WO2013021765A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2013021765A1
WO2013021765A1 PCT/JP2012/067529 JP2012067529W WO2013021765A1 WO 2013021765 A1 WO2013021765 A1 WO 2013021765A1 JP 2012067529 W JP2012067529 W JP 2012067529W WO 2013021765 A1 WO2013021765 A1 WO 2013021765A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
motor
torque
control
clutch
Prior art date
Application number
PCT/JP2012/067529
Other languages
English (en)
French (fr)
Inventor
晴久 土川
祐也 小暮
広樹 下山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12822761.8A priority Critical patent/EP2743149A4/en
Priority to MX2014000700A priority patent/MX2014000700A/es
Priority to CN201280034941.6A priority patent/CN103648873B/zh
Priority to US14/236,357 priority patent/US9126583B2/en
Priority to RU2014108877/11A priority patent/RU2555394C1/ru
Publication of WO2013021765A1 publication Critical patent/WO2013021765A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1025Input torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle that includes an engine and a motor as a power source, has a first fastening element between the engine and the motor in a driving force transmission system, and has a second fastening element between the motor and the drive wheel.
  • the present invention relates to a control device.
  • the motor is used to reduce the slip rotation speed of the second fastening element CL2, but this is applicable when there is a motor output restriction or a battery output restriction. There is a problem that it is not possible.
  • the present invention has been made paying attention to the above problems, and provides a hybrid vehicle control device capable of reducing motor torque during motor slip traveling control executed when the driving force transmission system load is large. With the goal.
  • a control apparatus for a hybrid vehicle of the present invention includes an engine, a motor, a first fastening element, a second fastening element, a driving force transmission system load detection means, and an engine / motor slip travel control.
  • the motor outputs the driving force of the vehicle and starts the engine.
  • the first fastening element is interposed between the engine and the motor and connects and disconnects the engine and the motor.
  • the second fastening element is interposed between the motor and the drive wheel to connect and disconnect the motor and the drive wheel.
  • the driving force transmission system load detecting means detects or estimates a driving force transmission system load.
  • the engine / motor slip travel control means slip-fastens the first fastening element while operating the engine at a predetermined rotational speed when the driving force transmission system load is equal to or greater than a predetermined value, and the motor rotates the predetermined rotation.
  • the second fastening element is slip-fastened at a rotational speed lower than the number.
  • the engine / motor slip travel control means slip-fastens the first fastening element while operating the engine at the predetermined rotational speed, and the motor is lower than the predetermined rotational speed.
  • the second fastening element is slip-fastened as the rotational speed. That is, since the motor is rotationally driven at a rotational speed lower than the engine rotational speed, the slip amount of the second fastening element can be reduced, and the heat generation amount of the second fastening element can be suppressed.
  • the engine driving force is transmitted from the engine via the first fastening element, and the necessary motor torque corresponding to the transmitted engine torque is provided. Can be reduced. As a result, it is possible to reduce the motor torque during motor slip traveling control that is executed when the driving force transmission system load is large.
  • FIG. 1 is an overall system diagram illustrating a rear-wheel drive hybrid vehicle to which a control device according to a first embodiment is applied.
  • FIG. 3 is a control block diagram illustrating an arithmetic processing program in the integrated controller according to the first embodiment. It is a figure which shows an example of the target drive torque map used for target drive torque calculation in the target drive torque calculating part of FIG.
  • FIG. 3 is a diagram illustrating a relationship between an estimated gradient that is a mode selection condition and a mode map in a mode selection unit in FIG. 2. It is a figure which shows an example of the normal mode map used for selection of the target mode in the mode selection part of FIG.
  • FIG. 3 is a flowchart illustrating a flow of a travel mode transition control process executed by the integrated controller of the first embodiment. It is the schematic which shows the operating point of each actuator in WSC control. It is the schematic which shows the operating point of each actuator under MWSC control. It is the schematic which shows the operating point of each actuator in MWSC + CL1 slip control.
  • target CL1 torque target driving torque ⁇
  • the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “system configuration”, “integrated controller control configuration”, and “travel mode transition control configuration”.
  • FIG. 1 is an overall system diagram showing a rear-wheel drive hybrid vehicle to which the control device of the first embodiment is applied.
  • system configuration configuration of drive system and control system
  • the drive system of the hybrid vehicle includes an engine E, a first clutch CL1 (first engagement element), a motor generator MG (motor), a second clutch CL2 (second engagement element), It has an automatic transmission AT, a propeller shaft PS, a differential DF, a left drive shaft DSL, a right drive shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel).
  • FL is the front left wheel and FR is the front right wheel.
  • the engine E is, for example, a gasoline engine, and the throttle valve opening and the like are controlled based on a control command from an engine controller 1 described later.
  • the engine output shaft is provided with a flywheel FW.
  • the first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and is generated by the first clutch hydraulic unit 6 based on a control command from the first clutch controller 5 described later. Fastening / release including slip fastening is controlled by the control hydraulic pressure.
  • the motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and a three-phase AC generated by an inverter 3 based on a control command from a motor controller 2 described later. It is controlled by applying.
  • the motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 4 (hereinafter, this state is referred to as “power running”), or when the rotor is rotated by an external force.
  • the rotor of the motor generator MG is connected to the input shaft of the automatic transmission AT via a damper (not shown).
  • the second clutch CL2 is a clutch interposed between the motor generator MG and the left and right rear wheels RL, RR, and is produced by the second clutch hydraulic unit 8 based on a control command from the AT controller 7 described later.
  • the controlled hydraulic pressure controls the fastening / release including slip fastening.
  • the automatic transmission AT is a transmission that automatically switches a stepped gear ratio such as forward 7 speed, reverse 1 speed, etc. according to vehicle speed, accelerator opening, etc., and the second clutch CL2 is newly added as a dedicated clutch. Some of the frictional engagement elements among the plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT are not used.
  • the output shaft of the automatic transmission AT is connected to the left and right rear wheels RL and RR via a propeller shaft PS, a differential DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts.
  • the hybrid drive system has three travel modes according to the engaged / released state of the first clutch CL1.
  • the first travel mode is an electric vehicle travel mode (hereinafter, abbreviated as “EV travel mode”) as a motor use travel mode in which the first clutch CL1 is disengaged and travels using only the power of the motor generator MG as a power source. It is.
  • the second travel mode is an engine use travel mode (hereinafter abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source.
  • the third travel mode is an abbreviated engine use slip travel mode (hereinafter referred to as “WSC travel mode”) in which the second clutch CL2 is slip-controlled while the first clutch CL1 is engaged and the engine E is included in the power source.
  • WSC travel mode engine use slip travel mode
  • This mode is a mode in which creep running can be achieved particularly when the battery SOC is low or the engine water temperature is low.
  • the first clutch CL1 is engaged and the engine is started using the torque of the motor generator MG.
  • MWSC traveling mode a motor slip traveling mode by CL1 release
  • MWSC + CL1 slip control traveling mode a motor slip traveling mode by CL1 slip fastening
  • the “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • engine running mode the drive wheels are moved using only the engine E as a power source.
  • motor assist travel mode the drive wheels are moved by using the engine E and the motor generator MG as power sources.
  • the “running power generation mode” causes the motor generator MG to function as a generator at the same time as the drive wheels RR and RL are moved using the engine E as a power source. Further, during deceleration operation, the braking energy is regenerated and generated by the motor generator MG and used for charging the battery 4. Further, as a further mode, there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.
  • the hybrid vehicle control system includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, a first clutch hydraulic unit 6, and an AT controller 7. And a second clutch hydraulic unit 8, a brake controller 9, and an integrated controller 10.
  • the engine controller 1, the motor controller 2, the first clutch controller 5, the AT controller 7, the brake controller 9, and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other. Has been.
  • the engine controller 1 inputs the engine speed information from the engine speed sensor 12 and sets the engine operating point (Ne: engine speed, Te: engine torque) according to the target engine torque command from the integrated controller 10 or the like.
  • a command to control is output to, for example, a throttle valve actuator (not shown). More detailed engine control contents will be described later.
  • Information such as the engine speed Ne is supplied to the integrated controller 10 via the CAN communication line 11.
  • the motor controller 2 receives information from the resolver 13 that detects the rotor rotational position of the motor generator MG, and according to a target motor generator torque command from the integrated controller 10, the motor operating point (Nm: motor A command for controlling the generator speed (Tm: motor generator torque) is output to the inverter 3.
  • the motor controller 2 monitors the battery SOC indicating the state of charge of the battery 4.
  • the battery SOC information is used as control information for the motor generator MG and supplied to the integrated controller 10 via the CAN communication line 11. Is done.
  • the first clutch controller 5 inputs sensor information from the first clutch hydraulic pressure sensor 14 and the first clutch stroke sensor 15, and engages / releases the first clutch CL 1 according to the first clutch control command from the integrated controller 10. Is output to the first clutch hydraulic unit 6. Information on the first clutch stroke C1S is supplied to the integrated controller 10 via the CAN communication line 11.
  • the AT controller 7 inputs sensor information from an accelerator opening sensor 16, a vehicle speed sensor 17, a second clutch hydraulic pressure sensor 18, and an inhibitor switch that outputs a signal corresponding to the position of a shift lever operated by the driver.
  • a command for controlling the engagement / release of the second clutch CL2 is output to the second clutch hydraulic unit 8 in the AT hydraulic control valve.
  • Information on the accelerator opening APO, the vehicle speed VSP, and the inhibitor switch is supplied to the integrated controller 10 via the CAN communication line 11.
  • the brake controller 9 inputs sensor information from a wheel speed sensor 19 and a brake stroke sensor 20 that detect the wheel speeds of the four wheels. For example, when the brake is depressed, the required braking force is obtained from the brake stroke BS. When the regenerative braking force is insufficient, the regenerative cooperative brake control is performed based on the regenerative cooperative control command from the integrated controller 10 so that the shortage is supplemented by the mechanical braking force (braking force by the friction brake).
  • the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency.
  • the integrated controller 10 detects the motor rotation speed Nm, and the second clutch output rotation speed.
  • the information from G sensor 10b which detects longitudinal acceleration, and the information obtained via CAN communication line 11 are inputted.
  • the integrated controller 10 also controls the operation of the engine E according to the control command to the engine controller 1, the operation control of the motor generator MG based on the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1 and engagement / release control of the second clutch CL2 by a control command to the AT controller 7 are performed.
  • the integrated controller 10 includes a target drive torque calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, an operating point command unit 400, and a shift control unit 500. .
  • the target drive torque calculator 100 calculates the target drive torque tFoO from the accelerator opening APO and the vehicle speed VSP using the target drive torque map shown in FIG.
  • the mode selection unit 200 includes a road surface gradient estimation calculation unit 201 (a driving force transmission system load detection unit) that estimates a road surface gradient based on a detection value of the G sensor 10b.
  • the road surface gradient estimation calculation unit 201 calculates the actual acceleration from the wheel speed acceleration average value of the wheel speed sensor 19 and the like, and estimates the road surface gradient from the deviation between the calculation result and the G sensor detection value.
  • the mode map selection part 202 which selects either of the two mode maps mentioned later based on the estimated road surface gradient.
  • the mode map selection unit 202 switches to the MWSC compatible mode map (FIG. 6) when the estimated gradient becomes a predetermined value g2 or more from the state where the normal mode map (FIG. 5) is selected.
  • the mode is switched to the normal mode map (FIG. 5). That is, a hysteresis is provided for the estimated gradient to prevent control hunting during map switching.
  • the normal mode map is selected when the estimated gradient is less than the predetermined value g1, and as shown in FIG. 5, the map has an EV driving mode, a WSC driving mode, and an HEV driving mode, and the accelerator is opened.
  • the target mode is calculated from the degree APO and the vehicle speed VSP.
  • the HEV travel mode is forcibly set as the target mode.
  • the HEV ⁇ WSC switching line has a rotational speed smaller than the idle rotational speed of the engine E when the automatic transmission AT is in the first speed in the region less than the predetermined accelerator opening APO1.
  • the WSC travel mode is set up to a vehicle speed VSP1 ′ region that is higher than the lower limit vehicle speed VSP1.
  • the WSC travel mode is selected even when starting.
  • the accelerator opening APO is large, it may be difficult to achieve the request with the engine torque corresponding to the engine speed near the idle speed and the torque of the motor generator MG. Here, more engine torque can be output if the engine speed increases.
  • the MWSC compatible mode map has a first schedule shown in FIG. 6 (a), a second schedule shown in FIG. 6 (b), and a third schedule shown in FIG. 6 (c).
  • the first schedule has a WSC travel mode, an MWSC travel mode, an MWSC + CL1 slip control travel mode, and an HEV travel mode in the map, and the accelerator opening APO and the vehicle speed.
