WO2015105104A1 - ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード - Google Patents

ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード Download PDF

Info

Publication number
WO2015105104A1
WO2015105104A1 PCT/JP2015/050167 JP2015050167W WO2015105104A1 WO 2015105104 A1 WO2015105104 A1 WO 2015105104A1 JP 2015050167 W JP2015050167 W JP 2015050167W WO 2015105104 A1 WO2015105104 A1 WO 2015105104A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide multifilament
multifilament fiber
polyamide
fiber
fiber according
Prior art date
Application number
PCT/JP2015/050167
Other languages
English (en)
French (fr)
Inventor
佐藤 祐介
涼 名雪
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to EP15735361.6A priority Critical patent/EP3093379B9/en
Priority to JP2015556808A priority patent/JP6340375B2/ja
Priority to CN201580003390.0A priority patent/CN105849325B/zh
Priority to US15/108,067 priority patent/US20160339746A1/en
Priority to KR1020167016572A priority patent/KR101921393B1/ko
Publication of WO2015105104A1 publication Critical patent/WO2015105104A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0078Modulus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0092Twist structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2261Modulus of the cords
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • D10B2505/022Reinforcing materials; Prepregs for tyres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/902Reinforcing or tire cords

Definitions

  • the present invention has a high glass transition temperature (Tg), high strength, polyamide multifilament fiber excellent in spinning stability and fiber uniformity, excellent rubber adhesion, and suppresses tire flat spots.
  • Tg glass transition temperature
  • the present invention relates to a tire cord including the fiber, and a tire including the tire cord.
  • bias tires can be broadly divided into two types: bias tires and radial tires.
  • a bias tire is a tire in which the cords that make up the carcass are arranged obliquely intersecting the center line of the tread
  • the radial tire is a tire that has the cords that make up the carcass arranged at right angles to the center line of the tread.
  • a steel belt is disposed outside the carcass. Since radial tires are superior to bias tires in terms of maneuverability, running stability, wear resistance, and rolling resistance, radial tires have been installed in most passenger cars in recent years.
  • a cord called a cap ply is further arranged in parallel with the circumferential direction of the tire on the outer layer portion of the steel belt of the radial tire.
  • the cap ply serves as a medium between the steel and the rubber of the tread, and plays a role of preventing peeling during high speed running by improving adhesion.
  • transformation is fulfilled by fastening the tire which expand
  • the use of nylon 66 fiber is currently mainstream. This is because it has excellent rubber adhesiveness required as a cap ply and a tire tightening effect due to heat shrinkage, and has a good balance of properties such as strength and heat resistance.
  • a tire using nylon 66 fiber as a cap ply has a problem that deformation called a flat spot is likely to occur due to a rapid temperature change caused by running or parking, rolling resistance increases, and running stability decreases.
  • the flat spot causes deterioration of fuel consumption and ride comfort.
  • demands for running stability are further increasing, and tire cords that improve flat spots are required.
  • Examples of fibers used for tire cords other than nylon 66 include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and aramid.
  • PET or PEN fibers have poor rubber adhesion
  • nylon 66 fibers require only one adhesive coating process, which increases costs due to increased processing costs and equipment restrictions. There is a tendency.
  • heat-resistant adhesiveness is low due to deterioration due to ammonia, amine, moisture, etc. generated from the rubber compound at high temperatures and deterioration of adhesive bonding with rubber.
  • Aramid fibers also have poor rubber adhesive properties, and it is necessary to apply the adhesive twice. This increases the cost. Furthermore, since the aramid fiber has a small elongation during vulcanization, when these cords are used for the cap ply, the cap ply bites into the belt portion in the tire after vulcanization, causing peeling of the belt end portion. There is also a problem.
  • Patent Documents 1 and 2 below also disclose a technique in which a composite cord of an aramid fiber and a nylon 66 fiber is used for a cap ply.
  • the rubber adhesion is inferior compared to the case of using a cord made only of nylon 66 fibers, and the reduction of flat spots is still insufficient.
  • Patent Document 3 discloses a polyamide multifilament fiber composed of 1,4-cyclohexanedicarboxylic acid and 2-methylpentamethylenediamine.
  • This fiber is an aliphatic polyamide like the nylon 66 fiber, and it is presumed that the rubber adhesiveness is also good, and may be excellent as a tire cord.
  • the fiber described in Patent Document 3 is a monofilament. In order to be used as a tire cord, it is necessary to be a multifilament having excellent uniformity from the viewpoint of fatigue resistance due to repeated bending motion, rubber adhesion, and the like. Therefore, multifilaments were studied.
  • the problem to be solved by the present invention is a tire cord that has excellent rubber adhesion and suppresses a flat spot of the tire, and strength, spinning stability, and fiber uniformity that constitute the tire cord It is to provide an excellent polyamide multifilament fiber.
  • the flat spot is caused by a change in the rigidity of the tire cord due to a change in the temperature of the tire. It has been found that a flat spot can be suppressed by using a tire cord made of polyamide multifilament fiber having a small difference. Moreover, since the polyamide multifilament has good rubber adhesion derived from an amide bond, it is possible to achieve both suppression of flat spots and tire processability.
  • the present inventors use a polyamide obtained by copolymerizing a dicarboxylic acid containing an alicyclic dicarboxylic acid and a diamine at a specific ratio, and spinning under specific conditions while having a high Tg. It was also found that a polyamide multifilament fiber having high strength and excellent spinning stability and fiber uniformity can be obtained. The present inventors have completed the present invention based on these findings.
  • a polyamide multifilament fiber comprising a polycondensate of a dicarboxylic acid containing a cycloaliphatic dicarboxylic acid and a diamine, and has the following requirements: (A) The ratio of the alicyclic dicarboxylic acid to the dicarboxylic acid is 50 mol% or more; (B) the total fineness of the polyamide multifilament fiber is 100 dtex or more; and (c) the cross ratio (maximum diameter / minimum diameter) of the polyamide multifilament fiber is 1.7 or less; Satisfy said polyamide multifilament fiber.
  • the polyamide multifilament fiber according to any one of [1] to [7], which has a melting point (Tm) of 270 ° C. or higher and 350 ° C. or lower.
  • polyamide multifilament fiber according to any one of [1] to [10], wherein the number of single yarns is 30 filaments or more.
  • the alicyclic dicarboxylic acid includes 1,4-cyclohexanedicarboxylic acid, and the trans isomer ratio derived from the 1,4-cyclohexanedicarboxylic acid is 50% or more and 100% or less.
  • the polyamide multifilament fiber according to any one of 1] to [13].
  • a twisted cord comprising the polyamide multifilament fiber according to any one of [1] to [16].
  • a woven fabric comprising the polyamide multifilament fiber according to any one of [1] to [16] or the twisted cord according to [19].
  • a knot woven fabric comprising the polyamide multifilament fiber according to [17] or the cord according to any one of [20] to [21].
  • the polyamide multifilament fiber according to the present invention has high Tg and high strength, and excellent spinning stability and fiber uniformity, and a tire cord using the polyamide multifilament fiber is excellent in rubber adhesion and high temperature in the tire. Good dimensional stability can be imparted.
  • the polyamide multifilament fiber according to the present invention is a polyamide multifilament fiber composed of a polycondensate of a dicarboxylic acid containing an alicyclic dicarboxylic acid and a diamine, and has the following requirements: (A) The ratio of the alicyclic dicarboxylic acid to the dicarboxylic acid is 50 mol% or more; (B) the total fineness of the polyamide multifilament fiber is 100 dtex or more; and (c) the cross ratio (maximum diameter / minimum diameter) of the polyamide multifilament fiber is 1.7 or less; It is characterized by satisfying.
  • the polyamide multifilament fiber of the present embodiment is made of polyamide obtained by polycondensation of dicarboxylic acid and diamine containing 50 mol% or more of alicyclic dicarboxylic acid to dicarboxylic acid.
  • polyamide obtained by polycondensation of dicarboxylic acid and diamine containing 50 mol% or more of alicyclic dicarboxylic acid to dicarboxylic acid.
  • Polyamide means a polymer having an amide (—NHCO—) bond in the main chain.
  • the ratio of the alicyclic dicarboxylic acid to the dicarboxylic acid is 50 mol% or more” means “the ratio of the structural unit derived from the alicyclic dicarboxylic acid to the structural unit derived from the raw material monomer component is 25 mol% or more”. To do.
  • the monomer component of the polyamide multifilament fiber will be described.
  • the polyamide multifilament fiber of the present embodiment is a polyamide multifilament fiber made of a polycondensate of a dicarboxylic acid containing an alicyclic dicarboxylic acid and a diamine, and the alicyclic dicarboxylic acid with respect to the dicarboxylic acid.
  • the ratio is at least 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and most preferably 100 mol%.
  • the alicyclic dicarboxylic acid is not limited to the following.
  • the alicyclic dicarboxylic acid having 3 to 10 carbon atoms in the alicyclic structure, preferably 5 to 10 carbon atoms in the alicyclic structure.
  • the alicyclic dicarboxylic acid may be unsubstituted or may have a substituent.
  • substituents include, but are not limited to, for example, 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group. And the like.
  • 1,4-cyclohexanedicarboxylic acid is preferable from the viewpoints of heat resistance, dimensional stability, strength and the like of the polyamide multifilament fiber.
  • One type of alicyclic dicarboxylic acid may be used alone, or two or more types may be used in combination.
  • Alicyclic dicarboxylic acids have trans and cis geometric isomers.
  • 1,4-cyclohexanedicarboxylic acid as a raw material monomer may be used in either a trans isomer or a cis isomer, or may be used as a mixture in various ratios of a trans isomer and a cis isomer.
  • 1,4-Cyclohexanedicarboxylic acid is isomerized at a high temperature to have a certain ratio, and the cis isomer has higher water solubility in the equivalent salt with diamine than the trans isomer.
  • the body ratio that is, the trans / cis molar ratio is preferably 50/50 to 0/100, more preferably 40/60 to 10/90, and still more preferably 35/65 to 15/85. It is. Due to the trans isomer ratio being within the above range, polyamides not only have excellent properties of high melting point, toughness, and strength, but also have a high glass transition temperature and fluidity, which is usually opposite to heat resistance. And high crystallinity can be satisfied at the same time.
  • the molar ratio of the trans isomer / cis isomer of 1,4-cyclohexanedicarboxylic acid can be determined by liquid chromatography (HPLC) or nuclear magnetic resonance spectroscopy (NMR).
  • dicarboxylic acids other than alicyclic dicarboxylic acids include, but are not limited to, for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2,2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacine
  • Examples thereof include straight-chain or branched aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid, and diglycolic acid.
  • aromatic dicarboxylic acid to the said dicarboxylic acid in the range which does not inhibit the fluidity
  • aromatic dicarboxylic acid examples include, but are not limited to, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5- Examples thereof include aromatic dicarboxylic acids having 8 to 20 carbon atoms which are unsubstituted or substituted with various substituents such as sodium sulfoisophthalic acid. As long as the ratio of the alicyclic dicarboxylic acid to the dicarboxylic acid is at least 50 mol% or more, a dicarboxylic acid other than those described above may be included unless the desired effects are impaired.
  • the polyamide multifilament fiber of this embodiment contains 1,10-decamethylenediamine as a diamine component from the viewpoint of spinning stability, heat resistance, and low water absorption, and the ratio of 1,10-decamethylenediamine to diamine is It is preferable that it is 20 mol% or more.
  • the ratio of 1,10-decamethylenediamine to diamine is preferably at least 20 mol% or more, more preferably 30 mol% or more and 80 mol% or less, still more preferably 40 mol% or more and 75 mol% or less, and still more preferably 45 mol%.
  • the mol% is 70 mol% or more.
  • a polymer having a high Tg tends to have a high melting point.
  • the melting point is too high, the polyamide is thermally decomposed at the time of melting, resulting in a decrease in molecular weight and strength, coloring, and mixing of decomposition gas, resulting in poor spinnability.
  • 1,10-decamethylenediamine in an amount of 20 mol% to 80 mol%, the melting point suitable for melt spinning can be suppressed while maintaining a high Tg.
  • polyamide containing 1,10-decamethylenediamine has high thermal stability when melted, it is possible to obtain multifilament fibers having excellent spinning stability and good uniformity.
  • yarn which is excellent in the dimensional stability at the time of water absorption can be obtained because the amide group density
  • 1,10-decamethylenediamine is preferable from the viewpoint of being a biomass-derived raw material.
  • the diamine other than 1,10-decamethylenediamine is not particularly limited, and may be an unsubstituted linear aliphatic diamine, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl.
  • a branched aliphatic diamine having a substituent such as an alkyl group having 1 to 4 carbon atoms such as a tert-butyl group or an alicyclic diamine may be used.
  • diamines other than 1,10-decamethylenediamine include, but are not limited to, ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Linear aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecamethylenediamine, 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2-methyl Examples include octamethylenediamine, 2,4-dimethyloctamethylenediamine, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and 1,3-cyclopentanediamine.
  • an aromatic diamine may be added to the diamine as long as the ratio of the aromatic diamine to the diamine does not hinder the fluidity of the polyamide having a mol ratio of 0 mol% to 10 mol%.
  • the aromatic diamine is a diamine containing an aromatic, and is not limited to the following, and examples thereof include metaxylylenediamine, orthoxylylenediamine, paraxylylenediamine, and the like.
  • the diamine other than 1,10-decamethylenediamine a diamine having 5 to 6 carbon atoms and a ratio of the diamine having 5 to 6 carbon atoms being 20 mol% or more is more preferable.
  • a diamine having 5 to 6 carbon atoms in addition to 1,10-decamethylenediamine, a polymer having high crystallinity can be obtained while maintaining an appropriate melting point suitable for spinning.
  • the diamine having 5 to 6 carbon atoms include pentamethylenediamine, hexamethylenediamine, 2-methylpentamethylenediamine, 2,5-dimethylhexanediamine, and 2,2,4-trimethylhexamethylenediamine.
  • 2-methylpentamethylenediamine is preferable from the viewpoint of spinnability, fluidity, and strength. If the ratio of 2-methylpentamethylenediamine is too high, 2-methylpentamethylenediamine is self-cyclized and decomposes when melted, causing a decrease in molecular weight, resulting in poor spinnability and strength.
  • the ratio of 2-methylpentamethylenediamine in the diamine needs to be set in a range where decomposition is not caused during melting while ensuring fluidity, preferably 20 mol% or more and 70 mol% or less, more preferably It is 20 mol% or more and 60 mol% or less, More preferably, it is 20 mol% or more and 55 mol% or less.
  • hexamethylenediamine is preferable from the viewpoint of heat resistance of the polyamide multifilament fiber. If the ratio of hexamethylenediamine is too high, the melting point becomes too high and spinning becomes difficult, so the ratio of hexamethylenediamine in the diamine is preferably 20 mol% or more and 60 mol% or less, more preferably 20 mol. % To 50 mol%, more preferably 20 mol% to 45 mol%.
  • the addition amount of dicarboxylic acid and the addition amount of diamine are preferably around the same molar amount in order to increase the molecular weight.
  • the amount of diamine escaped from the reaction system during the polymerization reaction is also considered in terms of the molar ratio, and the total amount of diamine is 0.90 to 1.20 compared to the total amount of 1.00 of dicarboxylic acid. Preferably, it is 0.95 to 1.10, more preferably 0.98 to 1.05.
  • the polyamide multifilament fiber used in the tire cord of the present embodiment may contain a component derived from lactam and / or aminocarboxylic acid as long as desired effects are not impaired.
  • lactam include, but are not limited to, butyrolactam, pivalolactam, ⁇ -caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like.
  • the aminocarboxylic acid is not limited to the following, but is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms in which the ⁇ position is substituted with an amino group.
  • -Aminocaproic acid 11-aminoundecanoic acid, 12-aminododecanoic acid and the like.
  • Examples of the aminocarboxylic acid include paraaminomethylbenzoic acid.
  • the component ratio derived from the lactam and / or aminocarboxylic acid is not particularly limited, but the ratio derived from the lactam and / or aminocarboxylic acid component to the structural unit derived from the raw material monomer component is 0 mol% or more and 20 mol. % Or less, more preferably 2 mol% or more and 15 mol% or less.
  • the ratio derived from the lactam and / or aminocarboxylic acid component is 0 mol% or more and 20 mol% or less, a polyamide multifilament fiber excellent in heat resistance, spinnability, and strength can be obtained.
  • a known end-capping agent can be further added to adjust the molecular weight.
  • the end-capping agent include monocarboxylic acids, monoamines, acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like, from the viewpoint of thermal stability.
  • Monocarboxylic acid and monoamine are preferable.
  • One type of end capping agent may be used, or two or more types may be used in combination.
  • the monocarboxylic acid that can be used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid Aliphatic monocarboxylic acids such as caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyric acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, and aromatic monocarboxylic acids such as ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid.
  • One kind of monocarboxylic acid as a terminal blocking agent may be used, or two or more kinds may be used in combination.
  • the monoamine that can be used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine Aliphatic monoamines such as decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine; It is done.
  • Monoamine as a terminal blocking agent may be used alone or in combination of two or more.
  • the copper concentration is 1 to 500 ppm, more preferably 30 to 500 ppm.
  • the type of the copper compound is not particularly limited, and for example, an organic copper salt such as copper acetate or a copper halide such as cuprous chloride or cupric chloride can be preferably used.
  • the copper compound is more preferably used in combination with a metal halide compound.
  • the metal halogen compound include potassium iodide, potassium bromide, potassium chloride and the like. Preferred combinations in this embodiment are cuprous iodide and potassium iodide, and copper acetate and potassium iodide.
  • the copper content in the polyamide can be measured by an atomic absorption method or a colorimetric method.
  • organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, hindered amines, benzophenones, imidazoles, etc.
  • a light stabilizer, an ultraviolet absorber, or the like may be added. An appropriate amount may be selected, but 1 to 1000 ppm can be added to the polyamide. These additives may be used alone or in combination of several kinds.
  • the total fineness of the polyamide multifilament fiber is preferably 100 dtex or more and 3000 dtex or less. When used as an industrial material, strength is sufficient at 100 dtex or more, and 3000 dtex or less is preferable from the viewpoint of spinnability and post-processing.
  • the number of single yarns of the polyamide multifilament fiber is preferably 30 filaments or more and 500 filaments or less.
  • the number of single yarns is 30 filaments or more, the specific surface area is increased and the external stress can be flexibly dealt with, thereby improving rubber adhesion and fatigue resistance.
  • the number of single yarns is 500 filaments or less, contact of single yarns due to yarn fluctuation during spinning is suppressed, and spinnability is improved.
  • the single yarn fineness of the polyamide multifilament fiber is preferably 1 dtex or more and 7.0 dtex or less from the viewpoint of flexural strength and fatigue resistance. If the single yarn fineness is 1 dtex or more, it is difficult to cause a problem in yarn productivity. If the single yarn fineness is 7.0 dtex or less, highly flexible fibers can be obtained, and bending strength and fatigue resistance can be obtained. Will improve.
  • the cross ratio is a value obtained by dividing the maximum diameter in the multifilament by the minimum diameter, and is an important parameter as a measure of the uniformity between single yarns. Since the strength of the multifilament is pulled to a low physical property in the strength distribution of the single yarn, if the variation between the single yarns is large, the strength is not expressed.
  • the cross ratio of the polyamide multifilament fiber of the present embodiment is 1.7 or less, preferably 1.6 or less, and more preferably 1.5 or less. When the cross ratio is 1.7 or less, the drawing at the single yarn level is uniformly performed, the single yarn strength varies little, and excellent strength as a multifilament is expressed.
  • the lower limit of the cross ratio is 1.0.
  • U% of the polyamide multifilament fiber of the present embodiment is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less. When U% is 3.0 or less, fineness unevenness in the yarn length direction is reduced, and strength, wear resistance, and fatigue resistance are improved.
  • ⁇ n is birefringence, and the degree of fiber orientation can be evaluated. ⁇ n is preferably 0.04 or more. When ⁇ n is 0.04 or more, the storage elastic modulus E ′, which is an index of rigidity, increases, and the tire cord has excellent stability during running.
  • Tg is the temperature at which the glass state transitions to the rubber state, and can be measured with a DSC, dynamic viscoelasticity measuring instrument, or the like.
  • the Tg of the polyamide multifilament fiber is preferably 90 or higher and 190 ° C. or lower. Tg is more preferably 100 ° C. or higher, and even more preferably 110 ° C. or higher. Further, Tg is more preferably 180 ° C. or less, and further preferably 170 ° C. or less.
  • Tm is the temperature at which a solid melts and liquefies, and can be measured by DSC or the like.
  • the Tm of the polyamide multifilament fiber is preferably 270 ° C. or higher and 350 ° C. or lower from the viewpoint of spinnability and heat resistance.
  • Tm is more preferably 275 ° C. or higher, and further preferably 280 ° C. or higher.
  • Tm is more preferably 345 ° C. or less, and further preferably 340 ° C. or less.
  • the strength of the polyamide multifilament fiber is preferably 4 cN / dtex or more when used as an industrial material. More preferably, it is 5 cN / dtex or more, More preferably, it is 6 cN / dtex or more.
  • the molecular weight distribution of the polyamide multifilament fiber can be evaluated by Mw (weight average molecular weight) / Mn (number average molecular weight).
  • the Mw / Mn of the polyamide multifilament fiber is preferably 4.0 or less, more preferably 1.5 to 3.8, and still more preferably 1.5 to 3.5 from the viewpoints of stretchability and fiber strength. It is.
  • the lower limit of Mw / Mn is 1.0.
  • the molecular weight of the polyamide multifilament fiber is 1% in 98% sulfuric acid and 1% sulfuric acid relative viscosity ( ⁇ r) measured in accordance with JIS-K6810 from the viewpoint of mechanical properties such as high elongation and spinnability. 5 or more and 4.0 or less, preferably 1.7 or more and 3.5 or less, more preferably 1.8 or more and 3.3 or less. If ⁇ r is 1.5 or less, fibers having sufficient strength cannot be obtained for industrial materials, and fibers having ⁇ r of 4.0 or more are difficult to spin because of poor polymer fluidity. I can't.
  • the strength retention of the polyamide multifilament fiber after dry heat aging at 200 ° C. is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. If the strength retention at 200 ° C. is 80% or more, process stability in post-processing that requires heat treatment can be obtained.
  • the tires run at high speeds for a long time and become extremely hot and cool to room temperature while parked. It is estimated that the flat spot is derived from the change in the stiffness of the tire cord due to this temperature change.
  • One of the important technical matters in the present invention is that “a small difference in rigidity between polyamide multifilament fibers at normal temperature and high temperature is effective in suppressing the flat spot of the tire”.
  • the ratio E ′ of the storage elastic modulus E ′ (120 ° C.) at 120 ° C. and the storage elastic modulus E ′ (25 ° C.) at 25 ° C. in the polyamide multifilament fiber obtained by dynamic viscoelasticity measurement.
  • 120 ° C.) / E ′ (25 ° C.) is preferably 0.6 or more and 0.9 or less, and more preferably 0.7 or more and 0.9 or less.
  • E ′ (120 ° C.) / E ′ (25 ° C.) is 0.6 or more and 0.9 or less, a flat spot can be effectively suppressed.
  • the peak temperature of loss tangent (tan ⁇ ) determined by dynamic viscoelasticity measurement of the polyamide multifilament fiber is preferably 150 ° C. or higher and 200 ° C. or lower.
  • the peak temperature of tan ⁇ is 150 ° C. or higher, the movement of the molecular chain in the amorphous part or the amorphous region is suppressed, and the fatigue resistance at high temperature is improved.
  • the value of tan ⁇ at the peak temperature is preferably 0.3 or less. By stretching the fiber and reducing tan ⁇ , the molecular chain is difficult to move and the rigidity at high temperature is maintained. In addition, the structure of the molecular chain does not change due to repeated stretching motion, and therefore the fiber has excellent fatigue resistance.
  • the value of tan ⁇ is 0.01 or more in the normal stretching.
  • Examples of the method for producing the polyamide include various methods as exemplified below: (1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid / diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter also abbreviated as “hot melt polymerization method”). (2) A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point (hereinafter also abbreviated as “hot melt polymerization / solid phase polymerization method”).
  • a method of polymerizing a diamine dicarboxylate or a mixture thereof while maintaining a solid state (hereinafter, also abbreviated as “solid phase polymerization method”).
  • the polyamide production method from the viewpoint of the fluidity of the polyamide, it is preferable to carry out the polymerization while maintaining the trans isomer ratio of the alicyclic dicarboxylic acid at 85% or less, and particularly by maintaining at 80% or less, Polyamide having excellent color tone and tensile elongation and high melting point can be obtained.
  • the polyamide production method it is necessary to increase the heating temperature and / or lengthen the heating time in order to increase the melting point of the polyamide by increasing the degree of polymerization.
  • the tensile elongation is lowered due to coloring of the polyamide or thermal deterioration.
  • the rate at which the molecular weight increases may decrease significantly. Since it is possible to prevent a decrease in tensile elongation due to polyamide coloring or thermal deterioration, it is preferable to perform polymerization while maintaining the trans isomer ratio at 80% or less.
  • the polymerization form may be a batch type or a continuous type.
  • the polymerization apparatus is not particularly limited, and examples thereof include known apparatuses such as an autoclave reactor, a tumbler reactor, an extruder reactor such as a kneader.
  • polyamide can be produced by a batch-type hot melt polymerization method described below.
  • a batch type hot melt polymerization method for example, about 40 to 60% by mass of water containing a polyamide component (dicarboxylic acid, diamine, and, if necessary, lactam and / or aminocarboxylic acid) using water as a solvent.
  • the solution is concentrated to about 65 to 90% by mass in a concentration tank operated at a temperature of 110 to 180 ° C. and a pressure of about 0.035 to 0.6 MPa (gauge pressure) to obtain a concentrated solution.
  • the concentrated solution is then transferred to an autoclave and heating is continued until the pressure in the vessel is about 1.5-5.0 MPa (gauge pressure).
  • the pressure is maintained at about 1.5 to 5.0 MPa (gauge pressure) while draining water and / or gas components, and when the temperature reaches about 250 to 350 ° C., the pressure is reduced to atmospheric pressure (the gauge pressure is , 0 MPa).
  • gauge pressure is , 0 MPa
  • pressurization is performed with an inert gas such as nitrogen to extrude the polyamide melt as a strand. The strand is cooled and cut to obtain pellets.
  • the polyamide can also be produced by a continuous hot melt polymerization method described below.
  • a solution of about 40 to 60% by mass containing water and a polyamide component as a solvent is preheated to about 40 to 100 ° C. in a container of a preliminary apparatus, and then concentrated layer / Concentrate to about 70-90% at a pressure of about 0.1-0.5 MPa (gauge pressure) and a temperature of about 200-270 ° C. to obtain a concentrated solution.
  • the concentrated solution is discharged to a flasher maintained at a temperature of about 200 to 350 ° C., and then the pressure is reduced to atmospheric pressure (gauge pressure is 0 MPa). After reducing the pressure to atmospheric pressure, reduce the pressure as necessary.
  • the polyamide melt is then extruded into strands, cooled and cut into pellets.
  • the polyamide multifilament fiber of the present embodiment is obtained by fiberizing the above-described polyamide by a predetermined method. Since this polyamide is an alicyclic polyamide, its fluidity and spinnability are superior to aromatic polyamides, but inferior to general aliphatic polyamides such as nylon 66. Moreover, since Tm is also high, deterioration of the polymer due to heat and flow characteristics become very severe. In the present embodiment, fibers excellent in strength, spinning stability, and uniformity can be obtained by the following production method.
  • melt spinning is used, and it is preferable to use a screw-type melt extruder.
  • the spinning temperature (melting temperature) of the polyamide is preferably 300 ° C. or higher and 360 ° C. or lower. If it is 300 degreeC or more, mixing of the undissolved substance by heat shortage can be suppressed. When it is 360 ° C. or lower, the thermal decomposition of the polymer and the generation of decomposition gas are greatly reduced, and the spinnability is improved.
  • the nozzle in this case preferably has 30 or more holes.
  • the hole diameter is preferably 0.10 mm to 0.50 mm.
  • L / D which is the ratio of the nozzle length (L) to the diameter (D), is preferably in the range of 1.0 to 4.0.
  • the surface area of the spinneret is larger than that of a monofilament, and temperature spots on the spinneret surface are likely to occur.
  • the polyamide multifilament fiber of the present embodiment has a high Tm and has a large influence on the flow characteristics due to temperature. Therefore, it is difficult to obtain a uniform fiber when temperature spots occur. Therefore, it is particularly important to reduce temperature spots on the spinneret surface and to equalize the polymer temperature during discharge.
  • a spinneret heater In order to improve the uniformity of the spinneret surface temperature, it is preferable to install a spinneret heater.
  • the spinner heater is preferably attached directly to the spinneret so as to surround the outer side of the spinneret.
  • the temperature of the spinneret is heated from Tm to Tm + 60 ° C with a spinner heater, and the temperature difference between the center and outer periphery of the spinneret is within 3 ° C.
  • a fiber having excellent properties can be obtained.
  • the spinneret surface temperature is equal to or higher than Tm, uniform fibers can be obtained without causing discharge spots due to insufficient heat. Thermal deterioration can be reduced when the spinneret surface temperature is lower than Tm + 60 ° C.
  • the heating cylinder is a heater that surrounds the yarn. Since the polyamide multifilament fiber of the present embodiment has a high Tm, the solidification rate immediately after spinning is high, the spinnability is lowered, and the cutting yarns just below the spinneret frequently occur, making spinning difficult. Therefore, by installing a heating cylinder and making the atmospheric temperature just below the spinning nozzle high and uniform, the solidification speed of the molten polymer and solidification spots between single yarns can be suppressed, and the spinnability is greatly improved.
  • the polyamide multifilament fiber of this embodiment has a high Tg, it is easily oriented due to the influence of the spinning draft, resulting in a decrease in stretchability, but by installing a heating cylinder, non-uniform orientation in the spinning draft is achieved. Relaxes and improves stretchability and strength.
  • the heating cylinder is preferably a cylindrical heater that surrounds the yarn from the outside. Further, in order to ensure the spinnability immediately after discharge and to relax the orientation, the distance of the heating zone is necessary, and the length of the heating cylinder is preferably 10 to 300 mm, for example. Furthermore, the temperature of the heating cylinder is preferably 100 ° C.
  • the yarn that has passed through the heating zone is rapidly cooled and solidified by applying cold air.
  • the cold air speed at this time is preferably in the range of 0.2 to 2.0 m / min. If it is slower than 0.2 m / min, cooling is insufficient.
  • the speed is faster than 2.0 m / min, the yarn sway increases, the single yarns come into contact with each other, and the single yarns are brought into close contact with each other, thereby reducing the spinnability and stretchability.
  • a finish is then applied.
  • a non-aqueous finishing agent diluted with mineral oil or an aqueous dispersion emulsion having a finishing agent concentration of 15 to 35% by weight is applied.
  • the amount of the finishing agent attached to the fiber is 0.5 to 2.5% by weight, preferably 0.7 to 2.0% by weight, based on the wound fiber.
  • the stretching step a heating bath, heating steam spraying, a roller heater, a contact type plate heater, a non-contact type plate heater or the like can be used, but a roller heater is preferable from the viewpoint of productivity.
  • the stretching of the present invention is preferably performed by two or more stages of multi-stage hot stretching including cold stretching and hot stretching processes.
  • the cold drawing temperature, the hot drawing temperature, the ratio of the cold drawing ratio and the hot drawing ratio are important.
  • the cold stretching temperature also needs to be a high temperature (Tg-30 ° C.) or higher and Tg or lower.
  • Tg-30 ° C. the film is uniformly oriented without stretching spots and good strength can be obtained. It can suppress that crystallization advances excessively because it is below Tg.
  • Tg the cold stretching temperature
  • the distribution of the cold draw ratio is preferably 50% or more and 80% or less of the overall draw ratio.
  • the distribution of the cold draw ratio is 50% or more of the total draw ratio, the necessary pre-drawing is given to the fiber, and a uniform fiber without drawing unevenness can be obtained. Moreover, excessive crystallization by hot stretching can be suppressed.
  • the distribution of the cold draw ratio is 80% or less of the total draw ratio, the heat necessary for crystallization is given by hot drawing, and excellent strength can be obtained.
  • the heat stretching temperature is preferably 200 ° C. or higher and 250 ° C. or lower. When it is 200 ° C. or higher, the amount of heat necessary for crystallization can be provided, and when it is lower than 250 ° C., thermal degradation of the fiber can be suppressed.
  • the overall draw ratio is 2.0 to 7.0 times, preferably 3.0 to 6.0 times. It is preferable that the drawn fiber is entangled by blowing a high-pressure fluid onto the yarn by an entanglement imparting device before winding.
  • the entanglement imparting device a conventional air entanglement device can be used as appropriate.
  • the number of entanglements is preferably 1 / m to 30 / m, more preferably 1 / m to 20 / m, and still more preferably 1 / m to 15 / m.
  • the number of entanglement is 1 / m or more, it is possible to suppress the convergence of single yarns.
  • the number of entanglement is 20 / m or less, damage to the yarn due to entanglement can be reduced.
  • the polyamide multifilament fiber of this embodiment is twisted to form a fiber cord and can be used as a tire cord. By twisting the multifilament fibers, the strength utilization rate is averaged and the fatigue properties are improved.
  • the number of twists for the polyamide multifilament fiber of this embodiment is preferably 1 time / m or more. There are no restrictions on the form and method of the twisted yarn, but it is preferable that the twisted yarn (K) is twisted in the range of 300 to 30,000.
  • the tension during twisting is preferably 0.01 to 0.2 cN / dtex.
  • the tire cord of the present embodiment is preferably a tire cord in which the above-described twisted fiber cord is used as a woven fabric.
  • the braided woven fabric is obtained by arranging 1500 to 3000 cords made of polyamide multifilament fibers with a lower twist and an upper twist as warps and weaving these warps with wefts so that they do not come apart. Can do.
  • the preferred width of the knit fabric is 140 to 160 cm, the length is 800 to 2500 m, and the wefts are preferably driven at intervals of 2.0 to 5.0 / 5 cm.
  • the weft used when weaving the kite is not particularly limited, but is preferably a spun yarn such as cotton or rayon, or a finely spun and twisted yarn of synthetic fiber and cotton.
  • a resorcin-formalin-latex liquid (RFL liquid) to the polyamide multifilament fiber cord or the woven fabric made of the same for adhesion between the rubber constituting the tire and the polyamide cord.
  • the adhesion rate of the RFL resin is preferably 0.1 to 10% by mass, more preferably 1 to 7% by mass with respect to the polyamide multifilament fiber cord.
  • the RFL resin is attached after twisting, but may be performed before or during the twisting.
  • the preferred composition of the RFL solution is 0.1-10% by weight of resorcin, 0.1-10% by weight of formalin, and 1-28% by weight of latex, and more preferably 0.5-3% by weight of resorcin. %, Formalin 0.5-3 mass%, latex 10-25 mass%.
  • the drying temperature of the RFL solution is preferably 120 to 250 ° C., more preferably 140 to 200 ° C., and the drying time is preferably 10 seconds or more, more preferably 20 to 120 seconds.
  • the twisted yarn after drying is subsequently subjected to heat treatment in the heat setting zone and the normalizing zone.
  • the temperature and time in the heat set zone and normalizing zone are preferably 150 to 250 ° C. and 10 to 300 seconds, respectively. At this time, stretching of 2% to 10% is performed, and preferably stretching of 3% to 9% is performed.
  • a tire can be obtained using a tire cord or a woven fabric made of the polyamide multifilament fiber thus obtained.
  • the tire cord is a tire used for at least one of a cap ply and a carcass ply arranged inside a tread of the tire.
  • Such a tire can be manufactured by a known method, and the cap ply and / or the carcass ply including the tire cord of the present embodiment is disposed inside the tread portion, so that the tire is effectively reinforced. .
  • Tg (° C) of polyamide multifilament fiber Using a dynamic viscoelasticity measuring device DMS-6100 manufactured by Seiko Instruments Inc., a sample having a thread length of 20 mm, frequency: 10 Hz, strain amplitude: 10 ⁇ m, minimum tension / compression force: 50 mN, tension / compression force gain: 1.5, initial value of force amplitude: Measured from ⁇ 50 ° C. to 270 ° C. at a heating rate of 2.5 ° C./min under the condition of 50 mN. Tg was calculated
  • Tm (° C) of polyamide multifilament fiber According to JIS-K7121, measurement was performed using Pyris1-DSC manufactured by PERKIN-ELMER. The measurement condition is that the temperature of an endothermic peak (melting peak) that appears when about 10 mg of a sample is heated to 200 to 400 ° C. according to the melting point of the sample at a heating rate of 20 ° C./min in a nitrogen atmosphere is Tm (° C.). It was.
  • Trans isomer ratio of polyamide (%) 30-40 mg of polyamide was dissolved in 1.2 g of hexafluoroisopropanol deuteride and measured by 1 H-NMR.
  • the trans isomer ratio was determined from the ratio of the peak area of 1.98 ppm derived from the trans isomer and the peak areas of 1.77 ppm and 1.86 ppm derived from the cis isomer.
  • Number of cut yarns When melt spinning was performed by the method described in Examples and Comparative Examples described later, the number of cut yarns for 15 minutes immediately after the start of spinning was set as the initial cut yarn, and the cut yarn after 6 hours from the start of spinning. The total number of cuts was used as the time cut yarn. The number of cutting yarns was evaluated as 0, 1 to 5 as ⁇ , and 6 or more as ⁇ .
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • Mn number average molecular weight
  • the solvent was calculated using Mw (weight average molecular weight) and Mn (number average molecular weight) when converted using hexafluoroisopropanol, a PMMA (polymethyl methacrylate) standard sample manufactured by Shodex as a standard sample.
  • a compensator U-CTB made by OLYMPUS was attached to a polarizing microscope BX-51P made by OLYMPUS, and ⁇ n was measured.
  • Example 1 Polyamide polymerization was carried out by the “hot melt polymerization method”.
  • the weight of the raw material monomer is 1500 g, and the composition ratio shown in Table 1 is 831 g (4.83 mol) of 1,4-cyclohexanedicarboxylic acid, 333 g (1.93 mol) of 1,10-decamethylenediamine, and 2 -336 g (2.90 mol) of methylpentamethylenediamine was dissolved in 1500 g of distilled water to prepare an equimolar 50 mass% aqueous solution of raw material monomers.
  • the pressure was reduced while heating was continued while taking 60 minutes until the pressure in the tank reached atmospheric pressure (gauge pressure was 0 kg / cm 2 ). Thereafter, the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) was about 310 ° C. With the resin temperature kept in this state, the inside of the tank was maintained for 10 minutes under a reduced pressure of 100 torr with a vacuum apparatus. Thereafter, it was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled and cut, and discharged in a pellet form to obtain a polyamide. The obtained polyamide was dried with a vacuum dryer, and the moisture content was adjusted to 500 ppm.
  • Tables 1 and 2 below, together with other examples and comparative examples, the polymerization composition, polymerization conditions and the like are shown together.
  • the composition of the fiber after the subsequent spinning process is also as shown in Tables 1 and 2.
  • the dried polyamide is spun at a spinning temperature of 305 ° C., a spout heater temperature of 305 ° C., and a heating cylinder temperature of 120 ° C.
  • Spinning was performed under the conditions of a heating cylinder length of 150 mm and an inner diameter of 170 mm. The temperature difference between the spinneret center and the outer periphery at this time was 1 ° C.
  • a finish was attached at 1.0% by weight with respect to the wound fiber.
  • the film was stretched at a cold stretching temperature of 140 ° C. by 65% of the overall stretching ratio, and further at a hot stretching temperature of 220 ° C.
  • entanglement was imparted 8 times / m by a entanglement imparting device and wound with a winder to obtain a polyamide multifilament.
  • Table 3 the evaluation result of the obtained fiber is shown in Table 3 below.
  • the obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Example 2 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1, and the obtained polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm.
  • the polyamide in the dried state is melt-spun using a melt spinning device (cap nozzle fine nozzle: number of holes 72, hole diameter 0.23 mm, outer diameter 130 mm), spinning temperature 320 ° C., spinning heater temperature 320 ° C., heating cylinder temperature 120 ° C. Spinning was carried out under the conditions (heating tube length 150 mm, inner diameter 170 mm). The temperature difference between the spinneret center and the outer periphery at this time was 1 ° C.
  • Example 3 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary pore nozzle: number of holes 72, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 2. . Then, the evaluation result of the obtained fiber is shown in Table 3. The obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Example 4 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm.
  • the polyamide in a dried state is melt-spun using a melt spinning apparatus (cap nozzle fine nozzle: 140 holes, hole diameter 0.23 mm, outer diameter 130 mm), spinning temperature 340 ° C., spinning heater temperature 340 ° C., heating cylinder temperature 120 ° C. Spinning was carried out under the conditions (heating tube length 150 mm, inner diameter 170 mm). The temperature difference between the spinneret center and the outer periphery at this time was 1 ° C.
  • the obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Example 5 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capper nozzle: number of holes 140, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 4. . Then, the evaluation result of the obtained fiber is shown in Table 3. In Example 5, the ratio of 1,10-decamethylenediamine in the diamine component was outside the range specified in the claims, the melting point was high, and the spinnability and U% deteriorated.
  • Example 6> The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capper nozzle: number of holes 140, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 4. . Then, the evaluation result of the obtained fiber is shown in Table 3. The obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Examples 7 and 8> The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary pore nozzle: number of holes 72, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 2. . Then, the evaluation result of the obtained fiber is shown in Table 3. The obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Examples 9 and 10> The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capper nozzle: number of holes 140, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 4. . Then, the evaluation result of the obtained fiber is shown in Table 3. The obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Example 11 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary nozzle: number of holes 210, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 1. . Then, the evaluation result of the obtained fiber is shown in Table 3. In Example 11, the number of cutting yarns after 6 hours occurred was three.
  • Example 12 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary nozzle: number of holes 210, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 1. . Then, the evaluation result of the obtained fiber is shown in Table 3. The obtained polyamide multifilament fiber had a high Tg and was excellent in fiber uniformity and spinning stability.
  • Examples 13 to 14> The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary nozzle: number of holes 210, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 1. . Then, the evaluation result of the obtained fiber is shown in Table 3.
  • Example 15 The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 1 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm. The dried polyamide was spun and stretched under the conditions shown in Table 3 below using a melt spinning apparatus (capillary nozzle: number of holes 210, hole diameter 0.23 mm, outer diameter 130 mm) in the same manner as in Example 1. . Then, the evaluation result of the obtained fiber is shown in Table 3. In Example 15, the cutting yarn after 6 hours tended to increase slightly.
  • RFL solution composed of resorcin / formalin / rubber latex
  • Example 16 a radial tire (tyre size 225 / 60R16) was produced by a conventional method using this koji fabric as a cap ply material.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 16 it had high rubber adhesiveness and good flat spot resistance compared with nylon 66 of Comparative Example 16.
  • Example 17 The polyamide multifilament fiber obtained in Example 2 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 17 it had high rubber adhesiveness and good flat spot resistance compared to nylon 66 of Comparative Example 16.
  • Example 18 The polyamide multifilament fiber obtained in Example 4 was set to 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 18 it had high rubber adhesiveness and good flat spot resistance as compared with nylon 66 of Comparative Example 16.
  • Example 19 The polyamide multifilament fiber obtained in Example 8 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16. The physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 19 had high rubber adhesion and good flat spot resistance compared to nylon 66 of Comparative Example 16.
  • Example 20 The polyamide multifilament fiber obtained in Example 11 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16. The physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 20 had high rubber adhesion and good flat spot resistance compared to nylon 66 of Comparative Example 16.
  • Example 21 The polyamide multifilament fiber obtained in Example 12 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16. The physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 21 had high rubber adhesion and good flat spot resistance compared to nylon 66 of Comparative Example 16.
  • Example 22 The polyamide multifilament fiber obtained in Example 13 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 22 it had high rubber adhesiveness and good flat spot resistance as compared with nylon 66 of Comparative Example 16.
  • Example 23 The polyamide multifilament fiber obtained in Example 14 was changed to 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 23 had high rubber adhesion and good flat spot resistance as compared with nylon 66 of Comparative Example 16.
  • Example 24 The polyamide multifilament fiber obtained in Example 15 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16. The physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Example 24 had high rubber adhesion and good flat spot resistance compared to nylon 66 of Comparative Example 16.
  • ⁇ Comparative example 2> The weight of the raw material monomer was 1500 g, the polymer was polymerized in the same manner as in Example 1 under the composition and conditions shown in Table 2 below, and the resulting polyamide was dried with a vacuum dryer to adjust the moisture content to 500 ppm.
  • the polyamide in a dried state was spun at a spinning temperature of 350 ° C. using a nozzle nozzle (hole number 1, hole diameter 0.23 mm, outer diameter 20 mm). Then, after cooling at a cold air speed of 0.9 m / s, a finish was attached at 1.0% by weight with respect to the wound fiber.
  • the film was stretched by 65% of the total stretching ratio at a cold stretching temperature of 155 ° C., further stretched at a heat stretching temperature of 220 ° C., and wound with a monofilament winder. Then, the evaluation result of the obtained fiber is shown in Table 4 below.
  • Comparative Example 2 a high-strength monofilament could be obtained in a short time, but could not be stably spun for a long time due to polymer degradation.
  • Comparative Example 16 The polyamide multifilament fiber obtained in Comparative Example 1 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16. The physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below. Comparative Example 16 is a nylon 66 tire and tire cord.
  • Comparative Example 17 The polyamide multifilament fiber obtained in Comparative Example 14 was made 1400 dtex, and the physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below. Since Comparative Example 17 has a small ratio of 1,4-cyclohexanedicarboxylic acid and a small value of E ′ (120 ° C.) / E ′ (25 ° C.), there is no significant difference between the nylon 66 and the flat spot index of Comparative Example 16. It was.
  • PET polyamide multifilament fibers were set to 1400 dtex, and physical properties were measured by twisting, RFL treatment, and tire processing in the same manner as in Example 16.
  • the physical properties of the obtained polyamide multifilament fibers, the physical properties of cords constituting the interwoven fabric, and the characteristics of tires using the cords are summarized in Table 5 below.
  • Comparative Example 18 the flat spot index compared to Nylon 66 in Comparative Example 16 was good, but the rubber adhesion was weak and the durability deteriorated.
  • the polyamide multifilament fiber according to the present invention has high Tg and high strength, and excellent spinning stability and fiber uniformity.
  • a tire cord using the polyamide multifilament fiber is excellent in rubber adhesion, and has a high temperature in the tire. Good dimensional stability can be imparted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Polyamides (AREA)
  • Tires In General (AREA)

Abstract

 脂環族ジカルボン酸を含むジカルボン酸とジアミンとの重縮合物からなるポリアミドマルチフィラメント繊維であって、以下の要件:(a)該ジカルボン酸に対する該脂環族ジカルボン酸の比率が50モル%以上である;(b)該ポリアミドマルチフィラメント繊維の総繊度が100dtex以上である;及び(c)該ポリアミドマルチフィラメント繊維のクロス比(最大直径/最小直径)が1.7以下である;を満たす前記ポリアミドマルチフィラメント繊維、該繊維を含むコード、該コードからなる簾織物、及び該簾織物をキャッププライに適用したタイヤを提供する。本発明に係るポリアミドマルチフィラメント繊維は、高Tg、高強度であり、紡糸安定性、繊維の均一性にも優れており、これを用いたタイヤコードは、ゴム接着性に優れ、タイヤに高温での良好な寸法安定性を付与することができる。

Description

ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
 本発明は、高いガラス転移温度(Tg)を有し、かつ高強度であり、紡糸安定性、繊維の均一性にも優れたポリアミドマルチフィラメント繊維、ゴム接着性に優れ、タイヤのフラットスポットを抑制する、該繊維を含むタイヤコード、並びに該タイヤコードを含むタイヤに関する。
 現在の自動車用タイヤは、バイアスタイヤとラジアルタイヤの2種類に大きく分けることができる。バイアスタイヤとは、カーカスを構成するコードがトレッドの中心線に対し、斜めに交差して配列しているタイヤであり、ラジアルタイヤとはカーカスを構成するコードがトレッドの中心線に対し直角に配列され、また、トレッドを補強するために、カーカスの外側にスチールベルトが配置されているタイヤである。ラジアルタイヤは、バイアスタイヤと比較して、操縦性、走行安定性、耐摩耗性、転がり抵抗が低いなどの優位性があるため、近年ではほとんどの乗用車にラジアルタイヤが装着されている。
 ラジアルタイヤのスチールベルトの外層部には、さらにキャッププライと呼ばれるコードがタイヤの周方向に対して平行に配置されている。キャッププライは、スチールとトレッドのゴムとの媒介となり、接着を向上させることで高速走行時の剥離を防止する役割を担っている。また、高速高温で膨張するタイヤを締め付けることで、変形を抑制する機能を果たす。
 キャッププライ用のコードとしては、ナイロン66繊維を使用することが現在では主流になっている。これは、キャッププライとして必要な優れたゴム接着性と熱収縮によるタイヤの締め付け効果を有し、かつ、強度や耐熱性などの特性バランスが良いためである。しかしながら、ナイロン66繊維をキャッププライとして使用したタイヤは、走行や駐車による急激な温度変化により、フラットスポットと呼ばれる変形が起こりやすく、転がり抵抗が大きくなり、走行安定性が低下するという問題がある。また、フラットスポットにより、燃費や乗り心地の悪化も生じる。最近の自動車性能の向上に伴い、走行安定性についての要求がさらに高まってきており、フラットスポットを改善するタイヤコードが求められている。
 ナイロン66以外の素材でタイヤコードに使用されている繊維としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、アラミドなどがある。しかしながら、PETやPENによる繊維はゴム接着性が悪く、ナイロン66繊維では1回で済む接着剤の塗布処理を、2回行う必要があり、加工費の増大や設備的制約等によりコストが増大する傾向にある。また、高温下においてゴム配合物から発生するアンモニア、アミン、水分などによる劣化やゴムとの接着結合の劣化により、耐熱接着性が低いという問題がある。
 アラミド繊維もゴム接着性が悪く接着剤の塗布処理を2回行う必要があり、コスト面の増大が問題となる。さらに、アラミド繊維は、加硫時の伸長が小さい為、これらのコードをキャッププライに用いた場合、加硫後のタイヤにおいてキャッププライがベルト部に食い込んで、ベルト端部の剥離の原因になるという問題もある。
 また、以下の特許文献1と2には、アラミド繊維とナイロン66繊維との複合コードをキャッププライに用いる技術も開示されている。しかしながら、ナイロン66繊維のみから成るコードを用いた場合に比べてゴム接着性も劣り、フラットスポットの低減も未だ不充分なものである。
 さらに、以下の特許文献3には、1,4-シクロヘキサンジカルボン酸と2-メチルペンタメチレンジアミンからなるポリアミドマルチフィラメント繊維が開示されている。この繊維はナイロン66繊維と同様に脂肪族ポリアミドであり、ゴム接着性も良好であると推測され、タイヤコードとして優れている可能性があった。しかしながら、特許文献3に記載された繊維はモノフィラメントである。タイヤコードとして使用するためには、繰り返し屈曲運動による耐疲労性やゴム接着性等の観点から均一性に優れたマルチフィラメントである必要がある。そこで、マルチフィラメント化を検討したが、特許文献3に記載された繊維では、ポリマーの融点も高く、溶融時の熱安定性も不十分であったため、熱分解により紡糸性が悪化し、強度や均一性の高いマルチフィラメントを得ることができなかった。
 このように、ナイロン66と同様に高いゴム接着性を有しながらも、フラットスポットを抑制するタイヤコードが求められているが、かかる要求を満たす繊維は未だ提供されていない。
特開平1-247204号公報 特開2001-63310号公報 特開2011-52361号公報
 前記背景技術に鑑み、本発明が解決しようとする課題は、ゴム接着性に優れ、タイヤのフラットスポットを抑制するタイヤコード、及び、該タイヤコードを構成する強度、紡糸安定性、繊維の均一性に優れたポリアミドマルチフィラメント繊維を提供することである。
 本発明者らは、前記課題を解決すべく鋭意検討し実験を重ねた結果、フラットスポットは、タイヤの温度変化によるタイヤコードの剛性変化に起因すると推測し、Tgが高く、常温と高温の剛性差が小さいポリアミドマルチフィラメント繊維から成るタイヤコードを用いることで、フラットスポットを抑制できることを見出した。また、ポリアミドマルチフィラメントは、アミド結合に由来する良好なゴム接着性を持ち合わせているため、フラットスポットの抑制とタイヤの加工性を両立させることができる。また、本発明者らは、脂環族ジカルボン酸を含むジカルボン酸とジアミンとを特定の比率で共重合させたポリアミドを用い、かつ、特定の条件で紡糸することにより、高いTgを有しながらも、高強度であり、紡糸安定性、繊維の均一性にも優れたポリアミドマルチフィラメント繊維を得ることができることを見出した。本願発明者らは、これらの知見に基づき本発明を完成するに至ったものである。
 すなわち、本発明は以下の通りのものである。
 [1]脂環族ジカルボン酸を含むジカルボン酸とジアミンとの重縮合物からなるポリアミドマルチフィラメント繊維であって、以下の要件:
 (a)該ジカルボン酸に対する該脂環族ジカルボン酸の比率が50モル%以上である;
 (b)該ポリアミドマルチフィラメント繊維の総繊度が100dtex以上である;及び
 (c)該ポリアミドマルチフィラメント繊維のクロス比(最大直径/最小直径)が1.7以下である;
を満たす前記ポリアミドマルチフィラメント繊維。
 [2]前記ポリアミドマルチフィラメント繊維の硫酸相対粘度が1.5以上4.0以下である、前記[1]に記載のポリアミドマルチフィラメント繊維。
 [3]前記ジアミン成分として、1,10-デカンジアミンを含み、前記ジアミン成分全体に対する該1,10-デカンジアミンの比率が20モル%以上である、前記[1]又は[2]に記載のポリアミドマルチフィラメント繊維。
 [4]前記ジアミン成分として、炭素数5又は6のジアミンを含み、前記ジアミン成分全体に対する該炭素数5又は6のジアミンの比率が20モル%の以上である、前記[1]~[3]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [5]前記炭素数5又は6のジアミンが2-メチルペンタメチレンジアミンである、前記[4]に記載のポリアミドマルチフィラメント繊維。
 [6]前記炭素数5又は6のジアミンがヘキサメチレンジアミンである、前記[4]に記載のポリアミドマルチフィラメント繊維。
 [7]ガラス転移温度(Tg)が90℃以上190℃以下である、前記[1]~[6]のいずれか記載のポリアミドマルチフィラメント繊維。
 [8]融点(Tm)が270℃以上350℃以下である、前記[1]~[7]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [9]U%が3.0以下である、前記[1]~[8]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [10]Δnが0.04以上であることを特徴とする、前記[1]~[9]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [11]単糸数が30フィラメント以上であることを特徴とする、前記[1]~[10]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [12]単糸繊度が7.0dtex以下である、前記[1]~[11]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [13]繊維強度が4cN/dtex以上である、前記[1]~[12]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [14]前記脂環族ジカルボン酸として、1,4-シクロヘキサンジカルボン酸を含み、かつ、該1,4-シクロヘキサンジカルボン酸に由来するトランス異性体比率が50%以上100%以下である、前記[1]~[13]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [15]120℃での貯蔵弾性率E'(120℃)と25℃での貯蔵弾性率E'(25℃)の比、E'(120℃)/E'(25℃)の値が0.6以上0.9以下である、前記[1]~[14]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [16]損失正接(tanδ)のピーク温度が150℃以上200℃以下である、前記[1]~[15]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [17]レゾルシン-ホルマリン-ラテックス樹脂により処理された、前記[1]~[16]のいずれかに記載のポリアミドマルチフィラメント繊維。
 [18]前記[1]~[17]のいずれかに記載のポリアミドマルチフィラメント繊維を含むタイヤコード。
 [19]前記[1]~[16]のいずれかに記載のポリアミドマルチフィラメント繊維からなる撚糸コード。
 [20]レゾルシン-ホルマリン-ラテックス樹脂により処理された、前記[19]に記載の撚糸コード。
 [21]前記[17]に記載のポリアミドマルチフィラメント繊維からなる撚糸コード。
 [22]前記[1]~[16]のいずれかに記載のポリアミドマルチフィラメント繊維、又は前記[19]に記載の撚糸コードからなる簾織物。
 [23]レゾルシン-ホルマリン-ラテックス樹脂により処理された、前記[22]に記載の簾織物。
 [24]前記[17]に記載のポリアミドマルチフィラメント繊維、又は[20]~[21]のいずれかに記載のコードからなる簾織物。
 [25]前記[1]~[17]のいずれかに記載のポリアミドマルチフィラメント繊維、前記[18]~[21]のいずれかに記載のコード、又は前記[22]~[24]に記載の簾織物を含むタイヤ。
 [26]前記[1]~[17]のいずれかに記載のポリアミドマルチフィラメント繊維、前記[18]~[21]のいずれかに記載のコード、又は前記[[22]~[24]に記載の簾織物をキャッププライに適用した、前記[25]に記載のタイヤ。
 本発明に係るポリアミドマルチフィラメント繊維は、高Tgかつ高強度であり、紡糸安定性、繊維の均一性にも優れており、これを用いたタイヤコードは、ゴム接着性に優れ、タイヤに高温での良好な寸法安定性を付与することができる。
糸斑U%を説明するための図面である。 紡糸設備を説明するための図面である。
 以下、本発明を実施するための形態(以下、「実施形態」とも言う。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 本発明に係るポリアミドマルチフィラメント繊維は、脂環族ジカルボン酸を含むジカルボン酸とジアミンとの重縮合物からなるポリアミドマルチフィラメント繊維であって、以下の要件:
 (a)該ジカルボン酸に対する該脂環族ジカルボン酸の比率が50モル%以上である;
 (b)該ポリアミドマルチフィラメント繊維の総繊度が100dtex以上である;及び
 (c)該ポリアミドマルチフィラメント繊維のクロス比(最大直径/最小直径)が1.7以下である;
を満たすことを特徴とする。
 本実施形態のポリアミドマルチフィラメント繊維は、ジカルボン酸に対する脂環族ジカルボン酸の比率が50モル%以上含むジカルボン酸とジアミンとが重縮合したポリアミドから成る。これにより、繊維の高Tg化を達成し、ナイロン66繊維の欠点である高温時の剛性低下を大幅に抑制することが可能となる。また、脂肪族ポリアミドでアミド結合を有しているため、ゴム接着性も非常に優れている。さらに、耐熱ポリアミドとして一般的な芳香族由来の構造単位を含むポリアミドと比較して、良好な流動性を保ったままで高分子量化することができ、優れた繊維強度を有する糸を得ることができる。
 ポリアミドとは、主鎖中にアミド(-NHCO-)結合を有する重合体を意味する。また、「ジカルボン酸に対する脂環族ジカルボン酸の比率が50モル%以上」とは、「原料モノマー成分由来の構造単位に対する脂環族ジカルボン酸由来の構造単位の比率が25モル%以上」を意味する。以下、ポリアミドマルチフィラメント繊維のモノマー成分について説明する。
[ジカルボン酸]
 前記したように、本実施形態のポリアミドマルチフィラメント繊維は、脂環族ジカルボン酸を含むジカルボン酸とジアミンとの重縮合物からなるポリアミドマルチフィラメント繊維であって、ジカルボン酸に対する脂環族ジカルボン酸の比率が少なくとも50モル%以上であり、好ましくは60モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上であり、最も好ましくは100モル%である。脂環族ジカルボン酸由来の構造単位を少なくとも50モル%以上含むことにより、高Tg、繊維強度、紡糸性に優れるポリアミドマルチフィラメント繊維を得ることができる。
 脂環族ジカルボン酸としては、以下に限定されるものではないが、例えば、脂環構造の炭素数が3~10である脂環族ジカルボン酸、好ましくは脂環構造の炭素数が5~10である脂環族ジカルボン酸が挙げられる。具体的には、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸等が挙げられる。
 脂環族ジカルボン酸は、無置換でも置換基を有していてもよい。置換基としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基等が挙げられる。
 脂環族ジカルボン酸としては、ポリアミドマルチフィラメント繊維の耐熱性、寸法安定性、強度等の観点から、1,4-シクロヘキサンジカルボン酸が好ましい。
 脂環族ジカルボン酸は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 脂環族ジカルボン酸には、トランス体とシス体の幾何異性体が存在する。例えば、原料モノマーとしての1,4-シクロヘキサンジカルボン酸は、トランス体とシス体のどちらか一方を用いてもよく、トランス体とシス体の種々の比率の混合物として用いてもよい。1,4-シクロヘキサンジカルボン酸は、高温で異性化し一定の比率になることやシス体の方がトランス体に比べて、ジアミンとの当量塩の水溶性が高いことから、原料モノマーとして、トランス異性体比率、すなわち、トランス体/シス体のモル比は、好ましくは50/50~0/100であり、より好ましくは40/60~10/90であり、さらに好ましくは35/65~15/85である。トランス異性体比率が上記範囲内にあることにより、ポリアミドは、高融点、靭性、及び強度に優れる特性をもつだけでなく、高いガラス転移温度と、通常では耐熱性と相反する性質である流動性と、高い結晶性とを同時に満足することができる。1,4-シクロヘキサンジカルボン酸のトランス体/シス体のモル比は、液体クロマトグラフィー(HPLC)や核磁気共鳴分光法(NMR)により求めることができる。
 脂環族ジカルボン酸以外のジカルボン酸としては、以下に限定されるものではないが、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸等の炭素数3~20の直鎖又は分岐状脂肪族ジカルボン酸等が挙げられる。
 また、ジカルボン酸に対する芳香族ジカルボン酸の比率が0モル%以上10モル%以下のポリアミドの流動性を阻害しない範囲で、前記ジカルボン酸に芳香族ジカルボン酸を加えてもよい。芳香族ジカルボン酸としては、以下に限定されるものではないが、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、及び5-ナトリウムスルホイソフタル酸等の無置換又は種々の置換基で置換された炭素数8~20の芳香族ジカルボン酸等が挙げられる。
 ジカルボン酸に対する脂環族ジカルボン酸の比率が少なくとも50モル%以上含まれていれば、所望の作用効果を損なわない限り、前記以外のジカルボン酸を含んでいてもよい。
[ジアミン]
 本実施形態のポリアミドマルチフィラメント繊維は、紡糸安定性、耐熱性、低吸水性の観点から、ジアミン成分として、1,10-デカメチレンジアミンを含み、ジアミンに対する1,10-デカメチレンジアミンの比率が20モル%以上であることが好ましい。ジアミンに対する1,10-デカメチレンジアミンの比率は、好ましくは少なくとも20モル%以上、より好ましくは30モル%以上80モル%以下、さらに好ましくは40モル%以上75モル%以下、よりさらに好ましくは45モル%以上70モル%以下である。
 一般的にTgが高いポリマーは、融点も高くなる傾向がある。融点が高過ぎる場合、溶融時にポリアミドが熱分解し、分子量や強度の低下、着色、分解ガスの混入が生じて紡糸性が悪化する。しかしながら、1,10-デカメチレンジアミンを20モル%以上80モル%以下含むことにより、高いTgを維持しながらも溶融紡糸に適した融点に抑えることが出来る。また、1,10-デカメチレンジアミンを含むポリアミドは溶融時の熱安定性が高いため、紡糸安定性に優れ、均一性の良いマルチフィラメント繊維を得ることができる。また、ポリアミド中のアミド基濃度が低下することにより、吸水時の寸法安定性に優れる糸を得ることができる。さらに、1,10-デカメチレンジアミンは、バイオマス由来の原料であるという観点からも好ましい。
 1,10-デカメチレンジアミン以外のジアミンとしては、特に限定されず、無置換の直鎖脂肪族ジアミンでも、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基等の置換基を有する分岐状脂肪族ジアミンでも、脂環族ジアミンでもよい。
 1,10-デカメチレンジアミン以外のジアミンとしては、以下に限定されるものではないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の直鎖脂肪族ジアミン、2-メチルペンタメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2-メチルオクタメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、及び1,3-シクロペンタンジアミン等が挙げられる。
 また、ジアミンに対する芳香族ジアミンの比率が0モル%以上10モル%以下のポリアミドの流動性を阻害しない範囲で、ジアミンに芳香族ジアミンを加えてもよい。芳香族ジアミンとは、芳香族を含有するジアミンであり、以下に限定されるものではないが、例えば、メタキシリレンジアミン、オルトキシリレンジアミン、パラキシリレンジアミン等が挙げられる。
 1,10-デカメチレンジアミン以外のジアミンとして、炭素数5~6のジアミンを含み、炭素数5~6のジアミンの比率が20モル%以上であるものがより好ましい。1,10-デカメチレンジアミン以外に炭素数5~6のジアミンを共重合させることで、紡糸に適した適度な融点を維持しつつも、結晶性の高いポリマーを得ることができる。炭素数5~6のジアミンとしては、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、2,5-ジメチルヘキサンジアミン、2,2,4-トリメチルヘキサメチレンジアミンなどがある。

 炭素数5~6のジアミンの中でも紡糸性や流動性、強度の観点からは、2-メチルペンタメチレンジアミンが好ましい。2-メチルペンタメチレンジアミンの比率が高すぎると、2-メチルペンタメチレンジアミンが自己環化して、溶融時に分解し、分子量低下を引き起こすため、紡糸性や強度が悪化する。ジアミン中の2-メチルペンタメチレンジアミンの比率としては、流動性を確保しつつも溶融時の分解が起こらない範囲に設定する必要があり、好ましくは20モル%以上70モル%以下、より好ましくは20モル%以上60モル%以下、さらに好ましくは20モル%以上55モル%以下である。
 また、炭素数5~6のジアミンの中でもポリアミドマルチフィラメント繊維の耐熱性の観点からは、ヘキサメチレンジアミンが好ましい。ヘキサメチレンジアミンの比率が高すぎると、融点が高くなりすぎて、紡糸が困難になるため、ジアミン中のヘキサメチレンジアミンの比率として、好ましくは20モル%以上60モル%以下、より好ましくは20モル%以上50モル%以下、さらに好ましくは20モル%以上45モル%以下である。
 ジカルボン酸の添加量とジアミンの添加量は、高分子量化のため、同モル量付近であることが好ましい。重合反応中のジアミンの反応系外への逃散分もモル比においては考慮して、ジカルボン酸全体のモル量1.00に対して、ジアミン全体のモル量は、0.90~1.20であることが好ましく、より好ましくは0.95~1.10であり、さらに好ましくは0.98~1.05である。
[ラクタム及び/又はアミノカルボン酸]
 本実施形態のタイヤコードに用いるポリアミドマルチフィラメント繊維は、所望の作用効果を損なわない範囲で、ラクタム及び/又はアミノカルボン酸由来の成分を含んでいてもよい。
 前記ラクタムとしては、以下に限定されるものではないが、例えば、ブチロラクタム、ピバロラクタム、ε-カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、ラウロラクタム(ドデカノラクタム)等が挙げられる。
 アミノカルボン酸としては、以下に限定されるものではないが、例えば、ω位がアミノ基で置換された炭素数4~14の直鎖又は分岐状飽和脂肪族カルボン酸であることが好ましく、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられ、アミノカルボン酸としては、パラアミノメチル安息香酸等が挙げられる。
 ラクタム及び/又はアミノカルボン酸由来の成分比率については、特に限定されるものではないが、原料モノマー成分由来の構造単位に対するラクタム及び/又はアミノカルボン酸成分由来の比率が、0モル%以上20モル%以下含まれていてもよく、より好ましくは2モル%以上15モル%以下である。ラクタム及び/又はアミノカルボン酸成分由来の比率が0モル%以上20モル%以下であることにより、耐熱性、紡糸性、強度に優れるポリアミドマルチフィラメント繊維とすることができる。
 ジカルボン酸とジアミンからポリアミドを重合する際には、分子量調節のために公知の末端封止剤をさらに添加することができる。末端封止剤としては、例えば、モノカルボン酸、モノアミン、無水フタル酸などの酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などが挙げられ、熱安定性の観点で、モノカルボン酸、モノアミンが好ましい。末端封止剤は、1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノカルボン酸としては、アミノ基との反応性を有するものであれば、特に限定されるものではなく、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸などの脂肪族モノカルボン酸;シクロヘキサンカルボン酸などの脂環族モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸などの芳香族モノカルボン酸;などが挙げられる。
 末端封止剤としてのモノカルボン酸は、1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 末端封止剤として使用できるモノアミンとしては、カルボキシル基との反応性を有するものであれば、特に限定されるものではなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミンなどの脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミンなどの脂環族モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミンなどの芳香族モノアミン;などが挙げられる。末端封止剤としてのモノアミンは、1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 高温、高湿の環境下での熱安定性のためには、ポリアミドに対して銅濃度が1~500ppmとなるように銅化合物を添加するのが好ましく、より好ましくは30~500ppmである。そうすることで、本発明品が高温、高湿の環境下に長時間置かれたり、オゾンが多く含まれる環境下に長期間暴露されたとしても、機械的性能の低下が極めて有効に抑制される。前記銅含有率が30ppm未満では耐熱強度保持率が低下し、500ppmを超える添加量では強度が低下する。
 銅化合物としては、その種類を特に制限するものではなく、例えば、酢酸銅などの有機銅塩、あるいは塩化第一銅、塩化第二銅などのハロゲン化銅などを好ましく用いることができる。銅化合物は、金属ハロゲン化合物と併用することがより好ましい。金属ハロゲン化合物としては、例えば、沃化カリウム、臭化カリウム、塩化カリウム等が挙げられる。本実施形態における好ましい組み合わせは、沃化第一銅と沃化カリウム、及び酢酸銅と沃化カリウムである。尚、ポリアミド中の銅含有量は、原子吸光法や比色法などにより測定することができる。
 以下に制限されないが、安定剤として、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤等を添加してもよい。添加量は適切な量を選択すればよいが、ポリアミドに対して1~1000ppm添加することができる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いてもよい。
 ポリアミドマルチフィラメント繊維の総繊度は100dtex以上3000dtex以下が好ましい。産業資材用途として用いるにあたり、100dtex以上で強力が十分となり、紡糸性や後加工の観点から3000dtex以下が好ましい。
 ポリアミドマルチフィラメント繊維の単糸数は30フィラメント以上500フィラメント以下が好ましい。単糸数が30フィラメント以上のマルチフィラメントであることにより、比表面積が増えることや、外部からの応力に柔軟に対応できることから、ゴム接着性や耐疲労性が向上する。単糸数が500フィラメント以下であることで、紡糸時の糸揺れによる単糸の接触が抑えられ、紡糸性がよくなる。
 ポリアミドマルチフィラメント繊維の単糸繊度は屈曲強度や耐疲労性の観点から1dtex以上7.0dtex以下が好ましい。単糸繊度が1dtex以上であれば、糸の生産性に問題が生じ難く、また、単糸繊度が7.0dtex以下であれば、柔軟性の高い繊維が得られて、屈曲強度や耐疲労性が向上する。
 クロス比とは、マルチフィラメントの中の最大直径を最小直径で除した値であり、単糸間の均一性の尺度となる重要なパラメーターである。マルチフィラメントの強度は、単糸の強度分布の中でも低い物性に引っ張られるため、単糸間のバラつきが大きいと強度が発現しない。本実施形態のポリアミドマルチフィラメント繊維のクロス比は1.7以下であり、好ましくは1.6以下であり、より好ましくは1.5以下である。クロス比が1.7以下であることで、単糸レベルでの延伸が均一に行われ、単糸強度のバラつきが少なく、マルチフィラメントとして優れた強度が発現する。クロス比の下限は1.0である。
 図1に示すように、U%とは、ある測定長(L)を選び、その区間内の糸太さの平均値(X)、-100%、起点(A)、終点(B)で囲われる面積をFとし、区間内の糸の太さの変動(むら曲線)と(X)で囲われる面積をfとすると、U(%)=(f/F)×100で表される。この値が小さいほど糸斑が少なく、糸質が良好であると判断される。本実施形態のポリアミドマルチフィラメント繊維のU%は好ましくは3.0以下であり、より好ましくは2.5以下であり、さらに好ましくは2.0以下である。U%が3.0以下であることで、糸長方向の繊度斑が少なくなり、強度、耐摩耗性、耐疲労性が向上する。
 Δnとは複屈折のことであり、繊維の配向度合を評価することができる。Δnは、0.04以上であることが好ましい。Δnが0.04以上であると、剛性の指標である貯蔵弾性率E’が大きくなり、走行時の安定性に優れるタイヤコードとなる。
 Tgとはガラス状態からゴム状態に転移するときの温度であり、DSCや動的粘弾性測定器等にて測定できる。ポリアミドマルチフィラメント繊維のTgは、好ましくは90以上190℃以下である。Tgは、より好ましくは100℃以上であり、さらに好ましくは110℃以上である。また、Tgは、より好ましくは180℃以下であり、さらに好ましくは170℃以下である。ポリアミドマルチフィラメント繊維のTgを90℃以上とすることにより、高温時の剛性や耐熱性に優れるポリアミドマルチフィラメント繊維とすることができる。また、ポリアミドマルチフィラメント繊維のTgを190℃以下とすることにより、延伸性の良い糸を得ることができる。
 Tmとは固体が融解し、液体化する温度であり、DSC等にて測定できる。ポリアミドマルチフィラメント繊維のTmは、紡糸性や耐熱性の観点から、好ましくは270℃以上350℃以下である。Tmは、より好ましくは275℃以上であり、さらに好ましくは280℃以上である。また、Tmは、より好ましくは345℃以下であり、さらに好ましくは340℃以下である。ポリアミドマルチフィラメント繊維のTmを270℃以上とすることにより、耐熱性に優れるポリアミドマルチフィラメント繊維とすることができる。また、ポリアミ繊維のTmを350℃以下とすることにより、溶融温度を抑えて、紡糸時の熱分解を低減することができる。
 ポリアミドマルチフィラメント繊維の強度は産業資材用途として用いるにあたり、4cN/dtex以上であることが好ましい。より好ましくは5cN/dtex以上であり、さらに好ましくは6cN/dtex以上である。
 ポリアミドマルチフィラメント繊維の分子量分布はMw(重量平均分子量)/Mn(数平均分子量)で評価することができる。ポリアミドマルチフィラメント繊維のMw/Mnは、延伸性や繊維強度等の観点から、4.0以下が好ましく、より好ましくは1.5~3.8であり、さらに好ましくは1.5~3.5である。Mw/Mnの下限は1.0である。
 ポリアミドマルチフィラメント繊維の分子量は、強伸度などの機械物性や紡糸性などの観点から、JIS-K6810に従って測定した98%硫酸中濃度1%、25℃の硫酸相対粘度(ηr)は、1.5以上4.0以下であり、好ましくは1.7以上3.5以下であり、より好ましくは1.8以上3.3以下である。ηrが1.5以下であると産業資材用途として、十分な強度の繊維を得ることができず、また、ηrが4.0以上の繊維は、ポリマーの流動性が悪く紡糸困難であり、得ることができない。
 200℃で乾熱エージングさせた後のポリアミドマルチフィラメント繊維の強度保持率は80%以上が好ましく、より好ましくは85%以上であり、さらに好ましくは90%以上である。200℃強度保持率が80%以上あれば、熱処理が必要な後加工での工程安定性が得られる。
 タイヤは長時間高速で走行することにより、非常に高温となり、駐車している間に常温まで冷却される。フラットスポットはこの温度変化におけるタイヤコードの剛性変化に由来していると推測される。本発明における重要な技術的事項の一つは、「常温と高温でのポリアミドマルチフィラメント繊維の剛性差が小さいことがタイヤのフラットスポットの抑制に効果的である」ということである。具体的には、動的粘弾性測定で求められるポリアミドマルチフィラメント繊維における120℃での貯蔵弾性率E’(120℃)と25℃での貯蔵弾性率E’(25℃)の比E’(120℃)/E’(25℃)が0.6以上0.9以下であることが好ましく、より好ましくは0.7以上0.9以下である。E’(120℃)/E’(25℃)が0.6以上0.9以下であることで、フラットスポットを効果的に抑制することができる。
 ポリアミドマルチフィラメント繊維の、動的粘弾性測定で求められる損失正接(tanδ)のピーク温度は150℃以上200℃以下であることが好ましい。tanδのピーク温度が150℃以上であることで、非晶部もしくは無定形領域での分子鎖の運動が抑制されて、高温での耐疲労性が良くなる。
 また、ピーク温度でのtanδの値は0.3以下が好ましい。繊維を延伸してtanδを小さくすることで、分子鎖が動きづらくなり、高温での剛性が維持される。また、繰り返し伸長の運動に対して、分子鎖が構造変化しないため、耐疲労性に優れた繊維となる。tanδの値は通常行われる延伸では0.01以上となる。
[ポリアミドの製造方法]
 ポリアミドの製造方法としては、例えば、以下に例示するように種々の方法が挙げられる:
 (1)ジカルボン酸・ジアミン塩又はその混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、「熱溶融重合法」とも略称する。)。
 (2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「熱溶融重合・固相重合法」とも略称する。)。
 (3)ジアミン・ジカルボン酸塩又はその混合物の、水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダーなどの押出機で再び溶融して重合度を上昇させる方法(以下、「プレポリマー・押出重合法」とも略称する。)。
 (4)ジアミン・ジカルボン酸塩又はその混合物の、水溶液又は水の懸濁液を加熱、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「プレポリマー・固相重合法」とも略称する。)。
 (5)ジアミン・ジカルボン酸塩又はその混合物を、固体状態を維持したまま重合させる方法(以下、「固相重合法」とも略称する)。
 (6)ジカルボン酸と等価なジカルボン酸ハライド成分とジアミン成分を用いて重合させる方法「溶液法」。
 ポリアミドの製造方法において、ポリアミドの流動性の観点から、脂環族ジカルボン酸のトランス異性体比率を85%以下に維持して重合することが好ましく、特に、80%以下に維持することにより、さらに色調や引張伸度に優れ、高融点のポリアミドが得られる。ポリアミドの製造方法において、重合度を上昇させてポリアミドの融点を上昇させるために、加熱の温度を上昇させたり、及び/又は加熱の時間を長くしたりする必要が生ずるが、その場合、加熱によるポリアミドの着色や熱劣化による引張伸度の低下が起こる場合がある。また、分子量の上昇する速度が著しく低下する場合がある。ポリアミドの着色や熱劣化による引張伸度の低下を防止することができるため、トランス異性体比率を80%以下に維持して重合することが好適である。
 ポリアミドを製造する方法としては、トランス異性体比率を85%以下に維持することが容易であるため、また、得られるポリアミドの色調に優れるため、(1)熱溶融重合法、又は(2)熱溶融重合・固相重合法によりポリアミドを製造することが好ましい。
 ポリアミドの製造方法において、重合形態としては、バッチ式でも連続式でもよい。重合装置としては、特に限定されるものではなく、公知の装置、例えば、オートクレーブ型反応器、タンブラー型反応器、ニーダーなどの押出機型反応器などが挙げられる。
 ポリアミドの製造方法としては、以下に記載するバッチ式の熱溶融重合法によりポリアミドを製造することができる。
 バッチ式の熱溶融重合法としては、例えば、水を溶媒として、ポリアミド成分(ジカルボン酸、ジアミン、及び、必要に応じて、ラクタム及び/又はアミノカルボン酸)を含有する約40~60質量%の溶液を、110~180℃の温度及び約0.035~0.6MPa(ゲージ圧)の圧力で操作される濃縮槽で、約65~90質量%に濃縮して濃縮溶液を得る。次いで、該濃縮溶液をオートクレーブに移し、容器における圧力が約1.5~5.0MPa(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を抜きながら圧力を約1.5~5.0MPa(ゲージ圧)に保ち、温度が約250~350℃に達した時点で、大気圧まで降圧する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。その後、窒素などの不活性ガスで加圧し、ポリアミド溶融物をストランドとして押し出す。該ストランドを、冷却、カッティングしてペレットを得る。
 ポリアミドの製造方法としては、以下に記載する連続式の熱溶融重合法によりポリアミドを製造することもできる。
 連続式の熱溶融重合法としては、例えば、水を溶媒としてポリアミド成分を含有する約40~60質量%の溶液を、予備装置の容器において約40~100℃まで予備加熱し、次いで、濃縮層/反応器に移し、約0.1~0.5MPa(ゲージ圧)の圧力及び約200~270℃の温度で約70~90%に濃縮して濃縮溶液を得る。該濃縮溶液を約200~350℃の温度に保ったフラッシャーに排出し、その後、大気圧まで降圧する(ゲージ圧は、0MPa)。大気圧に降圧後、必要に応じて減圧する。その後、ポリアミド溶融物は押し出されてストランドとなり、冷却、カッティングされペレットとなる。
[ポリアミドマルチフィラメント繊維]
 本実施形態のポリアミドマルチフィラメント繊維は、上述したポリアミドを所定の方法により繊維化したものである。このポリアミドは脂環族ポリアミドであるため、その流動性や曳糸性は、芳香族ポリアミドよりも優れているが、ナイロン66などの一般的な脂肪族ポリアミドよりも劣る。また、Tmも高いため、熱によるポリマーの劣化や流動特性が非常にシビアとなる。本実施形態では、下記のような製造方法により、強度、紡糸安定性、均一性に優れた繊維を得ることができる。
 ポリアミドマルチフィラメント繊維の製造方法としては、様々な方法を用いることができるが、通常は溶融紡糸が用いられ、スクリュー型の溶融押出機を用いて行うことが好ましい。ポリアミドの紡糸温度(溶融温度)は300℃以上360℃以下であることが好ましい。300℃以上あれば、熱量不足による未溶解物の混入を抑制することができる。360℃以下であると、ポリマーの熱分解や分解ガスの発生を大幅に低減し、紡糸性が向上する。
 熱溶融後は孔径が約10~100μmの細孔を有する金属不織布フィルターを組み込んだ紡糸パック中を通過させ、紡口と呼ばれる口金細孔ノズルを通して吐出する。マルチフィラメントとするため、この際のノズルはホール数が30以上であることが好ましい。また、紡糸性を確保するため、孔径は0.10mm~0.50mmが好ましい。さらに、ノズルの長(L)と径(D)の比であるL/Dは1.0~4.0の範囲であることが好ましい。
 マルチフィラメントの紡口には多数の細孔が必要なため、モノフィラメントと比べて紡口表面積が大きくなり、紡口表面の温度斑が起こり易い。特に、本実施形態のポリアミドマルチフィラメント繊維はTmが高く、また、温度による流動特性への影響が大きいため、温度斑が生じると均一な繊維を得ることが困難となる。そこで、紡口表面の温度斑を減らし、吐出時のポリマー温度を均温化させることが特に重要である。紡口表面温度の均一性を高めるためには、紡口ヒーターを設置することが好ましい。特に紡口表面は糸条の随伴流により、外側が激しく冷やされるので、紡口ヒーターは紡口の外側を囲うようして、紡口に直付けで取り付けるのが好ましい。
 紡口ヒーターにより、紡口表面温度をTm以上Tm+60℃以下で加熱し、紡口面の中心と外周の温度差を3℃以内することで、吐出時のポリマーの溶融粘度差が小さくなり、均一性に優れた繊維を得ることができる。紡口表面温度がTm以上あることで、熱量不足による吐出斑が生じることなく、均一な繊維を得ることができる。紡口表面温度がTm+60℃よりも低いことで熱劣化を低減することができる。
 吐出した直後の糸条には加熱筒などにより、加熱ゾーンを設けることが好ましい。加熱筒とは糸条を囲んだヒーターである。本実施形態のポリアミドマルチフィラメント繊維はTmが高いため、紡糸直後の固化速度が速く、曳糸性が低下し、紡口直下での切糸が頻発して、紡糸が困難となる。そこで、加熱筒を設置し、紡口直下の雰囲気温度を高く、均一にすることで、溶融ポリマーの固化速度や単糸間の固化斑が抑えられ、曳糸性が大幅に向上する。また、本実施形態のポリアミドマルチフィラメント繊維はTgが高いため、紡糸ドラフトの影響で配向し易く、延伸性の低下を招くが、加熱筒を設置することで、紡糸ドラフトでの不均一な配向を緩和し、延伸性及び強度が向上する。糸条は随伴流の影響により、外周の単糸から冷やされるので、加熱筒としては糸条を外側から囲うような円筒形のヒーターが好ましい。また、吐出直後の曳糸性の確保と配向緩和のためには、加熱ゾーンの距離が必要であり、加熱筒の長さは例えば10~300mmあるのが好ましい。さらに、加熱筒の温度は100℃以上200℃以下が好ましい。100℃未満であると吐出された溶融ポリマーはすぐに固化して、曳糸性や配向緩和が低下する。一方、200℃よりも高いと熱劣化が生じて、強度低下や色調の悪化が生じる。
 加熱ゾーンを通過した糸条は冷風を当てることにより、急冷固化される。この時の冷風速度は0.2~2.0m/minの範囲が好ましい。0.2m/minより遅いと冷却不十分となる。2.0m/minよりも速いと糸揺れが大きくなり、単糸が接触し、単糸同士が密着して紡糸性や延伸性が低下する。次いで、仕上剤が付与される。仕上剤は、鉱物油で希釈した非水系仕上剤、又は仕上剤濃度が15~35重量%の水分散系エマルジョンが付与される。繊維に付着させる仕上剤の付着量は、巻き取った繊維に対し0.5~2.5重量%、好ましくは0.7~2.0重量%である。
 延伸工程は、加熱浴、加熱蒸気吹付け、ローラーヒーター、接触式プレートヒーター、非接触式プレートヒーター等を使用することができるが、生産性の観点からローラーヒーターが好ましい。また、本発明の延伸は冷延伸と熱延伸の工程を含む2段以上の多段熱延伸を行うことが好ましい。特に繊維強度を発現させるためには、冷延伸温度、熱延伸温度、冷延伸倍率と熱延伸倍率の比率が重要となる。
 冷延伸は熱延伸をさせる前に繊維配向を適度に揃えるための予備延伸の役割を果たす。本実施形態のポリアミド樹脂は高いTgを有しているため、冷延伸温度も(Tg-30℃)以上Tg以下の高い温度が必要となる。(Tg-30℃)以上であることで、延伸斑なく、均一に配向して、良好な強度が得られる。Tg以下であることで結晶化が過剰に進むことを抑制できる。また、延伸による一軸配向においては、ネック点と呼ばれる急激に径が小さくなり、配向が進む箇所が存在するが、冷延伸温度がTg以下であることで、ネック点が安定して、マルチフィラメントにおいて均一な繊維を得ることができる。
 本実施形態のポリアミド樹脂は高いTgを有しているため、延伸の際に熱量不足や熱量多過による延伸斑や過剰な熱結晶化が生じやすい。そのため、高延伸するためには、冷延伸倍率と熱延伸倍率の配分が非常に重要である。冷延伸倍率の配分は総合延伸倍率の50%以上80%以下が好ましい。冷延伸倍率の配分が総合延伸倍率の50%以上であると、繊維に必要な予備延伸が与えられ、延伸斑なく均一な繊維を得ることができる。また、熱延伸での過剰な結晶化を抑えることができる。他方、冷延伸倍率の配分が総合延伸倍率の80%以下であると熱延伸にて結晶化に必要な熱量が与えられて、優れた強度を得ることができる。
 熱延伸温度は200℃以上250℃以下が好ましい。200℃以上であると、結晶化に必要な熱量が与えることができ、他方、250℃よりも低いと、繊維の熱劣化を抑制することができる。総合延伸倍率は2.0~7.0倍、好ましくは3.0~6.0倍である。
 延伸された繊維は巻き取る前に交絡付与装置により、糸条に高圧流体を吹き付けて交絡させることが好ましい。交絡付与装置としては、従来のエア交絡装置を適宜もちいることができる。マルチフィラメントに交絡を付与することで、単糸の集束ばらけを抑えて、タイヤコード処理までのコード切れ等のトラブルを回避できる。また、破断伸度を高めにすることでプランジャーエネルギー向上に寄与する。交絡数は1個/m以上30個/m以下が好ましく、より好ましくは1個/m以上20個/m以下であり、さらに好ましくは1個/m以上15個/m以下である。交絡数が1個/m以上あることで、単糸の集束ばらけを抑えることができ、他方、交絡数が20個/m以下であることで、交絡による糸条へのダメージを低減できる。
[タイヤコード]
 本実施形態のポリアミドマルチフィラメント繊維は撚りを掛けて繊維コードの形態とし、タイヤコードとして用いることができる。マルチフィラメントの繊維に撚りを掛けることで、強力利用率が平均化し、その疲労性が向上する。本実施形態のポリアミドマルチフィラメント繊維に対する撚り数としては1回/m以上が好ましい。撚糸の形態及び方法の制限はないが、撚り係数(K)が300~30000の範囲で撚糸することが好ましい。尚、撚り係数(K)は、下式で定義される:
   K=Y×D0.5(T/m・dtex0.5
{式中、Yは、ポリアミド撚糸体1mあたりの撚り数(T/m)であり、そしてDは、ポリアミド撚糸物の総表示繊度(dtex)である。}。撚糸時の張力は0.01~0.2cN/dtexが好ましい。
 本実施形態のタイヤコードとしては、前記した撚りを掛けた繊維コードを簾織物としてタイヤに用いたものが好ましい。この場合、下撚及び上撚を施したポリアミドマルチフィラメント繊維から成るコードを経糸として1500本~3000本並べ、これらの経糸が、ばらけないように緯糸で製織することにより該すだれ織物を得ることができる。また、該簾織物の好ましい幅は140~160cmで、長さは800~2500mであり、緯糸は2.0~5.0本/5cm間隔で打ち込まれていることが好ましい。
 簾を製織する際に使用される緯糸としては、特に制限はないが、綿やレーヨン等の紡績糸、合成繊維糸と綿との精紡交撚糸など好ましい。
 ポリアミドマルチフィラメント繊維コード又はそれから成る簾織物には、タイヤを構成するゴムとポリアミドコードとの接着のためにレゾルシン-ホルマリン-ラテックス液(RFL液)を付与することが好ましい。RFL樹脂の付着率は、ポリアミドマルチフィラメント繊維コードに対して0.1~10質量%が好ましく、より好ましくは1~7質量%である。通常、RFL樹脂は、撚糸した後に付着されるが、撚糸の前又は途中に行ってもよい。RFL液の好ましい組成としては、レゾルシンを0.1~10質量%、ホルマリンを0.1~10質量%、ラテックスを1~28質量%であり、より好ましい組成としてはレゾルシン0.5~3質量%、ホルマリン0.5~3質量%、ラテックス10~25質量%である。
 RFL液を付着させた後、RFL液の乾燥、固着及びリラックス処理を行う。RFL液の乾燥温度は、好ましくは120~250℃、より好ましくは140~200℃、乾燥時間は、好ましくは10秒以上、より好ましくは20~120秒間である。乾燥後の撚糸物は、引き続きヒートセットゾーン及びノルマライジングゾーンにおいて熱処理を受ける。ヒートセットゾーン及びノルマライジングゾーンにおける温度と時間は、それぞれ、150~250℃と10~300秒とすることが好ましい。この際、2%~10%の延伸が施され、好ましくは3%~9%の延伸が施されることが好ましい。
 こうして得られたポリアミドマルチフィラメント繊維からなるタイヤコード又は簾織物を用いてタイヤを得ることができる。例えば、該タイヤコードが、タイヤのトレッドの内部に配置したキャッププライ及びカーカスプライの少なくとも一方に用いたタイヤである。このようなタイヤは公知の方法により製造することができ、トレッド部の内側に、本実施形態のタイヤコードを含むキャッププライ及び/又はカーカスプライを配置することにより、有効に補強されたタイヤとなる。
 以下、本発明の実施例と比較例を挙げて具体的に説明するが、本発明は下記の例に限定されるものではない。
 実施例及び比較例に用いた原材料の調製、測定方法及び製造方法を以下に示す。尚、本実施例において、1kg/cmは0.098MPaである。
(1)ポリアミドマルチフィラメント繊維の(総)繊度(dtex:デシテックス)
 ポリアミドマルチフィラメント繊維の重量Wと長さLを測定し、繊度を、繊度(d)=10000×W(g)/L(m)の式より求めた。
(2)ポリアミドマルチフィラメント繊維の25℃の硫酸相対粘度(ηr)
 JIS-K6810に準じて実施した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミドマルチフィラメント繊維1g)/(98%硫酸100mL)の割合)を作製し、25℃の温度条件下で測定した。
(3)ポリアミドマルチフィラメント繊維のTg(℃)
 セイコーインスツル社製の動的粘弾性測定装置DMS-6100を使用して、糸長20mmの試料を、周波数:10Hz、歪振幅:10μm、最小張力/圧縮力:50mN、張力/圧縮力ゲイン:1.5、力振幅初期値:50mNの条件で-50℃から270℃まで2.5℃/min昇温速度で測定した。その際の貯蔵弾性率E’の接線からTgを求めた。
(4)ポリアミドマルチフィラメント繊維のTm(℃)
 JIS-K7121に準じて、PERKIN-ELMER社製Pyris1-DSCを用いて測定した。測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minでサンプルの融点に応じて200~400℃まで昇温したときに現れる吸熱ピーク(融解ピーク)の温度をTm(℃)とした。
(5)ポリアミドのトランス異性体比率(%)
 ポリアミド30~40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、H-NMRで測定した。1,4-シクロヘキサンジカルボン酸の場合、トランス異性体に由来する1.98ppmのピーク面積とシス異性体に由来する1.77ppmと1.86ppmのピーク面積の比率からトランス異性体比率を求めた。
(6)紡口表面の汚れ
 後述する実施例及び比較例に記載の方法で溶融紡糸を行い、6時間紡糸後の紡口表面の汚れを観測した。炭化、糸曲り等が発生しているものは×、炭化や糸曲り等が発生していないものは○とした。
(7)切糸件数
 後述する実施例及び比較例に記載の方法で溶融紡糸を行い、紡糸開始直後から15分間の切糸件数を初期切糸とし、紡糸開始から6時間経時した際の切糸件数の合計を経時切糸とした。切糸件数が0件を○、1~5件を△、6件以上を×として評価した。
(8)Mw(重量平均分子量)/Mn(数平均分子量)
 ポリアミドマルチフィラメント繊維のMw(重量平均分子量)/Mn(数平均分子量)の測定には、東ソー株式会社製のGPC(ゲルパーミエーションクロマトグラフィー)HLC-8320と、TSKgelGMH-HSカラム3本を用いた。溶媒はヘキサフルオロイソプロパノール、標準サンプルとしてShodex社製のPMMA(ポリメチルメタクリレート)標準サンプルを使用して換算した時のMw(重量平均分子量)とMn(数平均分子量)を用いて計算した。
(9)クロス比
 ポリアミドマルチフィラメント繊維の断面をカットし、光学顕微鏡にて倍率250倍で任意50本の単糸を観察した。この際の、該単糸の直径を測定し下式により求めた。
   クロス比=最大直径/最小直径
(10)U%
 計測器工業株式会社製のイーブネステスターKET-80Cを用い、糸速度8m/分、チャートスピード50cm/分の条件で、ウースターノルマル値を測定した。
(11)ポリアミドマルチフィラメント繊維の繊維強度(cN/dtex)、伸度(%)
 島津製作所製オートグラフAGS-500NGを用いて、JIS-L1013に準拠して、25cmの繊維の試料を、降下速度300mm/分で測定した。
(12)Δn
 OLYMPUS社製の偏光顕微鏡BX-51PにOLYMPUS社製のコンペンセータU-CTBを取り付けて、Δnを測定した。
(13)交絡数
 水を張ったバス内に糸条の両端を持って弛緩状態で浸漬し、フィラメントを開繊させ、長さ1m当りの交絡数を目視により読み取り測定した。
(14)200℃での耐熱試験(%)
 一定張力で得られたポリアミドマルチフィラメント繊維を巻き付けた枷を200℃、空気環境下で1時間加熱した。一晩静置して冷却後、島津製作所製オートグラフAGS-500NGを用いて、JIS-L1013に準拠して、繊維強度測定を行い、加熱前後での強度保持率を計算した。
(15)貯蔵弾性率E'比(E'(120℃)/E'(25℃))
 セイコーインスツル社製の動的粘弾性測定装置DMS-6100を使用して、糸長20mmの試料を、周波数:10Hz、歪振幅:10μm、最小張力/圧縮力:50mN、張力/圧縮力ゲイン:1.5、力振幅初期値:50mNの条件で-50℃から270℃まで2.5℃/min昇温速度で測定した。その際の120℃での貯蔵弾性率E'(120℃)と25℃での貯蔵弾性率E'(25℃)の比を「E'(120℃)/E'(25℃)」とした。
(16)損失正接(tanδ)ピーク(℃)
 セイコーインスツル社製の動的粘弾性測定装置DMS-6100を使用して、糸長20mmの試料を、周波数:10Hz、歪振幅:10μm、最小張力/圧縮力:50mN、張力/圧縮力ゲイン:1.5、力振幅初期値:50mNの条件で-50℃から270℃まで2.5℃/min昇温速度で測定した。その際のtanδピークを読み取った。
(17)強力(N)
 島津製作所製オートグラフAGS-500NGを用いて、JIS-L1013に準拠して、25cmのコードの試料を、降下速度300mm/分で測定した。
(18)初期ゴム接着力(N/cm)
 6.0mm厚の未加硫ゴムシートを1cm幅×22cm長にカットしたものを、溝付加硫板に埋め込み、各種繊維コードを配した後、さらに6.0mm厚の未加硫ゴムシート重ねて、150℃、34MPaで30分間プレス加硫後、室温まで冷却した。その後、測定に不必要な部分を取り除いて、接着測定長1cmのT-pull測定サンプルを得た。得られたサンプルを、JIS-L1017(2002)Tテスト(A法)に示す方法で接着力を測定した。測定速度は300mm/分。
(19)耐熱ゴム接着力(N/cm)
 初期接着と同様の条件で加硫処理したあと、さらに続けて170℃、34MPaで60分間プレス加硫を行った。その後、得られたサンプルを、JIS-L1017(2002)Tテスト(A法)に示す方法で接着力を測定した。測定速度は300mm/分。
(20)高荷重ドラム耐久性
 試作タイヤをJIS規格の最大空気圧に調整した後、24時間放置後、空気圧の再調整を行い、JIS規格の最大荷重の2倍の荷重をタイヤの負荷し、直径1.7mのドラム場で60km/時の速度で3万km走行させた。完走したタイヤを○、途中で故障を起こしたタイヤを×で評価した。
(21)フラットスポット
 試作タイヤを実車に装着し、一定時間走行させて充分高温となったタイヤに負荷をかけて完全に冷えるまで放置した後のタイヤの変形を、真円度の変化として測定することにより評価した。すなわち、負荷の前後における真円度をそれぞれ測定して、その差をフラットスポット量として求め、比較例1のフラットスポット量を100として指数表示した。指数値が大きくなる程、フラットスポット量が小さく良好であることを示す。
<実施例1>
 「熱溶融重合法」によりポリアミド重合を実施した。
 原料モノマーの重量を1500gとし、表1の組成比になるように、1,4-シクロヘキサンジカルボン酸831g(4.83モル)、1,10-デカメチレンジアミン333g(1.93モル)、及び2-メチルペンタメチレンジアミン336g(2.90モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。この均一水溶液に、ジアミン追添量が等モル量に対して2.1%となるように1,10-デカメチレンジアミン17.0g(0.10モル、全ジアミンに対して2.1%)を追添し、水溶液を得た。
 得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。オートクレーブの槽内の圧力が、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、約2.5kg/cmになるまで、液温を約50℃から加熱を続けた(この系での液温は約1,45℃であった。)。
 槽内の圧力を約2.5kg/cmに保つため、水を系外に除去しながら加熱を続けて、水溶液の濃度が約75質量%になるまで濃縮した(この系での液温は約160℃であった。)。水の除去を止め、槽内の圧力が約30kg/cmになるまで加熱を続けた(この系での液温は約245℃であった。)。槽内の圧力を約30kg/cmに保つため水を系外に除去しながら、最終温度-30℃になるまで加熱を続けた。液温が最終温度-30℃(ここでは280℃)まで上昇した後に、加熱は続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm)になるまで60分かけながら降圧した。その後、樹脂温度(液温)の最終温度が約310℃になるようにヒーター温度を調整した。樹脂温度はその状態のまま、槽内を真空装置で100torrの減圧下に10分維持した。その後、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出してポリアミドを得た。得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 以下の表1、2に、他の実施例・比較例とともに、重合組成、重合条件等をまとめて示す。後の紡糸工程を経た後の繊維の組成も表1、2の通りであった。
 乾燥した状態のポリアミドを、溶融紡糸装置(口金細孔ノズル:孔数210、孔径0.23mm、外径130mm)を用いて紡糸温度305℃、紡口ヒーター温度305℃、加熱筒温度120℃(加熱筒長150mm、内径170mm)の条件で紡糸した。この時の紡口の中心と外周部の温度差は1℃であった。その後、0.9m/sの冷風速度で冷却後、巻き取った繊維に対して1.0重量%で仕上剤を付着した。次に、冷延伸温度140℃で総合延伸倍率の65%延伸し、さらに熱延伸温度220℃で延伸した。延伸後、交絡付与装置により交絡を8回/m付与して、巻取機で巻き取り、ポリアミドマルチフィラメントを得た。その後、得られた繊維の評価結果を以下の表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例2>
 原料モノマーの重量を1500gとし、表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、紡糸温度320℃、紡口ヒーター温度320℃、加熱筒温度120℃(加熱筒長150mm、内径170mm)の条件で紡糸した。この時の紡口の中心と外周部の温度差は1℃であった。その後、0.9m/sの冷風速度で冷却後、巻き取った繊維に対して1.0重量%で仕上剤を付着した。次に、冷延伸温度138℃で総合延伸倍率の65%延伸し、さらに熱延伸温度220℃で延伸した。延伸後、交絡付与装置により交絡を8回/m付与して、巻取機で巻き取り、ポリアミドマルチフィラメントを得た。その後、得られた繊維の評価結果を以下の表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。また、実施例2の未延伸糸と延伸糸のtanδの値はそれぞれ以下の通りであった。未延伸糸:0.48、延伸糸0.20。
<実施例3>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例4>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、紡糸温度340℃、紡口ヒーター温度340℃、加熱筒温度120℃(加熱筒長150mm、内径170mm)の条件で紡糸した。この時の紡口の中心と外周部の温度差は1℃であった。その後、0.9m/sの冷風速度で冷却後、巻き取った繊維に対して1.0重量%で仕上剤を付着した。次に、冷延伸温度140℃で総合延伸倍率の65%延伸し、さらに熱延伸温度220℃で延伸した。延伸後、交絡付与装置により交絡を8回/m付与して、巻取機で巻き取り、ポリアミドマルチフィラメントを得た。その後、得られた繊維の評価結果を以下の表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例5>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。実施例5ではジアミン成分中の1,10-デカメチレンジアミンの比率が請求項で規定の範囲を外れており、融点が高くて、紡糸性やU%が悪化した。
<実施例6>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例7と8>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例9と10>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例11>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例1と同様に溶融紡糸装置(口金細孔ノズル:孔数210、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。実施例11では6時間経時での切糸件数が3件発生した。
<実施例12>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例1と同様に溶融紡糸装置(口金細孔ノズル:孔数210、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。得られたポリアミドマルチフィラメント繊維は高いTgを持ち、繊維の均一性、紡糸安定性に優れていた。
<実施例13~14>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例1と同様に溶融紡糸装置(口金細孔ノズル:孔数210、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。実施例13と14ではジアミン成分中の1,10-デカメチレンジアミンの比率が請求項で規定の範囲を外れており、熱安定性がやや悪化して紡口表面汚れが発生し、6時間経時での切糸もやや増加する傾向であった。
<実施例15>
 原料モノマーの重量を1500gとし、以下の表1の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例1と同様に溶融紡糸装置(口金細孔ノズル:孔数210、孔径0.23mm、外径130mm)を用いて、以下の表3の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。実施例15では6時間経時での切糸がやや増加する傾向であった。
<実施例16>
 実施例1で得られたポリアミドマルチフィラメント繊維をZ方向に390回/mの下撚りを加え、S方向に390回/mの上撚り(撚り係数=20637)を加えて1400/2に撚糸してコードとした。該コードをそれぞれ3000本引揃えて経糸とし、これに綿の紡績糸からなる緯糸を4本/5cmの間隔で打ち込んで簾織物を得た。
 次いで、上記の簾織物を、レゾルシン・ホルマリン・ゴムラテックスからなるRFL液に浸漬した後、160℃で120秒乾燥し、次いで223℃で60秒間延伸熱処理、リラックス熱処理を施した。さらに、この簾織物をキャッププライ材として用いて、常法により(空気入り)ラジアルタイヤ(タイヤサイズ225/60R16)を製造した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例16では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例17>
 実施例2で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例17では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例18>
 実施例4で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例18では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例19>
 実施例8で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例19では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例20>
 実施例11で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例20では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例21>
 実施例12で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例21では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例22>
 実施例13で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例22では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例23>
 実施例14で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例23では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<実施例24>
 実施例15で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。実施例24では高いゴム接着性と比較例16のナイロン66対比良好な耐フラットスポット性を有していた。
<比較例1>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。ナイロン66による繊維なので、Tgは低い値となった。
<比較例2>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、口金細孔ノズル(孔数1、孔径0.23mm、外径20mm)を用いて、紡糸温度350℃の条件で紡糸した。その後、0.9m/sの冷風速度で冷却後、巻き取った繊維に対して1.0重量%で仕上剤を付着した。次に、冷延伸温度155℃で総合延伸倍率の65%延伸し、さらに熱延伸温度220℃で延伸してモノフィラメント巻取機で巻きとった。その後、得られた繊維の評価結果を以下の表4に示す。比較例2では短時間では高強度のモノフィラメントを得ることができたが、ポリマーの分解により長時間安定的に紡糸することはできなかった。
<比較例3>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例2に対して単糸数が増えることで、ポリマーの分解による影響を受けやすくなり、短時間でも切糸が増え、長時間の紡糸は不可能であった。また、ポリマーの分解に伴う吐出斑により、強度や繊維の均一性も不十分な結果となった。
<比較例4>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例4ではジアミン成分中の1,10-デカメチレンジアミンの比率が請求項で規定の範囲を外れており、融点が高すぎて、紡糸性や繊維の均一性が悪化した。
<比較例5>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例5ではジアミン成分中の1,10-デカメチレンジアミンや2-メチルペンタメチレンジアミンの比率が請求項で規定の範囲を外れており、熱安定性の低下や2-メチルペンタメチレンジアミンの自己環化による分子量低下が進み、切糸が多く、繊維の均一性も悪化した。
<比較例6>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例6ではジカルボン酸成分中の脂環族ジカルボン酸の比率が請求項で規定の範囲を外れており、Tgが低く、6時間経時での切糸も多かった。
<比較例7>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例7ではジアミン成分中の1,10-デカメチレンジアミンの比率が請求項で規定の範囲を外れており、融点が高すぎて、紡糸性や繊維の均一性が悪化した。
<比較例8>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例8ではジアミン成分中の1,10-デカメチレンジアミンの比率が請求項で規定の範囲を外れており、融点が高すぎて、紡糸性や繊維の均一性が悪化した。
<比較例9>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例4と同様に溶融紡糸装置(口金細孔ノズル:孔数140、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表3に示す。比較例9ではジカルボン酸成分中の脂環族ジカルボン酸の比率が請求項で規定の範囲を外れており、Tgが低く、6時間経時での切糸も多かった。
<比較例10>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例10では紡口ヒーターが無いため、紡口表面温度の均温化が出来ずに、吐出斑が発生し、紡糸困難であり、強度や繊維の均一性も悪かった。
<比較例11>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例11では紡口ヒーターの温度が400℃と高すぎて、ポリマーの劣化が生じ、紡糸困難であり、強度や繊維の均一性も悪かった。
<比較例12>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例12では加熱筒が無いため、曳糸性や配向緩和が阻害されて、紡糸困難であり、強度や繊維の均一性も悪かった。
<比較例13>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例13では冷延伸がなく、一段延伸であり、強度や繊維の均一性が悪化した。
<比較例14>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例14では熱延伸温度が低く、熱量不足となり、強度や繊維の均一性が悪化した。
<比較例15>
 原料モノマーの重量を1500gとし、以下の表2の組成及び条件で実施例1と同じようにポリマーを重合し、得られたポリアミドを、真空乾燥機で乾燥し、水分率を500ppmに調整した。
 乾燥した状態のポリアミドを、実施例2と同様に溶融紡糸装置(口金細孔ノズル:孔数72、孔径0.23mm、外径130mm)を用いて、以下の表4の条件で紡糸、延伸した。その後、得られた繊維の評価結果を表4に示す。比較例15ではジカルボン酸成分中の1,4-シクロヘキサンジカルボン酸の比率が20モル%と低く、Tgが低かった。
<比較例16>
 比較例1で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。比較例16はナイロン66のタイヤおよびタイヤコードである。
<比較例17>
 比較例14で得られたポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。比較例17は1,4-シクロヘキサンジカルボンサンの比率が少なく、E'(120℃)/E'(25℃)の値も小さいため、比較例16のナイロン66対フラットスポット指数では大きな差が無かった。
<比較例18>
 PETのポリアミドマルチフィラメント繊維を1400dtexにして実施例16と同様に撚糸、RFL処理、タイヤ加工して物性を測定した。得られたポリアミドマルチフィラメント繊維の物性、すだれ織物を構成するコード物性、及び該コードを用いたタイヤの特性を以下の表5にまとめて示す。比較例18は比較例16のナイロン66対比フラットスポット指数は良好だが、ゴム接着性が弱く、耐久性が悪化した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明に係るポリアミドマルチフィラメント繊維は、高Tg、高強度であり、紡糸安定性、繊維の均一性にも優れており、これを用いたタイヤコードは、ゴム接着性に優れ、タイヤに高温での良好な寸法安定性を付与することができる。
 A  起点
 B  終点
 L  測定長
 X  区間糸太さの平均値
 F  A-Bで囲われる面積
 f  糸の太さの変動(むら曲線)とXで囲われる面積
 1  溶融押出機
 2  スピンヘッド
 3  紡糸パック
 4  紡糸(口金)
 5  紡糸ヒーター
 6  加熱筒(加熱ゾーン)
 7  冷風装置
 8  給油装置
 9  引取ロール
 10  第1ロール
 11  第2ロール
 12  第3ロール
 13  第4ロール
 14  交絡付与装置
 15  巻取装置
 Y  糸条

Claims (26)

  1.  脂環族ジカルボン酸を含むジカルボン酸とジアミンとの重縮合物からなるポリアミドマルチフィラメント繊維であって、以下の要件:
     (a)該ジカルボン酸に対する該脂環族ジカルボン酸の比率が50モル%以上である;
     (b)該ポリアミドマルチフィラメント繊維の総繊度が100dtex以上である;及び
     (c)該ポリアミドマルチフィラメント繊維のクロス比(最大直径/最小直径)が1.7以下である;
    を満たす前記ポリアミドマルチフィラメント繊維。
  2.  前記ポリアミドマルチフィラメント繊維の硫酸相対粘度が1.5以上4.0以下である、請求項1に記載のポリアミドマルチフィラメント繊維。
  3.  前記ジアミン成分として、1,10-デカンジアミンを含み、前記ジアミン成分全体に対する該1,10-デカンジアミンの比率が20モル%以上である、請求項1又は2に記載のポリアミドマルチフィラメント繊維。
  4.  前記ジアミン成分として、炭素数5又は6のジアミンを含み、前記ジアミン成分全体に対する該炭素数5又は6のジアミンの比率が20モル%の以上である、請求項1~3のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  5.  前記炭素数5又は6のジアミンが2-メチルペンタメチレンジアミンである、請求項4に記載のポリアミドマルチフィラメント繊維。
  6.  前記炭素数5又は6のジアミンがヘキサメチレンジアミンである、請求項4に記載のポリアミドマルチフィラメント繊維。
  7.  ガラス転移温度(Tg)が90℃以上190℃以下である、請求項1~6のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  8.  融点(Tm)が270℃以上350℃以下である、請求項1~7のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  9.  U%が3.0以下である、請求項1~8のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  10.  Δnが0.04以上であることを特徴とする、請求項1~9のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  11.  単糸数が30フィラメント以上であることを特徴とする、請求項1~10のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  12.  単糸繊度が7.0dtex以下である、請求項1~11のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  13.  繊維強度が4cN/dtex以上である、請求項1~12のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  14.  前記脂環式ジカルボン酸として、1,4-シクロヘキサンジカルボン酸を含み、かつ、該1,4-シクロヘキサンジカルボン酸に由来するトランス異性体比率が50%以上100%以下である、請求項1~13のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  15.  120℃での貯蔵弾性率E'(120℃)と25℃での貯蔵弾性率E'(25℃)の比、E'(120℃)/E'(25℃)の値が0.6以上0.9以下である、請求項1~14のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  16.  損失正接(tanδ)のピーク温度が150℃以上200℃以下である、請求項1~15のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  17.  レゾルシン-ホルマリン-ラテックス樹脂により処理された、請求項1~16のいずれか1項に記載のポリアミドマルチフィラメント繊維。
  18.  請求項1~17のいずれか1項に記載のポリアミドマルチフィラメント繊維を含むタイヤコード。
  19.  請求項1~16のいずれか1項に記載のポリアミドマルチフィラメント繊維からなる撚糸コード。
  20.  レゾルシン-ホルマリン-ラテックス樹脂により処理された、請求項19に記載の撚糸コード。
  21.  請求項17に記載のポリアミドマルチフィラメント繊維からなる撚糸コード。
  22.  請求項1~16のいずれか1項に記載のポリアミドマルチフィラメント繊維又は請求項19に記載の撚糸コードからなる簾織物。
  23.  レゾルシン-ホルマリン-ラテックス樹脂により処理された、請求項22に記載の簾織物。
  24.  請求項17に記載のポリアミドマルチフィラメント繊維又は請求項20若しくは21に記載のコードからなる簾織物。
  25.  請求項1~17のいずれか1項に記載のポリアミドマルチフィラメント繊維、請求項18~21のいずれか1項に記載のコード、又は請求項22~24のいずれか1項に記載の簾織物を含むタイヤ。
  26.  請求項1~17のいずれか1項に記載のポリアミドマルチフィラメント繊維、請求項18~21のいずれか1項に記載のコード、又は請求項22~24のいずれか1項に記載の簾織物をキャッププライに適用した、請求項25に記載のタイヤ。
PCT/JP2015/050167 2014-01-08 2015-01-06 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード WO2015105104A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15735361.6A EP3093379B9 (en) 2014-01-08 2015-01-06 Polyamide multifilament fiber and tire cord including said fiber
JP2015556808A JP6340375B2 (ja) 2014-01-08 2015-01-06 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
CN201580003390.0A CN105849325B (zh) 2014-01-08 2015-01-06 聚酰胺复丝纤维和包含该纤维的轮胎帘线
US15/108,067 US20160339746A1 (en) 2014-01-08 2015-01-06 Polyamide multifilament fiber and tire cord including said fiber
KR1020167016572A KR101921393B1 (ko) 2014-01-08 2015-01-06 폴리아미드 멀티필라멘트 섬유 및 이 섬유를 포함하는 타이어 코드

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014001582 2014-01-08
JP2014001602 2014-01-08
JP2014-001602 2014-01-08
JP2014-001582 2014-01-08
JP2014115639 2014-06-04
JP2014-115639 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015105104A1 true WO2015105104A1 (ja) 2015-07-16

Family

ID=53523929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050167 WO2015105104A1 (ja) 2014-01-08 2015-01-06 ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード

Country Status (6)

Country Link
US (1) US20160339746A1 (ja)
EP (1) EP3093379B9 (ja)
JP (1) JP6340375B2 (ja)
KR (1) KR101921393B1 (ja)
CN (1) CN105849325B (ja)
WO (1) WO2015105104A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190611A (ja) * 2015-03-31 2016-11-10 東洋ゴム工業株式会社 空気入りタイヤ
JP2016193684A (ja) * 2015-04-01 2016-11-17 東洋ゴム工業株式会社 空気入りタイヤ
WO2017043085A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン タイヤ用繊維、ゴム・繊維複合体及びタイヤ
WO2017043082A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン Pef原糸の製造方法、pef原糸及びタイヤ
WO2017043080A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン Pef原糸の製造方法
EP3360697A4 (en) * 2015-10-07 2018-11-07 Bridgestone Corporation Tire
US10208407B2 (en) 2016-01-22 2019-02-19 Kordsa Teknik Tekstil Anonim Sirketi High tenacity low extensible nylon 6.6 cord
EP3505663A4 (en) * 2016-08-23 2019-07-03 Bridgestone Corporation AIR TIRES AND METHOD FOR THE PRODUCTION THEREOF
WO2021255957A1 (ja) * 2020-06-19 2021-12-23 国立大学法人京都工芸繊維大学 ポリアミド4繊維の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017016665A (es) * 2016-06-09 2018-07-06 Kordsa Teknik Tekstil As Hilos de nailon 6.6 retorcidos individuales de alto modulo.
WO2019146600A1 (ja) * 2018-01-25 2019-08-01 東レ株式会社 ポリアミドマルチフィラメントおよびそれを用いたレース編物
JP7404260B2 (ja) * 2018-10-17 2023-12-25 株式会社ブリヂストン タイヤ
JPWO2020080439A1 (ja) 2018-10-17 2021-10-07 株式会社ブリヂストン タイヤ
CN109468735B (zh) * 2018-12-29 2023-09-22 四川省玻纤集团股份有限公司 一种玄武岩纤维布的织布系统及其织布方法
DE102019207014A1 (de) * 2019-05-15 2020-11-19 Continental Reifen Deutschland Gmbh Festigkeitsträgerlage für einen Fahrzeugluftreifen
IT201900025789A1 (it) * 2019-12-30 2021-06-30 Pirelli Pneumatici per ruote di veicoli con elementi di rinforzo comprendenti poliammidi semi-aromatiche
KR102387207B1 (ko) * 2020-03-20 2022-04-18 효성첨단소재 주식회사 캡플라이 코드 직물 및 이의 제조방법
CN111270342B (zh) * 2020-03-25 2022-08-05 厦门澳丽妃包袋有限公司 一种包袋生产用高强度抗撕裂无纺布及其制备方法
CN112626626B (zh) * 2020-12-02 2022-07-15 军事科学院系统工程研究院军需工程技术研究所 一种聚酰胺56长丝一步连续成型与柔性变形制备工艺及设备
CN113444241B (zh) * 2021-06-28 2023-01-10 广州辰东新材料有限公司 一种聚酰胺及其制备方法
KR20230048641A (ko) * 2021-10-01 2023-04-12 효성첨단소재 주식회사 재생가능한 타이어 코드용 폴리아미드 멀티필라멘트 섬유 및 그를 포함하는 타이어 코드

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170008A (ja) * 1984-09-06 1986-04-10 Toyobo Co Ltd ゴム補強用ポリアミド繊維及びコ−ド
JPH0247204A (ja) 1988-08-09 1990-02-16 Tokin Corp 磁石用希土類粉末及びその製造方法
JPH05156513A (ja) * 1991-12-04 1993-06-22 Asahi Chem Ind Co Ltd 高強度ポリアミド繊維及びその製造方法
JP2001063310A (ja) 1999-07-07 2001-03-13 Soc De Technol Michelin 改善された走行騒音性能をもつタイヤ
JP2011052361A (ja) 2009-09-04 2011-03-17 Asahi Kasei Chemicals Corp ポリアミド繊維
WO2013024593A1 (ja) * 2011-08-17 2013-02-21 東レ株式会社 結晶性ポリアミド樹脂の製造方法
JP2013127059A (ja) * 2011-11-15 2013-06-27 Toray Ind Inc ポリアミド樹脂

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725326A (en) * 1965-09-29 1973-04-03 Goodrich Co B F Epdm rubber tire cord adhesive from dicyclopentadiene latex and resorcinol-aldehyde resin
US3827998A (en) * 1972-10-27 1974-08-06 Du Pont Anisotropic dopes of polyamides in concentrated sulfuric acid
US4293688A (en) * 1973-08-31 1981-10-06 Phillips Petroleum Co. Polyamides of 1,4-cyclohexane dicarboxylic acid and 5-methyl-1,9-nonanediamine and fibers thereof
US3936253A (en) * 1974-05-24 1976-02-03 Allied Chemical Corporation Apparatus for melt-spinning synthetic fibers
JPS5522282B2 (ja) * 1974-12-28 1980-06-16
JP2757940B2 (ja) 1988-03-28 1998-05-25 住友ゴム工業株式会社 空気入りタイヤ
WO1994019517A1 (en) * 1993-02-23 1994-09-01 Toray Industries, Inc. High-strength polyamide fiber
US5447980A (en) * 1993-09-16 1995-09-05 Amoco Corporation Stabilized polyamide fiber
US6748731B2 (en) * 2002-04-08 2004-06-15 Tokusen U.S.A., Inc. Tire cord
US6899836B2 (en) * 2002-05-24 2005-05-31 Invista North America S.A R.L. Process of making polyamide filaments
US8487024B2 (en) * 2008-03-12 2013-07-16 Asahi Kasei Chemicals Corporation Polyamide, polyamide composition, and method for producing polyamide
CN101831716B (zh) * 2009-03-13 2011-12-07 北京服装学院 一种高强度高模量聚酰胺6纤维的制备方法
JP5454191B2 (ja) * 2010-02-09 2014-03-26 東レ株式会社 捲縮糸および繊維構造体
EP2765228A4 (en) * 2011-09-30 2015-08-05 Kolon Inc ARAMID FIBER CORD AND MANUFACTURING METHOD THEREFOR
WO2014042098A1 (ja) * 2012-09-14 2014-03-20 株式会社クラレ ポリアミド樹脂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170008A (ja) * 1984-09-06 1986-04-10 Toyobo Co Ltd ゴム補強用ポリアミド繊維及びコ−ド
JPH0247204A (ja) 1988-08-09 1990-02-16 Tokin Corp 磁石用希土類粉末及びその製造方法
JPH05156513A (ja) * 1991-12-04 1993-06-22 Asahi Chem Ind Co Ltd 高強度ポリアミド繊維及びその製造方法
JP2001063310A (ja) 1999-07-07 2001-03-13 Soc De Technol Michelin 改善された走行騒音性能をもつタイヤ
JP2011052361A (ja) 2009-09-04 2011-03-17 Asahi Kasei Chemicals Corp ポリアミド繊維
WO2013024593A1 (ja) * 2011-08-17 2013-02-21 東レ株式会社 結晶性ポリアミド樹脂の製造方法
JP2013127059A (ja) * 2011-11-15 2013-06-27 Toray Ind Inc ポリアミド樹脂

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190611A (ja) * 2015-03-31 2016-11-10 東洋ゴム工業株式会社 空気入りタイヤ
JP2016193684A (ja) * 2015-04-01 2016-11-17 東洋ゴム工業株式会社 空気入りタイヤ
WO2017043085A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン タイヤ用繊維、ゴム・繊維複合体及びタイヤ
WO2017043082A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン Pef原糸の製造方法、pef原糸及びタイヤ
WO2017043080A1 (ja) * 2015-09-08 2017-03-16 株式会社ブリヂストン Pef原糸の製造方法
CN108026667A (zh) * 2015-09-08 2018-05-11 株式会社普利司通 Pef原纱线的制造方法
CN108026667B (zh) * 2015-09-08 2020-04-21 株式会社普利司通 Pef原纱线的制造方法
EP3360697A4 (en) * 2015-10-07 2018-11-07 Bridgestone Corporation Tire
US10208407B2 (en) 2016-01-22 2019-02-19 Kordsa Teknik Tekstil Anonim Sirketi High tenacity low extensible nylon 6.6 cord
EP3505663A4 (en) * 2016-08-23 2019-07-03 Bridgestone Corporation AIR TIRES AND METHOD FOR THE PRODUCTION THEREOF
WO2021255957A1 (ja) * 2020-06-19 2021-12-23 国立大学法人京都工芸繊維大学 ポリアミド4繊維の製造方法

Also Published As

Publication number Publication date
US20160339746A1 (en) 2016-11-24
JPWO2015105104A1 (ja) 2017-03-23
KR101921393B1 (ko) 2018-11-22
EP3093379A4 (en) 2017-01-04
EP3093379B1 (en) 2019-05-01
JP6340375B2 (ja) 2018-06-06
CN105849325A (zh) 2016-08-10
EP3093379A1 (en) 2016-11-16
EP3093379B9 (en) 2019-06-12
CN105849325B (zh) 2018-07-06
KR20160087894A (ko) 2016-07-22

Similar Documents

Publication Publication Date Title
JP6340375B2 (ja) ポリアミドマルチフィラメント繊維、及び該繊維を含むタイヤコード
JP4831027B2 (ja) 繊維、ゴム補強コード、ならびに補強ゴム
WO2018038050A1 (ja) 空気入りタイヤ及びその製造方法
JP5807456B2 (ja) ポリアミド410繊維およびそれからなる繊維構造体
JP2017141002A (ja) 空気入りタイヤ及びその製造方法
JP5087949B2 (ja) ポリアミド繊維
JP5934005B2 (ja) ゴム補強用繊維コード及びそれを用いてなるゴム・繊維複合体
JP7042329B2 (ja) 半芳香族ポリアミド繊維およびその製造方法
KR101838492B1 (ko) 나일론 6.6 또는 나일론 6 사 및 아라미드 사를 이용한 고강력 타이어코드 및 이를 적용한 래디얼 공기입 타이어
JP3476262B2 (ja) 高タフネスポリヘキサメチレンアジパミド繊維およびその製造方法
JP6588259B2 (ja) 伝動ベルト用ポリアミド繊維、並びにそれを用いたコード、織物、及び伝動ベルト
JP5542084B2 (ja) ゴム補強用ポリエステル繊維
KR101878781B1 (ko) 나일론 6.6 또는 나일론 6 사 및 아라미드 사를 이용한 내피로도가 우수한 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR101878780B1 (ko) 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어
JP4253049B2 (ja) 耐熱性ポリアミド繊維及びその製造方法
JP7477531B2 (ja) タイヤ
KR101838490B1 (ko) 폴리에틸렌테레프탈레이트 사 및 아라미드 사를 이용한 고강력 타이어코드 및 이를 적용한 래디얼 공기입 타이어
KR101849196B1 (ko) 고공기압 타이어
JP2007046200A (ja) ゴムホース加硫用締布
JPH06248508A (ja) 高強度ポリヘキサメチレンアジパミド繊維
JP2001279525A (ja) ポリヘキサメチレンアジパミド繊維及びその製造方法
JP6510293B2 (ja) 空気入りタイヤ
JP3305048B2 (ja) 接着剤処理されたポリアミド繊維集合体
JPH0931748A (ja) 高強度ポリアミドモノフィラメント及びその製造方法
JP2023107311A (ja) パラ型全芳香族コポリアミド繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556808

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167016572

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015735361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE