WO2014034319A1 - ニュートラル判定装置および車両の制御装置 - Google Patents

ニュートラル判定装置および車両の制御装置 Download PDF

Info

Publication number
WO2014034319A1
WO2014034319A1 PCT/JP2013/069616 JP2013069616W WO2014034319A1 WO 2014034319 A1 WO2014034319 A1 WO 2014034319A1 JP 2013069616 W JP2013069616 W JP 2013069616W WO 2014034319 A1 WO2014034319 A1 WO 2014034319A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
motor
torque
control
range
Prior art date
Application number
PCT/JP2013/069616
Other languages
English (en)
French (fr)
Inventor
弘毅 松井
晴久 土川
克宏 松尾
正己 鈴木
Original Assignee
日産自動車株式会社
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ジヤトコ株式会社 filed Critical 日産自動車株式会社
Priority to JP2014532883A priority Critical patent/JP6012026B2/ja
Priority to CN201380045624.9A priority patent/CN104602942B/zh
Priority to EP13832140.1A priority patent/EP2891588B1/en
Priority to US14/416,067 priority patent/US9428181B2/en
Priority to KR1020157007850A priority patent/KR20150052137A/ko
Publication of WO2014034319A1 publication Critical patent/WO2014034319A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/186Preventing damage resulting from overload or excessive wear of the driveline excessive wear or burn out of friction elements, e.g. clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/022Actuator failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • B60W2510/101Transmission neutral state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/76Automatic gearshift to neutral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6823Sensing neutral state of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/46Signals to a clutch outside the gearbox
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a neutral determination device and a vehicle control device.
  • Patent Document 1 discloses a technique for performing vehicle control based on an inhibitor switch signal in a vehicle having a clutch that connects and disconnects between a motor and a drive wheel.
  • the inhibitor switch signal may indicate that it is in the D range.
  • the control hydraulic pressure cannot be supplied to the hydraulic chamber of the clutch.
  • vehicle control corresponding to the D range that is, vehicle control assuming that the control hydraulic pressure can be supplied to the hydraulic chamber of the clutch, causes various problems. .
  • An object of the present invention is to provide a neutral determination device and a vehicle control device that can accurately determine that a control valve that supplies a control hydraulic pressure to a clutch is in a neutral state when an inhibitor switch signal indicates a traveling range. It is to provide.
  • the motor when the inhibitor switch signal indicates that it is in the travel range, the motor is controlled in rotational speed, and the motor torque during the rotational speed control is estimated motor based on the target transmission torque capacity of the clutch. When the torque is smaller than the torque, the neutral state is determined.
  • the torque transmission capacity that can transmit the motor torque is set as the target transmission torque capacity of the clutch, if the motor torque is smaller than the estimated motor torque based on the target transmission torque capacity of the clutch, the torque is not transmitted to the rear wheels. Can be estimated. Therefore, in the present invention, it can be accurately determined that the control valve that supplies the control hydraulic pressure to the clutch is in the neutral state when the inhibitor switch signal indicates that it is in the travel range.
  • FIG. 1 is an overall system diagram illustrating a rear-wheel drive hybrid vehicle according to a first embodiment.
  • FIG. 3 is a control block diagram illustrating an arithmetic processing program in the integrated controller according to the first embodiment. It is a figure which shows an example of the target driving force map used for target driving force calculation in the target driving force calculating part of FIG. It is a figure showing the relationship between a mode map and an estimated gradient in the mode selection part of FIG. It is a figure which shows the normal mode map used for selection of the target mode in the mode selection part of FIG. It is a figure which shows the MWSC corresponding
  • FIG. 6 is a diagram showing a relationship between an inhibitor switch signal and a manual valve 8a when the select lever 27 is operated from an N range position to a D range position.
  • 3 is a flowchart showing a flow of neutral determination control processing executed by an integrated controller 10. It is a figure which shows the neutral determination area
  • FIG. 1 is an overall system diagram showing a hybrid vehicle by rear wheel drive to which the engine start control device of Embodiment 1 is applied.
  • the drive system of the hybrid vehicle in the first embodiment includes an engine E, a first clutch CL1, a motor generator MG, a second clutch CL2, an automatic transmission AT, a propeller shaft PS, It has a differential DF, a left drive shaft DSL, a right drive shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel).
  • FL is the left front wheel
  • FR is the right front wheel.
  • the engine E is, for example, a gasoline engine, and the valve opening degree of the throttle valve and the like are controlled based on a control command from the engine controller 1 described later.
  • the engine output shaft is provided with a flywheel FW.
  • the first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and the control created by the first clutch hydraulic unit 6 based on a control command from the first clutch controller 5 described later. Fastening / release including slip fastening is controlled by hydraulic pressure.
  • the motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and the three-phase AC generated by the inverter 3 is generated based on a control command from a motor controller 2 described later. It is controlled by applying.
  • the motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 4 (hereinafter, this state is referred to as “powering”), or when the rotor is rotated by an external force.
  • powering power supplied from the battery 4
  • the rotor of the motor generator MG is connected to the input shaft of the automatic transmission AT via a damper (not shown).
  • the second clutch CL2 is a clutch interposed between the motor generator MG and the left and right rear wheels RL and RR, and is created by the AT hydraulic control unit 8 based on a control command from the AT controller 7 described later. Fastening / release including slip fastening is controlled by the control hydraulic pressure.
  • the automatic transmission AT is a transmission that automatically switches the stepped gear ratio such as 5 forward speeds, 1 reverse speed, etc. according to the vehicle speed, accelerator opening, etc., and the second clutch CL2 is newly added as a dedicated clutch However, some frictional engagement elements are used among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT. Details will be described later.
  • the output shaft of the automatic transmission AT is connected to the left and right rear wheels RL and RR via a propeller shaft PS, a differential DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts.
  • the first clutch CL1 and the second clutch CL2 are, for example, wet multi-plate clutches that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
  • the first travel mode is an electric vehicle travel mode (hereinafter abbreviated as “EV travel mode”) as a motor use travel mode that travels using only the power of the motor generator MG as a power source with the first clutch CL1 opened. It is.
  • the second travel mode is an engine use travel mode (hereinafter, abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source.
  • HEV travel mode engine use travel mode
  • the second clutch CL2 is slip-controlled while the first clutch CL1 is engaged, and the engine travel slip travel mode (hereinafter referred to as “WSC travel mode”) is performed while the engine E is included in the power source. ).
  • This mode is a mode in which creep running can be achieved particularly when the battery SOC is low or the engine water temperature is low.
  • the first clutch CL1 is engaged and the engine is started using the torque of the motor generator MG.
  • the slip amount of the second clutch CL2 is reduced in the WSC travel mode. Excessive state may continue. This is because the engine E cannot be made smaller than the idle speed.
  • the first clutch CL1 is released while the engine E is operated, the second clutch CL2 is slip-controlled while the motor generator MG is operated, and the motor slip that travels using the motor generator MG as a power source is operated.
  • a traveling mode (hereinafter abbreviated as “MWSC traveling mode”) is provided.
  • the “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • engine running mode the drive wheels are moved using only the engine E as a power source.
  • motor-assisted travel mode the drive wheels are moved using the engine E and the motor generator MG as power sources.
  • traveling power generation mode the motor generator MG is caused to function as a power generator while the drive wheels RR and RL are moved using the engine E as a power source.
  • motor generator MG is operated as a generator using the power of engine E.
  • braking energy is regenerated and electric power is generated by the motor generator MG and used for charging the battery 4.
  • there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.
  • the control system of the hybrid vehicle in the first embodiment includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, and a first clutch hydraulic unit 6.
  • the AT controller 7, the AT hydraulic control unit 8, the brake controller 9, and the integrated controller 10 are configured.
  • the engine controller 1, the motor controller 2, the first clutch controller 5, the AT controller 7, the brake controller 9, and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other. Has been.
  • the engine controller 1 inputs the engine speed information from the engine speed sensor 12, and controls the engine operating point (Ne: engine speed, Te: engine torque) according to the target engine torque command from the integrated controller 10, etc. For example, to a throttle valve actuator (not shown). Information such as the engine speed Ne is supplied to the integrated controller 10 via the CAN communication line 11.
  • the motor controller 2 inputs information from the resolver 13 that detects the rotor rotational position of the motor generator MG, and according to the target motor torque command from the integrated controller 10, the motor operating point (Nm: motor rotational speed) of the motor generator MG. , Tm: Motor torque) is output to inverter 3.
  • the motor controller 2 monitors the battery SOC indicating the state of charge of the battery 4, and the battery SOC information is used as control information for the motor generator MG and is supplied to the integrated controller 10 via the CAN communication line 11. Is done.
  • the first clutch controller 5 inputs sensor information from the first clutch hydraulic pressure sensor 14 and the first clutch stroke sensor 15, and engages / disengages the first clutch CL1 according to the first clutch control command from the integrated controller 10.
  • a control command is output to the first clutch hydraulic unit 6.
  • the information on the first clutch stroke C1S is supplied to the integrated controller 10 via the CAN communication line 11.
  • the AT controller 7 inputs the inhibitor switch signal of the inhibitor switch 28 that outputs a range signal corresponding to the operation position of the accelerator opening sensor 16, the vehicle speed sensor 17, the second clutch hydraulic pressure sensor 18, and the select lever 27 operated by the driver.
  • a command for controlling the engagement / release of the second clutch CL2 is output to the AT hydraulic control unit 8.
  • the AT hydraulic control unit 8 includes a manual valve (control valve) 8 a that is linked to the select lever 27.
  • the control hydraulic pressure is supplied to the second clutch CL2 by displacing the clutch source pressure and the hydraulic chamber of the second clutch CL2 from the position corresponding to the N range, which blocks communication with the CL2 hydraulic chamber, to the position corresponding to the D range. It becomes possible.
  • the accelerator pedal opening APO, the vehicle speed VSP, and the inhibitor switch signal are supplied to the integrated controller 10 via the CAN communication line 11. Further, the inhibitor switch signal is sent to an in-meter display 29 provided in a combination meter (not shown) to display the current range position.
  • the brake controller 9 inputs the sensor information from the wheel speed sensor 19 for detecting each wheel speed of the four wheels and the brake stroke sensor 20, and regenerates the required braking force obtained from the brake stroke BS when the brake is depressed, for example.
  • the regenerative cooperative brake control is performed based on the regenerative cooperative control command from the integrated controller 10 so that the shortage is supplemented by the mechanical braking force (braking force by the friction brake).
  • the integrated controller 10 manages the energy consumption of the entire vehicle and has the function of running the vehicle with the highest efficiency.
  • the motor rotation speed Nm (the motor side rotation speed of the second clutch CL2, hereinafter referred to as input rotation)
  • the motor rotation speed sensor 21 for detecting the resolver 13 and the second clutch output rotation speed N2out (the driving wheel side rotation speed of the second clutch CL2, hereinafter referred to as output rotation)
  • the second clutch output rotational speed sensor 22 for detecting the second clutch torque
  • the second clutch torque sensor 23 for detecting the second clutch transmission torque capacity TCL2, the brake hydraulic pressure sensor 24, and the temperature of the second clutch CL2.
  • Information from the temperature sensor 25 to be detected, information from the G sensor 26 to detect longitudinal acceleration, and information obtained through the CAN communication line 11 are input.
  • the integrated controller 10 also controls the operation of the engine E according to the control command to the engine controller 1, the operation control of the motor generator MG according to the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1 and engagement / release control of the second clutch CL2 by a control command to the AT controller 7 are performed.
  • the integrated controller 10 includes a target driving force calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, an operating point command unit 400, and a shift control unit 500.
  • the target driving force calculation unit 100 calculates the target driving torque tFoO from the accelerator pedal opening APO and the vehicle speed VSP using the target driving torque map shown in FIG.
  • the mode selection unit 200 includes a road surface gradient estimation calculation unit 201 that estimates a road surface gradient based on the detection value of the G sensor 26.
  • the road surface gradient estimation calculation unit 201 calculates the actual acceleration from the wheel speed acceleration average value of the wheel speed sensor 19 and the like, and estimates the road surface gradient from the deviation between the calculation result and the G sensor detection value.
  • the mode selection unit 200 includes a mode map selection unit 202 that selects one of two mode maps described later based on the estimated road surface gradient.
  • FIG. 4 is a schematic diagram illustrating the selection logic of the mode map selection unit 202.
  • the mode map selection unit 202 switches to the MWSC compatible mode map when the estimated gradient becomes equal to or greater than the predetermined value g2 from the state where the normal mode map is selected.
  • the mode is switched to the normal mode map. That is, a hysteresis is provided for the estimated gradient to prevent control hunting during map switching.
  • the mode map includes a normal mode map that is selected when the estimated gradient is less than a predetermined value, and an MWSC-compatible mode map that is selected when the estimated gradient is greater than or equal to a predetermined value.
  • FIG. 5 shows a normal mode map
  • FIG. 6 shows an MWSC mode map.
  • the normal mode map has an EV travel mode, a WSC travel mode, and an HEV travel mode, and calculates the target mode from the accelerator pedal opening APO and the vehicle speed VSP. However, even if the EV travel mode is selected, if the battery SOC is equal to or less than the predetermined value, the “HEV travel mode” is forcibly set as the target mode.
  • the HEV ⁇ WSC switching line has a rotational speed smaller than the idle rotational speed of the engine E when the automatic transmission AT is in the first speed in the region below the predetermined accelerator opening APO1. It is set in a region lower than the lower limit vehicle speed VSP1. Further, since a large driving force is required in a region where the accelerator opening APO1 is equal to or greater than the predetermined accelerator opening APO1, the WSC travel mode is set up to a vehicle speed VSP1 ′ region that is higher than the lower limit vehicle speed VSP1. When the battery SOC is low and the EV travel mode cannot be achieved, the WSC travel mode is selected even when starting.
  • the WSC travel mode area is different from the normal mode map in that the area is not changed according to the accelerator pedal opening APO and the area is defined only by the lower limit vehicle speed VSP1. Moreover, it differs from the normal mode map in that the MWSC travel mode area is set in the WSC travel mode area.
  • the MWSC travel mode region is set in a region surrounded by a predetermined vehicle speed VSP2 lower than the lower limit vehicle speed VSP1 and a predetermined accelerator opening APO2 higher than the predetermined accelerator opening APO1.
  • the MWSC travel mode is a mode in which the first clutch CL1 is released while the engine E is operated, the motor generator MG is controlled in rotational speed, and the second clutch CL2 is controlled in slip control. Compared with the WSC travel mode, the slip amount can be reduced in that the input rotational speed of the second clutch CL2 can be set low.
  • the target charge / discharge calculation unit 300 calculates the target charge / discharge power tP from the battery SOC using the target charge / discharge amount map shown in FIG.
  • the operating point command unit 400 uses the accelerator pedal opening APO, the target driving torque tFoO, the target mode, the vehicle speed VSP, and the target charging / discharging power tP as a target for reaching the operating point, as a transient target engine torque. And a target motor torque, a target second clutch transmission torque capacity, a target gear position of the automatic transmission AT, and a first clutch solenoid current command are calculated.
  • the operating point command unit 400 is provided with an engine start control unit that starts the engine E when the EV travel mode is changed to the HEV travel mode.
  • the second clutch CL2 is set to the second clutch transmission torque capacity according to the target drive torque to be in the slip control state
  • the motor generator MG is set to the rotation speed control
  • the target motor rotation speed is set to the drive wheel rotation speed.
  • the clutch transmission torque capacity is generated in the first clutch CL1, and the engine is started.
  • the output shaft torque is stabilized by the clutch transmission torque capacity of the second clutch CL2, and the motor torque is increased by the rotational speed control even when the motor rotational speed is about to decrease by engaging the first clutch CL1.
  • the shift control unit 500 drives and controls the solenoid valve in the automatic transmission AT so as to achieve the target second clutch transmission torque capacity and the target shift speed according to the shift schedule shown in the shift map.
  • the target shift speed is set in advance based on the vehicle speed VSP and the accelerator pedal opening APO.
  • the manual valve 8a is mechanically connected to the select lever 27 via the select cable 27a and the AT side linkage 27b, and the spool strokes according to the operation position of the select lever 27.
  • the oil passage is in a state corresponding to the range position.
  • the inhibitor switch 28 detects the position of the select lever 27 from the angle of the AT side linkage 27b, and outputs a corresponding inhibitor switch signal.
  • the select lever 27 is in the N range position as shown in FIG. 8A, it indicates that the inhibitor switch signal is in the N range.
  • the spool position of the manual valve 8a is in the position corresponding to the N range where communication between the oil pump OP and the low brake L / B (corresponding to the second clutch CL2 at the start) is cut off, and the automatic transmission AT (Manual valve 8a) is in a neutral state.
  • the inhibitor switch signal is switched from N to D before the spool position of the manual valve 8a becomes the D range compatible position (FIG. 8 (b)).
  • the spool position of the manual valve 8a becomes the D range compatible position where the oil pump OP communicates with the low brake L / B, and the oil pump OP changes to the low brake L / B. Control hydraulic pressure can be supplied (FIG. 8 (c)).
