WO2019088736A2 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2019088736A2
WO2019088736A2 PCT/KR2018/013186 KR2018013186W WO2019088736A2 WO 2019088736 A2 WO2019088736 A2 WO 2019088736A2 KR 2018013186 W KR2018013186 W KR 2018013186W WO 2019088736 A2 WO2019088736 A2 WO 2019088736A2
Authority
WO
WIPO (PCT)
Prior art keywords
diester
cyclohexane
group
based material
epoxidized
Prior art date
Application number
PCT/KR2018/013186
Other languages
English (en)
French (fr)
Other versions
WO2019088736A3 (ko
Inventor
김현규
조윤기
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/642,648 priority Critical patent/US11767420B2/en
Priority to EP18872532.9A priority patent/EP3705516A4/en
Priority to CN201880057166.3A priority patent/CN111094420B/zh
Publication of WO2019088736A2 publication Critical patent/WO2019088736A2/ko
Publication of WO2019088736A3 publication Critical patent/WO2019088736A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition and a resin composition containing the same.
  • the plasticizer reacts with the polycarboxylic acid, such as phthalic acid and adipic acid, to form the corresponding ester.
  • the polycarboxylic acid such as phthalic acid and adipic acid
  • plasticizers in a compound industry having high heat resistance and low heating loss as main required properties, a proper plasticizer should be used in consideration of required properties.
  • additives such as plasticizers, stabilizers and pigments should be mixed with PVC resin depending on tensile strength, elongation, plasticization efficiency, heat loss, tensile and elongation percentage,
  • DIDP di-isodecyl phthalate
  • the present invention aims to provide a plasticizer having improved properties such as plasticization efficiency, tensile residual rate and elongation percentage, anti-depletion property, heat loss and cold resistance as a plasticizer to be applied to the resin composition, and a resin composition containing the plasticizer.
  • cyclohexane 1 having at least one cyclohexane 1,4-diester in which two alkyl groups bonded to a diester group each independently have 8 to 12 carbon atoms, 4-diesters; And a trimellitate-based material containing a compound represented by the following formula (1).
  • R 1 to R 3 are each independently an alkyl group having 8 to 12 carbon atoms.
  • a resin composition comprising 100 parts by weight of a resin; And 5 to 150 parts by weight of the plasticizer composition described above.
  • the plasticizer composition according to one embodiment of the present invention provides excellent plasticizability, tensile strength and elongation as well as excellent physical properties such as tensile and elongation percentage and cold resistance, .
  • composition as used herein includes reaction products and decomposition products formed from the materials of the composition, as well as mixtures of materials comprising the composition.
  • the prefix " iso-" means an alkyl group in which a methyl group having a carbon number of 1 is bonded to a main chain of an alkyl group in a branched chain, and generally means that a methyl branch is bonded to the terminal of an alkyl group.
  • isononyl group may mean an alkyl group having a total of 9 carbon atoms in which one or more methyl groups, one ethyl group and one propyl group are substituted on the main chain, , 2-methylheptyl, 3-methyloctyl, 4-methyloctyl, 5-methyloctyl, 6-methyloctyl, 3-ethylheptyl, 2-ethylheptyl and 2,5-dimethylheptyl Methylhexyl group, 2-ethyl-4-methylhexyl group, or 2-propylhexyl group, and the like. (CAS No.
  • 68526-84-1, 27458-94-2) can be used to refer to a composition of isomers having a degree of branching of 1.2 to 1.9, and in the case of the above commercial alcohols n-nonyl group may also be included in some cases.
  • straight vinyl chloride polymer as used herein means one kind of vinyl chloride polymer, meaning that it is polymerized through suspension polymerization or bulk polymerization, etc., and may have a size of several tens to several hundreds of micrometers Refers to a polymer having a porous particle shape in which a large amount of pores are distributed and has no cohesion and excellent flowability.
  • paste vinyl chloride polymer as used herein means one kind of vinyl chloride polymer, polymerized through micro suspension polymerization, fine seed polymerization, emulsion polymerization or the like, Fine, dense, void-free particles of thousands of nanometers in size that have cohesive properties and poor flow properties.
  • compositions claimed through the use of the term “comprising”, unless otherwise indicated, include any additional additives, adjuvants, or compounds, whether polymeric or otherwise .
  • " consisting essentially of " excludes any other component, step or procedure from the scope of any subsequent description, except that it is not essential to operability.
  • the content of the components in the composition was analyzed by gas chromatography and measured with a gas chromatograph (Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4 mL / min) , Detector: FID, injection volume: 1 uL, initial value: 70 ⁇ / 4,2 min, final value: 280 ⁇ / 7.8 min, program rate: 15 ⁇ / min).
  • a gas chromatograph Alent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4 mL / min) , Detector: FID, injection volume: 1 uL, initial value: 70 ⁇ / 4,2 min, final value: 280 ⁇ / 7.8 min, program rate: 15 ⁇ / min).
  • 'hardness' means Shore hardness (Shore "A” and / or Shore “D”) at 25 ° C using ASTM D2240 and is measured under the condition of 3T 10s, It can be an index for evaluating the efficiency, and the lower the index, the better the plasticization efficiency.
  • 'tensile strength' refers to tensile strength at a crosshead speed of 200 mm / min (1T) by using a UTM (manufacturer; Instron, model name: 4466) ), The point at which the specimen is cut is measured, and is calculated by the following equation (1).
  • 'elongation rate' is measured by pulling the cross head speed at 200 mm / min (1T) using the UTM according to the ASTM D638 method, and then measuring the point at which the specimen is cut Then, it is calculated by the following equation (2).
  • Elongation (%) length after elongation / initial length x 100
  • a specimen of 2 mm or more in thickness is obtained in accordance with KSM-3156, a glass plate is attached to both sides of the specimen, and a load of 1 kgf / cm 2 is applied.
  • the specimens were left in a hot-air circulating oven (80 ° C) for 72 hours, taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight before and after leaving the glass plate and the specimen plate in the oven is measured to calculate the loss amount of migration by the following formula (3).
  • volatile loss means that the specimen is weighed at 80 ° C for 72 hours and then the weight of the specimen is measured.
  • Heat loss (weight%) ⁇ (Initial specimen weight - Specimen weight after work) / Initial specimen weight ⁇ x 100
  • the detailed conditions such as the temperature, the rotation speed, and the time may be slightly different depending on the case, and if different, the measurement method and conditions are specified separately.
  • a plasticizer composition comprising two or three plasticizers
  • the plasticizer composition comprises two or more plasticizers, wherein the two or more plasticizers are selected from the group consisting of cyclohexane 1,4-cyclohexane having two alkyl groups each independently bonded to a diester group having 8 to 12 carbon atoms, A cyclohexane 1,4-diester-based material containing at least one diester; And a trimellitate-based material containing a compound represented by the following formula (1).
  • R 1 to R 3 are each independently an alkyl group having 8 to 12 carbon atoms.
  • the weight ratios of the two materials are 99: 1, 95: 5, 90:10, 85:15, 80:20, 70:30 or 60:40, and the lower limit may be 1:99, 5:95, 10:90, 15:85, 20:80, 30:70, or 40:60.
  • the plasticizer composition may comprise three plasticizers, in which case an epoxidized oil may further be included.
  • the weight ratio of the cyclohexane 1,4-diester-based material and the trimellitate-based material may be the same as that in the case where two kinds of plasticizers are selected. Based on the total weight of the cyclohexane 1,4-diester-based material and the trimellitate-based material, the weight ratio of the total weight of the two kinds to the epoxidized oil may be 90:10 to 10:90, preferably 90 : 10 to 50:50, and more preferably 80:20 to 50:50.
  • the cyclohexane 1,4-diester contained in the cyclohexane 1,4-diastereomer material according to an embodiment of the present invention may have 8 to 12 carbon atoms in each of the two alkyl groups bonded to the diester group. Preferably from 8 to 11, or from 8 to 10.
  • Cyclohexane 1,4-diester-based material is the most useful plasticizer that can substitute phthalate plasticizer as a hydrogenating material of terephthalate-based material, and can exhibit the same basic mechanical properties as conventional phthalate plasticizers , It can be applied as an environmentally friendly plasticizer, and the plasticization efficiency can be remarkably improved as compared with a terephthalate plasticizer.
  • the two alkyl groups bonded to the disulfide group of the cyclohexane 1,4-diester-based material are, for example, 2-ethylhexyl group, isononyl group, 2-propylheptyl group, isodecyl group, , Or a dodecyl group, and preferably a 2-ethylhexyl group, an isononyl group, a 2-propylheptyl group, or an isodecyl group.
  • the cyclohexane 1,4-diester can be prepared by reacting diisononylcyclohexane 1,4-diester (1,4-DINCH), di (2-ethylhexyl) cyclohexane 1,4- (1,4-DEHCH), di (2-propylheptyl) cyclohexane 1,4-diester (1,4-DPHCH) and diisodecyl cyclohexane 1,4- And preferably di (2-ethylhexyl) cyclohexane 1,4-diester, diisononyl cyclohexane 1,4-diester or di (2-propylheptyl) cyclohexane 1, 4-diester.
  • the cyclohexane 1,4-diester-based material is a mixture
  • three cyclohexane 1,4-diester-based materials may be mixed, and among these three types, alkyl of the alkyl group bonded to the diester group At least one of which has 8 to 12 carbon atoms, and may further include two kinds of cyclohexane 1,4-di-esters.
  • the number of carbon atoms of the alkyl group bonded to the diester group may be 4 to 12, but the number of carbon atoms is not limited to the additional cyclohexane 1,4-diesters.
  • various mixtures may be constituted depending on the combination of two alkyl groups out of the alkyl groups which can be bonded to the disester group.
  • the first mixture may have a composition ratio of 3.0 to 99.0 mol% of di (2-ethylhexyl) cyclohexane 1,4-diester; 0.5 to 96.5 mol% of butyl (2-ethylhexyl) cyclohexane 1,4-diester and 0.5 to 96.5 mol% of dibutyl cyclohexane 1,4-diester and the second mixture is diisononyl cyclo 3.0 to 99.0 mol% hexane 1,4-diester; 0.5 to 96.5 mol% of butyl isononyl cyclohexane 1,4-diester and 0.5 to 96.5 mol% of dibutyl cyclohexane 1,4-di-ester, and the third mixture is di (2-ethylhexyl) 3.0 to 99.0 mol% of cyclohexane 1,4-diester; 0.5
  • the composition ratio may be a mixing composition ratio generated by the esterification reaction, and may be an intended composition ratio by additionally mixing specific compounds, and the mixing composition ratio may be appropriately adjusted to suit the desired physical properties.
