JP2010143417A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2010143417A
JP2010143417A JP2008323039A JP2008323039A JP2010143417A JP 2010143417 A JP2010143417 A JP 2010143417A JP 2008323039 A JP2008323039 A JP 2008323039A JP 2008323039 A JP2008323039 A JP 2008323039A JP 2010143417 A JP2010143417 A JP 2010143417A
Authority
JP
Japan
Prior art keywords
engine
driving force
battery
clutch
target driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323039A
Other languages
English (en)
Inventor
Munetoshi Ueno
宗利 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008323039A priority Critical patent/JP2010143417A/ja
Publication of JP2010143417A publication Critical patent/JP2010143417A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 エンジン異常の判定精度を向上させたハイブリッド車両の制御装置を提供する。
【解決手段】 アクセル開度と車速に基づき、車両の目標駆動力を算出する目標駆動力算出手段と、エンジンおよび駆動モータのトルクを用いて走行するエンジン使用走行モード実行時に、エンジンに対する要求出力を算出するエンジン要求出力算出手段と、バッテリの蓄電量を検出する蓄電量検出手段と、エンジン使用走行モード中に、目標駆動力よりもエンジンに対する要求出力が大きい状態と、バッテリ蓄電量が低下し続ける状態がともに所定時間以上継続する場合、エンジンの異常と判定するエンジン異常判定手段を設けた。
【選択図】 図8

Description

本発明は、動力源にエンジンとモータを備えたハイブリッド車両の制御装置に関する。
ハイブリッド車両として特許文献1の技術が開示されている。この技術にあっては、バッテリ充電量(バッテリSOC)が所定値以下となった際にエンジンの異常検出を行っている。
特開2001−320806号公報
しかしながら上記従来技術にあっては、エンジン異常をバッテリ蓄電量(バッテリSOC)の値に基づき判定していたため、エンジン異常以外の原因によってバッテリ蓄電量(バッテリSOC)が低下した場合、エンジンが正常であるにもかかわらず異常と誤判定を行うおそれがあった。
本発明は、上記問題に着目してなされたもので、その目的とするところは、エンジン異常の判定精度を向上させたハイブリッド車両の制御装置を提供することにある。
上記目的を達成するため、本発明では、アクセル開度と車速に基づき、車両の目標駆動力を算出する目標駆動力算出手段と、エンジンおよび駆動モータのトルクを用いて走行するエンジン使用走行モード実行時に、エンジンに対する要求出力を算出するエンジン要求出力算出手段と、バッテリの蓄電量を検出する蓄電量検出手段と、エンジン使用走行モード中に、目標駆動力よりもエンジンに対する要求出力が大きい状態と、バッテリ蓄電量が低下し続ける状態がともに所定時間以上継続する場合、エンジンの異常と判定するエンジン異常判定手段を設けた。
よって、エンジン異常によってバッテリ蓄電量が低下する状況に基づき異常判定を行うことで、エンジン異常の判定精度を向上させたハイブリッド車両の制御装置を提供できる。
以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例に基づいて説明する。
まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1のエンジン始動制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMG(駆動モータ)と、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。尚、FLは左前輪、FRは右前輪である。
エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。尚、エンジン出力軸にはフライホイールFWが設けられている。
第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により作動し、スリップ締結を含み締結・開放が制御される。
モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。尚、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。
第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。
自動変速機ATは、前進5速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。
そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。尚、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。
このハイブリッド駆動系には、第1クラッチCL1の締結・開放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリ蓄電量(バッテリSOC)が低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。
上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。
「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。
定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。
また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
次に、ハイブリッド車両の制御系を説明する。実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。尚、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。
エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。尚、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。
モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ3へ出力する。
尚、このモータコントローラ2では、バッテリSOC検出手段201(蓄電量検出手段)においてバッテリ4の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。
第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット6に出力する。尚、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからのセンサ情報を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット8に出力する。尚、アクセルペダル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線11を介して統合コントローラ10へ供給する。
ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。
統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ10aと、前後加速度を検出するGセンサ10bからの情報およびCAN通信線11を介して得られた情報を入力する。
また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・開放制御と、を行う。
以下に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。統合コントローラ10は、目標駆動力演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。
目標駆動力演算部100では、図3に示す目標駆動力マップを用いて、アクセルペダル開度APOと車速VSPとから、目標駆動力tFo0を演算する。
モード選択部200は、モードマップに基づいて目標モードを選択する。図5はモードマップを表す。モードマップ内には、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセルペダル開度APOと車速VSPとから目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」もしくは「WSC走行モード」を目標モードとする。
目標充放電演算部300では、図4に示す目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。また、目標充放電量マップには、EV走行モードを許可もしくは禁止するためのEVON線がSOC=50%に設定され、EVOFF線がSOC=35%に設定されている。
SOC≧50%のときは、図5のモードマップにおいてEV走行モード領域が出現する。モードマップ内に一度EV走行モード領域が出現すると、SOCが35%を下回るまでは、この領域は出現し続ける。
SOC<35%のときは、図5のモードマップにおいてEV走行モード領域が消滅する。モードマップ内からEV走行モード領域が消滅すると、SOCが50%に到達するまでは、この領域は消滅し続ける。
また目標充放電演算部300は、現在のエンジン動作点から図6の最良燃費線までエンジンEのトルクを上げるために必要なエンジン出力Peを演算し、目標充放電電力tPと比較し、差分をとる。この差分をエンジン出力Peに加算し、エンジン要求出力tPeとする。なお、図6はエンジンEの回転数−トルクマップであり、ある回転数に対して最良燃費を達成するトルク、およびある回転数に対し出力可能な最大トルクを示す。
さらに、目標充放電演算部300はバッテリSOCの時間変化率ΔSOCを演算する。このΔSOC、エンジン要求出力tPe、および目標駆動力tFo0に基づき、動作点指令部400内のエンジン異常判定部401においてエンジンEの異常が判定される(詳細は後述)。
動作点指令部400では、アクセルペダル開度APOと、目標駆動力tFo0と、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータジェネレータトルクと目標第2クラッチ締結容量と自動変速機ATの目標変速段と第1クラッチCL1の伝達トルク容量指令である第1クラッチソレノイド電流指令を演算する。
また、動作点指令部400は、EV走行モードからHEV走行モードに遷移するときにエンジンEを始動するとともに、エンジン異常判定部401においてエンジン異常を判定する。
[エンジン異常判定]
バッテリSOCが所定値以下となった際にエンジンEの異常を判定する場合、エンジンE以外の原因によってバッテリSOCが低下した際にもエンジンEの異常と誤判定するおそれがある。
ここで、HEVモード中にエンジン要求出力tPe>目標駆動力tFo0となる状態では、エンジン出力が車両駆動に必要な出力を上回った状態であるため、エンジン出力Peの余剰分によってモータジェネレータMGが駆動される走行発電モードとなる。この走行発電モードは本来バッテリSOCが増加する状態であるが、この走行発電モード中にバッテリSOCが低下していれば、エンジンEに異常があると判定することが可能である。
したがって、HEVモード中にエンジン要求出力tPe>目標駆動力tFo0の状態(走行発電モード)が所定時間継続し、かつバッテリSOCの低下が継続するという条件を満たせば、エンジン異常によってバッテリSOCが低下する状況と判断することが可能である。そのため、上記条件が満たされた場合はエンジン異常判定部401においてエンジンEの異常と判定する。
なお、バッテリSOCの低下継続という条件に代えてバッテリ4へ入力される電流の積算値を算出し、この積算値の低下の継続という条件を用いてもよい。入力される電流の積算値を用いる場合、バッテリSOCの誤差によって異常判定に影響を及ぼすことがない、というメリットがある。
[エンジン異常判定フロー]
図7はエンジン異常判定フローである。
ステップS101ではHEVモードかどうかが判断され、YESであればステップS102へ移行し、NOであれば制御を終了する。
ステップS102ではバッテリSOCから要求充放電電力tPとΔSOCを算出し、ステップS103へ移行する。
ステップS103では、アクセル開度APOと車速VSPから目標駆動力tFo0を演算し、ステップS104へ移行する。
ステップS104では、現在のエンジン動作点から図6の最良燃費線までエンジンEのトルクを上げるために必要なエンジン出力Peと目標充放電電力tPとに基づいてエンジン要求出力tPeを算出し、ステップS105へ移行する。
ステップS105では、エンジン要求出力tPe>目標駆動力tFo0であるかどうかが判断され、YESであればステップS106へ移行し、NOであれば制御を終了する。
ステップS106ではタイマカウントを開始し、ステップS107へ移行する。
ステップS107ではΔSOCの低下(ΔSOC<0)の状態が所定時間継続したかどうかが判断され、YESであればステップS108へ移行し、NOであれば制御を終了する。
ステップS108ではエンジンEの再始動要求を出力し、ステップS109へ移行する。
ステップS109ではタイマカウントを終了し、制御を終了する。
[エンジン異常判定の経時変化]
図8はエンジン異常判定のタイムチャートである。
(時刻t1)
時刻t1においてエンジン始動要求が出力(=1)され、モータジェネレータMGのトルクによってエンジンEを回転させる。これによりバッテリSOCが低下する。
(時刻t2)
時刻t2においてエンジン始動要求が取り下げられ(=0)、モータジェネレータMGのトルクが低下する。また、この時点でエンジン要求出力tPe>目標駆動力tFo0となり、タイマのカウントが開始される。
(時刻t2〜t3)
時刻t2〜t3の間にエンジンEの異常が発生し、エンジントルクが低下する。この時点ではエンジンEの異常はまだ検出されない。したがってエンジンEの回転数を目標回転数に維持するため、モータジェネレータMGを一定の正トルクで駆動してエンジンEを目標回転数とする。このためモータジェネレータMGによって電力が消費され、バッテリSOCは継続して低下する。
(時刻t3)
時刻t3において時刻t2において計測を開始したタイマのカウント値が所定時間を経過する。時刻t3においてもバッテリSOCは低下を継続しており、エンジンEに再度始動要求が出力される。
これによりモータジェネレータMGのトルクは低下する。また、エンジンEが正常に始動してエンジントルクが上昇し、モータジェネレータMGはエンジンEのトルクにより回されて発電機として機能する。したがってモータジェネレータMGのトルクは負となり、発電によってバッテリSOCは増加に転ずる。
(時刻t4)
時刻t4において、時刻t3(モータジェネレータMGが負トルクの出力を開始した時点)から所定時間が経過し、エンジンEが正常に始動したと判断されてエンジン始動要求が取り下げられる。以後、エンジンEのトルクを用いてモータジェネレータMGに発電させ、バッテリSOCを上昇させる。
[実施例1の効果]
(1)アクセル開度と車速に基づき、車両の目標駆動力tFoOを算出する目標駆動力算出手段(目標駆動力算出部100)と、
エンジンEおよびモータジェネレータMGのトルクを用いて走行するエンジン使用走行モード実行時に、エンジンEに対する要求出力tPeを算出するエンジン要求出力算出手段(目標充放電演算部300)と、
バッテリ4の蓄電量(SOC)を検出するバッテリSOC検出手段201(蓄電量検出手段)と、
エンジン使用走行モード中に、目標駆動力tFoOよりもエンジンEに対する要求出力tPeが大きい状態と、バッテリ蓄電量が低下し続ける状態がともに所定時間以上継続する場合、エンジンEの異常と判定するエンジン異常判定手段(エンジン異常判定部401)とを設けた。
これにより、エンジン異常によってバッテリ蓄電量(SOC)が低下する状況に基づき異常判定を行うことが可能となり、エンジン異常の判定精度を向上させることができる。
以上、実施例に基づいて説明したが、上記構成に限られず本発明の範囲を逸脱しない範囲で他の構成を取り得る。
実施例1の後輪駆動のハイブリッド車両を示す全体システム図である。 実施例1の統合コントローラにおける演算処理プログラムを示す制御ブロック図である。 図2の目標駆動力演算部にて目標駆動力演算に用いられる目標駆動力マップの一例を示す図である。 図2の目標充放電演算部にて目標充放電電力の演算に用いられる目標充放電量マップの一例を示す図である。 図2のモード選択部にて目標モードの選択に用いられるモードマップを示す図である。 エンジンの回転数−トルクマップである。 エンジン異常判定フローである。 エンジン異常判定のタイムチャートである。
符号の説明
E エンジン
MG モータジェネレータ(駆動モータ)
4 バッテリ
100 目標駆動力算出手段(目標駆動力算出部)
201 バッテリSOC検出手段(蓄電量検出手段)
300 エンジン要求出力算出手段(目標充放電演算部)
401 エンジン異常判定手段(エンジン異常判定部)

Claims (1)

  1. エンジンと、
    駆動モータと、
    前記駆動モータに電力を供給するバッテリと
    を有するハイブリッド車両の制御装置において、
    アクセル開度と車速に基づき、車両の目標駆動力を算出する目標駆動力算出手段と、
    前記エンジンおよび前記駆動モータのトルクを用いて走行するエンジン使用走行モード実行時に、前記エンジンに対する要求出力を算出するエンジン要求出力算出手段と、
    前記バッテリの蓄電量を検出する蓄電量検出手段と、
    前記エンジン使用走行モード中に、前記目標駆動力よりも前記エンジンに対する要求出力が大きい状態と、前記バッテリ蓄電量が低下し続ける状態がともに所定時間以上継続する場合、前記エンジンの異常と判定するエンジン異常判定手段と
    を設けたことを特徴とするハイブリッド車両の制御装置。
JP2008323039A 2008-12-19 2008-12-19 ハイブリッド車両の制御装置 Pending JP2010143417A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323039A JP2010143417A (ja) 2008-12-19 2008-12-19 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323039A JP2010143417A (ja) 2008-12-19 2008-12-19 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
JP2010143417A true JP2010143417A (ja) 2010-07-01

Family

ID=42564292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323039A Pending JP2010143417A (ja) 2008-12-19 2008-12-19 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP2010143417A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781697A (zh) * 2023-02-06 2023-03-14 山东协和学院 工业机器人控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104605A (ja) * 1996-06-13 1998-01-06 Toyota Motor Corp ハイブリッド車両
JP2006320178A (ja) * 2005-05-16 2006-11-24 Hitachi Ltd 回転電機制御装置及びその始動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104605A (ja) * 1996-06-13 1998-01-06 Toyota Motor Corp ハイブリッド車両
JP2006320178A (ja) * 2005-05-16 2006-11-24 Hitachi Ltd 回転電機制御装置及びその始動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781697A (zh) * 2023-02-06 2023-03-14 山东协和学院 工业机器人控制系统
CN115781697B (zh) * 2023-02-06 2023-05-09 山东协和学院 工业机器人控制系统

Similar Documents

Publication Publication Date Title
JP5561435B2 (ja) ハイブリッド車両の制御装置
JP4506721B2 (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008001349A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
JP6012026B2 (ja) 車両の制御装置
JP5742248B2 (ja) 車両の制御装置
JP2010155590A (ja) ハイブリッド車両の発進制御装置。
JP2007168564A (ja) ハイブリッド車両の通信異常対応制御装置
JP2009001172A (ja) ハイブリッド車両の駆動制御装置
JP5251483B2 (ja) ハイブリッド車両の制御装置
JP4877121B2 (ja) 車両のアイドルストップ制御装置
JP2012131497A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法
JP5239819B2 (ja) ハイブリッド車両の制御装置
JP2010149652A (ja) 油圧制御装置
JP2010269642A (ja) ハイブリッド車両の制動制御装置
JP5029592B2 (ja) ハイブリッド車両の制御装置
JP2012091601A (ja) 車両の制御装置
JP5696430B2 (ja) 車両の制御装置
JP2012086705A (ja) ハイブリッド車両の制御装置
JP2007313959A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP5344062B2 (ja) ハイブリッド車両の制御装置
JP5309676B2 (ja) 車両の発進制御装置
JP2012092975A (ja) 自動変速機
JP2012081819A (ja) ハイブリッド車両の制御装置
JP5550524B2 (ja) 自動変速機
JP2010143417A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604