  • the inhibitor switch signal indicates that it is in the D range.
  • the automatic transmission AT remains in the neutral state.
  • the oil pump OP and the low brake L / B are not in communication, the control hydraulic pressure cannot be supplied to the low brake L / B.
  • vehicle control corresponding to the D range that is, vehicle control on the premise that the control hydraulic pressure can be supplied to the second clutch CL2, is performed. Problem arises.
  • FIG. 9 is a flowchart showing the flow of the neutral determination control process executed by the integrated controller 10, and each step will be described below.
  • step S1 it is determined whether or not the inhibitor switch signal indicates that it is in the D range. If YES, the process proceeds to step S2, and if NO, this control is terminated.
  • step S2 it is determined whether or not a certain period of time has elapsed since YES is determined in S1, and if YES, the process proceeds to step S3, and if NO, step S2 is repeated.
  • the fixed time is the time when the motor torque or the motor rotation speed is expected to reach the target value after the backlash processing of the second clutch CL2 is performed from the time when the inhibitor switch signal indicates that it is in the D range.
  • step S3 it is determined whether the vehicle is in the EV traveling mode or the WSC traveling mode. If the vehicle is in the EV traveling mode, the process proceeds to step S4. If the vehicle is in the WSC traveling mode, the process proceeds to step S6. In step S4, it is determined whether or not the second clutch CL2 is slipping. If YES, the process proceeds to step S5, and if NO, this control is terminated.
  • the value obtained by subtracting the output rotation speed (second clutch output rotation speed) from the input rotation speed (motor rotation speed) is equal to or greater than a predetermined threshold value, it is determined that the second clutch CL2 is slipping.
  • the threshold value may be a value larger than zero, and is determined in consideration of sensor accuracy.
  • step S5 the rotational speed of motor generator MG is controlled so that a predetermined rotational speed is obtained, and the second clutch transmission torque capacity is set to a torque capacity corresponding to the target driving force.
  • step S6 it is determined whether or not the automatic transmission AT is in a neutral state. If YES, the process proceeds to step S7. If NO, the present control is terminated.
  • the determination of the neutral state is different between the EV driving mode and the WSC driving mode. 1.
  • EV travel mode Motor torque is Tm, torque conversion value TTCL2 of target second clutch transmission torque capacity, friction of automatic transmission AT and friction of motor generator MG and drag of first clutch CL1 is Fat, motor generator MG
  • the inertia is I ⁇ and the torque variation amount of the second clutch CL2 is ⁇ , it is determined that the neutral state is established when the following expression (1) is satisfied.
  • FIG. 10 shows the relationship among the neutral determination region, the torque converted value of the target second clutch transmission torque capacity, the friction of the automatic transmission AT, and the torque variation amount of the second clutch CL2.
  • the friction Fat may take temperature into consideration. 2.
  • step S7 the range display of the in-meter display 29 is changed from the D range to the N range.
  • step S8 the second clutch transmission torque capacity is limited to a torque capacity corresponding to the creep torque equivalent.
  • the creep torque equivalent is a torque that is smaller than the creep torque, and is a value that takes into account the suppression of engagement shock and securing of the driving force of the second clutch CL2.
  • step S9 it is determined whether or not the neutral state of the automatic transmission AT has been released, or whether or not the inhibitor switch signal indicates the P or N range. If one is YES, the process proceeds to step S10. If NO, repeat step S9.
  • step S10 the range display of the in-meter display 29 is changed to D, P, N.
  • step S9 If it is determined in step S9 that the neutral state has been released, the mode is switched to D, and if the inhibitor switch signal indicates that it is in the P or N range, the mode is switched to P or N.
  • step S11 the restriction on the second clutch transmission torque capacity is released, and this control is terminated.
  • a ramp control for gradually increasing the second clutch transmission torque capacity to the target second clutch transmission torque capacity corresponding to the travel mode may be performed.
  • the motor generator MG is torque-controlled so as to obtain the creep torque, and the second clutch transmission torque capacity is set to the torque capacity corresponding to “target driving force + predetermined margin”. Thereby, the motor rotation speed and the motor torque start to increase. Since the select lever 27 is stopped at an intermediate position between the N range position and the D range position before time t2, the manual valve 8a is not automatically switched from the N range corresponding position to the D range corresponding position. The transmission AT is in a neutral state.
  • the determination is that the second clutch CL2 has slipped, switching from torque control to rotational speed control, the motor rotational speed is controlled to be constant, and the second clutch transmission torque capacity is made the torque capacity of the creep torque device.
  • the motor rotation speed is constant, the motor torque is a value with the friction amount as a load.
  • the range display of the in-meter display 29 is changed from the D range to the N range, and the second clutch transmission torque capacity is limited to a torque capacity corresponding to the creep torque.
  • the driver operates the select lever 27, the manual valve 8a is switched from the N range compatible position to the D range compatible position, and the neutral state of the automatic transmission AT is released, so that the drive shaft torque rises.
  • the range display of the indicator 29 in the meter is changed from the N range to the D range, and the restriction on the second clutch transmission torque capacity is released. Thereby, the target second clutch transmission torque capacity is increased to the torque capacity corresponding to the target driving force, and the vehicle can be started.
  • the determination is made with the rotation speed rising, and the control shifts to fail control, so the driver is concerned. It gives a feeling.
  • the second clutch is slip controlled by the rotational speed control at the time of starting as in the WSC traveling mode shown in the first embodiment, since the control is performed so as to maintain the input / output rotational speed difference, only the rotational speed difference is controlled. In the neutral state cannot be determined.
  • the neutral state is determined by the torque difference (deviation between the motor torque and the estimated motor torque)
  • the neutral state can be accurately determined and the time required for the determination can be shortened. Therefore, the amount of blowing until the end of determination is suppressed, and the transition to fail control can be suppressed.
  • the motor generator MG is torque controlled, and the input rotation speed (motor rotation speed) is higher than the output rotation speed (second clutch output rotation speed) during torque control.
  • the rotational speed control of the motor generator MG is started to determine the neutral state. That is, the input / output rotational speed difference is first monitored by torque control, and it is confirmed that a transmission loss to the rear wheels RL and RR has occurred, and then the final neutral determination is performed by rotational speed control. Therefore, the neutral state can be determined more accurately.
  • the second clutch transmission torque capacity is set to the torque capacity corresponding to the creep torque.
  • the second clutch transmission torque capacity is not limited, when the manual valve 8a is switched from the position corresponding to the N range to the position corresponding to the D range, a shock is generated by suddenly engaging the second clutch.
  • the second clutch transmission torque capacity is set to zero, when the manual valve 8a is switched from the N range compatible position to the D range compatible position, torque is not transmitted until the second clutch transmission torque capacity rises. The driving force cannot be secured. Therefore, by limiting the second clutch transmission torque capacity to be equivalent to the creep torque, it is possible to achieve both suppression of the engagement shock and securing of the driving force.
  • Example 1 has the following effects. (1) When the inhibitor switch signal indicates that it is in the D range, the motor generator MG is controlled in rotation speed, and the motor torque during rotation speed control is interposed between the motor generator MG and the rear wheels RL, RR. When it is smaller than the estimated motor torque based on the target transmission torque capacity of the second clutch CL2 that connects and disconnects both, it is determined that the automatic transmission AT is in the neutral state. Therefore, it can be accurately determined that the automatic transmission AT is in the neutral state when the inhibitor switch signal indicates the D range. In addition, when the driver depresses the accelerator during the determination, it is possible to suppress the engine speed from rising.
  • the motor generator MG When the inhibitor switch signal indicates that it is in the D range, the motor generator MG is torque controlled, and during torque control, the input speed (motor speed) is greater than the output speed (second clutch output speed). If the value becomes higher, the rotational speed control of the motor generator MG is started to determine the neutral state. Therefore, the neutral state can be determined more accurately.
  • the present invention has been described based on the embodiments, the specific configuration may be other configurations.
  • the FR type hybrid vehicle has been described.
  • an FF type hybrid vehicle may be used.
  • a hybrid vehicle including an engine and a motor generator has been described.
  • an electric vehicle using only a motor as a drive source is also applicable, and the same operational effects as in the embodiment can be obtained.
  • the neutral determination is performed in the EV travel mode and the WSC travel mode.
  • the embodiment can also be applied to the MWSC travel mode.
  • the stepped transmission was illustrated, it may be a continuously variable transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