  • the cyclohexane 1,4-diester-based material can be produced by direct esterification reaction of 1,4-cyclohexane dicarboxylic acid with at least one alcohol, or by the direct esterification reaction of dialkylcyclohexane 1,4- Di-ester (or dialkyl 1,4-cyclohexanoate) with an alcohol.
  • a dialkyl terephthalate prepared by ester-reacting terephthalic acid as a raw material may be produced by hydrogenation, or a cyclohexane 1,4-diester-based material may be prepared as a hydrogenation product of a terephthalate-based material
  • the production method is not particularly limited.
  • the alcohol may be selected from the group consisting of the above-mentioned 2-ethylhexyl group, isononyl group, 2-propylheptyl group, isodecyl group, undecyl group or dodecyl group as the primary alcohol.
  • One kind of alcohol may be directly applied to the esterification reaction so that a single terephthalate may be applied and two or more mixed alcohols may be directly applied to the esterification reaction or a transesterification reaction may be performed so that a mixture of two or more terephthalate have.
  • the mixed cyclohexane 1,4-diester-based material has a specific composition ratio From 3.0 to 99.0 mol% of di (alkyl A) cyclohexane 1,4-diester; (Alkyl A) (alkyl B) cyclohexane 1,4-diester and 0.5 to 96.5 mole% di (alkyl B) cyclohexane 1,4-diester, Lt; / RTI > may be derived from an intermediate cyclohexane 1,4-diester, and the alkyl B may be derived from an alcohol.
  • the composition ratio may be a mixing composition ratio generated by the esterification reaction, and may be an intended composition ratio by additionally mixing specific compounds, and the mixing composition ratio may be appropriately adjusted to suit the desired physical properties.
  • 1,4-cyclohexanoate having 8 to 12 carbon atoms in the alkyl group is used as the plasticizer, it is possible to control the plasticization efficiency, the transitivity and the weight loss between the heat- A physical property balance can be realized.
  • the plasticizer composition may include a trimellitate-based material, and the trimellitate-based material may be represented by the following formula (1).
  • R 1 to R 3 are each independently an alkyl group having 8 to 12 carbon atoms.
  • the trimellitate-based material is a substance capable of complementing the cyclohexane 1,4-diester-based material as described above, and the effect that the cyclohexane 1,4-diester-based material is not achieved as compared with the phthalate-based plasticizer , It is possible to compensate the inner planet and the weight loss characteristic.
  • R 1 to R 3 in the formula (1) may have 8 to 12 carbon atoms, and they may be the same as each other, and when two of R 1 to R 3 are different from each other, And the other one may be a different alkyl group.
  • the alkyl group may be an alkyl group such as an octyl group, a 2-ethylhexyl group, an isononyl group, a 2-propylheptyl group, an isodecyl group, an undecyl group or a dodecyl group. That is, the alkyl group of R 1 to R 3 in Formula 1 may be selected in the same range as the alkyl group of the cyclohexane 1,4-diester-based material.
  • trimellitate-based material especially the number of carbon atoms can be controlled, and when the number of the ester groups bonded to the benzene ring is three, the structure and molecular weight of the trimellitate molecule itself are affected Can be largely reflected, and the selection of an appropriate alkyl group may be necessary.
  • the trimellitate-based material may be the most optimal material mixed with the cyclohexane 1,4-diester-based material and the plasticizer composition, and it is preferable to use the trimellitate-based material in terms of performance, heating loss, elongation and elongation, Can exhibit a specific effect for improving the tensile residual rate.
  • the plasticizer composition may further include an epoxidized oil as the third mixture, including the cyclohexane 1,4-diester-based material and the trimellitate-based material.
  • the epoxidized oils are, for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized stearate, epoxidized stearate, epoxidized oleate, epoxidized tall oil, epoxidized linoleate, or mixtures thereof may be applied.
  • the epoxidized oil may be epoxidized soybean oil (ESO), epoxidized linseed oil (ELO), or a mixture thereof.
  • ESO epoxidized soybean oil
  • ELO epoxidized linseed oil
  • the epoxidized soybean oil may be epoxidized linseed oil The frequency of use may be higher.
  • the plasticizer composition according to an embodiment of the present invention may suitably include a weight ratio of the cyclohexane 1,4-diester-based material to the mixed weight of the trimellitate-based material as described above when the epoxidized oil is included,
  • the cyclohexane 1,4-diester-based material and the trimellitate-based material are relatively reduced in accordance with the inclusion of the epoxidized oil, but there is no deterioration of the physical properties thereof,
  • it has the advantage of securing competitiveness in product price.
  • the plasticizer composition may be prepared by blending the cyclohexane 1,4-diester material, the epoxidized oil, and the trimellitate material, ≪ / RTI >
  • cyclohexane 1,4-diester is produced by direct esterification with cyclohexane 1,4-dicarboxylic acid and alcohol as a substance used in producing the cyclohexane 1,4-diester-based material, 2-ethylhexyl alcohol, isononyl alcohol , 2-propylheptyl alcohol and the like, and then reacting the cyclohexane 1,4-dicarboxylic acid with at least one alcohol having an alkyl group bonded to the disester group of the cyclohexane 1,4- Can be performed.
  • the direct esterification reaction may be carried out by introducing cyclohexane 1,4-dicarboxylic acid into an alcohol, adding a catalyst and reacting in an atmosphere of nitrogen; Removing unreacted alcohol and neutralizing the unreacted acid; And dehydration and filtration by vacuum distillation.
  • the alcohol may be used in an amount of 150 to 500 mol%, 200 to 400 mol%, 200 to 350 mol%, 250 to 400 mol%, or 270 to 330 mol% based on 100 mol% of cyclohexane 1,4- Lt; / RTI >
  • the catalyst for the esterification examples include acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, para toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid and alkylsulfuric acid, aluminum sulfate, lithium fluoride, potassium chloride , A metal oxide such as cesium chloride, calcium chloride, iron chloride and aluminum phosphate, a metal oxide such as heteropoly acid, a natural / synthetic zeolite, a cation and an anion exchange resin, an organic metal such as tetra alkyl titanate and a polymer thereof It can be more than a species.
  • the catalyst may use tetraalkyl titanate.
  • the amount of the catalyst to be used may vary depending on the type of catalyst. For example, in the case of a homogeneous catalyst, 0.01 to 5 wt%, 0.01 to 3 wt%, 1 to 5 wt%, or 2 to 4 wt% And in the case of a heterogeneous catalyst, it may be in the range of 5 to 200 wt%, 5 to 100 wt%, 20 to 200 wt%, or 20 to 150 wt% of the total amount of reactants.
  • the reaction temperature may be in the range of 180 to 280 ° C, 200 to 250 ° C, or 210 to 230 ° C.
  • the cyclohexane 1,4-diester-based material is to be prepared as a mixture
  • the cyclohexane 1,4-diester may be prepared through the direct esterification reaction described above and then mixed.
  • a method of applying two or more alcohols may be applied, or a method in which a cyclohexane 1,4-diester such as di (2-ethylhexyl) 1,4-cyclohexanoate or diisononyl 1,4-cyclohexanoate And a transesterification reaction in which an alcohol such as 2-propylheptyl alcohol, isodecyl alcohol, undecyl alcohol or the like is reacted with the cyclohexane 1,4-diester.
  • trans-esterification reaction used in the present invention means a reaction in which an alcohol and an ester react with each other as shown in Reaction Scheme 1 below to mutually exchange R "of an ester with R 'of an alcohol as shown in Reaction Scheme 1 below:
  • ester compositions when the trans-esterification reaction is carried out, when the alcohol alkoxide attacks the carbon of the two ester (RCOOR ") group present in the ester compound, When attacking carbon of RCOOR group; In the case where the reaction is unreacted and unreacted, three kinds of ester compositions can be produced by number in three cases.
  • the trans-esterification reaction is advantageous in that the wastewater problem is not caused as compared with the acid-alcohol interesterification reaction.
  • di (2-ethylhexyl) 1,4-cyclohexanoate and isonoyl alcohol can be converted to di (2-ethylhexyl) 1,4-cyclohexanoate and 2-ethylhexyl) isononyl 1,4-cyclohexanoate and diisononyl 1,4-cyclohexanoate can be produced, and the three cyclohexane 1,4-diester-based materials can be produced May be formed in an amount of 0.5 wt% to 80 wt%, 0.5 wt% to 80 wt%, and 0.5 wt% to 85 wt%, respectively, relative to the total weight of the mixture, and specifically 1 wt% to 50 wt% % To 50 wt%, and 10 wt% to 80 wt%.
  • the mixture prepared by the trans-esterification reaction can control the composition ratio of the mixture according to the amount of alcohol added.
  • the amount of the alcohol added may be 0.1 to 89.9 parts by weight, specifically 3 to 50 parts by weight, more specifically 5 to 40 parts by weight, based on 100 parts by weight of the cyclohexane 1,4-diester.
  • the cyclohexane 1,4-diester substance has a higher mole fraction of the cyclohexane 1,4-diester participating in the trans-esterification reaction as the alcohol is added in an increased amount,
  • the content of the two cyclohexane 1,4-diesters may be increased, and the content of the cyclohexane 1,4-diesters correspondingly unreacted may tend to decrease.
  • the molar ratio of the cyclohexane 1,4-diester as the reactant to the alcohol is, for example, 1: 0.005 to 5.0, 1: 0.05 to 2.5, or 1: 0.1 to 1.0,
  • composition ratio of the mixture of the three cyclohexane 1,4-diester-based materials is not limited to the above-mentioned range, and any one of the three kinds of cyclohexane 1,4-diesters may be further added, And the mixing composition ratios are as described above.
  • the trans-esterification reaction is carried out at a reaction temperature of 120 to 190 ° C, preferably 135 to 180 ° C, more preferably 141 to 179 ° C for 10 minutes to 10 hours, Preferably from 30 minutes to 8 hours, more preferably from 1 to 6 hours. It is possible to effectively obtain a mixture of cyclohexane 1,4-diester-based material having a desired composition ratio within the above temperature and time range. At this time, the reaction time can be calculated from the point at which the temperature of the reactant is raised to the reaction temperature.
  • the trans-esterification reaction can be carried out under an acid catalyst or a metal catalyst, and in this case, the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid
  • the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst or a metal itself.
  • the metal component may be, for example, any one selected from the group consisting of tin, titanium and zirconium, or a mixture of two or more thereof.
  • the cyclohexane 1,4-diester-based material in the plasticizer composition may be produced by a method in which the reaction material is subjected to a direct esterification reaction or a transesterification reaction using terephthalic acid or terephthalate, followed by hydrogenation Can be employed.
  • the hydrogenation reaction may be a step of converting a terephthalate-based material into a cyclohexane-1,4-diester-based material by subjecting a terephthalate-based material, which is a single compound or a mixture, to hydrogenation in the presence of a metal catalyst.
  • the hydrogenation reaction step may be a kind of reduction reaction in which hydrogen is added in the presence of a metal catalyst to remove the aromaticity of the benzene ring of the terephthalate-based materials.
  • the hydrogenation reaction is carried out by reacting the terephthalate-based material with hydrogen under a metal catalyst to synthesize a cyclohexane 1,4-diastereomeric material.
  • the hydrogenation reaction may be carried out by further including an organic solvent such as ethanol, but is not limited thereto.
  • an organic solvent such as ethanol, but is not limited thereto.
  • the metal catalyst there can be used Rh / C catalyst, Pt catalyst, Pd catalyst, etc., which are generally used for hydrogenating the benzene ring.
  • the direct esterification reaction and the transesterification reaction can also be used to produce the above-mentioned trimellitate-based material (using trimellitic acid instead of terephthalic acid).
  • the trimellitate-based material as well as the cyclohexane-1,4-diester-based material can also be prepared in a predetermined ratio, and the composition ratio of the resulting mixture can be controlled by adjusting the content of alcohol as a reaction raw material .
  • the trimellitate-based material is directly produced through the esterification reaction or the transesterification reaction, as in the case of applying the cyclohexane 1,4-diastere base material except for the hydrogenation reaction, Contents can be applied.
  • cyclohexane-1,4-dicarboxylic acid, terephthalic acid, citric acid, and trimellitic acid as the reaction raw materials may be replaced with acid anhydrides in place of the carboxylic acid-based materials.
  • the plasticizer composition thus prepared may contain 5 to 150 parts by weight, preferably 10 to 100 parts by weight per 100 parts by weight of the resin selected from ethylene, Or 10 to 60 parts by weight, to provide a resin composition which is effective both for extrusion, injection molding, car-rendering, and compound preparation.
  • both the straight vinyl chloride polymer applied to the extrusion, injection, car-rendering, and compound formulations and the paste vinyl chloride polymer applied to the plastisol formulation can be applied.
  • the plasticizer composition according to the invention it may be particularly preferable as a plasticizer of a straight vinyl chloride polymer.
  • the plasticizer composition can be applied to the production of wires, flooring materials, automobile interior materials, films, sheets, wallpaper or tubes.
  • a three-liter four-necked reactor equipped with a condenser, a decanter, a reflux pump, a temperature controller, and a stirrer was charged with 516.0 g of 1,4-cyclohexane dicarboxylic acid (CHDA), 2-ethylhexyl alcohol (0.3 parts by weight based on 100 parts by weight of CHDA) of a titanium-based catalyst (TIPT, tetra isopropyl titanate) as a catalyst, 1170 g (2-EH molar ratio (1.0) And the temperature was gradually raised to about 170 ° C. Generated water began to be generated at about 170 ° C. The ester reaction was carried out for about 4.5 hours while nitrogen gas was continuously supplied at a reaction temperature of about 220 ° C and normal pressure. When the acid value reached 0.1, the reaction was terminated.
  • CHDA 1,4-cyclohexane dicarboxylic acid
  • TIPT titanium-based catalyst
  • distillation extraction is carried out under reduced pressure for 0.5 to 4 hours in order to remove unreacted raw materials.
  • Steam extraction is carried out under reduced pressure for 0.5 to 3 hours using steam to remove unreacted raw materials to a certain level or lower, the reaction liquid temperature is cooled to about 90 ⁇ , and neutralization treatment is performed using an alkali solution . Further, washing may be carried out, and then the reaction liquid is dehydrated to remove moisture.
  • the filter material was added to the reaction liquid from which the water had been removed, stirred for a certain period of time, and filtered to obtain 1167 g (yield: 98.0%) of di (2-ethylhexyl) 1,4-cyclohexanoate.
  • a hydrogenated material was obtained in the same manner as in Production Example 1, except that isononyl alcohol was used instead of 2-ethylhexyl alcohol in the esterification reaction in Production Example 1.
  • Hydrogenated material was obtained in the same manner as in Production Example 1, except that 2-ethylhexyl alcohol was used instead of 2-propylheptyl alcohol in the esterification reaction in Production Example 1.
  • the reaction product was mixed and distilled to remove isononyl alcohol and 2-ethylhexyl alcohol, and finally a mixed composition was prepared.
  • ASTM D2240 was used to measure the shore " A " hardness at 25 ⁇ ⁇ , 3T 10s.
  • a cross head speed was pulled at 200 mm / min (1T) using a UTM (manufacturer; Instron, model name: 4466) according to the ASTM D638 method, and the point at which the specimen was cut was measured .
  • the tensile strength was calculated as follows:
  • Tensile strength (kgf / mm 2) load value (kgf) / thickness (mm) x width (mm)
  • Elongation (%) [length after stretching / initial length] x 100.
  • Transition loss (%) [(initial weight of specimen at normal temperature - weight of specimen after leaving oven) / initial weight of specimen at room temperature] x 100
  • the specimens were weighed at 100 °C for 168 hours.
  • Heat loss (%) [(initial specimen weight - specimen weight after work) / initial specimen weight] ⁇ 100.
  • the measurement of the tensile and elongation percentages is performed by heating at 100 DEG C for 168 hours and then measuring the tensile and elongation characteristics remaining on the specimen.
  • the measurement method is the same as the above tensile strength and elongation measurement methods.
  • Example 1-1 1,4-DINCH TEHTM 9 1 Examples 1-2 1,4-DINCH TEHTM 7: 3 Example 1-3 1,4-DINCH TEHTM 5: 5 Examples 1-4 1,4-DINCH TEHTM 3: 7 Examples 1-5 1,4-DINCH TEHTM 1: 9 Examples 1-6 1,4-DPHCH TEHTM 7: 3 Examples 1-7 1,4-DPHCH TINTM 5: 5 Examples 1-8 1,4-DEHCH TINTM 5: 5 Examples 1-9 1,4-DEHCH TPHTM 3: 7 Example 1-10 DEHCH / EHINCH / DINCH TPHTM 7: 3 Example 1-11 DEHCH / EHINCH / DINCH TEHTM 1: 9 Comparative Example 1-1 DIDP - - Comparative Example 1-2 DPHP - - Comparative Example 1-3 1,4-DINCH - - Comparative Example 1-4 - TPHTM - Comparative Example 1-5 DEHTP TE
  • Specimens were prepared using the mixed plasticizer compositions of the examples and comparative examples described in Tables 1 and 2 above.
  • the test pieces were prepared by mixing 50 parts by weight of the plasticizer composition prepared in the above-mentioned Examples and Comparative Examples with 100 parts by weight of polyvinyl chloride resin (PVC (LS100)) with reference to ASTM D638, RUP-144 Ltd.), 40 parts by weight of Omya 1T (Omiya) as a filler, and 0.3 parts by weight of St-A (diisocyanate) as a lubricant were mixed and mixed at 700 rpm at 98 ⁇ ⁇ .
  • the specimens were prepared by using a roll mill at 160 ° C for 4 minutes and working at 180 ° C for 3 minutes (low pressure) and 2.5 minutes (high pressure) using a press.
  • Example 1-1 91.2 171.0 104.5 314.8 92.7 1.23 1.44 -27.5
  • Examples 1-2 91.7 172.5 103.4 310.5 93.0 1.02 0.90 -28
  • Example 1-3 92.0 172.3 102 308.7 93.4 0.64 0.78 -28
  • Examples 1-4 92.3 173.2 101.2 306.9 94.3 0.30 0.67 -28.5
  • Examples 1-5 92.8 176.4 98.7 305.2 96.7 0.21 0.40 -32.5
  • Examples 1-6 92.1 175.8 101.7 306.1 96.5 0.73 0.72 -28.5
  • Examples 1-7 92.7 182.6 99.8 302.4 98.7 0.70 0.34 -30
  • Examples 1-8 91.6 176.8 100.3 303.2 95.5 0.58 0.45 -30.5
  • Examples 1-9 93.4 188.9 98.4 302.7 99.7 0.34 0.30 -34
  • Example 1-10 9
  • Examples 1-1 to 1-11 are improved in all properties compared to Comparative Examples 1-1 to 1-9.
  • Comparative Examples 1-1 and 1-2 which are conventional phthalate-based products, showed poorer elongation and elongation percentage and tensile residual ratio compared with the Examples.
  • Comparative Example 1-3 using only hydrogenated products (The elongation percentage and the cold resistance) is serious, and the transition loss and the heating loss are also inferior to those of the examples by about 50% or more.
  • Comparative Example 1-4 using only a trimellitate-based product has a considerable disadvantage in plasticizing efficiency and is not suitable as a material for imparting a plasticizing effect due to a low elongation rate, and the terephthalate- In Comparative Example 1-5 in which a trimellitate-based material was mixed, all of the physical properties were noticeable in comparison with the examples in which the terephthalate-based material was used as the hydrogenated material, and particularly the transitability and the residual percentage of the kidney were remarkably decreased Can be confirmed.
  • Example 2-1 91 173.5 98.6 297.6 94.8 0.2 0.3 -26.5
  • Example 2-2 91.8 179.6 95.8 306.6 98.7 0.27 0.45 -29
  • Example 2-3 92 185.4 96.7 310.4 96.7 0.58 0.98 -29.5
  • Examples 2-4 92.1 190.4 98.4 312 99.1 0.2 0.31 -27
  • Example 2-5 91.5 184.2 92.4 311.7 94.2 0.98 1.02 -30.5
  • Examples 2-6 91.2 188.4 95.6 308.6 96.5 0.44 0.68 -29
  • Examples 2-7 91.6 184.6 96.8 302.7 93.4 0.35 0.41 -31
  • Comparative Example 2-1 92.7 170.6 93.4 297.5 92.1 1.54 0.88 -28.5
  • Comparative Example 2-2 93.2 169.7 91.5 278.6 88.4 1.74 1.
  • the trimellitate-based material is the most suitable material as the mixing partner, and furthermore, the addition of the epoxidized oil further improves the physical properties. can confirm. Even if a plurality of materials are mixed, it is considered that, when the other plasticizer material is added to one plasticizer composition, the plasticizer material is relatively decreased in content, The improvement in the effect of selective mixing of the same plasticizer composition is significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것으로, 기존의 가소제에 내포된 문제점을 개선함으로써 수지 조성물의 가소제로서 사용시 요구되는 가소화 효율과 이행성, 가열감량 및 인장강도 및 신율과 같은 기계적 물성에 있어서 균형과 함께 개선을 구현할 수 있고, 신장 잔율 특성 및 내한성 등의 특성을 개선시킬 수 있는 가소제 및 이들을 포함한 수지 조성물을 제공할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련출원과의 상호인용
본 출원은 2017년 11월 01일자 한국 특허 출원 제10-2017-0144959호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 고내열, 저 가열감량을 주요 요구물성으로 하는 컴파운드 업종에서는 요구 물성을 고려하여 적절한 가소제를 사용하여야 한다. 전선 및 케이블용도의 PVC 컴파운드 경우에 해당 규격에서 요구되는 특성인 인장강도, 신율, 가소화효율, 가열감량, 인장 및 신율 잔율 등에 따라 PVC 수지에 가소제, 안정제 및 안료 등의 첨가제를 혼용한다.
현재 전선 컴파운드 및 자동차 원단용 업종에서 대표적으로 사용하고 있는 디이소데실프탈레이트(DIDP)는 환경호르몬 관찰물질이며, 환경이슈에 따라 사용 규제가 진행되고 있기 때문에, 이를 대체하고자 하는 친환경 제품의 개발 요구가 증대되고 있다.
이에 상기 디이소데실프탈레이트(DIDP)보다 우수한 물성을 갖으며, 환경 친화적인 신규 가소제 조성물의 제품을 개발함으로써, 환경이슈에서 자유롭고, 품질적인 측면에서 우수한 염화비닐계 수지 조성물을 확보해 나가는 연구가 진행중이다.
본 발명에서는 수지 조성물에 적용되는 가소제로서, 가소화 효율, 인장 잔율 및 신장 잔율, 내이행성 및 가열 감량, 그리고 내한성 등의 물성이 개선된 가소제 및 이를 포함하는 수지 조성물을 제공하고자 한다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 디에스터기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 8 내지 12인 사이클로헥산 1,4-디에스터를 1 이상 함유하는 사이클로헥산 1,4-디에스터계 물질; 및 하기 화학식 1로 표시되는 화합물을 함유하는 트리멜리테이트계 물질;를 포함하는 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2018013186-appb-I000001
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 8 내지 12의 알킬기이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 전술한 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 우수한 가소화 효율 및 인장강도와 신율 뿐만 아니라, 인장 및 신장 잔율과 내한성, 나아가서는 이행성과 가열감량 등의 우수한 물성을 제공할 수 있다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 접두어 "이소-"는 알킬기의 주사슬에 탄소수 1인 메틸기가 분지쇄로 결합된 알킬기를 의미하며, 일반적으로는 알킬기 말단에 메틸 분지가 결합된 것을 의미하나, 본 명세서에서, 달리 별도로 칭하는 알킬기가 없는 이상 말단에 결합된 것을 포함하여 분지쇄로 메틸기가 주사슬에 결합된 알킬기를 총칭하는 것으로 사용될 수 있다.
본 명세서에서 사용되는 용어 "이소노닐기"는 주사슬에 1 또는 2개의 메틸기, 1개의 에틸기 및 1개의 프로필기 중에서 1 이상이 가지로 치환되어 있는 총 탄소수 9인 알킬기를 의미할 수 있고, 예컨대, 2-메틸옥틸기, 3-메틸옥틸기, 4-메틸옥틸기, 5-메틸옥틸기, 6-메틸옥틸기, 3-에틸헵틸기, 2-에틸헵틸기, 2,5-디메틸헵틸기, 2,3-디메틸헵틸기, 4,5-디메틸헵틸기, 3-에틸-4-메틸헥실기, 2-에틸-4-메틸헥실기, 또는 2-프로필헥실기 등을 통칭하는 의미로 사용되는 용어이며, 상업적으로 사용되는 이소노닐 알코올(CAS No.: 68526-84-1, 27458-94-2)은 분지화도 1.2~1.9를 갖는 이성질체들의 조성물을 의미할 수 있으며, 상기 상업적인 알코올의 경우 n-노닐기 또한 일부 포함하고 있을 수 있다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수백 마이크로미터 크기를 가지는 다량의 기공이 분포된 다공성 입자의 형태를 갖고 응집성이 없으며 흐름성이 우수한중합체를 말한다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"란 용어는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된 것을 의미할 수 있고, 수십 내지 수천 나노미터 크기를 가지는 미세하고 치밀한 공극이 없는 입자로서 응집성을 갖고 흐름성이 열악한 중합체를 말한다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4,2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '경도(hardness)'는 ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및/또는 Shore "D")를 의미하며, 3T 10s의 조건에서 측정하고, 가소화 효율을 평가하는 지표가 될 수 있으며 낮을수록 가소화 효율이 우수함을 의미한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻고, 시험편 양면에 Glass Plate를 붙인 후 1 kgf/cm2 의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다.
[수학식 3]
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량 (중량%) = {(초기 시편 무게 - 작업 후 시편 무게) / 초기 시편 무게} x 100
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시한다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
2 종 또는 3 종의 가소제를 포함하는 가소제 조성물
본 발명의 일 실시예에 따르면, 가소제 조성물은 2 종 이상의 가소제를 포함하며, 상기 2 종 이상의 가소제는 디에스터기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 8 내지 12인 사이클로헥산 1,4-디에스터를 1 이상 함유하는 사이클로헥산 1,4-디에스터계 물질; 및 하기 화학식 1로 표시되는 화합물을 함유하는 트리멜리테이트계 물질;를 필수적으로 포함한다.
[화학식 1]
Figure PCTKR2018013186-appb-I000002
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 8 내지 12의 알킬기이다.
또한, 상기 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질이 포함되는 경우 두 물질의 중량비는 상한이 99:1, 95:5, 90:10, 85:15, 80:20, 70:30 또는 60:40일 수 있고, 하한이 1:99, 5:95, 10:90, 15:85, 20:80, 30:70 또는 40:60일 수 있다. 바람직하게는 90:10 내지 10:90, 또는 80:20 내지 10:90일 수 있으며, 더 바람직하게는 80:20 내지 20:80일 수 있고, 상기 바람직한 범위를 만족하는 경우에는 이행 특성 및 가열감량 특성에 있어서 보다 개선된 특성을 나타낼 수 있다.
상기 가소제 조성물은 3 종의 가소제를 포함할 수 있고, 이 경우에는 에폭시화 오일이 더 포함될 수 있다.
상기 가소제 조성물이 3 종의 가소제로 이루어지는 경우, 상기 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질의 중량비는 2 종이 선택되는 경우와 동일한 중량비가 적용될 수 있으며, 상기 에폭시화 오일은 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질의 총 중량과의 중량비로서, 2종 혼합 총중량 대 에폭시화 오일의 중량비가 90:10 내지 10:90일 수 있고, 바람직하게는 90:10 내지 50:50, 더 바람직하게는 80:20 내지 50:50일 수 있다.
사이클로헥산 1,4-디에스터계 물질
본 발명의 일 실시예에 따른 사이클로헥산 1,4-디에스터계 물질에 함유되는 사이클로헥산 1,4-디에스터는, 디에스터기에 결합된 두 개의 알킬기의 탄소수가 각각 8 내지 12인 것일 수 있다. 바람직하게는 8 내지 11일 수 있고, 또는 8 내지 10일 수 있다. 사이클로헥산 1,4-디에스터계 물질은 테레프탈레이트계 물질의 수소화 물질로서 프탈레이트계 가소제를 대체할 수 있는 가장 유용한 가소제로서, 기존의 프탈레이트계 가소제와 비교하여 기본적인 기계적 물성이 동등 수준으로 나타날 수 있어서, 친환경적인 가소제로서 적용이 가능할 수 있고, 테레프탈레이트계 가소제에 비해서 가소화 효율이 월등히 향상될 수 있는 등의 장점이 있다.
또한, 상기 사이클로헥산 1,4-디에스터계 물질의 디에스터기에 결합된 두 개의 알킬기는, 예를 들면, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 이소데실기, 운데실기, 또는 도데실기일 수 있고, 바람직하게는 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 또는 이소데실기일 수 있다.
구체적으로, 상기 사이클로헥산 1,4-디에스터는 단일 화합물일 경우 디이소노닐 사이클로헥산 1,4-디에스터(1,4-DINCH), 디(2-에틸헥실) 사이클로헥산 1,4-디에스터(1,4-DEHCH), 디(2-프로필헵틸) 사이클로헥산 1,4-디에스터(1,4-DPHCH) 및 디이소데실 사이클로헥산 1,4-디에스터(1,4-DIDCH)로 이루어진 군에서 선택될 수 있고, 바람직하게 디(2-에틸헥실) 사이클로헥산 1,4-디에스터, 디이소노닐 사이클로헥산 1,4-디에스터, 또는 디(2-프로필헵틸) 사이클로헥산 1,4-디에스터일 수 있다.
또한, 상기 사이클로헥산 1,4-디에스터계 물질이 혼합물인 경우에는 3 종의 사이클로헥산 1,4-디에스터계 물질이 혼합된 것일 수 있고, 이들 3종 중에서는 디에스터기에 결합된 알킬의 탄소수가 8 내지 12인 것이 적어도 1종은 포함된 것일 수 있으며, 추가적으로 2 종의 사이클로헥산 1,4-디에스터를 더 포함할 수 있다. 이 경우, 추가로 포함되는 사이클로헥산 1,4-디에스터의 경우 디에스터기에 결합된 알킬기의 탄소수가 4 내지 12일 수 있으나, 이 탄소수는 3종의 혼합물을 형성할 때 적용되는 추가의 사이클로헥산 1,4-디에스터의 알킬기에 한한다.
예를 들면, 디(2-에틸헥실) 사이클로헥산 1,4-디에스터, 부틸(2-에틸헥실) 사이클로헥산 1,4-디에스터 및 디부틸 사이클로헥산 1,4-디에스터가 혼합된 제1혼합물, 디이소노닐 사이클로헥산 1,4-디에스터, 부틸이소노닐 사이클로헥산 1,4-디에스터 및 디부틸 사이클로헥산 1,4-디에스터가 혼합된 제2혼합물, 비스(2-에틸헥실) 사이클로헥산-1,4-디에스터, (2-에틸헥실)이소노닐 사이클로헥산 1,4-디에스터 및 디이소노닐 사이클로헥산 1,4-디에스터가 혼합된 제3혼합물일 수 있으며, 이들 혼합물 외에도 상기 디에스터기에 결합될 수 있는 알킬기들 중에서 2개의 알킬기 조합에 따라 다양한 혼합물이 구성될 수 있다.
구체적으로, 상기 제1 내지 제3혼합물의 경우, 특정 조성 비율을 가질 수 있으며, 제1혼합물은 디(2-에틸헥실) 사이클로헥산 1,4-디에스터 3.0 내지 99.0 몰%; 부틸(2-에틸헥실) 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰% 및 디부틸 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰%;일 수 있고, 상기 제2혼합물은 디이소노닐 사이클로헥산 1,4-디에스터 3.0 내지 99.0 몰%; 부틸이소노닐 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰% 및 디부틸 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰%;일 수 있으며, 상기 제3혼합물은 디(2-에틸헥실) 사이클로헥산 1,4-디에스터 3.0 내지 99.0 몰%; (2-에틸헥실)이소노닐 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰% 및 디이소노닐 사이클로헥산-1,4-디에스터 0.5 내지 96.5 몰%;일 수 있다.
상기 조성 비율은 에스터화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
제조방법 관련하여, 상기 사이클로헥산 1,4-디에스터계 물질은 1,4-사이클로헥산 디카르복실산과 1 이상의 알코올의 직접 에스터화 반응으로 제조될 수 있고, 또는 디알킬 사이클로헥산 1,4-디에스터(또는 디알킬 1,4-사이클로헥사노에이트)와 알코올의 트랜스 에스터화 반응으로 제조될 수 있다.
또는, 테레프탈산을 원료로 에스터 반응을 통해 제조한 디알킬 테레프탈레이트를 수소화 반응을 거쳐 제조될 수도 있으며, 테레프탈레이트계 물질의 수소화 물질로서 사이클로헥산 1,4-디에스터계 물질을 제조할 수 있는 방법이라면 제조방법에 특별히 제한은 없다.
상기 알코올은 1차 알코올로서, 알킬기가 전술한 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 이소데실기, 운데실기 또는 도데실기로 이루어진 군에서 선택될 수 있다. 1 종의 알코올이 직접 에스터화 반응에 적용되어 단일 테레프탈레이트가 적용될 수 있고, 2 이상의 혼합 알코올이 직접 에스터화 반응에 적용되거나 트랜스 에스터화 반응이 수행되어 2 이상의 테레프탈레이트가 혼합된 혼합물이 적용될 수 있다.
구체적으로, 상기 트랜스 에스터화 반응이 수행되어 혼합 사이클로헥산 1,4-디에스터계 물질이 적용되는 경우, 이 혼합 사이클로헥산 1,4-디에스터계 물질은 각각의 혼합물들 사이에서 특정 조성 비율을 가질 수 있으며, 디(알킬A) 사이클로헥산 1,4-디에스터 3.0 내지 99.0 몰%; (알킬A)(알킬B) 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰% 및 디(알킬B) 사이클로헥산 1,4-디에스터 0.5 내지 96.5 몰%;일 수 있고, 상기 알킬A는 반응물 중 사이클로헥산 1,4-디에스터에서 유래된 것일 수 있으며, 알킬 B는 알코올에서 유래된 것일 수 있다.
상기 조성 비율은 에스터화 반응으로 생성되는 혼합 조성 비율일 수 있고, 특정 화합물을 부가적으로 더 혼합하여 의도된 조성 비율일 수 있으며, 원하는 물성에 맞도록 혼합 조성 비율을 적절히 조절할 수 있다.
상기와 같이, 디에스터기에 알킬의 탄소수가 8 내지 12인 1,4-사이클로헥사노에이트가 가소제로 사용되는 경우, 적절한 탄소수 제어를 통해서 가소화 효율, 이행성 및 가열감량 특성과 기계적 특성 사이의 물성 균형을 구현할 수 있다.
트리멜리테이트계 물질
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 트리멜리테이트계 물질을 포함할 수 있고, 이 트리멜리테이트계 물질은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2018013186-appb-I000003
상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 8 내지 12의 알킬기이다.
상기 트리멜리테이트계 물질은 전술한 바와 같은 사이클로헥산 1,4-디에스터계 물질을 보완할 수 있는 물질로서, 사이클로헥산 1,4-디에스터계 물질이 프탈레이트계 가소제에 비하여 달성되지 못하는 효과로서, 내이행성이나 감량 특성을 보완할 수 있다.
상기 트리멜리테이트계 물질에 있어서, 상기 화학식 1의 R1 내지 R3는 탄소수가 8 내지 12일 수 있고, 각각이 서로 동일할 수 있으며, 서로 상이한 경우에는 R1 내지 R3 중 2개는 동일한 것이며, 나머지 1개가 상이한 알킬기일 수 있다. 예를 들면, 상기 알킬기는 옥틸기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기, 이소데실기, 운데실기 또는 도데실기와 같은 알킬기가 선택될 수 있다. 즉, 상기 화학식 1의 R1 내지 R3의 알킬기는 전술한 사이클로헥산 1,4-디에스터계 물질의 알킬기와 동일한 범위에서 선택되는 것일 수 있다.
또, 상기 트리멜리테이트계 물질의 경우, 특히 탄소수의 제어가 더 주요할 수 있고, 벤젠 고리에 결합된 에스터기가 3개임에 따라 적용된 알킬기가 달라지는 경우 트리멜리테이트 분자 자체의 구조나 분자량에 영향이 크게 반영될 수 있어, 적절한 알킬기의 선택이 필요할 수 있다.
또한, 상기 트리멜리테이트계 물질은 사이클로헥산 1,4-디에스터계 물질과 가소제 조성물로 혼합되는 가장 최적의 물질일 수 있고, 다른 기존 제품들 대비 이행성과 가열감량, 그리고 신율과 신장 잔율, 나아가서는 인장 잔율의 개선에 특이적인 효과를 볼 수 있다.
에폭시화 오일
본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 상기 사이클로헥산 1,4-디에스터계 물질과 트리멜리테이트계 물질을 포함하면서, 제3의 혼합물로서, 에폭시화 오일을 더 포함할 수 있다.
상기 에폭시화 오일은, 예컨대, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올레에이트(epoxidized oleate), 에폭시화 톨유(epoxidized tall oil), 에폭시화 리놀레이트(epoxidized linoleate) 또는 이들의 혼합물이 적용될 수 있다.
다만, 바람직하게 상기 에폭시화 오일은 에폭시화 대두유(ESO), 에폭시화 아마인유(ELO) 또는 이들의 혼합물이 적용될 수 있고, 다만, 시장 상황이나 수급 문제 등으로 인하여 에폭시화 대두유가 에폭시화 아마인유에 비하여 사용 빈도가 더 높을 수는 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 에폭시화 오일을 포함할 때에 전술한 것과 같이 사이클로헥산 1,4-디에스터계 물질과 트리멜리테이트계 물질의 혼합 중량과의 중량비로써 적절히 포함될 수 있으며, 에폭시화 오일을 포함하는 경우에는 이를 포함함에 따라 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질이 상대적으로 감량되지만, 이에 따른 물성 저하는 없으며, 오히려 물성에서 개선 효과를 볼 수 있으며 이와 함께 제품 단가 경쟁력 또한 확보할 수 있다는 장점이 있다.
제조 방법
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 블렌딩 방식을 적용할 수 있는 것으로, 사이클로헥산 1,4-디에스터계 물질, 에폭시화 오일 및 트리멜리테이트계 물질을 각각 제조한 이후에 혼합하는 과정을 통하여 조성물을 제조할 수 있다.
상기 사이클로헥산 1,4-디에스터계 물질을 제조하는 데에 있어서 사용되는 물질로서 사이클로헥산 1,4-디카르복실산과 알코올을 통해 직접 에스터화로 제조하는 경우, 2-에틸헥실 알코올, 이소노닐 알코올, 2-프로필헵틸 알코올 등의 전술한 사이클로헥산 1,4-디에스터계 물질의 디에스터기에 결합된 알킬기를 갖는 알코올을 1 이상 적용하고, 사이클로헥산 1,4-디카르복실산과 반응하는 과정을 수행할 수 있다.
상기 직접 에스터화 반응은, 알코올에 사이클로헥산 1,4-디카르복실산을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 알코올을 제거하고, 미반응 산을 중화시키는 단계; 및 감압증류에 의해 탈수 및 여과하는 단계;로 준비될 수 있다.
또한 상기 알코올은, 사이클로헥산 1,4-디카르복실산 100 몰% 기준으로 150 내지 500 몰%, 200 내지 400 몰%, 200 내지 350 몰%, 250 내지 400 몰%, 혹은 270 내지 330 몰% 범위 내로 사용될 수 있다.
한편, 상기 에스터화 반응의 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 180 내지 280℃, 200 내지 250℃, 혹은 210 내지 230℃ 범위 내일 수 있다.
상기 사이클로헥산 1,4-디에스터계 물질을 혼합물로 제조하고자 한다면, 전술한 직접 에스터화 반응을 통해서 사이클로헥산 1,4-디에스터가 제조된 후 혼합되는 것일 수 있고, 또는 직접 에스터화 반응에서 알코올을 2 이상 적용하는 방법이 적용될 수 있으며, 또는 디(2-에틸헥실) 1,4- 사이클로헥사노에이트 또는 디이소노닐 1,4-사이클로헥사노에이트 등의 사이클로헥산 1,4-디에스터와, 2-프로필헵틸 알코올, 이소데실 알코올, 운데실 알코올 등의 알코올이 반응하는 트랜스 에스터화 반응;을 통하여 사이클로헥산 1,4-디에스터를 제조할 수 있다.
본 발명에서 사용되는 "트랜스-에스터화 반응"은 하기 반응식 1과 같이 알코올과 에스터가 반응하여 이하 반응식 1에서 나타나듯이 에스터의 R"가 알코올의 R'와 서로 상호교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2018013186-appb-I000004
본 발명의 일 실시예에 따르면, 상기 트랜스-에스터화 반응이 이루어지면 알코올의 알콕사이드가 에스터계 화합물에 존재하는 두 개의 에스터(RCOOR")기의 탄소를 공격할 경우; 에스터계 화합물에 존재하는 한 개의 에스터(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스터 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스터화 반응은 산-알코올간 에스터화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있다.
예를 들어, 디(2-에틸헥실) 1,4-사이클로헥사노에이트와 이소노닐 알코올은 상기 트랜스-에스터화 반응에 의해, 디(2-에틸헥실) 1,4-사이클로헥사노에이트, (2-에틸헥실)이소노닐 1,4-사이클로헥사노에이트 및 디이소노닐 1,4-사이클로헥사노에이트의 혼합물이 생성될 수 있고, 상기 3 종의 사이클로헥산 1,4-디에스터계 물질은 혼합물 총 중량에 대해 각각 0.5 중량% 내지 80 중량%, 0.5 중량% 내지 80 중량%, 및 0.5 중량% 내지 85 중량%의 양으로 형성될 수 있으며, 구체적으로 1 중량% 내지 50 중량%, 1 중량% 내지 50 중량%, 및 10 중량% 내지 80 중량%의 양으로 형성될 수 있다.
또한, 상기 트랜스-에스터화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다.
상기 알코올의 첨가량은 사이클로헥산 1,4-디에스터 100 중량부에 대해 0.1 내지 89.9 중량부, 구체적으로는 3 내지 50 중량부, 더욱 구체적으로는 5 내지 40 중량부일 수 있다.
상기 사이클로헥산 1,4-디에스터계 물질은 알코올의 첨가량이 많을수록, 트랜스-에스터화 반응에 참여하는 사이클로헥산 1,4-디에스터의 몰분율(mole fraction)이 커질 것이므로, 상기 혼합물에 있어서 생성물인 두 개의 사이클로헥산 1,4-디에스터의 함량이 증가할 수 있고, 이에 상응하여 미반응으로 존재하는 사이클로헥산 1,4-디에스터의 함량은 감소하는 경향을 보일 수 있다.
본 발명의 일 실시예에 따르면, 반응물인 사이클로헥산 1,4-디에스터와 알코올의 몰비는 일례로 1:0.005 내지 5.0, 1:0.05 내지 2.5, 혹은 1:0.1 내지 1.0이고, 이 범위 내에서 공정 효율이 높으며 가공성 개선 효과가 뛰어난 에스터계 가소제 조성물을 수득하는 효과가 있다.
다만, 상기 3 종의 사이클로헥산 1,4-디에스터계 물질의 혼합물의 조성 비율이 상기 범위에 제한되는 것은 아니며, 3 종의 사이클로헥산 1,4-디에스터 중 어느 하나를 추가 투입하여 그 조성비를 변경할 수 있으며, 가능한 혼합 조성 비율은 전술한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 트랜스-에스터화 반응은 120 내지 190℃, 바람직하게는 135 내지 180℃, 더욱 바람직하게는 141 내지 179℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서 원하는 조성비의 사이클로헥산 1,4-디에스터계 물질인 혼합물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스-에스터화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 별법으로 상기 가소제 조성물에 있어서 사이클로헥산 1,4-디에스터계 물질은 반응 원료를 테레프탈산 또는 테레프탈레이트로 하여 각각 직접 에스터화 반응 또는 트랜스 에스터화 반응을 수행한 후에 수소화 반응을 통해 제조하는 방법이 채용될 수 있다.
상기 수소화 반응은 단일 화합물 또는 혼합물인 테레프탈레이트계 물질을 금속 촉매의 존재 하에서 수소화 반응시킴으로써, 테레프탈레이트계 물질을 사이클로헥산 1,4-디에스터계 물질로 변환하는 단계일 수 있다.
상기 수소화 반응 단계는 금속 촉매의 존재하에, 수소를 첨가하여 테레프탈레이트계 물질들의 벤젠 고리의 방향성을 제거하는 반응으로서, 일종의 환원 반응일 수 있다.
상기 수소화 반응은 금속 촉매하에서 상기 테레프탈레이트계 물질과 수소를 반응시켜 사이클로헥산 1,4-디에스터계 물질을 합성하는 것으로, 그 반응조건은 벤젠에 치환되어 있는 카르보닐기에는 영향을 주지 않으면서 벤젠 고리만을 수소화시킬 수 있는 통상적인 반응조건을 모두 포함할 수 있다.
상기 수소화 반응은 에탄올 등과 같은 유기용매를 더 포함하여 실시될 수 있으나, 이에 제한되는 것은 아니다. 상기 금속 촉매로는 일반적으로 벤젠 고리를 수소화 하는데 사용되는 Rh/C 촉매, Pt 촉매, Pd 촉매 등을 사용할 수 있으나, 상기와 같은 수소화 반응이 가능한 것이면 이에 제한되지 않는다.
상기 직접 에스터화 반응과 트랜스 에스터화 반응은 전술한 트리멜리테이트계 물질(테레프탈산 대신 트리멜리트산 이용)을 제조하는 데에도 사용될 수 있다. 이 경우, 사이클로헥산 1,4-디에스터계 물질과 마찬가지로 트리멜리테이트계 물질 역시 소정 비율의 혼합물로 제조될 수 있고, 반응 원료로서의 알코올의 함량 조절에 따라 생성되는 혼합물의 조성비를 제어할 수도 있다. 이 외에도 트리멜리테이트계 물질을 직접 에스터화 반응 또는 트랜스 에스터화 반응을 통해서 제조하는 경우에는 수소화 반응을 제외하고 상기 사이클로헥산 1,4-디에스터계 물질을 제조하는 데에 적용된 내용과 동일하게 그 내용들이 적용될 수 있다.
또한, 상기 반응 원료로서 사이클로헥산 1,4-디카르복실산, 테레프탈산, 시트르산 및 트리멜리트산은 이와 같은 카르복실산 계열의 물질 대신에 산 무수물을 대체 물질로 사용할 수도 있다.
이와 같이 제조된 가소제 조성물은 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄, 및 열가소성 엘라스토머 중에서 선택된 수지 100 중량부에 대하여, 5 내지 150 중량부, 10 내지 100 중량부, 혹은 10 내지 60 중량부 범위 내로 포함하여 압출, 사출, 카렌더링 및 컴파운드 처방 등에 모두 효과적인 수지 조성물을 제공할 수 있다.
특히 수지로서 상기 폴리염화비닐 수지가 적용되는 경우, 압출, 사출, 카렌더링 및 컴파운드 처방에 적용되는 스트레이트 염화비닐 중합체와 플라스티졸 처방에 적용되는 페이스트 염화비닐 중합체가 모두 적용될 수 있고, 본 발명에 따른 가소제 조성물의 경우, 특히 스트레이트 염화비닐 중합체의 가소제로 바람직할 수 있다.
일례로, 상기 가소제 조성물은 전선, 바닥재, 자동차 내장재, 필름, 시트, 벽지 혹은 튜브 제조에 적용할 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
1. 가소제 조성물의 제조
제조예 1: 디(2-에틸헥실) 사이클로헥산-1,4-디에스터의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 1,4-사이클로 디카르복실산 (1,4-Cyclohexane dicarboxylic acid, CHDA) 516.0g, 2-에틸헥실 알코올(2-EH) 1170g (CHDA:2-EH의 몰비 (1.0): (3.0)), 촉매로써 티타늄계 촉매 (TIPT, tetra isopropyl titanate)를 1.55g(CHDA 100 중량부에 대해 0.3 중량부)을 투입하고, 약 170℃까지 서서히 승온시켰다. 약 170℃ 근처에서 생성수 발생이 시작되었으며, 반응 온도 약 220℃, 상압 조건에서 질소 가스를 계속 투입하면서 약 4.5 시간 동안 에스터 반응을 수행하고 산가가 0.1에 도달하면 반응을 종결한다.
반응 완료 후, 미반응 원료를 제거하기 위해서 감압하에서 증류추출을 0.5 내지 4 시간 동안 실시한다. 일정 함량 수준 이하로 미반응 원료를 제거하기 위해 스팀을 사용하여 감압하에서 0.5 내지 3 시간 동안 스팀추출을 시행하고, 반응액 온도를 약 90℃로 냉각하여, 알카리 용액을 이용하여 중화 처리를 실시한다. 추가로, 수세를 실시할 수도 있으며, 이후 반응액을 탈수하여 수분을 제거한다. 수분이 제거된 반응액에 여재를 투입하여 일정시간 교반한 다음, 여과하여 최종적으로 디(2-에틸헥실) 1,4-사이클로헥사노에이트 1167 g (수율: 98.0 %)을 얻었다.
제조예 2: 디이소노닐 사이클로헥산-1,4-디에스터의 제조
상기 제조예 1에서 에스터화 반응시 2-에틸헥실 알코올을 사용하는 대신 이소노닐 알코올을 사용하여, 제조예 1과 동일한 방법으로 수소화된 물질을 얻었다.
제조예 3: 디(2-프로필헵틸) 사이클로헥산-1,4-디에스터의 제조
상기 제조예 1에서 에스터화 반응시 2-에틸헥실 알코올을 사용하는 대신 2-프로필헵틸 알코올을 사용하여, 제조예 1과 동일한 방법으로 수소화된 물질을 얻었다.
제조예 4: DEHCH/ EHINCH/ DINCH의 수소화 혼합물의 제조
교반기, 응축기 및 데칸터가 설치된 반응기에 디(2-에틸헥실) 1,4-사이클로헥사노에이트 2000g 및 이소노닐알콜 440g (디(2-에틸헥실) 1,4-사이클로헥사노에이트 100 중량부를 기준으로 22 중량부)를 투입한 다음, 질소 분위기 하 160℃의 반응온도에서 2 시간 동안 트랜스-에스터화 반응시켜, 디(2-에틸헥실) 1,4-사이클로헥사노에이트 (1,4-DEHCH), 옥틸이소노닐 1,4-사이클로헥사노에이트 (1,4-EHINCH) 및 디이소노닐 1,4-사이클로헥사노에이트 (1,4-DINCH)를 각각 48 중량%, 42 중량% 및 10 중량% 범위로 포함하는 가소제 조성물을 얻었다.
상기 반응 생성물을 혼합 증류하여 이소노닐알코올 및 2-에틸헥실알코올을 제거하고 최종적으로 혼합 조성물을 제조하였다.
제조예 5: 트리(2-에틸헥실) 트리멜리테이트의 제조
반응 원료로서 트리멜리트산 576.3g과 2-에틸헥실 알코올 1,755g을 사용하여, 최종적으로 트리(2-에틸헥실) 트리멜리테이트 제품 1,606g(수율: 98%)을 얻었다.
제조예 6: 트리이소노닐 트리멜리테이트의 제조
반응 원료로서 트리멜리트산 576.3g과 이소노닐 알코올 1,948g을 사용하여, 최종적으로 트리이소노닐 트리멜리테이트 제품 1,731 g(수율: 98%)을 얻었다.
2. 가소제 물성 평가 항목 및 측정 방법
경도(hardness) 측정
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore "A")경도, 3T 10s를 측정하였다.
인장강도(tensile strength) 측정
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min (1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) x 폭(㎜)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = [신장 후 길이 / 초기 길이] x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시편을 얻었고, 시편 양면에 PS Plate를 붙인 후 2 kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 PS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량 (%) = [(상온에서의 시편의 초기 중량 - 오븐 방치 후 시편의 중량) / 상온에서의 시편의 초기 중량] x 100
가열 감량(volatile loss) 측정
제작된 시편을 100℃에서 168 시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (%) = [(초기 시편 무게 - 작업 후 시편 무게) / 초기 시편 무게] x 100으로 계산하였다.
인장 및 신장 잔율 측정
인장 및 신장잔율의 측정은 100℃, 168 시간 동안 열을 가한 후, 시편에 잔존하는 인장 및 신율 특성을 측정하는 것이며, 측정 방법은 위 인장강도 및 신율 측정의 방법과 동일하다.
내한성
제작된 시편 5개를 특정 온도에서 3 분간 방치한 후 타격하여 5개 중에서 3개가 파손될 때의 온도를 측정하였다.
3. 가소제의 물성 평가 결과
1) 실시예 및 비교예의 구성
상기 제조예에서 제조된 물질을 이용하여 하기 표 1 및 2와 같이 실시예 및 비교예를 같이 구성하였다. 이하의 실시예 및 비교예에서 사용된 가소제 물질의 경우 상기 제조예들에 기재되지 않은 물질은 상업적으로 용이하게 입수할 수 있으며, LG화학사 제품을 이용하였다.
1차 가소제 1차 가소제중량비
실시예 1-1 1,4-DINCH TEHTM 9:1
실시예 1-2 1,4-DINCH TEHTM 7:3
실시예 1-3 1,4-DINCH TEHTM 5:5
실시예 1-4 1,4-DINCH TEHTM 3:7
실시예 1-5 1,4-DINCH TEHTM 1:9
실시예 1-6 1,4-DPHCH TEHTM 7:3
실시예 1-7 1,4-DPHCH TINTM 5:5
실시예 1-8 1,4-DEHCH TINTM 5:5
실시예 1-9 1,4-DEHCH TPHTM 3:7
실시예 1-10 DEHCH/EHINCH/DINCH TPHTM 7:3
실시예 1-11 DEHCH/EHINCH/DINCH TEHTM 1:9
비교예 1-1 DIDP - -
비교예 1-2 DPHP - -
비교예 1-3 1,4-DINCH - -
비교예 1-4 - TPHTM -
비교예 1-5 DEHTP TEHTM 7:3
비교예 1-6 1,4-DEHCH ATEHC 5:5
비교예 1-7 1,4-DEHCH ESO 5:5
비교예 1-8 1,4-DBCH TEHTM 5:5
비교예 1-9 1,4-DEHCH TBTM 5:5
1차 가소제 1차 가소제중량비 2차가소제 1차:2차중량비
실시예 2-1 1,4-DEHCH TEHTM 2:8 ESO 5:5
실시예 2-2 1,4-DEHCH TINTM 6:4 ESO 7:3
실시예 2-3 1,4-DEHCH TPHTM 8:2 ESO 8:2
실시예 2-4 1,4-DEHCH TINTM 4:6 ESO 6:4
실시예 2-5 1,4-DINCH TEHTM 7:3 ESO 9:1
실시예 2-6 1,4-DPHCH TEHTM 5:5 ESO 7:3
실시예 2-7 DBCH/EHINCH/DINCH TEHTM 3:7 ESO 9:1
비교예 2-1 DIDP - - -
비교예 2-2 DPHP - - -
비교예 2-3 - TEHTM - ESO 5:5
2) 실험예: 컴파운드 물성 평가
상기 표 1과 2에 기재된 실시예 및 비교예들의 혼합 가소제 조성물을 사용하여 시편을 제작하였다.
상기 시편 제작은 ASTM D638을 참조하여, 폴리염화비닐 수지(PVC(LS100)) 100 중량부에 대해, 상기 실시예 및 비교예에서 제조된 가소제 조성물을 50 중량부, 안정제로 RUP-144 (아데카코리아) 5 중량부, 필러로 Omya 1T(오미야) 40 중량부, 활제로 St-A(이수화학) 0.3 중량부를 배합하여 700 rpm으로 98℃에서 혼합하였다. 롤밀(Roll mill)을 이용하여 160℃에서 4분 동안 작업하였고, 프레스(press)를 이용하여 180℃에서 3분(저압) 및 2.5분(고압)로 작업하여 시편을 제작하였다.
상기 제작된 시편을 전술한 평가항목들의 측정방법에 따라 물성을 각 세트별로 평가하였고, 그 결과를 하기 표 3 및 4에 나타내었다.
  경도(Shore A) 인장강도(kgf/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 이행손실(%) 가열감량(%) 내한성(℃)
실시예 1-1 91.2 171.0 104.5 314.8 92.7 1.23 1.44 -27.5
실시예 1-2 91.7 172.5 103.4 310.5 93.0 1.02 0.90 -28
실시예 1-3 92.0 172.3 102 308.7 93.4 0.64 0.78 -28
실시예 1-4 92.3 173.2 101.2 306.9 94.3 0.30 0.67 -28.5
실시예 1-5 92.8 176.4 98.7 305.2 96.7 0.21 0.40 -32.5
실시예 1-6 92.1 175.8 101.7 306.1 96.5 0.73 0.72 -28.5
실시예 1-7 92.7 182.6 99.8 302.4 98.7 0.70 0.34 -30
실시예 1-8 91.6 176.8 100.3 303.2 95.5 0.58 0.45 -30.5
실시예 1-9 93.4 188.9 98.4 302.7 99.7 0.34 0.30 -34
실시예 1-10 91.8 175.0 102.5 305.8 93.7 1.00 0.92 -29
실시예 1-11 92.4 174.6 100.6 305.4 94.5 0.35 0.70 -29.5
비교예 1-1 92.7 170.6 93.4 297.5 92.1 1.54 0.88 -28.5
비교예 1-2 93.2 169.7 91.5 278.6 88.4 1.74 1.24 -27.5
비교예 1-3 90.7 168.0 106.7 314.2 86.3 2.03 2.11 -26
비교예 1-4 97.8 183.0 97.8 288.6 98.7 0.30 0.28 -34
비교예 1-5 93.0 172.3 96.4 298.2 95.6 2.30 0.95 -28
비교예 1-6 93.6 170.5 88.6 301.4 87.4 1.86 1.92 -30.5
비교예 1-7 93.9 164.0 92.3 286.4 93.8 1.67 1.68 -22.5
비교예 1-8 90.3 154.0 72.0 286.9 65.7 4.58 8.77 -29.5
비교예 1-9 90.8 170.1 79.8 288.2 81.3 1.78 2.54 -30
상기 표 3을 참조하면, 실시예 1-1 내지 1-11의 경우, 비교예 1-1 내지 1-9에 비하여 모든 물성에서 개선이 이루어지고 있다는 점이 확인된다. 구체적으로 기존 프탈레이트계 제품인 비교예 1-1과 1-2의 경우 신율과 신장 잔율에서, 그리고 인장 잔율에서 실시예들 대비 열악함을 나타내고 있고, 수소화 제품만을 사용한 비교예 1-3의 경우 열악한 환경(신장잔율 및 내한성)에서의 물성 열화가 심각한 수준임을 알 수 있으며 이행손실과 가열 감량 역시 실시예들 대비 약 50% 이상 열악함을 확인할 수 있다.
또한, 트리멜리테이트계 제품만을 사용한 비교예 1-4는 가소화 효율에 있어서 상당한 불이익이 있으며 신율 자체가 낮아 가소화 효과를 부여하기 위한 물질로 적절하지 않음을 확인할 수 있으며, 테레프탈레이트계 물질과 트리멜리테이트계 물질을 혼합한 비교예 1-5의 경우 테레프탈레이트계 물질을 수소화 된 것으로 사용한 실시예들 대비하여 모든 물성의 열악함이 눈에 띄며, 특히 이행성 및 신장 잔율 저하가 현저함을 확인할 수 있다.
아울러, 사이클로헥산 1,4-디에스터로서 탄소수를 만족하지 못하는 비교예 1-8이나 트리멜리테이트계 물질로서 탄소수를 만족하지 못하는 비교예 1-9의 경우 이행손실, 가열감량, 인장 및 신장 잔율, 그리고 신율 등 대부분의 물성에서 급격한 악화를 보이고 있음이 확인되었다.
그리고, 사이클로헥산 1,4-디에스터의 혼합 가소제로서 트리멜리테이트계 물질이 아닌 아세틸 시트레이트나 에폭시화 오일을 사용하는 경우(비교예 1-6 및 비교예 1-7)에는 그 개선 효과가 트리멜리테이트계 물질을 사용하는 것 대비 현저하게 좋지 못하며, 구체적으로 에폭시화 오일은 내한성과 인장강도, 그리고 신율에 있어서 개선이 불가능하고, 아세틸 시트레이트는 인장 및 신장 잔율, 그리고 이행성과 가열감량의 개선에 큰 효과가 없음이 확인된다.
  경도(Shore A) 인장강도(kgf/cm2) 인장잔율(%) 신율(%) 신장잔율(%) 이행손실(%) 가열감량(%) 내한성(%)
실시예 2-1 91 173.5 98.6 297.6 94.8 0.2 0.3 -26.5
실시예 2-2 91.8 179.6 95.8 306.6 98.7 0.27 0.45 -29
실시예 2-3 92 185.4 96.7 310.4 96.7 0.58 0.98 -29.5
실시예 2-4 92.1 190.4 98.4 312 99.1 0.2 0.31 -27
실시예 2-5 91.5 184.2 92.4 311.7 94.2 0.98 1.02 -30.5
실시예 2-6 91.2 188.4 95.6 308.6 96.5 0.44 0.68 -29
실시예 2-7 91.6 184.6 96.8 302.7 93.4 0.35 0.41 -31
비교예 2-1 92.7 170.6 93.4 297.5 92.1 1.54 0.88 -28.5
비교예 2-2 93.2 169.7 91.5 278.6 88.4 1.74 1.24 -27.5
비교예 2-3 95 170.3 99.7 288.7 95.1 0.34 0.31 -23.5
상기 표 4를 참조하면, 사이클로헥산 1,4-디에스터계 물질과 트리멜리테이트계 물질을 혼합함에 있어서 추가적으로 에폭시화 오일을 더 첨가하여 가소제로 사용하는 경우에 있어서 우수한 효과를 확인할 수 있으며, 사이클로헥산 1,4-디에스터계 물질을 가소제로 사용할 때에는 에폭시화 오일과의 혼합은 제3의 물질로서 사용해야 함을 확인할 수 있다.
특히, 사이클로헥산 1,4-디에스터계 물질을 사용하지 않고 트리멜리테이트계 물질과 에폭시화 오일만을 사용하는 경우(비교예 2-3)에는 내한성 개선이 불가능하고 신율이 크게 기대에 미치지 못한다는 문제가 있음이 확인된다.
즉, 사이클로헥산 1,4-디에스터계 물질을 활용하는 경우에는 그 혼합 파트너로서 트리멜리테이트계 물질이 가장 적합한 물질임을 알 수 있고, 나아가 추가적으로 에폭시화 오일을 더 첨가하는 경우 물성 개선이 더욱 이루어짐을 확인할 수 있다. 여러 물질을 혼합한다고 하더라도, 하나의 가소제 조성에 다른 물질이 투입되는 경우, 원래 가소제 물질은 상대적으로 함량이 감소하기 때문에, 그에 따른 물성 변동이 '개선'이 당연한 사항이 아님을 고려한다면, 상기와 같은 가소제 조성물의 선택적 혼합에 의한 효과 개선은 상당히 유의한 것임을 알 수 있다.

Claims (11)

  1. 디에스터기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 8 내지 12인 사이클로헥산 1,4-디에스터를 1 이상 함유하는 사이클로헥산 1,4-디에스터계 물질; 및 하기 화학식 1로 표시되는 화합물을 함유하는 트리멜리테이트계 물질;을 포함하는 가소제 조성물:
    [화학식 1]
    Figure PCTKR2018013186-appb-I000005
    상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 탄소수 8 내지 12의 알킬기이다.
  2. 제1항에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질은 중량비가 90:10 내지 10:90인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질은 중량비가 80:20 내지 10:90인 것인 가소제 조성물.
  4. 제1항에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질의 디에스터기에 결합된 2개의 알킬기는 각각 독립적으로, 2-에틸헥실기, 이소노닐기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 화학식 1의 R1 내지 R3는 각각 독립적으로, 2-에틸헥실기, 이소노닐기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 사이클로헥산 1,4-디에스터계 물질은 3종의 혼합 조성물인 것이며,
    상기 혼합 조성물은 상기 디에스터기에 결합된 두 개의 알킬기의 탄소수가 각각 독립적으로 8 내지 12인 사이클로헥산 1,4-디에스터를 포함하고, 2종의 사이클로헥산 1,4-디에스터를 더 포함하는 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 가소제 조성물은 2차 가소제로서 에폭시화 오일을 더 포함하는 것인 가소제 조성물:
  8. 제7항에 있어서,
    상기 에폭시화 오일은 사이클로헥산 1,4-디에스터계 물질 및 트리멜리테이트계 물질의 혼합 중량과 에폭시화 오일의 중량의 비가 90:10 내지 50:50인 것인 가소제 조성물.
  9. 제7항에 있어서,
    상기 에폭시화 오일은 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올레에이트(epoxidized oleate), 에폭시화 톨유(epoxidized tall oil) 및 에폭시화 리놀레이트(epoxidized linoleate)로 이루어진 군에서 선택된 1 이상을 포함하는 것인 가소제 조성물.
  10. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  11. 제10항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2018/013186 2017-11-01 2018-11-01 가소제 조성물 및 이를 포함하는 수지 조성물 WO2019088736A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/642,648 US11767420B2 (en) 2017-11-01 2018-11-01 Plasticizer composition and resin composition including the same
EP18872532.9A EP3705516A4 (en) 2017-11-01 2018-11-01 PLASTICIZER COMPOSITION AND RESIN COMPOSITION WITH IT
CN201880057166.3A CN111094420B (zh) 2017-11-01 2018-11-01 增塑剂组合物和包含该增塑剂组合物的树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0144959 2017-11-01
KR20170144959 2017-11-01

Publications (2)

Publication Number Publication Date
WO2019088736A2 true WO2019088736A2 (ko) 2019-05-09
WO2019088736A3 WO2019088736A3 (ko) 2019-06-20

Family

ID=66333415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013186 WO2019088736A2 (ko) 2017-11-01 2018-11-01 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (6)

Country Link
US (1) US11767420B2 (ko)
EP (1) EP3705516A4 (ko)
KR (1) KR102237632B1 (ko)
CN (1) CN111094420B (ko)
TW (1) TWI826398B (ko)
WO (1) WO2019088736A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102496350B1 (ko) * 2019-06-05 2023-02-03 한화솔루션 주식회사 가소제 조성물 및 이를 포함하는 염화비닐계 수지 조성물
KR102506279B1 (ko) * 2020-07-01 2023-03-03 한화솔루션 주식회사 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
KR102658860B1 (ko) * 2020-10-20 2024-04-18 한화솔루션 주식회사 염화비닐 수지 조성물
WO2022086195A1 (ko) * 2020-10-20 2022-04-28 한화솔루션 주식회사 염화비닐 수지 조성물
KR20230069471A (ko) * 2021-11-12 2023-05-19 한화솔루션 주식회사 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
KR20230069472A (ko) * 2021-11-12 2023-05-19 한화솔루션 주식회사 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE415447T1 (de) * 2001-09-25 2008-12-15 Exxonmobil Chem Patents Inc Weich-polyvinylchlorid
KR101005704B1 (ko) * 2007-10-16 2011-01-05 주식회사 엘지화학 고분자 수지용 1,4-시클로헥산디카복실레이트 조성물 및그의 제조 방법
US20100298477A1 (en) * 2007-12-21 2010-11-25 Godwin Allen D Co-Plasticizer Systems
DE102008002168A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Zitronensäureestergemische und ihre Verwendung
JP2013147519A (ja) * 2012-01-17 2013-08-01 Hitachi Cable Ltd 軟質塩化ビニル樹脂組成物およびそれを用いた絶縁電線
JP5673569B2 (ja) * 2012-01-17 2015-02-18 日立金属株式会社 絶縁電線
US9309183B2 (en) * 2014-02-20 2016-04-12 Basf Corporation Plasticizer composition comprising di(2-ethylhexyl) terephthalate
TWI654229B (zh) * 2014-03-27 2019-03-21 日商新日本理化股份有限公司 Plasticizer for vinyl chloride resin containing non-phthalic acid ester, and vinyl chloride resin composition containing the plasticizer
CN106164164A (zh) * 2014-03-27 2016-11-23 新日本理化株式会社 含有非邻苯二甲酸系酯的氯乙烯类树脂用增塑剂和含有该增塑剂的氯乙烯类树脂组合物
TWI706979B (zh) 2014-08-19 2020-10-11 德商巴斯夫歐洲公司 包含聚合二羧酸酯的塑化劑組成物
JP2016074876A (ja) 2014-10-08 2016-05-12 新日本理化株式会社 1,4−シクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤
TW201619120A (zh) 2014-10-09 2016-06-01 巴斯夫歐洲公司 包含飽和二羧酸之環烷基酯及對苯二甲酯之塑化劑組成物
CN107531938A (zh) * 2015-10-27 2018-01-02 株式会社Lg化学 增塑剂组合物、树脂组合物及其制备方法
JP6544200B2 (ja) * 2015-10-29 2019-07-17 新日本理化株式会社 1,4−シクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
CN105542352A (zh) * 2016-01-28 2016-05-04 青岛新材料科技工业园发展有限公司 一种改性聚氯乙烯门封及其制备方法
ES2972585T3 (es) * 2016-04-22 2024-06-13 Lg Chem Ltd Composición plastificante y composición de resina que comprende la misma
KR102090295B1 (ko) * 2016-04-22 2020-03-17 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Also Published As

Publication number Publication date
KR102237632B1 (ko) 2021-04-08
CN111094420A (zh) 2020-05-01
TW201930433A (zh) 2019-08-01
EP3705516A2 (en) 2020-09-09
CN111094420B (zh) 2021-09-14
EP3705516A4 (en) 2020-12-23
WO2019088736A3 (ko) 2019-06-20
KR20190049611A (ko) 2019-05-09
TWI826398B (zh) 2023-12-21
US20210155788A1 (en) 2021-05-27
US11767420B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2020122591A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018128314A1 (ko) 사이클로헥산 1,4-디에스터계 화합물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019074300A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145642A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872532

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872532

Country of ref document: EP

Effective date: 20200602