WO2013024593A1 - 結晶性ポリアミド樹脂の製造方法 - Google Patents

結晶性ポリアミド樹脂の製造方法 Download PDF

Info

Publication number
WO2013024593A1
WO2013024593A1 PCT/JP2012/005136 JP2012005136W WO2013024593A1 WO 2013024593 A1 WO2013024593 A1 WO 2013024593A1 JP 2012005136 W JP2012005136 W JP 2012005136W WO 2013024593 A1 WO2013024593 A1 WO 2013024593A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
crystalline polyamide
temperature
dicarboxylic acid
mol
Prior art date
Application number
PCT/JP2012/005136
Other languages
English (en)
French (fr)
Inventor
加藤 公哉
淳史 増永
恵里 波多野
松岡 英夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012539129A priority Critical patent/JP5246385B1/ja
Priority to CN201280039557.5A priority patent/CN103732653A/zh
Priority to EP12823636.1A priority patent/EP2746315B1/en
Priority to US14/237,300 priority patent/US9732190B2/en
Priority to KR1020147002802A priority patent/KR20140051930A/ko
Publication of WO2013024593A1 publication Critical patent/WO2013024593A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • the present invention relates to a crystalline polyamide comprising at least one component selected from the group consisting of (A) pentamethylenediamine and (B) an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a dialkyl ester derivative thereof.
  • the present invention relates to an efficient industrial production method for resins.
  • Patent Document 1 discloses a polyamide resin obtained by polycondensation of an aliphatic diamine composed of a mixture of hexamethylenediamine and 2-methylpentamethylenediamine and an aromatic dicarboxylic acid selected from terephthalic acid and isophthalic acid. A manufacturing method is disclosed.
  • Patent Document 2 discloses a polyamide resin containing, as main components, an aliphatic diamine containing pentamethylenediamine and hexamethylenediamine, which are produced from plant raw materials, and a terephthalic acid derivative as main components.
  • Patent Document 3 also discloses a polyamide resin containing pentamethylenediamine and terephthalic acid and its derivatives as constituent components. However, as a method for producing a crystalline polyamide resin having a melting point of 270 ° C. or higher, a solid resin is disclosed. Phase polymerization was used.
  • the polyamide resin when polymerizing a polyamide resin using diaminononane or diaminodecane having high hydrophobicity as at least a part of the diamine component, the polyamide resin is used in the presence of water due to the high hydrophobicity of the diamine component. During the polymerization, there was a problem that the polymer was likely to precipitate.
  • Patent Document 4 discloses a polyamide resin containing pentamethylenediamine, terephthalic acid, and sebacic acid as constituent components.
  • Patent Document 5 discloses a polyamide resin obtained by polymerizing a diamine containing an alicyclic dicarboxylic acid and a diamine having a pentamethylenediamine skeleton.
  • the polyamide resin using pentamethylenediamine specifically shown in these patent documents has a low content of terephthalic acid relative to the total amount of dicarboxylic acid components, or a low content of alicyclic dicarboxylic acid relative to the total amount of dicarboxylic acid components, Therefore, the possibility that the polymer is precipitated during the polymerization was low.
  • Polyamide resin using pentamethylenediamine as a diamine component has characteristics of high crystallinity, excellent heat resistance, and low water absorption.
  • An object of the present invention is to provide an efficient industrial method for producing a crystalline polyamide resin having such excellent characteristics.
  • the present inventors have produced a monomer comprising pentamethylene diamine and at least one selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and dialkyl ester derivatives thereof as oligomers under high pressure conditions. It has been found that a crystalline polyamide resin can be efficiently produced by increasing the degree of melt polymerization at a temperature equal to or higher than the melting point via a production reaction.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms.
  • the first step of polycondensation while distilling water while heating and pressurizing under the conditions of, and after the first step, to atmospheric pressure A second step of pressing and a step of obtaining a crystalline polyamide resin by continuing heating polycondensation after the second step, wherein the obtained crystalline polyamide resin is added at a concentration of 0.01 g / mL.
  • the degree of melt polymerization is increased at a temperature equal to or higher than the melting point of the crystalline polyamide resin until the relative viscosity at 25 ° C. of the solution obtained when dissolved in 98% sulfuric acid reaches 1.8 to 3.5.
  • a process for producing a crystalline polyamide resin is produced.
  • the crystalline polyamide resin is obtained by lowering the temperature from a molten state to 30 ° C. at a temperature lowering rate of 20 ° C./min using a differential scanning calorimeter, and then increasing the temperature at a temperature rising rate of 20 ° C./min.
  • the crystalline polyamide resin is obtained by lowering the temperature from a molten state to 30 ° C. at a temperature lowering rate of 20 ° C./min using a differential scanning calorimeter, and then increasing the temperature at a temperature rising rate of 20 ° C./min.
  • B Aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and dialkyl esters thereof containing
  • the crystalline polyamide resin contains at least one selected from the group consisting of derivatives, and the crystalline polyamide resin is a relative solution at 25 ° C.
  • Viscosity is 1.8 or more and 3.5 or less, according to gel permeation chromatography. Measured degree of dispersion (weight average molecular weight / number average molecular weight) of 3.5 or less is crystalline polyamide resin.
  • At least one selected from the group consisting of (B) aromatic dicarboxylic acid, alicyclic dicarboxylic acid and their dialkyl ester derivatives contains at least aromatic dicarboxylic acid, and the aromatic dicarboxylic acid is terephthalic
  • a polyamide resin composition comprising the crystalline polyamide resin according to any one of (vi) to (x) and an inorganic filler.
  • (Xiii) A polyamide resin composition comprising the crystalline polyamide resin according to any one of (vi) to (x) and an impact resistance improver.
  • a crystalline polyamide resin having excellent heat resistance and low water absorption can be obtained efficiently.
  • diamine is defined as a diamine component
  • dicarboxylic acid and dicarboxylic acid dialkyl ester are defined as a dicarboxylic acid component.
  • the method for producing a crystalline polyamide resin according to an embodiment of the present invention is at least selected from the group consisting of (A) pentamethylenediamine and (B) an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and a dialkyl ester derivative thereof.
  • Heat polycondensation is performed using a mixture containing one species and water as a starting material.
  • the heat polycondensation is defined as a production process in which polycondensation is performed with a maximum temperature of the starting material, intermediate product or crystalline polyamide resin during production being 200 ° C. or higher.
  • the crystalline polyamide resin referred to in the embodiment of the present invention is a temperature of 20 ° C.
  • the polyamide resin contains diamine, dicarboxylic acid and its dialkyl ester derivative, aminocarboxylic acid, lactam, and the like as constituent components.
  • the crystalline polyamide resin in the embodiment of the present invention is at least one selected from the group consisting of at least (A) pentamethylenediamine and (B) aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and their dialkyl ester derivatives. Are the constituents.
  • the crystalline polyamide resin in the embodiment of the present invention may further copolymerize other monomers.
  • the ratio of the total weight with at least one selected from the group consisting of these dialkyl ester derivatives is preferably 50% by weight or more.
  • the ratio of the total weight to the total weight is preferably 95% by weight or less, and the molding processability of the obtained crystalline polyamide resin can be further improved.
  • the ratio of the total weight to the total weight is more preferably 90% by weight or less, and further preferably less than 80% by weight.
  • a method for producing pentamethylenediamine used as the component (A) in the embodiment of the present invention for example, a method of chemically synthesizing from lysine using a vinyl ketone such as 2-cyclohexen-1-one as a catalyst (JP-A-60- No. 23328), an enzymatic method for converting from lysine using lysine decarboxylase (Japanese Patent Laid-Open No. 2004-114, Japanese Patent Laid-Open No. 2005-6650), a fermentation method using saccharides as a raw material (Japanese Patent Laid-Open No. 2004-222569) Publication, International Publication No. 2007/113127) and the like have been proposed.
  • the reaction temperature is as high as about 150 ° C., whereas in the enzymatic method and the fermentation method, the reaction temperature is less than 100 ° C. It is considered that the use of the latter method can further reduce side reactions. It is preferable to use pentamethylenediamine obtained by the method. Furthermore, pentamethylenediamine obtained by the latter method is a plant-derived raw material and is recommended from the viewpoint of suppressing global warming.
  • aromatic dicarboxylic acid and its dialkyl ester derivative used as the component (B) in the embodiment of the present invention include terephthalic acid, dimethyl terephthalate, diethyl terephthalate, isophthalic acid, dimethyl isophthalate, phthalic acid, 2, 6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 5-sodium sulfo Examples include isophthalic acid. Two or more of these may be used.
  • Examples of the alicyclic dicarboxylic acid and its dialkyl ester derivative used as the component (B) in the embodiment of the present invention include 1,4-cyclohexanedicarboxylic acid, dimethyl 1,4-cyclohexanedicarboxylate, 1,3 -Cyclohexanedicarboxylic acid, dimethyl 1,3-cyclohexanedicarboxylate, 1,2-cyclohexanedicarboxylic acid, dimethyl 1,2-cyclohexanedicarboxylate, 1,3-cyclopentanedicarboxylic acid and the like. Two or more of these may be used. Of these, terephthalic acid and isophthalic acid are preferably used.
  • copolymer components other than the components (A) and (B) include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecane.
  • Aliphatic dicarboxylic acids such as diacid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, and hexadecanedioic acid and their dialkyl ester derivatives, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1, 6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13- Diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane 1,16-diaminohexadecane, 1,17-diaminoheptade
  • 1,6-diamino having no substituent in the side chain in addition to the component (A) as the diamine component.
  • diamines selected from hexane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane. More preferred are 1,6-diaminohexane, 1,10-diaminodecane, and 1,12-diaminododecane.
  • dicarboxylic acid other than (B) component when using together dicarboxylic acid other than (B) component as a dicarboxylic acid component, it is preferable to use aliphatic dicarboxylic acids, such as adipic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid.
  • these aliphatic dicarboxylic acids be 24 mol% or less with respect to the total amount of dicarboxylic acid components.
  • the ratio of the aliphatic dicarboxylic acid to the total amount of the dicarboxylic acid component is more preferably 15 mol% or less, and most preferably 10 mol% or less.
  • these monomers (A) and (B) may be used as they are, or they may be subjected to salt reaction in advance and used as raw materials.
  • a component selected from 11-aminoundecanoic acid, 12-aminododecanoic acid, and ⁇ -laurolactam is used as a copolymerization component of components (A) and (B). It is preferable. In order to maintain the heat resistance of the polyamide resin, these components are preferably 20% by weight or less based on the total amount of monomers constituting the polyamide resin. More preferably, it is 10% by weight or less.
  • polyamide resins composed of diamine and dicarboxylic acid polyamide resins using aromatic dicarboxylic acid or alicyclic dicarboxylic acid as dicarboxylic acid component are polyamides using aliphatic dicarboxylic acid as dicarboxylic acid component.
  • the melting point is higher than that of the resin, and when exposed to a temperature higher than the melting point for a long time, side reactions are prominently caused and tend to gel (as described in Encyclopedia Polymer Science and Technology, Vol.10, p546, Secondary amine generated by deammonification reaction between terminal amino groups becomes a crosslinking point). As the melting point of the polyamide resin is higher, gelation is more likely to occur.
  • an oligomer is synthesized by prepolymerization, and then a solid phase polymerization in which the degree of polymerization is increased below the melting point, or a high temperature above the melting point, but in a short time.
  • a two-stage process using an extruder capable of increasing the degree of polymerization has been used.
  • the proportion of the component (A) in the embodiment of the present invention is set to 10 mol% or more with respect to the total amount of the diamine component constituting the crystalline polyamide resin. More preferably, it is 20 mol% or more, More preferably, it is 30 mol% or more, Most preferably, it is 40 mol% or more.
  • the proportion of the component (A) with respect to the total amount of the diamine component is less than 10 mol%, the melting point of the obtained crystalline polyamide resin is remarkably increased and the molding process becomes difficult.
  • (A) pentamethylene diamine and diamine other than (A) component are used together as a diamine component, and melting
  • the ratio of (A) pentamethylenediamine to the total amount of diamine components constituting the crystalline polyamide resin is less than 80 mol%.
  • the ratio of the component (A) with respect to the total amount of the diamine component is 80 mol% or more, the melting point of the obtained crystalline polyamide resin is remarkably increased and the molding process tends to be difficult.
  • the ratio of the component (A) to the total amount of the diamine component is more preferably 70 mol% or less, and most preferably 60 mol% or less.
  • the proportion of the component (B) is based on the total amount of the dicarboxylic acid component constituting the crystalline polyamide resin. 76 mol% or more.
  • the ratio of the component (B) to the total amount of the dicarboxylic acid component is more preferably 80 mol% or more, further preferably 90 mol% or more, and most preferably 100 mol%.
  • the method for producing a crystalline polyamide resin according to an embodiment of the present invention includes polycondensation while distilling water while heating and pressurizing a mixture containing component (A), component (B) and, if necessary, other components and water. A first step to be performed.
  • the number of moles of the diamine component containing pentamethylenediamine used as a raw material is a
  • the number of moles of the dicarboxylic acid component containing aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof is b
  • the raw material composition ratio so that the ratio a / b is 1.001 to 1.1
  • the water content in the mixture is set to 30% by weight or less, and heating and pressurization are performed under a temperature of 200 ° C. or more.
  • the water content in the mixture is preferably 25% by weight or less.
  • the water content of the mixture before being heated to 200 ° C. or higher is not particularly limited.
  • a mixture having a water content exceeding 30% by weight is prepared, and the water content is reduced to 30% by weight or less at less than 200 ° C.
  • the water content in the mixture is preferably 5% by weight or more. More preferably, it is 10 weight% or more, Most preferably, it is 15 weight% or more.
  • the crystalline polyamide resin produced according to the embodiment of the present invention uses pentamethylenediamine having no substituent in the side chain and good symmetry, and thus has excellent crystallinity and a rigid aromatic or alicyclic ring. Since the molecular motion is limited by the influence of the group dicarboxylic acid, it may be deposited in a temperature range below the melting point during polymerization. For this reason, in addition to maintaining the molar balance of the raw material by suppressing the volatilization of the raw material as described above, from the viewpoint of suppressing the volatilization of water as a plasticizer for preventing polymer precipitation during the polymerization, the present invention. In this embodiment, water is distilled off under a pressurized condition of 1.8 MPa or more.
  • the polymer may precipitate during the polymerization.
  • the pressure during heating and pressing is preferably 2.0 MPa or more.
  • water is distilled under heating and pressurizing conditions of 3.5 MPa or less.
  • the pressure during heating and pressing is preferably 3.0 MPa or less, more preferably 2.8 MPa or less, and even more preferably 2.7 MPa or less.
  • Polymerization of the polyamide resin is an equilibrium reaction, and since the polymerization is accelerated at 200 ° C. or higher, in the embodiment of the present invention, water is distilled at 200 ° C. or higher.
  • the pressure release start temperature is preferably 295 ° C. or lower in order to suppress the amount of piperidine produced. More preferably, it is 290 degrees C or less. However, the pressure release start temperature may exceed 295 ° C.
  • the pressure release starting temperature is preferably set to the melting point of the obtained crystalline polyamide resin of ⁇ 40 ° C. or higher.
  • the pressure release starting temperature can be set to a melting point of the crystalline polyamide resin to be obtained, which is lower than ⁇ 40 ° C.
  • the temperature at the end of pressure release is equal to or higher than the melting point of the obtained crystalline polyamide resin.
  • a crystalline polyamide resin is obtained by a third step of melting and increasing the degree of polymerization until the relative viscosity reaches 1.8 or more and 3.5 or less at a temperature equal to or higher than the melting point of the obtained crystalline polyamide resin.
