WO2017222232A1 - 가소제 조성물, 수지 조성물 및 이들의 제조 방법 - Google Patents
가소제 조성물, 수지 조성물 및 이들의 제조 방법 Download PDFInfo
- Publication number
- WO2017222232A1 WO2017222232A1 PCT/KR2017/006146 KR2017006146W WO2017222232A1 WO 2017222232 A1 WO2017222232 A1 WO 2017222232A1 KR 2017006146 W KR2017006146 W KR 2017006146W WO 2017222232 A1 WO2017222232 A1 WO 2017222232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- diester
- cyclohexane
- weight
- formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/199—Acids or hydroxy compounds containing cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/02—Condensation polymers of aldehydes or ketones only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
Definitions
- the present invention relates to a plasticizer composition, a resin composition and a method for producing the same.
- plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
- polycarboxylic acids such as phthalic acid and adipic acid
- plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, trimellitate-based, and other polymer-based plastics continue.
- plasticizers should be used in consideration of discoloration, transferability, and mechanical properties.
- plasticizers, fillers, stabilizers, viscosity-reducing agents, dispersants, antifoaming agents, foaming agents, etc. are blended with PVC resins according to the characteristics required for different industries such as tensile strength, elongation, light resistance, transition, gelling or absorption rate. Done.
- the plasticizer compositions applicable to PVC when the most widely used di (2-ethylhexyl) terephthalate is applied, the hardness or sol viscosity is high and the absorption rate of the plasticizer is relatively high. It was slow, and the performance and stress performance were not good.
- the hydrogenated material of di (2-ethylhexyl) terephthalate can be considered as an improvement, the plasticization efficiency is improved, while the migration efficiency and thermal stability are poor, and the production cost is increased due to the hydrogenation reaction. Having difficulty with
- the present inventors are plasticizer compositions that can improve the poor physical properties caused by structural limitations while continuing research on plasticizers, and are environmentally friendly when mixed with resin compositions, plasticization efficiency, absorption rate, transferability, heating loss, and the like.
- the plasticizer composition with improved physical properties was identified and the present invention was completed.
- an object of the present invention is to provide a plasticizer capable of improving physical properties such as absorption rate, plasticization efficiency, transferability, tensile strength, elongation, and heating loss when used as a plasticizer of a resin composition, a method for preparing the same, and a resin composition including the same. I'm trying to.
- a cyclohexane 1,4-diester material represented by the following formula (1); And a dibenzoate-based material including at least one compound represented by Chemical Formula 2; wherein the cyclohexane 1,4-diester-based material is more than 30% by weight and 99% by weight or less, and the dibenzoate
- the plasticizer composition is provided wherein the base material is at least 1 wt% and less than 70 wt%.
- R 1 and R 2 are each independently the same or different from each other, and R 1 and R 2 are alkyl groups having 1 to 12 carbon atoms.
- R is an alkylene group having 2 to 4 carbon atoms
- n is an integer of 1 to 3.
- the compound represented by Formula 2 may be one or more selected from the group consisting of diethylene glycol dibenzoate (DEGDB), dipropylene glycol dibenzoate (DPGDB), and triethylene glycol dibenzoate (TEGDB).
- DEGDB diethylene glycol dibenzoate
- DPGDB dipropylene glycol dibenzoate
- TAGDB triethylene glycol dibenzoate
- a step of producing a cyclohexane 1,4-diester material by hydrogenation of a terephthalate-based material in the presence of a metal catalyst And the cyclohexane 1,4-diester-based material and the dibenzoate-based material, wherein the cyclohexane 1,4-diester-based material is more than 30% by weight and 99% by weight or less, and the dibenzoate-based material.
- the material is blended to at least 1% by weight and less than 70% by weight to obtain a plasticizer composition, wherein the terephthalate-based material is a single compound or a mixture is provided.
- terephthalate-based material is a single compound
- cyclohexane 1,4-diester-based material is also a single compound
- the terephthalate-based material is 1 selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol, and butyl alcohol. It may be to prepare a terephthalate-based material through the above-described direct esterification reaction of the alcohol and terephthalic acid.
- terephthalate-based material is a mixture
- cyclohexane 1,4-diester-based material is also a mixture
- the terephthalate-based material is at least two alcohols selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol and butyl alcohol. And a direct esterification reaction in which terephthalic acid reacts.
- terephthalate-based material is a mixture
- cyclohexane 1,4-diester-based material is also a mixture
- the terephthalate-based material is trans esterification reaction of di (2-ethylhexyl) terephthalate and butyl alcohol; Trans esterification of diisononyl terephthalate and butyl alcohol; Or a transesterification reaction of di (2-ethylhexyl) terephthalate and diisononyl alcohol; to prepare a terephthalate-based material.
- At least one resin 100 selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer
- a resin composition comprising 5 to 150 parts by weight of the above-described plasticizer composition, based on parts by weight, is provided.
- the resin composition may be applied to manufacture at least one selected from the group consisting of wires, flooring materials, automotive interior materials, films, sheets, wallpaper, and tubes.
- the plasticizer composition according to an embodiment of the present invention may improve physical properties such as absorption rate, plasticization efficiency, transition characteristics, and heating loss while ensuring environmental friendliness.
- distillation is performed under reduced pressure for 0.5 to 4 hours to remove unreacted raw materials.
- steam extraction is performed under reduced pressure using steam for 0.5 to 3 hours, the reaction solution temperature is cooled to about 90 ° C., and neutralization is performed using an alkaline solution. .
- washing with water may be performed, and then the reaction solution is dehydrated to remove moisture.
- the filtrate was added to the reaction solution from which the water was removed, and the resultant was stirred for a while, and then filtered to obtain 1326.7 g (yield: 99.0%) of di (2-ethylhexyl) terephthalate.
- reaction product was mixed and distilled to remove butanol and 2-ethylhexyl alcohol and finally a mixed composition was prepared.
- Dipropylene glycol benzoate was obtained in the same manner as in Preparation Example 5, except that dipropylene glycol was used instead of diethylene glycol in Preparation Example 5.
- Triethylene glycol benzoate was obtained in the same manner as in Preparation Example 5, except that triethylene glycol was used instead of diethylene glycol in Preparation Example 5.
- the plasticizers of Examples 1-8 and Comparative Examples 1-7 were used as experimental specimens.
- the specimen was prepared by referring to ASTM D638, blending 40 parts by weight of plasticizer and 3 parts by weight of stabilizer (BZ-153T, Songwon Industry) with a weight of PVC 100 (LS100S, LG Chemical) in a mixer, and then rolling the mill at 170 ° C. After 1 minute of operation, 1T and 3T sheets were made by using a press for 2.5 minutes (low pressure) and 2 minutes (high pressure) at 180 ° C. Each specimen was used to perform the following physical property tests and the results are summarized in Table 2 below.
- Shore hardness (Shore “A”) 3T 10s at 25 ° C. was measured using ASTM D2240.
- Tensile Strength (kgf / mm2) Load Value (kgf) / Thickness (mm) x Width (mm)
- Elongation (%) calculated after elongation / initial length x 100.
- test specimens having a thickness of 2 mm or more were obtained, and a glass plate was attached to both sides of the test specimens, and a load of 1 kgf / cm 2 was applied thereto.
- the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight loss was measured before and after leaving the glass plate and specimen plate in the oven, and the transfer loss was calculated by the following equation.
- % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
- Absorption rate was evaluated by measuring the time required for the resin and the ester compound to be mixed to stabilize the torque of the mixer by using a Planatary mixer (Brabender, P600) under the conditions of 77 °C, 60rpm.
- Example 1 81.5 229.1 286.1 3.23 3.88 3:25
- Example 2 81.7 231.0 294.6 2.68 3.36 3:45
- Example 3 82.5 234.7 304.5 2.56 3.66 4:10
- Example 4 81.0 235.8 310.7 2.14 3.70 4:30
- Example 5 83.0 240.5 314.0 2.01 3.40 4:30
- Example 6 80.6 236.8 306.1 1.67 3.50 3:35
- Example 7 79.3 229.7 314.2 3.40 4.82 3:00
- Comparative Example 1 85.7 210.6 293.3 4.57 5.70 5:40
- Comparative Example 2 85.0 204.0 285.0 4.32 6.55 5:30 Comparative Example 3 76.5 182.3 260.4 3.51 7.02 0:30
- Comparative Example 4 77.1 208.5 261.2 4.40 6.20 1:40 Comparative Example 5 78.2 215.9 270.7 4.10 5.88 2:25 Comparative Example 6 8
- Comparative Example 3 in which cyclohexane 1,4-diester-based material was not added, showed that the tensile strength value was greatly decreased, the elongation was also very low, and it was difficult to function alone as a plasticizer when the absorption rate or the heat loss was observed. Able to know.