  • the second schedule has a MWSC travel mode, a MWSC + CL1 slip control travel mode, and a HEV travel mode in the map.
  • the target mode is determined from the accelerator opening APO and the vehicle speed VSP. Is calculated.
  • FIG. 6 the first schedule shown in FIG. 6 (a)
  • the third schedule has a WSC drive mode, an EV drive mode, an MWSC + CL1 slip control drive mode, and an HEV drive mode in the map, and the accelerator opening APO and the vehicle speed. Calculate target mode from VSP.
  • These first to third schedules may be selected according to the conditions of the motor generator MG, the first clutch CL1, the second clutch CL2, etc. for each vehicle type, or at least two of the first to third schedules in one hybrid vehicle. Two schedules may be used properly.
  • the target charge / discharge calculation unit 300 calculates the target charge / discharge power tP from the battery SOC using the target charge / discharge amount map.
  • the target engine torque is a transient target engine torque.
  • the target motor generator torque, the target second clutch transmission torque capacity, the target gear position of the automatic transmission AT, and the first clutch solenoid current command are calculated.
  • the operating point command unit 400 is provided with an engine start control unit that starts the engine E when the EV travel mode is changed to the HEV travel mode.
  • the shift control unit 500 drives and controls the solenoid valve in the automatic transmission AT so as to achieve the target second clutch transmission torque capacity and the target shift speed according to a predetermined shift schedule.
  • the target shift speed is set in advance based on the vehicle speed VSP and the accelerator opening APO.
  • FIG. 7 is a flowchart illustrating the flow of the travel mode transition control process executed by the integrated controller 10 according to the first embodiment. Hereinafter, each step representing the travel mode transition control configuration will be described with reference to FIG.
  • step S1 it is determined whether the normal mode map is selected. If YES (selection of normal mode map), the process proceeds to step S2, and if NO (selection of MWSC compatible mode map), the process proceeds to step S11.
  • step S2 following the YES determination in step S1, it is determined whether the estimated gradient is larger than a predetermined value g2, that is, whether the driving force transmission system load is large. If YES (estimated gradient> g2), the process proceeds to step S3. If NO (estimated gradient ⁇ g2), the process proceeds to step S17 to execute control processing based on the normal mode map.
  • step S3 following the YES determination in step S2, switch from the normal mode map to the MWSC compatible mode map and proceed to step S4.
  • step S4 following the mode map switching in step S3 or NO determination in step S13, it is determined whether or not the operating point determined by the current accelerator opening APO and vehicle speed VSP is within the MWSC travel mode region. To do. If YES (in the MWSC travel mode area), the process proceeds to step S5. If NO (outside the MWSC travel mode), the process proceeds to step S8.
  • step S5 following the YES determination in step S4, it is determined whether or not the battery SOC is greater than a predetermined value A. If YES (battery SOC> A), the process proceeds to step S6. If NO (battery SOC ⁇ A), the process proceeds to step S11.
  • the predetermined value A is a threshold value for determining whether or not the driving force can be secured only by the motor generator MG. When the battery SOC is larger than the predetermined value A, the driving force can be secured only by the motor generator MG. When the battery SOC is lower than the predetermined value A, the battery 4 needs to be charged, so the selection of the MWSC traveling mode is prohibited. To do.
  • step S6 following the YES determination in step S5, it is determined whether or not the transmission torque capacity TCL2 of the second clutch CL2 is less than a predetermined value B.
  • the predetermined value B is a predetermined value indicating that an excessive current does not flow through the motor generator MG. Since motor generator MG is controlled in rotational speed, the torque generated in motor generator MG is equal to or greater than the driving force transmission system load acting on motor generator MG.
  • step S7 following the YES determination in step S6, MWSC control processing is executed, and the process proceeds to return. Specifically, in the MWSC control process, the first clutch CL1 is released while the engine is operating, the engine E is set to feedback control so as to become the idle speed, and the motor generator MG is set to the output side speed Ncl2out of the second clutch CL2. The feedback control is performed to obtain a target rotational speed obtained by adding the predetermined rotational speed ⁇ to (a value lower than the idle rotational speed), and the second clutch CL2 is set to a transmission torque capacity corresponding to the target driving torque. Since the MWSC travel mode is not set in the normal mode map, the MWSC control process in step S7 includes a mode transition process from the WSC travel mode or the idle power generation mode.
  • step S8 following the NO determination in step S4, it is determined whether or not the operating point determined by the current accelerator opening APO and vehicle speed VSP is within the MWSC + CL1 slip control travel mode region. If YES (in the MWSC + CL1 slip control travel mode region), the process proceeds to step S9. If NO (out of the MWSC + CL1 slip control travel mode), the process proceeds to step S10.
  • step S9 following the YES determination in step S8, MWSC + CL1 slip control processing is executed, and the process proceeds to return.
  • the target CL1 torque of the first clutch CL1 is set to (target drive torque ⁇ ) while the engine is operating, and the feedback control is performed so that the engine E becomes the idle speed.
  • Feedback control is performed so that the motor generator MG has a target rotational speed obtained by adding a predetermined rotational speed ⁇ ′ to the output-side rotational speed Ncl2out of the second clutch CL2 (however, a value lower than the idle rotational speed), and the second clutch CL2 is driven as a target.
  • the feedback control is made to have a transmission torque capacity according to the torque.
  • step S10 following the NO determination in step S8, it is determined whether or not the operating point determined by the current accelerator opening APO and vehicle speed VSP is within the WSC travel mode region. If YES (in the WSC travel mode area), the process proceeds to step S11. If NO (outside the WSC travel mode area), the process proceeds to step S12 after determining that the vehicle is in the HEV travel mode area.
  • step S11 following the YES determination in step S10, WSC control processing is executed, and the process proceeds to return.
  • the WSC control process the first clutch CL1 is completely engaged, the engine E is set to feedforward control in accordance with the target torque, the motor generator MG is set to feedback control for idling speed, and the second clutch CL2 is set to the target. It is set as the feedback control which makes the transmission torque capacity
  • the WSC control process in step S11 includes a mode transition process from the EV travel mode.
  • step S12 following the NO determination in step S10, HEV control processing is executed, and the process proceeds to return. Specifically, in the HEV control process, the first clutch CL1 is completely engaged, the engine E and the motor generator MG are feedforward controlled so as to have a torque corresponding to the target drive torque, and the second clutch CL2 is completely engaged.
  • the HEV control process in step S12 includes a mode transition process from the EV travel mode.
  • step S13 following the determination of NO in step S1, it is determined whether the estimated gradient is less than a predetermined value g1. If YES (estimated gradient ⁇ g1), the process proceeds to step S14. If NO (estimated gradient ⁇ g1), the process proceeds to step S4 and the control by the MWSC compatible mode map is continued.
  • step S14 following the YES determination in step S13, the MWSC compatible mode map is switched to the normal mode map, and the process proceeds to step S15.
  • step S15 following the map switching in step S14, it is determined whether or not the travel mode has been changed along with the map switching. If YES (travel mode is changed), the process proceeds to step S16. If NO (travel mode is not changed), the process proceeds to step S17.
  • a transition from the MWSC travel mode to the WSC travel mode, a transition from the WSC travel mode to the EV travel mode, a transition from the HEV travel mode to the EV travel mode, etc. occur. Because you get.
  • step S16 following the YES determination in step S15, a travel mode change process is executed, and the process proceeds to step S17. Specifically, for example, at the time of transition from the MWSC travel mode to the WSC travel mode, the target rotational speed of the motor generator MG is changed to the idle rotational speed, and the first clutch CL1 is engaged at the synchronized stage. Then, the engine control is switched from the idle speed feedback control to the target engine torque feedforward control.
  • step S17 following the NO determination in step S2, the NO determination in step S15, or the travel mode change process in step S16, a control process based on the normal mode map is executed, and the process proceeds to return.
  • the operation of the hybrid vehicle control device of the first embodiment is changed to “contrast of WSC control / MWSC control / MWSC + CL1 slip control”, “WSC travel mode operation”, “MWSC travel mode operation”, “MWSC + CL1 slip control travel mode operation”. Separately described.
  • FIG. 8 is an operating point of each actuator during WSC control
  • FIG. 9 is an operating point of each actuator during MWSC control
  • FIG. 10 is a schematic diagram showing an operating point of each actuator during MWSC + CL1 slip control.
  • the WSC control, MWSC control, and MWSC + CL1 slip control will be described below with reference to FIGS.
  • the second clutch CL2 is controlled to be slip-engaged with feedback control using a transmission torque capacity corresponding to the target drive torque.
  • MWSC control performs feedback control so that the first clutch CL1 is released while the engine is operating, and the engine E is at the idling speed. Then, feedback control is performed in which the motor generator MG is set to a target rotational speed obtained by adding the predetermined rotational speed ⁇ to the output-side rotational speed Ncl2out of the second clutch CL2 (however, a value lower than the idle rotational speed).
  • the second clutch CL2 is controlled to be slip-engaged with feedback control using a transmission torque capacity corresponding to the target drive torque.
  • the engine CL is slip-engaged with the target CL1 torque of the first clutch CL1 as (target drive torque ⁇ ) while the engine is operating, so that the engine E becomes the idling speed.
  • Use feedback control is performed in which the motor generator MG is set to a target rotational speed (a value lower than the idle rotational speed) obtained by adding the predetermined rotational speed ⁇ ′ to the output-side rotational speed Ncl2out of the second clutch CL2.
  • the second clutch CL2 is controlled to be slip-engaged with feedback control using a transmission torque capacity corresponding to the target drive torque.
  • the WSC travel mode by “WSC control” is characterized in that the engine E is maintained in an operating state and the first clutch CL1 is completely engaged.
  • the difference between the drive wheel speed and the engine speed can be absorbed by the slip of the second clutch CL2.
  • the target drive torque change can be dealt with by the torque capacity change of the second clutch CL2, the responsiveness to the target drive torque change is high.
  • the second clutch CL2 is slip-controlled as a transmission torque capacity corresponding to the target driving torque, and travels using the driving force of the engine E and / or the motor generator MG.
  • MWSC drive mode by“ MWSC control ” is characterized in that the first clutch CL1 that is completely engaged in the WSC drive mode is released.
  • “MWSC + CL1 slip control travel mode by“ MWSC + CL1 slip control ” is characterized in that the first clutch CL1 released in the MWSC travel mode is slip-engaged.
  • the motor torque of the motor generator MG can be reduced by adding the transmission torque capacity of the first clutch CL1 as the drive torque.
  • the second clutch CL2 is slip-controlled as a transmission torque capacity corresponding to the target drive torque, and travels using the drive force of the engine E and the motor generator MG (Example 1).
  • the vehicle travels using the driving force of the engine E (Example 2).
  • the vehicle travels by power generation using the driving force of the engine E (Examples 3 and 4).
  • the engine speed is set to a predetermined value. While maintaining the lower limit rotational speed, the second clutch CL2 is slip-controlled, and the WSC traveling mode for traveling using the engine torque is selected.
  • Example 1 when the normal mode map is selected and the estimated gradient is equal to or less than g2, the flow of step S1 ⁇ step S2 ⁇ step S17 ⁇ return is repeated in the flowchart of FIG.
  • step S17 when the operating point based on the current accelerator opening APO and the vehicle speed VSP is within the WSC travel mode area, the WSC travel mode is selected.
  • step S3 the normal mode map is changed to the MWSC compatible mode. Switch to the map. Therefore, when the operating point based on the current accelerator opening APO and the vehicle speed VSP is within the WSC travel mode region, the process proceeds from step S3 to step S4 ⁇ step S8 ⁇ step S10 ⁇ step S11 ⁇ return, and the WSC by the WSC control process A travel mode is selected.
  • step S3 to step S4 ⁇ step S5 ( ⁇ step S6) ⁇ step Proceeding from S11 to return, the WSC drive mode by the WSC control process is selected.
  • the second clutch CL2 serves as a rotational difference absorbing element between the drive wheel rotational speed and the engine rotational speed, and the rotational difference can be absorbed by the slip of the second clutch CL2.
  • the second clutch CL2 Since the second clutch CL2 has a transmission torque capacity corresponding to the target drive torque, the drive torque requested by the driver can be transmitted to the drive wheels to start the vehicle.
  • the transmission torque capacity of the second clutch CL2 Because it is possible to respond to changes in the target driving torque due to changes in the accelerator opening APO and changes in the vehicle speed VSP by changing the transmission torque capacity of the second clutch CL2, without waiting for the driving force change due to the engine E, High responsiveness to changes in target drive torque.
  • MWSC travel mode action The reason why the MWSC travel mode area is set will be described.
  • the estimated gradient of the running road surface is larger than the predetermined gradient (g1 or g2), for example, if the vehicle is maintained in a stopped state or a slow start state without operating the brake pedal, a large driving force is obtained compared to a flat road. Required. This is because it is necessary to counter the gradient load applied to the host vehicle.
  • the first clutch CL1 is released while the engine E is operated, and the transmission torque capacity of the second clutch CL2 is controlled to the driver's target drive torque, while the rotation speed of the motor generator MG is the same as that of the second clutch CL2.
  • An MWSC driving mode was set in which feedback control is performed to a target rotational speed that is higher than the output rotational speed by a predetermined rotational speed.
  • the second clutch CL2 is slip-controlled while the rotational state of the motor generator MG is set to a rotational speed lower than the idle rotational speed of the engine.
  • the engine E switches to feedback control in which the idling speed is set as the target speed.
  • the engine speed was maintained by the rotational speed feedback control of the motor generator MG.
  • the first clutch CL1 is released, the engine speed cannot be controlled to the idle speed by the motor generator MG. Therefore, engine speed feedback control is performed by the engine E itself.
  • step S1 when the normal mode map is selected and the estimated gradient exceeds g2, the process proceeds from step S1 to step S2 to step S3 in the flowchart of FIG. Switch to MWSC compatible mode map. Therefore, when the operating point based on the current accelerator opening APO and the vehicle speed VSP is in the MWSC travel mode region, and the battery SOC condition and the second clutch torque condition are satisfied, step S3 to step S4 ⁇ step S5 ⁇ step The process proceeds from S6 to step S7. In step S7, the MWSC travel mode by the MWSC control process is selected. As long as the estimated gradient is greater than or equal to g1, in the flowchart of FIG. 7, the flow of steps S1 ⁇ step S13 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S7 ⁇ return is repeated, and the MWSC by the MWSC control process is repeated. The driving mode selection is maintained.
  • the following advantages can be obtained when the MWSC travel mode is selected when starting up a slope.
  • (b) The durability of the switching element and the like can be improved by ensuring the rotation state of the motor generator MG.
  • the MWSC traveling mode cannot be maintained. Therefore, the WSC driving mode is forced to be selected, and the slip rotation speed of the second clutch CL2 increases (when the first clutch CL1 is fully engaged) when starting on an uphill road, and the durability of the second clutch CL2 is increased. Has an effect.
  • step S1 when the normal mode map is selected and the estimated gradient exceeds g2, the process proceeds from step S1 to step S2 to step S3 in the flowchart of FIG. Switch to MWSC compatible mode map. Therefore, when the operating point based on the current accelerator opening APO and vehicle speed VSP is within the MWSC + CL1 slip control travel mode region, the process proceeds from step S3 to step S4 ⁇ step S8 ⁇ step S9.
  • step S9 the MWSC + CL1 slip control process is performed.
  • the MWSC + CL1 slip control travel mode is selected.
  • the estimated gradient is greater than or equal to g1 in the flowchart of FIG. 7
  • step S1, step S13, step S4, step S8, step S9, and return is repeated, and MWSC + CL1 slip control by MWSC + CL1 slip control processing is repeated.
  • the driving mode selection is maintained.
  • FIG. 11 shows a time chart in the case of traveling in proportion to the gradient at a certain accelerator opening in the first embodiment in which the target CL1 torque is set to (target drive torque ⁇ ). That is, the traveling by selecting the MWSC + CL1 slip control traveling mode is traveling using a part of the engine torque and the reduced motor torque, and the motor torque during the MWSC + CL1 slip control is the same as that during MWSC control as shown in FIG. It is reduced by ⁇ Tmg1 from the motor torque. In other words, even if the output of the motor generator MG or the output of the battery 4 is limited, the MWSC + CL1 slip control travel mode can be selected if ⁇ ( ⁇ Tcl2) can be secured as the motor torque Tmg.
  • the accelerator opening condition at the time of transition to the MWSC + CL1 slip control traveling mode is not less than the accelerator opening upper limit APO1 at which the MWSC traveling mode is selected, as shown in FIGS. 6 (a) and 6 (b).
  • the load on the first clutch CL1 is reduced compared to the case where the mode transition is made to the MWSC + CL1 slip control travel mode while the motor generator MG is being used.
  • the slip amount ⁇ ′ of the second clutch CL2 in the MWSC + CL1 slip control travel mode is set to a lower slip amount as the heat generation amount of the second clutch CL2 during the mode transition from the MWSC travel mode is higher. That is, in the MWSC + CL1 slip control travel mode, as shown in FIG. 10, the difference between the engine E (idle rotational speed) and the rotational speed of the vehicle is shared by the CL1 slip amount ⁇ and the CL2 slip amount ⁇ ′. Therefore, the CL2 slip amount ⁇ ′ in the MWSC + CL1 slip control travel mode can be set to be smaller than the CL2 slip amount ⁇ in the MWSC travel mode. Thereby, when the selection of the MWSC travel mode is continued, the load of the second clutch CL2 is reduced after the mode transition to the MWSC + CL1 slip control travel mode.
  • the slip amount ⁇ ′ of the second clutch CL2 in the MWSC + CL1 slip control travel mode is determined by the heat generation amount of the second clutch CL2 at the time of mode transition from the MWSC travel mode. As a result, after the mode transition to the MWSC + CL1 slip control travel mode, the load on the second clutch CL2 can be reduced (CL2 protection control).
  • the target CL1 torque in the MWSC + CL1 slip control travel mode is set as (target drive torque ⁇ ). Therefore, the motor torque of motor generator MG can be reliably reduced and the amount of motor torque reduction can be adjusted by using a part of the engine torque.
  • Engine E A motor (motor generator MG) for outputting the driving force of the vehicle and starting the engine E;
  • a first engagement element (first clutch CL1) interposed between the engine E and the motor (motor generator MG) and connecting / disconnecting the engine E and the motor (motor generator MG);
  • a second member that is interposed between the motor (motor generator MG) and drive wheels (left and right rear wheels RL, RR) to connect and disconnect the motor (motor generator MG) and drive wheels (left and right rear wheels RL, RR).
  • the driving force transmission system load is equal to or greater than a predetermined value
  • the first engagement element (first clutch CL1) is slip-engaged while the engine E is operated at a predetermined rotation speed
  • the motor (motor generator MG) is Engine / motor slip travel control means (step S9 in FIG. 7) for slip-engaging the second engagement element (second clutch CL2) at a rotation speed lower than a predetermined rotation speed; Is provided. For this reason, it is possible to reduce the motor torque during the motor slip traveling control that is executed when the driving force transmission system load is large.
  • the motor / motor slip travel control (MWSC + CL1 slip control) can be selected more frequently by selecting motor slip travel control (MWSC control) while the motor (motor generator MG) can be used.
  • MWSC control motor slip travel control
  • first clutch CL1 the load on the first engagement element
  • the engine / motor slip travel control means determines the slip amount of the second engagement element (second clutch CL2) in the engine / motor slip travel control (MWSC + CL1 slip control) as the motor slip. It was set according to the heat generation state of the second engagement element (second clutch CL2) at the time of control transition from the traveling control (MWSC control). For this reason, in addition to the effect of (2), the load of the second engagement element (second clutch CL2) can be reduced after the mode transition to the engine / motor slip traveling control (MWSC + CL1 slip control).
  • the engine / motor slip travel control means sets the target engagement torque of the first engagement element (first clutch CL1) to a torque value obtained by subtracting a predetermined value ⁇ from the target drive torque. Set. For this reason, in addition to the effects (1) to (3), the motor torque of the motor (motor generator MG) can be reliably reduced by using a part of the engine torque, and the motor torque can be reduced by adjusting the predetermined value ⁇ . The amount can be adjusted.
  • Example 2 is an example in which the target CL1 torque is given by the target drive torque in the MWSC + CL1 slip control.
  • step S9 in the second embodiment will be described.
  • step S9 following the YES determination in step S8, MWSC + CL1 slip control processing is executed, and the process proceeds to return.
  • the engine is in an operating state
  • the target CL1 torque of the first clutch CL1 is slip-engaged (target drive torque)
  • feedback control is performed so that the engine E becomes the idling speed
  • the motor generator Feedback control is performed so that MG is a target rotational speed obtained by adding the predetermined rotational speed ⁇ ′ to the output side rotational speed Ncl2out of the second clutch CL2 (however, a value lower than the idle rotational speed)
  • the second clutch CL2 is set to the target driving torque. It is set as feedback control which makes the transmission torque capacity according to.
  • Tmg Img ⁇ d ⁇ mg (2-3)
  • FIG. 12 shows a time chart when the vehicle travels in balance with the gradient at a certain accelerator opening in the second embodiment in which the target CL1 torque is set to (target drive torque). That is, the driving by selecting the MWSC + CL1 slip control driving mode is a driving using only a part of the engine torque, and the motor torque at the time of MWSC + CL1 slip control is only ⁇ Tmg2 from the motor torque at the time of MWSC control as shown in FIG. Reduced. In other words, the MWSC + CL1 slip control travel mode can be selected even when the motor torque Tmg cannot be secured at all due to the output limit of the motor generator MG, the output limit of the battery 4 or the like. Since other operations are the same as those of the first embodiment, description thereof is omitted.
  • the engine / motor slip travel control means sets the target engagement torque of the first engagement element (first clutch CL1) to the value of the target drive torque. For this reason, even when the motor torque Tmg cannot be secured at all due to the output restriction of the motor (motor generator MG) or the output restriction of the battery 4, the engine / the engine that protects the second engagement element (second clutch CL2).
  • a traveling mode by motor slip traveling control (MWSC + CL1 slip control) can be selected.
  • Example 3 is an example in which the target CL1 torque is given by (target drive torque + power generation torque) in MWSC + CL1 slip control.
  • step S9 in the third embodiment is the same as that of the first embodiment except for step S9 in FIG.
  • step S9 in the third embodiment will be described.
  • step S9 following the YES determination in step S8, MWSC + CL1 slip control processing is executed, and the process proceeds to return.
  • the clutch is slip-engaged with the target CL1 torque of the first clutch CL1 as (target drive torque + power generation torque) while the engine is operating, and feedback control is performed so that the engine E becomes the idling speed.
  • the feedback control is performed so that the motor generator MG has a target rotational speed obtained by adding the predetermined rotational speed ⁇ ′ to the output-side rotational speed Ncl2out of the second clutch CL2 (however, a value lower than the idle rotational speed), and the second clutch CL2 is targeted. It is set as the feedback control which makes the transmission torque capacity
  • FIG. 13 shows a time chart when the vehicle travels in proportion to the gradient at a certain accelerator opening in the third embodiment in which the target CL1 torque is set to (target drive torque + power generation torque).
  • the travel by selecting the MWSC + CL1 slip control travel mode is a power generation travel in which a part of the engine torque is the travel drive torque and a part of the engine torque is the power generation torque, and the motor torque during the MWSC + CL1 slip control is shown in FIG.
  • the motor torque during MWSC control is reduced by ⁇ Tmg3.
  • the engine / motor slip travel control means sets the target engagement torque of the first engagement element (first clutch CL1) to a torque value obtained by adding the generated torque to the target drive torque. did. For this reason, when the battery 4 needs to be charged, it is possible to select the power generation travel mode by the engine / motor slip travel control (MWSC + CL1 slip control) that protects the second engagement element (second clutch CL2).
  • the fourth embodiment is an example in which the MWSC + CL1 slip control in which the target CL1 torque of the third embodiment is given by (target drive torque + power generation torque) is applied to the assist control for securing the battery SOC.
  • step S4 when it is determined in step S4 that the vehicle is in the MWSC drive mode region, the process proceeds from step S5 (where SOC ⁇ control intervention threshold) to step S9, and the target CL1 torque is set to (target MWSC + CL1 slip control processing given by (drive torque + power generation torque). Then, when the battery SOC rises to the intervention cancellation threshold or more by the MWSC + CL1 slip control process, the process returns to the MWSC control process again.
  • the cyclic operation of repeatedly switching the power generation mode by the MWSC + CL1 slip control and the MWSC control while monitoring the battery SOC is performed.
  • Other configurations are the same as those in the third embodiment.
  • FIG. 14 shows a fourth embodiment in which the MWSC + CL1 slip control in which the target CL1 torque of the third embodiment is given as (target drive torque + power generation torque) is applied to the assist control for securing the battery SOC.
  • working balancing with a gradient with a fixed accelerator opening degree is shown. That is, by executing the MWSC control using the motor torque, when the battery SOC falls below the control intervention threshold at time t1, the MWSC + CL1 slip control of the third embodiment is performed, and the battery SOC increases from time t1 to time t2. .
  • the control When the battery SOC becomes greater than or equal to the intervention release threshold at time t2, the control returns to MWSC control again, and MWSC control is maintained until time t3 when the battery SOC becomes less than or equal to the control intervention threshold.
  • This cyclic operation by repetition is repeated from time t3 to time t8. Therefore, when selecting the MWSC control travel mode when battery charging is required, the power generation mode based on cyclic operation MWSC + CL1 slip control is applied as intervention control, thereby suppressing the decrease in battery SOC and maintaining the maximum MWSC control. can do. Since other operations are the same as those of the third embodiment, description thereof is omitted.
  • the engine / motor slip travel control means determines that the motor charge motor capacity (battery SOC) falls below the control intervention threshold during motor slip travel control (during MWSC control).
  • the slip traveling control MWSC control
  • MWSC + CL1 slip control the engine / motor slip traveling control
  • battery charge capacity battery SOC
  • the engine / motor slip traveling control A cyclic operation of switching from the power generation mode by (MWSC + CL1 slip control) to the motor slip traveling control (MWSC control) is performed.
  • MWSC control motor slip traveling control
  • MWSC + CL1 slip control motor slip traveling control
  • the driving force transmission system load detection means may detect the presence or absence of vehicle traction or the like, or may detect an on-vehicle load. This is because when the driving force transmission system load is large in this way, the vehicle speed increases slowly and the second clutch CL2 easily generates heat. Further, the detected temperature, estimated temperature, or estimated heat value of the second clutch CL2 may be used. For example, when the estimated heat generation amount of the second clutch CL2 is used as the driving force transmission system load, the value obtained by multiplying the differential rotation of the second clutch CL2 by the transmission torque capacity of the second clutch CL2 is integrated over time.
  • Examples 1 to 4 show an example in which MWSC control or MWSC + CL1 slip control is executed when the uphill road surface gradient is equal to or greater than a predetermined value.
  • the MWSC control or the MWSC + CL1 slip control may be executed when the uphill road surface gradient is equal to or higher than a predetermined value and the detected temperature or estimated temperature of the second clutch is equal to or higher than the predetermined value.
  • Examples 1 to 4 show examples in which the control device of the present invention is applied to an FR type hybrid vehicle. However, the control device of the present invention can of course be applied to an FF type hybrid vehicle.

Abstract

 駆動力伝達系負荷が大きいときに実行されるモータスリップ走行制御時にモータトルクの低減を図ること。 ハイブリッド車両の制御装置は、エンジンEと、モータジェネレータMGと、第1クラッチCL1と、第2クラッチCL2と、路面勾配推定演算部201と、MWSC+CL1スリップ制御処理部(図7のステップS9)と、を備える。モータジェネレータMGは、車両の駆動力を出力すると共にエンジンEの始動を行う。第1クラッチCL1は、エンジンEとモータジェネレータMGとを断接する。第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとを断接する。MWSC+CL1スリップ制御処理部は、駆動力伝達系負荷が所定値以上のとき、エンジンEを所定回転数で作動させたまま第1クラッチCL1をスリップ締結し、モータジェネレータMGを所定回転数よりも低い回転数として第2クラッチCL2をスリップ締結する。

Description

ハイブリッド車両の制御装置
 本発明は、動力源にエンジンとモータを備え、駆動力伝達系のうち、エンジンとモータの間に第1締結要素を有し、モータと駆動輪の間に第2締結要素を有するハイブリッド車両の制御装置に関する。
 エンジンとモータの間に第1締結要素CL1を有し、モータと駆動輪の間に第2締結要素CL2を有するハイブリッド車両において、駆動力伝達系負荷が大きいときに第2締結要素CL2の過剰な発熱を抑制することで第2締結要素CL2を保護する。これを達成するため、駆動力伝達系負荷が所定値以上のときは、エンジンを作動させた状態で第1締結要素CL1を解放し、モータをエンジン回転数よりも低い回転数として第2締結要素CL2をスリップ締結するものが知られている(例えば、特許文献1参照)。
特開2009-132195号公報
 しかしながら、上記ハイブリッド車両の制御装置にあっては、モータを用いて第2締結要素CL2のスリップ回転数低減を行っているが、モータの出力制限や、バッテリの出力制限があった場合には適用できない、という問題がある。
 本発明は、上記問題に着目してなされたもので、駆動力伝達系負荷が大きいときに実行されるモータスリップ走行制御時にモータトルクの低減を図ることができるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明のハイブリッド車両の制御装置は、エンジンと、モータと、第1締結要素と、第2締結要素と、駆動力伝達系負荷検出手段と、エンジン/モータスリップ走行制御手段と、を備える手段とした。
前記モータは、車両の駆動力を出力すると共に前記エンジンの始動を行う。
前記第1締結要素は、前記エンジンと前記モータとの間に介装され前記エンジンと前記モータとを断接する。
前記第2締結要素は、前記モータと駆動輪との間に介装され前記モータと前記駆動輪とを断接する。
前記駆動力伝達系負荷検出手段は、駆動力伝達系負荷を検出または推定する。
前記エンジン/モータスリップ走行制御手段は、前記駆動力伝達系負荷が所定値以上のとき、前記エンジンを所定回転数で作動させたまま前記第1締結要素をスリップ締結し、前記モータを前記所定回転数よりも低い回転数として前記第2締結要素をスリップ締結する。
 よって、駆動力伝達系負荷が所定値以上のとき、エンジン/モータスリップ走行制御手段において、エンジンを所定回転数で作動させたまま第1締結要素がスリップ締結され、モータが所定回転数よりも低い回転数として第2締結要素がスリップ締結される。
すなわち、エンジン回転数よりも低い回転数でモータを回転駆動するため、第2締結要素のスリップ量を小さくすることが可能となり、第2締結要素の発熱量を抑制できる。又、エンジンが作動状態であり、第1締結要素がスリップ締結しているため、エンジンから第1締結要素を経由してエンジン駆動力が伝達され、伝達されるエンジントルク分だけ必要なモータトルクを低減することができる。
この結果、駆動力伝達系負荷が大きいときに実行されるモータスリップ走行制御時にモータトルクの低減を図ることができる。
実施例1の制御装置が適用された後輪駆動のハイブリッド車両を示す全体システム図である。 実施例1の統合コントローラにおける演算処理プログラムを示す制御ブロック図である。 図2の目標駆動トルク演算部にて目標駆動トルク演算に用いられる目標駆動トルクマップの一例を示す図である。 図2のモード選択部にてモード選択条件となっている推定勾配とモードマップの関係をあらわす図である。 図2のモード選択部にて目標モードの選択に用いられる通常モードマップの一例を示す図である。 図2のモード選択部にて目標モードの選択に用いられるMWSC対応モードマップの3パターン例を示す図である。 実施例1の統合コントローラにて実行される走行モード遷移制御処理の流れを示すフローチャートである。 WSC制御中の各アクチュエータの動作点を示す概略図である。 MWSC制御中の各アクチュエータの動作点を示す概略図である。 MWSC+CL1スリップ制御中の各アクチュエータの動作点を示す概略図である。 実施例1(目標CL1トルク=目標駆動トルク-α)のMWSC+CL1スリップ制御走行モードの選択による走行時であって、一定アクセル開度で勾配と釣り合い走行している場合におけるタイムチャートである。 実施例2(目標CL1トルク=目標駆動トルク)のMWSC+CL1スリップ制御走行モードの選択による走行時であって、一定アクセル開度で勾配と釣り合い走行している場合におけるタイムチャートである。 実施例3(目標CL1トルク=目標駆動トルク+発電トルク)のMWSC+CL1スリップ制御走行モードの選択による走行時であって、一定アクセル開度で勾配と釣り合い走行している場合におけるタイムチャートである。 実施例4のMWSC+CL1スリップ制御を適用した助け合い制御による走行時であって、一定アクセル開度で勾配と釣り合い走行している場合におけるタイムチャートである。
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1~実施例4に基づいて説明する。
 まず、構成を説明する。
実施例1のハイブリッド車両の制御装置の構成を、「システム構成」、「統合コントローラの制御構成」、「走行モード遷移制御構成」に分けて説明する。
 [システム構成]
 図1は、実施例1の制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。以下、図1に基づいて、システム構成(駆動系と制御系の構成)を説明する。
 ハイブリッド車両の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1(第1締結要素)と、モータジェネレータMG(モータ)と、第2クラッチCL2(第2締結要素)と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。尚、FLは左前輪、FRは右前輪である。
 前記エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。尚、エンジン出力軸にはフライホイールFWが設けられている。
 前記第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により、スリップ締結を含み締結・解放が制御される。
 前記モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。尚、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
 前記第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、スリップ締結を含み締結・解放が制御される。
 前記自動変速機ATは、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り替える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。
 上記ハイブリッド駆動系には、第1クラッチCL1の締結・解放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の解放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
 また、路面勾配が所定値以上の登坂路等で、運転者がアクセルペダルを調整し車両停止状態を維持するアクセルヒルホールドが行われるような場合、WSC走行モードにすると、第2クラッチCL2のスリップ量が過多の状態が継続されるおそれがある。なぜなら、エンジンEをアイドル回転数より小さくすることができないからである。そこで、CL2保護制御を実現するため、CL1解放によるモータスリップ走行モード(以下、「MWSC走行モード」と略称する)と、CL1スリップ締結によるモータスリップ走行モード(以下、「MWSC+CL1スリップ制御走行モード」と略称する)と、を備える。「MWSC走行モード」は、エンジンEとモータジェネレータMGを作動させたまま、第1クラッチCL1を解放し、第2クラッチCL2をスリップ制御して走行する。「MWSC+CL1スリップ制御走行モード」は、エンジンEとモータジェネレータMGを作動させたまま、第1クラッチCL1と第2クラッチCL2をスリップ制御して走行する。尚、詳細については後述する。
 上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。
「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
 ハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。尚、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。
 前記エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。更に詳細なエンジン制御内容については後述する。尚、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。
 前記モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ3へ出力する。尚、このモータコントローラ2では、バッテリ4の充電状態をあらわすバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。
 前記第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・解放を制御する指令を第1クラッチ油圧ユニット6に出力する。尚、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
 前記ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからのセンサ情報を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・解放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット8に出力する。尚、アクセル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
 前記ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
 前記統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ10aと、前後加速度を検出するGセンサ10bからの情報およびCAN通信線11を介して得られた情報を入力する。また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・解放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・解放制御と、を行う。
 [統合コントローラの制御構成]
 次に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御構成を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。
 前記統合コントローラ10は、図2に示すように、目標駆動トルク演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。
 前記目標駆動トルク演算部100では、図3に示す目標駆動トルクマップを用いて、アクセル開度APOと車速VSPとから、目標駆動トルクtFoOを演算する。
 前記モード選択部200は、Gセンサ10bの検出値に基づいて路面勾配を推定する路面勾配推定演算部201(駆動力伝達系負荷検出手段)を有する。この路面勾配推定演算部201は、車輪速センサ19の車輪速加速度平均値等から実加速度を演算し、この演算結果とGセンサ検出値との偏差から路面勾配を推定する。そして、推定された路面勾配に基づいて、後述する二つのモードマップのうち、いずれかを選択するモードマップ選択部202を有する。
 前記モードマップ選択部202は、図4に示すように、通常モードマップ(図5)が選択されている状態から推定勾配が所定値g2以上になると、MWSC対応モードマップ(図6)に切り替える。一方、MWSC対応モードマップ(図6)が選択されている状態から推定勾配が所定値g1(<g2)未満になると、通常モードマップ(図5)に切り替える。すなわち、推定勾配に対してヒステリシスを設け、マップ切り替え時の制御ハンチングを防止する。
 前記通常モードマップは、推定勾配が所定値g1未満のときに選択され、図5に示すように、マップ内に、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセル開度APOと車速VSPとから、目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」を目標モードとする。図5の通常モードマップにおいて、HEV→WSC切替線は、所定アクセル開度APO1未満の領域では、自動変速機ATが1速段のときに、エンジンEのアイドル回転数よりも小さな回転数となる下限車速VSP1よりも低い領域に設定されている。また、所定アクセル開度APO1以上の領域では、大きな駆動力を要求されることから、下限車速VSP1よりも高い車速VSP1'領域までWSC走行モードが設定されている。尚、バッテリSOCが低く、EV走行モードを達成できないときには、発進時等であってもWSC走行モードを選択するように構成されている。アクセル開度APOが大きいとき、その要求をアイドル回転数付近のエンジン回転数に対応したエンジントルクとモータジェネレータMGのトルクで達成するのは困難な場合がある。ここで、エンジントルクは、エンジン回転数が上昇すればより多くのトルクを出力できる。このことから、エンジン回転数を引き上げてより大きなトルクを出力させれば、例え下限車速VSP1よりも高い車速までWSC走行モードを実行しても、短時間でWSC走行モードからHEV走行モードに遷移させることができる。この場合が図5に示す下限車速VSP1'まで広げられたWSC領域である。
 前記MWSC対応モードマップは、図6(a)に示す第1スケジュールと、図6(b)に示す第2スケジュールと、図6(c)に示す第3スケジュールと、を有する。
第1スケジュールは、図6(a)に示すように、マップ内に、WSC走行モードと、MWSC走行モードと、MWSC+CL1スリップ制御走行モードと、HEV走行モードとを有し、アクセル開度APOと車速VSPとから目標モードを演算する。
第2スケジュールは、図6(b)に示すように、マップ内に、MWSC走行モードと、MWSC+CL1スリップ制御走行モードと、HEV走行モードとを有し、アクセル開度APOと車速VSPとから目標モードを演算する。
第3スケジュールは、図6(c)に示すように、マップ内に、WSC走行モードと、EV走行モードと、MWSC+CL1スリップ制御走行モードと、HEV走行モードとを有し、アクセル開度APOと車速VSPとから目標モードを演算する。
これら第1~第3スケジュールは、車種毎のモータジェネレータMGや第1クラッチCL1や第2クラッチCL2等の条件により選択しても良いし、1つのハイブリッド車両で第1~第3スケジュールの少なくとも2つのスケジュールを使い分けても良い。
 前記目標充放電演算部300では、目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。
 前記動作点指令部400では、アクセル開度APOと、目標駆動トルクtFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータジェネレータトルクと目標第2クラッチ伝達トルク容量と自動変速機ATの目標変速段と第1クラッチソレノイド電流指令を演算する。また、動作点指令部400には、EV走行モードからHEV走行モードに遷移するときにエンジンEを始動するエンジン始動制御部が設けられている。
 前記変速制御部500では、所定のシフトスケジュールに沿って、目標第2クラッチ伝達トルク容量と目標変速段を達成するように自動変速機AT内のソレノイドバルブを駆動制御する。尚、シフトマップは、車速VSPとアクセル開度APOに基づいて予め目標変速段が設定されたものである。
 [走行モード遷移制御構成]
 図7は、実施例1の統合コントローラ10にて実行される走行モード遷移制御処理の流れを示すフローチャートである。以下、図7に基づき、走行モード遷移制御構成をあらわす各ステップについて説明する。
 ステップS1では、通常モードマップが選択されているかどうかを判断する。YES(通常モードマップの選択)のときはステップS2へ進み、NO(MWSC対応モードマップの選択)のときはステップS11へ進む。
 ステップS2では、ステップS1でのYES判断に続き、推定勾配が所定値g2よりも大きいかどうか、つまり、駆動力伝達系負荷が大きいかどうかを判断する。YES(推定勾配>g2)のときはステップS3へ進み、NO(推定勾配≦g2)のときはステップS17へ進んで通常モードマップに基づく制御処理を実行する。
 ステップS3では、ステップS2でのYES判断に続き、通常モードマップからMWSC対応モードマップに切り替え、ステップS4へ進む。
 ステップS4では、ステップS3でのモードマップ切り替え、あるいは、ステップS13でのNO判断に続き、現在のアクセル開度APOと車速VSPにより決定される動作点がMWSC走行モード領域内にあるかどうかを判断する。YES(MWSC走行モード領域内)のときはステップS5へ進み、NO(MWSC走行モード外)のときはステップS8へ進む。
 ステップS5では、ステップS4でのYES判断に続き、バッテリSOCが所定値Aよりも大きいかどうかを判断する。YES(バッテリSOC>A)のときはステップS6へ進み、NO(バッテリSOC≦A)のときはステップS11へ進む。
ここで、所定値Aとは、モータジェネレータMGのみによって駆動力を確保することが可能か否かを判断するための閾値である。バッテリSOCが所定値Aよりも大きいときはモータジェネレータMGのみによって駆動力を確保できる状態であり、所定値A以下のときはバッテリ4への充電が必要であるため、MWSC走行モードの選択を禁止する。
 ステップS6では、ステップS5でのYES判断に続き、第2クラッチCL2の伝達トルク容量TCL2が所定値B未満かどうかを判断する。YES(TCL2<B)のときはステップS7へ進み、NO(TCL2≧B)のときはステップS11へ進む。
ここで、所定値Bとは、モータジェネレータMGに過剰な電流が流れないことをあらわす所定値である。モータジェネレータMGは回転数制御されるため、モータジェネレータMGに発生するトルクは、モータジェネレータMGに作用する駆動力伝達系負荷以上となる。
言い換えると、モータジェネレータMGは第2クラッチCL2をスリップ状態となるように回転数制御されるため、モータジェネレータMGには第2クラッチ伝達トルク容量TCL2よりも大きなトルクが発生する。よって、第2クラッチCL2の伝達トルク容量TCL2が過剰なときは、モータジェネレータMGに流れる電流が過剰となり、スイッチング素子等の耐久性が悪化する。この状態を回避する為に所定値B以上のときはMWSC走行モードの選択を禁止する。
 ステップS7では、ステップS6でのYES判断に続き、MWSC制御処理を実行し、リターンへ進む。
MWSC制御処理は、具体的に、エンジン動作状態のまま第1クラッチCL1を解放し、エンジンEをアイドル回転数となるようにフィードバック制御とし、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数βを加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とし、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とする。尚、通常モードマップにはMWSC走行モードが設定されていないことから、ステップS7におけるMWSC制御処理にはWSC走行モードやアイドル発電モードからのモード遷移処理が含まれる。
 ステップS8では、ステップS4でのNO判断に続き、現在のアクセル開度APOと車速VSPにより決定される動作点がMWSC+CL1スリップ制御走行モード領域内にあるかどうかを判断する。YES(MWSC+CL1スリップ制御走行モード領域内)のときはステップS9へ進み、NO(MWSC+CL1スリップ制御走行モード外)のときはステップS10へ進む。
 ステップS9では、ステップS8でのYES判断に続き、MWSC+CL1スリップ制御処理を実行し、リターンへ進む。
MWSC+CL1スリップ制御処理は、具体的に、エンジン動作状態のまま第1クラッチCL1の目標CL1トルクを(目標駆動トルク-α)としてスリップ締結し、エンジンEをアイドル回転数となるようにフィードバック制御とし、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数β’を加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とし、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とする。なお、所定回転数β’(=CL2スリップ量)は、第2クラッチCL2の発熱量が高いほど、低い回転数に設定する。
 ステップS10では、ステップS8でのNO判断に続き、現在のアクセル開度APOと車速VSPにより決定される動作点がWSC走行モード領域内にあるかどうかを判断する。YES(WSC走行モード領域内)のときはステップS11へ進み、NO(WSC走行モード領域外)のときはHEV走行モード領域内にあると判断してステップS12へ進む。
 ステップS11では、ステップS10でのYES判断に続き、WSC制御処理を実行し、リターンへ進む。
WSC制御処理は、具体的に、第1クラッチCL1を完全締結し、エンジンEを目標トルクに応じたフィードフォワード制御とし、モータジェネレータMGをアイドル回転数となるフィードバック制御とし、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とする。尚、EV走行モードが設定されていないMWSC対応モードマップの場合には、ステップS11におけるWSC制御処理にはEV走行モードからのモード遷移処理が含まれる。
 ステップS12では、ステップS10でのNO判断に続き、HEV制御処理を実行し、リターンへ進む。
HEV制御処理は、具体的に、第1クラッチCL1を完全締結し、エンジンE及びモータジェネレータMGを目標駆動トルクに応じたトルクとなるようにフィードフォワード制御し、第2クラッチCL2を完全締結する。尚、EV走行モードが設定されていないMWSC対応モードマップの場合には、ステップS12におけるHEV制御処理にはEV走行モードからのモード遷移処理が含まれる。
 ステップS13では、ステップS1でのNOの判断に続き、推定勾配が所定値g1未満かどうかを判断する。YES(推定勾配<g1)のときはステップS14へ進み、NO(推定勾配≧g1)のときはステップS4に進んでMWSC対応モードマップによる制御を継続する。
 ステップS14では、ステップS13でのYES判断に続き、MWSC対応モードマップから通常モードマップに切り替え、ステップS15へ進む。
 ステップS15では、ステップS14でのマップ切り替えに続き、マップ切り替えに伴って走行モードが変更されたか否かを判断する。YES(走行モード変更有り)のときはステップS16へ進み、NO(走行モード変更無し)のときはステップS17に進む。
なお、MWSC対応モードマップから通常モードマップに切り替えると、MWSC走行モードからWSC走行モードへの遷移、WSC走行モードからEV走行モードへの遷移、HEV走行モードからEV走行モードへの遷移、等が生じ得るからである。
 ステップS16では、ステップS15でのYES判断に続き、走行モード変更処理を実行し、ステップS17へ進む。
具体的には、例えば、MWSC走行モードからWSC走行モードへの遷移時には、モータジェネレータMGの目標回転数をアイドル回転数に変更し、同期した段階で第1クラッチCL1を締結する。そして、エンジン制御をアイドル回転数フィードバック制御から目標エンジントルクフィードフォワード制御に切り替える。
 ステップS17では、ステップS2でのNO判断、あるいは、ステップS15でのNO判断、あるいは、ステップS16での走行モード変更処理に続き、通常モードマップに基づく制御処理を実行し、リターンへ進む。
 次に、作用を説明する。
実施例1のハイブリッド車両の制御装置における作用を、「WSC制御・MWSC制御・MWSC+CL1スリップ制御の対比」、「WSC走行モード作用」、「MWSC走行モード作用」、「MWSC+CL1スリップ制御走行モード作用」に分けて説明する。
 [WSC制御・MWSC制御・MWSC+CL1スリップ制御の対比]
 図8はWSC制御中の各アクチュエータの動作点、図9はMWSC制御中の各アクチュエータの動作点、図10は、MWSC+CL1スリップ制御中の各アクチュエータの動作点を示す概略図である。以下、図8~図10に基づき、WSC制御・MWSC制御・MWSC+CL1スリップ制御を対比して説明する。
 「WSC制御」は、図8に示すように、第1クラッチCL1を完全締結し、エンジンEを目標エンジントルクに応じたフィードフォワード制御とし、モータジェネレータMGをアイドル回転数となるフィードバック制御とする。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とし、スリップ締結する制御である。
 「MWSC制御」は、図9に示すように、エンジン動作状態のまま第1クラッチCL1を解放し、エンジンEをアイドル回転数となるようにフィードバック制御とする。そして、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数βを加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とする。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とし、スリップ締結する制御である。
 「MWSC+CL1スリップ制御」は、図10に示すように、エンジン動作状態のまま第1クラッチCL1の目標CL1トルクを(目標駆動トルク-α)としてスリップ締結し、エンジンEをアイドル回転数となるようにフィードバック制御とする。そして、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数β’を加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とする。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とし、スリップ締結する制御である。なお、所定回転数β’(=CL2スリップ量)は、CL2温度が高いほど、低い回転数に設定する。
 「WSC制御」によるWSC走行モードは、エンジンEが作動した状態を維持している点と第1クラッチCL1を完全締結にしている点に特徴がある。WSC走行モードでは、駆動輪回転数とエンジン回転数の差を第2クラッチCL2のスリップにより吸収できる。更に、目標駆動トルク変化に第2クラッチCL2のトルク容量変化で対応することができるので、目標駆動トルク変化に対する応答性が高い。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量としてスリップ制御し、エンジンE及び/又はモータジェネレータMGの駆動力を用いて走行する。
 「MWSC制御」によるMWSC走行モードは、WSC走行モードで完全締結にしている第1クラッチCL1を解放している点に特徴がある。MWSC走行モードでは、エンジンEのアイドル回転数に拘束されることなく、モータジェネレータMGの回転数制御によりスリップ量をコントロールできるので、WSC走行モードに比べて第2クラッチCL2のスリップ量(=β)を低減することができる。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量としてスリップ制御し、モータジェネレータMGの駆動力を用いて走行する。
 「MWSC+CL1スリップ制御」によるMWSC+CL1スリップ制御走行モードは、MWSC走行モードで解放にしている第1クラッチCL1をスリップ締結にしている点に特徴がある。MWSC+CL1スリップ制御走行モードでは、MWSC走行モードと同様に第2クラッチCL2のスリップ量(=β’)を低減することができる。更に、駆動トルクとして第1クラッチCL1の伝達トルク容量分が加わることで、モータジェネレータMGのモータトルクを低減することができる。そして、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量としてスリップ制御し、エンジンEとモータジェネレータMGの駆動力を用いて走行する(実施例1)。又は、エンジンEの駆動力を用いて走行する(実施例2)。又は、エンジンEの駆動力を用いて発電走行する(実施例3,4)。
 [WSC走行モード作用]
 WSC走行モード領域を設定した理由について説明する。実施例1のハイブリッド車両では、トルクコンバータのように回転数差を吸収する要素が存在しないため、第1クラッチCL1と第2クラッチCL2を完全締結すると、エンジンEの回転数に応じて車速が決まってしまう。エンジンEには、自立回転を維持するためのアイドル回転数による下限値が存在し、このアイドル回転数は、エンジンの暖機運転等によりアイドルアップを行っていると更に下限値が高くなる。また、目標駆動トルクが高い状態では素早くHEV走行モードに遷移できない場合がある。
 一方、EV走行モードでは、第1クラッチCL1を解放するため、上記エンジン回転数による下限値に伴う制限はない。しかしながら、バッテリSOCに基づく制限によってEV走行モードによる走行が困難な場合や、モータジェネレータMGのみで目標駆動トルクを達成できない領域では、エンジンEによって安定したトルクを発生する以外に手段がない。
 そこで、上記下限値に相当する車速よりも低車速領域であって、かつ、EV走行モードによる走行が困難な場合やモータジェネレータMGのみでは目標駆動トルクを達成できない領域では、エンジン回転数を所定の下限回転数に維持し、第2クラッチCL2をスリップ制御させ、エンジントルクを用いて走行するWSC走行モードを選択する。
 実施例1では、通常モードマップが選択されていて、推定勾配がg2以下のときには、図7のフローチャートにおいて、ステップS1→ステップS2→ステップS17→リターンへと進む流れが繰り返される。そして、ステップS17では、現在のアクセル開度APOと車速VSPによる動作点がWSC走行モード領域内にあるときは、WSC走行モードが選択される。
 また、通常モードマップが選択されていて、推定勾配がg2を超えているときには、図7のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、ステップS3では、通常モードマップからMWSC対応モードマップへと切り替えられる。したがって、現在のアクセル開度APOと車速VSPによる動作点がWSC走行モード領域内にあるときは、ステップS3からステップS4→ステップS8→ステップS10→ステップS11→リターンへと進み、WSC制御処理によるWSC走行モードが選択される。
 一方、現在のアクセル開度と車速による動作点がMWSC走行モード領域内にあるが、ステップS5とステップS6の条件が成立しないときは、ステップS3からステップS4→ステップS5(→ステップS6)→ステップS11→リターンへと進み、WSC制御処理によるWSC走行モードが選択される。
 したがって、平坦路発進時等でWSC走行モードが選択されると、下記のメリットを得ることができる。
(a)第2クラッチCL2が駆動輪回転数とエンジン回転数の回転差吸収要素となり、第2クラッチCL2のスリップにより回転差を吸収できる。
(b)第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量としているため、ドライバが要求する駆動トルクを駆動輪へ伝達しての発進を行うことができる。
(c)アクセル開度APOの変化や車速VSPの変化による目標駆動トルク変化に対し、エンジンEによる駆動力変化を待つことなく、第2クラッチCL2の伝達トルク容量変化で対応することができるので、目標駆動トルク変化に対する応答性が高い。
 [MWSC走行モード作用]
 MWSC走行モード領域を設定した理由について説明する。走行路面の推定勾配が所定勾配(g1もしくはg2)より大きいときに、例えば、ブレーキペダル操作を行うことなく車両を停止状態もしくは微速発進状態に維持しようとすると、平坦路に比べて大きな駆動力が要求される。なぜなら、自車両に加わる勾配負荷に対抗する必要があるからである。
 第2クラッチCL2のスリップによる発熱を回避する観点から、バッテリSOCに余裕があるときはEV走行モードを選択することも考えられる。このとき、EV走行モード領域からWSC走行モード領域に遷移したときにはエンジン始動を行う必要があり、モータジェネレータMGはエンジン始動用トルクを確保した状態で駆動トルクを出力するため、駆動トルク上限値が不要に狭められる。
 また、EV走行モードにおいてモータジェネレータMGにトルクだけを出力し、モータジェネレータMGの回転を停止もしくは極低速回転すると、インバータのスイッチング素子にロック電流が流れ(電流が1つの素子に流れ続ける現象)、耐久性の低下を招くおそれがある。
 また、1速でエンジンEのアイドル回転数に相当する下限車速VSP1よりも低い領域(図6のVSP2以下の領域)において、エンジンE自体は、アイドル回転数より低下させることができない。このとき、WSC走行モードを選択すると、第2クラッチCL2のスリップ量が大きくなり、第2クラッチCL2の耐久性に影響を与えるおそれがある。
 特に、登り勾配路では、平坦路に比べて大きな駆動力が要求されていることから、第2クラッチCL2に要求される伝達トルク容量は高くなり、高トルクで高スリップ量の状態が継続されることは、第2クラッチCL2の耐久性の低下を招きやすい。また、車速の上昇もゆっくりとなることから、HEV走行モードへの遷移までに時間がかかり、更に発熱するおそれがある。
 そこで、エンジンEを作動させたまま、第1クラッチCL1を解放し、第2クラッチCL2の伝達トルク容量を運転者の目標駆動トルクに制御しつつ、モータジェネレータMGの回転数が第2クラッチCL2の出力回転数よりも所定回転数高い目標回転数にフィードバック制御するMWSC走行モードを設定した。
 言い換えると、モータジェネレータMGの回転状態をエンジンのアイドル回転数よりも低い回転数としつつ第2クラッチCL2をスリップ制御するものである。同時に、エンジンEはアイドル回転数を目標回転数とするフィードバック制御に切り替える。WSC走行モードでは、モータジェネレータMGの回転数フィードバック制御によりエンジン回転数が維持されていた。これに対し、第1クラッチCL1が解放されると、モータジェネレータMGによってエンジン回転数をアイドル回転数に制御できなくなる。よって、エンジンE自体によりエンジン回転数フィードバック制御を行う。
 実施例1では、通常モードマップが選択されていて、推定勾配がg2を超えているときには、図7のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、ステップS3では、通常モードマップからMWSC対応モードマップへと切り替えられる。したがって、現在のアクセル開度APOと車速VSPによる動作点がMWSC走行モード領域内にあり、かつ、バッテリSOC条件と第2クラッチトルク条件が成立するときは、ステップS3からステップS4→ステップS5→ステップS6→ステップS7へと進み、ステップS7では、MWSC制御処理によるMWSC走行モードが選択される。そして、推定勾配がg1以上である限りは、図7のフローチャートにおいて、ステップS1→ステップS13→ステップS4→ステップS5→ステップS6→ステップS7→リターンへと進む流れが繰り返され、MWSC制御処理によるMWSC走行モードの選択が維持される。
 したがって、登坂路発進時等でMWSC走行モードが選択されると、下記のメリットを得ることができる。
(a)エンジンEが作動状態であることからモータジェネレータMGにエンジン始動分の駆動トルクを残しておく必要が無く、モータジェネレータMGの駆動トルク上限値を大きくすることができる。具体的には、目標駆動トルク軸で見たときに、EV走行モードの領域よりも高い目標駆動トルクに対応できる。
(b)モータジェネレータMGの回転状態を確保することでスイッチング素子等の耐久性を向上できる。
(c)アイドル回転数よりも低い回転数でモータジェネレータMGを回転することから、第2クラッチCL2のスリップ量を小さくすることが可能となり、第2クラッチCL2の耐久性の向上を図ることができる(CL2保護制御)。
 [MWSC+CL1スリップ制御走行モード作用]
 MWSC+CL1スリップ制御走行モード領域を設定した理由について説明する。MWSC走行モードでは、モータジェネレータMGを用いて第2クラッチCL2のスリップ回転数の低減を行っている。このため、モータジェネレータMGの出力制限や、バッテリ4の出力制限があった場合には、MWSC走行モードを適用することができない。
 そこで、MWSC走行モードを適用できない制限時において、例えば、第2クラッチCL2を完全締結し、第1クラッチCL1にて発進時のスリップ制御を行うようにした走行モードを想定する。この走行モードの場合、第1クラッチCL1のスリップ量が増大し、第1クラッチCL1の耐久性への影響がある。また、第2クラッチCL2を完全締結状態にすると、再度、第2クラッチCL2をスリップへ移行する時に段差がある。さらに、発電を実施する際に、第1クラッチトルクとのバランスを取る必要がある。
 したがって、モータジェネレータMGのモータトルクが、ドライバの要求駆動トルク(=目標駆動トルク)相当を確保できないときは、MWSC走行モードを維持することができない。よって、WSC走行モードの選択を余儀なくされることになり、登坂路発進時等において、第2クラッチCL2のスリップ回転数が増大し(第1クラッチCL1の完全締結)、第2クラッチCL2の耐久性に影響がある。
 すなわち、モータトルクがドライバの要求駆動トルク(=目標駆動トルク)相当を確保できず、MWSC走行モードを維持することができないとき、MWSC走行モードに代わる走行モードが必要であり、このとき、MWSC+CL1スリップ制御走行モードを選択する。
 実施例1では、通常モードマップが選択されていて、推定勾配がg2を超えているときには、図7のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進み、ステップS3では、通常モードマップからMWSC対応モードマップへと切り替えられる。したがって、現在のアクセル開度APOと車速VSPによる動作点がMWSC+CL1スリップ制御走行モード領域内にあるときは、ステップS3からステップS4→ステップS8→ステップS9へと進み、ステップS9では、MWSC+CL1スリップ制御処理によるMWSC+CL1スリップ制御走行モードが選択される。そして、推定勾配がg1以上である限りは、図7のフローチャートにおいて、ステップS1→ステップS13→ステップS4→ステップS8→ステップS9→リターンへと進む流れが繰り返され、MWSC+CL1スリップ制御処理によるMWSC+CL1スリップ制御走行モードの選択が維持される。
 次に、MWSC+CL1スリップ制御走行モードの選択により、なぜモータトルクが低減されるかの理由を説明する(図8~図10参照)。
 エンジン軸周りの運動方程式は、
Teng-Tcl1=Ieng・dωeng       …(1)
 モータ軸周りの運動方程式は、
Tmg+Tcl1-Tcl2=Img・dωmg     …(2)
であらわされる。但し、
Teng:エンジントルク
Tmg:モータトルク
Tcl1:CL1トルク容量
Tcl2:CL2トルク容量
Ieng:エンジンイナーシャ
Img:モータイナーシャ
dωeng:エンジン回転角加速度
dωmg:モータ回転角加速度
である。
 MWSCモードの場合は、Tcl1=0であるため、上記(1)式は、
Teng=Ieng・dωeng       …(1-1)
となり、上記(2)式は、
Tmg-Tcl2=Img・dωmg     …(2-1)
となる。よって、MWSCモードを選択した場合、(2-1)式から明らかなように、CL2トルク容量Tcl2に対抗できるだけのモータトルクTmgが必要である。
 これに対し、MWSC+CL1スリップ制御走行モードの場合、Tcl1>0であるため、上記(2)式から明らかなように、モータトルクTmgとCL1トルク容量Tcl1を合算したトルクにより、CL2トルク容量Tcl2に対抗する。よって、モータトルクTmgを、CL1トルク容量Tcl1(>0)の分だけ減少させることができる。
 実施例1の場合、目標CL1トルクを、目標駆動トルク(=CL2トルク容量Tcl2)-αで与えているため、上記(2)式は、
Tmg-α=Img・dωmg     …(2-2)
となり、Tcl2>αであるため、上記(2-2)式から明らかなように、α(<Tcl2)に対抗できるだけのモータトルクTmgで良い。
 図11は、目標CL1トルクを(目標駆動トルク-α)に設定した実施例1において、一定アクセル開度で勾配と釣り合い走行している場合のタイムチャートを示す。すなわち、MWSC+CL1スリップ制御走行モードの選択による走行は、エンジントルクの一部と低減させたモータトルクを用いた走行となり、MWSC+CL1スリップ制御時のモータトルクは、図11に示すように、MWSC制御時のモータトルクよりΔTmg1だけ低減される。言い換えると、モータジェネレータMGの出力制限や、バッテリ4の出力制限があったとしても、モータトルクTmgとしてα(<Tcl2)を確保できれば、MWSC+CL1スリップ制御走行モードを選択することができる。
 そして、MWSC+CL1スリップ制御走行モードに遷移するときのアクセル開度条件は、図6(a),(b)に示すように、MWSC走行モードが選択されるアクセル開度上限値APO1以上としている。
これによって、モータジェネレータMGが使える間はMWSC走行モードを選択することで、モータジェネレータMGが使える間にMWSC+CL1スリップ制御走行モードへモード遷移する場合に比べ、第1クラッチCL1の負荷が低減される。
 更に、MWSC+CL1スリップ制御走行モードでの第2クラッチCL2のスリップ量β’は、MWSC走行モードからのモード遷移時の第2クラッチCL2の発熱量が高いほど低いスリップ量に設定している。
すなわち、MWSC+CL1スリップ制御走行モードでは、図10に示すように、エンジンE(アイドル回転数)と車両の回転数差を、CL1スリップ量γとCL2スリップ量β’により分担する。このため、MWSC+CL1スリップ制御走行モードでのCL2スリップ量β’を、MWSC走行モードでのCL2スリップ量βより小さくすることも可能であるというようにスリップ量の設定自由度を持つ。
これによって、MWSC走行モードの選択が継続されているとき、MWSC+CL1スリップ制御走行モードへのモード遷移後、第2クラッチCL2の負荷が低減される。
 したがって、登坂路発進時等でMWSC+CL1スリップ制御走行モードが選択されると、下記のメリットを得ることができる。
(a)MWSC+CL1スリップ制御走行モードが選択されると、第1クラッチCL1がスリップすることで、モータジェネレータMGのモータトルクが低減される。この結果、モータジェネレータMGの耐久性向上や消費電力の低減を図ることができる。
(b)MWSC走行モードが選択されるアクセル開度上限値APO1以上でMWSC+CL1スリップ制御走行モードを選択することで、モータジェネレータMGが使える間はMWSC走行モードの選択が維持される。この結果、長時間にわたるMWSC+CL1スリップ制御走行モードの選択による第1クラッチCL1の負荷を低減できる。
(c)MWSC+CL1スリップ制御走行モードでの第2クラッチCL2のスリップ量β’は、MWSC走行モードからのモード遷移時の第2クラッチCL2の発熱量により決める。この結果、MWSC+CL1スリップ制御走行モードへのモード遷移後、第2クラッチCL2の負荷を低減できる(CL2保護制御)。
(d)MWSC+CL1スリップ制御走行モードでの目標CL1トルクを、(目標駆動トルク-α)で設定する。このため、エンジントルクの一部を使う分、モータジェネレータMGのモータトルクを確実に低減できると共に、モータトルク低減量を調整することができる。
 次に、効果を説明する。
実施例1のハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) エンジンEと、
 車両の駆動力を出力すると共に前記エンジンEの始動を行うモータ(モータジェネレータMG)と、
 前記エンジンEと前記モータ(モータジェネレータMG)との間に介装され前記エンジンEと前記モータ(モータジェネレータMG)とを断接する第1締結要素(第1クラッチCL1)と、
 前記モータ(モータジェネレータMG)と駆動輪(左右後輪RL,RR)との間に介装され前記モータ(モータジェネレータMG)と前記駆動輪(左右後輪RL,RR)とを断接する第2締結要素(第2クラッチCL2)と、
 駆動力伝達系負荷を検出または推定する駆動力伝達系負荷検出手段(路面勾配推定演算部201)と、
 前記駆動力伝達系負荷が所定値以上のとき、前記エンジンEを所定回転数で作動させたまま前記第1締結要素(第1クラッチCL1)をスリップ締結し、前記モータ(モータジェネレータMG)を前記所定回転数よりも低い回転数として前記第2締結要素(第2クラッチCL2)をスリップ締結するエンジン/モータスリップ走行制御手段(図7のステップS9)と、
 を備える。
  このため、駆動力伝達系負荷が大きいときに実行されるモータスリップ走行制御時にモータトルクの低減を図ることができる。
 (2) 前記駆動力伝達系負荷が所定値以上のとき、前記エンジンEを所定回転数で作動させたまま前記第1締結要素(第1クラッチCL1)を解放し、前記モータ(モータジェネレータMG)を前記所定回転数よりも低い回転数として前記第2締結要素(第2クラッチCL2)をスリップ締結するモータスリップ走行制御手段(図7のステップS7)と、を備え、
 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、モータスリップ走行制御(MWSC制御)からエンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)へと移行するアクセル開度条件を、前記モータスリップ走行制御手段(図7のステップS7)が選択されるアクセル開度上限値APO1以上に設定した(図6)。
  このため、(1)の効果に加え、モータ(モータジェネレータMG)が使える間はモータスリップ走行制御(MWSC制御)を選択することで、エンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)の選択頻度が抑えられ、第1締結要素(第1クラッチCL1)の負荷を低減することができる。
 (3) 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、エンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)での第2締結要素(第2クラッチCL2)のスリップ量を、モータスリップ走行制御(MWSC制御)からの制御移行時における第2締結要素(第2クラッチCL2)の発熱状態に応じて設定した。
  このため、(2)の効果に加え、エンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)へのモード遷移後、第2締結要素(第2クラッチCL2)の負荷を低減することができる。
 (4) 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、前記第1締結要素(第1クラッチCL1)の目標締結トルクを、目標駆動トルクから所定値αを差し引いたトルク値に設定した。
  このため、(1)~(3)の効果に加え、エンジントルクの一部を使う分、モータ(モータジェネレータMG)のモータトルクを確実に低減できると共に、所定値αの設定加減によりモータトルク低減量を調整することができる。
 実施例2は、MWSC+CL1スリップ制御において、目標CL1トルクを目標駆動トルクで与えるようにした例である。
 構成を説明すると、図7のステップS9を除き、実施例2の構成は、実施例1と同様であるので、図示を省略する。以下、実施例2でのステップS9を説明する。
 ステップS9では、ステップS8でのYES判断に続き、MWSC+CL1スリップ制御処理を実行し、リターンへ進む。
MWSC+CL1スリップ制御処理は、具体的に、エンジン動作状態のまま第1クラッチCL1の目標CL1トルクを(目標駆動トルク)としてスリップ締結し、エンジンEをアイドル回転数となるようにフィードバック制御とし、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数β’を加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とし、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とする。なお、所定回転数β’(=CL2スリップ量)は、第2クラッチCL2の発熱量が高いほど、低い回転数に設定する。
 次に、作用を説明すると、実施例2の場合、目標CL1トルクを、目標駆動トルク(=CL2トルク容量Tcl2)で与えているため、上記(2)式は、
Tmg=Img・dωmg     …(2-3)
となり、上記(2-3)式から明らかなように、モータトルクTmgは、Tmg=0で良い。
 図12は、目標CL1トルクを(目標駆動トルク)に設定した実施例2において、一定アクセル開度で勾配と釣り合い走行している場合のタイムチャートを示す。すなわち、MWSC+CL1スリップ制御走行モードの選択による走行は、エンジントルクの一部のみを用いた走行となり、MWSC+CL1スリップ制御時のモータトルクは、図12に示すように、MWSC制御時のモータトルクよりΔTmg2だけ低減される。言い換えると、モータジェネレータMGの出力制限や、バッテリ4の出力制限等により、モータトルクTmgを全く確保できないときであっても、MWSC+CL1スリップ制御走行モードを選択することができる。
なお、他の作用は、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例2のハイブリッド車両の制御装置にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
 (5) 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、前記第1締結要素(第1クラッチCL1)の目標締結トルクを、目標駆動トルクの値に設定した。
  このため、モータ(モータジェネレータMG)の出力制限や、バッテリ4の出力制限等により、モータトルクTmgを全く確保できないときであっても、第2締結要素(第2クラッチCL2)を保護するエンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)による走行モードを選択することができる。
 実施例3は、MWSC+CL1スリップ制御において、目標CL1トルクを(目標駆動トルク+発電トルク)で与えるようにした例である。
 構成を説明すると、図7のステップS9を除き、実施例3の構成は、実施例1と同様であるので、図示を省略する。以下、実施例3でのステップS9を説明する。
 ステップS9では、ステップS8でのYES判断に続き、MWSC+CL1スリップ制御処理を実行し、リターンへ進む。
MWSC+CL1スリップ制御処理は、具体的に、エンジン動作状態のまま第1クラッチCL1の目標CL1トルクを(目標駆動トルク+発電トルク)としてスリップ締結し、エンジンEをアイドル回転数となるようにフィードバック制御とし、モータジェネレータMGを第2クラッチCL2の出力側回転数Ncl2outに所定回転数β’を加算した目標回転数(ただし、アイドル回転数よりも低い値)とするフィードバック制御とし、第2クラッチCL2を目標駆動トルクに応じた伝達トルク容量とするフィードバック制御とする。なお、所定回転数β’(=CL2スリップ量)は、第2クラッチCL2の発熱量が高いほど、低い回転数に設定する。
 次に、作用を説明すると、実施例3の場合、目標CL1トルクを、目標駆動トルク(=CL2トルク容量Tcl2)+発電トルクで与えているため、上記(2)式は、
Tmg+発電トルク=Img・dωmg     …(2-4)
となり、上記(2-4)式から明らかなように、モータトルクTmgは、発電トルクの分により負の値になる。
 図13は、目標CL1トルクを(目標駆動トルク+発電トルク)に設定した実施例3において、一定アクセル開度で勾配と釣り合い走行している場合のタイムチャートを示す。すなわち、MWSC+CL1スリップ制御走行モードの選択による走行は、エンジントルクの一部を走行駆動トルクとし、エンジントルクの一部を発電トルクとする発電走行となり、MWSC+CL1スリップ制御時のモータトルクは、図13に示すように、MWSC制御時のモータトルクよりΔTmg3だけ低減される。言い換えると、モータジェネレータMGの出力制限や、バッテリ4の出力制限等により、モータトルクTmgを全く確保できなばかりでなく、バッテリ4への充電が必要なときであっても、MWSC+CL1スリップ制御走行モードを選択することで発電走行することができる。
なお、他の作用は、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例3のハイブリッド車両の制御装置にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
 (6) 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、前記第1締結要素(第1クラッチCL1)の目標締結トルクを、目標駆動トルクに発電トルクを加算したトルク値に設定した。
  このため、バッテリ4への充電が必要なとき、第2締結要素(第2クラッチCL2)を保護するエンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)による発電走行モードを選択することができる。
 実施例4は、バッテリSOCを確保する助け合い制御に、実施例3の目標CL1トルクを(目標駆動トルク+発電トルク)で与えるMWSC+CL1スリップ制御を適用した例である。
 構成を説明すると、図7において、ステップS4にてMWSC走行モード領域内であると判断されているとき、ステップS5(但し、SOC≦制御介入閾値)からステップS9へ進み、目標CL1トルクを(目標駆動トルク+発電トルク)で与えるMWSC+CL1スリップ制御処理を行う。そして、MWSC+CL1スリップ制御処理によりバッテリSOCが介入解除閾値以上まで上昇すると、再び、MWSC制御処理に復帰する。このように、MWSC+CL1スリップ制御による発電モードとMWSC制御を、バッテリSOCを監視しながら繰り返し切り替えるサイクリック動作を行うようにした例である。なお、他の構成は、実施例3と同様である。
 次に、作用を説明すると、図14は、バッテリSOCを確保する助け合い制御に、実施例3の目標CL1トルクを(目標駆動トルク+発電トルク)で与えるMWSC+CL1スリップ制御を適用した実施例4において、一定アクセル開度で勾配と釣り合い走行している場合のタイムチャートを示す。すなわち、モータトルクを用いるMWSC制御を実行することで、時刻t1にてバッテリSOCが制御介入閾値以下になると、実施例3のMWSC+CL1スリップ制御が行われ、時刻t1から時刻t2までバッテリSOCが上昇する。そして、時刻t2にてバッテリSOCが介入解除閾値以上になると、再びMWSC制御に復帰し、バッテリSOCが制御介入閾値以下になる時刻t3までMWSC制御を維持する。この繰り返しによるサイクリック動作を、時刻t3~時刻t8の間も繰り返す。したがって、バッテリ充電が必要な状況でのMWSC制御走行モードの選択時、介入制御としてサイクリック動作によるMWSC+CL1スリップ制御による発電モードを適用することで、バッテリSOCの低下を抑え、MWSC制御を最大限維持することができる。
なお、他の作用は、実施例3と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例4のハイブリッド車両の制御装置にあっては、実施例3の(6)の効果に加え、下記の効果を得ることができる。
 (7) 前記エンジン/モータスリップ走行制御手段(図7のステップS9)は、モータスリップ走行制御中(MWSC制御中)にバッテリ充電容量(バッテリSOC)が制御介入閾値以下に低下した場合、前記モータスリップ走行制御(MWSC制御)から前記エンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)による発電モードに切り替え、バッテリ充電容量(バッテリSOC)が介入解除閾値以上まで上昇すると、前記エンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)による発電モードから前記モータスリップ走行制御(MWSC制御)へと切り替えるというサイクリック動作を行う。
  このため、バッテリ充電が必要な状況でのモータスリップ走行制御(MWSC制御)の選択時、介入制御としてサイクリック動作によるエンジン/モータスリップ走行制御(MWSC+CL1スリップ制御)による発電モードを適用することで、バッテリSOCの低下を抑え、モータスリップ走行制御(MWSC制御)を最大限維持することができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1~実施例4に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1~4では、駆動力伝達系負荷検出手段として路面勾配を推定する路面勾配推定演算部201を用いる例を示した。しかし、駆動力伝達系負荷検出手段としては、車両牽引等の有無を検出するようにしてもよいし、車載荷重を検出してもよい。このように駆動力伝達系負荷が大きい場合には、車速の上昇が遅く、第2クラッチCL2が発熱しやすいからである。さらに、第2クラッチCL2の検出温度や推定温度や推定発熱量を用いても良い。例えば、駆動力伝達系負荷として、第2クラッチCL2の推定発熱量を用いる場合には、第2クラッチCL2の差回転に第2クラッチCL2の伝達トルク容量を掛けた値を時間で積分し、CL2発熱量を推定する。そして、CL2推定発熱量が発熱量閾値を上回ったとき、駆動力伝達系負荷が大きいと判断することができる。この際、変速機油温を考慮し、CL2発熱量を演算すると、CL2発熱量の推定精度が高まる。
 実施例1~4では、登坂路面勾配が所定値以上のとき、MWSC制御又はMWSC+CL1スリップ制御を実行する例を示した。しかし、登坂路面勾配が所定値以上で、かつ、第2クラッチの検出温度または推定温度が所定値以上のとき、MWSC制御又はMWSC+CL1スリップ制御を実行する例としても良い。
 実施例1~4では、本発明の制御装置をFR型のハイブリッド車両に適用した例を示した。しかし、本発明の制御装置は、FF型のハイブリッド車両に対しても勿論適用することができる。
関連出願の相互参照
 本出願は、2011年8月9日に日本国特許庁に出願された特願2011-173770に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (7)

  1.  エンジンと、
     車両の駆動力を出力すると共に前記エンジンの始動を行うモータと、
     前記エンジンと前記モータとの間に介装され前記エンジンと前記モータとを断接する第1締結要素と、
     前記モータと駆動輪との間に介装され前記モータと前記駆動輪とを断接する第2締結要素と、
     駆動力伝達系負荷を検出または推定する駆動力伝達系負荷検出手段と、
     前記駆動力伝達系負荷が所定値以上のとき、前記エンジンを所定回転数で作動させたまま前記第1締結要素をスリップ締結し、前記モータを前記所定回転数よりも低い回転数として前記第2締結要素をスリップ締結するエンジン/モータスリップ走行制御手段と、
     を備えることを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記駆動力伝達系負荷が所定値以上のとき、前記エンジンを所定回転数で作動させたまま前記第1締結要素を解放し、前記モータを前記所定回転数よりも低い回転数として前記第2締結要素をスリップ締結するモータスリップ走行制御手段と、を備え、
     前記エンジン/モータスリップ走行制御手段は、モータスリップ走行制御からエンジン/モータスリップ走行制御へと移行するアクセル開度条件を、前記モータスリップ走行制御手段が選択されるアクセル開度上限値以上に設定した
     ことを特徴とするハイブリッド車両の制御装置。
  3.  請求項2に記載されたハイブリッド車両の制御装置において、
     前記エンジン/モータスリップ走行制御手段は、エンジン/モータスリップ走行制御での第2締結要素のスリップ量を、モータスリップ走行制御からの制御移行時における第2締結要素の発熱状態に応じて設定した
     ことを特徴とするハイブリッド車両の制御装置。
  4.  請求項1から請求項3までの何れか1項に記載されたハイブリッド車両の制御装置において、
     前記エンジン/モータスリップ走行制御手段は、前記第1締結要素の目標締結トルクを、目標駆動トルクから所定値を差し引いたトルク値に設定した
     ことを特徴とするハイブリッド車両の制御装置。
  5.  請求項1から請求項3までの何れか1項に記載されたハイブリッド車両の制御装置において、
     前記エンジン/モータスリップ走行制御手段は、前記第1締結要素の目標締結トルクを、目標駆動トルクの値に設定した
     ことを特徴とするハイブリッド車両の制御装置。
  6.  請求項1から請求項3までの何れか1項に記載されたハイブリッド車両の制御装置において、
     前記エンジン/モータスリップ走行制御手段は、前記第1締結要素の目標締結トルクを、目標駆動トルクに発電トルクを加算したトルク値に設定した
     ことを特徴とするハイブリッド車両の制御装置。
  7.  請求項6に記載されたハイブリッド車両の制御装置において、
     前記エンジン/モータスリップ走行制御手段は、モータスリップ走行制御中にバッテリ充電容量が制御介入閾値以下に低下した場合、前記モータスリップ走行制御から前記エンジン/モータスリップ走行制御による発電モードに切り替え、バッテリ充電容量が介入解除閾値以上まで上昇すると、前記エンジン/モータスリップ走行制御による発電モードから前記モータスリップ走行制御へと切り替えるというサイクリック動作を行う
     ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2012/067529 2011-08-09 2012-07-10 ハイブリッド車両の制御装置 WO2013021765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12822761.8A EP2743149A4 (en) 2011-08-09 2012-07-10 Hybrid vehicle control unit
MX2014000700A MX2014000700A (es) 2011-08-09 2012-07-10 Dispositivo de control para vehiculo hibrido.
CN201280034941.6A CN103648873B (zh) 2011-08-09 2012-07-10 混合动力车辆的控制装置
US14/236,357 US9126583B2 (en) 2011-08-09 2012-07-10 Control device for hybrid vehicle
RU2014108877/11A RU2555394C1 (ru) 2011-08-09 2012-07-10 Устройство управления для гибридного транспортного средства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011173770A JP2013035441A (ja) 2011-08-09 2011-08-09 ハイブリッド車両の制御装置
JP2011-173770 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021765A1 true WO2013021765A1 (ja) 2013-02-14

Family

ID=47668285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067529 WO2013021765A1 (ja) 2011-08-09 2012-07-10 ハイブリッド車両の制御装置

Country Status (7)

Country Link
US (1) US9126583B2 (ja)
EP (1) EP2743149A4 (ja)
JP (1) JP2013035441A (ja)
CN (1) CN103648873B (ja)
MX (1) MX2014000700A (ja)
RU (1) RU2555394C1 (ja)
WO (1) WO2013021765A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035441A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20160068155A1 (en) * 2013-04-16 2016-03-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
RU2644492C1 (ru) * 2014-11-20 2018-02-12 Ниссан Мотор Ко., Лтд. Устройство адаптивного управления для пусковой муфты транспортного средства

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201241A1 (de) * 2012-01-30 2013-08-01 Robert Bosch Gmbh Vorrichtung zur Regelung eines Motors
JP5578336B2 (ja) * 2012-12-11 2014-08-27 三菱自動車工業株式会社 ハイブリッド車両の制御装置
CN104884326B (zh) * 2012-12-26 2017-06-23 日产自动车株式会社 混合动力车辆的控制装置
DE102013205245A1 (de) * 2013-03-25 2014-09-25 Continental Teves Ag & Co. Ohg Fahrzeugreferenzgeschwindigkeitsbestimmungsverfahren und Fahrzeugsteuergerät mit einem solchen Verfahren
WO2014192391A1 (ja) * 2013-05-29 2014-12-04 日産自動車株式会社 プラグインハイブリッド車両の制御装置
JP6342188B2 (ja) * 2013-07-08 2018-06-13 Ntn株式会社 電気自動車のスリップ制御装置
JP6303422B2 (ja) * 2013-11-14 2018-04-04 日産自動車株式会社 ハイブリッド車両の制御装置
JP5840262B1 (ja) * 2014-07-03 2016-01-06 三菱電機株式会社 船舶のアイドル回転数制御装置および船舶のアイドル回転数制御方法
KR101573625B1 (ko) * 2014-08-12 2015-12-01 현대자동차주식회사 하이브리드 차량의 변속 제어 장치 및 방법
DE102014016376A1 (de) * 2014-11-06 2016-05-12 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit zu- und abschaltbarem Allradantrieb unter Ermittlung einer Winkelbeschleunigung von Bauteilen, die beim Abschalten des Allradantriebs abgekoppelt werden
US20160243958A1 (en) * 2015-02-23 2016-08-25 Ford Global Technologies, Llc Vehicle inclination based battery state of charge target
WO2016147727A1 (ja) * 2015-03-17 2016-09-22 ジヤトコ株式会社 ハイブリッド車両の制御装置
KR101673349B1 (ko) * 2015-03-20 2016-11-07 현대자동차 주식회사 하이브리드 차량의 엔진클러치 제어 시스템 및 그 방법
DE112016000433T5 (de) * 2015-03-31 2017-10-05 Aisin Aw Co., Ltd. Steuergerät
RU2673306C1 (ru) * 2015-06-15 2018-11-23 Ниссан Мотор Ко., Лтд. Способ управления транспортным средством и устройство управления транспортным средством
JP6281531B2 (ja) * 2015-07-10 2018-02-21 トヨタ自動車株式会社 動力伝達装置の制御装置
JP6493366B2 (ja) * 2016-11-18 2019-04-03 トヨタ自動車株式会社 車両制御装置
KR102518585B1 (ko) * 2016-12-13 2023-04-05 현대자동차 주식회사 하이브리드 차량의 엔진 클러치 제어 방법 및 그 제어 장치
JP6561978B2 (ja) * 2016-12-21 2019-08-21 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
WO2018139270A1 (ja) * 2017-01-24 2018-08-02 日産自動車株式会社 車両の制御装置及び制御方法
WO2018185849A1 (ja) * 2017-04-04 2018-10-11 日産自動車株式会社 ハイブリッド車両の制御方法
JP2019166939A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 ハイブリッド車両の駆動装置
EP3851309B1 (en) * 2018-09-10 2024-04-24 Nissan Motor Co., Ltd. Power transmitting device for vehicle
KR102212790B1 (ko) * 2019-12-03 2021-02-08 주식회사 현대케피코 하이브리드 차량의 엔진 시동 시 클러치 제어 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314097A (ja) * 2006-05-29 2007-12-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2009132195A (ja) 2007-11-29 2009-06-18 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010030486A (ja) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010155590A (ja) * 2009-01-05 2010-07-15 Nissan Motor Co Ltd ハイブリッド車両の発進制御装置。
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010202114A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991502B2 (ja) * 1999-05-14 2007-10-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN100402330C (zh) * 2001-12-27 2008-07-16 雅马哈发动机株式会社 混合驱动式车辆的运行控制装置
JP3610969B2 (ja) * 2002-08-27 2005-01-19 日産自動車株式会社 四輪駆動車両の駆動力制御装置
JP4475203B2 (ja) * 2005-08-18 2010-06-09 トヨタ自動車株式会社 ハイブリッド車の制御装置
JP2007261442A (ja) * 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の運転モード遷移制御装置
EP1862364B1 (en) * 2006-05-29 2016-05-25 Nissan Motor Co., Ltd. Vehicle Control
JP5181732B2 (ja) * 2007-05-02 2013-04-10 日産自動車株式会社 ハイブリッド車両のモード切り替え制御装置
JP5167786B2 (ja) * 2007-11-29 2013-03-21 日産自動車株式会社 ハイブリッド車両の制御装置
WO2009086995A1 (de) * 2007-12-17 2009-07-16 Zf Friedrichshafen Ag Verfahren und vorrichtung zur steuerung eines kriechbetriebes eines fahrzeugs mit einem hybridantrieb
JP5262197B2 (ja) * 2008-03-10 2013-08-14 日産自動車株式会社 ハイブリッド車両の制御装置
JP2008245517A (ja) * 2008-04-07 2008-10-09 Toyota Motor Corp 電気自動車の制御装置
DE102008002383A1 (de) * 2008-06-12 2009-12-17 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs
JP5200734B2 (ja) * 2008-07-29 2013-06-05 日産自動車株式会社 車両のクラッチ制御装置
JP2010228511A (ja) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP5080525B2 (ja) * 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
DE102009026702A1 (de) * 2009-06-04 2010-12-09 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Steuerung eines Parallelhybridantriebsstranges eines Fahrzeugs
JP5348808B2 (ja) * 2009-10-13 2013-11-20 本田技研工業株式会社 ハイブリッド車両
CN102725172B (zh) * 2010-03-31 2015-09-23 爱信艾达株式会社 控制装置
JP2013035441A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314097A (ja) * 2006-05-29 2007-12-06 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2009132195A (ja) 2007-11-29 2009-06-18 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010030486A (ja) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010155590A (ja) * 2009-01-05 2010-07-15 Nissan Motor Co Ltd ハイブリッド車両の発進制御装置。
JP2010201962A (ja) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010202114A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743149A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035441A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20160068155A1 (en) * 2013-04-16 2016-03-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
US10435013B2 (en) * 2013-04-16 2019-10-08 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
RU2644492C1 (ru) * 2014-11-20 2018-02-12 Ниссан Мотор Ко., Лтд. Устройство адаптивного управления для пусковой муфты транспортного средства

Also Published As

Publication number Publication date
EP2743149A1 (en) 2014-06-18
MX2014000700A (es) 2014-02-20
CN103648873B (zh) 2016-11-09
US20140180521A1 (en) 2014-06-26
RU2555394C1 (ru) 2015-07-10
CN103648873A (zh) 2014-03-19
US9126583B2 (en) 2015-09-08
JP2013035441A (ja) 2013-02-21
EP2743149A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2013021765A1 (ja) ハイブリッド車両の制御装置
JP5496454B2 (ja) ハイブリッド車両の制御装置
JP5742248B2 (ja) 車両の制御装置
JP2010155590A (ja) ハイブリッド車両の発進制御装置。
JP5672950B2 (ja) 車両の制御装置
JP5024278B2 (ja) ハイブリッド車両の制御装置。
WO2014034319A1 (ja) ニュートラル判定装置および車両の制御装置
JP2012091603A (ja) 車両の制御装置
JP5092363B2 (ja) 車両の発進制御装置
JP2012091601A (ja) 車両の制御装置
JP2012091543A (ja) 車両の制御装置
JP5696430B2 (ja) 車両の制御装置
JP5598256B2 (ja) ハイブリッド車両の制御装置
JP2012086705A (ja) ハイブリッド車両の制御装置
JP2012092975A (ja) 自動変速機
JP5550524B2 (ja) 自動変速機
JP5527159B2 (ja) ハイブリッド車両の制御装置
JP2012081819A (ja) ハイブリッド車両の制御装置
JP5309676B2 (ja) 車両の発進制御装置
JP5223378B2 (ja) 車両の発進制御装置
JP5725087B2 (ja) ハイブリッド車両の制御装置
JP2012092939A5 (ja)
JP5793848B2 (ja) ハイブリッド車両の制御装置
JP5793847B2 (ja) ハイブリッド車両の制御装置
JP5699535B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000700

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14236357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014108877

Country of ref document: RU

Kind code of ref document: A