  • the relative viscosity refers to the relative viscosity at 25 ° C. of a 98% sulfuric acid solution adjusted to 0.01 g / mL. From the viewpoint of suppressing decomposition of the polymer by oxygen, it is preferable to increase the degree of polymerization in an inert gas atmosphere or under reduced pressure.
  • a polymerization accelerator can be added as required in any of the steps of charging the raw material, finishing the suppression, or increasing the degree of melt polymerization.
  • the polymerization accelerator inorganic phosphorus compounds such as phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, alkali metal salts thereof, and alkaline earth metal salts thereof are preferable. Sodium phosphate and sodium hypophosphite are preferably used.
  • the polymerization accelerator is preferably used in the range of 0.001 to 1 part by weight with respect to 100 parts by weight of the raw material constituting the crystalline polyamide resin. If the amount of the polymerization accelerator used is 0.001 part by weight or more, the addition effect is remarkably exhibited, and if it is 1 part by weight or less, the melt moldability of the obtained crystalline polyamide resin can be kept high. .
  • the crystalline polyamide resin produced according to the embodiment of the present invention has a relative viscosity of 1.8 to 3.5.
  • the relative viscosity is preferably 1.9 or more, more preferably 2.0 or more.
  • the relative viscosity exceeds 3.5, the melt viscosity is too high and the molding processability is lowered.
  • the relative viscosity is preferably 3.0 or less, and more preferably 2.8 or less.
  • an oligomer is synthesized under the specific pressure condition, and the synthesized oligomer is decompressed at a temperature equal to or higher than the melting point of the obtained crystalline polyamide resin. Or holding
  • maintenance in inert gas atmosphere etc. can be mentioned.
  • the crystalline polyamide resin having a relative viscosity of 1.8 to 3.5 obtained according to the embodiment of the present invention is further subjected to solid phase polymerization at a temperature of 100 ° C. or higher and lower than the melting point under reduced pressure or in an inert gas atmosphere. Is also possible.
  • the melting point of the crystalline polyamide is preferably set to 270 ° C. or higher, whereby the heat resistance of the crystalline polyamide can be further improved.
  • the melting point is when the temperature is lowered from a molten state to 30 ° C. at a rate of temperature decrease of 20 ° C./min in an inert gas atmosphere using a differential scanning calorimeter and then heated at a rate of temperature increase of 20 ° C./min. Refers to the temperature of the endothermic peak detected.
  • the melting point of the crystalline polyamide is more preferably 275 ° C. or higher. When two or more endothermic peaks are detected, the peak having the highest intensity is defined as the melting point.
  • the melting point of the crystalline polyamide resin can be less than 270 ° C.
  • the heat of fusion of the crystalline polyamide resin is 30 J / g or more, whereby the crystallinity of the crystalline polyamide can be further improved.
  • the heat of fusion refers to the area of the endothermic peak detected under the above conditions using a differential scanning calorimeter.
  • the heat of fusion is defined as the area enclosed by connecting the melting point ⁇ 45 ° C. and the melting point + 20 ° C. of the DSC curve.
  • the heat of fusion of the crystalline polyamide resin is more preferably 35 J / g or more, and still more preferably 40 J / g or more.
  • the heat of fusion of the crystalline polyamide resin can be less than 30 J / g.
  • the crystalline polyamide resin produced by the melt one-stage polymerization method of the embodiment of the present invention has a gel permeation as compared with the crystalline polyamide resin produced by solid-phase polymerization (two-stage polymerization method) after pre-polymerization.
  • the dispersity (weight average molecular weight / number average molecular weight) measured by the relation chromatography is reduced.
  • the degree of dispersion is 3.5 or less.
  • the degree of dispersion is more preferably 3.2 or less, still more preferably 3.0 or less, and most preferably 2.8 or less.
  • the polymerization proceeds uniformly, so the degree of polymerization progresses uniformly and the degree of dispersion is small. It is considered that a crystalline polyamide resin can be obtained.
  • the degree of dispersion is 3.5 or less, the proportion of the low molecular weight component is relatively small, so that gas generation during molding can be reduced, and the strength and toughness of the molded product can be improved.
  • the degree of dispersion of the crystalline polyamide resin is several by using gel permeation chromatography (GPC) by dissolving the crystalline polyamide resin in hexafluoroisopropanol to which sodium trifluoroacetate is added so as to be 0.005N. It can be calculated by measuring the average molecular weight and the weight average molecular weight.
  • GPC gel permeation chromatography
  • the method for producing a crystalline polyamide resin according to an embodiment of the present invention is an effective method for producing a polyamide resin having excellent crystallinity, and melts a polyamide resin having a heat of fusion of 30 J / g or more measured by the above method. It can be produced by one-stage polymerization.
  • the heat of fusion of the crystalline polyamide resin is more preferably 35 J / g or more, and still more preferably 40 J / g or more.
  • piperidine produced by the cyclization reaction of pentamethylenediamine acts as a polymerization terminator and delays the polymerization rate. Therefore, the amount of piperidine contained in the crystalline polyamide resin is 10.0 ⁇ 10 ⁇ 5. It is preferably at most mol / g. More preferably, it is 8.0 * 10 ⁇ -5 > mol / g or less, More preferably, it is 7.0 * 10 ⁇ -5 > mol / g or less. By setting the piperidine content to 10.0 ⁇ 10 ⁇ 5 mol / g or less, it is possible to secure sufficient reactive end groups for increasing the degree of polymerization.
  • the pressure release starting temperature is set to 290 ° C. or lower
  • the maximum ultimate pressure is set to 2.7 MPa or lower
  • the water content in the mixture is set to 30 wt% or lower. Heating and pressing can be mentioned.
  • the piperidine content in the crystalline polyamide resin may exceed 10.0 ⁇ 10 ⁇ 5 mol / g.
  • the piperidine content contained in the crystalline polyamide resin is determined by measuring the treatment liquid obtained by hydrolyzing the crystalline polyamide resin after creating a calibration curve from the piperidine standard solution using gas chromatography. Can be quantified.
  • the crystalline polyamide resin obtained by the embodiment of the present invention is excellent in melt residence stability.
  • B / A is 0.7 or more and 1.5 or less, where B is the sulfuric acid relative viscosity after the crystalline polyamide resin is melted and retained at melting point + 20 ° C. for 30 minutes, and B is the relative viscosity of sulfuric acid before retention. Is preferred. If B / A is 0.7 or more, decomposition and coloring of the crystalline polyamide resin during melt processing such as molding can be suppressed.
  • B / A is preferably 0.8 or more, and more preferably 0.9 or more. On the other hand, if B / A is 1.5 or less, the moldability is excellent.
  • B / A is preferably 1.3 or less, and more preferably 1.2 or less.
  • the crystalline polyamide resin according to the embodiment of the present invention can be used as a crystalline polyamide resin composition by adding an inorganic filler or other kind of polymer.
  • an inorganic filler the well-known thing generally used as a filler for resin can be used.
  • the inorganic fillers may be hollow, and it is also possible to use two or more of these inorganic fillers.
  • swellable layered silicates such as bentonite, montmorillonite, hectorite, and synthetic mica may be used as they are, or organically layered silicates obtained by cation exchange of interlayer ions with organic ammonium ions may be used.
  • glass fibers and carbon fibers are particularly preferable among the inorganic fillers.
  • the average particle diameter of the inorganic filler is preferably 0.05 to 3 ⁇ m. When the average particle size is 0.05 ⁇ m or more, the obtained crystalline polyamide resin composition is excellent in melt processability.
  • an average particle diameter is 3 micrometers or less, it is excellent in the molded article surface appearance. These average particle diameters are measured by a sedimentation method.
  • talc kaolin, wollastonite, and swellable layered silicate as the inorganic filler.
  • an inorganic filler with a pretreatment with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, and an epoxy compound can provide a higher mechanical strength.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, and an epoxy compound
  • a coupling agent is an organosilane compound.
  • the organic silane compound include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • alkoxysilane compounds such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, and ⁇ Ureido group-containing alkoxysilane compounds such as (2-ureidoethyl) aminopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopro Isocyanato group-containing alkoxysilane compounds such as pyrmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldime
  • an acid anhydride group-containing alkoxysilane compound ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, and 3- Trimethoxysilylpropyl succinic anhydride is preferably used.
  • These silane coupling agents are preferably used in accordance with a conventional method in which a filler is surface-treated in advance and then melt-kneaded with a crystalline polyamide resin. However, when the filler and the crystalline polyamide resin are melt-kneaded without performing the surface treatment of the filler in advance, a so-called integral blend method in which these coupling agents are added may be used.
  • the treatment amount of these coupling agents is preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the inorganic filler. If it is 0.5 weight part or more, the improvement effect of the mechanical characteristic by processing with a coupling agent will be show
  • the blending amount of the inorganic filler is preferably 0.1 to 200 parts by weight with respect to 100 parts by weight of the crystalline polyamide resin. If it is 0.1 part by weight or more, rigidity and strength are further improved. On the other hand, if it is 200 parts by weight or less, it can be easily and uniformly dispersed in the crystalline polyamide resin.
  • polymers can be blended with the crystalline polyamide resin produced according to the embodiment of the present invention.
  • examples of other kinds of polymers include other polyamides, polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN resin, and polystyrene.
  • a modified polyolefin such as a (co) polymer obtained by polymerizing an olefin compound and / or a conjugated diene compound, a polyamide elastomer , And impact resistance improvers such as polyester elastomers are preferably used.
  • Examples of the (co) polymer include ethylene copolymers, conjugated diene polymers, and conjugated diene-aromatic vinyl hydrocarbon copolymers.
  • an ethylene-type copolymer refers to the copolymer and multicomponent copolymer of ethylene and another monomer.
  • Other monomers copolymerized with ethylene may be selected from ⁇ -olefins having 3 or more carbon atoms, non-conjugated dienes, vinyl acetate, vinyl alcohol, ⁇ , ⁇ -unsaturated carboxylic acids and derivatives thereof. it can.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, 3-methylpentene-1, and octacene-1, and propylene and butene-1 are preferably used.
  • Non-conjugated dienes include 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-propenyl-2-norbornene, 5-isopropenyl-2-norbornene, 5- Norbornene such as crotyl-2-norbornene, 5- (2-methyl-2-butenyl) -2-norbornene, 5- (2-ethyl-2-butenyl) -2-norbornene, and 5-methyl-5-vinylnorbornene
  • Preferable examples include 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, dicyclopentadiene, and 1,4-hexadiene.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and butenedicarboxylic acid.
  • Examples include esters, aryl esters, glycidyl esters, acid anhydrides, and imides.
  • the conjugated diene polymer is a polymer containing at least one conjugated diene as a constituent component.
  • a homopolymer such as 1,3-butadiene, 1,3-butadiene, isoprene (2 -Methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, and copolymers of one or more monomers selected from 1,3-pentadiene.
  • Those in which some or all of the unsaturated bonds of these polymers are reduced by hydrogenation can also be preferably used.
  • the conjugated diene-aromatic vinyl hydrocarbon copolymer is a block copolymer or a random copolymer comprising a conjugated diene and an aromatic vinyl hydrocarbon.
  • the conjugated diene constituting the conjugated diene-aromatic vinyl hydrocarbon copolymer include the above-mentioned monomers, and 1,3-butadiene and isoprene are particularly preferable.
  • the aromatic vinyl hydrocarbon include styrene, ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, 1,3-dimethyl styrene, vinyl naphthalene, and the like.
  • styrene is preferably used.
  • conjugated diene-aromatic vinyl hydrocarbon copolymer part or all of the unsaturated bonds other than the aromatic double bond of the conjugated diene-aromatic vinyl hydrocarbon copolymer are reduced by hydrogenation. What is currently used can also be preferably used.
  • polystyrene foam impact modifier examples include ethylene / propylene copolymer, ethylene / butene-1 copolymer, ethylene / hexene-1 copolymer, ethylene / propylene / dicyclohexane.
  • Pentadiene copolymer ethylene / propylene / 5-ethylidene-2-norbornene copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene triblock copolymer, unhydrogenated or hydrogenated styrene / butadiene / styrene triblock Copolymers, ethylene / methacrylic acid copolymers and salts of some or all of the carboxylic acid moieties in these copolymers with sodium, lithium, potassium, zinc, calcium, ethylene / methyl acrylate copolymer Polymer, ethylene / ethyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene Ethylene / ethyl methacrylate copolymer, ethylene / ethyl acrylate-g-maleic anhydride copolymer (“g” represents graft,
  • ethylene / methacrylic acid copolymers and some or all of the carboxylic acid moieties in these copolymers as salts with sodium, lithium, potassium, zinc, calcium, ethylene / propylene-g-anhydrous Maleic acid copolymers and ethylene / butene-1-g-maleic anhydride copolymers are particularly preferred.
  • the blending amount of the impact resistance improving material with respect to the crystalline polyamide resin produced according to the embodiment of the present invention is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the crystalline polyamide resin. If the said compounding quantity is 5 weight part or more, the impact-resistant improvement effect is fully show
  • the method for preparing the crystalline polyamide resin composition is not particularly limited, and as a specific example, a raw material crystalline polyamide resin and an inorganic filler and / or other kind of polymer are used as a single or twin screw extruder. And a method of melt kneading by supplying to a known melt kneader such as a Banbury mixer, a kneader and a mixing roll.
  • a known melt kneader such as a Banbury mixer, a kneader and a mixing roll.
  • the L / D (screw length / screw diameter) of the kneader When a melt kneader is used as a method for uniformly dispersing these inorganic fillers and other kinds of polymers in the crystalline polyamide resin, the L / D (screw length / screw diameter) of the kneader, the presence or absence of a vent, the kneading temperature It is effective to control the residence time, the addition position of each component, and the addition amount of each component.
  • the L / D of the melt-kneader it is preferable to increase the L / D of the melt-kneader and increase the residence time in order to promote uniform dispersion of these inorganic fillers and other types of polymers, but when using glass fibers as the inorganic filler, Since the glass may break and the strength of the polyamide resin composition may be reduced, it is preferable to set conditions according to the raw materials used. Moreover, since the crystalline polyamide resin manufactured by embodiment of this invention has high melting
  • additives can be added to the crystalline polyamide resin produced according to the embodiment of the present invention at any time within a range not impairing the effects of the present invention.
  • additives include antioxidants, heat stabilizers (hindered phenols, hydroquinones, phosphites and their substitutes, copper compounds, etc.), weathering agents (resorcinols, salicylates, benzotriazoles).
  • Benzophenone and hindered amines mold release agents, lubricants (fatty alcohols, aliphatic amides, aliphatic bisamides, bisureas, polyethylene waxes, etc.), pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (Nigrosine, aniline black, etc.), plasticizer (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.), antistatic agent (alkyl sulfate type anionic antistatic agent, quaternary ammonium salt type cationic antistatic agent , Polyoxyethylene Nonionic antistatic agents such as rubitan monostearate, and betaine amphoteric antistatic agents), and flame retardants (hydramines such as melamine cyanurate, magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, polyphosphorus) Phosphorus flame retardants such as acid melamine and phosphinic acid metal
  • antioxidant examples include phenolic compounds, sulfur compounds, and phosphorus compounds.
  • phenolic antioxidants examples include 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butylphenol, 2,6-di-t-butyl-p-cresol, 2,6-di- t-butyl-4-ethylphenol, 4,4′-butylidenebis (6-t-butyl-3-methylphenol), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), 2, 2′-methylene-bis (4-ethyl-6-tert-butylphenol), octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate, tetrakis [methylene-3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl-4-hydroxy-5-di-tert-butylphenyl) butane Tris (3,5-di-
  • Sulfuric antioxidants include dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, ditridecyl thiodipropionate, pentaerythrityl (3-lauryl thiopropionate), and Examples include 2-mercaptobenzimidazole.