インヒビタスイッチ信号がD レンジにあることを示した場合、モータジェネレータ(MG)を回転数制御し、回転数制御中のモータトルクがモータジェネレータ(MG)と後輪(RL,RR)との間に介装され両者を断接する第2クラッチ(CL2)の目標伝達トルク容量に基づく推定モータトルクよりも小さいとき、自動変速機(AT)がニュートラル状態であると判定する。

Description

ニュートラル判定装置および車両の制御装置
 本発明は、ニュートラル判定装置および車両の制御装置に関する。
 特許文献1には、モータと駆動輪との間に両者を断接するクラッチを備えた車両において、インヒビタスイッチ信号に基づき車両制御を行う技術が開示されている。
特開2012-091543号公報
 セレクトレバーがNレンジ位置とDレンジ位置との間の中間位置で停止した場合など、インヒビタスイッチ信号としてはDレンジにあることを示すことがある。このとき、マニュアルバルブがNレンジ対応位置からDレンジ対応位置に切り替わっていない場合、すなわち、マニュアルバルブがニュートラル状態である場合、クラッチの油圧室に制御油圧を供給できない。この状態でドライバがアクセルを踏み込むと、Dレンジに対応した車両制御、すなわち、クラッチの油圧室に制御油圧を供給可能な状態を前提とした車両制御が実施されることで、種々の問題が生じる。このため、上記従来装置において、インヒビタスイッチ信号が走行レンジにあることを示しているときにマニュアルバルブ(制御弁)がニュートラル状態であることを精度良く判定して欲しいとのニーズがあった。
  本発明の目的は、インヒビタスイッチ信号が走行レンジにあることを示しているときにクラッチに制御油圧を供給する制御弁がニュートラル状態であることを精度良く判定できるニュートラル判定装置および車両の制御装置を提供することにある。
 上記目的を達成するため、本発明では、インヒビタスイッチ信号が走行レンジにあることを示した場合、モータを回転数制御し、回転数制御中のモータトルクがクラッチの目標伝達トルク容量に基づく推定モータトルクよりも小さいとき、ニュートラル状態であると判定する。
 クラッチの目標伝達トルク容量はモータトルクを伝達可能なトルク容量が設定されるため、モータトルクがクラッチの目標伝達トルク容量に基づく推定モータトルクよりも小さい場合、後輪にトルクが伝達されていないと推定できる。よって、本発明にあっては、インヒビタスイッチ信号が走行レンジにあることを示しているときにクラッチに制御油圧を供給する制御弁がニュートラル状態であることを精度良く判定できる。
実施例1の後輪駆動のハイブリッド車両を示す全体システム図である。 実施例1の統合コントローラにおける演算処理プログラムを示す制御ブロック図である。 図2の目標駆動力演算部にて目標駆動力演算に用いられる目標駆動力マップの一例を示す図である。 図2のモード選択部にてモードマップと推定勾配との関係を表す図である。 図2のモード選択部にて目標モードの選択に用いられる通常モードマップを示す図である。 図2のモード選択部にて目標モードの選択に用いられるMWSC対応モードマップを示す図である。 図2の目標充放電演算部にて目標充放電電力の演算に用いられる目標充放電量マップの一例を示す図である。 セレクトレバー27をNレンジ位置からDレンジ位置まで操作したときのインヒビタスイッチ信号とマニュアルバルブ8aとの関係を示す図である。 統合コントローラ10で実行されるニュートラル判定制御処理の流れを示すフローチャートである。 ニュートラル判定領域、目標第2クラッチ伝達トルク容量相当トルク、自動変速機ATのフリクションおよび第2クラッチCL2のトルクばらつき量の関係を示す図である。 ニュートラル判定領域、目標第2クラッチ伝達トルク容量相当トルク、自動変速機ATのフリクション、第2クラッチCL2のトルクばらつき量およびエンジントルクばらつきの関係を示す図である。 実施例1のニュートラル判定作用を示すタイムチャートである。
8a マニュアルバルブ(制御弁)
CL2 第2クラッチ(クラッチ)
MG モータジェネレータ(モータ)
RL,RR 後輪(駆動輪)
 〔実施例1〕
  まず、ハイブリッド車両の駆動系構成を説明する。図1、は実施例1のエンジン始動制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMGと、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。なお、FLは左前輪、FRは右前輪である。
 エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。なお、エンジン出力軸にはフライホイールFWが設けられている。
  第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
 モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。なお、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
  第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、AT油圧コントロールユニット8により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
 自動変速機ATは、前進5速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り替える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。なお、詳細については後述する。
  そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。なお、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。
 このハイブリッド駆動系には、第1クラッチCL1の締結・開放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。なお、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
 また、路面勾配が所定値以上における上り坂等で、ドライバがアクセルペダルを調整し車両停止状態を維持するアクセルヒルホールドが行われるような場合、WSC走行モードでは、第2クラッチCL2のスリップ量が過多の状態が継続されるおそれがある。エンジンEをアイドル回転数より小さくすることができないからである。そこで、実施例1では、エンジンEを作動させたまま、第1クラッチCL1を解放し、モータジェネレータMGを作動させつつ第2クラッチCL2をスリップ制御させ、モータジェネレータMGを動力源として走行するモータスリップ走行モード(以下、「MWSC走行モード」と略称する)を備える。
 上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。
  「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。
  定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。
  また、さらなるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
 次に、ハイブリッド車両の制御系を説明する。実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、AT油圧コントロールユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。なお、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。
 エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。なお、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。
 モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータ回転数,Tm:モータトルク)を制御する指令をインバータ3へ出力する。なお、このモータコントローラ2では、バッテリ4の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。
 第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット6に出力する。なお、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
 ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18とドライバの操作するセレクトレバー27の操作位置に応じたレンジ信号を出力するインヒビタスイッチ28のインヒビタスイッチ信号を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールユニット8に出力する。AT油圧コントロールユニット8は、セレクトレバー27に連動するマニュアルバルブ(制御弁)8aを備える。セレクトレバー27をNレンジ位置からDレンジ(またはRレンジ)位置に切り替えると、その動きは物理的な連動機構によりマニュアルバルブ8aに伝達され、マニュアルバルブ8aのスプール位置がクラッチ元圧と第2クラッチCL2の油圧室との連通を遮断するNレンジ対応位置から、クラッチ元圧と第2クラッチCL2の油圧室とを連通するDレンジ対応位置に変位することにより、第2クラッチCL2に制御油圧が供給可能となる。なお、アクセルペダル開度APOと車速VSPとインヒビタスイッチ信号は、CAN通信線11を介して統合コントローラ10へ供給する。また、インヒビタスイッチ信号はコンビネーションメータ(不図示)内に設けられたメータ内表示器29に送られ、現在のレンジ位置が表示される。
 ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
 統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nm(第2クラッチCL2のモータ側回転数であり、以下、入力回転数と記載する。なお、レゾルバ13を用いても良い)を検出するモータ回転数センサ21と、第2クラッチ出力回転数N2out(第2クラッチCL2の駆動輪側回転数であり、以下、出力回転数と記載する。)を検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ25と、前後加速度を検出するGセンサ26からの情報およびCAN通信線11を介して得られた情報を入力する。
 また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・開放制御と、を行う。
 以下に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。統合コントローラ10は、目標駆動力演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。
 目標駆動力演算部100では、図3に示す目標駆動トルクマップを用いて、アクセルペダル開度APOと車速VSPとから、目標駆動トルクtFoOを演算する。
 モード選択部200は、Gセンサ26の検出値に基づいて路面勾配を推定する路面勾配推定演算部201を有する。路面勾配推定演算部201は、車輪速センサ19の車輪速加速度平均値等から実加速度を演算し、この演算結果とGセンサ検出値との偏差から路面勾配を推定する。
 さらに、モード選択部200は、推定された路面勾配に基づいて、後述する二つのモードマップのうち、いずれかを選択するモードマップ選択部202を有する。図4は、モードマップ選択部202の選択ロジックを表す概略図である。モードマップ選択部202は、通常モードマップが選択されている状態から推定勾配が所定値g2以上になると、MWSC対応モードマップに切り替える。一方、MWSC対応モードマップが選択されている状態から推定勾配が所定値g1(<g2)未満になると、通常モードマップに切り替える。すなわち、推定勾配に対してヒステリシスを設け、マップ切り替え時の制御ハンチングを防止する。
 次に、モードマップについて説明する。モードマップとしては、推定勾配が所定値未満のときに選択される通常モードマップと、推定勾配が所定値以上のときに選択されるMWSC対応モードマップとを有する。図5は通常モードマップ、図6はMWSCモードマップを表す。
 通常モードマップ内には、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセルペダル開度APOと車速VSPとから、目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」を目標モードとする。
 図5の通常モードマップにおいて、HEV→WSC切換線は、所定アクセル開度APO1未満の領域では、自動変速機ATが1速段のときに、エンジンEのアイドル回転数よりも小さな回転数となる下限車速VSP1よりも低い領域に設定されている。また、所定アクセル開度APO1以上の領域では、大きな駆動力を要求されることから、下限車速VSP1よりも高い車速VSP1'領域までWSC走行モードが設定されている。なお、バッテリSOCが低く、EV走行モードを達成できないときには、発進時等であってもWSC走行モードを選択するように構成されている。
 アクセルペダル開度APOが大きいとき、その要求をアイドル回転数付近のエンジン回転数に対応したエンジントルクとモータジェネレータMGのトルクで達成するのは困難な場合がある。ここで、エンジントルクは、エンジン回転数が上昇すればより多くのトルクを出力できる。このことから、エンジン回転数を引き上げてより大きなトルクを出力させれば、例え下限車速VSP1よりも高い車速までWSC走行モードを実行しても、短時間でWSC走行モードからHEV走行モードに遷移させることができる。この場合が図5に示す下限車速VSP1'まで広げられたWSC領域である。
 MWSCモードマップ内には、EV走行モード領域が設定されていない点で通常モードマップとは異なる。また、WSC走行モード領域として、アクセルペダル開度APOに応じて領域を変更せず、下限車速VSP1のみで領域が規定されている点で通常モードマップとは異なる。また、WSC走行モード領域内にMWSC走行モード領域が設定されている点で通常モードマップとは異なる。MWSC走行モード領域は、下限車速VSP1よりも低い所定車速VSP2と所定アクセル開度APO1よりも高い所定アクセル開度APO2とで囲まれた領域に設定されている。なお、MWSC走行モードとは、エンジンEを作動した状態で第1クラッチCL1を開放し、モータジェネレータMGを回転数制御すると共に、第2クラッチCL2をスリップ制御して走行するモードである。WSC走行モードに比べ、第2クラッチCL2の入力回転数を低く設定できる点でスリップ量の低減を図ることができる。
 目標充放電演算部300では、図7に示す目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。
  動作点指令部400では、アクセルペダル開度APOと、目標駆動トルクtFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータトルクと目標第2クラッチ伝達トルク容量と自動変速機ATの目標変速段と第1クラッチソレノイド電流指令を演算する。
 また、動作点指令部400には、EV走行モードからHEV走行モードに遷移するときにエンジンEを始動するエンジン始動制御部が設けられている。エンジン始動制御部では、第2クラッチCL2を目標駆動トルクに応じた第2クラッチ伝達トルク容量に設定してスリップ制御状態とし、モータジェネレータMGを回転数制御とし、目標モータ回転数を駆動輪回転数相当値に所定スリップ量を加算した値とする。この状態で、第1クラッチCL1にクラッチ伝達トルク容量を発生させ、エンジン始動を行うものである。これにより、出力軸トルクについては第2クラッチCL2のクラッチ伝達トルク容量で安定させ、第1クラッチCL1の締結によってモータ回転数が低下しようとする場合であっても、回転数制御によってモータトルクが上昇し、確実にエンジン始動を行えるものである。
  変速制御部500では、シフトマップに示すシフトスケジュールに沿って、目標第2クラッチ伝達トルク容量と目標変速段を達成するように自動変速機AT内のソレノイドバルブを駆動制御する。なお、シフトマップは、車速VSPとアクセルペダル開度APOに基づいてあらかじめ目標変速段が設定されたものである。
 [セレクトレバー中間停止時のニュートラル判定について]
  図8に示すように、マニュアルバルブ8aは、セレクトケーブル27aおよびAT側リンケージ27bを介してセレクトレバー27と機械的に接続され、セレクトレバー27の操作位置に応じてスプールがストロークすることで、各油路をレンジ位置に応じた状態とする。インヒビタスイッチ28は、AT側リンケージ27bの角度からセレクトレバー27の位置を検出し、対応するインヒビタスイッチ信号を出力する。
  図8(a)のようにセレクトレバー27がNレンジ位置にある場合、インヒビタスイッチ信号はNレンジにあることを示す。このとき、マニュアルバルブ8aのスプール位置は、オイルポンプOPとローブレーキL/B(発進時の第2クラッチCL2に相当する。)との連通を遮断したNレンジ対応位置にあり、自動変速機AT(マニュアルバルブ8a)はニュートラル状態である。セレクトレバー27がNレンジ位置からDレンジ位置に移動するとマニュアルバルブ8aのスプール位置がDレンジ対応位置となる前に、インヒビタスイッチ信号はNからDに切り替わる(図8(b))。そして、セレクトレバー27がDレンジ位置まで移動すると、マニュアルバルブ8aのスプール位置は、オイルポンプOPとローブレーキL/Bとの連通するDレンジ対応位置となり、オイルポンプOPからローブレーキL/Bに制御油圧を供給可能となる(図8(c))。
 ここで、図8(b)に示した状態、すなわち、セレクトレバー27がNレンジ位置とDレンジ位置との間の中間位置で停止した場合など、インヒビタスイッチ信号としてはDレンジにあることを示すが、自動変速機ATはニュートラル状態のままである。このとき、オイルポンプOPとローブレーキL/Bは連通していないため、ローブレーキL/Bに制御油圧を供給できない。この状態でドライバがアクセルを踏み込むと、Dレンジに対応した車両制御、すなわち、第2クラッチCL2に制御油圧を供給可能な状態を前提とした車両制御が実施されることで、以下のような種々の問題が生じる。
 ・アクセルペダルが踏み込まれた際にエンジンEまたはモータジェネレータMGの回転が吹け上がる。
  ・EV走行モードのときドライバがブレーキを踏むことなくゆっくりNレンジからDレンジへと切り替えた場合、WSC走行モードでクリープトルクを発生させる際に一端回転が吹け上がり、その後第2クラッチCL2が締結可能となった際に急締結によるショックが発生する。
  ・メータ内表示器29はDレンジと表示されているにもかかわらず、車両が前進しないため、ドライバに違和感を与える。
  そこで、統合コントローラ10では、インヒビタスイッチがDレンジにあることを示しているときに自動変速機ATがニュートラル状態であることを精度良く判定すること、および上述した各問題の解決を狙いとし、以下に示すようなニュートラル判定制御処理を実施する。
 [ニュートラル判定制御処理]
  図9は、統合コントローラ10で実行されるニュートラル判定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
  ステップS1では、インヒビタスイッチ信号がDレンジにあることを示しているか否かを判定し、YESの場合はステップS2へ進み、NOの場合は本制御を終了する。
  ステップS2では、S1でYES判定されてから一定時間が経過したか否かを判定し、YESの場合はステップS3へ進み、NOの場合はステップS2を繰り返す。一定時間は、インヒビタスイッチ信号がDレンジにあることを示した時点から第2クラッチCL2のガタ詰め処理が行われた後、モータトルクまたはモータ回転数が目標値に達したと予想される時間とする。
  ステップS3は、EV走行モードであるかWSC走行モードであるかを判定し、EV走行モードの場合はステップS4へ進み、WSC走行モードの場合はステップS6へ進む。
  ステップS4では、第2クラッチCL2がスリップしているか否かを判定し、YESの場合はステップS5へ進み、NOの場合は本制御を終了する。ここでは、入力回転数(モータ回転数)から出力回転数(第2クラッチ出力回転数)を減じた値が所定の閾値以上であるとき、第2クラッチCL2がスリップしていると判定する。なお、閾値はゼロよりも大きな値であればよく、センサ精度を考慮して決定する。
  ステップS5では、所定の回転数が得られるようにモータジェネレータMGを回転数制御すると共に、第2クラッチ伝達トルク容量を目標駆動力に応じたトルク容量とする。
 ステップS6では、自動変速機ATがニュートラル状態であるか否かを判定し、YESの場合はステップS7へ進み、NOの場合は本制御を終了する。ニュートラル状態の判定は、EV走行モードとWSC走行モードで異なる。
1.EV走行モード
  モータトルクをTm、目標第2クラッチ伝達トルク容量のトルク換算値TTCL2、自動変速機ATのフリクションとモータジェネレータMGのフリクションと第1クラッチCL1の引き摺り分をFat、モータジェネレータMGの慣性をIω、第2クラッチCL2のトルクばらつき量をαとすると、下記の式(1)が成立したとき、ニュートラル状態であると判定する。
  Tm≦TTCL2+Fat+Iω-α …(1)
  式(1)の右辺は目標第2クラッチ伝達トルク容量に基づくモータトルクの推定下限値であるため、式(1)が成立した場合、自動変速機ATはニュートラル状態であると推定できる。図10にニュートラル判定領域、目標第2クラッチ伝達トルク容量のトルク換算値、自動変速機ATのフリクションおよび第2クラッチCL2のトルクばらつき量の関係を示す。なお、フリクションFatは温度を考慮しても良い。
2.WSC走行モード
  モータトルクをTm、目標第2クラッチ伝達トルク容量のトルク換算値TTCL2、自動変速機ATとエンジンEとモータジェネレータMGのフリクションをFat、モータジェネレータMGとエンジンEと第1クラッチCL1(第2クラッチCL2よりも前側)の慣性をIω、第2クラッチCL2のトルクばらつき量をα、エンジントルクばらつきをβとすると、下記の式(2)が成立したとき、ニュートラル状態であると判定する。
  Tm≦TTCL2+Fat+Iω-α-β-エンジントルク指令値 …(2)
  式(2)の右辺は目標第2クラッチ伝達トルク容量に基づくモータトルクの推定下限値であるため、式(2)が成立した場合、自動変速機ATはニュートラル状態であると推定できる。図11にニュートラル判定領域、目標第2クラッチ伝達トルク容量のトルク換算値、自動変速機ATのフリクション、第2クラッチCL2のトルクばらつき量およびエンジントルクばらつきの関係を示す。
  ステップS6はニュートラル判定手段に相当する。
 ステップS7では、メータ内表示器29のレンジ表示をDレンジからNレンジに変更する。
  ステップS8では、第2クラッチ伝達トルク容量をクリープトルク相当に応じたトルク容量に制限する。クリープトルク相当とは、クリープトルクよりも小さなトルクであって、第2クラッチCL2の締結ショック抑制および駆動力確保を考慮した値である。
  ステップS9では、自動変速機ATのニュートラル状態が解除されたか否か、またはインヒビタスイッチ信号がPまたはNレンジにあることを示しているか否かを判定し、一方がYESの場合はステップS10へ進み、NOの場合はステップS9を繰り返す。
  ステップS10では、メータ内表示器29のレンジ表示をD,P,Nに変更する。ステップS9でニュートラル状態が解除されたと判定された場合はDに切り替え、インヒビタスイッチ信号がPまたはNレンジにあることを示している場合はPまたはNに切り替える。
  ステップS11では、第2クラッチ伝達トルク容量の制限を解除し、本制御を終了する。このとき、第2クラッチCL2の急締結を抑制するために、第2クラッチ伝達トルク容量を徐々に走行モードに応じた目標第2クラッチ伝達トルク容量まで上昇させるランプ制御を行っても良い。
 次に、作用を説明する。
  図12は、実施例1のニュートラル判定作用を示すタイムチャートである。なお、車両停車時を前提としている。
  時点t1では、セレクトレバー27がインヒビタスイッチ28のD判定位置に達したため、インヒビタスイッチ信号はNレンジにあることを示す信号からDレンジにあることを示す信号へと切り替わる。このとき、車速(=0)とアクセル開度から、走行モードはEV走行モードが選択され、第2クラッチCL2のガタ詰め処理が開始され、メータ内表示器29のレンジ表示はNレンジからDレンジへと切り替わる。
  時点t2では、ガタ詰めが完了したため、クリープトルクが得られるようにモータジェネレータMGがトルク制御され、第2クラッチ伝達トルク容量が「目標駆動力+所定のマージン」に応じたトルク容量とされる。これにより、モータ回転数およびモータトルクは上昇を開始する。なお、時点t2以前にセレクトレバー27はNレンジ位置とDレンジ位置との間の中間位置で停止しているため、マニュアルバルブ8aはNレンジ対応位置からDレンジ対応位置に切り替わっておらず、自動変速機ATはニュートラル状態である。
 時点t3では、第2クラッチCL2がスリップしたとの判定により、トルク制御から回転数制御へと切り替わり、モータ回転数が一定に制御され、第2クラッチ伝達トルク容量がクリープトルク装置のトルク容量とされる。なお、モータ回転数が一定になるため、モータトルクはフリクション分を負荷とする値となる。
  時点t4では、ニュートラル状態であるとの判定により、メータ内表示器29のレンジ表示をDレンジからNレンジに変更し、第2クラッチ伝達トルク容量をクリープトルク相当に応じたトルク容量に制限する。
  時点t5では、ドライバがセレクトレバー27を操作し、マニュアルバルブ8aがNレンジ対応位置からDレンジ対応位置に切り替わり、自動変速機ATのニュートラル状態が解除されるため、ドライブシャフトトルクが立ち上がる。
  時点t6では、ニュートラル状態が解除されたとの判定により、メータ内表示器29のレンジ表示をNレンジからDレンジに変更すると共に、第2クラッチ伝達トルク容量の制限を解除する。これにより、目標第2クラッチ伝達トルク容量は目標駆動力に応じたトルク容量まで上昇し、車両を発進させることができる。
 [ニュートラル判定作用]
  実施例1では、インヒビタスイッチ信号がDレンジにあることを示した場合、モータジェネレータMGを回転数制御し、回転数制御中のモータトルクが目標第2クラッチ伝達トルク容量に基づく推定モータトルクよりも小さいとき、自動変速機ATがニュートラル状態であると判定する。すなわち、モータ回転数が所定回転数となるようにモータジェネレータMGを回転数制御した状態でニュートラル判定を行うため、ドライバがアクセルを踏み込んだ場合であっても、モータ回転またはエンジン回転の吹け上がりを抑制できる。
 そして、モータジェネレータMGは回転数制御されているため、実際のモータトルクが目標第2クラッチ伝達トルク容量に基づく推定モータトルクよりも小さいか否かによって、後輪RL,RRにトルクが伝達されていないと推定でき、自動変速機ATのニュートラル状態を迅速かつ精度良く判定できる。
  例えば、第2クラッチの入出力回転数差のみに基づいてニュートラル判定を行う場合、誤判定しないように回転センサ精度を考慮した回転マージンを設定する必要が有るため、ニュートラル状態を判定するまでの間に時間を要し、モータ回転またはエンジン回転の吹け量が大きくなってしまう。なお、吹け量が大きくなると、第2クラッチが締結した際に大きなショックが発生する。また、入力回転数が規定値以上の場合にフェールと判断するロジックを採用している場合、回転数が吹け上がった状態で判断している上に、フェール制御へと移行するため、ドライバに不安感を与えてしまう。さらに、実施例1に示したWSC走行モードのように、発進時に回転数制御にて第2クラッチをスリップ制御する場合、入出力回転数差を維持するように制御されるため、回転数差のみではニュートラル状態を判定できない。
  これに対し、実施例1では、ニュートラル状態をトルク差(モータトルクと推定モータトルクとの偏差)で判定するため、ニュートラル状態を精度良く判定できると共に、判定に要する時間を短くできる。よって、判定終了までの吹け量が抑えられ、フェール制御への移行を抑制できる。
 また、インヒビタスイッチ信号がDレンジにあることを示した場合、モータジェネレータMGをトルク制御し、トルク制御中に入力回転数(モータ回転数)が出力回転数(第2クラッチ出力回転数)よりも高くなった場合、モータジェネレータMGの回転数制御を開始してニュートラル状態の判定を行う。すなわち、まずトルク制御にて入出力回転数差をモニタし、後輪RL,RRへの伝達ロスが発生していることを確認し、その上で、回転数制御により最終的なニュートラル判定を行うため、より正確にニュートラル状態を判定できる。なお、入出力回転数差による判定には、回転センサ精度を考慮した回転マージンを設定していないため、第2クラッチの入出力回転数差のみに基づいてニュートラル判定を行う場合と比較して、判定時間を短くできる。
 [ニュートラル判定時のCL2トルク容量制限作用]
  実施例1では、インヒビタスイッチがDレンジにあることを示しているときに自動変速機ATがニュートラル状態であると判定された場合、第2クラッチ伝達トルク容量をクリープトルク相当に応じたトルク容量に制限する。例えば、第2クラッチ伝達トルク容量を制限しない場合、マニュアルバルブ8aがNレンジ対応位置からDレンジ対応位置へと切り替わったとき、第2クラッチが急締結されることでショックが発生する。一方、第2クラッチ伝達トルク容量をゼロにした場合、マニュアルバルブ8aがNレンジ対応位置からDレンジ対応位置へと切り替わったとき、第2クラッチ伝達トルク容量が立ち上がるまでの間はトルクが伝達されず、駆動力を確保できない。よって、第2クラッチ伝達トルク容量をクリープトルク相当に制限することで、締結ショック抑制と駆動力確保との両立を図ることができる。
 [ニュートラル判定時のメータ内表示変更作用]
  実施例1では、インヒビタスイッチがDレンジにあることを示しているときに自動変速機ATがニュートラル状態であると判定された場合、メータ内表示器29のレンジ表示をDレンジからNレンジに変更する。メータ内表示器がDレンジと表示されているにもかかわらず、車両が前進しないと、ドライバに違和感を与えてしまうのに対し、表示をDレンジからNレンジに変更することで、ドライバに与える違和感を軽減できると共に、ドライバに対しセレクトレバー27の中間停止を解除する操作を促すことができる。
 実施例1では、以下に列挙する効果を奏する。
  (1) インヒビタスイッチ信号がDレンジにあることを示した場合、モータジェネレータMGを回転数制御し、回転数制御中のモータトルクがモータジェネレータMGと後輪RL,RRとの間に介装され両者を断接する第2クラッチCL2の目標伝達トルク容量に基づく推定モータトルクよりも小さいとき、自動変速機ATがニュートラル状態であると判定する。
  よって、インヒビタスイッチ信号がDレンジにあることを示しているときに自動変速機ATがニュートラル状態であることを精度良く判定できる。また、判定中にドライバがアクセルを踏み込んだ場合の、回転数の吹け上がりを抑制できる。
 (2) インヒビタスイッチ信号がDレンジにあることを示した場合、モータジェネレータMGをトルク制御し、トルク制御中に入力回転数(モータ回転数)が出力回転数(第2クラッチ出力回転数)よりも高くなった場合、モータジェネレータMGの回転数制御を開始してニュートラル状態の判定を行う。
  よって、より正確にニュートラル状態を判定できる。
 (3) ニュートラル判定手段(S6)によりニュートラル状態であると判定された場合、第2クラッチ伝達トルク容量を制限する(S8)。
  よって、締結ショック抑制と駆動力確保との両立を図ることができる。
 (4) ニュートラル判定手段(S6)によりニュートラル状態であると判定された場合、乗員への情報提供を行うメータ内表示器29のレンジ位置をDレンジからNレンジへと切り替える。
  よって、ドライバに与える違和感を軽減できると共に、ドライバに対しセレクトレバー27の中間停止を解除する操作を促すことができる。
 〔他の実施例〕
  以上、本発明を実施例に基づいて説明したが、具体的な構成は他の構成であっても良い。例えば、実施例では、FR型のハイブリッド車両について説明したが、FF型のハイブリッド車両であっても構わない。
  また、実施例では、エンジンとモータジェネレータとを備えたハイブリッド車両について説明したが、モータのみを駆動源とする電気自動車のも適用可能であり、実施例と同様の作用効果を得ることができる。
  また、実施例1では、EV走行モードとWSC走行モードのときニュートラル判定を行う例を示したが、MWSC走行モードにも適用できることは言うまでもない。
  また、有段変速機を例示したが、無段変速機であっても構わない。

Claims (4)

  1.  インヒビタスイッチ信号が走行レンジにあることを示した場合、車両の駆動力を出力するモータを回転数制御し、回転数制御中のモータトルクが前記モータと駆動輪との間に介装され両者を断接するクラッチの目標伝達トルク容量に基づく推定モータトルクよりも小さいとき、前記クラッチの油圧室に制御油圧を供給する制御弁がニュートラル状態であると判定することを特徴とするニュートラル判定装置。
  2.  請求項1に記載のニュートラル判定装置において、
     インヒビタスイッチ信号が走行レンジにあることを示した場合、前記モータをトルク制御し、トルク制御中に前記クラッチのモータ側回転数が駆動輪側回転数よりも高くなった場合、前記モータの回転数制御を開始して前記ニュートラル状態の判定を行うことを特徴とするニュートラル判定装置。
  3.  車両の駆動力を出力するモータと駆動輪との間に両者を断接するクラッチを介装した車両の制御装置において、
     前記クラッチの油圧室に制御油圧を供給する制御弁がニュートラル状態であるか否かを判定するニュートラル判定手段として、請求項1または2に記載のニュートラル判定装置を適用し、
     前記ニュートラル判定手段によりニュートラル状態であると判定された場合、前記クラッチの伝達トルク容量を制限することを特徴とする車両の制御装置。
  4.  請求項3に記載の車両の制御装置において、
     前記ニュートラル判定手段によりニュートラル状態であると判定された場合、乗員への情報提供を行うメータ内表示のレンジ位置を走行レンジから中立レンジへと切り替えることを特徴とする車両の制御装置。
PCT/JP2013/069616 2012-08-31 2013-07-19 ニュートラル判定装置および車両の制御装置 WO2014034319A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014532883A JP6012026B2 (ja) 2012-08-31 2013-07-19 車両の制御装置
CN201380045624.9A CN104602942B (zh) 2012-08-31 2013-07-19 空档判定装置以及车辆的控制装置
EP13832140.1A EP2891588B1 (en) 2012-08-31 2013-07-19 Neutral determination device and vehicle control apparatus
US14/416,067 US9428181B2 (en) 2012-08-31 2013-07-19 Neutral determination device and vehicle control apparatus
KR1020157007850A KR20150052137A (ko) 2012-08-31 2013-07-19 뉴트럴 판정 장치 및 차량의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-190764 2012-08-31
JP2012190764 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034319A1 true WO2014034319A1 (ja) 2014-03-06

Family

ID=50183139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069616 WO2014034319A1 (ja) 2012-08-31 2013-07-19 ニュートラル判定装置および車両の制御装置

Country Status (6)

Country Link
US (1) US9428181B2 (ja)
EP (1) EP2891588B1 (ja)
JP (1) JP6012026B2 (ja)
KR (1) KR20150052137A (ja)
CN (1) CN104602942B (ja)
WO (1) WO2014034319A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034319A1 (ja) * 2012-08-31 2016-08-08 日産自動車株式会社 車両の制御装置
JP2018521279A (ja) * 2015-07-07 2018-08-02 ルノー エス.ア.エス.Renault S.A.S. ギアボックスアクチュエータの位置を制御する方法
WO2022181409A1 (ja) * 2021-02-25 2022-09-01 株式会社アイシン 車両用駆動装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491408B1 (ko) * 2014-02-12 2015-02-06 현대자동차주식회사 경사로 출발 보조 장치의 제어 방법
JP6304173B2 (ja) 2015-08-18 2018-04-04 トヨタ自動車株式会社 車両
EP3145073A1 (en) * 2015-09-21 2017-03-22 Voith Patent GmbH Driveline for supply of electrical energy
US10023190B2 (en) * 2016-10-28 2018-07-17 Ford Global Technologies, Llc Method and control for operating a transmission in neutral
FR3073480B1 (fr) * 2017-11-15 2020-11-13 Psa Automobiles Sa Procede de controle d’un dispositif d’engagement d’une machine electrique de vehicule hybride
JP7342736B2 (ja) * 2020-03-05 2023-09-12 トヨタ自動車株式会社 ハイブリッド車両の駆動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263741A (ja) * 2003-02-28 2004-09-24 Jatco Ltd 自動変速機のクラッチ締結制御装置
JP2007239959A (ja) * 2006-03-10 2007-09-20 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2009222158A (ja) * 2008-03-17 2009-10-01 Jatco Ltd 無段変速機の制御装置
JP2010077981A (ja) * 2008-09-24 2010-04-08 Jatco Ltd 車両用自動変速機の制御装置
JP2012091543A (ja) 2010-10-25 2012-05-17 Nissan Motor Co Ltd 車両の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585697Y2 (ja) * 1989-06-20 1998-11-25 三菱自動車工業株式会社 変速段表示装置
JPH0640272A (ja) * 1992-07-22 1994-02-15 Jatco Corp エンジン・自動変速機の制御装置
JP3656790B2 (ja) * 1997-11-25 2005-06-08 ジヤトコ株式会社 自動変速機の故障検出装置
JP3703646B2 (ja) * 1999-02-12 2005-10-05 三菱電機株式会社 エンジン停止始動制御装置
KR100387482B1 (ko) * 2000-12-30 2003-06-18 현대자동차주식회사 자동차용 자동 변속기의 입력 속도센서 고장 진단방법
JP2004347110A (ja) * 2003-05-23 2004-12-09 Luk Lamellen & Kupplungsbau Beteiligungs Kg 2つのギアトレーンを有する負荷感応式シフト伝動装置および該伝動装置の制御方法
JP4492585B2 (ja) * 2006-05-29 2010-06-30 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP4455622B2 (ja) * 2007-07-19 2010-04-21 ジヤトコ株式会社 自動変速機の制御装置
US8649924B2 (en) * 2007-11-30 2014-02-11 Bosch Corporation Torque control map to initiate engine startup processing in a hybrid vehicle
JP5496854B2 (ja) * 2010-11-01 2014-05-21 ジヤトコ株式会社 車両の制御装置
JP5367682B2 (ja) * 2010-12-16 2013-12-11 アイシン・エーアイ株式会社 車両の動力伝達制御装置
JP6012026B2 (ja) * 2012-08-31 2016-10-25 日産自動車株式会社 車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263741A (ja) * 2003-02-28 2004-09-24 Jatco Ltd 自動変速機のクラッチ締結制御装置
JP2007239959A (ja) * 2006-03-10 2007-09-20 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2009222158A (ja) * 2008-03-17 2009-10-01 Jatco Ltd 無段変速機の制御装置
JP2010077981A (ja) * 2008-09-24 2010-04-08 Jatco Ltd 車両用自動変速機の制御装置
JP2012091543A (ja) 2010-10-25 2012-05-17 Nissan Motor Co Ltd 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2891588A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034319A1 (ja) * 2012-08-31 2016-08-08 日産自動車株式会社 車両の制御装置
JP2018521279A (ja) * 2015-07-07 2018-08-02 ルノー エス.ア.エス.Renault S.A.S. ギアボックスアクチュエータの位置を制御する方法
WO2022181409A1 (ja) * 2021-02-25 2022-09-01 株式会社アイシン 車両用駆動装置
JP7448085B2 (ja) 2021-02-25 2024-03-12 株式会社アイシン 車両用駆動装置

Also Published As

Publication number Publication date
US20150166055A1 (en) 2015-06-18
US9428181B2 (en) 2016-08-30
EP2891588A1 (en) 2015-07-08
CN104602942A (zh) 2015-05-06
EP2891588B1 (en) 2018-02-21
JP6012026B2 (ja) 2016-10-25
JPWO2014034319A1 (ja) 2016-08-08
KR20150052137A (ko) 2015-05-13
CN104602942B (zh) 2017-05-03
EP2891588A4 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6012026B2 (ja) 車両の制御装置
JP5561435B2 (ja) ハイブリッド車両の制御装置
WO2013021765A1 (ja) ハイブリッド車両の制御装置
JP5742248B2 (ja) 車両の制御装置
JP2010155590A (ja) ハイブリッド車両の発進制御装置。
JP5747525B2 (ja) 車両の制御装置
JP5672950B2 (ja) 車両の制御装置
JP5278403B2 (ja) 車両の制御装置
JP5239819B2 (ja) ハイブリッド車両の制御装置
JP2012091601A (ja) 車両の制御装置
JP4872617B2 (ja) 車両の制御装置
JP5696430B2 (ja) 車両の制御装置
JP2012092975A (ja) 自動変速機
JP5550524B2 (ja) 自動変速機
JP5309676B2 (ja) 車両の発進制御装置
JP2012081819A (ja) ハイブリッド車両の制御装置
JP5223378B2 (ja) 車両の発進制御装置
JP5251958B2 (ja) ハイブリッド車両の制御装置
JP5950038B2 (ja) ハイブリッド車両の制御装置
JP2012092939A5 (ja)
JP5691382B2 (ja) ハイブリッド車両の制御装置
JP2013224141A (ja) ハイブリッド車両の制御装置
JP5699538B2 (ja) ハイブリッド車両の制御装置
JP2012091598A (ja) ハイブリッド車両の制御装置
JP2010143417A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532883

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157007850

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013832140

Country of ref document: EP