- the synergistic effect is shown in terms of tensile strength and elongation, and it can be confirmed that there is a large increase. It can be confirmed that it is greatly reduced.
- butyl refers to an alkyl group having 4 carbon atoms, and may be used as a term including both straight and branched chains, and may be, for example, n-butyl, isobutyl, or t-butyl. But preferably n-butyl or isobutyl.
- octyl and “2-ethylhexyl” are alkyl groups having 8 carbon atoms, and may be mixed with octyl as an abbreviation of 2-ethylhexyl, and in some cases, may mean octyl which is a linear alkyl group. However, it can be interpreted to mean a branched alkyl group, 2-ethylhexyl.
- the cyclohexane 1,4-diester material may be a compound represented by the following Chemical Formula 1.
- R 1 and R 2 may be the same or different and may be selected from alkyl groups having 1 to 12 carbon atoms, respectively.
- the cyclohexane 1,4-diester-based material may be referred to as dialkyl cyclohexane-1,4-diester, for example, when R 1 and R 2 are the same, and R 1 and R 2 are If different, it may be named alkyl (R1) alkyl (R2) cyclohexane-1,4-diester.
- Each of R 1 and R 2 may be the same as or different from each other, may be an alkyl group having 4 to 10 carbon atoms, and preferably each independently a butyl group, isobutyl group, amyl group, hexyl group, heptyl group , Isoheptyl group, 2-ethylhexyl group, octyl group, isononyl group, nonyl group, 2-propylheptyl group, isodecyl group and decyl group.
- the cyclohexane 1,4-diester material is butyl (2-ethylhexyl) cyclohexane-1,4-diester (1,4-BOCH), (2-ethylhexyl) isononyl cyclo Hexane-1,4-diester (1,4-OINCH), butyl isononyl cyclohexane-1,4-diester (1,4-BINCH), dibutyl cyclohexane-1,4-diester (1,4-DBCH), diisononyl cyclohexane-1,4-diester (1,4-DINCH), di (2-ethylhexyl) cyclohexane-1,4-diester (1,4 -DOCH) may be a single compound selected from the group consisting of, and may be a mixture of two or more mixed.
- cyclohexane 1,4-diester material is a single compound, preferably bis (2-ethylhexyl) cyclohexane-1,4-diester or diisononyl cyclohexane-1 , 4-diester.
- cyclohexane 1,4-diester material is a mixture
- three cyclohexane 1,4-diester material may be mixed, for example, bis (2-ethylhexyl )
- First mixture cyclohexane-1,4-diester, butyl (2-ethylhexyl) cyclohexane-1,4-diester and dibutyl cyclohexane-1,4-diester
- a second mixture bis (2-, which is a mixture of sononyl cyclohexane-1,4-diester, butyl isononyl cyclohexane-1,4-diester and dibutyl cyclohexane-1,4-diester
- Ethylhexyl cyclohexane-1,4-diester
- (2-ethylhexyl) isononyl cyclohexane-1,4-diester and diisononyl cyclohex
- the first mixture is bis (2-ethylhexyl) cyclohexane-1,4- diester 3.0 to 99.0 mol%; Butyl (2-ethylhexyl) cyclohexane-1,4-diester 0.5 to 96.5 mol% and dibutyl cyclohexane-1,4-diester 0.5 to 96.5 mol%; wherein the second mixture is Diisononyl cyclohexane-1,4-diester 3.0 to 99.0 mol%; Butyl isononyl cyclohexane-1,4-diester 0.5 to 96.5 mol% and dibutyl cyclohexane-1,4-diester 0.5 to 96.5 mol%; wherein the third mixture is bis (2- Ethylhexyl) cyclohexane-1,4-diester 3.0 to 99.0 mol%
- the composition ratio may be a mixture composition ratio produced by the esterification reaction, and may be an intended composition ratio by additionally mixing a specific compound, and the mixture composition ratio may be appropriately adjusted to suit desired physical properties.
- a plasticizer composition further comprising a dibenzoate-based material comprising at least one dibenzoate-based compound in addition to the cyclohexane 1,4-diester-based material have.
- the dibenzoate-based compound may be represented by the following formula (2).
- R is an alkylene group having 2 to 4 carbon atoms
- n is an integer of 1 to 3.
- the dibenzoate-based compound represented by Formula 1 may be a compound in which an alkylene group and a dibenzoate group are sequentially bonded to both sides based on a central ether group.
- n 2 or more
- the number of carbon atoms of the alkylene group represented by R may be the same or different.
- the same alkylene group is bonded, and may have 2 to 4 carbon atoms, and an alkyl group having 1 to 3 carbon atoms as a branch. Can be combined.
- the carbon number of the branches is preferably smaller than the carbon number of the main chain bonded to the dibenzoate group.
- n 2 or more
- a non-hybrid dibenzoate compound when the alkylene groups bonded by R are the same as each other, it may be referred to as a non-hybrid dibenzoate compound, and when different from each other, it may be referred to as a hybrid dibenzoate compound.
- a non-hybrid dibenzoate-based compound when used as a plasticizer composition, a non-hybrid dibenzoate-based compound may be more common than a hybrid dibenzoate-based compound, and in the present specification, when there is no mention of hybrid or non-hybridization, all of the Rs are the same non-hybrid dibenzoate Can be treated as a compound.
- R may be any one selected from the group consisting of ethylene, propylene, isopropylene, butylene, and isobutylene, but is not limited thereto. More preferably, the dibenzoate-based compound represented by Formula 1 may be diethylene glycol dibenzoate, dipropylene glycol dibenzoate, or triethylene glycol dibenzoate.
- the dibenzoate-based material containing at least one dibenzoate-based compound may be the diethylene glycol dibenzoate, diisopropylene glycol dibenzoate or triethylene glycol dibenzoate, or a mixture thereof.
- the mixture may further include a dibenzoate-based compound meeting the definition of R.
- the cyclohexane 1,4-diester-based material in the plasticizer composition should be included to exceed 30% by weight, the upper limit can be applied to 99% by weight or less, dibenzoate-based
- the material needs to be included to be less than 70% by weight, with a lower limit of 1% by weight being applicable.
- the upper limit may be 99: 1, 95: 5, 90:10 by weight ratio, and preferably 40:60, 45:65, 50:50 may be applied as the lower limit. More preferably, it may be 95: 5 to 60:40, and may be 95: 5 to 70:30.
- the absorption rate, the plasticization efficiency, the transferability, the heating, Physical properties such as weight loss can be improved.
- the terephthalate-based material may be a single compound or a mixture.
- the terephthalate-based material is one or more alcohols selected from the group consisting of 2-ethylhexyl alcohol, isononyl alcohol, butyl alcohol and isobutyl alcohol, and a direct ester to which terephthalic acid reacts. Through the reaction; to prepare a terephthalate-based material.
- the direct esterification may include adding terephthalic acid to an alcohol, then adding a catalyst and reacting under a nitrogen atmosphere; Removing unreacted alcohol and neutralizing unreacted acid; And dehydration and filtration by distillation under reduced pressure.
- the alcohol may be used in the range of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of terephthalic acid.
- the catalyst is, for example, acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, paratoluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactic acid, lithium fluoride, potassium chloride, cesium chloride, Metal salts such as calcium chloride, iron chloride, aluminum phosphate, metal oxides such as heteropolyacids, natural / synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organic metals such as polymers thereof. .
- the catalyst may use tetraalkyl titanate.
- the amount of the catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight or 2 to 4% by weight based on 100% by weight of the total reactants. And, in the case of heterogeneous catalysts, it may be in the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
- the direct esterification reaction is carried out at a temperature range of 80 to 270 ° C., preferably at a temperature range of 150 to 250 ° C., for 10 minutes to 10 hours, preferably for 30 minutes to 8 hours, more preferably for 1 to 6 hours. It is desirable to be. It is possible to effectively obtain a terephthalate-based material in the temperature and time range.
- terephthalate When the terephthalate-based material is a mixture, terephthalate may be prepared and mixed through the above-described direct esterification reaction, or any one selected from di (2-ethylhexyl) terephthalate or diisononyl terephthalate
- the terephthalate can be prepared through a trans esterification reaction of terephthalate of and any alcohol selected from butyl alcohol or isononyl alcohol.
- trans esterification reaction refers to a reaction in which an alcohol and an ester react with each other, as shown in Scheme 1 below, so that R of the ester is interchanged with R 'of the alcohol as shown in Scheme 1 below.
- the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
- di (2-ethylhexyl) terephthalate and butyl alcohol may be prepared by the trans-esterification reaction, such as di (2-ethylhexyl) terephthalate, butyl (2-ethylhexyl) terephthalate and dibutyl terephthalate.
- And may be specifically formed in amounts of 10% to 50%, 0.5% to 50%, and 35% to 80% by weight.
- terephthalate-based material mixture having high process efficiency and excellent processability and absorption rate.
- the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
- the addition amount of the alcohol may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the terephthalate-based material.
- the molar fraction of the terephthalate compound participating in the trans-esterification reaction will increase as the terephthalate compound contains more alcohol, the content of the two terephthalate compounds as a product in the mixture may increase. And, correspondingly, the content of the unreacted terephthalate compound may show a tendency to decrease.
- the molar ratio of the reactant terephthalate compound and the alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, within this range, high process efficiency and processability There is an effect of obtaining an ester plasticizer composition excellent in an improvement effect.
- composition ratio of the mixture of the three terephthalates is not limited to the above range, and may be added to any one of the three terephthalates to change the composition ratio, and possible mixed composition ratios are as described above. .
- the ester composition prepared by the trans esterification step may include all of the single attack ester compound, the double attack ester compound, and the reaction residual ester compound, and control the composition ratio of the ester composition according to the amount of the alcohol added. can do.
- the addition amount of the alcohol may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the terephthalate.
- the content of phthalates and terephthalates attacked by two ester groups may increase.
- the content of residual terephthalate present in the unreacted correspondingly may tend to decrease.
- the molar ratio of the terephthalate and alcohol may be, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0, and may provide a plasticizer composition having high process efficiency and excellent processability improvement effect within this range. Terephthalate-based materials can be obtained.
- the trans esterification reaction is carried out at a reaction temperature of 120 to 190 ° C, preferably 135 to 180 ° C, more preferably 141 to 179 ° C, for 10 minutes to 10 hours, preferably for 30 minutes to 8 hours, more preferably Preference is given to performing at 1 to 6 hours. It is possible to effectively obtain a mixture that is a terephthalate-based material of a desired composition ratio within the temperature and time range.
- the reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
- the trans esterification reaction may be performed under a non-catalyst, but in some cases, may be performed under an acid catalyst or a metal catalyst, in which case the reaction time may be shortened.
- the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or the metal itself.
- the metal component may be any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
- trans-esterification reaction may further comprise the step of distilling off the unreacted alcohol and reaction by-products.
- the distillation may be, for example, two-stage distillation that is separated by using a difference between the break points of the alcohol and the reaction by-product.
- the distillation may be mixed distillation.
- the mixed distillation means distilling butanol and reaction by-products simultaneously.
- the hydrogenation step may be a step of converting a terephthalate-based material into a cyclohexane 1,4-diester-based material by hydrogenating a terephthalate-based material, which is a single compound or a mixture, in the presence of a metal catalyst.
- the hydrogenation step is a reaction for removing the aromaticity of the benzene ring of the terephthalate-based materials by adding hydrogen in the presence of a metal catalyst, may be a kind of reduction reaction.
- the hydrogenation reaction is a reaction of the terephthalate-based material with hydrogen under a metal catalyst to synthesize a cyclohexane 1,4-diester-based material, the reaction conditions of the benzene without affecting the carbonyl group substituted in the benzene It may include all conventional reaction conditions capable of hydrogenating only the ring.
- the hydrogenation reaction may be performed by further including an organic solvent such as ethanol, but is not limited thereto.
- an organic solvent such as ethanol
- a Rh / C catalyst, a Pt catalyst, a Pd catalyst, and the like which are generally used to hydrogenate a benzene ring, may be used.
- the metal catalyst is not limited thereto.
- the blending may be performed by blending the cyclohexane 1,4-diester-based material and the dibenzoate-based material in which the terephthalate-based material is converted through a hydrogenation reaction in a ratio of 1:99 to 99: 1 by weight.
- the plasticizer composition may be prepared, and the cyclohexane 1,4-diester-based material may be dependent on whether the terephthalate-based material is a single compound or a mixture, and is characterized in that each is a single compound or a mixture. .
- the direct esterification and trans esterification reactions can also be applied to prepare the dibenzoate-based materials described above.
- the dibenzoate-based material is prepared through a direct esterification reaction or a trans esterification reaction, the contents may be applied in the same manner as the content used to prepare the terephthalate-based material.
- a resin composition comprising the plasticizer composition and the resin described above.
- the resin may be a resin known in the art.
- one or more mixtures selected from ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, thermoplastic elastomer, and polylactic acid may be used, but is not limited thereto.
- the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, based on 100 parts by weight of the resin.
- plasticizer is used according to the type of resin, type of industry, and product.
- polyvinyl chloride resin includes paste resin and straight resin, and paste resin is used for plastisol processing. Although it is used in about 50 to 130 parts by weight relative to this resin, in the case of a straight resin is used for melt processing (calendering processing, extrusion processing, injection processing, etc.) and the content of the plasticizer may be used in about 5 to 60 parts by weight relative to the resin.
- the resin composition may further include a filler.
- the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
- the filler may be a filler known in the art, it is not particularly limited.
- it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
- the resin composition may further include other additives such as stabilizers, if necessary.
- additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
- the stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer such as calcium stearate salts, but is not particularly limited thereto.
- Ca-Zn-based stabilizer such as calcium stearate salts
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것으로, 수지 조성물의 가소제로서 사용시 용도에 적합하게 친환경적이면서도 투명성 및 점착성이 우수하고, 기본적인 인장강도, 신율 및 경도 등의 물성을 개선시킬 수 있는 가소제 및 이들을 포함한 수지 조성물을 제공할 수 있다.
Description
관련출원과의 상호인용
본 출원은 2016년 06월 20일자 한국 특허 출원 제10-2016-0076704호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 트리멜리테이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실)테레프탈레이트를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 디(2-에틸헥실)테레프탈레이트의 수소화 물질을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 이행성이나 열안정성 등이 열악하고, 수소화 반응에 따른 제조원가 상승을 수반하기 때문에 경제성을 갖는데 어려움을 안고 있다.
이러한 문제점을 극복하고자 상기 수소화된 디(2-에틸헥실)테레프탈레이트인 디(2-에틸헥실) 1,4-사이클로헥사노에이트 보다 물성적인 측면에서 우수한 혼합 조성물, 혹은 이의 신규한 유도체를 포함하는 신규 조성물 제품의 개발에 대한 요구가 지속적으로 존재하며, 염화비닐계 수지에 대한 친환경 가소제로서 제품 및 용도 개발에 대한 연구가 계속되고 있다.
이에 본 발명자들은 가소제에 대한 연구를 계속하던 중 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물로, 수지 조성물에 혼용시 친환경적이면서도 가소화 효율, 흡수 속도, 이행성, 가열 감량 등의 물성이 개선된 가소제 조성물을 확인하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 수지 조성물의 가소제로서 사용시 흡수 속도, 가소화 효율, 이행성, 인장강도, 신율 및 가열감량 등의 물성을 개선시킬 수 있는 가소제와 그 제조 방법 및 이들을 포함한 수지 조성물을 제공하려는데 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 사이클로헥세인 1,4-디에스테르계 물질; 및 하기 화학식 2로 표시되는 화합물을 1 이상 포함하는 디벤조에이트계 물질;을 포함하고, 상기 사이클로헥세인 1,4-디에스테르계 물질은 30 중량% 초과 99 중량% 이하이고, 상기 디벤조에이트계 물질은 1 중량% 이상 70 중량% 미만인 것인 가소제 조성물이 제공된다.
[화학식 1]
상기 화학식 1에서, R1 및 R2는 각각 독립적으로, 서로 동일하거나 상이하며, R1 및 R2는 탄소수 1 내지 12의 알킬기이다.
[화학식 2]
상기 화학식 2에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
상기 화학식 2로 표시되는 화합물은 디에틸렌 글리콜 디벤조에이트(DEGDB), 디프로필렌 글리콜 디벤조에이트(DPGDB) 및 트리에틸렌글리콜 디벤조에이트(TEGDB)로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 금속 촉매의 존재 하에 수소화 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 제조하는 단계; 및 상기 사이클로헥세인 1,4-디에스테르계 물질 및 디벤조에이트계 물질을 함량이 상기 사이클로헥세인 1,4-디에스테르계 물질은 30 중량% 초과 99 중량% 이하이고, 상기 디벤조에이트계 물질은 1 중량% 이상 70 중량% 미만이 되도록 블렌딩하여 가소제 조성물을 얻는 단계;를 포함하고, 상기 테레프탈레이트계 물질은 단일 화합물 또는 혼합물인 것인 가소제 조성물의 제조방법이 제공된다.
상기 테레프탈레이트계 물질이 단일 화합물인 경우 사이클로헥세인 1,4-디에스테르계 물질도 단일 화합물이고, 상기 테레프탈레이트계 물질은 2-에틸헥실 알코올, 이소노닐 알코올 및 부틸 알코올로 이루어진 군에서 선택된 1 이상의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조하는 것일 수 있다.
상기 테레프탈레이트계 물질이 혼합물인 경우 사이클로헥세인 1,4-디에스테르계 물질도 혼합물이고, 상기 테레프탈레이트계 물질은 2-에틸헥실 알코올, 이소노닐 알코올 및 부틸 알코올로 이루어진 군에서 선택된 2 이상의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조하는 것일 수 있다.
상기 테레프탈레이트계 물질이 혼합물인 경우 사이클로헥세인 1,4-디에스테르계 물질도 혼합물이고, 상기 테레프탈레이트계 물질은 디(2-에틸헥실)테레프탈레이트 및 부틸 알코올의 트랜스 에스테르화 반응; 디이소노닐 테레프탈레이트 및 부틸 알코올의 트랜스 에스테르화 반응; 또는 디(2-에틸헥실)테레프탈레이트 및 디이소노닐 알코올의 트랜스 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조하는 것일 수 있다.
상기 과제를 해결하기 위하여 본 발명의 또 다른 일 실시예에 따르면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상의 수지 100 중량부에 대하여, 전술한 가소제 조성물을 5 내지 150 중량부로 포함하는 것인 수지 조성물이 제공된다.
상기 수지 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 및 튜브로 이루어진 군에서 선택된 1 종 이상을 제조하는 데에 적용될 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 친환경성을 확보하면서, 흡수속도, 가소화 효율, 이행 특성 및 가열 감량 등의 물성을 향상시킬 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예
1: 디(2-에틸헥실) 사이클로헥세인-1,4-디에스테르의 제조
1)
에스테르화
반응
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 정제 테레프탈산(purified terephthalic acid; PTA) 498.0g, 2-에틸헥실 알코올(2-EH) 1170g (PTA:INA의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.54g(PTA 100 중량부에 대해 0.31 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스테르 반응을 수행하고 산가가 0.01에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-에틸헥실)테레프탈레이트 1326.7 g (수율: 99.0 %)을 얻었다.
2) 수소화 반응
1.5L 고압반응기에 원료로 상기 에스테르화 반응으로 생성된 조성물 1000g 및 루테늄 촉매(N.E chemcat) 20g을 충진하고, 압력 8 MPa로 수소를 첨가하여, 3시간 동안 150℃의 온도에서 수소화 반응을 실시하여, 반응을 완료하였다. 반응 완료 후 촉매를 여과하고, 통상의 정제공정을 거쳐 99%의 수율로 수소화된 물질을 제조하였다.
제조예
2:
디이소노닐
사이클로헥세인
-1,4-
디에스테르의
제조
상기 제조예 1에서 에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 이소노닐 알코올을 사용하여, 제조예 1과 동일한 방법으로 에스테르화 및 수소화 반응을 수행하여 수소화된 물질을 얻었다.
제조예
3: 디(2-프로필헵틸) 사이클로헥세인-1,4-디에스테르의 제조
상기 제조예 1에서 에스테르화 반응시 2-에틸헥실 알코올을 사용하는 대신 2-프로필헵틸 알코올을 사용하여, 제조예 1과 동일한 방법으로 에스테르화 및 수소화 반응을 수행하여 수소화된 물질을 얻었다.
제조예
4:
DEHTP
/
BEHTP
/
DBTP의
수소화 혼합물의 제조
1)
에스테르화
반응
교반기, 응축기 및 데칸터가 설치된 반응기에 디옥틸테레프탈레이트(GL300, (주)LG화학) 2000g 및 n-부탄올 340g (DOTP 100 중량부를 기준으로 17 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스테르화 반응시켜, 디부틸테레프탈레이트(DBTP), 부틸이소노닐테레프탈레이트(BINTP) 및 디이소노닐 테레프탈레이트(DINTP)를 각각 4.0 중량%, 35.0 중량% 및 61.0 중량% 범위로 포함하는 에스테르계 가소제 조성물을 얻었다.
상기 반응 생성물을 혼합 증류하여 부탄올 및 2-에틸헥실알코올을 제거하고 최종적으로 혼합 조성물을 제조하였다.
2) 수소화 반응
1.5L 고압반응기에 원료로 상기 에스테르화 반응으로 생성된 조성물 1000g 및 루테늄 촉매(N.E chemcat) 20g을 충진하고, 압력 8 MPa로 수소를 첨가하여, 3시간 동안 150℃의 온도에서 수소화 반응을 실시하여, 반응을 완료하였다. 반응 완료 후 촉매를 여과하고, 통상의 정제공정을 거쳐 99%의 수율로 수소화된 혼합 조성물을 제조하였다.
제조예
5:
DEGDB의
제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 2 리터 반응기에 정제 벤조산(Benzoic acid; BA) 1221 g, 디에틸렌 글리콜 530.5 g (BA: DEG의 몰비 (2.0):(1.0)), 촉매로써 티타늄계 촉매 (TIPT, tetraisopropyl titanate)를 2.0 g, Xylene을 소량 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되면 생성수의 제거가 원할하도록 Xyxlene의 양을 조절하여 주고, 반응물중 중간체인 모노벤조에이트의 함량이 5% 이하에서 반응을 종결한다. 이후, 제조예 1과 유사한 정제 방법으로 최종 제품인 디에틸렌 글리콜 벤조에이트 1,530g(수율: 98%)을 얻었다.
제조예
6:
DPGDB의
제조
상기 제조예 5에서 디에틸렌 글리콜 대신 디프로필렌 글리콜을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 디프로필렌 글리콜 벤조에이트를 얻었다.
제조예
7:
TEGDB의
제조
상기 제조예 5에서 디에틸렌 글리콜 대신 트리에틸렌 글리콜을 사용한 것을 제외하고는 제조예 5와 동일한 방법으로 트리에틸렌 글리콜 벤조에이트를 얻었다.
실시예
1 내지 8 및
비교예
1 내지 7
상기 제조예 1 내지 7에서 제조된 물질을 이용하여 하기 표 1과 같이 실시예 및 비교예를 구성하였다.
수소화 TP계 물질 | 벤조에이트계 물질 | 혼합 중량비 | |
실시예 1 | 1,4-DEHCH | DEGDB | 7:3 |
실시예 2 | 1,4-DEHCH | DEGDB | 9:1 |
실시예 3 | 1,4-DINCH | DEGDB | 8:2 |
실시예 4 | 1,4-DINCH | DPGDB | 6:4 |
실시예 5 | 1,4-DPHCH | DEGDB | 8:2 |
실시예 6 | 1,4-DPHCH | DEGDB | 6:4 |
실시예 7 | (제조예 4) | DEGDB | 7:3 |
실시예 8 | (제조예 4) | TEGDB | 5:5 |
비교예 1 | 1,4-DEHCH | - | - |
비교예 2 | 1,2-DEHCH | - | - |
비교예 3 | - | DEGDB | - |
비교예 4 | 1,4-DEHCH | DEGDB | 1:9 |
비교예 5 | 1,4-DEHCH | DEGDB | 3:7 |
비교예 6 | 1,2-DEHCH | DEGDB | 7:3 |
비교예 7 | 1,3-DEHCH | DEGDB | 7:3 |
실험예
1: 시편 제작 및 성능 평가
실시예 1 내지 8 및 비교예 1 내지 7의 가소제를 실험용 시편으로 사용하였다. 상기 시편 제작은 ASTM D638을 참조하여, PVC 100(LS100S, LG화학) 중량부에 가소제 40 중량부, 안정제(BZ-153T, 송원산업) 3 중량부를 믹서로 배합한 다음 롤 밀을 170℃에서 4 분간 작업하였고, 프레스(press)를 이용하여 180℃에서 2.5분(저압) 및 2분(고압)으로 작업하여 1T 및 3T 시트를 제작하였다. 각 시편을 사용하여 다음과 같은 물성 시험을 수행하고 결과를 하기 표 2에 정리하였다.
<시험 항목>
경도(hardness)
ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A") 3T 10s를 측정하였다.
인장강도(tensile strength)
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) x 폭(㎜)
신율
(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
가열 감량(volatile loss) 측정
상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
흡수 속도 측정
흡수속도는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가하였다.
경도(Shore A) | 인장 강도(kg/cm2) | 신율(%) | 이행손실(%) | 가열감량(%) | 흡수 속도(m:s) | |
실시예 1 | 81.5 | 229.1 | 286.1 | 3.23 | 3.88 | 3:25 |
실시예 2 | 81.7 | 231.0 | 294.6 | 2.68 | 3.36 | 3:45 |
실시예 3 | 82.5 | 234.7 | 304.5 | 2.56 | 3.66 | 4:10 |
실시예 4 | 81.0 | 235.8 | 310.7 | 2.14 | 3.70 | 4:30 |
실시예 5 | 83.0 | 240.5 | 314.0 | 2.01 | 3.40 | 4:30 |
실시예 6 | 80.6 | 236.8 | 306.1 | 1.67 | 3.50 | 3:35 |
실시예 7 | 79.3 | 229.7 | 314.2 | 3.40 | 4.82 | 3:00 |
실시예 8 | 79.2 | 235.6 | 311.5 | 2.65 | 4.50 | 3:25 |
비교예 1 | 85.7 | 210.6 | 293.3 | 4.57 | 5.70 | 5:40 |
비교예 2 | 85.0 | 204.0 | 285.0 | 4.32 | 6.55 | 5:30 |
비교예 3 | 76.5 | 182.3 | 260.4 | 3.51 | 7.02 | 0:30 |
비교예 4 | 77.1 | 208.5 | 261.2 | 4.40 | 6.20 | 1:40 |
비교예 5 | 78.2 | 215.9 | 270.7 | 4.10 | 5.88 | 2:25 |
비교예 6 | 81.3 | 227.1 | 296.5 | 4.59 | 5.23 | 4:00 |
비교예 7 | 81.7 | 215.5 | 300.4 | 4.93 | 5.10 | 4:10 |
상기 표 2를 참조하면, 실시예 1 내지 8에 비교하여 비교예 1 내지 7의 경우, 인장강도, 이행손실 및 가열 감량에 있어서 상당히 열세를 보이고 있음이 확인된다.
구체적으로, 디벤조에이트계 물질을 첨가하지 않은 비교예 1 및 2의 경우, 인장강도 값도 낮을뿐더러 경도가 높아 가소화 효율이 열악함을 알 수 있고, 이행손실과 가열 감량이 상당히 높은 수치를 보이고 있음을 확인할 수 있다. 또한, 사이클로헥세인 1,4-디에스테르계 물질을 첨가하지 않은 비교예 3은 인장강도 값이 크게 저하되고 신율 역시도 크게 낮으며 흡수속도나 가열 감량을 보았을 때 가소제로써 단독으로 기능하기 어렵다는 점을 알 수 있다. 반면에, 실시예 1 내지 8과 같이 이 둘을 혼합 사용한 경우에는 인장강도와 신율 측면에서 시너지 효과를 보여 큰 상승이 있음을 확인할 수 있고, 이행손실이나 가열 감량과 같은 특성들도 시너지 효과에 의하여 크게 저감되고 있음을 확인할 수 있다.
또한, 두 물질의 비율 범위로써, 디벤조에이트계 물질이 70 중량% 이상인 경우인 비교예 4와 5의 경우, 첨가하지 않은 경우와 동일하게 인장강도와 가열감량과 이행손실 특성에 있어서 개선이 이루어지고 있지 않음을 확인할 수 있으나, 70 중량% 미만으로 첨가하고 있는 실시예 1 내지 8의 경우에는 물성들의 개선이 크게 있음을 확인할 수 있다.
나아가, 디에스테르가 1,4 위치에 결합된 것이 아니라 1,2 위치 또는 1,3 위치에 결합된 것을 사용하는 경우에는 비교예 6과 7에서 볼 수 있는 것과 같이, 신율과 인장강도, 그리고 이행손실 가열감량 등 대부분의 물성들이 개선이 거의 없다는 점이 확인된다. 구체적으로, 동일 함량비율을 적용하고 있는 실시예 1과 비교하여 보면, 신율 특성이 약 5% 가량 상승하였고, 이행손실량은 40% 이상 감량되었으며, 가열 감량 역시 상대적으로 큰 폭 저감 되었음을 확인할 수 있다.
상기와 같은 결과를 통해서, 사이클로헥세인 1,4-디에스테르계 물질과 디벤조에이트계 물질의 혼합에 따른 특징, 그 혼합시의 중량 비율에 관한 특징, 사이클로헥세인에 결합된 디에스테르기의 결합 위치에 관한 특징을 적용함으로써, 가소제의 물성 개선이 크게 달성될 수 있다는 점을 확인할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어 "부틸"은 탄소수가 4개인 알킬기를 의미하고, 직쇄 및 분지쇄를 모두 포함하는 용어로 사용될 수 있으며, 예를 들면, n-부틸, 이소부틸, 또는 t-부틸일 수 있으나, 바람직하게는 n-부틸 또는 이소부틸일 수 있다.
본 명세서에서 사용되는 용어 "옥틸" 및 "2-에틸헥실"은 탄소수가 8개인 알킬기로서, 2-에틸헥실의 약어로 옥틸이 혼용될 수 있고, 경우에 따라서는 직쇄 알킬기인 옥틸을 의미할 수 있으나, 분지쇄 알킬기인 2-에틸헥실을 의미하는 것으로 해석될 수 있다.
상기 사이클로헥세인 1,4-디에스테르계 물질은 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
상기 화학식 1에서 R1 및 R2는 동일하거나, 상이할 수 있고, 각각 탄소수 1 내지 12의 알킬기 중에서 선택될 수 있다.
본 명세서에서 상기 사이클로헥세인 1,4-디에스테르계 물질은, 예컨대 R1과 R2가 동일한 경우 디알킬 사이클로헥세인-1,4-디에스테르로 명명될 수 있고, R1 및 R2가 상이한 경우 알킬(R1) 알킬(R2) 사이클로헥세인-1,4-디에스테르로 명명될 수 있다.
상기 R1 및 R2는 각각 독립적으로, 서로 동일하거나 상이할 수 있으며, 탄소수 4 내지 10인 알킬기일 수 있고, 바람직하게는 각각 독립적으로 부틸기, 이소부틸기, 아밀기, 헥실기, 헵틸기, 이소헵틸기, 2-에틸헥실기, 옥틸기, 이소노닐기, 노닐기, 2-프로필헵틸기, 이소데실기 및 데실기로 이루어진 군에서 선택될 수 있다.
구체적으로, 상기 사이클로헥세인 1,4-디에스테르계 물질은 부틸 (2-에틸헥실) 사이클로헥세인-1,4-디에스테르(1,4-BOCH), (2-에틸헥실) 이소노닐 사이클로헥세인-1,4-디에스테르(1,4-OINCH), 부틸 이소노닐 사이클로헥세인-1,4-디에스테르(1,4-BINCH), 디부틸 사이클로헥세인-1,4-디에스테르(1,4-DBCH), 디이소노닐 사이클로헥세인-1,4-디에스테르(1,4-DINCH), 디(2-에틸헥실) 사이클로헥세인-1,4-디에스테르(1,4-DOCH)로 이루어진 군에서 선택된 단일 화합물일 수 있고, 2 이상이 혼합된 혼합물일 수 있다.
보다 상세히, 상기 사이클로헥세인 1,4-디에스테르계 물질이 단일 화합물인 경우에는, 바람직하게 비스(2-에틸헥실) 사이클로헥세인-1,4-디에스테르 또는 디이소노닐 사이클로헥세인-1,4-디에스테르일 수 있다.
또한, 상기 사이클로헥세인 1,4-디에스테르계 물질이 혼합물인 경우에는 3 종의 사이클로헥세인 1,4-디에스테르계 물질이 혼합된 것일 수 있고, 예를 들면, 비스(2-에틸헥실) 사이클로헥세인-1,4-디에스테르, 부틸 (2-에틸헥실) 사이클로헥세인-1,4-디에스테르 및 디부틸 사이클로헥세인-1,4-디에스테르가 혼합된 제1혼합물, 디이소노닐 사이클로헥세인-1,4-디에스테르, 부틸 이소노닐 사이클로헥세인-1,4-디에스테르 및 디부틸 사이클로헥세인-1,4-디에스테르가 혼합된 제2혼합물, 비스(2-에틸헥실) 사이클로헥세인-1,4-디에스테르, (2-에틸헥실) 이소노닐 사이클로헥세인-1,4-디에스테르 및 디이소노닐 사이클로헥세인-1,4-디에스테르가 혼합된 제3혼합물일 수 있다.
구체적으로, 상기 제1 내지 제3혼합물의 경우, 특정 조성 비율을 가질 수 있으며, 제1혼합물은 비스(2-에틸헥실) 사이클로헥세인-1,4-디에스테르 3.0 내지 99.0 몰%; 부틸 (2-에틸헥실) 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰% 및 디부틸 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰%;일 수 있고, 상기 제2혼합물은 디이소노닐 사이클로헥세인-1,4-디에스테르 3.0 내지 99.0 몰%; 부틸 이소노닐 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰% 및 디부틸 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰%;일 수 있으며, 상기 제3혼합물은 비스(2-에틸헥실) 사이클로헥세인-1,4-디에스테르 3.0 내지 99.0 몰%; (2-에틸헥실) 이소노닐 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰% 및 디이소노닐 사이클로헥세인-1,4-디에스테르 0.5 내지 96.5 몰%;일 수 있다.
상기 조성 비율은 에스테르화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 사이클로헥세인 1,4-디에스테르계 물질에 더하여 1종 이상의 디벤조에이트계 화합물을 포함하는 디벤조에이트계 물질을 더 포함하는 가소제 조성물을 제공할 수 있다. 상기 디벤조에이트계 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
상기 화학식 2에서, R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
구체적으로, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 중심의 에테르기를 기준으로 양측에 알킬렌기와 디벤조에이트기가 순차로 결합되어 있는 화합물일 수 있다. n이 2 이상인 경우에는 R로 표시되는 알킬렌기의 탄소수는 동일하거나 상이할 수 있으나, 바람직하게는 동일한 알킬렌기가 결합되고, 탄소수가 2 내지 4일 수 있으며, 가지로서 탄소수가 1 내지 3인 알킬기가 결합될 수 있다. 가지가 결합되는 경우 가지의 탄소수는 디벤조에이트기와 결합되는 주쇄의 탄소수보다 작은 것이 바람직하다.
이 때, 상기 n이 2 이상인 경우, R로 결합되는 알킬렌기가 서로 동일한 경우에는 비혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있고, 서로 상이한 경우에는 혼성 디벤조에이트계 화합물이라고 칭하여 질 수 있다. 다만, 가소제 조성물로 사용시 혼성 디벤조에이트계 화합물 보다는 비혼성 디벤조에이트계 화합물이 일반적일 수 있고, 본 명세서에서 혼성 또는 비혼성의 언급이 없는 경우에는 상기 R은 모두 동일한 비혼성 디벤조에이트계 화합물로 취급될 수 있다.
상기 화학식 1에서 R은 에틸렌, 프로필렌, 이소프로필렌, 부틸렌 및 이소부틸렌으로 이루어진 군에서 선택된 어느 하나인 것이 바람직할 수 있으나, 이에 한정되는 것은 아니다. 보다 바람직하게, 상기 화학식 1로 표시되는 디벤조에이트계 화합물은 디에틸렌 글리콜 디벤조에이트, 디프로필렌 글리콜 디벤조에이트, 또는 트리에틸렌 글리콜 디벤조에이트일 수 있다.
이와 같은 디벤조에이트계 화합물을 1 종 이상 포함하는 디벤조에이트계 물질은 상기 디에틸렌 글리콜 디벤조에이트, 디이소프로필렌 글리콜 디벤조에이트 또는 트리에틸렌 글리콜 디벤조에이트일 수 있고, 이들의 혼합물일 수도 있으며, 이에 상기 R의 정의에 맞는 디벤조에이트계 화합물을 더 포함하는 혼합물일 수도 있다.
본 발명의 일 실시예에 따르면 상기 가소제 조성물 내에 사이클로헥세인 1,4-디에스테르계 물질은 30 중량%는 초과하도록 포함되어야 하며, 상한으로는 99 중량% 이하가 적용될 수 있고, 디벤조에이트계 물질은 70 중량% 미만이 되도록 포함될 필요가 있고, 하한으로는 1 중량% 이상이 적용될 수 있다.
바람직하게는 중량비로 상한은 99:1, 95:5, 90:10일 수 있으며, 하한으로 바람직하게는 40:60, 45:65, 50:50이 적용될 수 있다. 더욱 바람직하게는 95:5 내지 60:40일 수 있으며, 95:5 내지 70:30일 수 있다.
본 발명에서와 같이 사이클로헥세인 1,4-디에스테르계 물질과, 디벤조에이트계 물질을 혼합하여 가소제 조성물에 적용할 경우, 친환경성을 확보하면서도, 흡수 속도, 가소화 효율, 이행성, 가열감량 등의 물성이 개선될 수 있다.
본 발명의 일 실시예에 따르면, 테레프탈레이트계 물질을 금속 촉매의 존재 하에 수소화 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 제조하는 단계; 및 상기 사이클로헥세인 1,4-디에스테르계 물질 및 디벤조에이트계 물질을 중량비가 전술한 범위에 포함되도록 블렌딩하여 가소제 조성물을 얻는 단계;를 포함하는 가소제 조성물의 제조방법이 제공된다.
상기 테레프탈레이트계 물질은 단일 화합물 또는 혼합물인 것일 수 있다.
상기 테레프탈레이트계 물질이 단일 화합물인 경우에는, 상기 테레프탈레이트계 물질은 2-에틸헥실 알코올, 이소노닐 알코올, 부틸 알코올 및 이소부틸 알코올로 이루어진 군에서 선택된 1 이상의 알코올과, 테레프탈산이 반응하는 직접 에스테르화 반응;을 통하여 테레프탈레이트계 물질을 제조할 수 있다.
상기 직접 에스테르화 반응은, 알코올에 테레프탈산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다.
상기 알코올은, 테레프탈산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다.
한편, 상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
상기 직접 에스테르화 반응은 80 내지 270℃의 온도 범위, 바람직하게는 150 내지 250℃의 온도 범위에서 10 분 내지 10 시간, 바람직하게는 30 분 내지 8 시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위에서 테레프탈레이트계 물질을 효과적으로 얻을 수 있다.
상기 테레프탈레이트계 물질이 혼합물인 경우, 전술한 직접 에스테르화 반응을 통해서 테레프탈레이트가 제조된 후 혼합되는 것일 수 있고, 또는 디(2-에틸헥실)테레프탈레이트 또는 디이소노닐 테레프탈레이트 중에서 선택된 어느 하나의 테레프탈레이트와, 부틸 알코올 또는 이소노닐 알코올 중에서 선택된 어느 하나의 알코올이 반응하는 트랜스 에스테르화 반응;을 통하여 테레프탈레이트가 제조될 수 있다.
본 발명에서 사용되는 "트랜스 에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다.
[반응식 1]
본 발명의 일 실시예에 따르면, 상기 트랜스-에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.
예를 들어, 디(2-에틸헥실) 테레프탈레이트와 부틸 알코올은 상기 트랜스-에스테르화 반응에 의해, 디(2-에틸헥실) 테레프탈레이트, 부틸(2-에틸헥실) 테레프탈레이트 및 디부틸 테레프탈레이트의 혼합물이 생성될 수 있고, 상기 3 종의 테레프탈레이트는 혼합물 총 중량에 대해 각각 3.0 중량% 내지 70 중량%, 0.5 중량% 내지 50 중량%, 및 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 10 중량% 내지 50 중량%, 0.5 중량% 내지 50 중량%, 및 35 중량% 내지 80 중량%의 양으로 형성될 수 있다. 상기 범위 내에서는 공정 효율이 높고 가공성 및 흡수속도가 우수한 테레프탈레이트계 물질(혼합물)을 수득하는 효과가 있다.
또한, 상기 트랜스-에스테르화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 테레프탈레이트계 물질 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 테레프탈레이트는 화합물은 알코올의 첨가량이 많을수록, 트랜스-에스테르화 반응에 참여하는 테레프탈레이트 화합물의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 테레프탈레이트 화합물의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 테레프탈레이트 화합물의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 테레프탈레이트 화합물과 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스테르계 가소제 조성물을 수득하는 효과가 있다.
다만, 상기 3 종의 테레프탈레이트의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 테레프탈레이트 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.
상기 트랜스 에스테르화 반응 단계로 제조된 에스테르계 조성물은 단일 공격 에스테르 화합물, 이중 공격 에스테르 화합물, 및 반응 잔류 에스테르 화합물 모두를 포함할 수 있으며, 상기 알코올의 첨가량에 따라 상기 에스테르계 조성물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 상기 테레프탈레이트 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 테레프탈레이트계 물질은 상기 알코올의 첨가량이 많을수록, 트랜스 에스테르화 반응에 참여하는 테레프탈레이트의 몰분율(mole fraction)이 커질 수 있고, 이에 따라 상기 가소제 조성물에 있어서 상기 하나의 에스테르기만 공격 받아 생성된 테레프탈레이트와 두 개의 에스테르기를 공격 받은 테레프탈레이트의 함량이 증가할 수 있다.
또한, 이에 상응하여 미반응으로 존재하는 잔류 테레프탈레이트의 함량은 감소하는 경향을 보일 수 있다.
상기 테레프탈레이트와 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0일 수 있고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 가소제 조성물을 제공할 수 있는 테레프탈레이트계 물질을 수득할 수 있다.
상기 트랜스 에스테르화 반응은 120 내지 190℃, 바람직하게는 135 내지 180℃, 더욱 바람직하게는 141 내지 179℃의 반응 온도 하에서 10 분 내지 10 시간, 바람직하게는 30 분 내지 8 시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 테레프탈레이트계 물질인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스 에스테르화 반응은 무촉매 하에서 진행될 수 있으나, 경우에 따라서는 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 미반응 알코올과 반응 부산물을 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 증류는 일례로 상기 알코올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다.
또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스테르계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 부탄올과 반응 부산물을 동시에 증류하는 것을 의미한다.
상기 수소화 반응 단계는 단일 화합물 또는 혼합물인 테레프탈레이트계 물질을 금속 촉매의 존재 하에서 수소화 반응시킴으로써, 테레프탈레이트계 물질을 사이클로헥세인 1,4-디에스테르계 물질로 변환하는 단계일 수 있다.
상기 수소화 반응 단계는 금속 촉매의 존재하에, 수소를 첨가하여 테레프탈레이트계 물질들의 벤젠 고리의 방향성을 제거하는 반응으로서, 일종의 환원 반응일 수 있다.
상기 수소화 반응은 금속 촉매하에서 상기 테레프탈레이트계 물질과 수소를 반응시켜 사이클로헥세인 1,4-디에스테르계 물질을 합성하는 것으로, 그 반응조건은 벤젠에 치환되어 있는 카르보닐기에는 영향을 주지 않으면서 벤젠 고리만을 수소화시킬 수 있는 통상적인 반응조건을 모두 포함할 수 있다.
상기 수소화 반응은 에탄올 등과 같은 유기용매를 더 포함하여 실시될 수 있으나, 이에 제한되는 것은 아니다. 상기 금속 촉매로는 일반적으로 벤젠 고리를 수소화 하는데 사용되는 Rh/C 촉매, Pt 촉매, Pd 촉매 등을 사용할 수 있으나, 상기와 같은 수소화 반응이 가능한 것이면 이에 제한되지 않는다.
상기 블렌딩 하는 단계는 상기 테레프탈레이트계 물질이 수소화 반응을 통해 변환된 사이클로헥세인 1,4-디에스테르계 물질과 디벤조에이트계 물질을 중량비로서, 1:99 내지 99:1의 비율로 블렌딩하여 상기 가소제 조성물을 제조할 수 있으며, 상기 사이클로헥세인 1,4-디에스테르계 물질은 상기 테레프탈레이트계 물질이 단일 화합물인지 혼합물인지에 따라 종속될 수 있으며, 각각 단일 화합물 또는 혼합물인 것을 특징으로 한다.
상기 블렌딩시 혼합되는 사이클로헥세인 1,4-디에스테르계 물질과 디벤조에이트계 물질의 함량, 종류, 혼합 비율에 관해서는 전술한 바 있으므로, 그 기재를 생략한다.
상기 직접 에스테르화 반응과 트랜스 에스테르화 반응은 전술한 디벤조에이트계 물질을 제조하는 데에도 적용될 수 있다. 이와 같이, 디벤조에이트계 물질을 직접 에스테르화 반응 또는 트랜스 에스테르화 반응을 통해서 제조하는 경우에는 상기 테레프탈레이트계 물질을 제조하는 데에 적용된 내용과 동일하게 그 내용들이 적용될 수 있다.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리 스타이렌, 폴리우레탄, 열가소성 엘라스토머 및 폴리유산 중에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부로 포함될 수 있다.
이와 같은 가소제의 함량은 수지의 종류 및 업종별, 제품별 특징에 따른 사용량으로서, 예를 들면 폴리염화비닐 수지의 경우 페이스트 수지와 스트레이트 수지가 있으며, 페이스트 수지는 플라스티졸 가공에 사용되며 가소제의 함량이 수지 대비 약 50 내지 130 중량부로 사용되지만, 스트레이트 수지의 경우 용융 가공(캘린더링 가공, 압출 가공, 사출 가공 등)에 사용되며 가소제의 함량이 수지 대비 약 5 내지 60 중량부로 사용될 수 있다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
Claims (8)
- 하기 화학식 1로 표시되는 사이클로헥세인 1,4-디에스테르계 물질; 및 하기 화학식 2로 표시되는 화합물을 1 이상 포함하는 디벤조에이트계 물질;을 포함하고,상기 사이클로헥세인 1,4-디에스테르계 물질은 30 중량% 초과 99 중량% 이하이고, 상기 디벤조에이트계 물질은 1 중량% 이상 70 중량% 미만인 것인 가소제 조성물:[화학식 1]상기 화학식 1에서,R1 및 R2는 각각 독립적으로, 서로 동일하거나 상이하며, 상기 R1 및 R2는 탄소수 1 내지 12의 알킬기이다.[화학식 2]상기 화학식 2에서,R은 탄소수 2 내지 4의 알킬렌기이며, n은 1 내지 3의 정수이다.
- 제1항에 있어서,상기 사이클로헥세인 1,4-디에스테르계 물질 대 디벤조에이트계 물질의 중량비는 95:5 내지 40:60인 것인 가소제 조성물.
- 제1항에 있어서,상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수가 4 내지 10인 알킬기인 것인 가소제 조성물.
- 제1항에 있어서,상기 화학식 1에서, R1 및 R2는 각각 독립적으로 부틸기, 이소부틸기, 아밀기, 헥실기, 헵틸기, 이소헵틸기, 2-에틸헥실기, 옥틸기, 이소노닐기, 노닐기, 2-프로필헵틸기, 이소데실기 및 데실기로 이루어진 군에서 선택되는 것인 가소제 조성물.
- 제1항에 있어서,상기 사이클로헥세인 1,4-디에스테르계 물질은 부틸 (2-에틸헥실) 사이클로헥세인-1,4-디에스테르(1,4-BOCH), (2-에틸헥실) 이소노닐 사이클로헥세인-1,4-디에스테르(1,4-OINCH), 부틸 이소노닐 사이클로헥세인-1,4-디에스테르(1,4-BINCH), 디부틸 사이클로헥세인-1,4-디에스테르(1,4-DBCH), 디이소노닐 사이클로헥세인-1,4-디에스테르(1,4-DINCH), 디(2-에틸헥실) 사이클로헥세인-1,4-디에스테르(1,4-DOCH)로 이루어진 군에서 선택된 단일 화합물 또는 2 이상이 혼합된 혼합물인 것인 가소제 조성물.
- 제1항에 있어서,상기 화학식 2로 표시되는 화합물은 디에틸렌 글리콜 디벤조에이트(DEGDB), 디프로필렌 글리콜 디벤조에이트(DPGDB) 및 트리에틸렌글리콜 디벤조에이트(TEGDB)로 이루어진 군에서 선택된 1종 이상인 것인 가소제 조성물.
- 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
- 제7항에 있어서,상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리케톤, 폴리프로필렌, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17815645.1A EP3342794B1 (en) | 2016-06-20 | 2017-06-13 | Plasticizer composition, resin composition, and preparation method for both compositions |
US15/767,619 US10865289B2 (en) | 2016-06-20 | 2017-06-13 | Plasticizer composition, resin composition and methods of preparing the same |
ES17815645T ES2859160T3 (es) | 2016-06-20 | 2017-06-13 | Composición plastificante, composición de resina y procedimiento para preparación para ambas composiciones |
CN201780003806.8A CN108350154B (zh) | 2016-06-20 | 2017-06-13 | 增塑剂组合物、树脂组合物及其制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160076704 | 2016-06-20 | ||
KR10-2016-0076704 | 2016-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017222232A1 true WO2017222232A1 (ko) | 2017-12-28 |
Family
ID=60784578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/006146 WO2017222232A1 (ko) | 2016-06-20 | 2017-06-13 | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10865289B2 (ko) |
EP (1) | EP3342794B1 (ko) |
KR (1) | KR102135283B1 (ko) |
CN (1) | CN108350154B (ko) |
ES (1) | ES2859160T3 (ko) |
TW (1) | TWI746575B (ko) |
WO (1) | WO2017222232A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021137376A1 (ko) * | 2019-12-30 | 2021-07-08 | 한화솔루션 주식회사 | 에스테르계 화합물 및 이의 용도 |
WO2021137375A1 (ko) * | 2019-12-30 | 2021-07-08 | 한화솔루션 주식회사 | 에스테르계 화합물 및 이의 용도 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128314A1 (ko) | 2017-01-04 | 2018-07-12 | 주식회사 엘지화학 | 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물 |
KR20220118122A (ko) * | 2021-02-18 | 2022-08-25 | 한화솔루션 주식회사 | 가소제 조성물, 및 이를 포함하는 실란트/접착제 조성물 |
KR102314758B1 (ko) * | 2021-03-26 | 2021-10-18 | 김진호 | 중공 유리 미세구를 이용한 친환경 소프트 베이트, 이를 위한 수지 조성물 및 그 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050049341A1 (en) * | 2003-08-07 | 2005-03-03 | Degussa Ag | Foamable compositions which comprise isononyl benzoate |
US20100310891A1 (en) * | 2007-11-30 | 2010-12-09 | Godwin Allen D | Compositions Based on C4-C7 Secondary Aliphatic Alcohol Esters of Cyclohexanecarboxylic Acids |
WO2012092366A1 (en) * | 2010-12-30 | 2012-07-05 | Emerald Kalama Chemical, Llc | Blends of dibenzoate plasticizers |
US8669311B2 (en) * | 2007-11-30 | 2014-03-11 | Exxonmobil Chemical Patents Inc. | C7—C12 secondary alcohol esters of cyclohexanoic acid |
US20140082885A1 (en) * | 2011-03-24 | 2014-03-27 | Sakura Color Products Corporation | Plastic eraser, plastic eraser composite body, and method for producing thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8653184B2 (en) | 2001-09-25 | 2014-02-18 | Exxonmobil Chemical Patents Inc. | Plasticised polyvinyl chloride and processes for making the same |
CN102408646A (zh) | 2001-09-25 | 2012-04-11 | 埃克森美孚化学专利公司 | 增塑聚氯乙烯 |
US20100298477A1 (en) | 2007-12-21 | 2010-11-25 | Godwin Allen D | Co-Plasticizer Systems |
US8653171B2 (en) | 2010-02-22 | 2014-02-18 | Polyone Corporation | Plastisol compositions that are essentially free of polyvinyl halides and phthalates |
CN101993548A (zh) | 2010-09-30 | 2011-03-30 | 浙江嘉澳环保科技股份有限公司 | 一种环保复合型增塑剂及制备方法 |
EP2810932A1 (en) | 2013-06-06 | 2014-12-10 | ExxonMobil Chemical Patents Inc. | Improvements in or relating to plasticiser esters |
EP2810982A1 (en) | 2013-06-06 | 2014-12-10 | ExxonMobil Chemical Patents Inc. | Dialkyl esters of 1,4' cyclohexane di-carboxylic acid and their use as plasticisers |
BR112016015518B1 (pt) * | 2014-01-03 | 2022-01-11 | Tarkett Gdl | Composição de plastisol à base de pvc isenta de ftalatos para revestimentos superficiais decorativos exibindo baixa emissão de voc, método para a preparação de plastisóis de pvc isentos de ftalatos, método para a preparação de um revestimento superficial decorativo com a composição de plastisol de pvc isenta de ftalatos, e, revestimento superficial decorativo |
WO2015116929A1 (en) | 2014-01-30 | 2015-08-06 | Segetis, Inc. | Plasticizer blends of ketal compounds |
US9340658B2 (en) * | 2014-07-24 | 2016-05-17 | Eastman Chemical Company | Low-volatility plasticizer blends |
-
2017
- 2017-06-13 KR KR1020170073773A patent/KR102135283B1/ko active IP Right Grant
- 2017-06-13 WO PCT/KR2017/006146 patent/WO2017222232A1/ko active Application Filing
- 2017-06-13 EP EP17815645.1A patent/EP3342794B1/en active Active
- 2017-06-13 US US15/767,619 patent/US10865289B2/en active Active
- 2017-06-13 CN CN201780003806.8A patent/CN108350154B/zh active Active
- 2017-06-13 ES ES17815645T patent/ES2859160T3/es active Active
- 2017-06-15 TW TW106120023A patent/TWI746575B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050049341A1 (en) * | 2003-08-07 | 2005-03-03 | Degussa Ag | Foamable compositions which comprise isononyl benzoate |
US20100310891A1 (en) * | 2007-11-30 | 2010-12-09 | Godwin Allen D | Compositions Based on C4-C7 Secondary Aliphatic Alcohol Esters of Cyclohexanecarboxylic Acids |
US8669311B2 (en) * | 2007-11-30 | 2014-03-11 | Exxonmobil Chemical Patents Inc. | C7—C12 secondary alcohol esters of cyclohexanoic acid |
WO2012092366A1 (en) * | 2010-12-30 | 2012-07-05 | Emerald Kalama Chemical, Llc | Blends of dibenzoate plasticizers |
US20140082885A1 (en) * | 2011-03-24 | 2014-03-27 | Sakura Color Products Corporation | Plastic eraser, plastic eraser composite body, and method for producing thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021137376A1 (ko) * | 2019-12-30 | 2021-07-08 | 한화솔루션 주식회사 | 에스테르계 화합물 및 이의 용도 |
WO2021137375A1 (ko) * | 2019-12-30 | 2021-07-08 | 한화솔루션 주식회사 | 에스테르계 화합물 및 이의 용도 |
Also Published As
Publication number | Publication date |
---|---|
EP3342794B1 (en) | 2020-12-09 |
US10865289B2 (en) | 2020-12-15 |
CN108350154A (zh) | 2018-07-31 |
KR102135283B1 (ko) | 2020-07-17 |
ES2859160T3 (es) | 2021-10-01 |
US20180298161A1 (en) | 2018-10-18 |
EP3342794A1 (en) | 2018-07-04 |
TWI746575B (zh) | 2021-11-21 |
CN108350154B (zh) | 2020-12-25 |
EP3342794A4 (en) | 2018-08-08 |
TW201808880A (zh) | 2018-03-16 |
KR20170142894A (ko) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018048170A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2017222232A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2018110923A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2018147690A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2014181922A1 (ko) | 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물 | |
WO2018216985A1 (ko) | 시트레이트계 가소제 및 이를 포함하는 수지 조성물 | |
WO2018008913A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2020222536A1 (ko) | 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2014058122A1 (ko) | 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법 | |
WO2021020878A1 (ko) | 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2019088736A2 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2020122591A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2017018740A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2016153235A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2017183877A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2016182376A1 (ko) | 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물 | |
WO2019240418A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2018110922A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2017091040A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2017074057A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 | |
WO2021145643A1 (ko) | 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2020222494A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2017183876A1 (ko) | 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2018128314A1 (ko) | 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물 | |
WO2017018741A1 (ko) | 가소제 조성물, 수지 조성물 및 이들의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017815645 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15767619 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |