화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
트리멜리테이트계 가소제
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 트리멜리테이트계 가소제를 포함할 수 있고, 이 트리멜리테이트계 가소제는 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2018001776-appb-I000004
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 4 내지 10의 알킬기이다.
상기 트리멜리테이트계 가소제는 전술한 바와 같은 테레프탈레이트계 가소제를 보완할 수 있는 물질로서, 테레프탈레이트계 가소제가 프탈레이트계 가소제에 비하여 달성되지 못하는 효과로서, 내이행성이나 감량 특성을 보완할 수 있을뿐만 아니라, 전반적인 물성의 개선이 가능할 수 있다.
상기 트리멜리테이트계 가소제에 있어서, 상기 화학식 1의 R1 내지 R3는 탄소수가 4 내지 10일 수 있고, 각각이 서로 동일할 수 있으며, 서로 상이한 경우에는 R1 내지 R3 중 2개는 동일한 것이며, 나머지 1개가 상이한 알킬기일 수 있다. 예를 들면, 상기 알킬기는 노말부틸기, 이소부틸기, 노말펜틸기, 이소펜틸기, 노말헥실기, 노말헵틸기, 이소헵틸기, 노말옥틸기, 이소옥틸기, 2-에틸헥실기, 노말노닐기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기 같은 알킬기가 선택될 수 있다.
또한, 상기 알킬기 중에서 노말 알킬기 즉, 선형인 알킬기가 적용되는 경우에는 내한성 등의 특성이 우수한 것으로 알려져 있으나, 상업적으로는 분지형의 이소알킬기가 경제성 측면에서 우수하다. 이와 같은 트리멜리테이트계 가소제의 경우, 상기 탄소수를 만족하는 것을 적용하면, 가소화 효율, 내이행성, 가열감량, 신장잔율 및 스트레스 이행성 등의 개선 효과를 기대할 수 있다.
시트레이트계 가소제
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 상기 테레프탈레이트계 가소제와 트리멜리테이트계 가소제를 포함하면서, 제3의 혼합물로서, 시트레이트계 가소제를 더 포함할 수 있고, 상기 시트레이트계 가소제는 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2018001776-appb-I000005
상기 화학식 2에서, R4 내지 R6은 각각 독립적으로, 탄소수가 5 내지 9인 알킬기이고, R7은 수소이다.
상기 시트레이트계 가소제는 화학식 2의 R4 내지 R6이 각각 독립적으로, 펜틸기, 이소펜틸기, 헥실기, 이소헥실기, 헵틸기, 이소헵틸기, 노말옥틸기, 2-에틸헥실기, 노말노닐기 또는 이소노닐기일 수 있으며, 상기 R4 내지 R6 각각은 서로 동일할 수 있고, 서로 상이할 수도 있다.
상기 R4 내지 R6이 탄소수 5 내지 9의 알킬기이면서, 서로 알킬기가 상이한 시트레이트는, 예를 들면, 이소노닐기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 2-에틸헥실기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 이소데실기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트 등이 있을 수 있고, 이 외에도 탄소수 5 내지 9 사이에서 선택되고, 탄소수가 서로 다른 두 알킬기의 조합 치환기를 갖는 시트레이트 등이 적용될 수 있으며, 상기 알킬기는 직쇄 또는 분지쇄일 수 있다.
상기 R4 내지 R6이 탄소수 5 내지 9의 알킬기이면서, 서로 알킬기가 상이한 시트레이트는, 예를 들면, 이소펜틸기와 이소노닐기의 조합 치환기를 갖는 시트레이트, 2-에틸헥실기와 이소소닐기의 조합 치환기를 갖는 시트레이트, 이소펜틸기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트 등이 있을 수 있고, 이 외에도 탄소수 5 내지 9 사이에서 선택되고, 탄소수가 서로 다른 두 알킬기의 조합 치환기를 갖는 시트레이트 등이 적용될 수 있으며, 상기 알킬기는 직쇄 또는 분지쇄일 수 있다.
상기 R4 내지 R6이 탄소수 5 내지 9의 알킬기이면서, 서로 알킬기가 동일한 시트레이트는, 예를 들면, 트리이소펜틸 시트레이트(TIPC), 트리헥실 시트레이트(THxC), 트리헵틸 시트레이트(THpC), 트리이소헵틸 시트레이트(TIHpC), 트리(2-에틸헥실) 시트레이트(TEHC), 트리이소노닐 시트레이트(TINC) 등이 적용될 수 있으며, 이 외에도 탄소수 5 내지 9의 알킬기라면 적용될 수 있다.
바람직하게는 탄소수가 5 이상인 것이 적용될 수 있고, 탄소수 5 내지 9의 알코올을 사용한 경우에는, 그 이상의 탄소수와 비교하여 상대적으로 소량의 사용으로도 가소화 효율 및 흡수속도 등에서 동등 내지 우수한 효과를 볼 수 있다. 또한, 알킬기의 탄소수 상한으로는 바람직하게는 9개인 것을 적용할 수 있으며, 탄소수가 9개를 초과하게 되면, 분자량의 과도한 증가로 인하여 흡수속도, 가소화 효율 저하 등의 특성 열화의 우려가 있다.
한편, 시트레이트계 가소제에 아세틸기가 존재하는 경우, 즉, R7이 아세틸기인 경우에는 가소제의 물성, 특히 가소화 효율 등의 물성 저하가 수반될 수 있으며 또한, 제조 공정에 있어서도 부산물로 발생되는 폐초산을 처리하기 위한 경제적, 설비적 비용이 추가될 수 있다. 이렇게 아세틸기를 도입하는 경우에는 공정단계들의 추가 및 부산물의 처리에 따른 제조원가 상승 등의 고려사항이 발생할 수 있다.
다시 말해서, 시트레이트계 가소제가 상기 화학식 2의 R7이 아세틸기인 경우에는 수소인 경우에 비하여, 가소화 효율의 저하, 이를 극복하기 위한 가소제의 증량 투입 및 이를 통한 제품 가격 상승 등의 문제가 동반될 수 있으므로, R7이 아세틸기인 시트레이트계 가소제는 시장성, 경제성 및 물성 등 다양한 측면에서 R7이 수소인 것에 비하여 우수하지 못할 수 있다.
제조 방법
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 블렌딩 방식을 적용할 수 있는 것으로, 테레프탈레이트계 가소제, 시트레이트계 가소제 및 트리멜리테이트계 가소제를 각각 제조한 이후에 혼합하는 과정을 통하여 조성물을 제조할 수 있다.
상기 테레프탈레이트계 가소제를 직접 에스테르화로 제조하는 경우, 부틸알코올, 이소펜틸 알코올, 헥실 알코올, 이소헵틸 알코올, 2-에틸헥실 알코올, 이소노닐 알코올, 2-프로필헵틸 알코올 중에서 1종 이상의 알코올을 테레프탈산과 반응하는 과정을 수행할 수 있다.
상기 직접 에스테르화 반응은, 알코올에 테레프탈산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다.
또한 상기 알코올은, 테레프탈산 100 몰% 기준으로 150 몰% 내지 500 몰%, 200 몰% 내지 400 몰%, 200 몰% 내지 350 몰%, 250 몰% 내지 400 몰%, 혹은 270 몰% 내지 330 몰% 범위 내로 사용될 수 있다.
한편, 상기 에스테르화 반응의 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 중량% 내지 5 중량%, 0.01 중량% 내지 3 중량%, 1 중량% 내지 5 중량% 혹은 2 중량% 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 중량% 내지 200 중량%, 5 중량% 내지 100 중량%, 20 중량% 내지 200 중량%, 혹은 20 중량% 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 180℃ 내지 280℃, 200℃ 내지 250℃, 혹은 210℃ 내지 230℃ 범위 내일 수 있다.
상기 테레프탈레이트계 가소제를 혼합물로 제조하고자 한다면, 전술한 직접 에스테르화 반응을 통해서 테레프탈레이트 화합물이 제조된 후 혼합되는 것일 수 있고, 또는 직접 에스테르화 반응에서 알코올을 2 이상 적용하는 방법이 적용될 수 있으며, 또는 디(2-에틸헥실) 테레프탈레이트 또는 디이소노닐 테레프탈레이트 등의 테레프탈테이트 화합물과, 부틸알코올, 이소펜틸 알코올, 헥실 알코올, 이소헵틸 알코올 및 2-프로필헵틸 등의 알코올이 반응하는 트랜스 에스테르화 반응;을 통하여 테레프탈레이트 화합물을 제조할 수 있으며, 이때 알코올의 도입순서는 제조방법에 따라 순서를 변경할 수 있다. 예를 들어 디(2-에틸헥실) 테레프탈레이트와 부틸 알코올과의 반응으로 제조되는 생성물은 디부틸 테레프탈레이트와 2-에틸헥실 알코올과의 반응으로 제조되는 생성물과 크게 다르지 않으며, 생성물의 함량 비율은 반응 조건 및 전환율을 제어하는 경우 동일하게 제조도 가능할 수 있다.
본 발명에서 사용되는 "트랜스 에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2018001776-appb-I000006
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.
예를 들어, 디(2-에틸헥실)테레프탈레이트와 이소노닐 알코올은 상기 트랜스-에스테르화 반응에 의해, 디(2-에틸헥실)테레프탈레이트, (2-에틸헥실)이소노닐 테레프탈레이트 및 디이소노닐테레프탈레이트의 혼합물이 생성될 수 있고, 상기 3 종의 테레프탈레이트는 혼합물 총 중량에 대해 각각 3.0 중량% 내지 70 중량%, 0.5 중량% 내지 50 중량%, 및 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 10 중량% 내지 50 중량%, 0.5 중량% 내지 50 중량%, 및 35 중량% 내지 80 중량%의 양으로 형성될 수 있다.
또한, 상기 트랜스 에스테르화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 테레프탈레이트 화합물 100 중량부에 대해 0.1 중량부 내지 89.9 중량부, 구체적으로는 3 중량부 내지 50 중량부, 더욱 구체적으로는 5 중량부 내지 40 중량부일 수 있다.
상기 테레프탈레이트는 화합물은 알코올의 첨가량이 많을수록, 트랜스 에스테르화 반응에 참여하는 테레프탈레이트 화합물의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 테레프탈레이트 화합물의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 테레프탈레이트 화합물의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 테레프탈레이트 화합물과 알코올의 몰비는 일례로 1:0.005 내지 1:5.0, 1:0.05 내지 1:2.5, 혹은 1:0.1 내지 1:1이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스테르계 가소제 조성물을 수득하는 효과가 있다.
다만, 상기 3 종의 테레프탈레이트계 가소제의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 테레프탈레이트 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응은 120℃ 내지 190℃, 바람직하게는 135℃ 내지 180℃, 더욱 바람직하게는 141℃ 내지 179℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 시간 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 테레프탈레이트계 가소제인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스-에스테르화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 직접 에스테르화 반응과 트랜스 에스테르화 반응은 전술한 시트레이트계 가소제(테레프탈산 대신 시트르산 이용) 및 트리멜리테이트계 가소제(테레프탈산 대신 트리멜리트산 이용)을 제조하는 데에도 사용될 수 있다. 이 경우, 테레프탈레이트계 가소제와 마찬가지로 시트레이트계 가소제 또는 트리멜리테이트계 가소제 역시 소정 비율의 혼합물로 제조될 수 있고, 반응 원료로서의 알코올의 함량 조절에 따라 생성되는 혼합물의 조성비를 제어할 수도 있다. 이 외에도 시트레이트 또는 트리멜리테이트를 직접 에스테르화 반응 또는 트랜스 에스테르화 반응을 통해서 제조하는 경우에는 상기 테레프탈레이트계 가소제를 제조하는 데에 적용된 내용과 동일하게 그 내용들이 적용될 수 있다.
또한, 상기 반응 원료로서 테레프탈산, 시트르산 및 트리멜리트산은 이와 같은 카르복실산 계열의 물질 대신에 산 무수물을 대체 물질로 사용할 수도 있다.
한편, 상기 가소제 조성물을 제조하는 방법은 각각을 제조한 후에 블렌딩 하는 방법이 적용될 수 있지만, 원료의 혼합물을 동시에 에스테르화 반응으로 제조하는 방법이 적용될 수도 있다.
구체적으로, 테레프탈레이트계 가소제, 시트레이트계 가소제 및 트리멜리테이트계 가소제에 있어서 알킬기의 탄소수가 모두 동일한 것을 적용하고자 하는 경우에는, 테레프탈산, 시트르산, 트리멜리트산 등의 산 혼합물을 특정 알킬기를 갖는 알코올과 직접 에스테르화 반응시켜 제조할 수 있으며, 이 경우에는 테레프탈레이트, 시트레이트 및 트리멜리테이트의 알킬기의 탄소수가 모두 동일한 가소제 조성물이 얻어질 수 있다.
즉, 동일한 알코올을 사용하는 경우라면, 제조 공정에서 2개 이상의 산 혹은 산 무수물과 알코올을 동시에 반응시키는 것이 상업적으로 경제적인 방법일 수 있다.
본 발명의 다른 일 실시예에 따르면, 이와 같이 제조된 가소제 조성물은 수지 100 중량부 대비 5 중량부 내지 150 중량부, 20 중량부 내지 100 중량부, 30 내지 80 중량부 혹은 40 중량부 내지 70 중량부로 수지와 함께 혼합되어 수지 조성물로 제공된다.
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄, 및 열가소성 엘라스토머 중에서 선택될 수 있다.
또한, 상기 수지 조성물에는 열안정제, 안정제, 윤활제 또는 충진제 등의 다양한 첨가제가 함께 혼합될 수 있으며, 종류나 함량은 당업계에 공지된 바에 따라 적용될 수 있다.
상기와 같이 제조된 수지 조성물은 예를 들면, 캘린더링이나 컴파운드 처방 등에 모두 효과적인 수지 조성물을 제공할 수 있고, 예를 들어 상기 수지 조성물을 통해서, 전선, 바닥재, 자동차 내장재, 필름, 시트, 혹은 튜브 제조에 적용할 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
<테레프탈레이트계 물질의 제조>
제조예 1: 디(2-에틸헥실) 테레프탈레이트(DEHTP)의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; PTA) 498.0 g, 2-에틸헥실 알코올(2-EH) 1170 g (TPA: 2-EH의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54 g(TPA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-에틸헥실)테레프탈레이트 1326.7 g(수율: 99.0 %)을 얻었다.
제조예 2: 디이소노닐 테레프탈레이트(DINTP)의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 이소노닐 알코올1,296g 을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 디이소노닐 테레프탈레이트를 제조하였다.
제조예 3: 디(2-프로필헵틸) 테레프탈레이트(DPHTP)의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 2-프로필헵틸 알코올 1,422g을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 디(2-프로필헵틸) 테레프탈레이트를 제조하였다.
제조예 4: 디부틸 테레프탈레이트(DBTP)의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 노말부틸 알코올670g, 촉매로써 메탄설폰산(Methanesulfonic aicd)를 5g을 사용하여 저온 반응을 실시한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 디부틸 테레프탈레이트를 제조하였다.
이때, 반응 종료시점은 G.C. 및 임의의 산가(Acid value)를 설정하여 진행하였다.
제조예 5: 디이소펜틸 테레프탈레이트(DIPTP)의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 이소펜틸 알코올 792g을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 디이소펜틸 테레프탈레이트를 제조하였다.
제조예 6: 디헥실 테레프탈레이트(DHxTP)의 제조
에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 노말헥실 알코올 918g을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 디헥실 테레프탈레이트를 제조하였다.
<트리멜리테이트계 물질의 제조>
제조예 7: 트리부틸 트리멜리테이트(TBTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 n-부틸 알코올 866g을 사용하여, 최종적으로 트리부틸 트리멜리테이트 제품 1,112g(수율: 98%)을 얻었다.
제조예 8: 트리이소펜틸 트리멜리테이트(TIPTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 이소펜틸 알코올 1,030g을 사용하여, 최종적으로 트리이소펜틸 트리멜리테이트 제품 1,236g(수율: 98%)을 얻었다.
제조예 9: 트리헥실 트리멜리테이트(THxTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 헥실 알코올 1,196g을 사용하여, 최종적으로 트리헥실 트리멜리테이트 제품 1,360g(수율: 98%)을 얻었다.
제조예10: 트리(2-에틸헥실) 트리멜리테이트(TEHTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 2-에틸헥실 알코올 1,521g을 사용하여, 최종적으로 트리(2-에틸헥실) 트리멜리테이트 제품 1,607g(수율: 98%)을 얻었다.
제조예 11: 트리이소노닐 트리멜리테이트(TINTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 이소노닐 알코올 1,685g을 사용하여, 최종적으로 트리이소노닐 트리멜리테이트 제품 1,731g(수율: 98%)을 얻었다.
제조예 12: 트리(2-프로필헵틸) 트리멜리테이트(TPHTM)의 제조
반응 원료로서 무수 트리멜리트산 576.3g과 2-프로필헵틸 알코올 1,852g을 사용하여, 최종적으로 트리(2-프로필헵틸) 트리멜리테이트 제품 1,855g(수율: 98%)을 얻었다.
<시트레이트계 물질의 제조>
제조예 13: 트리이소펜틸 시트레이트(TIPC)의 제조
반응 원료로서 시트릭산 576 g과 이소펜틸 알코올 1,030 g을 사용하여, 최종적으로 트리이소펜틸 시트레이트 1,183g(수율: 98%)을 얻었다.
제조예 14: 트리헥실 시트레이트(THxC)의 제조
반응 원료로서 시트릭산 576 g과 헥실 알코올 1,196 g을 사용하여, 최종적으로 트리헥실 시트레이트 1,307g(수율: 98%)을 얻었다.
제조예 15: 트리(2-에틸헥실) 시트레이트(TEHC)의 제조
반응 원료로서 시트릭산 576 g과 2-에틸헥실 알코올 1,521 g을 사용하여, 최종적으로 트리(2-에틸헥실) 시트레이트 1,554g(수율: 98%)을 얻었다.
제조예 16: 트리이소노닐 시트레이트(TINC)의 제조
반응 원료로서 시트릭산 576 g과 이소노닐 알코올 1,685 g을 사용하여, 최종적으로 트리이소노닐 시트레이트 1,679 g(수율: 98%)을 얻었다.
상기 제조예 1 내지 16에서 제조한 물질들을 혼합하여 실시예들의 가소제 조성물을 제조하였고, 이에 대하여 실시예 및 비교예의 가소제 조성물을 하기 표 1과 2에 정리하여 나타내었으며, 이 가소제 조성물의 물성 평가는 하기의 시험 항목에 따라 수행하였다. 상기 제조예에서 제조된 물질들 이외의 물질들은 모두 ㈜LG화학 제품 혹은 상업적으로 구입할 수 있는 제품이다.
가소제 A 가소제 B 가소제 C
실시예 1-1 DEHTP 50 TINTM 50 -
실시예 1-2 DEHTP 90 TPHTM 10 -
실시예 1-3 DINTP 60 THxTM 40 -
실시예 1-4 DPHTP 30 THxTM 70 -
실시예 1-5 DHxTP 40 TEHTM 60 -
실시예 1-6 DIPTP 80 TINTM 20 -
실시예 1-7 DINTP 20 TIPTM 80 -
실시예 1-8 DPHTP 10 THxTM 90 -
실시예 1-9 DBTP 10 TINTM 90 -
실시예 1-10 GL1001) 70 THxTM 30 -
실시예 1-11 GL5202) 40 TINTM 60 -
비교예 1-1 DIDP3) 100 - -
비교예 1-2 DEHTP 100 - -
비교예 1-3 - TPHTM 100 -
비교예 1-4 DEHTP 50 TINTM 50 ESO4)
비교예 1-5 DINTP 60 THxTM 40 ESO4)
1) GL100(㈜LG화학): 디이소노닐 테레프탈레이트, 이소노닐(2-에틸헥실) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트의 중량비가 약 10:50:40인 테레프탈레이트 조성물
2) GL520(㈜LG화학): 디부틸 테레프탈레이트, 부틸(2-에틸헥실) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트의 중량비가 약 5:25:70인 테레프탈레이트 조성물
3) DIDP: 디이소데실 테레프탈레이트
4) 가소제 A 및 B 총 합 100 중량부 대비 20 중량부의 에폭시화 대두유(ESO) 투입
가소제 A 가소제 B 가소제 C (중량부)1)
실시예 2-1 DEHTP 62.5 TEHTM 37.5 TEHC 25
실시예 2-2 DEHTP 37.5 TEHTM 62.5 THxC 25
실시예 2-3 DEHTP 66.7 TINTM 33.3 THxC 67
실시예 2-4 DEHTP 50 THxTM 50 TEHC 67
실시예 2-5 DINTP 77.8 TBTM 22.2 TIPC 11
실시예 2-6 DINTP 40 TIPTM 60 TIPC 100
실시예 2-7 DPHTP 11.1 THTM 88.9 TINC 11
실시예 2-8 GL520 85.7 TPHTM 14.3 TEHC 43
비교예 2-1 DIDP 100 - -
비교예 2-2 DINTP 100 - TINC 25
비교예 2-3 DPHTP 100 - TEHC 43
비교예 2-4 DEHTP 66.7 TINTM 33.3 ATHxC2) 67
1) 가소제 A 및 가소제 B의 혼합물 총 중량의 100 중량부 대비 함량
2) ATHxC: 아세틸 트리헥실 시트레이트
<시험 항목>
경도(hardness) 측정
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore "A")경도, 3T 10s를 측정하였다.
인장강도(tensile strength) 측정
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 3345)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min (1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다.
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = [신장 후 길이 / 초기 길이] x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시편을 얻었고, 시편 양면에 시편 양면에 Glass Plate와 기름종이를 붙인 후 2 kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 PS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량 (%) = [(상온에서의 시편의 초기 중량 - 오븐 방치 후 시편의 중량) / 상온에서의 시편의 초기 중량] x 100
인장 및 신장 잔율 측정
인장 및 신장잔율의 측정은 121℃, 168 시간 동안 열을 가한 후, 시편에 잔존하는 인장 및 신율 특성을 측정하는 것이며, 측정 방법은 위 인장강도 및 신율 측정의 방법과 동일하다.
내한성
제작된 시편 5개를 특정 온도에서 3 분간 방치한 후 타격하여 5개 중에서 3개가 파손될 때의 온도를 측정하였다.
실험예 1: 물성 평가 1
상기 표 1과 2에 기재된 실시예 및 비교예들의 혼합 가소제 조성물을 사용하여 시편을 제작하였다.
상기 시편 제작은 ASTM D638을 참조하여, 폴리염화비닐 수지(PVC(LS100)) 100 중량부에 대해, 상기 실시예 및 비교예에서 제조된 가소제 조성물을 50 중량부, 안정제로 RUP-144 (아데카코리아) 5 중량부, 필러로 Omya 1T(오미야) 40 중량부, 활제로 St-A(이수화학) 0.3 중량부를 배합하여 700 rpm으로 98℃에서 혼합하였다. 롤밀(Roll mill)을 이용하여 160℃에서 4분 동안 작업하였고, 프레스(press)를 이용하여 180℃에서 3분(저압) 및 2.5분(고압)로 작업하여 시편을 제작하였다.
상기 시편에 대하여 상기 시험 항목을 각각 평가하여 그 결과를 하기 표 3에 나타내었다.
경도(Shore "A") 인장강도(kg/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 내한성(℃)
실시예 1-1 92.0 164.3 111.6 301.3 78.5 -29
실시예 1-2 90.3 170.2 102.4 306.8 86.4 -32
실시예 1-3 89.2 172.6 105.0 314.5 96.4 -32
실시예 1-4 89.3 170.1 102.0 300.2 93.4 -31
실시예 1-5 90.6 165.9 98.2 295.6 92.3 -33
실시예 1-6 88.5 167.5 96.7 290.3 80.6 -35
실시예 1-7 89.2 170.3 102.0 304.6 94.2 -32
실시예 1-8 89.0 172.0 98.8 310.5 92.6 -33
실시예 1-9 92.8 162.4 105.6 298.5 83.6 -29
실시예 1-10 89.0 177.5 97.8 295.7 95.8 -36
실시예 1-11 90.7 198.7 98.7 314.8 88.5 -29
비교예 1-1 91.3 158.7 95.6 280.1 74.3 -28
비교예 1-2 91.6 143.6 78.5 270.3 65.3 -30
비교예 1-3 96.8 170.3 98.3 255.6 92.3 -25
상기 표 3을 참조하면, 테레프탈레이트계 가소제와 트리멜리테이트계 가소제를 선택함에 있어서 탄소수를 4 내지 10으로 제어하고 각 함량 비율을 적절하게 제어함으로써, 기존 제품인 비교예 1-1과 비교예 1-2 대비하여 그 성능이 상당히 개선되었음을 확인할 수 있고, 친환경 제품으로서 범용적으로 사용되는 비교예 1-2인 DEHTP(비교예 1-2) 가소제에 대비해서, 모든 물성이 월등하게 향상되었음을 확인할 수 있고, 환경 문제로 인한 DIDP 가소제(비교예 1-1) 보다도 우수한 성능을 나타내는 가소제임을 확인할 수 있으며, 이에 상기 DIDP를 완벽하게 대체할 수 있는 제품임을 확인하였다.
또한, 테레프탈레이트계 가소제를 전혀 사용하지 않은 비교예 1-3의 경우에는 가소화 효율(경도)이 실시예들 대비 약 5% 이상, 신율 특성이 실시예들 대비 약 10% 이상의 폭으로 하락하고, 기존 제품들에 비하여 특성이 열악하여 기존 제품의 대체재가 되기에는 상당히 부족하다는 점 또한 확인할 수 있다.
실험예 2: 물성 평가 2
상기 표 1에 기재된 실시예 및 비교예들의 혼합 가소제 조성물을 사용하여 상기 실험예 1과 같이 시편을 제작하였고 상기 시편에 대하여 상기 시험 항목을 각각 평가하여 그 결과를 하기 표 4에 나타내었다.
경도(Shore "A") 인장강도(kg/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 내한성(℃)
실시예 1-1 92.0 164.3 111.6 301.3 78.5 -29
비교예 1-4 91.6 160.2 95.6 287.3 75.1 -23
실시예 1-3 89.2 172.6 105.0 314.5 96.4 -32
비교예 1-5 89.5 170.0 92.5 295.8 89.3 -27
상기 비교예 1-4와 1-5는 각각 실시예 1-1과 1-3에 추가적으로 에폭시화 대두유를 가소제로 더 첨가한 것이다. 상기 표 4를 참조하면, 에폭시화 오일을 가소제로 함께 혼용하는 경우, 물성 저하를 눈의 띄게 확인할 수 있는데, 실시예 1-1 대비 에폭시화 대두유를 혼용한 비교예 1-4의 경우, 인장강도, 신율, 신장 잔율 성능이 저하되었고, 인장잔율과 내한성은 상당한 폭으로 열악해졌음을 확인할 수 있다.
이는 실시예 1-3과 비교예 1-5의 변화에서도 동일하게 확인할 수 있는 것으로서, 가소제 조성물에는 에폭시화 오일이 함유되지 않는 것이 바람직하다는 것을 보여주는 것이라고 할 수 있다.
실험예 3: 물성 평가 3
상기 표 2에 기재된 실시예 및 비교예들의 혼합 가소제 조성물을 사용하여 상기 실험예 1과 같이 시편을 제작하였고 상기 시편에 대하여 상기 시험 항목을 각각 평가하여 그 결과를 하기 표 5에 나타내었다.
경도(Shore "A") 인장강도(kg/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 이행손실(%) 내한성(℃)
실시예 2-1 91.3 164.6 100.9 293.3 83.0 1.98 -31
실시예 2-2 90.7 166.2 102.6 297.3 85.2 1.73 -30
실시예 2-3 89.4 159.6 112.8 309.3 82.3 1.66 -31
실시예 2-4 89.9 168.5 102.5 303.3 82.7 1.80 -30
실시예 2-5 91.0 168.9 102.0 305.7 88.5 1.88 -31
실시예 2-6 87.2 162.8 98.0 325.4 86.4 0.88 -35
실시예 2-7 87.5 169.8 103.5 308.4 88.0 0.73 -35
실시예 2-8 91.0 173.4 102.3 310.0 92.5 1.32 -33
비교예 2-1 91.3 158.7 95.6 280.1 74.3 1.79 -28
비교예 2-2 94.5 167.0 96.5 281.0 85.1 5.65 -28
비교예 2-3 95.0 150.2 88.2 275.3 80.6 6.50 -27
상기 표 5를 참조하면, 실시예 2-1 내지 2-8의 경우 기존 제품인 비교예 2-1에 비하여 모든 물성 측면에서 동등 이상의 수준을 확보함이 확인되었고, 이에 테레프탈레이트계 가소제와 트리멜리테이트계 가소제의 혼용 가소제에 추가적으로 시트레이트계 가소제를 함께 사용하는 경우에는 특정 물성의 저하 없이 기존 제품의 대체 제품으로 활용할 수 있으며 물성 개선 또한 우수한 수준으로 달성할 수 있음을 확인할 수 있다.
또한, 트리멜리테이트계 가소제를 사용하지 않고, 시트레이트계 가소제만을 추가로 사용한 비교예 2-2와 2-3의 경우에는 가소화 효율(경도)이 크게 열악해지고, 이행손실 특성 또한 크게 저하됨을 확인할 수 있으며, 실시예 2-1 내지 2-8 대비 인장 잔율과 신율, 그리고 내한성이 저하된다는 점 또한 확인할 수 있다.
실험예 4: 물성 평가 4
상기 표 2에 기재된 실시예 및 비교예들의 혼합 가소제 조성물을 사용하여 상기 실험예 1과 같이 시편을 제작하였고 상기 시편에 대하여 상기 시험 항목을 각각 평가하여 그 결과를 하기 표 6에 나타내었다.
경도(Shore "A") 인장강도(kg/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 이행손실(%) 내한성(℃)
실시예 2-3 89.4 159.6 112.8 309.3 82.3 1.66 -31
비교예 2-1 91.3 158.7 95.6 280.1 74.3 1.79 -28
비교예 2-4 90.2 149.3 98.6 300.2 78.2 1.90 -30
상기 비교예 2-4는 실시예 2-3에서 적용한 시트레이트계 가소제를 아세틸기가 결합된 것으로 대체한 것인데, 상기 표 6을 참조하면, 모든 물성이 저하됨이 확인된다. 즉, 인장강도와 신율이 저하되고 가소화 효율이 하락(경도 상승)하였으며, 또한 인장 잔율과 신장 잔율이 떨어졌음을 확인할 수 있다. 나아가, 아세틸기가 결합된 것을 적용함으로 인하여 기존 제품보다도 이행손실 및 인장강도 측면에서 더 물성이 좋지 못한 결과를 얻었다. 즉, 아세틸기가 결합된 시트레이트의 경우에는 전술한 바와 같이 경제성 및 환경성 측면에서의 손해뿐만 아니라 물성 측면에서도 손해를 볼 수 있음을 확인하였다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (9)

  1. 디에스테르기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 4 내지 10 인 테레프탈레이트계 가소제; 및
    하기 화학식 1로 표시되는 트리멜리테이트계 가소제;를 포함하고,
    에폭시화 오일을 함유하지 않는 것을 특징으로 하는 가소제 조성물:
    [화학식 1]
    Figure PCTKR2018001776-appb-I000007
    상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 4 내지 10의 알킬기이다.
  2. 제1항에 있어서,
    상기 테레프탈레이트계 가소제 및 트리멜리테이트계 가소제는 중량비가 90:10 내지 10:90인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 가소제 조성물은 하기 화학식 2로 표시되는 시트레이트계 가소제를 더 포함하는 것인 가소제 조성물:
    [화학식 2]
    Figure PCTKR2018001776-appb-I000008
    상기 화학식 2에서, R4 내지 R6은 각각 독립적으로, 탄소수가 5 내지 9인 알킬기이고, R7은 수소이다.
  4. 제3항에 있어서,
    상기 시트레이트계 가소제는 테레프탈레이트계 가소제 및 트리멜리테이트계 가소제의 혼합물 총 중량 100 중량부 대비 5 중량부 내지 150 중량부;로 포함되는 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 테레프탈레이트계 가소제의 디에스테르기에 결합된 2개의 알킬기는 각각 독립적으로, 노말부틸기, 이소부틸기, 노말펜틸기, 이소펜틸기, 노말헥실기, 노말헵틸기, 이소헵틸기, 노말옥틸기, 이소옥틸기, 2-에틸헥실기, 노말노닐기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 화학식 1의 R1 내지 R3는 각각 독립적으로, 노말부틸기, 이소부틸기, 노말펜틸기, 이소펜틸기, 노말헥실기, 노말헵틸기, 이소헵틸기, 노말옥틸기, 이소옥틸기, 2-에틸헥실기, 노말노닐기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  7. 제3항에 있어서,
    상기 화학식 2의 R4 내지 R6는 각각 독립적으로, 펜틸기, 이소펜틸기, 헥실기, 이소헥실기, 헵틸기, 이소헵틸기, 노말옥틸기, 2-에틸헥실기, 노말노닐기 또는 이소노닐기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  8. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  9. 제8항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2018/001776 2017-02-10 2018-02-09 가소제 조성물 및 이를 포함하는 수지 조성물 WO2018147689A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/325,688 US11499030B2 (en) 2017-02-10 2018-02-09 Plasticizer composition and resin composition including the same
EP18750908.8A EP3476890B1 (en) 2017-02-10 2018-02-09 Plasticizer composition and resin composition including the same
ES18750908T ES2790276T3 (es) 2017-02-10 2018-02-09 Composición de plastificante y composición de resina que incluye la misma
CN201880003086.XA CN109563309B (zh) 2017-02-10 2018-02-09 增塑剂组合物和包含该增塑剂组合物的树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170018590 2017-02-10
KR10-2017-0018590 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018147689A1 true WO2018147689A1 (ko) 2018-08-16

Family

ID=63107745

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2018/001777 WO2018147690A1 (ko) 2017-02-10 2018-02-09 가소제 조성물 및 이를 포함하는 수지 조성물
PCT/KR2018/001776 WO2018147689A1 (ko) 2017-02-10 2018-02-09 가소제 조성물 및 이를 포함하는 수지 조성물

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001777 WO2018147690A1 (ko) 2017-02-10 2018-02-09 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (7)

Country Link
US (2) US11130852B2 (ko)
EP (2) EP3476890B1 (ko)
KR (2) KR101982191B1 (ko)
CN (2) CN109563309B (ko)
ES (2) ES2790276T3 (ko)
TW (2) TWI733984B (ko)
WO (2) WO2018147690A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166147A (zh) * 2018-10-29 2021-01-01 株式会社Lg化学 环己烷三酯类增塑剂组合物和包含该增塑剂组合物的树脂组合物
JP7358702B2 (ja) 2019-06-12 2023-10-11 エルジー・ケム・リミテッド 可塑剤組成物およびこれを含む樹脂組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130852B2 (en) 2017-02-10 2021-09-28 Lg Chem, Ltd. Plasticizer composition and resin composition including the same
KR102195328B1 (ko) * 2018-08-27 2020-12-28 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물
CN114008120B (zh) * 2019-06-26 2024-03-08 伊士曼化工公司 用作增塑剂的混合对苯二甲酸酯组合物
WO2020263590A1 (en) * 2019-06-26 2020-12-30 Eastman Chemical Company Novel non-phthalate plasticizer blends for poly(vinyl chloride) resin compositions
WO2021020878A1 (ko) * 2019-07-30 2021-02-04 주식회사 엘지화학 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
CN114340584A (zh) * 2019-09-05 2022-04-12 赢创运营有限公司 包含二取代的对苯二甲酸酯以及光防护滤光物质、除臭剂和/或止汗剂活性成分的组合物
CN113292425A (zh) * 2021-06-17 2021-08-24 浙江皇星化工股份有限公司 一种对苯二甲酸二(2-丙基)庚酯的生产方法
CN116997604A (zh) * 2021-10-29 2023-11-03 株式会社Lg化学 丙烷三甲酸酯类增塑剂组合物和包含其的树脂组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140005908A (ko) * 2010-11-24 2014-01-15 에보니크 옥세노 게엠베하 가소제로서 dint를 함유하는 중합체 조성물
KR20160095875A (ko) * 2015-02-04 2016-08-12 한화케미칼 주식회사 친환경 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
KR20160124151A (ko) * 2014-02-20 2016-10-26 바스프 에스이 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물
KR101674317B1 (ko) * 2015-02-12 2016-11-08 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20160134652A (ko) * 2014-03-18 2016-11-23 제온 코포레이션 염화비닐 수지 조성물, 염화비닐 수지 성형체 및 적층체
KR20170055360A (ko) * 2015-11-11 2017-05-19 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1031137C (zh) * 1992-12-23 1996-02-28 中国医学科学院输血研究所 血小板贮存袋用的软聚氯乙烯材料
DE102006001795A1 (de) 2006-01-12 2007-07-19 Oxeno Olefinchemie Gmbh Terephthalsäuredialkylester und deren Verwendung
DE102007001540A1 (de) * 2006-02-02 2007-08-09 Basf Ag C10/C6-Estergemische auf Basis 2-Propylheptanol
US20090312470A1 (en) * 2008-06-11 2009-12-17 Ferro Corporation Asymmetric Cyclic Diester Compounds
US20100113664A1 (en) 2008-06-11 2010-05-06 Ferro Corporation Asymmetric Cyclic Diester Compounds
CN101875747B (zh) 2009-04-28 2011-12-14 杭州德裕饰品有限公司 一种超低温聚氯乙烯改性、绝缘护套电缆料及其制备方法
KR100957134B1 (ko) 2009-05-19 2010-05-11 애경유화 주식회사 새로운 가소제 조성물 및 이를 이용한 내열전선용 염화비닐수지 조성물
CN102959031B (zh) * 2010-06-21 2016-02-10 巴斯夫欧洲公司 在粘合剂和密封剂中作为增塑剂的对苯二甲酸2-乙基己基·甲基酯
IT1400983B1 (it) 2010-07-05 2013-07-05 Mazzucchelli 1849 Spa Materiale a base di acetato di cellulosa con plastificanti e manufatto ottenuto con tale prodotto.
CN101993548A (zh) * 2010-09-30 2011-03-30 浙江嘉澳环保科技股份有限公司 一种环保复合型增塑剂及制备方法
JP2013129776A (ja) 2011-12-22 2013-07-04 Hitachi Cable Ltd 塩化ビニル樹脂組成物、それを用いた電線およびケーブル
DE102012012942B4 (de) 2012-06-29 2015-07-23 Oxea Gmbh Mischungen enthaltend Trimellitsäureester und Triethylenglykol-di-2-ethylhexanoat als Plastifiziermittel, Verwendung der Mischungen zur Herstellung von Polymercompounds und PVC-Werkstoffe enthaltend diese Mischung
KR20140027014A (ko) 2012-08-23 2014-03-06 주식회사 엘지화학 가소제 조성물
US20140162045A1 (en) * 2012-12-11 2014-06-12 Baxter Healthcare Sa Radiation stabilized pvc compositions, and method of making same
US9309183B2 (en) 2014-02-20 2016-04-12 Basf Corporation Plasticizer composition comprising di(2-ethylhexyl) terephthalate
CN105218964B (zh) * 2014-06-25 2017-06-16 北京化工大学 抗菌聚氯乙烯材料及其制备方法和应用
CN104371210B (zh) * 2014-10-11 2016-09-07 上海新上化高分子材料有限公司 一种高透氧型血小板贮存医用pvc材料及其制备方法
WO2016129876A1 (ko) * 2015-02-12 2016-08-18 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR101901010B1 (ko) 2015-03-20 2018-09-20 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
CN104893219A (zh) * 2015-06-25 2015-09-09 梁胜光 一种软质增塑剂
PL3147317T3 (pl) 2015-09-28 2018-01-31 Evonik Degussa Gmbh Estry tripentylowe kwasu trimelitowego
US20190161598A1 (en) 2016-08-01 2019-05-30 Basf Se Plasticizer composition
CN110167995B (zh) * 2016-10-18 2022-07-01 界面生物公司 具有表面改性大分子的塑化pvc混合物和由其制成的制品
RS61247B1 (sr) 2017-01-20 2021-01-29 Evonik Operations Gmbh Diizopentiltereftalat
US11130852B2 (en) 2017-02-10 2021-09-28 Lg Chem, Ltd. Plasticizer composition and resin composition including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140005908A (ko) * 2010-11-24 2014-01-15 에보니크 옥세노 게엠베하 가소제로서 dint를 함유하는 중합체 조성물
KR20160124151A (ko) * 2014-02-20 2016-10-26 바스프 에스이 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물
KR20160134652A (ko) * 2014-03-18 2016-11-23 제온 코포레이션 염화비닐 수지 조성물, 염화비닐 수지 성형체 및 적층체
KR20160095875A (ko) * 2015-02-04 2016-08-12 한화케미칼 주식회사 친환경 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
KR101674317B1 (ko) * 2015-02-12 2016-11-08 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20170055360A (ko) * 2015-11-11 2017-05-19 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476890A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166147A (zh) * 2018-10-29 2021-01-01 株式会社Lg化学 环己烷三酯类增塑剂组合物和包含该增塑剂组合物的树脂组合物
CN112166147B (zh) * 2018-10-29 2022-04-12 株式会社Lg化学 环己烷三酯类增塑剂组合物和包含该增塑剂组合物的树脂组合物
US11851547B2 (en) 2018-10-29 2023-12-26 Lg Chem, Ltd. Cyclohexane triester based plasticizer composition and resin composition comprising the same
JP7358702B2 (ja) 2019-06-12 2023-10-11 エルジー・ケム・リミテッド 可塑剤組成物およびこれを含む樹脂組成物

Also Published As

Publication number Publication date
US20190211183A1 (en) 2019-07-11
US11130852B2 (en) 2021-09-28
TW201835188A (zh) 2018-10-01
EP3476891B1 (en) 2022-09-28
CN109563309A (zh) 2019-04-02
ES2790276T3 (es) 2020-10-27
TW201835187A (zh) 2018-10-01
TWI748055B (zh) 2021-12-01
EP3476891A4 (en) 2019-06-19
WO2018147690A1 (ko) 2018-08-16
EP3476890A1 (en) 2019-05-01
KR20180092888A (ko) 2018-08-20
US20210070964A1 (en) 2021-03-11
EP3476890A4 (en) 2019-06-26
CN109563310B (zh) 2021-04-06
EP3476891A1 (en) 2019-05-01
CN109563309B (zh) 2020-11-03
US11499030B2 (en) 2022-11-15
KR101982191B1 (ko) 2019-05-24
CN109563310A (zh) 2019-04-02
KR20180092889A (ko) 2018-08-20
KR101952338B1 (ko) 2019-02-26
ES2929018T3 (es) 2022-11-24
TWI733984B (zh) 2021-07-21
EP3476890B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2018147689A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2016129876A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2019240405A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016153236A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018128314A1 (ko) 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018750908

Country of ref document: EP

Effective date: 20190128

NENP Non-entry into the national phase

Ref country code: DE