WO2019146600A1 - ポリアミドマルチフィラメントおよびそれを用いたレース編物 - Google Patents

ポリアミドマルチフィラメントおよびそれを用いたレース編物 Download PDF

Info

Publication number
WO2019146600A1
WO2019146600A1 PCT/JP2019/001894 JP2019001894W WO2019146600A1 WO 2019146600 A1 WO2019146600 A1 WO 2019146600A1 JP 2019001894 W JP2019001894 W JP 2019001894W WO 2019146600 A1 WO2019146600 A1 WO 2019146600A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
dtex
polyamide multifilament
yarn
polyamide
Prior art date
Application number
PCT/JP2019/001894
Other languages
English (en)
French (fr)
Inventor
大輔 吉岡
佳史 佐藤
健明 河野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207020828A priority Critical patent/KR102593079B1/ko
Priority to EP19743570.4A priority patent/EP3744876A4/en
Priority to JP2019512837A priority patent/JP6879362B2/ja
Priority to CN201980009348.8A priority patent/CN111630216B/zh
Priority to US16/964,335 priority patent/US20210040650A1/en
Publication of WO2019146600A1 publication Critical patent/WO2019146600A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • D02G1/0266Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting false-twisting machines
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/225Mechanical characteristics of stretching apparatus
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • D04B21/12Open-work fabrics characterised by thread material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides

Definitions

  • the present invention relates to a polyamide multifilament suitable for lace knitting. More specifically, the present invention relates to a polyamide multifilament which can provide a lace knit having excellent durability, beautiful patterns and good texture when the polyamide multifilament of the present invention is used for the ground yarn of a lace base. is there.
  • Polyamide fibers and polyester fibers which are synthetic fibers are widely used in clothing and industrial applications because they have excellent mechanical and chemical properties.
  • polyamide fiber is widely used in general clothing applications such as stocking, innerwear, sportswear, etc., because it has excellent properties in its unique softness, high strength, coloring during dyeing, heat resistance, hygroscopicity, etc. ing.
  • Patent Document 1 discloses nylon 6 fiber for fishing nets having a fineness of 250 to 4400 dtex, which is excellent in durability, weather resistance, and high strength and high toughness netting, for high strengthening of polyamide fibers, for example. Has been proposed.
  • Patent Document 2 a polyamide fiber having a fineness of 300 to 1000 dtex, which is excellent in impact absorption against shear stress and multi-directional impact and excellent in durability and fatigue resistance, when it is subjected to knitting processing and used for industrial material applications And knits using this fiber have been proposed.
  • the present invention solves the above-mentioned problems, and it is an object of the present invention to provide a high-strength polyamide multifilament which is excellent in durability even if the fineness and single yarn fineness are achieved. More specifically, the polyamide multifilament having high strength and high knot strength makes it possible to achieve fineness and single yarn fineness while maintaining superior high-order passage and product quality and maintaining conventional strength.
  • An object of the present invention is to provide a lace knitted fabric which is excellent in texture, in which the pattern looks beautiful due to the transparency of the lace base yarn while maintaining the durability of the lace.
  • the present invention adopts the following composition.
  • the polyamide multifilament according to the above (1) which has a tensile strength of 6.1 to 7.5 cN / dtex at 15% elongation.
  • the polyamide multifilament according to the above (1) or (2) which has a total fineness of 20 to 44 dtex.
  • a method for producing a polyamide multifilament which comprises melting a polyamide resin, cooling and solidifying each filament discharged from a spinneret, and stretching it.
  • a spinneret for discharging a molten polyamide resin to form a filament a heating cylinder for gradually cooling the filament, a cooling device for cooling and solidifying the filament, and imparting convergence to the yarn by a swirling flow
  • a polyamide multifilament manufacturing apparatus comprising at least the following fluid swirl nozzle device, a takeoff roller for drawing and drawing the filaments, and a drawing device for drawing the filaments, And, the method for producing a polyamide multifilament according to any one of (1) to (3), which simultaneously satisfies the following conditions (A) to (D): (A) The heating cylinder is provided on the upper part of the cooling device (B) The fluid swirling nozzle device is provided on the upper part of the take-off roller (C)
  • the stretching device is a multistage stretching device having two or more stages (D) low relaxation heat
  • the polyamide multifilament of the present invention is a polyamide multifilament having high strength and high knot strength. Furthermore, the polyamide multifilament of the present invention is excellent in high-order passability and product quality, and while maintaining the durability of the lace, the pattern looks beautiful due to the transparency of the lace base yarn, and the lace knit having excellent texture is obtained. be able to.
  • FIG. 1 shows an embodiment of a production apparatus which can be preferably used for producing a polyamide multifilament which is an embodiment of the present invention.
  • FIG. 2 shows an embodiment of the production apparatus illustrated as a comparison of the production of a polyamide multifilament, which is an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional model view showing a spinneret and a heating cylinder which can be preferably used for producing a polyamide multifilament which is an embodiment of the present invention.
  • FIG. 4 shows an embodiment of a swirl nozzle that can be preferably used for the production of a polyamide multifilament, which is an embodiment of the present invention.
  • the polyamide multifilament which is one embodiment of the present invention is composed of polyamide.
  • a polyamide is a resin comprising a so-called high molecular weight product in which so-called hydrocarbon groups are linked to the main chain via an amide bond.
  • polyamides are excellent in spinning properties and mechanical properties, and mainly polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are preferred.
  • polycaproamide (nylon 6) is more preferable because it is difficult to gel and has good spinning properties.
  • the polycaproamide has ⁇ -caprolactam as a constitutional unit, and 80 mol% or more of it is composed of ⁇ -caprolactam.
  • the polycaproamide is preferably composed of 90 mol% or more of ⁇ -caprolactam.
  • the polyhexamethylene adipamide has hexamethylene diammonium adipate as a constituent unit, and 80 mol% or more of it is composed of hexamethylene diammonium adipate.
  • the polyhexamethylene adipamide is preferably composed of 90 mol% or more of hexamethylene diammonium adipate.
  • polydodecanoamide polyhexamethylene adipamide, polyhexamethylene azelamide, polyhexamethylene sebacamide, polyhexamethylene dodecanoamide, polymethaxylylene adipa
  • monomers such as amino carboxylic acid, dicarboxylic acid and diamine which are monomers constituting the polymer, polyhexamethylene terephthalamide, polyhexamethylene isophthalamide and the like.
  • the polyamide does not contain various additives such as a matting agent represented by titanium oxide.
  • various additives such as a heat resisting agent may be contained as needed as long as the effects of the present invention are not impaired.
  • the content thereof may be optionally mixed in the range of 0.001 to 0.1% by weight with respect to the polymer.
  • the polyamide multifilament which is one embodiment of the present invention is characterized in that the single yarn fineness, the strength and the knot strength are all in the above-mentioned specific range.
  • the polyamide multifilament which is one embodiment of the present invention has a single yarn fineness of 0.8 to 7 dtex. By setting it as this range, it becomes a race of a soft texture. When the single yarn fineness is larger than 7 dtex, the texture of the lace becomes hard. If the single yarn fineness is less than 0.8 dtex, strength reduction and fuzzing are apt to occur due to abrasion of a guide, etc., in a high tension state in a yarn manufacturing process, high order processing process, and yarn breakage increase in high order processing process, The product strength and quality are reduced. Preferably, it is 3.0 to 6.6 dtex.
  • the polyamide multifilament which is one embodiment of the present invention has a strength of 7.5 to 8.5 cN / dtex. By setting it in this range, the durability of the race is improved, and it is possible to make the fineness for achieving transparency. If the strength is less than 7.5 cN / dtex, the durability of the race is reduced. When the strength is more than 8.5 cN / dtex, fuzz is easily generated due to the high tension state in the yarn manufacturing process, the high order processing process, and the guide etc., and the yarn breakage in the high order processing process increases and the quality decreases. Do. Preferably, it is 7.7 to 8.2 cN / dtex.
  • the lace knit has a special knitting structure, so that the force is concentrated at the intersection point of the base yarn and the patterned yarn portion. Therefore, it is important for the durability of the race to increase not only the strength in the fiber axial direction described above but also the knot strength. That is, in addition to the strength in the fiber axial direction, improving the strength of the stress concentration portion of the crossing point improves the durability of the race.
  • the polyamide multifilament which is one embodiment of the present invention has a knot strength of 6.0 to 7.5 cN / dtex. By setting it in this range, the durability of the race can be improved, and the fineness for achieving transparency can be achieved. If the knot strength is less than 6.0 cN / dtex, the filament can not withstand the stress applied to the crossing point of the ground yarn and the stem, and it breaks and the durability of the race decreases. Also, the larger the knot strength, the better, but the upper limit in the present invention is 7.5 cN / dtex. Preferably, it is 6.3 to 7.5 cN / dtex.
  • the polyamide multifilament which is an embodiment of the present invention, has a tensile strength at 15% elongation (hereinafter sometimes referred to as “15% strength”), which is an index of raw yarn physical properties, of 6.1 to 7. It is preferably 5 cN / dtex.
  • the 15% strength is measured according to JIS L1013 (2010) tensile strength and elongation, and a tensile strength-elongation curve is drawn, and the value obtained by dividing the tensile strength (cN) at 15% elongation by the total fineness did.
  • the 15% strength is a value simply representing the fiber modulus, and the higher the 15% strength, the higher the gradient of the tensile strength-elongation curve, and the higher the fiber modulus.
  • the 15% strength is low, the slope of the tensile strength-elongation curve is low, which indicates that the fiber modulus is low.
  • the polyamide multifilament according to an embodiment of the present invention is subjected to multistage drawing at high magnification, and high fiber modulus is realized by drawing at high magnification, and in particular high by giving multistage drawing. While being a fiber modulus, it also suppresses fuzz generation.
  • the polyamide multifilament which is one embodiment of the present invention improves the product quality by setting the 15% strength to 6.1 to 7.5 cN / dtex.
  • the 15% strength to 6.1 cN / dtex or more, the change in the fiber structure and the change in the degree of crystal orientation in the dyeing step are small, the shrinkage of the fiber is suppressed, and the rigidity of the fiber is easily maintained. That is, the dimensional change and shrinkage spots at the time of heat setting in the lace manufacturing process are reduced, the fabric surface is smooth and beautiful, and the product quality is improved.
  • the 15% strength to 7.5 cN / dtex or less, yarn breakage and fuzz generation in the higher-order processing step are suppressed, and the product quality is improved.
  • it is 6.4 to 6.9 cN / dtex.
  • the polyamide multifilament which is an embodiment of the present invention, preferably has a tensile elongation product of 9.5 cN / dtex or more. If the strength and elongation product is 9.5 cN / dtex or more, the durability of the race will be good, and there will be little yarn breakage in the high-order processing step, and the high-order passability will be good. More preferably, the polyamide multifilament according to the embodiment of the present invention has a tenacity and elongation product of 10.0 cN / dtex or more. Also, although the strength and elongation product is preferably as large as possible, the upper limit value in the present invention is about 11.5 cN / dtex.
  • the polyamide multifilament which is an embodiment of the present invention preferably has a total fineness of 20 to 44 dtex.
  • the pattern looks beautiful, and the lace knit fabric is excellent in texture and durability.
  • the total fineness to 44 dtex or less the transparency of the lace base yarn is increased, the pattern looks beautiful, and the texture becomes soft.
  • the strength and knot strength become sufficient, and the durability of the race becomes good. More preferably, it is 22 to 33 dtex.
  • the polyamide multifilament according to the embodiment of the present invention preferably has a fineness fluctuation value U% of 1.2% or less, which is an index of thickness unevenness in the longitudinal direction of the fiber.
  • U% fineness fluctuation value
  • the cross-sectional shape of the polyamide multifilament which is an embodiment of the present invention is not particularly limited.
  • it may be a round cross section, a flat cross section, a lens type cross section, a trilobal cross section, a multi-lobal cross section, a modified cross section having the same number of recesses as 3 to 8 protrusions, a hollow cross section, and other known modified cross sections.
  • the present invention also provides a method of producing the above polyamide multifilament.
  • the method for producing a polyamide multifilament of the present invention includes the steps of melting a polyamide resin, cooling and solidifying each filament discharged from a spinneret, and drawing.
  • the method comprises: (1) discharging a molten polyamide resin, and a spinneret for forming a filament, (2) a heating cylinder for slow cooling the filament, and (3) cooling for cooling and solidifying the filament A device, (4) a fluid swirl nozzle device for imparting convergence to the yarn by swirling flow, (5) a take-off roller for drawing and stretching the filament, and (6) a stretching device for stretching the filament And a polyamide multifilament manufacturing apparatus at least.
  • the method is characterized in that the following conditions (A) to (D) are simultaneously satisfied.
  • the heating cylinder is provided on the upper part of the cooling device
  • the fluid swirl nozzle device is provided on the upper part of the take-off roller
  • the stretching device is a multistage stretching device having two or more stages
  • D Low relaxation heat treatment immediately after multistage stretching
  • FIG. 1 shows an embodiment of a production apparatus which can be preferably used for producing a polyamide multifilament which is an embodiment of the present invention.
  • the polyamide multifilament which is one embodiment of the present invention melts polyamide resin, measures and transports polyamide polymer with a gear pump, and is finally extruded from the discharge hole provided in the spinneret 1 to form each filament Do.
  • the filaments discharged from the spinneret 1 in this manner are, as shown in FIG. 1, enclosed around the entire circumference to gradually cool the gas supply device 2 for blowing steam in order to suppress contamination of the spinneret with time.
  • the heating cylinder 3 is provided, and the yarn is cooled and solidified to room temperature by the cooling device 4.
  • each filament is converged to form a multifilament, and it is entangled by the fluid swirl nozzle device 6 and stretched in two stages by the take-off roller 7, the first stretching roller 8, and the second stretching roller 9. And is relaxed at the relaxation roller 10.
  • the relaxed yarn is entangled by the entanglement device 11 and wound up by the winding device 12.
  • the relative viscosity of sulfuric acid of the polyamide resin is preferably 2.5 to 4.0. By setting it as such a range, a polyamide multifilament having high strength, knot strength, and strength and elongation product can be obtained.
  • the melting temperature is preferably higher than 20 ° C. with respect to the melting point (Tm) of the polyamide and lower than 95 ° C. with respect to the Tm.
  • a heating cylinder 3 is provided at the top of the cooling device 4 so as to surround each filament in the entire circumference.
  • the heating temperature of the polyamide polymer discharged from the spinneret 1 is small and the orientation is relaxed by setting the heating cylinder 3 above the cooling device 4 and setting the ambient temperature in the heating cylinder within the range of 100 to 300.degree. be able to.
  • relaxation of orientation by slow cooling from the die surface to cooling a multifilament having high strength, 15% strength, and high elongation product is obtained.
  • the heating cylinder is not installed, since the relaxation of orientation due to slow cooling from the die surface to the cooling is insufficient, it is difficult to obtain a fiber satisfying both strength, 15% strength, and strength and elongation product.
  • the heating cylinder is preferably a multilayer.
  • the fineness degree for clothing such as the polyamide multifilament which is one embodiment of the present invention
  • the heat convection is likely to be disturbed. Affects the solidified state of each filament, which causes U% to deteriorate. Therefore, by setting the heating cylinder in multiple layers and gradually reducing the temperature setting from the upper layer to the lower layer, thermal convection from the upper layer to the lower layer is intentionally created, and the downward flow of air in the same direction as the accompanying flow of yarn. This suppresses the disturbance of the thermal convection in the heating cylinder, reduces the yarn sway, and obtains a small multifilament of U%.
  • the multilayer heating cylinder length L is preferably 40 to 100 mm although it depends on the fineness of the filament.
  • the multilayer heating cylinder is preferably composed of two or more layers, and the single layer length L1 of the multilayer heating cylinder is preferably in the range of 10 to 25 mm.
  • the heating cylinder has three layers, the upper atmosphere temperature is 250 to 300 ° C., and the middle atmosphere temperature is 200 to 250 ° C. And the atmosphere temperature of the lower layer is 100 to 200.degree.
  • the atmospheric temperature profile between the base and the cooling can be controlled stepwise to 100 to 300 ° C., and high strength, appropriate 15% strength, high strength elongation product, and good polyamide multifilament of U% can be obtained. can get.
  • the cooling device 4 is a cooling device which blows out the cooled rectified air from a certain direction, or an annular cooling device which blows out the cooled rectified air toward the center side from the outer peripheral side It can be manufactured by any method such as an annular cooling device that blows the cooled rectified air from the center side toward the outer periphery.
  • the vertical distance LS (hereinafter referred to as the cooling start distance LS) from the lower surface of the spinneret to the upper end of the cooling air blowout part of the cooling device 4 is in the range of 159 to 219 mm to suppress yarn swaying and U% From the point of view, and more preferably from 169 to 189 mm.
  • the strength, the strength and elongation product, and the average of the sections from the upper end face to the lower end face of the cooling outlet portion are in the range of 20.0 to 40.0 m / min. Preferred in terms of U% and.
  • the vertical distance Lg from the position of the oil supply device 5, ie, the lower surface of the spinneret in FIG. 1 to the oil supply nozzle position of the oil supply device 5 Is preferably 800 to 1500 mm, more preferably 1000 to 1300 mm, although it depends on the single yarn fineness and the cooling efficiency of the filaments from the cooling device.
  • the filament temperature is lowered to an appropriate level at the time of applying the oil, and if it is 1500 mm or less, the yarn swaying by the downdraft is also small, and a low multifilament of U% is obtained.
  • the distance from the solidification point to the oil supply position is shortened, the accompanying flow is reduced, and the spinning tension is reduced, whereby the spinning orientation is suppressed and the stretchability is excellent. It is preferable from the point of strength and elongation product and 15% strength.
  • the yarn bending from the mouthpiece to the oil supply guide becomes appropriate, so that it is not easily affected by the rubbing with the guide, and the reduction in strength and elongation product and 15% strength decreases.
  • the fluid swirl nozzle device 6 is installed on the take-up roller 7. It is proposed in patent document 1 that the stretching is performed while being entangled. This is effective in the industrial single-filament fineness region, but in the fineness, single-filament fineness region for clothing such as the polyamide multifilament according to one embodiment of the present invention, it is entangled during drawing When you do, it is easy for the entanglement of single yarn to occur. In addition, since the entanglement points are formed, the drawability of the yarn at the entanglement point is lowered at the time of drawing under high tension, and stress concentration occurs in the other parts to which the entanglement is not given.
  • the fluid swirl nozzle has a shape as shown in FIG. 4, and the swirling flow from one direction in the cylinder imparts convergence to the yarn.
  • the length LA of the swirl nozzle depends on the fineness of the filament, but is preferably 5 to 50 mm from the viewpoint of imparting convergence.
  • the jet pressure of the swirling flow is preferably 0.05 to 0.20 MPa.
  • the stretching is performed in two or more multistage stretching.
  • the drawing tension becomes high and the draw point is located on the take-off roller
  • the multistage drawing of two or more stages disperses the load applied to the yarn during drawing, stabilizes the draw point between the rollers, stabilizes the drawability, and 15% which is appropriate for high strength and high fiber modulus. A strong, fuzz-free polyamide multifilament is obtained.
  • the total stretch ratio is preferably 3.5 to 5.0 times, more preferably 3.8 to 4.7 times, in order to achieve the strength and elongation range defined in the present invention.
  • the first-stage stretching ratio is preferably 2.5 to 3.5 times, and more preferably 2.7 to 3.3 times.
  • the take-up roller 7 is heated to 40 to 60 ° C., the first drawing roller 8 to 130 to 170 ° C., and the second drawing roller 9 to 150 to 200 ° C. (heat setting temperature).
  • the speed of the take-up roller 7 is preferably 500 to 1300 m / min, and more preferably 700 to 1100 m / min.
  • the relaxation rate of the drawing roller 9 and the relaxation roller 10 [(stretching roller speed-relaxing roller speed) / (relaxing roller speed) ⁇ 100] is 0 to 1.5. It is preferable to use%. Within this range, the relaxation rate is lower than when a general polyamide multifilament is produced, and heat setting is performed in a state with less relaxation (low relaxation heat treatment), and thus the linearity of molecular chains is improved.
  • the amorphous part inside the fiber has a uniform and moderately tensioned structure, and a polyamide multifilament of high strength, high nodular strength, and high strength elongation product can be obtained.
  • the relaxation rate is larger than 1.5%, heat setting occurs in a state of large relaxation, so that the straightness of the molecular chain decreases and the strength and the knot strength decrease.
  • the single fiber fineness of 0.8 to 7 dtex, high strength of 7.5 to 8.5 cN / dtex, 6.0 to A high knot strength polyamide multifilament of 7.5 cN / dtex is obtained.
  • the polyamide multifilament which is one embodiment of the present invention is supplied to a lace knitting machine as raw silk as raw silk and knitted on a lace ground in a usual manner.
  • the race site may be a normal knitting structure such as emboloidal race, russell race, river race and the like.
  • dyeing after knitting and subsequent post-processing final setting conditions may be performed according to known methods, and the use of acid dyes and reactive dyes as dyes, and of course the colors and the like are not limited.
  • A. Strength, elongation, strength and elongation product 15% strength Fiber samples are measured according to JIS L1013 (2010) tensile strength and elongation, and a tensile strength-elongation curve is drawn. As a test condition, the type of tester was a constant speed extension type, a grip interval of 50 cm, and a tensile speed of 50 cm / min. In addition, when the tensile strength at the time of cutting was smaller than the maximum strength, the maximum tensile strength and the elongation at that time were measured. The strength and strength and elongation product were determined by the following equation.
  • Elongation elongation at break (%)
  • Strength tensile strength at cutting (cN) / total fineness (dtex)
  • Nodal Strength tensile strength at cutting (cN) / total fineness (dtex)
  • the fiber sample is set on a measuring instrument with a total fineness and a single yarn fineness of 1.125 m / turn, and it is rotated 500 times to make a loop-like skein and dried with a hot air dryer (105 ⁇ 2 ° C. ⁇ 60 minutes)
  • the weight of the skein was measured with a balance, and the fineness was calculated from the value obtained by multiplying the official moisture percentage.
  • the official moisture content was 4.5%.
  • (B) Durability Burst strength is measured according to JIS L 1096 (2010), Burst strength test method according to the Muren type method (Method A), and the burst strength at any three locations is measured. It was evaluated in four steps. :: 150 kPa or more ⁇ : 120 kPa or more and less than 150 kPa ⁇ : 110 kPa or more and less than 120 kPa ⁇ : less than 110 kPa
  • (C) Product grade (fluff) Number of pillings in the lace fabric The number of pilling portions at which the lace fabric strikes each other (the fibers on the surface of the knitted fabric are fluffed and the fluffs are further entangled to form small spherical lumps) is indicated based on the following criteria. : 0: 0 or more and less than 2 2: 2 or more and less than 5 ⁇ : 5 or more and less than 10 ⁇ : 10 or more ⁇ and ⁇ were graded acceptable.
  • (D) Process Passability Knitting operation The number of yarn breakages during knitting was indicated as the number of yarn breakage per lace fabric (80 m) according to the following criteria. : 0: 0 or more and less than 5 :: 5 or more and less than 10 ⁇ : 10 or more and less than 20 cases ⁇ : 20 or more and less than 30 cases
  • Example 1 (Production of polyamide multifilament)
  • a nylon 6 (N6) chip having a sulfuric acid relative viscosity ( ⁇ r) of 3.3 and a melting point of 225 ° C. was dried by a conventional method so as to have a moisture content of 0.03 mass% or less.
  • the obtained nylon 6 chip was melted at a spinning temperature (melting temperature) of 298 ° C., and was discharged from a spinneret (discharge amount: 38.6 g / min).
  • the spinneret used had a hole number of 20, a round shape, a hole diameter of 0.25, and four threads / die.
  • the spinning machine was spun using the spinning machine of the embodiment shown in FIG.
  • the heating cylinder uses a heating cylinder length L of 50 mm and single-layer lengths L1 and L2 of 25 mm each, and the atmosphere temperature of the upper heating cylinder is 300 ° C. and the atmosphere temperature of the lower heating cylinder is 150 The temperature was set to be ° C.
  • Each filament discharged from the spinneret is gradually cooled at an ambient temperature of 150 to 300 ° C in a two-layer heating cylinder, and passed through a cooling device 4 with a cooling start distance LS169 mm, an air temperature of 18 ° C and an air velocity of 35 m / min. The warp was solidified by cooling to room temperature.
  • an oiling agent was applied at an oiling position Lg of 1300 mm from the nozzle face and each filament was converged to form a multifilament, and convergence was imparted by the fluid swirl nozzle device 6 having a swirl nozzle length of LA 25 mm. Convergence was imparted by injecting high-pressure air from the direction of the arrow to the traveling yarn in the fluid swirl nozzle device 6. The pressure of the injected air was 0.1 MPa (flow rate 15 L / min). Thereafter, the first-stage stretching is performed so that the stretching ratio between the take-up roller 7 and the first stretching roller 8 is 2.9 times, and then the stretching ratio between the first stretching roller 8 and the second stretching roller 9 is The second stage drawing was performed so as to be 1.5 times.
  • the second stretching roller 9 and the relaxation roller 10 were subjected to 1.0% relaxation, and the yarn was subjected to the entanglement treatment by the entanglement giving device 11 and then taken up with the winding device 12.
  • the total draw ratio represented by the take-up speed and the draw speed ratio was adjusted to be 4.35 times.
  • the surface temperature of each roller was set such that the take-up roller was 40 ° C., the first stretching roller 150 ° C., and the second stretching roller 185 ° C., and the relaxation roller was at room temperature.
  • the entanglement treatment was performed by injecting high pressure air from the direction perpendicular to the traveling yarn in the entanglement applying device. The pressure of the injected air was 0.2 MPa. Thus, a 33 dtex, 5 filaments nylon 6 multifilament was obtained. The results of evaluation of the obtained nylon 6 multifilament are shown in Table 1.
  • Example 2 A 33 dtex, 5-filament nylon 6 multifilament is obtained in the same manner as in Example 1 except that the strength and the knot strength are changed with the relaxation rate between the second drawing roller 9 and the relaxation roller 10 as 0%. I got a knit. The evaluation results are shown in Table 1.
  • Example 3 A 33 dtex, 5-filament nylon 6 multifilament is obtained in the same manner as in Example 1 except that the strength and the knot strength are changed with 1.5% relaxation rate between the second drawing roller 9 and the relaxation roller 10. , I got a lace knit. The evaluation results are shown in Table 1.
  • Example 4 A 33 dtex, 5-filament nylon 66 multifilament was obtained in the same manner as in Example 1 except that the polyamide was a nylon 66 (N 66) chip having a sulfuric acid relative viscosity ( ⁇ r) of 3.2 and a melting point of 265 ° C. I got a knit. The evaluation results are shown in Table 1.
  • Comparative Example 1 33 dtex, 5 filaments nylon 6 multi, in the same manner as Example 1, except that the relaxation rate between the second drawing roller 9 and the relaxation roller 10 is 2.0% and the knot strength is 5.9 cN / dtex. Filaments were obtained and lace knits were obtained. The evaluation results are shown in Table 1. The relaxation rate was 2.0%, so heat setting was performed with a large degree of relaxation, the linearity of the molecular chain decreased, and the knot strength decreased. Therefore, it was inferior to the durability of the lace knit.
  • Example 5 A 22 dtex 7-filament nylon 6 multifilament was obtained in the same manner as in Example 1 except that the discharge amount was 38.6 g / min and the number of holes in the spinneret was 42, 6. I got a lace knit. The evaluation results are shown in Table 2. The durability of the lace knitted fabric was good, and the durability could be maintained even if the fineness was reduced, and the texture was soft. In addition, with the reduction in the degree of fineness, the transparency of the lace base yarn was increased, and the handle looked more beautiful than in Example 1.
  • Example 6 22 dtex, 20 filaments nylon 6 in the same manner as in Example 1 except that the amount of discharge was 25.8 g / min, the number of holes in the spinneret was 80, the hole diameter was 0.18, and four threads / needle were used. Multifilaments were obtained and lace knits were obtained. The evaluation results are shown in Table 2. The durability of the lace knitted fabric was good, the durability could be maintained even if the fineness was reduced, and the texture was very soft. In addition, with the reduction in the degree of fineness, the transparency of the lace base yarn was increased, and the handle looked more beautiful than in Example 1.
  • Example 7 42 dtex, 6 filaments nylon 6 in the same manner as in Example 1 except that the discharge amount was 49.2 g / min, the number of holes in the spinneret was 24, hole diameter ⁇ 0.30, 4 yarns / die type were used. Multifilaments were obtained and lace knits were obtained. The evaluation results are shown in Table 2. The durability of the lace knit was good and soft. In addition, since the U% is very good, it is a lace knitted fabric having no stains than in Example 1.
  • Comparative Example 2 A 33 dtex, 5-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except that the fluid swirl nozzle device 6 was not installed.
  • the evaluation results are shown in Table 2.
  • the fineness degree for clothing and the single yarn fineness degree area the fineness of the single yarn is thin, and therefore, entanglement of the single yarn occurs when the entanglement treatment is performed at the time of drawing, and the drawability of the yarn at the entanglement point decreases. Decreased strength, frequent fuzz. Therefore, it was inferior to the process passage property of a lace knit, durability, and product quality (fluff).
  • Comparative Example 3 Same as Example 1 except that the fluid swirl nozzle device 6 was not installed, the discharge amount was 43.9 g / min, the number of holes in the spinneret was 5, hole diameter ⁇ 0.50, and one thread / die type was used. In the method, 150 dtex, 5 filament nylon 6 multifilament was obtained to obtain a lace knit. The evaluation results are shown in Table 2. Since the fineness and single yarn fineness were thick, the softness of the lace knitted fabric was inferior. In addition, since the fineness of the ground yarn is thick, there is no transparency of the lace ground yarn and the pattern can not be seen beautifully.
  • Comparative Example 4 22 dtex, 32 filaments nylon 6 in the same manner as in Example 1, except that the amount of discharge was 19.3 g / min, the number of holes in the spinneret was 96, the hole diameter was 0.16, and the number of threads / needles was used. Multifilaments were obtained and lace knits were obtained. The evaluation results are shown in Table 2. Since the fineness of the single yarn is thin compared to Example 5 and Example 6, the texture is improved, but the polyamide fiber is quenched in the cooling portion, the stretchability is reduced, and the strength and knot strength are reduced, U% Worse, fuzz also increased. Therefore, it was inferior to the process passage property of a lace
  • Comparative Example 5 As shown in FIG. 2, the second drawing roller 9 and the relaxation roller 10 are not installed, and the draw ratio between the drawing roller 7 and the first drawing roller 8 is 4. in the drawing roller 7 and the first drawing roller 8. 33 dtex in the same manner as in Example 1 except that stretching was performed only in one step so as to be 35 times and relaxed at a relaxation rate of 1.0% between the first stretching roller 8 and the winding device 12 , 5 filaments of nylon 6 multifilament were obtained, and a lace knit was obtained. The evaluation results are shown in Table 2. Since stretching at a high magnification was performed in the one-step stretching, the stretchability was deteriorated, the strength was reduced, and fluff was generated. Therefore, it was inferior to the process passage property of a lace knit, product quality (fluff), and durability.
  • Comparative Example 6 As shown in FIG. 2, the second drawing roller 9 and the relaxation roller 10 are not installed, and the draw ratio between the drawing roller 7 and the first drawing roller 8 is 4. in the drawing roller 7 and the first drawing roller 8. 33 dtex in the same manner as in Example 1 except that stretching was performed only in one step so as to be 35 times and relaxed at a relaxation rate of 5.0% between the first stretching roller 8 and the winding device 12 , 5 filaments of nylon 6 multifilament were obtained, and a lace knit was obtained.
  • the evaluation results are shown in Table 2. Since stretching at a high magnification was performed in the one-step stretching, the stretchability was deteriorated, the strength was reduced, and fluff was generated. In addition, since the relaxation rate was 5.0%, heat setting was performed in a state of large relaxation, the linearity of the molecular chain decreased, and the knot strength decreased. Therefore, it was inferior to the process passability, the grade, and durability of the lace knit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Filaments (AREA)
  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

本発明の一実施形態は、耐久性に優れ、柄が綺麗に映え、ソフト性に優れたレース編物が得られる高強力ポリアミドマルチフィラメントを提供する。本発明の一実施形態は、単糸繊度が0.8~7dtex、強度が7.5~8.5cN/dtex、結節強度が6.0~7.5cN/dtexであることを特徴とするポリアミドマルチフィラメントに関する。

Description

ポリアミドマルチフィラメントおよびそれを用いたレース編物
 本発明は、レース編物に好適なポリアミドマルチフィラメントに関するものである。さらに詳しくは、本発明のポリアミドマルチフィラメントをレース地の地糸に用いたとき、耐久性に優れ、柄が綺麗に映え、風合いが良好なレース編物を提供することができるポリアミドマルチフィラメントに関するものである。
 合成繊維であるポリアミド繊維やポリエステル繊維は、機械的・化学的性質において優れた特性を有することから衣料用途や産業用途で広く利用されている。特に、ポリアミド繊維はその独特の柔らかさ、高強度、染色時の発色性、耐熱性、吸湿性等において優れた特性を有することから、ストッキング、インナーウエア、スポーツウエアなど一般衣料用途で広く使用されている。
 レースの消費者ニーズとして、レースの柄が綺麗に映え、かつ柔らかな風合いのレースが望まれていた。レースの柄が綺麗に映えるようにするためには、地組織を構成する糸の細繊度化が必要であるが、細繊度化に伴い、糸強力が低下するため、高強度化が望まれていた。また、地組織を構成する糸の細繊度化に伴い、柄糸の糸比率が多くなるため、地糸の交錯部にかかる応力が強くなることから、交錯部の耐久性を強くすることも望まれていた。また、レースの風合いを柔らかくするため、地組織を構成する糸の単糸細繊度化も強く望まれていた。
 ポリアミド繊維の高強力化については、例えば特許文献1では、耐久性、耐候性に優れ、かつ高強力、高タフネス網地が得られる繊度250~4400dtexの漁網用ナイロン6繊維およびそれを用いた漁網が提案されている。
 特許文献2では、編加工を施して産業資材用途に使用する場合に、剪断応力や多方向の衝撃に対して衝撃吸収性に優れ、耐久性や耐疲労性に優れる繊度300~1000dtexのポリアミド繊維及びこの繊維を用いた編物が提案されている。
日本国特開2008-31572号公報 日本国特開2004-11082号公報
 しかしながら、特許文献1及び2に記載の繊維は太繊度であるため、レースの透明感が得られず、レース編物には適さない。また単糸太繊度であるため、レース編物の風合いに満足できるものではなかった。
 本発明は上記問題を解決するものであり、細繊度、単糸細繊度化しても、耐久性に優れる高強力ポリアミドマルチフィラメントを提供することを課題とする。さらに詳しくは、高強度、高結節強度を有したポリアミドマルチフィラメントによって、高次通過性と製品品位に優れ、従来並みの強力を維持しつつ、細繊度化と単糸細繊度化が可能となり、レースの耐久性は維持しつつ、レース地糸の透明感により柄が綺麗に映え、風合いに優れるレース編物を提供することである。
 上記課題を解決するため、本発明は以下の構成を採用する。
(1)単糸繊度が0.8~7dtex、強度が7.5~8.5cN/dtex、結節強度が6.0~7.5cN/dtexであることを特徴とするポリアミドマルチフィラメント。
(2)15%伸長時の引張強度が6.1~7.5cN/dtexであることを特徴とする上記(1)に記載のポリアミドマルチフィラメント。
(3)総繊度が20~44dtexであることを特徴とする上記(1)または(2)に記載のポリアミドマルチフィラメント。
(4)上記(1)~(3)のいずれか1に記載のポリアミドマルチフィラメントをレース地糸に使用したレース編物。
(5)ポリアミド樹脂を溶融し、紡糸口金から吐出された各フィラメントを冷却固化し、延伸するポリアミドマルチフィラメントの製造方法であって、
 溶融したポリアミド樹脂を吐出しフィラメントを形成するための紡糸口金と、フィラメントを徐冷するための加熱筒と、フィラメントを冷却固化するための冷却装置と、旋回流により糸に収束性を付与するための流体旋回ノズル装置と、フィラメントを引き取り延伸するための引き取りローラと、フィラメントを延伸するための延伸装置と、を少なくとも備えるポリアミドマルチフィラメントの製造装置を用い、
 かつ、下記(A)~(D)の条件を同時に満足することを特徴とする(1)~(3)のいずれか1に記載のポリアミドマルチフィラメントの製造方法。
(A)上記加熱筒が上記冷却装置の上部に設けられている
(B)上記流体旋回ノズル装置が上記引き取りローラの上部に設けられている
(C)上記延伸装置が2段以上の多段延伸装置である
(D)多段延伸直後に低弛緩熱処理する
(6)延伸ローラとリラックスローラ間において、リラックス率0~1.5%、熱セット温度150~200℃で弛緩熱処理することを特徴とする(5)に記載のポリアミドマルチフィラメントの製造方法。
 本発明のポリアミドマルチフィラメントは、高強度、高結節強度を有したポリアミドマルチフィラメントである。さらには、本発明のポリアミドマルチフィラメントは、高次通過性と製品品位に優れ、レースの耐久性は維持しつつ、レース地糸の透明感により柄が綺麗に映え、風合いに優れるレース編物を得ることができる。
図1は、本発明の一実施形態であるポリアミドマルチフィラメントの製造に好ましく用いることのできる製造装置の一実施態様を示すものである。 図2は、本発明の一実施形態であるポリアミドマルチフィラメントの製造の比較として例示した製造装置の一実施態様を示すものである。 図3は、本発明の一実施形態であるポリアミドマルチフィラメントの製造に好ましく用いることのできる紡糸口金および加熱筒を示す概略断面モデル図である。 図4は、本発明の一実施形態であるポリアミドマルチフィラメントの製造に好ましく用いることのできる旋回ノズルの一実施態様を示すものである。
 以下、本発明をさらに詳細に説明する。
 本発明の一実施形態であるポリアミドマルチフィラメントは、ポリアミドから構成される。かかるポリアミドは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂である。
 かかるポリアミドは、製糸性、機械特性に優れており、主としてポリカプロアミド(ナイロン6)、及びポリヘキサメチレンアジパミド(ナイロン66)が好ましい。また、ゲル化し難く、製糸性が良いことから、ポリカプロアミド(ナイロン6)がさらに好ましい。
 上記ポリカプロアミドは、ε-カプロラクタムを構成単位とし、その80モル%以上がε-カプロラクタムで構成される。上記ポリカプロアミドは、好ましくは90モル%以上のε-カプロラクタムで構成される。
 また、上記ポリヘキサメチレンアジパミドは、ヘキサメチレンジアンモニウムアジペートを構成単位とし、その80モル%以上がヘキサメチレンジアンモニウムアジペートで構成される。上記ポリヘキサメチレンアジパミドは、好ましくは90モル%以上のヘキサメチレンジアンモニウムアジペートで構成される。
 その他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。
 また、本発明の効果を有効に発現するためには、ポリアミドには酸化チタンに代表される艶消し剤など各種添加剤を含有しないことが好ましい。ただし、耐熱剤など、本発明の効果を阻害しない範囲で各種添加剤を必要に応じて含有していてもよい。また、その含有量はポリマーに対して0.001~0.1重量%の範囲で必要に応じて混合していてもよい。
 本発明の一実施形態であるポリアミドマルチフィラメントは、単糸繊度、強度、及び結節強度の全てを上記した特定範囲とすることを特徴とする。
 一般的にポリアミドマルチフィラメントは、繊度を細くすることで、レース地糸の透明感が増して柄が綺麗に映えるレース編物は得られるものの、製品強度が低くなり、レースの耐久性が低下してしまう。また、柄糸の糸比率が多くなるため、交錯部にて地糸にかかる応力が大きくなること。したがって、耐久性を維持するためには、強度、結節強度を高くする必要が生じる。また、レースの風合いを柔らかくするため、単糸繊度を細くする必要がある。
 そこで、本発明者らは鋭意検討し、風合い及び耐久性に優れ、レース地糸の透明感が増して柄が綺麗に映えるレース編物を提供するためには、単糸繊度、強度、および結節強度を上記した特定範囲とすることが重要であることを見出したのである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、単糸繊度が0.8~7dtexである。かかる範囲とすることにより、柔らかな風合いのレースとなる。単糸繊度が7dtexより大きい場合、レースの風合いが硬くなってしまう。単糸繊度が0.8dtex未満の場合、製糸工程、高次加工工程での高張力状態、ガイド等の擦過により、強度低下、毛羽が発生しやすくなり、高次加工工程での糸切れ増加、製品強度、品位が低下する。好ましくは、3.0~6.6dtexである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、強度が7.5~8.5cN/dtexである。かかる範囲とすることにより、レースの耐久性が向上し、透明感実現の為の細繊度化が可能とすることができる。強度が7.5cN/dtex未満の場合、レースの耐久性が低下する。強度が8.5cN/dtexより大きい場合、製糸工程、高次加工工程での高張力状態、ガイド等の擦過により、毛羽が発生しやすくなり、高次加工工程での糸切れ増加、品位が低下する。好ましくは、7.7~8.2cN/dtexである。
 レース編物は、特殊な編み構造を有することにより、地糸と柄糸部の交錯点に力が集中する。そのため、上述した繊維軸方向の強度だけではなく、結節強度も高くすることが、レースの耐久性には重要である。すなわち、繊維軸方向の強度に加えて、交錯点の応力集中部分の強さを向上させることが、レースの耐久性を向上させるのである。
 また、結節強度を高くすることは、細繊度のポリアミドマルチフィラメントにおいて特に有効である。レース地糸の透明感を実現するために地糸を細繊度化する場合、柄部の糸比率が多くなり、その結果、地糸の交錯部にかかる応力が大きくなる。そこで、結節強度を高くすることで、細繊度化することが可能となるからである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、結節強度が6.0~7.5cN/dtexである。かかる範囲とすることにより、レースの耐久性が向上、透明感実現の為の細繊度化することができる。結節強度が6.0cN/dtex未満の場合、地糸と柄部の交錯点にかかる応力にフィラメントが耐えきれず破断し、レースの耐久性が低下する。また、結節強度は大きいほど好ましいが、本発明におけるその上限値は7.5cN/dtexである。好ましくは、6.3~7.5cN/dtexである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、原糸物性の1つの指標である15%伸長時の引張強度(以下、「15%強度」と称すこともある)が6.1~7.5cN/dtexであることが好ましい。15%強度は、JIS L1013(2010)引張強さ及び伸び率に準じて測定し、引張強さ-伸び曲線を描き、15%伸長時の引張強さ(cN)を総繊度で除した値とした。15%強度は、繊維モジュラスを簡易的に表す値であり、15%強度が高いと、引張強さ-伸び曲線の勾配が高く、繊維モジュラスが高いことを示す。一方、15%強度が低いと、引張強さ-伸び曲線の勾配が低く、繊維モジュラスが低いことを示す。
 後述するが、本発明の一実施形態であるポリアミドマルチフィラメントは、多段階、高倍率延伸を施しており、高倍率延伸することで高繊維モジュラスを実現し、特に多段階延伸を施すことで高繊維モジュラスでありながら、毛羽発生も抑制している。
 本発明の一実施形態であるポリアミドマルチフィラメントは、15%強度を6.1~7.5cN/dtexとすることにより、製品品位が向上する。15%強度を6.1cN/dtex以上とすることで、染色工程での繊維構造変化および結晶配向度変化が少なく、繊維の収縮が抑制されると共に繊維の剛直性も維持し易い。すなわち、レース製造工程での熱セット時の寸法変化や収縮斑が少なくなり、生地表面が平滑で綺麗な編地となり、製品品位が向上する。15%強度を7.5cN/dtex以下とすることで、高次加工工程での糸切れ、毛羽発生を抑制し、製品品位が向上する。好ましくは6.4~6.9cN/dtexである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、強伸度積が9.5cN/dtex以上であることが好ましい。強伸度積が9.5cN/dtex以上であると、レースの耐久性が良好となり、また、高次加工工程での糸切れが少なく、高次通過性が良好となる。本発明の一実施形態であるポリアミドマルチフィラメントは、強伸度積が10.0cN/dtex以上であることがさらに好ましい。また、強伸度積は大きいほど好ましいが、本発明におけるその上限値は11.5cN/dtex程度である。
 本発明の一実施形態であるポリアミドマルチフィラメントは、総繊度が20~44dtexであることが好ましい。かかる範囲とすることにより、柄が綺麗に映え、風合いに優れ、耐久性の良好なレース編物となる。総繊度を44dtex以下とすることで、レース地糸の透明性が増して柄が綺麗に映え、風合いが柔らかいレース編み物となる。総繊度を20dtex以上とすることで、強力や結節強力が十分となり、レースの耐久性が良好となる。さらに好ましくは、22~33dtexである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、繊維長手方向における太さ斑の指標である繊度変動値U%が1.2%以下であることが好ましい。かかる範囲とすることで、レース編物を染色した後に、マルチフィラメントの太細に起因する染色斑や筋がなく、製品品位の良好なものとなる。さらに好ましくは1.0%以下である。また、U%は小さいほど好ましいが、本発明におけるその下限値は0.4%程度である。
 本発明の一実施形態であるポリアミドマルチフィラメントの断面形状は、特に限定されるものではない。例えば、丸断面、偏平断面、レンズ型断面、三葉断面、マルチローバル断面、3~8個の凸部と同数の凹部を有する異形断面、中空断面、及びその他公知の異形断面でもよい。
 本発明はまた、上記ポリアミドマルチフィラメントの製造方法を提供する。本発明のポリアミドマルチフィラメントの製造方法は、ポリアミド樹脂を溶融し、紡糸口金から吐出された各フィラメントを冷却固化し、延伸する工程を含む。
 当該方法は、(1)溶融したポリアミド樹脂を吐出し、フィラメントを形成するための紡糸口金と、(2)フィラメントを徐冷するための加熱筒と、(3)フィラメントを冷却固化するための冷却装置と、(4)旋回流により糸に収束性を付与するための流体旋回ノズル装置と、(5)フィラメントを引き取り延伸するための引き取りローラと、(6)フィラメントを延伸するための延伸装置と、を少なくとも備えるポリアミドマルチフィラメントの製造装置を用いて実施される。
 また、当該方法は、下記(A)~(D)の条件を同時に満足することを特徴とする。
(A)加熱筒が冷却装置の上部に設けられている
(B)流体旋回ノズル装置が引き取りローラの上部に設けられている
(C)延伸装置が2段以上の多段延伸装置である
(D)多段延伸直後に低弛緩熱処理する
 本発明の一実施形態であるポリアミドマルチフィラメントの製造方法の一例を、以下具体的に説明する。図1は本発明の一実施形態であるポリアミドマルチフィラメントの製造に好ましく用いることのできる製造装置の一実施形態を示すものである。
 本発明の一実施形態であるポリアミドマルチフィラメントは、ポリアミド樹脂を溶融し、ポリアミドポリマーをギヤポンプにて計量・輸送し、紡糸口金1に設けられた吐出孔から最終的に押し出され、各フィラメントを形成する。このようにして紡糸口金1から吐出された各フィラメントを、図1に示すように、紡糸口金の経時汚れを抑制するために蒸気を吹き出す気体供給装置2、徐冷するために全周に囲繞するように加熱筒3が設けられ、冷却装置4にて糸条を室温まで冷却固化する。その後、給油装置5で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体旋回ノズル装置6で交絡し、引き取りローラ7、第1延伸ローラ8、第2延伸ローラ9において、2段延伸され、リラックスローラ10において弛緩される。弛緩された糸条は交絡付与装置11により交絡を付与され、巻取装置12で巻き取る。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、ポリアミド樹脂の硫酸相対粘度は2.5~4.0が好ましい。かかる範囲とすることにより、強度、結節強度、強伸度積の高いポリアミドマルチフィラメントが得られる。
 また溶融温度は、ポリアミドの融点(Tm)に対して20℃より高く、かつTmに対して95℃より低くすることが好ましい。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、冷却装置4の上部には、各フィラメントを全周に囲繞するように加熱筒3が設けられている。加熱筒3を冷却装置4の上部に設置し、加熱筒内の雰囲気温度を100~300℃の範囲内とすることにより、紡糸口金1から吐出されたポリアミドポリマーは熱劣化が少なく、配向緩和させることができる。口金面から冷却までの徐冷による配向緩和によって、強度、15%強度、強伸度積の高いマルチフィラメントが得られる。加熱筒を設置しない場合、口金面から冷却までの徐冷による配向緩和が足りないため、強度、15%強度、及び強伸度積、共に満足する繊維が得にくい。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、加熱筒は多層であることが好ましい。本発明の一実施形態であるポリアミドマルチフィラメントのような衣料用の細繊度、単糸細繊度領域においては、加熱筒内での温度分布が一定であると、熱対流が乱れた状態になり易く、各フィラメントの固化状態に影響し、U%を悪化させる要因となる。その為、加熱筒を多層にして上層から下層にかけて段階的に温度設定を下げることで、上層から下層への熱対流を意図的に作り出し、糸の随伴流と同方向の下降気流とすることで、加熱筒内での熱対流の乱れを抑制し、糸揺れも小さく、U%の小さいマルチフィラメントが得られる。
 多層加熱筒長さLは、フィラメントの繊度にもよるが、40~100mmであることが好ましい。また、多層加熱筒は2層以上から構成されることが好ましく、多層加熱筒の単層長さL1は、10~25mmの範囲が好ましい。
 また、多層加熱筒内の雰囲気温度は100~300℃の範囲内で各層間において緩やかな温度勾配を設けることが好ましい。例えば、多層加熱筒長さLを75mm、単層長さL1を25mmとした場合は、加熱筒は3層構成となり、上層の雰囲気温度を250~300℃、中層の雰囲気温度を200~250℃、下層の雰囲気温度100~200℃とすることである。
 かかる構成とすることで、口金-冷却間の雰囲気温度プロフィールを100~300℃に段階的にコントロールし、高強度、適正な15%強度、高強伸度積、U%の良好なポリアミドマルチフィラメントが得られる。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、冷却装置4は、一定方向から冷却整流風を吹き出す冷却装置、あるいは外周側から中心側に向けて冷却整流風を吹き出す環状冷却装置、あるいは中心側から外周に向けて冷却整流風を吹き出す環状冷却装置など、いずれの方法においても製造可能である。
 紡糸口金の下面から冷却装置4の冷却風吹出し部の上端部までの鉛直方向距離LS(以下、冷却開始距離LSと称す)は、159~219mmの範囲にあることが糸揺れやU%を抑制する点で好ましく、169~189mmがより好ましい。冷却風吹出し面から吹き出される冷却風速に関しては、該冷却吹出し部上端面から下端面までの区間の平均で20.0~40.0m/分の範囲にあることが強度、強伸度積、U%およびの点から好ましい。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、給油装置5の位置、すなわち図1における紡糸口金下面から給油装置5の給油ノズル位置までの鉛直方向距離Lg(以下、給油位置Lgと称す)は、単糸繊度および冷却装置からのフィラメントの冷却効率にもよるが、800~1500mmが好ましく、より好ましくは1000~1300mmである。
 800mm以上である場合にはフィラメント温度が油剤付与時に適切な程度に下がり、1500mm以下である場合には下降気流による糸揺れも小さく、U%の低いマルチフィラメントが得られる。また、1500mm以下である場合には、固化点から給油位置までの距離が短くなることで随伴流が低減し、紡糸張力が低下することで紡糸配向が抑制され、延伸性に優れるため、強度、強伸度積、15%強度の点から好ましい。800mm以上である場合には、口金から給油ガイドまでの糸屈曲が適正となり、ガイドでの擦過による影響を受けにくく、強伸度積、15%強度の低減が少なくなる。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、引き取りローラ7の上部に、流体旋回ノズル装置6を設置する。特許文献1において、延伸時に交絡処理をしながら延伸することが提案されている。これは、産業用の単糸太繊度領域においては有効であるものの、本発明の一実施形態であるポリアミドマルチフィラメントのような衣料用の細繊度、単糸細繊度領域においては、延伸時に交絡処理した際に、単糸の絡みあいが起きやすい。また、交絡点ができることで、高張力下での延伸時に、交絡点での糸の延伸性が低下し、それ以外の交絡が付与されていない部分への応力集中が起こってしまう。その結果、強度が低下し、毛羽が発生しやすくなる。その為、延伸前に流体旋回型のノズルを適用し、糸に交絡点なく適度な収束性を付与することで、均一な延伸が行われ、高強度かつ毛羽のないポリアミドマルチフィラメントが得られる。
 流体旋回型のノズルは、図4のような形状であり、筒内で一方向からの旋回流により、糸に収束性が付与される。旋回ノズルの長さLAは、フィラメントの繊度にもよるが、5~50mmであることが収束性付与の観点から好ましい。
 また、旋回流の噴出圧力は、0.05~0.20MPaとすることが好ましい。かかる範囲の噴出圧力とすることで、フィラメントに適度な収束性を付与することができ、高張力下での延伸時の延伸性の低下がなく、また延伸の際の単糸ばらけが発生しないことから、細繊度化、単糸細繊度としても、毛羽のない高強力ポリアミドマルチフィラメントが得られる。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、延伸は2段以上の多段延伸とする。1段延伸の場合、高倍率の延伸を施し、高繊維モジュラスかつ、高強度の原糸を得ようとした際には、延伸張力が高くなることや、ドローポイントが引き取りローラ上に位置することで、延伸性が悪化し、強度低下すると共に、毛羽が発生しやすくなる。2段以上の多段延伸とすることにより、延伸時にかかる糸への負荷が分散されると共に、ドローポイントがローラ間で安定し、延伸性が安定し、高強度、高繊維モジュラスで適正な15%強度、かつ毛羽のないポリアミドマルチフィラメントが得られる。
 総延伸倍率は本発明で規定する強伸度範囲にするためには、3.5~5.0倍であることが好ましく、3.8~4.7倍であることがさらに好ましい。また、1段目の延伸倍率は2.5~3.5倍であることが好ましく、2.7~3.3倍であることがさらに好ましい。また、延伸時には引き取りローラ7を40~60℃、第1延伸ローラ8を130~170℃、第2延伸ローラ9を150~200℃(熱セット温度)に加熱する。また、引き取りローラ7の速度は、500~1300m/分であることが好ましく、700~1100m/分であることがさらに好ましい。
 本発明の一実施形態であるポリアミドマルチフィラメントの製造において、延伸ローラ9とリラックスローラ10のリラックス率[(延伸ローラ速度-リラックスローラ速度)/(リラックスローラ速度)×100]を0~1.5%とすることが好ましい。かかる範囲とすることで、一般的なポリアミドマルチフィラメントを製造した際よりもリラックス率が低く、弛緩が少ない状態での熱セットとなるため(低弛緩熱処理)、分子鎖の直線性が向上し、繊維内部の非晶部分が均一かつ適度に突っ張った構造となり、高強度、高結節強度、高強伸度積のポリアミドマルチフィラメントが得られる。リラックス率を1.5%より大きくすると、弛緩が大きい状態での熱セットとなるため、分子鎖の直線性が低下し、強度、結節強度が低下する。
 例えば、前述した図1のような直接紡糸延伸法での条件を採用することにより、0.8~7dtexの単糸細繊度、7.5~8.5cN/dtexの高強度、6.0~7.5cN/dtexの高結節強度のポリアミドマルチフィラメントが得られる。
 本発明の一実施形態であるポリアミドマルチフィラメントは、生糸のまま地糸としてレース編み機に供給されて通常の方法でレース地に編成される。レース地は、エンブロイダルレース、ラッセルレース、リバーレース等の通常の編組織とすればよい。
 さらに編成後の染色やそれに続く後加工、ファイナルセット条件についても公知の方法にしたがい行えばよく、染料として酸性染料、反応染料を用いることやもちろん色なども限定されるものではない。
 以下、実施例により本発明をさらに詳細に説明する。
 A.強度、伸度、強伸度積、15%強度
 JIS L1013(2010)引張強さ及び伸び率に準じて繊維試料を測定し、引張強さ-伸び曲線を描く。試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/minにて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。
 強度、強伸度積は、下記式にて求めた。
 伸度=切断時の伸長(%)
 強度=切断時の引張強さ(cN)/総繊度(dtex)
 強伸度積={強度(cN/dtex)}×{伸度(%)+100}/100
 15%強度=15%伸長時の引張強さ(cN)/総繊度(dtex)
 B.結節強度
 JIS L-1013(2010)結節強さに準じて、試料のつかみ間中央に結節部を作り、上記強度・伸度測定と同様の条件で測定した。
結節強度は、下記式にて求めた。
 結節強度=切断時の引張強さ(cN)/総繊度(dtex)
 C.総繊度、単糸繊度
 1.125m/周の検尺器に繊維試料をセットし、500回転させて、ループ状かせを作製し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせの質量を量り、公定水分率を乗じた値から繊度を算出した。なお、公定水分率は4.5%とした。
 D.硫酸相対粘度(ηr)
 ポリアミドチップ試料0.25gを、濃度98質量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
 E.U%
 zellweger uster社製のUSTER TESTER IVを用いて試料長:500m、測定糸速度V:100m/min、Twister(回転数):S撚、30000/min、1/2Inertで繊維試料を測定した。
 F.毛羽数
 得られた繊維試料を500m/分の速度で巻き返し、巻き返し中の糸条から2mm離れた箇所にレーザー式毛羽検知機を設置し、検知された欠点総数を10万mあたりの個数に換算して表示した。
 G.レース評価
(a)ソフト性
 レース製品について、風合い評価の経験豊富な検査者(5人)のソフト性を、40dtex、4フィラメントのナイロン6マルチフィラメントを使用し、実施例1と同様の方法で製造したレース編物を基準として相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5を◎、4を○、3を△、1~2を×とした。
 5点:非常に優れる
 4点:やや優れる
 3点:普通
 2点:やや劣る
 1点:劣る
 ◎、○をソフト性合格とした。
(b)耐久性
 破裂強度はJIS L1096(2010)、ミューレン形法(A法)による破裂強さ試験方法に準じて、任意の3ヶ所の破裂強度を測定し、その平均値より、次の基準で4段階評価した。
 ◎:150kPa以上
 ○:120kPa以上150kPa未満
 △:110kPa以上120kPa未満
 ×:110kPa未満
 ◎、○を耐久性合格とした。
(c)製品品位(毛羽)
 レース生地内のピリング数:レース生地一反当たりのピリング部(編物の表面の繊維が毛羽立ち、この毛羽がさらに絡み合い、小さな球状の塊を生じた状態)の数を、次の基準で表示した。
 ◎:0個以上2個未満
 ○:2個以上5個未満
 △:5個以上10個未満
 ×:10個以上
 ◎、○を品位合格とした。
(d)工程通過性
 編成操業性:編成途中での断糸回数をレース生地一反(80m)当たりの断糸件数として、次の基準で表示した。
 ◎:0件以上5件未満
 ○:5件以上10件未満
 △:10件以上20件未満
 ×:20件以上30件未満
 ◎、○を工程通過性合格とした。
(e)品位(柄の映え具合)
 製品を、検査者(5人)の柄の映え具合の程度を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5を◎、4を○、3を△、1~2を×とした。
 5点:非常に優れる
 4点:やや優れる
 3点:普通
 2点:やや劣る
 1点:劣る
 ◎、○を品位合格とした。
 〔実施例1〕
 (ポリアミドマルチフィラメントの製造)
 ポリアミドとして、硫酸相対粘度(ηr)が3.3、融点225℃のナイロン6(N6)チップを水分率0.03質量%以下となるよう常法にて乾燥した。得られたナイロン6チップを紡糸温度(溶融温度)298℃にて溶融し、紡糸口金より吐出させた(吐出量38.6g/min)。紡糸口金は、ホール数が20、丸形、孔径φ0.25、4糸条/口金のものを使用した。
 紡糸機は、図1に示す態様の紡糸機を用いて紡糸した。なお、加熱筒は、加熱筒長さLを50mm、単層長さL1、L2それぞれ25mmの2層の加熱筒を用い、上層の加熱筒の雰囲気温度300℃、下層の加熱筒の雰囲気温度150℃となるように温度設定した。紡糸口金から吐出された各フィラメントを、2層の加熱筒内で雰囲気温度150~300℃にて徐冷し、冷却開始距離LS169mm、風温18℃、風速35m/分の冷却装置4を通過させて糸条を室温まで冷却固化した。その後、口金面からの給油位置Lgを1300mmの位置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、旋回ノズル長さLA25mmの流体旋回ノズル装置6で収束性を付与した。収束性付与は、流体旋回ノズル装置6内で走行糸条に矢印方向から高圧空気を噴射することにより行った。噴射する空気の圧力は0.1MPa(流量15L/min)とした。その後、引き取りローラ7と第1延伸ローラ8の間の延伸倍率が2.9倍となるように1段目の延伸、続いて第1延伸ローラ8と第2延伸ローラ9の間の延伸倍率が1.5倍となるように2段目の延伸を行った。引き続き、第2延伸ローラ9とリラックスローラ10との間で1.0%のリラックスを施し、交絡付与装置11にて糸条を交絡処理した後、巻取装置12にて巻き取った。この際、引取速度と延伸速度比で表される総合延伸倍率は4.35倍となるように調節した。各ローラの表面温度は、引き取りローラが40℃、第1延伸ローラ150℃、第2延伸ローラ185℃となるように設定し、リラックスローラは室温とした。交絡処理は、交絡付与装置内で走行糸条に直角方向から高圧空気を噴射することにより行った。噴射する空気の圧力は0.2MPaとした。こうして、33dtex、5フィラメントのナイロン6マルチフィラメントを得た。
 得られたナイロン6マルチフィラメントについて評価した結果を表1に示す。
 (レース編物の製造)
 次に該マルチフィラメントを整経し28Gラッセルレース地糸のバック側の糸としてランナー長21.0cm、さらに、地糸のフロント側の糸としてもランナー長100.0cm、柄糸235~330dtexとともに製編した。つぎに生機を精練、染色、仕上げセットすることでインナー用レース編物を得た。得られたレース製品について評価した結果を表1に示す。
 〔実施例2〕
 第2延伸ローラ9とリラックスローラ10との間のリラックス率を0%として強度、結節強度を変えた以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。
 〔実施例3〕
 第2延伸ローラ9とリラックスローラ10との間のリラックス率を1.5%として強度、結節強度を変えた以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。
 〔実施例4〕
 ポリアミドとして、硫酸相対粘度(ηr)が3.2、融点265℃のナイロン66(N66)チップとした以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン66マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。
 〔比較例1〕
 第2延伸ローラ9とリラックスローラ10との間のリラックス率を2.0%として結節強度を5.9cN/dtexとした以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。
 リラックス率が2.0%のため、弛緩が大きい状態での熱セットが施され、分子鎖の直線性が低下し、結節強度が低下した。そのため、レース編物の耐久性に劣っていた。
Figure JPOXMLDOC01-appb-T000001
 〔実施例5〕
 吐出量を38.6g/min、紡糸口金のホール数を42、6糸条/口金のものを使用した以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。レース編物の耐久性は良好で、細繊度化しても耐久性は維持でき、ソフトな風合いであった。また、細繊度化に伴い、レース地糸の透明感が増し、実施例1よりも柄が綺麗に映えた。
 〔実施例6〕
 吐出量を25.8g/min、紡糸口金のホール数を80、孔径φ0.18、4糸条/口金のものを使用した以外は実施例1と同様の方法で、22dtex、20フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。レース編物の耐久性は良好で、細繊度化しても耐久性は維持でき、非常にソフトな風合いであった。また、細繊度化に伴い、レース地糸の透明感が増し、実施例1よりも柄が綺麗に映えた。
 〔実施例7〕
 吐出量を49.2g/min、紡糸口金のホール数を24、孔径φ0.30、4糸条/口金のものを使用した以外は実施例1と同様の方法で、42dtex、6フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。レース編物の耐久性は良好で、ソフトな風合いであった。また、U%が非常に良好であるため、実施例1よりも染め斑のないレース編物であった。
 〔比較例2〕
 流体旋回ノズル装置6を設置しない以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。
 衣料用の細繊度、単糸細繊度領域においては、単糸繊度が細いため、延伸時に交絡処理した際に、単糸の絡みあいが発生し、交絡点での糸の延伸性が低下し、強度低下、毛羽が多発した。そのため、レース編物の工程通過性、耐久性、製品品位(毛羽)に劣っていた。
 〔比較例3〕
 流体旋回ノズル装置6を設置せず、吐出量を43.9g/min、紡糸口金のホール数を5、孔径φ0.50、1糸条/口金のものを使用した以外は実施例1と同様の方法で、150dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。
 繊度、単糸繊度が太いため、レース編物のソフト性に劣っていた。また、地糸の繊度が太い為、レース地糸の透明感が無く、柄が綺麗に映えなかった。
 〔比較例4〕
 吐出量を19.3g/min、紡糸口金のホール数を96、孔径φ0.16、3糸条/口金のものを使用した以外は実施例1と同様の方法で、22dtex、32フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。
 実施例5、実施例6と比較して単糸繊度が細いため、風合いは向上するが、ポリアミド繊維が冷却部にて急冷され、延伸性が低下し、強度、結節強度が低下し、U%悪化、毛羽も増加した。そのため、レース編物の工程通過性、耐久性、製品品位(毛羽、斑)に劣っていた。
 〔比較例5〕
 図2に示すように、第2延伸ローラ9と、リラックスローラ10を設置せず、引き取りローラ7、第1延伸ローラ8において、引き取りローラ7と第1延伸ローラ8の間の延伸倍率が4.35倍となるように1段のみの延伸を実施し、第1延伸ローラ8と巻取装置12の間でリラックス率1.0%にて弛緩した以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。
 1段延伸にて高倍率の延伸を行ったため、延伸性が悪化し、強度が低下すると共に、毛羽が発生した。そのため、レース編物の工程通過性、製品品位(毛羽)、耐久性に劣っていた。
 〔比較例6〕
 図2に示すように、第2延伸ローラ9と、リラックスローラ10を設置せず、引き取りローラ7、第1延伸ローラ8において、引き取りローラ7と第1延伸ローラ8の間の延伸倍率が4.35倍となるように1段のみの延伸を実施し、第1延伸ローラ8と巻取装置12の間でリラックス率5.0%にて弛緩した以外は実施例1と同様の方法で、33dtex、5フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。
 1段延伸にて高倍率の延伸を行ったため、延伸性が悪化し、強度が低下すると共に、毛羽が発生した。また、リラックス率が5.0%のため、弛緩が大きい状態での熱セットが施され、分子鎖の直線性が低下し、結節強度が低下した。そのため、レース編物の工程通過性、品位、耐久性に劣っていた。
Figure JPOXMLDOC01-appb-T000002
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2018年1月25日付で出願された日本特許出願(特願2018-10324)に基づいており、その全体が引用により援用される。
1:紡糸口金
2:気体供給装置
3:加熱筒
4:冷却装置
5:給油装置
6:流体旋回ノズル装置
7:引き取りローラ
8:第1延伸ローラ
9:第2延伸ローラ
10:リラックスローラ
11:交絡付与装置
12:巻取装置
L:多層加熱筒長さ
L1:多層加熱筒の単層長さ
LS:冷却開始距離
Lg:給油位置
LA:旋回ノズル長さ

Claims (6)

  1.  単糸繊度が0.8~7dtex、強度が7.5~8.5cN/dtex、結節強度が6.0~7.5cN/dtexであることを特徴とするポリアミドマルチフィラメント。
  2.  15%伸長時の引張強度が6.1~7.5cN/dtexであることを特徴とする請求項1に記載のポリアミドマルチフィラメント。
  3.  総繊度が20~44dtexであることを特徴とする請求項1または2に記載のポリアミドマルチフィラメント。
  4.  請求項1~3のいずれか1項に記載のポリアミドマルチフィラメントをレース地糸に使用したレース編物。
  5.  ポリアミド樹脂を溶融し、紡糸口金から吐出された各フィラメントを冷却固化し、延伸するポリアミドマルチフィラメントの製造方法であって、
     溶融したポリアミド樹脂を吐出しフィラメントを形成するための紡糸口金と、フィラメントを徐冷するための加熱筒と、フィラメントを冷却固化するための冷却装置と、旋回流により糸に収束性を付与するための流体旋回ノズル装置と、フィラメントを引き取り延伸するための引き取りローラと、フィラメントを延伸するための延伸装置と、を少なくとも備えるポリアミドマルチフィラメントの製造装置を用い、
     かつ、下記(A)~(D)の条件を同時に満足することを特徴とする請求項1~3のいずれか1項に記載のポリアミドマルチフィラメントの製造方法。
    (A)前記加熱筒が前記冷却装置の上部に設けられている
    (B)前記流体旋回ノズル装置が前記引き取りローラの上部に設けられている
    (C)前記延伸装置が2段以上の多段延伸装置である
    (D)多段延伸直後に低弛緩熱処理する
  6.  延伸ローラとリラックスローラ間において、リラックス率0~1.5%、熱セット温度150~200℃で弛緩熱処理することを特徴とする請求項5に記載のポリアミドマルチフィラメントの製造方法。
PCT/JP2019/001894 2018-01-25 2019-01-22 ポリアミドマルチフィラメントおよびそれを用いたレース編物 WO2019146600A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207020828A KR102593079B1 (ko) 2018-01-25 2019-01-22 폴리아미드 멀티필라멘트 및 그것을 사용한 레이스 편물
EP19743570.4A EP3744876A4 (en) 2018-01-25 2019-01-22 POLYAMIDE MULTIFILAMENT AND KNITTED LACE MADE WITH IT
JP2019512837A JP6879362B2 (ja) 2018-01-25 2019-01-22 ポリアミドマルチフィラメントおよびそれを用いたレース編物
CN201980009348.8A CN111630216B (zh) 2018-01-25 2019-01-22 聚酰胺复丝及使用其的花边针织物
US16/964,335 US20210040650A1 (en) 2018-01-25 2019-01-22 Polyamide multifilament and knitted lace manufactured using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018010324 2018-01-25
JP2018-010324 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019146600A1 true WO2019146600A1 (ja) 2019-08-01

Family

ID=67394671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001894 WO2019146600A1 (ja) 2018-01-25 2019-01-22 ポリアミドマルチフィラメントおよびそれを用いたレース編物

Country Status (7)

Country Link
US (1) US20210040650A1 (ja)
EP (1) EP3744876A4 (ja)
JP (1) JP6879362B2 (ja)
KR (1) KR102593079B1 (ja)
CN (1) CN111630216B (ja)
TW (1) TWI760592B (ja)
WO (1) WO2019146600A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039033A1 (ja) * 2020-08-21 2022-02-24 東レ株式会社 ポリアミドマルチフィラメントおよびその製造方法
WO2022113810A1 (ja) * 2020-11-30 2022-06-02 東レ株式会社 ポリアミドマルチフィラメントおよびその製造方法、並びに織編物
WO2022209813A1 (ja) * 2021-03-29 2022-10-06 東レ株式会社 ポリアミドマルチフィラメント
WO2024162095A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 ポリアミドマルチフィラメントおよびポリアミドモノフィラメント

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502650B1 (ja) * 1973-10-19 1975-01-28
JP2003286615A (ja) * 2002-03-28 2003-10-10 Toray Ind Inc ポリアミドモノフィラメントおよびテグス
JP2004011082A (ja) 2002-06-11 2004-01-15 Unitica Fibers Ltd 耐疲労性に優れたポリアミド繊維及び編地
JP2005097804A (ja) * 2003-09-26 2005-04-14 Kanebo Ltd シックアンドシン糸の製造方法
JP2008031572A (ja) 2006-07-27 2008-02-14 Toray Ind Inc 漁網用ポリアミド繊維およびそれを用いた漁網
JP2018010324A (ja) 2017-10-11 2018-01-18 株式会社サインビクトリー 装飾体及び取付具
WO2018021011A1 (ja) * 2016-07-26 2018-02-01 東レ株式会社 ポリアミドマルチフィラメントおよびそれを用いたレース編物、ストッキング

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502650A (ja) * 1973-05-12 1975-01-11
US4435367A (en) * 1981-07-21 1984-03-06 Wyoming Mineral Corporation Barren solvent wash by oxidized raffinate acid in the process of uranium extraction from phosphoric acid
JPH07189028A (ja) * 1993-12-27 1995-07-25 Toray Ind Inc レース用ナイロン66フィラメント糸
JP4013110B2 (ja) * 2001-10-18 2007-11-28 東洋紡績株式会社 レース編物
JP4673598B2 (ja) * 2004-10-25 2011-04-20 株式会社サンライン 釣糸及びその製造方法
EP2554721B1 (en) * 2010-03-31 2015-01-21 Toray Industries, Inc. Hygroscopic fibre, and manufacturing method for same
EP2647746B1 (en) * 2010-11-29 2016-08-10 Toray Industries, Inc. Polyamide yarn comprising ultrafine filaments, and melt-spinning method and device therefor
KR101919216B1 (ko) * 2011-12-07 2018-11-15 아사히 가세이 셍이 가부시키가이샤 폴리아미드 섬유 및 에어백용 직물
TWI595127B (zh) * 2012-02-29 2017-08-11 東麗股份有限公司 聚醯胺纖維及其製造方法
KR101921393B1 (ko) * 2014-01-08 2018-11-22 아사히 가세이 가부시키가이샤 폴리아미드 멀티필라멘트 섬유 및 이 섬유를 포함하는 타이어 코드

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502650B1 (ja) * 1973-10-19 1975-01-28
JP2003286615A (ja) * 2002-03-28 2003-10-10 Toray Ind Inc ポリアミドモノフィラメントおよびテグス
JP2004011082A (ja) 2002-06-11 2004-01-15 Unitica Fibers Ltd 耐疲労性に優れたポリアミド繊維及び編地
JP2005097804A (ja) * 2003-09-26 2005-04-14 Kanebo Ltd シックアンドシン糸の製造方法
JP2008031572A (ja) 2006-07-27 2008-02-14 Toray Ind Inc 漁網用ポリアミド繊維およびそれを用いた漁網
WO2018021011A1 (ja) * 2016-07-26 2018-02-01 東レ株式会社 ポリアミドマルチフィラメントおよびそれを用いたレース編物、ストッキング
JP2018010324A (ja) 2017-10-11 2018-01-18 株式会社サインビクトリー 装飾体及び取付具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039033A1 (ja) * 2020-08-21 2022-02-24 東レ株式会社 ポリアミドマルチフィラメントおよびその製造方法
CN115803484A (zh) * 2020-08-21 2023-03-14 东丽株式会社 聚酰胺复丝和其制造方法
WO2022113810A1 (ja) * 2020-11-30 2022-06-02 東レ株式会社 ポリアミドマルチフィラメントおよびその製造方法、並びに織編物
WO2022209813A1 (ja) * 2021-03-29 2022-10-06 東レ株式会社 ポリアミドマルチフィラメント
WO2024162095A1 (ja) * 2023-01-30 2024-08-08 東レ株式会社 ポリアミドマルチフィラメントおよびポリアミドモノフィラメント

Also Published As

Publication number Publication date
CN111630216A (zh) 2020-09-04
TWI760592B (zh) 2022-04-11
JPWO2019146600A1 (ja) 2020-11-19
KR102593079B1 (ko) 2023-10-24
KR20200106904A (ko) 2020-09-15
CN111630216B (zh) 2022-11-18
EP3744876A1 (en) 2020-12-02
US20210040650A1 (en) 2021-02-11
TW201937019A (zh) 2019-09-16
EP3744876A4 (en) 2021-10-20
JP6879362B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2019146600A1 (ja) ポリアミドマルチフィラメントおよびそれを用いたレース編物
JP6687035B2 (ja) ポリアミドマルチフィラメントおよびそれを用いたレース編物、ストッキング
JP5780237B2 (ja) ポリアミド極細繊維並びにその溶融紡糸方法及び装置
JP6127969B2 (ja) ポリアミド繊維およびその製造方法
JP5718045B2 (ja) 染色性に優れたポリエステル繊維および繊維集合体
TWI793386B (zh) 聚醯胺複絲及包覆彈性紗
JP2020158906A (ja) 高強度ポリアミドモノフィラメント
JP2004502882A (ja) 異形断面を有するポリマーフィラメント
WO2022209813A1 (ja) ポリアミドマルチフィラメント
WO2022113810A1 (ja) ポリアミドマルチフィラメントおよびその製造方法、並びに織編物
WO2024195613A1 (ja) ポリアミドマルチフィラメントおよび織編物
TW202403136A (zh) 複絲
JP4119065B2 (ja) ポリエステルマルチフィラメント
JP4867205B2 (ja) ストリングス
JP2006325717A (ja) ストリングス
JP2024125535A (ja) ポリブチレンテレフタレート繊維
JP2007231472A (ja) 合成繊維マルチフィラメント糸及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512837

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743570

Country of ref document: EP

Effective date: 20200825