  • Phosphorus antioxidants include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol-di -Phosphite, bis (2,4-di-cumylphenyl) pentaerythritol-di-phosphite, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) ) -4,4′-bisphenylene phosphite, di-stearyl pentaerythritol di-phosphite, triphenyl phosphite, and 3,5-dibutyl-4-hydroxybenzyl phosphonate diethyl ester.
  • antioxidants may be used singly or in combination of two or more, since a synergistic effect may be obtained.
  • copper compounds used as heat-resistant stabilizers include cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cupric iodide, sulfuric acid Cupric, cupric nitrate, copper phosphate, cuprous acetate, cupric acetate, cupric salicylate, cupric stearate, cupric benzoate and inorganic copper halides and xylylenediamine, Examples include 2-mercaptobenzimidazole and copper compounds such as benzimidazole. Among these, monovalent copper halide compounds are preferable, and cuprous acetate, cuprous iodide and the like can be exemplified as particularly suitable copper compounds.
  • alkali halide in combination with a copper compound.
  • alkali halide compound examples include lithium chloride, lithium bromide, lithium iodide, potassium chloride, potassium bromide, potassium iodide, sodium bromide and sodium iodide.
  • Sodium chloride is particularly preferred.
  • resin molded products can be molded into a desired shape, and can be used as automobile parts, machine parts, and the like. Specific applications include automotive engine cooling water system parts, especially radiator tank parts such as radiator tank top and base, coolant reserve tanks, water pipes, water pump housings, water pump impellers, water pump parts such as valves.
  • the characteristics of the polyamide resin used in each example and comparative example were evaluated by the following methods.
  • the area is defined as a range surrounded by connecting Tm ⁇ 45 ° C. and Tm + 20 ° C. of the DSC curve.
  • Apparatus e-Alliance GPC system (e-Alliance 2695XE separation module) (manufactured by Waters) Detector: 2414 differential refractometer (manufactured by Waters) Column: Shodex HFIP-806M (2) + HFIP-LG Solvent: hexafluoroisopropanol (0.005N-sodium trifluoroacetate added) Flow rate: 0.5 mL / min Sample injection amount: 0.1 mL Temperature: 30 ° C Molecular weight calibration: polymethylmethacrylate.
  • lysine decarboxylase was prepared as follows.
  • E. E. coli strain JM109 was cultured as follows. First, 1 platinum ear of this strain was inoculated into 5 mL of LB medium, and precultured by shaking at 30 ° C. for 24 hours. Next, 50 mL of LB medium was placed in a 500 mL Erlenmeyer flask and preliminarily steam sterilized at 115 ° C. for 10 minutes.
  • the strain was precultured in this medium, and cultured for 24 hours under the condition of 30 cm in amplitude and 180 rpm while adjusting the pH to 6.0 with 1N aqueous hydrochloric acid.
  • the bacterial cells thus obtained were collected and a cell-free extract was prepared by ultrasonic disruption and centrifugation. These lysine decarboxylase activities were measured according to a standard method (Kenji Sokota, Haruo Misono, Biochemistry Laboratory, Vol. 11, P. 179-191 (1976)).
  • lysine When lysine is used as a substrate, conversion by lysine monooxygenase, lysine oxidase, and lysine mutase, which are considered to be the main main pathway in the lysine metabolic system of E. coli, can occur.
  • the cell-free extract of E. coli strain JM109 was heated. Furthermore, this cell-free extract was fractionated with 40% saturated and 55% saturated ammonium sulfate. Using the crude purified lysine decarboxylase solution thus obtained, pentamethylenediamine was produced from lysine.
  • pentamethylenediamine hydrochloride was converted to pentamethylenediamine, extracted with chloroform, and distilled under reduced pressure (10 mmHg, 60 ° C.) to obtain pentamethylenediamine.
  • pentamethylenediamine 2,3,4,5-tetrahydropyridine and piperidine were not detected as impurities.
  • Pentamethylenediamine (Reference Example 2) 2.00 kg, Hexamethylenediamine (Tokyo Chemical Industry) 2.16 kg, Terephthalic acid (Mitsui Chemicals) 6.04 kg, Sodium hypophosphite monohydrate (Kanto Chemical) 4.3 g and 3.3 kg of ion-exchanged water were charged in a 30 L pressure vessel equipped with a stirrer, sealed, and purged with nitrogen. After stirring and heating, the internal temperature reached 236 ° C. and the can internal pressure reached 2.2 MPa, and then the can internal pressure was maintained at 2.2 MPa for 124 minutes while distilling water vapor, and the internal temperature reached 290 ° C.
  • the internal pressure of the can was released to normal pressure over 90 minutes (the internal temperature reached 317 ° C.). Thereafter, polymerization was continued for 15 minutes under reduced pressure (40 kPa) to obtain a polyamide resin.
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation.
  • the maximum temperature reached during polymerization was 325 ° C.
  • Example 2 A polyamide resin was obtained in the same manner as in Example 1 except that the pressure inside the can was changed to 2.5 MPa.
  • the end pressure release temperature was 328 ° C., and the maximum temperature reached was 334 ° C.
  • Example 3 A polyamide resin was obtained in the same manner as in Example 2 except that the pressure release start temperature was changed to 300 ° C. The end pressure release temperature was 319 ° C., and the maximum temperature reached was 325 ° C.
  • Example 4 A polyamide resin was obtained in the same manner as in Example 1 except that the pressure inside the can was changed to 2.0 MPa.
  • the end pressure release temperature was 314 ° C., and the maximum temperature reached was 325 ° C.
  • Example 5 A polyamide resin was obtained in the same manner as in Example 1 except that the pressure inside the can was changed to 2.8 MPa.
  • the end pressure release temperature was 317 ° C., and the maximum temperature reached was 328 ° C.
  • Example 1 A polyamide resin was obtained in the same manner as in Example 1 except that the pressure inside the can was changed to 1.7 MPa.
  • the end pressure release temperature was 321 ° C., and the maximum temperature reached was 330 ° C.
  • Example 2 A polyamide resin was obtained in the same manner as in Example 1 except that the pressure inside the can was changed to 3.7 MPa.
  • the end pressure release temperature was 320 ° C., and the maximum temperature reached was 329 ° C.
  • Example 3 A polyamide resin was obtained in the same manner as in Example 2 except that the ion exchange water was changed to 10 kg.
  • the end pressure release temperature was 323 ° C., and the highest temperature reached 330 ° C.
  • Example 4 The same raw material as in Example 1 was charged in a 30 L pressure vessel equipped with a stirrer, sealed, and purged with nitrogen. After stirring and heating, the internal temperature reached 240 ° C. and the internal pressure of the can reached 2.5 MPa, and then the internal pressure of the can was maintained at 2.5 MPa for 120 minutes while distilling water vapor (the internal temperature reached 290 ° C.). ). The contents were discharged from the reaction vessel onto a cooling belt. The low-order condensate obtained by vacuum drying at 120 ° C. for 24 hours was subjected to solid phase polymerization at 240 ° C. under reduced pressure (40 Pa) to obtain a polyamide resin.
  • the internal pressure of the can was released to normal pressure over 90 minutes (the internal temperature reached 321 ° C.). Thereafter, polymerization was continued for 15 minutes under reduced pressure (40 kPa) to obtain a polyamide resin.
  • the maximum temperature reached during polymerization was 325 ° C.
  • Example 6 A 3 L pressure vessel equipped with a stirrer was charged with 114 g of pentamethylenediamine, 242 g of diaminodecane (manufactured by Ogura Gosei Kogyo), 407 g of terephthalic acid, 0.1655 g of sodium hypophosphite monohydrate, and 250 g of ion-exchanged water. And replaced with nitrogen. After stirring and heating, the internal temperature reached 243 ° C and the internal pressure of the can reached 2.5 MPa, then the internal pressure of the can reached at 275 ° C while maintaining the internal pressure of the can at 46 MPa while distilling water vapor.
  • the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 310 ° C.).
  • the polyamide resin was obtained by continuing superposition
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation.
  • the highest temperature reached during the polymerization was 314 ° C.
  • Example 7 114 g of pentamethylene diamine, 260 g of diaminododecane (manufactured by Ogura Gosei Co., Ltd.), 390 g of terephthalic acid, 0.1664 g of sodium hypophosphite monohydrate, and 250 g of ion-exchanged water are charged into a 3 L pressure vessel equipped with a stirrer and sealed. And replaced with nitrogen. After stirring and heating, the internal temperature reached 243 ° C and the internal pressure of the can reached 2.5 MPa. Then, while distilling water vapor, the internal pressure of the can was maintained at 2.5 MPa for 50 minutes, and the internal temperature reached 270 ° C.
  • the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 300 ° C.).
  • the polyamide resin was obtained by continuing superposition
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation.
  • the highest temperature reached during the polymerization was 305 ° C.
  • Example 6 Polymerization was carried out in the same manner as in Example 6 except that 123 g of hexamethylenediamine, 241 g of diaminodecane, 397 g of terephthalic acid, 0.1660 g of sodium hypophosphite monohydrate, and 250 g of ion-exchanged water were used as raw materials. Since the polymer gelled during the polymerization, it could not be discharged. In addition, the pressure release end temperature was 294 ° C., and the maximum temperature reached was 303 ° C.
  • Example 7 Polymerization was carried out in the same manner as in Example 7 except that 123 g of hexamethylenediamine, 260 g of diaminododecane, 381 g of terephthalic acid, 0.1669 g of sodium hypophosphite monohydrate, and 250 g of ion-exchanged water were used as raw materials. Since the polymer gelled in the middle, it could not be discharged. Note that the end pressure release temperature was 293 ° C., and the maximum temperature reached was 300 ° C.
  • Example 8 A polyamide resin was obtained in the same manner as in Example 6 except that the pressure inside the can was changed to 1.7 MPa.
  • the end pressure release temperature was 305 ° C., and the maximum temperature reached was 308 ° C.
  • Example 2 From the comparison between Example 2 and Example 3, it can be concluded that the piperidine content can be significantly reduced by setting the pressure release start temperature to 290 ° C. or lower.
  • Example 2 Comparative Example 3
  • the piperidine content increases as the water content in the raw material increases. . Therefore, it can be concluded that the water content in the raw material may be 30% by weight or less.
  • Example 1 From a comparison between Example 1 and Example 4, Example 1 in which the polymerization pressure when distilling water while heating and pressurizing is 2.2 MPa is more than Example 4 in which the pressure is 2.0 MPa. It can also be seen that the discharge rate is high. Therefore, it is considered that polymer precipitation during polymerization can be more effectively suppressed by increasing the pressure during polymerization.
  • the criteria for determining whether the polymer is deposited during the polymerization or gelation are as follows. Polymer precipitation during the polymerization: After the polymerization is completed, a part of the polymer that cannot be discharged and remains in the pressure vessel can be taken out by maintaining the melting point above the melting point for a long time (Comparative Example 1). Gelation: After the polymerization is completed, the polymer remaining in the pressure vessel that cannot be discharged cannot be taken out even if it is kept at a melting point or higher for a long time (Comparative Examples 6 and 7).
  • Example 8 112 g of pentamethylene diamine, 229 g of diaminodecane, 413 g of 1,4-cyclohexanedicarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 250 g of ion-exchanged water were charged in a 3 L pressure vessel equipped with a stirrer and sealed and purged with nitrogen. After stirring and heating, the internal temperature reached 245 ° C and the can internal pressure reached 2.5MPa, then the can internal pressure was maintained at 2.5MPa for 50 minutes while distilling water vapor, and the internal temperature reached 280 ° C. At that time, the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 305 ° C.).
  • Example 9 112 g of pentamethylenediamine, 246 g of diaminododecane, 396 g of 1,4-cyclohexanedicarboxylic acid, and 250 g of ion-exchanged water were charged in a 3 L pressure vessel equipped with a stirrer and sealed, and purged with nitrogen. After stirring and heating, the internal temperature reached 245 ° C and the can internal pressure reached 2.5 MPa, and then the can internal pressure was maintained at 2.5 MPa for 40 minutes while distilling water vapor, and the internal temperature reached 270 ° C. At that time, the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 298 ° C.).
  • Example 10 135 g of pentamethylene diamine, 146 g of hexamethylene diamine, 408 g of terephthalic acid, 75 g of 12-aminododecanoic acid, 0.3277 g of sodium hypophosphite monohydrate and 250 g of ion-exchanged water were charged into a 3 L pressure vessel equipped with a stirrer. Sealed and purged with nitrogen. After stirring and heating, the internal temperature reached 237 ° C and the internal pressure of the can reached 2.2 MPa. Then, while distilling water vapor, the internal pressure of the can was maintained at 2.2 MPa for 50 minutes, and the internal temperature reached 280 ° C.
  • the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 320 ° C.). Thereafter, polymerization was continued for 15 minutes under reduced pressure (40 kPa) to obtain a polyamide resin.
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation.
  • the maximum temperature reached during polymerization was 325 ° C.
  • Example 11 165 g of pentamethylenediamine, 146 g of hexamethylenediamine, 408 g of terephthalic acid, 44 g of adipic acid, 0.3254 g of sodium hypophosphite monohydrate and 250 g of ion-exchanged water were charged in a 3 L pressure vessel equipped with a stirrer and sealed. Replaced with nitrogen. After stirring and heating, the internal temperature reached 236 ° C. and the internal pressure of the can reached 2.2 MPa, and then the internal pressure of the can was maintained at 2.2 MPa for 50 minutes while distilling water vapor, and the internal temperature reached 280 ° C.
  • the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 313 ° C.). Thereafter, polymerization was continued for 15 minutes under reduced pressure (40 kPa) to obtain a polyamide resin.
  • reduced pressure 40 kPa
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation. The highest temperature reached during the polymerization was 322 ° C.
  • a structural unit composed of diamine and terephthalic acid is represented
  • 6T represents a structural unit composed of hexamethylenediamine and terephthalic acid
  • 56 represents a structural unit composed of pentamethylenediamine and adipic acid.
  • each raw material polymerizes randomly, it is estimated that the actually obtained polyamide resin also includes a structural unit composed of hexamethylenediamine and adipic acid.
  • Example 9 A polyamide resin was obtained in the same manner as in Example 8, except that the pressure inside the can was changed to 1.7 MPa and the pressure release start temperature was changed to 284 ° C. The end pressure release temperature was 303 ° C., and the maximum temperature reached was 305 ° C.
  • the internal pressure of the can was released to normal pressure over 60 minutes (the internal temperature reached 280 ° C.). Thereafter, polymerization was continued for 15 minutes under reduced pressure (40 kPa) to obtain a polyamide resin.
  • the water content at the time of heating and pressurization is equal to the water content at the time of preparation.
  • the maximum temperature reached during polymerization was 282 ° C.
  • Example 8 From a comparison between Example 8 and Comparative Example 9, it can be concluded that if the polymerization pressure is 2.5 MPa, a discharge rate of 95% or more can be secured.
  • Comparative Example 9 when the internal pressure of the can was maintained at 1.7 MPa, the stirring torque temporarily increased rapidly. Therefore, in Comparative Example 9, it was estimated that 84% could not be discharged because the polymer was precipitated while being wound around the stirring blade during the polymerization.
  • Examples 12 to 17, Comparative Examples 13 to 17 Using a twin screw extruder (TEX30 type, manufactured by Nippon Steel Works) with a cylinder temperature of 320 ° C. (295 ° C. only in Example 15) and a screw rotation speed of 150 rpm, the polyamide resin and the antioxidant from the main feeder, and the glass from the side feeder Fibers, carbon fibers, or impact resistance improving materials were supplied so as to have the compositions shown in Tables 7 to 9, respectively, and melt-kneaded. The polyamide resin and the antioxidant were used after pre-blending in advance. The extruded gut was pelletized and then vacuum-dried at 120 ° C. for 24 hours, followed by injection molding (mold temperature 150 ° C., but only 140 ° C. in Example 15), and mechanical properties were evaluated.
  • TEX30 type manufactured by Nippon Steel Works
  • the glass fiber and antioxidant used are as follows.
  • Glass fiber Nippon Electric Glass T289 Carbon fiber: Toray TV14-006
  • Impact resistance improver Mitsui Chemicals Toughmer MH7020
  • Antioxidant Irganox 1098 (N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) manufactured by BASF
  • the crystalline polyamide resin of the present invention is used in various applications such as electrical / electronic related parts, automobile / vehicle related parts, home appliance / office electrical product parts, computer related parts, facsimile / copier related parts, machine related parts, fibers, films, etc. It can be used suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ジアミン成分総量に対する割合が10モル%以上80モル%未満である(A)ペンタメチレンジアミンを含有するジアミン成分、ジカルボン酸成分総量に対する割合が76モル%以上100モル%以下である(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種を含有するジカルボン酸成分、並びに、30重量%以下の水を少なくとも含有する混合物を、200℃以上、1.8~3.5MPaで加熱加圧しながら水を留出させる第1の工程、前記第1の工程の後、大気圧まで放圧する第2の工程、並びに、前記第2の工程の後、加熱重縮合を継続し、得られる結晶性ポリアミド樹脂の相対粘度が1.8以上3.5以下に到達するまで溶融高重合度化する第3の工程を備える、結晶性ポリアミド樹脂の製造方法。

Description

結晶性ポリアミド樹脂の製造方法
 本発明は、少なくとも(A)ペンタメチレンジアミンと、(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種とを構成成分とする結晶性ポリアミド樹脂の効率的な工業的製造方法に関するものである。
 自動車分野では、環境に対する取り組みとして、排出ガス低減のために、金属代替による車体軽量化が求められている。このため、外装材料や内装材料などにポリアミド樹脂の採用が進んでいるが、特に、エンジンルーム内の温度上昇に伴い、該部分で使用されるポリアミド樹脂に対しては、さらに高耐熱化が要求されている。また、ポリアミド樹脂は、親水性のアミド基を含むため、吸水により寸法変化することが課題となっている。
 一方、電気・電子分野では、鉛フリー化の進展、表面実装(SMT)の普及に伴い、リフロー炉内の高温処理に耐える高耐熱性のポリアミド樹脂が要求されている。また、ポリアミド樹脂の吸水に起因する、リフロー工程におけるブリスター(気泡)の発生が課題となっている。
 さらに、地球温暖化に伴う気候変動などの悪影響が取り上げられる中で、二酸化炭素抑制が求められ、植物由来プラスチックが注目されている。
 特許文献1には、ヘキサメチレンジアミンと2-メチルペンタメチレンジアミンの混合物からなる脂肪族ジアミンと、テレフタル酸およびイソフタル酸等から選択される芳香族ジカルボン酸とを、重縮合して得られるポリアミド樹脂の製造方法が開示されている。特許文献2には、植物原料から製造されるペンタメチレンジアミンとヘキサメチレンジアミンを主要成分とする脂肪族ジアミンと、テレフタル酸誘導体とを主要成分とするポリアミド樹脂が開示されている。ペンタメチレンジアミンは、2-メチルペンタメチレンジアミンとは異なり、側鎖に置換基がなく、対称分子であり、得られるポリアミド樹脂は結晶性に優れるため、重合途中で析出しやすく、溶融重合のみで高重合度化することは困難であると考えられていた。また、特許文献3においても、ペンタメチレンジアミンと、テレフタル酸およびその誘導体とを構成成分とするポリアミド樹脂が開示されているが、融点が270℃以上の結晶性ポリアミド樹脂の製造方法としては、固相重合が用いられていた。さらには、疎水性の高いジアミノノナン、ジアミノデカン等をジアミン成分の少なくとも一部として用いてポリアミド樹脂を重合する際には、上記ジアミン成分の高い疎水性に起因して、水存在下で行うポリアミド樹脂の重合途中に、ポリマーが析出しやすい課題があった。
 一方、特許文献4には、ペンタメチレンジアミン、テレフタル酸、およびセバシン酸を構成成分とするポリアミド樹脂が開示されている。また、特許文献5には、脂環式ジカルボン酸とペンタメチレンジアミン骨格を有するジアミンを含むジアミンを重合させたポリアミド樹脂が開示されている。これら特許文献に具体的に示される、ペンタメチレンジアミンを使用したポリアミド樹脂は、ジカルボン酸成分総量に対するテレフタル酸の含有量、または、ジカルボン酸成分総量に対する脂環式ジカルボン酸の含有量が少なく、結晶性が低いため、重合途中にポリマーが析出する可能性は低かった。
特表平8-500150号公報 特開2003-292613号公報 国際公開第2010/001846号 特開2011-111576号公報 国際公開第2011/030742号
 ジアミン成分としてペンタメチレンジアミンを用いたポリアミド樹脂は、結晶性が高く、耐熱性に優れ、吸水性が低い特徴を有する。本発明は、かかる優れた特徴を有する結晶性ポリアミド樹脂の効率的な工業的製造方法を提供することを課題とする。
 本発明者等は、ペンタメチレンジアミンと、芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種とを含む単量体を、高圧条件下でのオリゴマー生成反応を経由し、融点以上の温度で溶融高重合度化することにより、効率的に結晶性ポリアミド樹脂を製造できることを見出した。
 すなわち本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(i)少なくとも、ジアミン成分と、ジカルボン酸成分と、水とを含む混合物を出発物質とする加熱重縮合による結晶性ポリアミド樹脂の製造方法であって、前記ジアミン成分は、ジアミン成分総量に対する割合が10モル%以上80モル%未満である(A)ペンタメチレンジアミンを含み、前記ジカルボン酸成分は、ジカルボン酸成分総量に対する割合が76モル%以上100モル%以下である(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種を含み、水含有量が30重量%以下である前記混合物を、温度200℃以上、圧力1.8~3.5MPaの条件で加熱加圧しながら、水を留出させつつ重縮合させる第1の工程と、前記第1の工程の後、大気圧まで放圧する第2の工程と、前記第2の工程の後、加熱重縮合を継続して前記結晶性ポリアミド樹脂を得る工程であって、得られる前記結晶性ポリアミド樹脂を0.01g/mLの濃度で98%硫酸に溶解したときに得られる溶液の25℃における相対粘度が1.8以上3.5以下に到達するまで、前記結晶性ポリアミド樹脂の融点以上の温度で溶融高重合度化を行う第3の工程と、を備える結晶性ポリアミド樹脂の製造方法。
(ii)前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融点に相当する吸熱ピークの温度が、270℃以上である(i)に記載の結晶性ポリアミド樹脂の製造方法。
(iii)前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融解熱量が、30J/g以上である(i)または(ii)に記載の結晶性ポリアミド樹脂の製造方法。
(iv)前記第2の工程において、放圧開始温度を295℃以下、放圧終了温度を融点以上とする(i)~(iii)いずれかに記載の結晶性ポリアミド樹脂の製造方法。
(v)前記第3の工程における前記溶融高重合度化を、減圧条件下または不活性ガス雰囲気下で行う(i)~(iv)いずれかに記載の結晶性ポリアミド樹脂の製造方法。
(vi)少なくとも、ジアミン成分とジカルボン酸成分とを加熱重縮合することにより得られる結晶性ポリアミド樹脂であって、前記ジアミン成分は、ジアミン成分総量に対する割合が10モル%以上80モル%未満である(A)ペンタメチレンジアミンを含み、前記ジカルボン酸成分は、ジカルボン酸成分総量に対する割合が76モル%以上100モル%以下である(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種を含み、前記結晶性ポリアミド樹脂は、該結晶性ポリアミド樹脂を0.01g/mLの濃度で98%硫酸に溶解したときに得られる溶液の25℃における相対粘度が1.8以上3.5以下であり、ゲルパーミエーションクロマトグラフィーにより測定した分散度(重量平均分子量/数平均分子量)が3.5以下である結晶性ポリアミド樹脂。
(vii)前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融点に相当する吸熱ピークの温度が、270℃以上である(vi)に記載の結晶性ポリアミド樹脂。
(viii)前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融解熱量が、30J/g以上である(vi)または(vii)に記載の結晶性ポリアミド樹脂。
(ix)ピペリジン含有量が10.0×10-5mol/g以下である(vi)~(viii)いすれかに記載の結晶性ポリアミド樹脂。
(x)前記(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種が、少なくとも芳香族ジカルボン酸を含み、該芳香族ジカルボン酸が、テレフタル酸および/またはイソフタル酸である(vi)~(ix)いずれかに記載の結晶性ポリアミド樹脂。
(xi)(vi)~(x)いずれかに記載の結晶性ポリアミド樹脂を成形してなる成形品。
(xii)(vi)~(x)いずれかに記載の結晶性ポリアミド樹脂に、さらに無機充填材を配合してなるポリアミド樹脂組成物。
(xiii)(vi)~(x)いずれかに記載の結晶性ポリアミド樹脂に、さらに耐衝撃性改良材を配合してなるポリアミド樹脂組成物。
(xiv)(xii)または(xiii)に記載の結晶性ポリアミド樹脂組成物を成形してなる成形品。
 本発明によれば、耐熱性に優れ、吸水性の低い結晶性ポリアミド樹脂を効率的に得ることができる。
 本発明の実施形態において、ジアミンをジアミン成分、ジカルボン酸およびジカルボン酸ジアルキルエステルをジカルボン酸成分と定義する。
本発明の実施形態の結晶性ポリアミド樹脂の製造方法は、少なくとも(A)ペンタメチレンジアミンと、(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種と、水とを含む混合物を出発物質として加熱重縮合する。本発明の実施形態において、加熱重縮合とは、製造時の出発物質、中間生成物または結晶性ポリアミド樹脂の最高到達温度を200℃以上として重縮合する製造プロセスと定義する。また、本発明の実施形態で言う結晶性ポリアミド樹脂とは、示差走査熱量計を用いて、不活性ガス雰囲気下、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合に現れる融解ピークの熱量(融解熱量)が、10J/g以上のポリアミド樹脂と定義する。
 ポリアミド樹脂は、ジアミン、ジカルボン酸やそのジアルキルエステル誘導体、アミノカルボン酸、ラクタム等を構成成分とする。本発明の実施形態における結晶性ポリアミド樹脂は、少なくとも、(A)ペンタメチレンジアミンと、(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種とを、構成成分とする。本発明の実施形態における結晶性ポリアミド樹脂は、さらに他の単量体を共重合してもよい。本発明の実施形態においては、結晶性ポリアミド樹脂を構成する全構成成分(単量体)の総重量のうち、(A)ペンタメチレンジアミンと、(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種との合計重量の割合を、50重量%以上とすることが好ましい。このような構成とすることで、得られる結晶性ポリアミド樹脂の耐熱性および溶融滞留安定性をより向上させることができる。上記総重量に対する上記合計重量の割合は、55重量%以上とすることがより好ましく、60重量%以上とすることがさらに好ましい。一方、上記総重量に対する上記合計重量の割合は、95重量%以下とすることが好ましく、得られる結晶性ポリアミド樹脂の成形加工性をより向上させることができる。上記総重量に対する上記合計重量の割合は、90重量%以下とすることがより好ましく、80重量%未満とすることがさらに好ましい。
 本発明の実施形態の(A)成分として使用されるペンタメチレンジアミンの製造方法として、例えば、2-シクロヘキセン-1-オンなどのビニルケトン類を触媒としてリジンから化学合成する方法(特開昭60-23328号公報)、リジン脱炭酸酵素を用いてリジンから転換する酵素法(特開2004-114号公報、特開2005-6650号公報)、糖類を原料とする発酵法(特開2004-222569号公報、国際公開第2007/113127号)などが提案されている。化学合成法では、反応温度が約150℃と高いのに対し、酵素法、発酵法では100℃未満であり、後者の方法を用いる方が、副反応をより低減できると考えられるため、後者の方法によって得られるペンタメチレンジアミンを用いることが好ましい。さらに、後者の方法で得られるペンタメチレンジアミンは植物由来原料となり、地球温暖化抑制の観点からも推奨される。
 本発明の実施形態の(B)成分として用いられる芳香族ジカルボン酸およびそのジアルキルエステル誘導体としては、例えば、テレフタル酸、テレフタル酸ジメチル、テレフタル酸ジエチル、イソフタル酸、イソフタル酸ジメチル、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、および5-ナトリウムスルホイソフタル酸等が挙げられる。これらを2種以上用いてもよい。また、本発明の実施形態の(B)成分として用いられる脂環族ジカルボン酸およびそのジアルキルエステル誘導体としては、例えば、1,4-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸ジメチル、1,3-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸ジメチル、1,2-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸ジメチル、および1,3-シクロペンタンジカルボン酸などが挙げられる。これらを2種以上用いてもよい。これらのなかでも、テレフタル酸、イソフタル酸が好ましく用いられる。
 (A)、(B)成分以外の共重合成分としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、およびヘキサデカン二酸等の脂肪族ジカルボン酸およびそのジアルキルエステル誘導体と、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、1,15-ジアミノペンタデカン、1,16-ジアミノヘキサデカン、1,17-ジアミノヘプタデカン、1,18-ジアミノオクタデカン、1,19-ジアミノノナデカン、1,20-ジアミノエイコサン、2-メチル-1,5-ジアミノペンタン、および2-メチル-1,8-オクタンジアミンなどの脂肪族ジアミンと、シクロヘキサンジアミンおよびビス-(4-アミノシクロヘキシル)メタンなどの脂環式ジアミンと、キシリレンジアミンなどの芳香族ジアミンと、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、およびパラアミノメチル安息香酸などのアミノ酸、並びに、ε-カプロラクタムおよびω-ラウロラクタムなどのラクタム等が挙げられる。これらを2種以上用いてもよい。
 このなかでも、特に、成形加工性、結晶性、低吸水性により優れるポリアミド樹脂を製造するためには、ジアミン成分として、(A)成分に加え、側鎖に置換基がない1,6-ジアミノへキサン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、および1,12-ジアミノドデカンから選択されるジアミンを用いることが好ましい。1,6-ジアミノへキサン、1,10-ジアミノデカン、および1,12-ジアミノドデカンがより好ましい。また、ジカルボン酸成分として(B)成分以外のジカルボン酸を併用する場合には、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、およびドデカン二酸などの脂肪族ジカルボン酸を用いることが好ましい。より耐熱性に優れる結晶性ポリアミド樹脂を得るためには、これら脂肪族ジカルボン酸を、ジカルボン酸成分総量に対して、24モル%以下にすることが好ましい。上記脂肪族ジカルボン酸のジカルボン酸成分総量に対する割合は、15モル%以下がさらに好ましく、10モル%以下が最も好ましい。
 本発明の実施形態においては、これら(A)、(B)成分の単量体をそのまま用いてもよいし、これらをあらかじめ塩反応させて原料として用いてもよい。
 さらに、低吸水性を重視する場合には、(A)、(B)成分の共重合成分として、11-アミノウンデカン酸、12-アミノドデカン酸、およびω-ラウロラクタムから選択される成分を用いることが好ましい。ポリアミド樹脂の耐熱性を保持するためには、これらの成分は、ポリアミド樹脂を構成する単量体総量に対して、20重量%以下とすることが好ましい。より好ましくは10重量%以下である。
 一般的に、ジアミンとジカルボン酸から構成されるポリアミド樹脂の中でも、ジカルボン酸成分として芳香族ジカルボン酸または脂環族ジカルボン酸を用いたポリアミド樹脂は、ジカルボン酸成分として脂肪族ジカルボン酸を用いたポリアミド樹脂と比較して融点が高く、融点以上の温度に長時間晒されると副反応が顕著に生じ、ゲル化する傾向がある(Encyclopedia of Polymer Science and Technology, Vol.10,p546に記載の通り、末端アミノ基同士の脱アンモニア反応により生じる二級アミンが架橋点となる)。ポリアミド樹脂の融点が高いほど、ゲル化が生じやすい。このため、融点が高いポリアミド樹脂を製造する方法としては、通常、プレ重合でオリゴマーを合成した後、融点未満で高重合度化する固相重合、または融点以上の高温下ではあるが短時間で高重合度化できる押出機を利用する2段プロセスが用いられていた。一方、本発明の実施形態は、芳香族ジカルボン酸、脂環族ジカルボン酸および/またはそのジアルキルエステル誘導体を構成成分とするポリアミド樹脂を製造する場合に、ジアミン成分としてペンタメチレンジアミンを含有させると、融点以上の温度に長時間晒された場合においても、ゲル化を抑制し、溶融重合1段プロセスで製造することができることを見出した点に主眼をおいたものである。ペンタメチレンジアミンを原料とするポリアミド樹脂が溶融1段プロセスで製造できる理由は、ペンタメチレンジアミンが、分子内環化反応を生じる性質を有するためと考えられる。すなわち、ペンタメチレンジアミンを含む原料が、ペンタメチレンジアミンの融点以上の温度で長時間晒された場合においても、末端ジアミン同士の脱アンモニア反応よりも、末端ジアミンの自己環化反応が優先し、二級アミンの生成が遅延されるためと考えられる。
 上記観点から、本発明の実施形態における(A)成分の割合は、結晶性ポリアミド樹脂を構成するジアミン成分総量に対して10モル%以上としている。より好ましくは20モル%以上、さらに好ましくは30モル%以上、最も好ましくは40モル%以上である。ジアミン成分総量に対する(A)成分の割合が10モル%未満であると、得られる結晶性ポリアミド樹脂の融点が著しく上昇し、成形加工が困難になる。
 また、結晶性ポリアミド樹脂では、一般に、ジカルボン酸成分として(B)成分の含有量が多い場合には、組成によっては融点が著しく上昇し、成形加工が困難になる場合がある。そのため、本発明の実施形態では、ジアミン成分として、(A)ペンタメチレンジアミンと、(A)成分以外のジアミンとを併用し、融点を制御している。本発明の実施形態では、結晶性ポリアミド樹脂を構成するジアミン成分総量に対する(A)ペンタメチレンジアミンの割合は、80モル%未満としている。ジアミン成分総量に対する(A)成分の割合が80モル%以上であると、得られる結晶性ポリアミド樹脂の融点が著しく上昇し、成形加工が困難になる傾向がある。ジアミン成分総量に対する(A)成分の割合は、より好ましくは70モル%以下、最も好ましくは60モル%以下である。
 一方で、結晶性ポリアミド樹脂の結晶性、ガラス転移温度を向上させる観点から、本発明の実施形態では、(B)成分の割合は、結晶性ポリアミド樹脂を構成するジカルボン酸成分総量に対して、76モル%以上としている。ジカルボン酸成分総量に対する(B)成分の割合が76モル%未満であると、得られるポリアミド樹脂の耐熱性や結晶性が低下する。ジカルボン酸成分総量に対する(B)成分の割合は、より好ましくは80モル%以上、さらに好ましくは90モル%以上、最も好ましくは100モル%である。
 本発明の実施形態の結晶性ポリアミド樹脂の製造方法は、(A)成分、(B)成分および必要により他の構成成分と水とを含む混合物を加熱加圧しながら水を留出させつつ重縮合させる第1の工程を有する。
 ポリアミド樹脂の製造において、高圧条件下であっても完全にジアミン成分の揮発を抑制することは困難であり、重合途中には、ペンタメチレンジアミンやその環化反応により生成するピペリジンが揮発し得る。また、環化反応により生じたピペリジンは、末端封鎖剤となる。そのため、重合の進行に伴い、重合系内では全カルボキシル基量に対する全アミノ基量が少なくなり、重合速度が遅延する傾向がある。そこで、より高分子量の結晶性ポリアミド樹脂を得るためには、原料を仕込む段階で、あらかじめジアミン成分を過剰に添加して、重合系内のアミノ基量を増加させておくことが好ましい。具体的には、原料として使用するペンタメチレンジアミンを含むジアミン成分のモル数をa、芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらの誘導体を含むジカルボン酸成分のモル数をbとするとき、その比a/bが1.001~1.1となるように原料組成比を調整することが好ましく、1.01~1.08となるように原料組成比を調整することがより好ましい。a/bをこの範囲に制御することで、原料のモルバランスが適度に保たれ、容易に高重合度化することができる。
 (A)ペンタメチレンジアミンは、前記混合物中の水の含有量が多いほど、また、温度が高いほど環化反応が促進され、重合停止剤として作用する単官能アミン(ピペリジン)生成量が増加する。そのため、本発明の実施形態においては、前記混合物中の水含有量を30重量%以下として温度200℃以上の条件で加熱加圧している。水含有量が30重量%を超える混合物を温度200℃以上の条件で加熱加圧すると、ピペリジン生成量が増加し、重合度の高い結晶性ポリアミド樹脂を得ることが困難となる。前記混合物中の水含有量は、好ましくは25重量%以下である。なお、200℃以上に加熱する前の混合物の水含有量は特に限定されず、例えば、水含有量が30重量%を超える混合物を作製し、200℃未満で水含有量を30重量%以下に濃縮した後に200℃以上に加熱加圧を行ってもよい。また、前記混合物中の水含有量を5重量%以上とすることが好ましい。より好ましくは10重量%以上、最も好ましくは15重量%以上である。水含有量を5重量%以上とすることで、重合開始後、より早い段階で原料を溶解することができるため、重合が均一に進行し易くなる。
 また、本発明の実施形態により製造される結晶性ポリアミド樹脂は、側鎖に置換基がなく、対称性のよいペンタメチレンジアミンを使用するため、結晶性に優れ、かつ剛直な芳香族、脂環族ジカルボン酸の影響により、分子運動が制限されるため、重合途中の融点以下の温度領域で析出する可能性がある。このため、上述したように原料の揮発を抑制することにより原料のモルバランスを保つことに加え、重合途中のポリマー析出を阻止するための可塑剤となる水の揮発を抑制する観点から、本発明の実施形態においては、1.8MPa以上の加圧条件下で水を留出させている。加熱加圧時の圧力が1.8MPa未満であると、重合途中でポリマーが析出する場合がある。加熱加圧時の圧力は、2.0MPa以上が好ましい。一方、加熱加圧時の圧力が高いほどピペリジン生成量が増加する傾向があるため、本発明の実施形態においては、3.5MPa以下の加熱加圧条件下で水を留出させている。加熱加圧時の圧力が3.5MPaを超えると、ピペリジン生成量が増加し、重合度の高い結晶性ポリアミド樹脂を得ることが困難となる。加熱加圧時の圧力は、3.0MPa以下が好ましく、2.8MPa以下がより好ましく、2.7MPa以下がさらに好ましい。
 ポリアミド樹脂の重合は平衡反応であり、その重合は200℃以上で促進されるため、本発明の実施形態では、200℃以上で水を留出させている。
 次に、大気圧まで放圧する第2の工程を有する。ピペリジンの生成量は、上記高圧下から放圧を開始する温度にも影響され、放圧開始温度が高いほどピペリジンは生成し易くなる。放圧開始温度が高いほど重合途中のポリマーの析出が抑制されるが、本発明の実施形態においては、ピペリジン生成量を抑制するため、放圧開始温度を295℃以下にすることが好ましい。より好ましくは290℃以下である。ただし、放圧開始温度は、295℃を超えることとしてもよい。一方、放圧開始温度は、得られる結晶性ポリアミド樹脂の融点-40℃以上とすることが好ましい。放圧開始温度を、得られる結晶性ポリアミド樹脂の融点-40℃以上とすることで、重合途中のポリマーの析出を抑制することができる。ただし、放圧開始温度は、得られる結晶性ポリアミド樹脂の融点-40℃未満とすることもできる。
 さらに、放圧終了時点の温度が、得られる結晶性ポリアミド樹脂の融点以上となっていることが好ましい。放圧終了時点の温度を融点以上とすることで、放圧終了時点におけるポリマー析出を抑制することができる。
 次に、得られる結晶性ポリアミド樹脂の融点以上の温度で、相対粘度が1.8以上3.5以下に到達するまで溶融高重合度化する第3の工程により、結晶性ポリアミド樹脂を得る。ここで、相対粘度とは、0.01g/mLとした98%硫酸溶液の25℃における相対粘度を指す。酸素によるポリマーの分解を抑制する観点から、不活性ガス雰囲気下または減圧下で高重合度化を行うことが好ましい。
 本発明の実施形態においては、原料仕込み時、制圧終了時点または溶融高重合度化のいずれかの工程において、必要に応じて、重合促進剤を添加することができる。重合促進剤としては、例えばリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸、これらのアルカリ金属塩、およびこれらのアルカリ土類金属塩などの無機系リン化合物が好ましく、特に亜リン酸ナトリウム、次亜リン酸ナトリウムが好適に用いられる。重合促進剤は、結晶性ポリアミド樹脂を構成する原料100重量部に対して、0.001~1重量部の範囲で使用することが好ましい。重合促進剤の使用量が0.001重量部以上であればその添加効果が顕著に奏され、また1重量部以下であれば得られる結晶性ポリアミド樹脂の溶融成形性を高く維持することができる。
 本発明の実施形態により製造される結晶性ポリアミド樹脂は、相対粘度が1.8~3.5である。相対粘度が1.8未満であると、得られる結晶性ポリアミド樹脂の靭性が低下する。相対粘度は、1.9以上が好ましく、2.0以上がより好ましい。一方、相対粘度が3.5を超えると、溶融粘度が高すぎて、成形加工性が低下する。相対粘度は、3.0以下が好ましく、2.8以下がより好ましい。相対粘度を1.8~3.5とする手段としては、例えば、前記特定の圧力条件下でオリゴマーを合成し、得られる結晶性ポリアミド樹脂の融点以上の温度で、上記合成したオリゴマーを、減圧または不活性ガス雰囲気下で保持することなどを挙げることができる。
 本発明の実施形態により得られる相対粘度が1.8~3.5の結晶性ポリアミド樹脂を、さらに、100℃以上融点未満の温度で、減圧下あるいは不活性ガス雰囲気下で固相重合することも可能である。
 さらに、結晶性ポリアミドの融点は、270℃以上とすることが好ましく、これにより、結晶性ポリアミドの耐熱性をより向上させることができる。融点とは、示差走査熱量計を用いて、不活性ガス雰囲気下、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合に検出される吸熱ピークの温度を指す。結晶性ポリアミドの融点は、より好ましくは275℃以上である。なお、吸熱ピークが2つ以上検出される場合には、強度が最も大きいピークを融点とする。ただし、結晶性ポリアミド樹脂の融点は、270℃未満とすることも可能である。
 また、結晶性ポリアミド樹脂の融解熱量を30J/g以上とすることが好ましく、これにより、結晶性ポリアミドの結晶性をより向上させることができる。ここで、融解熱量とは、示差走査熱量計を用いた上述の条件で検出される吸熱ピークの面積を指す。融解熱量は、DSC曲線の融点-45℃と融点+20℃を結ぶことにより囲まれる面積と定義する。結晶性ポリアミド樹脂の融解熱量は、より好ましくは35J/g以上、さらに好ましくは40J/g以上である。ただし、結晶性ポリアミド樹脂の融解熱量は、30J/g未満とすることも可能である。
 本発明の実施形態の溶融1段重合法により製造される結晶性ポリアミド樹脂は、プレ重合後、固相重合(2段重合法)して製造される結晶性ポリアミド樹脂と比較して、ゲルパーミエーションクロマトグラフィーにより測定した分散度(重量平均分子量/数平均分子量)が小さくなる。本発明の実施形態の結晶性ポリアミド樹脂は、上記分散度が3.5以下となる。上記分散度は、より好ましくは3.2以下、さらに好ましくは3.0以下、最も好ましくは2.8以下である。熱の伝達が不均一な固相重合法と比べて、熱の伝達が均一な溶融1段重合法では、重合が均一に進行するため、高重合度化反応が均一に進み、分散度の小さい結晶性ポリアミド樹脂を得ることができると考えられる。分散度が3.5以下であると、相対的に低分子量成分の割合が少なくなるので、成形加工時のガス発生を低減させ、成形品の強度や靭性を向上させることが可能になる。
 ここで、結晶性ポリアミド樹脂の分散度は、0.005Nとなるようにトリフルオロ酢酸ナトリウムを添加したヘキサフルオロイソプロパノールに結晶性ポリアミド樹脂を溶解し、ゲルパーミエーションクロマトグラフィー(GPC)を用いて数平均分子量および重量平均分子量を測定することにより、算出することができる。
 本発明の実施形態の結晶性ポリアミド樹脂の製造方法は、結晶性に優れるポリアミド樹脂を製造するために有効な方法であり、前記方法により測定した融解熱量が30J/g以上であるポリアミド樹脂を溶融1段重合で製造することができる。結晶性ポリアミド樹脂の融解熱量は、より好ましくは35J/g以上、さらに好ましくは40J/g以上である。結晶性の高いポリアミド樹脂を得るためには、直鎖状のジアミン成分を用いることが好ましい。
 また、ペンタメチレンジアミンの環化反応により生成するピペリジンは、重合停止剤として作用し、重合速度を遅延させるため、結晶性ポリアミド樹脂に含まれるピぺリジンの量は、10.0×10-5mol/g以下であることが好ましい。より好ましくは8.0×10-5mol/g以下、さらに好ましくは7.0×10-5mol/g以下である。ピペリジン含有量を10.0×10-5mol/g以下とすることで、高重合度化するために十分な反応性末端基を確保することができる。ピペリジン含有量をこの範囲とする方法としては、例えば、放圧開始温度を290℃以下として、最高到達圧力を2.7MPa以下とすること、あるいは、混合物中の水含有量を30重量%以下として加熱加圧すること、などを挙げることができる。ただし、結晶性ポリアミド樹脂におけるピぺリジン含有量は、10.0×10-5mol/gを超えることとしてもよい。
 ここで、結晶性ポリアミド樹脂に含まれるピペリジン含有量は、ガスクロマトグラフィーを用い、ピペリジン標準溶液から検量線を作成した後、結晶性ポリアミド樹脂を加水分解して得られた処理液を測定することにより定量することができる。
 さらに、本発明の実施形態により得られる結晶性ポリアミド樹脂は、溶融滞留安定性に優れる。結晶性ポリアミド樹脂を融点+20℃で30分溶融滞留させた後の硫酸相対粘度をB、滞留前の硫酸相対粘度をAとしたとき、B/Aが0.7以上1.5以下であることが好ましい。B/Aが0.7以上であれば、成形など溶融加工時の結晶性ポリアミド樹脂の分解や着色を抑制することができる。B/Aは、0.8以上が好ましく、0.9以上がより好ましい。一方、B/Aが1.5以下であれば、成形加工性に優れる。B/Aは、1.3以下が好ましく、1.2以下がより好ましい。
 本発明の実施形態の結晶性ポリアミド樹脂に、無機充填材や他種ポリマーなどを添加して結晶性ポリアミド樹脂組成物として用いることができる。無機充填材としては、一般に樹脂用フィラーとして用いられる公知のものを用いることができる。例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維、ワラストナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、ヘクトライト、合成雲母、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、およびシリカなどが挙げられる。これらは中空であってもよく、さらにはこれら無機充填材を2種以上用いることも可能である。また、ベントナイト、モンモリロナイト、ヘクトライト、および合成雲母などの膨潤性層状珪酸塩については、そのまま用いてもよいし、有機アンモニウムイオンで層間イオンをカチオン交換した有機化層状珪酸塩を用いてもよい。結晶性ポリアミド樹脂を補強するためには、前記無機充填材の中でも、特にガラス繊維および炭素繊維が好ましい。結晶性ポリアミド樹脂組成物の表面外観を優れたものとするためには、無機充填材の平均粒子径を0.05~3μmとすることが好ましい。平均粒子径が0.05μm以上であれば、得られる結晶性ポリアミド樹脂組成物は、溶融加工性に優れる。また、平均粒子径が3μm以下であれば、成形品表面外観に優れる。なお、これらの平均粒子径は、沈降法によって測定される。結晶性ポリアミド樹脂の補強と良表面外観を両立するためには、無機充填材として、タルク、カオリン、ワラストナイト、および膨潤性層状珪酸塩を用いることが好ましい。
 また、無機充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、およびエポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。カップリング剤として特に好ましいのは、有機シラン系化合物である。有機シラン系化合物の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、およびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物と、γ-メルカプトプロピルトリメトキシシランおよびγ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物と、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシシラン、およびγ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物と、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、およびγ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物と、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、およびγ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物と、γ-ヒドロキシプロピルトリメトキシシランおよびγ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物と、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、およびN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩等の炭素-炭素不飽和基含有アルコキシシラン化合物、並びに、3-トリメトキシシリルプロピルコハク酸無水物などの酸無水物基含有アルコキシシラン化合物が挙げられる。特に、γ-メタクリロキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、および3-トリメトキシシリルプロピルコハク酸無水物が好ましく用いられる。これらのシランカップリング剤は常法に従って、予め充填材を表面処理し、ついで結晶性ポリアミド樹脂と溶融混練する方法が好ましく用いられる。ただし、予め充填材の表面処理を行わずに、充填材と結晶性ポリアミド樹脂を溶融混練する際に、これらカップリング剤を添加するいわゆるインテグラルブレンド法を用いてもよい。
 これらカップリング剤の処理量は、無機充填材100重量部に対して、0.5~3重量部が好ましい。0.5重量部以上であれば、カップリング剤で処理することによる機械特性の改良効果が顕著に奏される。一方、3重量部以下であれば、無機充填材の凝集や分散不良を抑制することができる。
 上記無機充填材の配合量は、結晶性ポリアミド樹脂100重量部に対して、0.1~200重量部とすることが好ましい。0.1重量部以上であれば、剛性、強度がより向上する。一方、200重量部以下であれば、結晶性ポリアミド樹脂中に容易に均一に分散させることができる。
 また、本発明の実施形態により製造される結晶性ポリアミド樹脂に、他のポリマーを配合することができる。他種ポリマーとしては、他のポリアミド、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、およびポリスチレン等を挙げることができる。本発明の実施形態の結晶性ポリアミド樹脂の耐衝撃性を改良するためには、オレフィン系化合物および/または共役ジエン系化合物を重合して得られる(共)重合体などの変性ポリオレフィン、ポリアミド系エラストマー、およびポリエステル系エラストマーなどの耐衝撃性改良材が好ましく用いられる。
 上記(共)重合体としては、エチレン系共重合体、共役ジエン系重合体、および共役ジエン-芳香族ビニル炭化水素系共重合体などが挙げられる。ここで、エチレン系共重合体とは、エチレンと他の単量体との共重合体および多元共重合体を指す。エチレンと共重合する他の単量体は、炭素数3以上のα-オレフィン、非共役ジエン、酢酸ビニル、ビニルアルコール、α,β-不飽和カルボン酸およびその誘導体などの中から選択することができる。
 炭素数3以上のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、3-メチルペンテン-1、およびオクタセン-1などが挙げられ、プロピレンおよびブテン-1が好ましく使用できる。非共役系ジエンとしては、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-プロペニル-2-ノルボルネン、5-イソプロペニル-2-ノルボルネン、5-クロチル-2-ノルボルネン、5-(2-メチル-2-ブテニル)-2-ノルボルネン、5-(2-エチル-2-ブテニル)-2-ノルボルネン、および5-メチル-5-ビニルノルボルネンなどのノルボルネン化合物と、ジシクロペンタジエン、メチルテトラヒドロインデン、4,7,8,9-テトラヒドロインデン、1,5-シクロオクタジエン、1,4-ヘキサジエン、イソプレン、6-メチル-1,5-ヘプタジエン、および11-トリデカジエンなどが挙げられる。好ましくは、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、および1,4-ヘキサジエンなどである。α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、およびブテンジカルボン酸などが挙げられ、その誘導体としては、アルキルエステル、アリールエステル、グリシジルエステル、酸無水物、およびイミドを例として挙げることができる。
 また、共役ジエン系重合体とは、少なくとも1種以上の共役ジエンを構成成分とする重合体であり、例えば、1,3-ブタジエンの如き単独重合体や、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、および1,3-ペンタジエンから選ばれる1種以上の単量体の共重合体などが挙げられる。これらの重合体の不飽和結合の一部または全部が水添により還元されているものも好ましく使用できる。
 共役ジエン-芳香族ビニル炭化水素系共重合体とは、共役ジエンと芳香族ビニル炭化水素からなるブロック共重合体またはランダム共重合体である。共役ジエン-芳香族ビニル炭化水素系共重合体を構成する共役ジエンの例としては、前記の単量体が挙げられ、特に1,3-ブタジエンおよびイソプレンが好ましい。芳香族ビニル炭化水素の例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、1,3-ジメチルスチレン、およびビニルナフタレンなどが挙げられ、中でもスチレンが好ましく使用できる。また、共役ジエン-芳香族ビニル炭化水素系共重合体として、共役ジエン-芳香族ビニル炭化水素系共重合体の芳香環の二重結合以外の不飽和結合の一部または全部が水添により還元されているものも好ましく使用できる。
 これらの耐衝撃性改良材は2種以上併用することも可能である。
 上記(共)重合体である耐衝撃性改良材の具体例としては、エチレン/プロピレン共重合体、エチレン/ブテン-1共重合体、エチレン/ヘキセン-1共重合体、エチレン/プロピレン/ジシクロペンタジエン共重合体、エチレン/プロピレン/5-エチリデン-2-ノルボルネン共重合体、未水添または水添スチレン/イソプレン/スチレントリブロック共重合体、未水添または水添スチレン/ブタジエン/スチレントリブロック共重合体、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/アクリル酸メチル共重合体、エチレン/アクリル酸エチル共重合体、エチレン/メタクリル酸メチル共重合体、エチレン/メタクリル酸エチル共重合体、エチレン/アクリル酸エチル-g-無水マレイン酸共重合体、(「g」はグラフトを表す、以下同じ)、エチレン/メタクリル酸メチル-g-無水マレイン酸共重合体、エチレン/アクリル酸エチル-g-マレイミド共重合体、エチレン/アクリル酸エチル-g-N-フェニルマレイミド共重合体およびこれら共重合体の部分ケン化物、エチレン/グリシジルメタクリレート共重合体、エチレン/ビニルアセテート/グリシジルメタクリレート共重合体、エチレン/メタクリル酸メチル/グリシジルメタクリレート共重合体、エチレン/グリシジルアクリレート共重合体、エチレン/ビニルアセテート/グリシジルアクリレート共重合体、エチレン/グリシジルエーテル共重合体、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体、エチレン/プロピレン/1,4-ヘキサジエン-g-無水マレイン酸共重合体、エチレン/プロピレン/ジシクロペンタジエン-g-無水マレイン酸共重合体、エチレン/プロピレン/2,5-ノルボルナジエン-g-無水マレイン酸共重合体、エチレン/プロピレン-g-N-フェニルマレイミド共重合体、エチレン/ブテン-1-g-N-フェニルマレイミド共重合体、水添スチレン/ブタジエン/スチレン-g-無水マレイン酸共重合体、水添スチレン/イソプレン/スチレン-g-無水マレイン酸共重合体、エチレン/プロピレン-g-メタクリル酸グリシジル共重合体、エチレン/ブテン-1-g-メタクリル酸グリシジル共重合体、エチレン/プロピレン/1,4-ヘキサジエン-g-メタクリル酸グリシジル共重合体、エチレン/プロピレン/ジシクロペンタジエン-g-メタクリル酸グリシジル共重合体、水添スチレン/ブタジエン/スチレン-g-メタクリル酸グリシジル共重合体、ナイロン12/ポリテトラメチレングリコール共重合体、ナイロン12/ポリトリメチレングリコール共重合体、ポリブチレンテレフタレート/ポリテトラメチレングリコール共重合体、およびポリブチレンテレフタレート/ポリトリメチレングリコール共重合体などを挙げることができる。この中で、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体、および水添スチレン/ブタジエン/スチレン-g-無水マレイン酸共重合体がさらに好ましい。この中で、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン-g-無水マレイン酸共重合体、およびエチレン/ブテン-1-g-無水マレイン酸共重合体が特に好ましい。
 本発明の実施形態により製造される結晶性ポリアミド樹脂に対する耐衝撃性改良材の配合量は、結晶性ポリアミド樹脂100重量部に対して、5~100重量部であることが好ましい。上記配合量が5重量部以上であれば、耐衝撃性の改良効果が十分に奏される。一方、上記配合量が100重量部以下であれば、成形加工性に優れる。
 上記結晶性ポリアミド樹脂組成物の調製方法としては特に制限はないが、具体例として、原料の結晶性ポリアミド樹脂と、無機充填材および/または他種ポリマーとを、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーおよびミキシングロールなど公知の溶融混練機に供給して溶融混練する方法などを挙げることができる。
 結晶性ポリアミド樹脂に、これら無機充填材や他種ポリマーを均一に分散させる方法として、溶融混練機を用いた場合、混練機のL/D(スクリュー長/スクリュー径)、ベントの有無、混練温度、滞留時間、それぞれの成分の添加位置、およびそれぞれの成分の添加量をコントロールすることが有効である。一般に溶融混練機のL/Dを長く、滞留時間を長くすることは、これら無機充填材や他種ポリマーの均一分散を促進するため好ましいが、無機充填材としてガラス繊維を使用する場合には、ガラスが折損し、ポリアミド樹脂組成物の強度が低下する可能性があるので、使用する原料に応じて条件設定することが好ましい。また、本発明の実施形態により製造される結晶性ポリアミド樹脂は融点が高いため、溶融混練時の熱分解に起因する分子量低下を抑制する観点から、熱履歴は低減することが好ましい。
 さらに、本発明の実施形態により製造される結晶性ポリアミド樹脂には、本発明の効果を損なわない範囲で、各種添加剤を任意の時点で添加することができる。各種添加剤としては、例えば酸化防止剤、耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、および銅化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、およびヒンダードアミン系等)、離型剤、滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、およびカーボンブラック等)、染料(ニグロシンおよびアニリンブラック等)、可塑剤(p-オキシ安息香酸オクチルおよびN-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、およびベタイン系両性帯電防止剤等)、および難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、ポリリン酸メラミン、ホスフィン酸金属塩などのリン系難燃剤、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂、あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)を挙げることができる。
 酸化防止剤としては、フェノール系、硫黄系、リン系化合物などが挙げられる。
 フェノール系酸化防止剤としては、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジ-t-ブチル-4-エチルフェノール、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-ジ-t-ブチルフェニル)ブタン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、N,N’-ヘキサメチレン-ビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、およびイソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートなどが挙げられる。
 硫黄系酸化防止剤としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ペンタエリトリチル(3-ラウリルチオプロピオネート)、および2-メルカプトベンズイミダゾールなどが挙げられる。
 リン系酸化防止剤としては、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,4-ジ-クミルフェニル)ペンタエリスリトール-ジ-ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビスフェニレンホスファイト、ジ-ステアリルペンタエリスリトール-ジ-ホスファイト、トリフェニルホスファイト、および3,5-ジーブチル-4-ヒドロキシベンジルホスフォネートジエチルエステルなどが挙げられる。
 これら酸化防止剤は、単独で使用してもよいし、2種以上を組み合わせると相乗的な効果が得られることがあるので、併用してもよい。
 耐熱安定剤として使用される銅化合物の具体例としては、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、安息香酸第二銅および前記無機ハロゲン化銅とキシリレンジアミン、2-メルカプトベンズイミダゾール、およびベンズイミダゾールなどの銅化合物などが挙げられる。なかでも1価のハロゲン化銅化合物が好ましく、酢酸第一銅、ヨウ化第一銅などを特に好適な銅化合物として例示できる。銅化合物と併用する形でハロゲン化アルカリを添加することも可能である。このハロゲン化アルカリ化合物の例としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、臭化ナトリウムおよびヨウ化ナトリウムを挙げることができ、ヨウ化カリウム、ヨウ化ナトリウムが特に好ましい。
 本発明の実施形態により製造される結晶性ポリアミド樹脂、あるいは無機充填材や他種ポリマーを配合した結晶性ポリアミド樹脂組成物を、射出成形、押出成形、ブロー成形、真空成形、溶融紡糸、およびフィルム成形などの任意の成形方法により成形することができる。これらの樹脂成形品は、所望の形状に成形でき、自動車部品、機械部品などとして使用することができる。具体的な用途としては、自動車エンジン冷却水系部品、特にラジエタータンクのトップおよびベースなどのラジエタータンク部品、冷却液リザーブタンク、ウォーターパイプ、ウォーターポンプハウジング、ウォーターポンプインペラ、バルブなどのウォーターポンプ部品のように自動車エンジンルーム内で冷却水との接触下で使用される部品、スイッチ類、超小型スライドスイッチ、DIPスイッチ、スイッチのハウジング、ランプソケット、結束バンド、コネクタ、コネクタのハウジング、コネクタのシェル、ICソケット類、コイルボビン、ボビンカバー、リレー、リレーボックス、コンデンサーケース、モーターの内部部品、小型モーターケース、ギヤ・カム、ダンシングプーリー、スペーサー、インシュレーター、ファスナー、バックル、ワイヤークリップ、自転車ホイール、キャスター、ヘルメット、端子台、電動工具のハウジング、スターターの絶縁部分、スポイラー、キャニスター、ラジエタータンク、チャンバータンク、リザーバータンク、ヒューズボックス、エアークリーナーケース、エアコンファン、ターミナルのハウジング、ホイールカバー、吸排気パイプ、ベアリングリテーナー、シリンダーヘッドカバー、インテークマニホールド、ウォーターパイプインペラ、クラッチレリーズ、スピーカー振動板、耐熱容器、電子レンジ部品、炊飯器部品、プリンタリボンガイドなどに代表される電気・電子関連部品、自動車・車両関連部品、家電・事務電気製品部品、コンピューター関連部品、ファクシミリ・複写機関連部品、機械関連部品、その他各種用途に有用である。
 各実施例および比較例に用いたポリアミド樹脂の特性を以下の方法で評価した。
 [吐出率]
 ポリアミド樹脂原料が全て重合した場合の理論収量に対し、重合装置から吐出できた収量の割合を求めた。
 [相対粘度(ηr)]
 98%硫酸中、0.01g/mL濃度、25℃でオストワルド式粘度計を用いてポリアミド樹脂の相対粘度測定を行った。
 [融点(Tm)、融解熱量(ΔHm)]
 セイコーインスツル社製 ロボットDSC RDC220を用い、ポリアミド樹脂を約5mg精秤し、窒素雰囲気下、次の条件で測定した。30℃から20℃/分の昇温速度で昇温したときに観測される吸熱ピークの温度(T0)+35℃に昇温して溶融状態とした後、20℃/分の降温速度で30℃まで降温して3分間保持し、続いて20℃/分の昇温速度でT0+35℃まで昇温したときに観測される吸熱ピークの温度(融点:Tm)と面積(融解熱量:ΔHm)を求めた。なお、面積は、DSC曲線のTm-45℃とTm+20℃を結ぶことにより囲まれた範囲と定義する。
 [ピペリジン、3-メチルピペリジン含有量]
 ポリアミド樹脂約0.06gを精秤し、臭化水素酸水溶液中、150℃で3時間加水分解を行った。得られた処理液に、40%水酸化ナトリウム水溶液を加えてアルカリ性にした後、トルエンを加え、次いでクロロギ酸エチルを添加して撹拌した。上澄みのトルエン溶液を抽出し測定溶液とした。定量はピペリジン標準溶液、または3-メチルピペリジン標準溶液を用いた。測定条件を以下に示した。
装置:島津GC-14A
カラム:NB-1(GLサイエンス社製)60m×0.25mm
検出器:FID(水素炎イオン化検出器)
オーブン温度:150℃から330℃まで10℃/分で昇温
試料注入部温度:250℃
検出部温度:330℃
キャリアガス:He
試料注入量:3.0μL。
 [数平均分子量(Mn)、重量平均分子量(Mw)、分散度(Mw/Mn)]
 ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリアミド樹脂2.5mgを、ヘキサフルオロイソプロパノール(0.005N-トリフルオロ酢酸ナトリウム添加)4mLに溶解し、0.45μmのフィルターでろ過して得られた溶液を測定に用いた。測定条件を以下に示した。
装置:e-Alliance GPC system(e-Alliance2695XEセパレーションモジュール)(Waters製)
検出器:2414示差屈折率計(Waters製)
カラム:Shodex HFIP-806M(2本)+HFIP-LG
溶媒:ヘキサフルオロイソプロパノール(0.005N-トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/分
試料注入量:0.1mL
温度:30℃
分子量校正:ポリメチルメタクリレート。
 [曲げ弾性率]
射出成形(住友重機社製SG75H-MIV、シリンダー温度を融点+15℃、金型温度を150℃、射出圧力を下限圧+0.5MPaに設定)により調製した1/2インチ(1.27cm)×5インチ(12.7cm)×1/4インチ(0.635cm)の棒状試験片を用い、ASTM-D790に従って曲げ試験を行った。
 [引張強度]
射出成形(住友重機社製SG75H-MIV、シリンダー温度を融点+15℃、金型温度を150℃、射出圧力を下限圧+0.5MPaに設定)により調製したASTM1号ダンベルを用い、ASTM-D638に従って引張試験を行った。
 [参考例1(リジン脱炭酸酵素の調製)]
 各実施例および比較例のポリアミド樹脂の製造に用いるペンタメチレンジアミンを作製するために、リジン脱炭酸酵素を、以下のように調製した。E.coli JM109株の培養は以下のように行った。まず、この菌株をLB培地5mLに1白金耳植菌し、30℃で24時間振とうして前培養を行った。次に、LB培地50mLを500mLの三角フラスコに入れ、予め115℃、10分間蒸気滅菌した。この培地に前培養した上記菌株を植え継ぎ、振幅30cmで、180rpmの条件下で、1N塩酸水溶液でpHを6.0に調整しながら、24時間培養した。こうして得られた菌体を集め、超音波破砕および遠心分離により無細胞抽出液を調製した。これらのリジン脱炭酸酵素活性の測定を定法に従って行った(左右田健次,味園春雄,生化学実験講座,vol.11上,P.179-191(1976))。リジンを基質とした場合、上記大腸菌が備えるリジンの代謝系のうちの本来の主経路と考えられるリジンモノオキシゲナーゼ、リジンオキシダーゼおよびリジンムターゼによる転換が起こり得るので、この反応系を遮断する目的で75℃で5分間、E.coli JM109株の無細胞抽出液を加熱した。さらにこの無細胞抽出液を40%飽和および55%飽和硫酸アンモニウムにより分画した。こうして得られた粗精製リジン脱炭酸酵素溶液を用いて、リジンからペンタメチレンジアミンの生成を行った。
 [参考例2(ペンタメチレンジアミンの製造)]
 50mM リジン塩酸塩(和光純薬工業製)、0.1mM ピリドキサルリン酸(和光純薬工業製)、40mg/L-粗精製リジン脱炭酸酵素(参考例1で調製)となるように調製した水溶液1000mLを、0.1N塩酸水溶液でpHを5.5~6.5に維持しながら、45℃で48時間反応させ、ペンタメチレンジアミン塩酸塩を得た。この水溶液に水酸化ナトリウムを添加することによってペンタメチレンジアミン塩酸塩をペンタメチレンジアミンに変換し、クロロホルムで抽出して、減圧蒸留(10mmHg、60℃)することにより、ペンタメチレンジアミンを得た。このペンタメチレンジアミンには、不純物として、2,3,4,5-テトラヒドロピリジン、ピペリジンは検出されなかった。
[実施例1]
 ペンタメチレンジアミン(参考例2)2.00kg、ヘキサメチレンジアミン(東京化成工業製)2.16kg、テレフタル酸(三井化学製)6.04kg、次亜リン酸ナトリウム1水和物(関東化学製)4.3g、およびイオン交換水3.3kgを、撹拌機付きの30L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が236℃、缶内圧力が2.2MPaに到達した後、水蒸気を留出させながら缶内圧力を2.2MPaで124分間保持し、内温が290℃に到達した時点で、90分間かけて缶内圧力を常圧に放圧した(内温は317℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は325℃であった。
 [実施例2]
 缶内圧力を2.5MPaに変更する以外は、実施例1と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は328℃であり、最高到達温度は334℃であった。
 [実施例3]
 放圧開始温度を300℃に変更する以外は、実施例2と全く同様の方法で、ポリアミド樹脂を得た。放圧終了温度は319℃であり、最高到達温度は325℃であった。
 [実施例4]
 缶内圧力を2.0MPaに変更する以外は、実施例1と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は314℃であり、最高到達温度は325℃であった。
 [実施例5]
 缶内圧力を2.8MPaに変更する以外は、実施例1と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は317℃であり、最高到達温度は328℃であった。
 [比較例1]
 缶内圧力を1.7MPaに変更する以外は、実施例1と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は321℃であり、最高到達温度は330で℃であった。
 [比較例2]
 缶内圧力を3.7MPaに変更する以外は、実施例1と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は320℃であり、最高到達温度は329℃であった。
 [比較例3]
 イオン交換水を10kgに変更する以外は、実施例2と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は323℃であり、最高到達温度は330℃であった。
 [比較例4]
 実施例1と同様の原料を、撹拌機付きの30L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温240℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで120分間保持した(内温は290℃に到達した)。反応容器から内容物をクーリングベルト上に吐出した。これを120℃で24時間真空乾燥して得られた低次縮合物を240℃、減圧下(40Pa)で固相重合し、ポリアミド樹脂を得た。
 [比較例5]
 原料として、2-メチルペンタメチレンジアミン(東京化成工業製)2.16kg、ヘキサメチレンジアミン2.16kg、テレフタル酸5.88kg、次亜リン酸ナトリウム1水和物4.3g、およびイオン交換水3.3kgを、撹拌機付きの30L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が226℃、缶内圧力が1.7MPaに到達した後、水蒸気を留出させながら缶内圧力を1.7MPaで140分間保持し、内温が290℃に到達した時点で、90分間かけて缶内圧力を常圧に放圧した(内温は321℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。また、重合中の最高到達温度は325℃であった。
 [実施例6]
 ペンタメチレンジアミン114g、ジアミノデカン(小倉合成工業製)242g、テレフタル酸407g、次亜リン酸ナトリウム1水和物0.1655g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が243℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで46分間保持し、内温が275℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は310℃に到達した)。その後、窒素雰囲気下(0.5L/min)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は314℃であった。
 [実施例7]
 ペンタメチレンジアミン114g、ジアミノドデカン(小倉合成工業製)260g、テレフタル酸390g、次亜リン酸ナトリウム1水和物0.1664g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が243℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで50分間保持し、内温が270℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は300℃に到達した)。その後、窒素雰囲気下(0.5L/min)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は305℃であった。
 [比較例6]
 原料として、ヘキサメチレンジアミン123g、ジアミノデカン241g、テレフタル酸397g、次亜リン酸ナトリウム1水和物0.1660g、イオン交換水250gを用いる以外は、実施例6と同様の方法で重合したが、重合途中にポリマーがゲル化したため、吐出することができなかった。なお、放圧終了温度は294℃であり、最高到達温度は303℃であった。
 [比較例7]
 原料として、ヘキサメチレンジアミン123g、ジアミノドデカン260g、テレフタル酸381g、次亜リン酸ナトリウム1水和物0.1669g、イオン交換水250gを用いる以外は実施例7と同様の方法で重合したが、重合途中にポリマーがゲル化したため、吐出することができなかった。なお、放圧終了温度は293℃であり、最高到達温度は300℃であった。
 [比較例8]
 缶内圧力を1.7MPaに変更する以外は、実施例6と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は305℃であり、最高到達温度は308℃であった。
 実施例1~7および比較例1~8のポリアミド樹脂の製造の条件、および、各ポリアミド樹脂についての測定結果を、以下の表1~4にまとめて示す。なお、ジアミン成分とジカルボン酸成分との重縮合は逐次重合であり、各実施例のポリアミド樹脂は、重合度に相当する相対粘度が上昇していることから、各実施例のポリアミド樹脂の組成は、仕込量に基づく組成とほぼ一致すると考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~6と比較例1、8の比較から、ポリアミド樹脂を理論収量の85%以上確保するためには、重合時圧力を1.8MPa以上にすればよいと結論できる。なお、比較例1、8では、缶内圧力を1.7MPaで保持しているときに、撹拌トルクが一時的に急上昇した。したがって、比較例1、8では、重合途中にポリマーが撹拌翼に巻き付いた状態で析出したため、約90%が吐出できなかったと推定される。
 実施例1、2、4、5と比較例2の比較から、重合時圧力が高くなると、ポリアミド樹脂中のピペリジン含有量が増加し、ポリアミド樹脂の高重合度化が困難になることがわかる。したがって、重合時圧力は3.5MPa以下にすればよいと結論できる。
 実施例2と実施例3の比較から、放圧開始温度を290℃以下にすることで、ピペリジン含有量を大幅に低減することができると結論できる。
 実施例2と比較例3の比較から、200℃未満で原料を濃縮しないで、200℃以上に加熱する場合には、原料中の水含有量が多いほど、ピペリジン含有量が増加することがわかる。したがって、原料中の水含有量を、30重量%以下とすればよいと結論できる。
 実施例1~5と比較例4の比較から、溶融重合により得られるポリアミド樹脂の分子量分布を示す分散度(重量平均分子量/数平均分子量)は、固相重合のそれに比べて小さく、より均一なポリマーであることがわかる。
 実施例1と実施例4の比較から、加熱加圧しながら水を留出させる際の重合時圧力が2.2MPaである実施例1の方が、上記圧力が2.0MPaである実施例4よりも、吐出率が高いことがわかる。したがって、重合時圧力を高めることで、重合途中のポリマー析出をより効果的に抑制できると考えられる。
 比較例1と比較例5の比較から、ペンタメチレンジアミンの代わりに2-メチルペンタメチレンジアミンを用いた場合には、重合時圧力を1.7MPaとした場合でも、理論収量の95%を吐出することが可能であることがわかる。
 実施例6、7と比較例6、7の比較から、ペンタメチレンジアミンの代わりに、ヘキサメチレンジアミンを使用した場合には、重合途中にゲル化することがわかる。
 重合途中のポリマー析出、またはゲル化のいずれであるかの判断基準は、次のようである。
重合途中のポリマー析出:重合終了後、吐出できずに圧力容器中の残存したポリマーを、長時間融点以上に保持することで、一部取り出すことができる(比較例1)。
ゲル化:重合終了後、吐出できずに圧力容器中の残存したポリマーを、長時間融点以上に保持しても取り出すことができない(比較例6、7)。
 [実施例8]
 ペンタメチレンジアミン112g、ジアミノデカン229g、1,4-シクロヘキサンジカルボン酸(東京化成工業製)413g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が245℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで50分間保持し、内温が280℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は305℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は310℃であった。
 [実施例9]
 ペンタメチレンジアミン112g、ジアミノドデカン246g、1,4-シクロヘキサンジカルボン酸396g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が245℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで40分間保持し、内温が270℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は298℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は303℃であった。
 [実施例10]
 ペンタメチレンジアミン135g、ヘキサメチレンジアミン146g、テレフタル酸408g、12-アミノドデカン酸75g、次亜リン酸ナトリウム1水和物0.3277g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が237℃、缶内圧力が2.2MPaに到達した後、水蒸気を留出させながら缶内圧力を2.2MPaで50分間保持し、内温が280℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は320℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は325℃であった。
 [実施例11]
 ペンタメチレンジアミン165g、ヘキサメチレンジアミン146g、テレフタル酸408g、アジピン酸44g、次亜リン酸ナトリウム1水和物0.3254g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が236℃、缶内圧力が2.2MPaに到達した後、水蒸気を留出させながら缶内圧力を2.2MPaで50分間保持し、内温が280℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は313℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は322℃であった。本実施例のポリアミド樹脂の組成(重量比)は、原料仕込み量から、後述する表5に示すように、5T/6T/56=45/45/10と記載できる(ただし、5Tは、ペンタメチレンジアミンとテレフタル酸からなる構造単位を表し、6Tは、ヘキサメチレンジアミンとテレフタル酸からなる構造単位を表し、56は、ペンタメチレンジアミンとアジピン酸からなる構造単位を表す)。しかしながら、各原料はランダムに重合するので、実際に得られるポリアミド樹脂には、ヘキサメチレンジアミンとアジピン酸からなる構造単位も含まれると推定される。
 [比較例9]
 缶内圧力を1.7MPaに変更し、放圧開始温度を284℃に変更したこと以外は、実施例8と全く同様の方法でポリアミド樹脂を得た。放圧終了温度は303℃であり、最高到達温度は305℃であった。
 [比較例10]
 ペンタメチレンジアミン272g、テレフタル酸232g、セバシン酸(小倉合成工業製)249g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が227℃、缶内圧力が1.7MPaに到達した後、水蒸気を留出させながら缶内圧力を1.7MPaで59分間保持し、内温が248℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は282℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は285℃であった。
 [比較例11]
 ペンタメチレンジアミン283g、テレフタル酸325g、セバシン酸149g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が245℃、缶内圧力が2.5MPaに到達した後、水蒸気を留出させながら缶内圧力を2.5MPaで60分間保持し、内温が290℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は325℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は330℃であった。
 [比較例12]
 ペンタメチレンジアミン297g、1,4-シクロヘキサンジカルボン酸235g、アジピン酸(東京化成工業製)221g、イオン交換水250gを、撹拌機付きの3L圧力容器に仕込んで密閉し、窒素置換した。撹拌しながら加熱し、内温が228℃、缶内圧力が1.7MPaに到達した後、水蒸気を留出させながら缶内圧力を1.7MPaで62分間保持し、内温が245℃に到達した時点で、60分間かけて缶内圧力を常圧に放圧した(内温は280℃に到達した)。その後、減圧下(40kPa)で15分間重合を継続することにより、ポリアミド樹脂を得た。なお、原料仕込み後、放圧開始までの間は密閉系で反応させているため、加熱加圧時の水含有量は、仕込み時の水含有量に等しい。また、重合中の最高到達温度は282℃であった。
 実施例8~11および比較例9~12のポリアミド樹脂の製造の条件、および、各ポリアミド樹脂についての測定結果を、以下の表5、6にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例8と比較例9の比較により、重合時圧力を2.5MPaとすれば、吐出率を95%以上確保可能と結論できる。比較例9では、缶内圧力を1.7MPaで保持しているときに、撹拌トルクが一時的に急上昇した。したがって、比較例9では、重合途中にポリマーが撹拌翼に巻き付いた状態で析出したため、84%が吐出できなかったと推定される。
 実施例10、11から、共重合成分として、アミノカルボン酸、アジピン酸を少量共重合した場合においても、結晶性に優れる(ΔHmが大きい)ポリアミド樹脂を得ることができることがわかる。
 比較例10~12から、ジカルボン酸成分総量に対する(B)成分の割合が小さい場合には、耐熱性、結晶性に優れるポリアミド樹脂を得ることができないことがわかる。
 [実施例12~17、比較例13~17]
 シリンダー温度320℃(実施例15のみ295℃)、スクリュー回転数150rpmに設定した二軸押出機(日本製鋼所製TEX30型)を用い、メインフィーダーからポリアミド樹脂および酸化防止剤を、サイドフィーダーからガラス繊維、炭素繊維、または耐衝撃性改良材を、それぞれ表7~9に示す組成となるように供給し、溶融混練した。ポリアミド樹脂と酸化防止剤は、あらかじめプリブレンドしてから用いた。押出されたガットはペレタイズした後、120℃で24時間真空乾燥して射出成形(金型温度150℃、ただし実施例15のみ140℃)し、機械特性評価を行った。
 使用したガラス繊維、酸化防止剤は次の通りである。
ガラス繊維:日本電気硝子製T289
炭素繊維:東レ製TV14-006
耐衝撃性改良材:三井化学製タフマーMH7020
酸化防止剤:BASF製Irganox1098(N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)
 実施例12~17および比較例13~17のポリアミド樹脂組成物の製造の条件、および、各ポリアミド樹脂組成物について曲げ弾性率と引張強度を測定した結果を、以下の表7~9にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例12~14および16~17と比較例13~17の比較から、溶融重合により得られたポリアミド樹脂を用いたポリアミド樹脂組成物は、固相重合により得られたポリアミド樹脂を用いた場合と比較して、曲げ弾性率および引張強度が優れると結論できる。
 本発明の結晶性ポリアミド樹脂は、電気・電子関連部品、自動車・車両関連部品、家電・事務電気製品部品、コンピューター関連部品、ファクシミリ・複写機関連部品、機械関連部品、繊維、フィルムなど各種用途に好適に用いることができる。

Claims (14)

  1. 少なくとも、ジアミン成分と、ジカルボン酸成分と、水とを含む混合物を出発物質とする加熱重縮合による結晶性ポリアミド樹脂の製造方法であって、
    前記ジアミン成分は、ジアミン成分総量に対する割合が10モル%以上80モル%未満である(A)ペンタメチレンジアミンを含み、
    前記ジカルボン酸成分は、ジカルボン酸成分総量に対する割合が76モル%以上100モル%以下である(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種を含み、
    水含有量が30重量%以下である前記混合物を、温度200℃以上、圧力1.8~3.5MPaの条件で加熱加圧しながら、水を留出させつつ重縮合させる第1の工程と、
    前記第1の工程の後、大気圧まで放圧する第2の工程と、
    前記第2の工程の後、加熱重縮合を継続して前記結晶性ポリアミド樹脂を得る工程であって、得られる前記結晶性ポリアミド樹脂を0.01g/mLの濃度で98%硫酸に溶解したときに得られる溶液の25℃における相対粘度が1.8以上3.5以下に到達するまで、前記結晶性ポリアミド樹脂の融点以上の温度で溶融高重合度化を行う第3の工程と、
    を備える結晶性ポリアミド樹脂の製造方法。
  2. 前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融点に相当する吸熱ピークの温度が、270℃以上である
    請求項1に記載の結晶性ポリアミド樹脂の製造方法。
  3. 前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融解熱量が、30J/g以上である
    請求項1または2に記載の結晶性ポリアミド樹脂の製造方法。
  4. 前記第2の工程において、放圧開始温度を295℃以下、放圧終了温度を融点以上とする
    請求項1~3いずれかに記載の結晶性ポリアミド樹脂の製造方法。
  5. 前記第3の工程における前記溶融高重合度化を、減圧条件下または不活性ガス雰囲気下で行う
    請求項1~4いずれかに記載の結晶性ポリアミド樹脂の製造方法。
  6. 少なくとも、ジアミン成分とジカルボン酸成分とを加熱重縮合することにより得られる結晶性ポリアミド樹脂であって、
    前記ジアミン成分は、ジアミン成分総量に対する割合が10モル%以上80モル%未満である(A)ペンタメチレンジアミンを含み、
    前記ジカルボン酸成分は、ジカルボン酸成分総量に対する割合が76モル%以上100モル%以下である(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種を含み、
    前記結晶性ポリアミド樹脂は、該結晶性ポリアミド樹脂を0.01g/mLの濃度で98%硫酸に溶解したときに得られる溶液の25℃における相対粘度が1.8以上3.5以下であり、ゲルパーミエーションクロマトグラフィーにより測定した分散度(重量平均分子量/数平均分子量)が3.5以下である
    結晶性ポリアミド樹脂。
  7. 前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融点に相当する吸熱ピークの温度が、270℃以上である
    請求項6に記載の結晶性ポリアミド樹脂。
  8. 前記結晶性ポリアミド樹脂は、示差走査熱量計を用いて、溶融状態から20℃/分の降温速度で30℃まで降温した後、20℃/分の昇温速度で昇温した場合の融解熱量が、30J/g以上である
    請求項6または7に記載の結晶性ポリアミド樹脂。
  9. ピペリジン含有量が10.0×10-5mol/g以下である請求項6~8いずれかに記載の結晶性ポリアミド樹脂。
  10. 前記(B)芳香族ジカルボン酸、脂環族ジカルボン酸およびこれらのジアルキルエステル誘導体からなる群より選ばれる少なくとも1種が、少なくとも芳香族ジカルボン酸を含み、該芳香族ジカルボン酸が、テレフタル酸および/またはイソフタル酸である
    請求項6~9いずれかに記載の結晶性ポリアミド樹脂。
  11. 請求項6~10いずれかに記載の結晶性ポリアミド樹脂を成形してなる成形品。
  12. 請求項6~10いずれかに記載の結晶性ポリアミド樹脂に、さらに無機充填材を配合してなるポリアミド樹脂組成物。
  13. 請求項6~10いずれかに記載の結晶性ポリアミド樹脂に、さらに耐衝撃性改良材を配合してなるポリアミド樹脂組成物。
  14. 請求項12または13に記載の結晶性ポリアミド樹脂組成物を成形してなる成形品。
PCT/JP2012/005136 2011-08-17 2012-08-13 結晶性ポリアミド樹脂の製造方法 WO2013024593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012539129A JP5246385B1 (ja) 2011-08-17 2012-08-13 結晶性ポリアミド樹脂の製造方法
CN201280039557.5A CN103732653A (zh) 2011-08-17 2012-08-13 结晶性聚酰胺树脂的制造方法
EP12823636.1A EP2746315B1 (en) 2011-08-17 2012-08-13 Method for manufacturing crystalline polyamide resin
US14/237,300 US9732190B2 (en) 2011-08-17 2012-08-13 Production method of crystalline polyamide resin
KR1020147002802A KR20140051930A (ko) 2011-08-17 2012-08-13 결정성 폴리아미드 수지의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-178234 2011-08-17
JP2011178234 2011-08-17
JP2011210964 2011-09-27
JP2011-210964 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013024593A1 true WO2013024593A1 (ja) 2013-02-21

Family

ID=47714927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005136 WO2013024593A1 (ja) 2011-08-17 2012-08-13 結晶性ポリアミド樹脂の製造方法

Country Status (7)

Country Link
US (1) US9732190B2 (ja)
EP (1) EP2746315B1 (ja)
JP (1) JP5246385B1 (ja)
KR (1) KR20140051930A (ja)
CN (1) CN103732653A (ja)
TW (1) TW201311763A (ja)
WO (1) WO2013024593A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387667A (zh) * 2013-07-31 2013-11-13 上海凯赛生物技术研发中心有限公司 一种半芳香族尼龙及其制备方法
WO2014010607A1 (ja) * 2012-07-09 2014-01-16 旭化成ケミカルズ株式会社 ポリアミド、ポリアミド組成物及び成形品
JP2014169230A (ja) * 2013-03-01 2014-09-18 Ube Ind Ltd アルキレンポリアミンの製造方法
JP2015025025A (ja) * 2013-07-24 2015-02-05 東レ株式会社 放熱性電気・電子部品用熱可塑性樹脂組成物およびそれからなる放熱性電気・電子部品
JP2015034276A (ja) * 2013-07-08 2015-02-19 宇部興産株式会社 ポリアミド樹脂
WO2015080426A1 (ko) * 2013-11-26 2015-06-04 삼성에스디아이 주식회사 폴리아마이드 성형체 및 그 제조 방법
JP2015101675A (ja) * 2013-11-26 2015-06-04 チェイル インダストリーズ インコーポレイテッド ポリアミド成形体およびその製造方法
WO2015105104A1 (ja) * 2014-01-08 2015-07-16 旭化成せんい株式会社 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
JP2015533908A (ja) * 2012-10-23 2015-11-26 アルケマ フランス 半結晶性ポリアミドで作られた熱可塑性複合材料およびこれの製造方法
CN106414554A (zh) * 2014-04-15 2017-02-15 阿科玛法国公司 由半晶态聚酰胺制成的热塑性材料的制造方法
JP2017095535A (ja) * 2015-11-18 2017-06-01 旭化成株式会社 ポリアセタール樹脂組成物
JP2018145292A (ja) * 2017-03-06 2018-09-20 三井化学株式会社 ポリアミド樹脂組成物及びその成形品
KR20190085153A (ko) * 2016-12-08 2019-07-17 디에스엠 아이피 어셋츠 비.브이. 열가소성 조성물, 이로부터 제조된 성형 부품, 및 자동차 및 e&e 용도에서의 이의 용도
US11578170B2 (en) 2014-04-15 2023-02-14 Arkema France Thermoplastic composition made from a polyamide polymer obtained from a prepolymer and a chain extender and manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143307B (zh) * 2013-03-26 2017-02-15 三菱瓦斯化学株式会社 活性能量射线固化性树脂以及包含该树脂的固化物的气体阻隔性层叠体
FR3019824B1 (fr) 2014-04-15 2017-10-13 Arkema France Procede pour materiau composite avec impregnation par polymere thermoplastique, issu d'un prepolymere et d'un allongeur de chaine
EP3378883A1 (en) * 2017-03-21 2018-09-26 Solvay Specialty Polymers USA, LLC. Thermoplastic composites and corresponding fabrication methods and articles
CN110028665B (zh) * 2018-01-12 2021-09-03 上海凯赛生物技术股份有限公司 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
CN113896886B (zh) * 2021-09-24 2023-07-25 珠海万通特种工程塑料有限公司 一种呋喃二酸基聚酰胺及其制备方法和一种呋喃二酸基聚酰胺组合物
CN114920925A (zh) * 2022-03-14 2022-08-19 金发科技股份有限公司 一种生物基聚酰胺树脂及其制备方法
CN114920926A (zh) * 2022-03-14 2022-08-19 金发科技股份有限公司 一种生物基聚酰胺树脂及其制备方法
CN117777435A (zh) * 2023-08-22 2024-03-29 上海北冈新材料有限公司 半芳香共聚聚酰胺、半芳香聚酰胺组合物及其制备方法与应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023328A (ja) 1983-07-19 1985-02-05 Sankyo Co Ltd 脱炭酸反応
JPH08500150A (ja) 1993-06-08 1996-01-09 デュポン カナダ インコーポレイテッド テレフタル酸コポリアミドの高圧製造方法
JP2000063512A (ja) * 1998-06-11 2000-02-29 Ube Ind Ltd ポリアミド共重合体及びその製造法
JP2003292613A (ja) 2002-04-05 2003-10-15 Toray Ind Inc ポリアミド樹脂
JP2004000114A (ja) 2002-04-08 2004-01-08 Toray Ind Inc カダベリンの製造方法
JP2004075962A (ja) * 2002-08-22 2004-03-11 Toray Ind Inc ポリアミド樹脂の製造方法
JP2004222569A (ja) 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
JP2005006650A (ja) 2003-05-26 2005-01-13 Ajinomoto Co Inc カダベリン・ジカルボン酸塩の製造法
WO2007113127A1 (en) 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine
WO2010001846A1 (ja) 2008-06-30 2010-01-07 東レ株式会社 ポリアミド樹脂、その組成物およびそれらの成形体
JP2010121113A (ja) * 2008-10-22 2010-06-03 Toray Ind Inc ポリアミド樹脂およびポリアミド樹脂組成物
WO2010113736A1 (ja) * 2009-03-30 2010-10-07 東レ株式会社 ポリアミド樹脂、ポリアミド樹脂組成物およびこれらからなる成形品
WO2011030742A1 (ja) 2009-09-11 2011-03-17 旭化成ケミカルズ株式会社 ポリアミド及びポリアミド組成物
JP2011111576A (ja) 2009-11-30 2011-06-09 Toyobo Co Ltd 共重合ポリアミド
WO2011122231A1 (ja) * 2010-03-30 2011-10-06 東レ株式会社 ポリペンタメチレンアジパミド樹脂の製造方法
JP2011225830A (ja) * 2010-03-31 2011-11-10 Toray Ind Inc ポリアミド樹脂の製造方法
JP2012172086A (ja) * 2011-02-22 2012-09-10 Asahi Kasei Chemicals Corp 長繊維強化ポリアミド樹脂組成物及び成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660316B1 (fr) * 1990-03-30 1994-03-11 Rhone Poulenc Chimie Copolyamides semi-aromatiques semi-cristallins obtenus a partir d'acide terephtalique et de melanges comprenant une alkylpentamethylenediamine et de l'hexamethylenediamine.
TW339343B (en) * 1994-08-17 1998-09-01 Toray Industries Copolymerized polyamide and a production process/thereof
EP1976907B1 (en) 2006-01-26 2012-08-22 DSM IP Assets B.V. Semi-crystalline semi-aromatic polyamide

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023328A (ja) 1983-07-19 1985-02-05 Sankyo Co Ltd 脱炭酸反応
JPH08500150A (ja) 1993-06-08 1996-01-09 デュポン カナダ インコーポレイテッド テレフタル酸コポリアミドの高圧製造方法
JP2000063512A (ja) * 1998-06-11 2000-02-29 Ube Ind Ltd ポリアミド共重合体及びその製造法
JP2003292613A (ja) 2002-04-05 2003-10-15 Toray Ind Inc ポリアミド樹脂
JP2004000114A (ja) 2002-04-08 2004-01-08 Toray Ind Inc カダベリンの製造方法
JP2004075962A (ja) * 2002-08-22 2004-03-11 Toray Ind Inc ポリアミド樹脂の製造方法
JP2004222569A (ja) 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
JP2005006650A (ja) 2003-05-26 2005-01-13 Ajinomoto Co Inc カダベリン・ジカルボン酸塩の製造法
WO2007113127A1 (en) 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine
WO2010001846A1 (ja) 2008-06-30 2010-01-07 東レ株式会社 ポリアミド樹脂、その組成物およびそれらの成形体
JP2010121113A (ja) * 2008-10-22 2010-06-03 Toray Ind Inc ポリアミド樹脂およびポリアミド樹脂組成物
WO2010113736A1 (ja) * 2009-03-30 2010-10-07 東レ株式会社 ポリアミド樹脂、ポリアミド樹脂組成物およびこれらからなる成形品
WO2011030742A1 (ja) 2009-09-11 2011-03-17 旭化成ケミカルズ株式会社 ポリアミド及びポリアミド組成物
JP2011111576A (ja) 2009-11-30 2011-06-09 Toyobo Co Ltd 共重合ポリアミド
WO2011122231A1 (ja) * 2010-03-30 2011-10-06 東レ株式会社 ポリペンタメチレンアジパミド樹脂の製造方法
JP2011225830A (ja) * 2010-03-31 2011-11-10 Toray Ind Inc ポリアミド樹脂の製造方法
JP2012172086A (ja) * 2011-02-22 2012-09-10 Asahi Kasei Chemicals Corp 長繊維強化ポリアミド樹脂組成物及び成形体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of Polymer Science and Technology", vol. 10, pages: 546
See also references of EP2746315A4 *
SOUDA KENJI; MISONO HARUO, SEIKAGAKU JIKKEN KOZA, vol. 11-JO, 1976, pages 179 - 191

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010607A1 (ja) * 2012-07-09 2014-01-16 旭化成ケミカルズ株式会社 ポリアミド、ポリアミド組成物及び成形品
JPWO2014010607A1 (ja) * 2012-07-09 2016-06-23 旭化成ケミカルズ株式会社 ポリアミド、ポリアミド組成物及び成形品
US9228057B2 (en) 2012-07-09 2016-01-05 Asahi Kasei Chemicals Corporation Polyamide, polyamide composition, and molded article
JP2015533908A (ja) * 2012-10-23 2015-11-26 アルケマ フランス 半結晶性ポリアミドで作られた熱可塑性複合材料およびこれの製造方法
US10377898B2 (en) 2012-10-23 2019-08-13 Arkema France Thermoplastic composite material made of a semi-crystalline polyamide and method for manufacturing same
JP2014169230A (ja) * 2013-03-01 2014-09-18 Ube Ind Ltd アルキレンポリアミンの製造方法
JP2015034276A (ja) * 2013-07-08 2015-02-19 宇部興産株式会社 ポリアミド樹脂
JP2015025025A (ja) * 2013-07-24 2015-02-05 東レ株式会社 放熱性電気・電子部品用熱可塑性樹脂組成物およびそれからなる放熱性電気・電子部品
CN103387667A (zh) * 2013-07-31 2013-11-13 上海凯赛生物技术研发中心有限公司 一种半芳香族尼龙及其制备方法
JP2015101675A (ja) * 2013-11-26 2015-06-04 チェイル インダストリーズ インコーポレイテッド ポリアミド成形体およびその製造方法
WO2015080426A1 (ko) * 2013-11-26 2015-06-04 삼성에스디아이 주식회사 폴리아마이드 성형체 및 그 제조 방법
WO2015105104A1 (ja) * 2014-01-08 2015-07-16 旭化成せんい株式会社 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
CN105849325A (zh) * 2014-01-08 2016-08-10 旭化成株式会社 聚酰胺复丝纤维和包含该纤维的轮胎帘线
JPWO2015105104A1 (ja) * 2014-01-08 2017-03-23 旭化成株式会社 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
KR101921393B1 (ko) 2014-01-08 2018-11-22 아사히 가세이 가부시키가이샤 폴리아미드 멀티필라멘트 섬유 및 이 섬유를 포함하는 타이어 코드
CN106414554A (zh) * 2014-04-15 2017-02-15 阿科玛法国公司 由半晶态聚酰胺制成的热塑性材料的制造方法
JP2017517594A (ja) * 2014-04-15 2017-06-29 アルケマ フランス 半結晶性ポリアミドから作製された熱可塑性材料を製造するための方法
US10344126B2 (en) 2014-04-15 2019-07-09 Arkema France Method for manufacturing a thermoplastic material made from semi-crystalline polyamide
US11578170B2 (en) 2014-04-15 2023-02-14 Arkema France Thermoplastic composition made from a polyamide polymer obtained from a prepolymer and a chain extender and manufacturing method
JP2017095535A (ja) * 2015-11-18 2017-06-01 旭化成株式会社 ポリアセタール樹脂組成物
KR20190085153A (ko) * 2016-12-08 2019-07-17 디에스엠 아이피 어셋츠 비.브이. 열가소성 조성물, 이로부터 제조된 성형 부품, 및 자동차 및 e&e 용도에서의 이의 용도
JP2020513438A (ja) * 2016-12-08 2020-05-14 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 熱可塑性組成物、それから製造される成形品、ならびに自動車およびe&e用途におけるその使用
TWI758369B (zh) * 2016-12-08 2022-03-21 荷蘭商帝斯曼知識產權資產管理有限公司 熱塑性組成物、其製得之模製部件以及其在汽車及e&e應用之用途
JP7043705B2 (ja) 2016-12-08 2022-03-30 ディーエスエム アイピー アセッツ ビー.ブイ. 熱可塑性組成物、それから製造される成形品、ならびに自動車およびe&e用途におけるその使用
KR102461047B1 (ko) 2016-12-08 2022-10-28 디에스엠 아이피 어셋츠 비.브이. 열가소성 조성물, 이로부터 제조된 성형 부품, 및 자동차 및 e&e 용도에서의 이의 용도
US11578171B2 (en) 2016-12-08 2023-02-14 Dsm Ip Assets B.V. Thermoplastic composition, molded part made thereof and use thereof in automotive and E and E applications
JP2018145292A (ja) * 2017-03-06 2018-09-20 三井化学株式会社 ポリアミド樹脂組成物及びその成形品

Also Published As

Publication number Publication date
EP2746315A4 (en) 2015-04-08
JPWO2013024593A1 (ja) 2015-03-05
KR20140051930A (ko) 2014-05-02
EP2746315A1 (en) 2014-06-25
TW201311763A (zh) 2013-03-16
EP2746315B1 (en) 2016-04-13
JP5246385B1 (ja) 2013-07-24
CN103732653A (zh) 2014-04-16
US20140194570A1 (en) 2014-07-10
US9732190B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
JP5246385B1 (ja) 結晶性ポリアミド樹脂の製造方法
JP5522036B2 (ja) ポリアミド樹脂の製造方法
JP5105563B2 (ja) ポリアミド及びポリアミド組成物
WO2010113736A1 (ja) ポリアミド樹脂、ポリアミド樹脂組成物およびこれらからなる成形品
WO2010001846A1 (ja) ポリアミド樹脂、その組成物およびそれらの成形体
WO2007132733A1 (ja) ポリアミド樹脂
JP5397094B2 (ja) ポリアミド樹脂およびポリアミド樹脂組成物
JP5504812B2 (ja) ポリアミド樹脂およびポリアミド樹脂組成物
JP5942229B2 (ja) ポリアミド及びポリアミド組成物
JP2011225830A (ja) ポリアミド樹脂の製造方法
JP2010031179A (ja) ポリアミド樹脂組成物
JP5282371B2 (ja) 共重合ポリアミド樹脂
JP2012031393A (ja) ポリアミド樹脂組成物およびその製造方法
JP5397045B2 (ja) ポリアミド樹脂、ポリアミド樹脂組成物およびそれらの成形品
JP2013127059A (ja) ポリアミド樹脂
JP5760405B2 (ja) ポリアミド樹脂組成物およびそれからなる成形品
JP5369676B2 (ja) ポリアミド樹脂
JP2014133871A (ja) ポリアミド樹脂組成物およびその製造方法
JP5630286B2 (ja) ポリアミド樹脂の製造方法
JP2017155150A (ja) ポリアミド組成物、ポリアミド組成物成形品およびポリアミド組成物の製造方法
WO2016031257A1 (ja) ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
JP2022044221A (ja) ポリアミド及びポリアミド組成物
JPWO2016031257A1 (ja) ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
JPH09221593A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012539129

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002802

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012823636

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE