WO2013018548A1 - 冗長機能付きステアバイワイヤ式操舵装置の制御装置 - Google Patents

冗長機能付きステアバイワイヤ式操舵装置の制御装置 Download PDF

Info

Publication number
WO2013018548A1
WO2013018548A1 PCT/JP2012/068267 JP2012068267W WO2013018548A1 WO 2013018548 A1 WO2013018548 A1 WO 2013018548A1 JP 2012068267 W JP2012068267 W JP 2012068267W WO 2013018548 A1 WO2013018548 A1 WO 2013018548A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
steering
failure
motor
unit
Prior art date
Application number
PCT/JP2012/068267
Other languages
English (en)
French (fr)
Inventor
西川明良
岡田浩一
中島明生
張瑩捷
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US14/234,703 priority Critical patent/US20140172236A1/en
Priority to CN201280037521.3A priority patent/CN103732478B/zh
Priority to EP12819871.0A priority patent/EP2738067B1/en
Publication of WO2013018548A1 publication Critical patent/WO2013018548A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering

Definitions

  • the present invention relates to a steer-by-wire type steering apparatus in which steering is performed by a steering wheel that is not mechanically connected to a steered shaft for steering, and has a redundant function in which both a mechanism system and a control system are made redundant.
  • the present invention relates to a control device for a steer-by-wire steering device.
  • a steer-by-wire type steering device that uses a toe angle adjustment motor as a sub motor, disconnects the main motor when the main motor fails, and uses the toe angle adjustment sub motor for steering as a means to eliminate such inconvenience Has been proposed (for example, Patent Document 2).
  • the steering motor fails, the steering function is necessary as the minimum control of vehicle driving when the vehicle is evacuated to a nearby safe place or traveled to a repair shop. It is not necessary for minimum control. Therefore, by using the toe angle adjusting motor for turning when the main motor fails, it is not necessary to provide a spare motor that is not always used, and a fail-safe function can be obtained at low cost.
  • Patent Document 2 is excellent in that a fail-safe function is obtained when the steering motor is abnormal, and the motor is not wasted.
  • a fail-safe function of a control device such as an ECU (electric control unit) has not been proposed, and redundancy cannot be maintained when the control device fails. Control redundancy can be obtained by multiplexing the control devices. However, if the control devices are simply multiplexed, the control device is wasted during normal operation and is difficult to employ.
  • An object of the present invention is to provide a redundant function steer that achieves both redundancy for ensuring redundancy against a failure of a main motor for steering and a failure of a control device and high functionality using a multiplexed portion in normal times. It is providing the control apparatus of a by-wire type steering device.
  • the outline of the present invention will be described using reference numerals in the drawings showing embodiments.
  • the control device for a steer-by-wire steering device with a redundant function is a control device 5 for controlling the steer-by-wire steering device 100, and the steer-by-wire steering device 100 is provided with tie rods 11 at both left and right ends.
  • the control device 5 includes a first control device 101 and a second control device 201 that communicate with each other.
  • the first control device 101 includes a basic control function unit 102 that receives the detection signal of the first steering angle sensor 2A and controls the reaction force actuator 4 and the sub motor 7, and the second control device 201. Includes a basic control function unit 202 that receives the detection signal of the second steering angle sensor 2B and controls the main motor 6.
  • Each of the first and second control devices 101 and 201 has mutual fault diagnosis units 103 and 203 that diagnose each other's faults.
  • the second control device 201 includes a main motor failure diagnosis unit 205 that diagnoses the failure of the main motor 6 and transmits the diagnosis result to the first control device 101.
  • the first control apparatus 101 receives a diagnosis result from the second control apparatus 201 that the main motor 6 has failed, or when the second control apparatus 201 has a failure in the mutual failure diagnosis unit 103.
  • the second control apparatus 201 has a failure in the mutual failure diagnosis unit 103.
  • it has an abnormal-time switching command unit 106 for switching the switching mechanism 17 to the abnormal-time switching mode.
  • the first and second control devices 101 and 201 communicate with each other, and the mutual fault diagnosis units 103 and 203 perform fault diagnosis on each other.
  • the second control device 201 diagnoses the failure of the main motor 6 by the main motor failure diagnosis unit 205.
  • the abnormal time switching command unit 106 provided in the first control device 101 receives a diagnosis result from the second control device 201 that the main motor 6 has failed, or in the mutual failure diagnosis unit 103.
  • the switching mechanism 17 is switched to the abnormal switching mode, and the sub motor 7 is steered.
  • the main motor 6 has failed, normal turning by the main motor 6 cannot be performed even when the second control device that controls the main motor 6 fails. Therefore, safe turning can be performed by using the sub motor 7 controlled by the first control device 101 in which no failure has occurred for turning.
  • the first control device 101 has a function of controlling the reaction force actuator 4 and the sub motor 7 as a basic function.
  • the second control device 201 has a function of controlling the main motor 6 as a basic function. Further, the diagnosis of the failure of the main motor 6 is performed by the second control device 201, and the diagnosis of the failure of the sub motor 7 is performed by the first control device 101. Furthermore, the first control device 101 and the second control device 201 have a mutual diagnosis function. As described above, the control system is divided into two systems, and the roles of each system are optimally shared.
  • the failure of the main motor 6 for steering and the redundancy for the failure of the second control device 201 that performs the control are provided.
  • Multiplexing for reservation is obtained.
  • high functionality such as toe angle control using the multiplexed portion and diagnosis of the first and second control devices 101 and 201 can be obtained in normal times. That is, it is possible to achieve both the multiplexing for ensuring redundancy and the enhancement of functionality using the multiplexed part in normal times.
  • first and second steering angle sensors 2A and 2B do not have to be completely independent of each other, and may be any sensor that has a function of independently detecting and outputting.
  • sensor targets such as encoders installed in the same sensor housing may be common to each other.
  • two sensors that are 90 ° apart from each other and output 90 ° out of phase so that the rotation direction can be detected with respect to a common encoder that rotates with the steering wheel 1. It may be.
  • the sensor targets of the first and second steering angle sensors 2A and 2B do not necessarily have to be mechanically coupled to the steering wheel 1, and may be any one that rotates in synchronization with the steering wheel 1.
  • the first steering angle sensor 2A may detect the operation amount of the steering reaction force actuator 4 and use the detection result as an output of the detection result of the steering angle of the steering wheel 1.
  • closed loop control using sensors is necessary.
  • the sensor for control as the first steering angle sensor 2A, 2 can be used without waste.
  • Two steering angle sensors 2A and 2B can be provided.
  • the abnormal-time switching command unit 106 switches the switching mechanism 17 to the abnormal-time switching mode when receiving a command from an external device 301 for the first and second control devices 101 and 201. It is good also as what has a function to make it.
  • the external device 301 is, for example, a device other than the first control device 101 and the second control device 201, a device such as a driver's seat input means (not shown), or the like. Thereby, it can switch to the steering by the submotor 7 corresponding to the abnormality of more forms.
  • the first control device 101 or the second control device 201 compares the outputs of the first and second steering angle sensors 2A and 2B to diagnose a failure of the second steering angle sensor 2B.
  • Sensor failure diagnosing units 107 and 207 and when the abnormal time switching command unit 106 receives a result of diagnosing that the second steering angle sensor 2B is in failure by the sensor failure diagnosing units 107 and 207, The switching mechanism 17 may be switched to the abnormal switching mode. Since the basic control function unit 202 controls the main motor 6 for turning by the detection signal of the second steering angle sensor 2B, the second control device 201 has a failure in the second steering angle sensor 2B. When this occurs, proper steering cannot be performed. In that case, by switching the switching mechanism 17 to the switching mode at the time of abnormality, the turning by the sub motor 7 can be performed, but it can be controlled using the detection signal of the first steering angle sensor 2A without abnormality, and the steering is correct. Is possible.
  • Measures may be taken as follows for the failure of the second steering angle sensor 2B.
  • the first control device 101 or the second control device 201 compares the outputs of the first and second steering angle sensors 2A and 2B to detect a failure of the second steering angle sensor 2B.
  • the first steering angle sensor has a sensor failure diagnosing unit 107, 207 for diagnosing, and when the sensor failure diagnosing unit 107, 207 receives a result of diagnosing that the second steering angle sensor 2B is faulty.
  • 2A a sensor output transfer unit 108 that communicates the output of 2A to the second control device 201.
  • the second control device 201 controls the main motor 6 by the basic control unit 202 at a second steering angle.
  • a use sensor switching unit 208 that uses the output of the first steering angle sensor 2A transferred from the sensor output transfer unit 108 may be provided. In this way, when the sensor failure is diagnosed and the second steering angle sensor 2B used for turning at a normal time fails, the steering angle sensor used by the second control device 201 is changed to the first steering angle sensor. By switching to 2A, the main motor 6 can steer even if a sensor failure occurs.
  • the second control device 201 compares the outputs of the first and second steering angle sensors 2A and 2B, and diagnoses the failure of the first steering angle sensor 2A. It is also possible to have a sensor abnormality notification unit 209 that notifies the vehicle interior notification means that the first steering angle sensor 2A by the sensor failure diagnosis units 107 and 207 has a failure. . Since the first steering angle sensor 2A is used for toe angle control, even if a failure occurs, the minimum steering necessary for driving is possible. Therefore, even if the control form is not particularly changed, it is an appropriate countermeasure to the sensor abnormality to notify the driver of the abnormality by the sensor abnormality notification unit 209.
  • the first control device 101 has a sub-motor failure diagnosis unit 105 for diagnosing the failure of the sub-motor 7, and the second control device 201 is a failure by the sub-motor failure diagnosis unit 105. It is also possible to have a sub-motor abnormality notifying unit 210 that receives the diagnosis result of the depression from the first control device 101 and notifies the notifying means 302 in the vehicle interior of the diagnosis result. Since the sub motor 7 is used for controlling the toe angle, even if a failure occurs, the minimum necessary steering in operation is possible. Therefore, even if the control form is not particularly changed, it is an appropriate countermeasure against the sub motor abnormality to notify the driver of the abnormality by the sub motor abnormality notification unit 210.
  • the second control device 201 notifies the control device abnormality notification in the vehicle interior notification means 302 of the result of the diagnosis of the failure of the first control device 101 by the mutual failure diagnosis unit 203.
  • the unit 211 may be included. Since the first control device 101 is a device that controls the reaction force actuator 4 and the sub motor 7 that is a motor for controlling the toe angle, if the second control device 201 is normal, a minimum safe operation is possible. Is possible. For this reason, when the first control device 101 is out of order, the abnormality of the first control device 101 can be notified to the driver by the control device abnormality notification unit 211 without particularly changing the control mode. Will be an appropriate response.
  • the first control device 101 has a reaction force actuator failure diagnosis unit 109 for diagnosing the failure of the reaction force actuator 4, and the diagnosis unit 109 diagnoses that there is a failure.
  • the reaction force abnormality notification unit 212 may be configured to notify the notification unit 302 in the vehicle interior.
  • the reaction force actuator 4 applies a steering reaction force to the steering wheel 1 to improve the steering feeling by the driver. Even if a failure occurs, the steering wheel 1 can be accurately steered. For this reason, when the reaction force actuator 4 is out of order, it is possible to appropriately notify the driver of the abnormality of the reaction force actuator by notifying the driver of the abnormality by the reaction force abnormality notification unit 212 without particularly changing the control mode. Become.
  • the switching mechanism 17 can be switched to a toe angle fixed switching mode in which the toe angle adjusting power transmission mechanism 30 is in a power transmission disabled state and only the steering by the main motor 6 is performed, and the first control
  • the unit 101 switches the switching mechanism 17 to the switching mode when the toe angle is fixed based on the sub-motor failure detection unit 105 that diagnoses the failure of the sub-motor 7 and the detection result that the sub-motor failure detection unit 105 detects the failure.
  • the toe angle fixing command unit 110 may be included.
  • the toe angle control is a control that improves the driving comfort, but the steering can be properly performed even when the toe angle is fixed.
  • the toe angle adjusting power transmission mechanism 30 is in a power transmission disabled state so that only the steering by the main motor 6 is performed. It will be a countermeasure.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. It is a side view of the rotation control mechanism of the steered shaft drive unit, and (A) and (B) show different states.
  • (A) is a side view of an example of the intermediate shaft of the steered shaft drive unit, and (B) is a front view of the same.
  • (A) is a side view of another example of the intermediate shaft of the steered shaft drive unit, and (B) is a front view of the same.
  • (A) is a side view of still another example of the intermediate shaft of the steered shaft drive unit, and (B) is a front view of the same.
  • (A) is a side view of still another example of the intermediate shaft of the steered shaft drive unit, and (B) is a front view of the same.
  • FIG. 10 is a block diagram of a control device for a steer-by-wire steering device that is Comparative Example 5. It is a block diagram of the control apparatus of the steer-by-wire type steering apparatus used as the comparative example 6.
  • FIG. 10 is a block diagram of a control device for a steer-by-wire steering device that is a comparative example 7;
  • FIG. 1 shows a schematic configuration of a steer-by-wire steering device 100 and its control device 5.
  • the steer-by-wire steering device 100 includes a steering wheel 1 that is steered by a driver, first and second steering angle sensors 2A and 2B, a steering reaction force actuator 4, a left and right steering wheels 13, a knuckle arm 12 and tie rods.
  • 11 includes a steered shaft 10 that is axially movable for turning, a steered shaft drive unit 14 that drives the steered shaft 10, and a steered angle sensor 8.
  • the steered shaft 10 has a split structure that can be expanded and contracted, and in addition to the steering by the entire axial movement, the toe angle can be adjusted by expansion and contraction.
  • the steering wheel 1 is not mechanically connected to the turning shaft 10 for turning.
  • the steering reaction force actuator 4 is a drive source that applies reaction force torque to the steering wheel 1 and includes a motor and the like.
  • the first and second steering angle sensors 2 ⁇ / b> A and 2 ⁇ / b> B are sensors that detect the steering angle of the steering wheel 1.
  • the first steering angle sensor 2A is a sensor that detects an operation amount such as a rotation angle or generated torque of the steering reaction force actuator 4, and this sensor is used for the sake of convenience of control for obtaining redundancy in this embodiment.
  • the sensor is also used as a sensor for indirectly detecting the steering angle of the wheel 1.
  • the second steering angle sensor 2B directly detects the steering angle of the steering wheel 1 without using actuators.
  • the first steering angle sensor 2 ⁇ / b> A may be provided exclusively as a sensor that directly detects the steering angle of the steering wheel 1, separately from the sensor that detects the operation amount of the steering reaction force actuator 4.
  • a sensor for directly detecting the second steering angle sensor 2B or the like a sensor that electrically detects a rotation angle, such as a resolver, an optical encoder, or a magnetic encoder, is used.
  • the steered shaft drive unit 14 includes a steered shaft 10, a steered mechanism 15 that steers the steered wheels 13 (FIG. 1), a toe angle adjusting mechanism 16 that adjusts the toe angle of the steered wheels 13, A switching mechanism 17 for switching the power transmission mechanisms 18 and 30 of the rudder mechanism 15 and the toe angle adjusting mechanism 16 is provided.
  • the turning mechanism 15 includes a main motor 6 that is a turning motor and a turning power transmission mechanism 18 that transmits the rotation of the main motor 6 to the turning shaft 10.
  • the toe angle adjusting mechanism 16 includes a sub motor 7 that is a motor for adjusting a toe angle, and a toe angle adjusting power transmission mechanism 30 that transmits the rotation of the sub motor 7 to the steered shaft 10.
  • the switching mechanism 17 changes from a normal switching mode in which the main motor 6 and the sub motor 7 perform the steering and the toe angle adjustment via the steering power transmission mechanism 18 and the toe angle adjustment mechanism 16, respectively.
  • the main motor 6 can be disconnected, and the changeover mode can be switched to an abnormal time switching mode in which the rotation of the sub motor 7 is transmitted to enable turning.
  • the switching mechanism 17 can be switched to a toe angle fixed switching mode in which the toe angle adjusting power transmission mechanism 30 is in a power transmission disabled state and only the steering by the main motor 6 is performed.
  • the switching mechanism 17 is configured by a clutch mechanism or a combination thereof.
  • the control device 5 is a device that is provided as a part of the main ECU (electric control unit) 3 that controls the entire vehicle or is provided separately from the main ECU 3 and performs control related to turning and toe angle adjustment.
  • the control device 5 includes a first control device 101 and a second control device 201 that communicate with each other.
  • These first and second control devices 101 and 201 are constituted by a microcomputer and an electronic circuit including a control program thereof.
  • the first control device 101 and the second control device 201 are configured by hardware resources that are independent from each other, that is, independent from each other, that is, each processing function can be obtained by a separate electronic component. It may be arranged in a housing (not shown) or provided on a common circuit board.
  • control device 5 will be described together with FIG. 2 and will be compared with Comparative Examples 1 to 7 shown in FIGS.
  • a specific configuration example of the steered power transmission mechanism 18, the toe angle adjusting power transmission mechanism 30, and the switching mechanism 17 will be described later together with FIGS. 3 (A), (B) to FIGS. 13 (A), (B). explain.
  • the first control device 101 and the second control device 201 are shown as blocks in the center of the figure, and the components in the block are shown on the left and right sides of the figure, respectively.
  • the first control device 101 has a basic function of receiving the detection signal of the first steering angle sensor 2A and drivingly controlling the reaction force actuator 4 and the toe angle adjusting sub motor 7, and achieves this basic function.
  • a basic control function unit 102 The basic control function unit 102 performs toe angle control during normal running using a rotation angle detection signal from the rotation sensor 115 of the sub motor 7.
  • the second control device 201 receives the detection signal of the second steering angle sensor 2B, and controls the main motor 6 for turning, and the basic control function is a means for achieving this basic function.
  • Part 202 The basic control function unit 202 performs steering control during normal traveling using a rotation angle detection signal from the rotation sensor 215 of the main motor 6.
  • the first and second control devices 101 and 201 have mutual fault diagnosis units 103 and 203 for diagnosing mutual faults, respectively.
  • the first control device 101 includes a sub motor failure diagnosis unit 105 that diagnoses the failure of the sub motor 7, and the second control device 201 diagnoses the failure of the main motor 6 and performs the first control device 101.
  • a main motor failure diagnosis unit 205 for transmitting a diagnosis result to The failure of the motors 6 and 7 is, for example, fixing of the rotor.
  • Each of the first and second control devices 101 and 201 includes sensor failure diagnosis units 107 and 207 that detect the failure of the first turning angle sensor 2A and the second turning angle sensor 2B, respectively. Have.
  • the first control device 101 further includes a reaction force actuator failure diagnosis unit 109 that diagnoses the failure of the reaction force actuator 4.
  • the first control device 101 has an abnormal time switching command unit 106, and the abnormal time switching command unit 106 performs satisfaction determination of the following conditions 1 to 4, and when any of the conditions is satisfied, the switching mechanism 17 is switched to the abnormal time switching mode.
  • Condition 1 is when a diagnosis result indicating that the main motor 6 has failed is received from the main motor failure diagnosis unit 205 of the second control device 201.
  • Condition 2 is when the second control device 201 is diagnosed as having a failure by the mutual failure diagnosis unit 103 of the first control device 101.
  • Condition 3 is when a command for switching to the switching mode at the time of abnormality is received from the external device 301.
  • An external device 301 is an external device for the first and second control devices 101 and 201.
  • Condition 4 is when a result of diagnosing that the second steering angle sensor 2B is in failure is received from the sensor failure diagnosis unit 207 of the second control device 201. In the case of condition 4, the control by the next sensor output transfer unit 108 and the use sensor switching unit 208 may be performed without switching to the abnormal time switching mode.
  • the sensor output transfer unit 108 is provided in the first control device 101, and the sensor failure diagnosis unit 207 of the second control device 201 indicates a result of diagnosing that the second steering angle sensor 2B is faulty.
  • the output of the first steering angle sensor 2A is communicated to the second control device 201.
  • the use sensor switching unit 208 is provided in the second control device 201, and controls the main motor 6 by the basic control unit 202 instead of using the output of the second steering angle sensor 2B. This is performed using the output of the first steering angle sensor 2A transferred from. It is selectively determined whether to provide the sensor output transfer unit 108 and the use sensor switching unit 208 or to switch to the abnormal switching mode under the fourth condition by the abnormal switching command unit 106.
  • the first control device 101 includes a toe angle fixing command unit 110 in addition to the above-described units, and switches the switching mechanism 17 to the toe angle based on a detection result of the sub motor failure detection unit 105 that the sub motor 7 has failed. Switch to fixed switching mode.
  • the second control device 201 includes various notification units, that is, a sensor abnormality notification unit 209, a sub motor abnormality notification unit 210, a control device abnormality notification unit 211, and a reaction force abnormality notification unit 212.
  • These notification units Nos. 209 to 212 cause the notification means 302 in the driver's seat in the vehicle or the like to perform the predetermined notification in the case of a specified minor abnormality, without particularly performing control related to the traveling of the vehicle.
  • the minor abnormality is an abnormality within a range in which safe traveling of the vehicle can be maintained.
  • the notification unit 302 is a unit that generates sound such as a display device 303 such as a liquid crystal display device or a speaker 304.
  • Each of the notification units 209 to 212 may be provided in the first control device 101.
  • the sensor abnormality notification unit 209 is diagnosed by the sensor failure diagnosis unit 107 of the first control device 101 that the first steering angle sensor 2A is in failure, and the diagnosis result is sent to the second control device 201.
  • the notification means 302 is notified that the first steering angle sensor 2A is out of order.
  • the sub motor abnormality notification unit 210 is diagnosed that the sub motor 7 has failed by the sub motor failure diagnosis unit 105 of the first control device 101, and the diagnosis result is sent from the first control device 101 to the second control device 201.
  • the notifying means 302 is notified of the diagnosis result.
  • the control device abnormality notification unit 211 When the mutual failure diagnosis unit 103 of the first control device 101 diagnoses that the first control device 101 is faulty, the control device abnormality notification unit 211 notifies the notification unit 302 of the diagnosis result.
  • the control device abnormality notification unit 211 may be provided in the first control device 101 instead of being provided in the second control device 201.
  • the first and second control devices 101 and 201 communicate with each other, share various information such as the turning angle, and perform mutual failure diagnosis by the mutual failure diagnosis units 103 and 203.
  • Each of the control devices 101 and 201 includes a sub-motor failure diagnosis unit 105, a main motor failure diagnosis unit 205, a sensor failure diagnosis unit 107 and 207, a reaction force actuator failure diagnosis unit 109, and the like. Detection of failures such as 6, 7 etc. is performed. Further, by communication between the first and second control devices 101 and 201, the outputs of the first and 23rd steering angle sensors 2A and 2B are always compared to detect a sensor failure.
  • the abnormal-time switching command unit 106 switches the switching mechanism 17 to the abnormal-time switching mode, that is, disconnects the main motor 6 from the steered power transmission mechanism 18, and the sub motor It is made to switch to the fail safe mode which is a form which transmits rotation of 7 and enables steering.
  • Condition A When a diagnosis result indicating that the main motor 6 has failed is received from the main motor failure diagnosis unit 205 of the second control device 201.
  • Condition B When the second control device 201 is diagnosed as having a failure by the mutual failure diagnosis unit 103 of the first control device 101.
  • Condition C When a command for switching to the switching mode at the time of abnormality is received from the external device 301.
  • condition D the switching mechanism 17 may be set to the abnormal switching mode by the abnormal switching command unit 106 or other control may be adopted.
  • Condition D When a result of diagnosing that the second steering angle sensor 2B is in failure is received from the sensor failure diagnosis unit 207 of the second control device 201.
  • the first control device 101 receives the result of diagnosis that the second steering angle sensor 2B is in failure from the sensor failure diagnosis unit 207 of the second control device 201.
  • the use sensor switching unit 208 communicates the output of the first steering angle sensor 2A to the second control device 201
  • the use sensor switching unit 208 of the second control device 201 performs the main control by the basic control function unit 202.
  • the motor 6 is controlled using the output of the first steering angle sensor 2 ⁇ / b> A transferred from the sensor output transfer unit 108.
  • the notification units 209 to 212 notify the driver of the abnormality through the notification unit 302, but do not shift to the abnormal switching mode (fail safe mode).
  • the second controller 201 detects an abnormality in the first steering angle sensor 2A by comparing the outputs of the steering angle sensors 2A and 2B.
  • the first control device 101 detects a failure of the sub motor 7 and communicates it to the second control device 201 by communication.
  • the second control device 201 diagnoses the first control device 101 as a failure by the mutual failure diagnosis.
  • the first control device 101 detects a failure (torque loss or the like) of the reaction force actuator 4.
  • the control device 5 two units, the first control device 101 and the second control device 201, are provided.
  • the first control device 101 has the reaction force actuator 4 and the sub motor as basic functions. 7 and the second control device 201 has a function of controlling the main motor 6 as a basic function. Further, the diagnosis of the failure of the main motor 6 is performed by the second control device 201, and the diagnosis of the failure of the sub motor 7 is performed by the first control device 101. Furthermore, the first control device 101 and the second control device 201 have a mutual diagnosis function.
  • the control system is divided into two systems, and the roles of each system are optimally shared. Therefore, the failure of the main motor 6 for steering and the redundancy for the failure of the second control device 201 that performs the control are provided. Multiplexing for reservation is obtained. This redundancy enables safe steering when the vehicle is evacuated to a nearby safe place or traveled to a repair shop when a failure occurs. In addition, high functionality such as toe angle control and diagnosis of the first and second control devices using the multiplexed portion can be obtained in normal times. That is, it is possible to achieve both the multiplexing for ensuring redundancy and the enhancement of functionality using the multiplexed part in normal times.
  • the advantage of this embodiment is as follows. ⁇ Even if one of the elements breaks down, it is possible to avoid failure of the steering function that causes a serious accident. -The control system is divided into two systems, and the role of each system is optimally shared, resulting in a highly functional configuration. -The number of components and the communication path are minimized.
  • the first control device 101 for driving the sub motor is provided with the abnormal time switching command unit 106 for switching the switching mechanism 17, and therefore the second control device for controlling the main motor 6. Even if an abnormality occurs in 201, switching can be performed.
  • the first control device 101 for driving the sub motor can be steered by the main motor 6 even if an abnormality occurs.
  • an abnormality of the first control device 101 is detected by the mutual diagnosis unit 203 or the like, it is preferable that the first control device 101 is stopped or its output is cut off.
  • the second control device 101 that controls the main motor 6 is provided with a control function of the reaction force actuator 4.
  • a function that is functionally equivalent to that of the embodiment can be obtained.
  • the first control device 101 that controls only the sub-motor 7 that is less frequently used and the second control device 201 that controls the main motor 6 that is always driven and the reaction force actuator 4 share the function. There is a bias, and the calculation amount is concentrated in the second control device 201.
  • the first control device 101 that controls the sub-motor 7 that is less frequently used is provided with the control function of the reaction force actuator 4, and thus the first control device 101 and the second control device. With 201, the balance of computational complexity is obtained.
  • both the first and second control devices 101 and 201 have a function of switching the switching mechanism 17.
  • an abnormality has occurred in the main motor 6 or the second control device 201, and both the control devices 101 and 201 have mutual communication paths.
  • the communication / control path 401 from the second control device 201 to the switching mechanism 17 is unnecessary and is useless. In the above embodiment, such a useless communication / control path 401 is not provided.
  • Comparative Example 5 shown in FIG. 18 two control devices 5B having all functions relating to turning and toe angle adjustment are provided for main and sub use, and the sub control device 5B is provided when the main control device 5B is abnormal.
  • the control is switched to.
  • redundancy can be ensured.
  • the wiring is complicated and the control device 5 becomes large.
  • the control system is divided into two systems and the roles are appropriately shared, so that the number of components and the number of communication paths can be minimized.
  • a control device 19 includes a first control device 101 for controlling the sub motor 7 and a second control device 201 for controlling the main motor 6, and a third control device for controlling the reaction force actuator 4.
  • a control device 501 is provided. In this case, the amount of communication between the control devices 101, 201, and 501 increases, and there are few advantages due to the increase in control devices.
  • Comparative Example 7 shown in FIG. 20 the output of the first steering angle sensor 2A is connected to both the first and second control devices 101 and 201, and the output of the second steering angle sensor 2B is also the first. , Connected to both of the second control devices 101 and 201.
  • this comparative example 7 higher redundancy than in the embodiment can be obtained.
  • the above embodiment has a highly functional configuration by dividing the control system into two systems to optimally share the roles of each system, in order to ensure redundancy. Multiple functions and normal functions can be achieved at the same time, and even if one of the elements fails, the failure of the steering function that causes a serious accident can be avoided. It is possible to have advantages such as a configuration in which the communication path is minimized.
  • the steered shaft 10 is divided into two in the axial direction, a non-rotating divided shaft 10A and a rotating divided shaft 10B, and these divided shafts 10A and 10B are coupled to each other by a screw coupling portion 10C concentric with the shaft center.
  • the left and right tie rods 11 are connected to the distal end portions of the non-rotating split shaft 10A and the rotating split shaft 10B that protrude from the housing 19 of the steered shaft drive unit 14, respectively.
  • the screw coupling portion 10C includes a male screw 81 provided on the non-rotating divided shaft 10A and a female screw 82 provided on the non-rotating divided shaft 10B.
  • the screw type is preferably a square screw or a trapezoidal screw.
  • the coupling between the non-rotating divided shaft 10A and the rotating divided shaft 10B is firm.
  • the male screw 81 is provided at the tip of the fitting shaft portion 83 protruding from the ball screw shaft portion 10a of the non-rotating divided shaft 10A toward the rotating divided shaft 10B.
  • the female screw portion 82 is formed on the inner periphery of the cylindrical portion 84 of the rotary division shaft 10B.
  • the rotating split shaft 10B is provided with an extended cylindrical portion 85 extending from the cylindrical portion 84 to the non-rotating split shaft 10A.
  • the fitting shaft portion 83 is fitted into the inner diameter hole 86 of the extended cylindrical portion 85. Match.
  • the inner diameter hole 86 is concentric with the axis center of the steered shaft 10.
  • the screw coupling portion 10C is provided with a retaining means 88 for preventing the fitting shaft portion 83 from coming off from the inner diameter hole 86.
  • the retaining means 88 includes a circlip 90 that fits in an annular outer circumferential groove 89 formed on the outer periphery of the fitting shaft portion 83, and an annular inner circumferential groove 91 formed in the inner diameter surface of the inner diameter hole 86.
  • the stepped surface 91a on the opposite side of the non-rotating divided shaft 10A of the inner peripheral groove 91 is tapered so that the groove depth gradually decreases toward the outside.
  • the circlip 90 and the inner circumferential groove 91 are displaced in the axial direction, and the circlip 90 is pressed by the inner diameter surface of the inner diameter hole 86 to be reduced in diameter. ing.
  • the screwing length of the screw coupling portion 10C is adjusted.
  • the circlip 90 and the inner circumferential groove 91 are in the same position in the axial direction, the circlip 90 expands in diameter by its own elastic repulsive force and engages with the inner circumferential groove 91.
  • the operation in the direction of shortening the screwing length of the screw coupling portion 10 ⁇ / b> C is restricted, and the fitting shaft portion 83 cannot be removed from the inner diameter hole 86. Since the step surface 91a of the inner circumferential groove 91 has a tapered shape as described above, the operation in the direction of shortening the screwing length of the screw coupling portion 10C is not restricted.
  • the non-rotating divided shaft 10 ⁇ / b> A can be moved forward and backward in the axial direction with respect to the housing 19 of the steered shaft driving unit 14 and cannot be rotated around the shaft by the rotation preventing means 93.
  • the non-rotating means 93 is fixed to the non-concentric circular portion 10b, which is a portion continuing to the outside of the ball screw shaft portion 10a in the non-rotating divided shaft 10A, and the housing 19, and
  • the part 10b is configured by a sliding bearing 94 that is slidably fitted in the axial direction.
  • the shape of the cross section perpendicular to the axial direction of the non-concentric circular portion 10b is a shape whose outer shape is different from the concentric circle having the axial center.
  • the non-concentric circular portion 10b has a cross-sectional shape obtained by cutting off a part of the circumference with a straight line, but may have another cross-sectional shape.
  • the anti-rotation means 93 having this configuration is simple in configuration and can reliably prevent the non-rotating divided shaft 10A of the steered shaft 10 from rotating.
  • the entire steered shaft 10 is supported by the housing 19 as follows. That is, the non-rotating split shaft 10A is supported by the double-row angular ball bearing 29a and the deep groove ball bearing 29b via a ball nut 26, which will be described later, and is also supported by the slide bearing 94. . Further, the rotary split shaft 10B is supported by a rolling bearing 44 via a spline nut 40 described later that is spline-fitted to the outer periphery thereof. Further, the outer diameter surface of the ball screw shaft portion 10 a is supported by the slide bearing 95. The axial position of the slide bearing 95 is between the screw coupling portion 10 ⁇ / b> C and the ball nut 26.
  • the steered mechanism 15 steers the steered wheels 13 by moving the non-rotating split shaft 10A and the rotating split shaft 10B of the steered shaft 10 together in the axial direction.
  • the turning mechanism 15 includes a main motor 6 and a turning power transmission mechanism 18 that moves the turning shaft 10 in the axial direction by the rotation of the main motor 6.
  • the main motor 6 is attached to the housing 19 of the steered shaft drive unit 14 in parallel with the steered shaft 10.
  • the main motor 6 is a hollow motor and has a cylindrical hollow motor shaft 20.
  • the hollow motor shaft 20 is rotatably supported on the housing 19 by a pair of bearings 23.
  • a steering intermediate shaft 21 provided in parallel with the steering shaft 10 is supported via a needle roller bearing 22 so as to be rotatable and movable in the axial direction.
  • the steering intermediate shaft 21 and the toe angle adjusting intermediate shaft 35 together with the reference position shown in FIGS. 3A and 3B, and the reference positions shown in FIGS. The position is switched in the axial direction to each position of the sub motor failure position shown in B) and the main motor failure position shown in FIGS.
  • the turning power transmission mechanism 18 can transmit the rotation to the hollow motor shaft 20 of the main motor 6, the turning intermediate shaft 21, and the outer periphery of the turning intermediate shaft 21 via a key (not shown).
  • An input gear 25 meshed with the output gear 24 via the counter gear 24a, and a ball screw shaft portion 10a of the non-rotating split shaft 10A of the steered shaft 10 fixed to the input gear 25.
  • a ball nut 26 to be screwed onto the nut.
  • the input gear 24 is supported by the housing 19 via a rolling bearing 28.
  • the ball nut 26 is rotatably supported by the housing 19 by double row angular ball bearings 29a and deep groove ball bearings 29b arranged on both sides in the axial direction.
  • double row angular ball bearing 29 a and the deep groove ball bearing 29 b are combined to support the ball nut 26, both an axial load and a moment load acting on the ball nut 26 can be received.
  • the turning intermediate shaft 21 is fitted to the hollow motor shaft 20 of the main motor 6 via the needle roller bearing 22 and is fitted to the output gear 24 via the key. Movement in the axial direction is allowed.
  • Spline teeth 20a made of inner teeth are formed on the inner periphery of the hollow motor shaft 20, and spline teeth 21a made of outer teeth are formed on the outer periphery of the turning intermediate shaft 21, respectively.
  • these spline teeth 20a and 21a mesh with each other to form a spline fitting portion 27, so that the hollow motor shaft 20 and the turning intermediate shaft 21 can transmit rotation. It is connected.
  • the spline teeth 20a of the hollow motor shaft 20 are long in the axial direction, and the spline teeth 21a of the intermediate shaft 21 for steering can mesh with any axial position.
  • the toe angle adjusting mechanism 16 changes the distance between the left and right tie rods by rotating the rotary split shaft 10B relative to the non-rotating split shaft 10A and adjusting the screwing length of the screw coupling portion 10C. Change the toe angle of the wheel 13.
  • the toe angle adjusting mechanism 16 includes a sub motor 7 and a toe angle adjusting power transmission mechanism 30 that adjusts the toe angle by the rotation of the sub motor 7.
  • the sub motor 7 is attached to the housing 19 of the steered shaft drive unit 14 concentrically with the steered shaft 10.
  • the sub motor 7 is also a hollow motor, and the cylindrical hollow motor shaft 31 is provided on the outer periphery of the screw coupling portion 10 ⁇ / b> C in the steered shaft 10.
  • the toe angle adjusting power transmission mechanism 30 includes an output gear 32 fixed to the hollow motor shaft 31, a first intermediate gear 33 that meshes with the output gear 32 via a counter gear 32a, and the first intermediate gear 33 and a spline.
  • the toe angle adjusting intermediate shaft 35 meshed with the fitting portion 34, the second intermediate gear 37 meshed with the toe angle adjusting intermediate shaft 35 and the spline fitting portion 36, the second intermediate gear 37 and the counter gear 37a.
  • the input gear 38 meshes with the input gear 38 and the spline nut 40 fixed to the input gear 38.
  • the rotation division shaft 10B of the steered shaft 10 is a spline shaft having tooth grooves formed on the outer periphery, and the spline nut 40 is spline-fitted to the rotation division shaft 10B.
  • the rotary split shaft 10B and the spline nut 40 may be in sliding contact with each other, or may be in rolling contact with each other via a ball (not shown). In any case, rotation can be satisfactorily transmitted from the spline nut 40 to the rotary split shaft 10B.
  • the first intermediate gear 33, the second intermediate gear 37, and the toe angle adjusting intermediate shaft 35 are connected to the spline teeth 33a, 37a formed by internal teeth formed on the intermediate gears 33, 37 and the toe angle adjusting intermediate shaft 35, respectively.
  • the spline fitting parts 34 and 36 are comprised by meshing with the spline teeth 35a and 35b which consist of the formed external tooth.
  • the spline teeth 35b of the toe angle adjusting intermediate shaft 35 are long in the axial direction, and the spline teeth 37a of the second intermediate gear 37 can mesh with any axial direction portion.
  • the hollow motor shaft 31 is provided via a rolling bearing 41, the first intermediate gear 33 is provided via a rolling bearing 42, the second intermediate gear 37 is provided via a rolling bearing 43, and the spline nut 40 is provided via a rolling bearing 44. It is supported by the housing 19. Further, a rolling bearing 45 is interposed between the first intermediate gear 33 and the second intermediate gear 37, and both the gears 33 and 37 are rotatable with respect to each other. As described above, since the toe angle adjusting intermediate shaft 35 is engaged with the second intermediate gear 37 by the spline fitting portion 36, movement in the axial direction is allowed.
  • the steering intermediate shaft 21 and the toe angle adjusting intermediate shaft 35 are coaxially arranged adjacent to each other, and a thrust bearing 46 is interposed between the shaft ends of the intermediate shafts 21 and 35 facing each other. Thereby, both the intermediate shafts 21 and 35 can be rotated relative to each other.
  • the rotation output of the sub motor 7 is the hollow motor shaft 31, the output gear 32, the counter gear 32a, the first intermediate gear 33, the toe. It is transmitted to the spline nut 40 through the angle adjusting intermediate shaft 35, the second intermediate gear 37, the counter gear 37a, and the input gear 38, and the rotation division shaft 10B of the steered shaft 10 is rotated by the rotation of the spline nut 40.
  • the rotation division shaft 10B By rotating the rotation division shaft 10B with respect to the non-rotation division shaft 10A, the screwing length of the screw coupling portion 10C is adjusted and the turning shaft 10 is expanded and contracted.
  • the distance between the left and right tie rods is changed to change the toe angle of the steered wheels 13 (FIG. 1).
  • the turning power transmission mechanism 18 and the toe angle adjustment power transmission mechanism 30 are controlled by the steering control means 5a so that the turning angles of the left and right turning wheels 13 coincide with the target value. Are operated in cooperation with each other.
  • the switching mechanism 17 is for switching the power transmission system of the steered power transmission mechanism 18 and the toe angle adjusting power transmission mechanism 30 when the main motor 6 fails and when the sub motor 7 fails.
  • the switching mechanism 17 includes a steering intermediate shaft 21 and a toe angle adjusting intermediate shaft 35, a linear motion actuator 47 that moves the intermediate shafts 21 and 35 together in the axial direction, and both the intermediate shafts 21 and 35. Transmission of the transmission connecting portions of the pushing power transmission mechanism 18 and the toe angle adjusting power transmission mechanism 30 by the movement of the intermediate shafts 21 and 35 by the pressing mechanism 48 that applies a pressing force so as to be maintained in contact with each other.
  • a transmission engagement / disengagement mechanism 49 is provided.
  • the linear motion actuator 47 includes a spring member 51 and a spring engagement / disengagement mechanism 52. Further, the spring engagement / disengagement mechanism 52 includes a linear / rotational motion conversion mechanism 53 that converts linear motion of the spring member 51 into rotational motion, and a rotation restriction mechanism 54 that regulates the rotational motion obtained by the linear / rotational motion conversion mechanism 53. And become.
  • the spring member 51 is a compression coil spring, and the support member 55 is urged to the left in FIGS. 3 (A), 3 (B) to 5 (A), 5 (B). That is, the end of the spring member 51 on the side in contact with the support member 55 linearly moves in the left-right direction.
  • the support members 55 are provided adjacent to each other on the same axis as the steering intermediate shaft 21.
  • a thrust bearing 56 is interposed between the support member 55 and the steering intermediate shaft 21, and a thrust roller bearing 57 is interposed between the support member 55 and the spring member 51, and the support member 55 is rotatable about the central axis.
  • the linear / rotational motion conversion mechanism 53 is a ball screw mechanism, and includes a ball screw shaft 58 integrated with the support member 55 and a ball nut 59 screwed to the ball screw shaft 58.
  • the linear / rotational motion converting mechanism 53 may have a configuration other than the ball screw mechanism, and may be, for example, a combination of a rack and a pinion.
  • the rotation restricting mechanism 54 has a protrusion 60 provided on a ball screw shaft 58 that is a rotation shaft, and the ball screw shaft 58 is rotated by being caught by the protrusion 60. It comprises a lever 61 that plays a role of stopping, and a rotation restricting drive source 62 that operates the lever 61.
  • the protrusion 60 is a plate-like member in which a part of the outer periphery becomes a protrusion 60a that protrudes to the outer diameter side than the others, and a step surface 60b that the lever 61 hits on one end in the circumferential direction of the protrusion 60a. Is formed.
  • the protrusion 60 a of the protrusion 60 is a protrusion on which the lever 61 is caught.
  • the lever 61 is rotatably provided on a rotation center shaft 61 a parallel to the ball screw shaft 58, and has a pair of hook portions 61 b and 61 c that are hooked on the protrusion portion 60 a of the protrusion 60.
  • the rotation restricting drive source 62 is composed of a direct acting actuator, for example, a linear solenoid.
  • the rotation restricting drive source 62 includes an advance / retreat rod 62 a that moves forward and backward in one direction (vertical direction), and the advance / retreat rod 62 a is connected to the lever 61 via a connection link 63.
  • FIG. 8A shows a state of the rotation restricting mechanism 54 when the steered shaft driving unit 14 is in a normal state.
  • one catching portion 61b of the lever 61 is hooked on the projection 60a of the projection 60, thereby restricting the rotation of the projection 60 and the ball screw shaft 58 integral therewith. Therefore, the ball screw shaft 58 cannot move in the axial direction due to the action of the linear / rotational motion converting mechanism 53 including the ball screw mechanism, and the spring member 51 (FIG. 3A) is supported by the support member 55 (FIG. 3A). ) Is restricted. That is, the spring member 51 is held in a compressed state, and is in an unbiased state in which it is impossible to bias both the intermediate shafts 21 and 35 (FIGS. 3A and 3B) in the axial direction.
  • the spring engagement / disengagement mechanism 52 can also be described as follows when viewed from the operational aspect. That is, the spring engagement / disengagement mechanism 52 is disposed within the linear motion range of the spring member 51 or within the motion range of the ball screw shaft 58 that is a member that linearly moves together with the spring member 51, and the obstacle that prevents the linear motion,
  • the obstacle removing mechanism B opens the spring member 51 from the compressed state by removing the obstacle.
  • the obstacle is a lever 61 that is caught by a protrusion 60 attached to the ball screw shaft 58 and prevents the linear motion of the ball screw shaft 58, and the obstacle removing mechanism B is within the movement range of the ball screw shaft 58.
  • This is a mechanism that combines a rotation restricting drive source 62 and a connecting link 63 that act to remove the lever 61 as a protruding obstacle.
  • the pressing mechanism 48 is adjacent to the toe angle adjusting intermediate shaft 35 and is used for both turning and toe angle adjusting.
  • a pressing shaft 64 disposed coaxially with the shafts 21 and 35 and a coil spring 65 that elastically biases the pressing shaft 64 toward the side pressing the toe angle adjusting intermediate shaft 35.
  • the pressing shaft 64 and the coil spring 65 are accommodated in a pressing mechanism accommodating portion 19 a that is a part of the housing 19.
  • a thrust bearing 66 is disposed between the opposite ends of the pressing shaft 64 and the toe angle adjusting intermediate shaft 35, so that the toe angle adjusting intermediate shaft 35 is rotatable with respect to the pressing shaft 64. ing.
  • the transmission engagement / disengagement mechanism 49 includes first to third transmission engagement / disengagement mechanisms 71 to 73.
  • the first transmission engagement / disengagement mechanism 71 includes the hollow motor shaft 20 of the main motor 6, the turning intermediate shaft 21, and the first intermediate gear 33 which is a toe angle adjusting drive side member.
  • the spline of the hollow motor shaft 20 is used.
  • the tooth 20a and the spline teeth 21a of the turning intermediate shaft 21 mesh with each other to form a spline fitting portion 27, whereby the hollow motor shaft 20 and the turning intermediate shaft 21 are coupled.
  • the spline teeth 21a of the steering intermediate shaft 21 are disengaged from the spline teeth 20a of the hollow motor shaft 20, and are used for steering.
  • the spline teeth 21 a of the intermediate shaft 21 are engaged with the spline teeth 33 a of the first intermediate gear 33 to form the spline fitting portion 74, whereby the turning intermediate shaft 21 is coupled to the first intermediate gear 33.
  • the second transmission engagement / disengagement mechanism 72 includes a steering intermediate shaft 21, a first intermediate gear 33 that is a drive side member for toe angle adjustment, and an intermediate shaft 35 for toe angle adjustment.
  • the intermediate shafts 21 and 35 are in the reference positions shown in FIGS. 3A and 3B, the spline teeth 33a of the first intermediate gear 33 and the spline teeth 35a of the intermediate shaft 35 for toe angle adjustment are engaged with each other.
  • the fitting portion 34 By configuring the fitting portion 34, the first intermediate gear 33 and the toe angle adjusting intermediate shaft 35 are coupled.
  • both the intermediate shafts 21 and 35 are in the position at the time of sub-motor failure in FIGS. 4 (A) and 4 (B) and at the position at the time of failure of the main motor in FIGS. 5 (A) and 5 (B)
  • the engagement of the fitting portion 34 is released, and the first intermediate gear 33 and the toe angle adjusting intermediate shaft 35 are disconnected.
  • the third transmission engagement / disengagement mechanism 73 includes a toe angle adjusting intermediate shaft 35, a second intermediate gear 37 that is a toe angle adjusting driven member, and the housing 19.
  • Spline teeth 75 a made of internal teeth are formed at the proximal end of the pressing mechanism housing portion 19 a of the housing 19.
  • the spline fitting portion 75 is configured by the spline teeth 35 b of the toe angle adjusting intermediate shaft 35 and the housing 19 spline teeth 75 a meshing with each other.
  • the toe angle adjusting intermediate shaft 35 is coupled to the housing 19 and its rotation is restricted.
  • the toe angle adjusting intermediate shaft 35 is disengaged from the first intermediate gear 33 in the process in which both the intermediate shafts 21, 35 move in the axial direction from the reference position to the main motor failure position. Prior to this, the positional relationship between the members is set such that the toe angle adjusting intermediate shaft 35 is coupled to the housing 19.
  • the spline teeth 21a of the steering intermediate shaft 21 and the spline teeth 35a, 35b of the toe angle adjusting intermediate shaft 35 are provided with normal splines shown in FIG.
  • the shape of the tooth tip is not made flat like the spline tooth 80a in the shaft 80, and for example, as shown in FIGS. 10 (A), (B) or FIGS. 11 (A), (B). It is desirable to have an acute angle.
  • the shape of the tooth tip of the spline teeth 21a, 35ab, 35b has no tooth tip protrusion. It is desirable to have a taper shape.
  • the spline teeth are formed at the tip of the steered intermediate shaft 21 on the side facing the toe angle adjusting intermediate shaft 35.
  • the outer diameter of the protrusion 76 is set to be equal to or smaller than the root radius of the spline teeth 21a. If such a protrusion 76 is provided at the tip of the steering intermediate shaft 21, the position of the steering intermediate shaft 21 and the toe angle adjusting intermediate shaft 35 is switched from the reference position to the main motor failure position.
  • the spline teeth 35a of the toe angle adjusting intermediate shaft 35 are first disengaged from the spline teeth 33a of the first intermediate gear 33 by the length of the protruding portion 76 in the axial direction, and thereafter the spline teeth of the intermediate shaft 21 for turning. 21 a meshes with the spline teeth 33 a of the first intermediate gear 33. That is, after the power coupling between the sub motor 7 and the toe angle adjusting intermediate shaft 35 is released, the sub motor 7 and the steering intermediate shaft 21 are coupled dynamically.
  • the steered shaft drive unit 14 includes FIGS. 11 (A), 11 (B) or 13 (A), (B).
  • the intermediate shaft 21 for steering having a shaft end shape shown in FIG.
  • the operation of the steered shaft driving unit 14 of the steer-by-wire steering device will be described.
  • the rotation of the hollow motor shaft 20 of the main motor 6 is rotated by the ball nut 26 via the steered power transmission mechanism 18 as shown in FIGS.
  • the rotation of the hollow motor shaft 31 of the sub motor 7 is transmitted to the spline nut 40 via the toe angle adjusting power transmission mechanism 30.
  • the rotation of the ball nut 26 screwed into the ball screw shaft portion 10a of the non-rotating divided shaft 10A of the steered shaft 10 moves the non-rotating divided shaft 10A and the rotating divided shaft 10B integrally in the axial direction, and thereby steered wheels. 13 steering is performed.
  • the rotation of the spline nut 40 that is spline-fitted to the rotation division shaft 10B of the steered shaft 10 rotates the rotation division shaft 10B, and the tie rod connected to the toe angle adjusting male screw portions 10c at both ends of the steered shaft 10 by this rotation. 11 advances and retreats, and toe angle adjustment is performed.
  • the toe angle adjustment is performed by an operation in which the steering power transmission mechanism 18 and the toe angle adjustment power transmission mechanism 30 cooperate with each other as follows. That is, when the spline nut 40 is rotated by the sub motor 7, the rotary split shaft 10 ⁇ / b> B rotates together with the spline nut 40. Since the rotation division shaft 10B is screwed to the non-rotation division wheel 10A by a concentric screw coupling portion 10C and is movable in the axial direction with respect to the spline nut 40, the rotation division shaft 10B rotates.
  • the rotary split shaft 10B moves in the axial direction with respect to the non-rotating split wheel 10A by an axial distance corresponding to the amount of rotation in the screw coupling portion 10C.
  • the ball nut 26 is rotated by the main motor 6 so that the rotating split shaft 10A is axially opposite to the moving direction of the non-rotating split shaft 10B. That is, the rotation division shaft 10A is moved by the main motor 6 by the half of the relative movement length of the non-rotation division shaft 10B relative to the rotation division shaft 10A by the sub motor 7, and the center of the entire length of the turning shaft 10 is obtained. Maintain position.
  • the toe angle adjustment is performed so that the turning angles of the left and right turning wheels 13 coincide with the target value, that is, without changing the turning angle.
  • the control device 5 of the ECU 3 moves the main motor 6 together with the sub motor 7 in this way, cancels the uneven movement of the non-rotating divided shaft 10B, and performs toe angle adjustment without changing the turning angle.
  • the steering intermediate shaft 21 is held by the first transmission engagement / disengagement mechanism 71 while being coupled to the hollow motor shaft 20, and the toe angle adjustment intermediate shaft 35 is maintained by the second transmission engagement / disengagement mechanism 72.
  • the first intermediate gear 33 is disconnected, and the toe angle adjusting intermediate shaft 35 is connected to the housing 19 by the third transmission engagement / disengagement mechanism 73. That is, the toe angle adjusting power transmission mechanism 30 becomes incapable of transmitting power and the rotation of the toe angle adjusting intermediate shaft 35 is restricted.
  • the turning shaft drive unit 14 employs the turning intermediate shaft 21 having a shaft end shape shown in FIGS. 11A and 11B or FIGS. 13A and 13B. Since the sub motor 7 and the toe angle adjusting intermediate shaft 35 are released from the dynamic coupling, the sub motor 7 and the turning intermediate shaft 21 are mechanically coupled, so that the transmission system can be smoothly converted. It can be done.
  • the first transmission engagement / disengagement mechanism 71 and the second transmission engagement / disengagement mechanism 72 connect the steering intermediate shaft 21 and the hollow motor shaft 20 and connect the toe angle adjustment intermediate shaft 35 and the first shaft.
  • this steer-by-wire type steering apparatus 100 when the main motor 6 fails by the switching mechanism 17, the main motor 6 is disconnected from the steered power transmission mechanism 18 and the change in the toe angle is stopped. In addition, by transmitting the rotation of the sub motor 7 to the steered power transmission mechanism 18 in place of the main motor 6 so that the steer can be steered, a fail-safe function capable of steering even when the main motor fails is provided. Further, when the sub motor 7 is lost by the switching mechanism 17, the toe angle adjusting power transmission mechanism 30 is made incapable of transmitting power, and only the steering by the main motor 6 is performed. Can be safely driven.
  • a series of operations for switching the power transmission system of the turning power transmission mechanism 18 and the toe angle adjustment power transmission mechanism 30 when the main motor fails and the sub motor fail is for turning and adjusting the toe angle by the linear actuator 47.
  • the transmission engagement / disengagement mechanism 49 performs the operation reliably.
  • the steered shaft 10 is divided into two in the axial direction, a non-rotating divided shaft 10A and a rotating divided shaft 10B, and both the divided shafts 10A and 10B are combined with each other by a screw coupling portion 10C concentric with the shaft center.
  • the distance between the left and right tie rods can be changed by rotating the rotation division shaft 10B with respect to the non-rotation division shaft 10A.
  • the left and right tie rods 11 can be directly connected to the non-rotating split shaft and the rotating split shaft turning shaft, respectively. For this reason, this steer-by-wire type steering device has a compact configuration, can reduce the overall axial length of the portion where the steered shaft 10 is provided, and is easily mounted on a vehicle.
  • an advancing / retreating member is provided at both ends of the steered shaft in accordance with the rotation of the steered shaft, and left and right tie rods are attached to these advancing / retreating members.
  • left and right tie rods are attached to these advancing / retreating members.
  • the alternative to the drive source for turning when the toe angle is adjusted by the sub motor 7 and when the main motor 6 fails is an operation performed when the vehicle travels, and thus the maximum generated torque is the main motor 6 during the stationary operation. Is much smaller than the torque required. Therefore, the sub motor 7 may be smaller than the main motor 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 ステアバイワイヤ式操舵装置を制御する制御装置であって、メインモータを切り離しサブモータの回転を伝えて転舵可能なフェールセーフモードとする切替機構(17)を有する。第1の制御装置(101)は、反力アクチュエータ(4)とサブモータ(7)を制御する。第2の制御装置(201)は、メインモータ(6)を駆動する。第1の制御装置(101)は、異常時切替指令部(106)を有し、メインモータ(6)が失陥であるとの診断結果を受けたとき、または相互故障診断部(103)で第2の制御装置(201)が故障であると診断したときに、切替機構(17)をフェールセーフモードとする。

Description

冗長機能付きステアバイワイヤ式操舵装置の制御装置 関連出願
 本出願は、2011年7月29日出願の特願2011-167090の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、転舵用の転舵軸と機械的に連結されていないステアリングホイールで操舵を行うようにしたステアバイワイヤ式操舵装置において、機構系および制御系共に冗長性を持たせた冗長機能付きステアバイワイヤ式操舵装置の制御装置に関する。
 転舵装置のような故障が重大事故の原因となり得る装置では、高冗長性が求められる。その対策として、ステアバイワイヤ式操舵装置において、操舵輪を転舵するメインモータが失陥しても、サブモータによって操舵輪を転舵するように構成したものが提案されている(特許文献1)。この提案例は、メインモータの失陥時にサブモータを作動させるフェールセーフ機能を持たせたものであるが、メインモータが正常である場合、サブモータは一切機能しておらず不経済である。
 このような不経済を解消するものとして、トー角調整用のモータをサブモータとし、メインモータの失陥時には、メインモータを切り離し、トー角調整用のサブモータを転舵に利用するステアバイワイヤ式操舵装置が提案されている(例えば、特許文献2)。転舵用モータの故障時に、車両を近くの安全な場所に退避させたり、修理工場に走行させるときに、転舵機能は車両走行の最低限の制御として必要であるが、トー角調整機能は最低限の制御としては必要ではない。そのため、トー角調整用のモータをメインモータ故障時に転舵に利用することで、常時は使用されない予備のモータを備える必要がなく、低コストでフェールセーフ機能が得られる。
特開2005-349845号公報 特開2011-84178号公報
 特許文献2の提案例は、転舵用モータの異常時のフェールセーフ機能が得られ、しかもモータに無駄がない点で優れる。しかし、ECU(電気制御ユニット)等の制御装置のフェールセーフ機能までは提案されておらず、制御装置の故障時には冗長性を保つことができない。制御装置を多重化することで制御の冗長性が得られるが、単純に多重化した場合、正常動作時の制御装置の無駄が大きく、採用は難しい。
 この発明の目的は、転舵用のメインモータの失陥および制御装置の故障に対する冗長性確保のための多重化と、平常時は多重化部分を利用した高機能化を両立した冗長機能付きステアバイワイヤ式操舵装置の制御装置を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明の冗長機能付きステアバイワイヤ式操舵装置の制御装置は、ステアバイワイヤ式操舵装置100を制御する制御装置5であって、前記ステアバイワイヤ式操舵装置100が、左右両端にタイロッド11が設けられた転舵軸10と、ステアリングホイール1と、このステアリングホイール1に操舵反力を与える反力アクチュエータ4と、前記ステアリングホイール1の操舵角をそれぞれ検出する第1および第2の操舵角センサ2A,2Bと、メインモータ6およびサブモータ7と、前記メインモータ6の回転を前記転舵軸10に伝える転舵動力伝達機構18と、前記サブモータ7の回転によりトー角を調整させるトー角調整動力伝達機構30と、前記転舵動力伝達機構18に対して前記メインモータ6を切り離しサブモータ7の回転を伝えて転舵可能とする異常時切替形態に切替可能な切替機構17とを備える。
 前記制御装置5は、相互に通信し合う第1の制御装置101と第2の制御装置201とでなる。前記第1の制御装置101は、前記第1の操舵角センサ2Aの検出信号を受け取って前記反力アクチュエータ4とサブモータ7を制御する基本制御機能部102を有し、前記第2の制御装置201は、前記第2の操舵角センサ2Bの検出信号を受け取って前記メインモータ6を制御する基本制御機能部202を有する。第1および第2の各制御装置101,201は、互いの故障を診断する相互故障診断部103,203をそれぞれ有する。第2の制御装置201は、メインモータ6の失陥を診断して第1の制御装置101へ診断結果を伝えるメインモータ失陥診断部205を有する。第1の制御装置101は第2の制御装置201からメインモータ6が失陥であるとの診断結果を受けたとき、または前記相互故障診断部103で第2の制御装置201が故障であると診断したときに、前記切替機構17を前記異常時切替形態に切り替えさせる異常時切替指令部106を有する。
 この構成によると、第1および第2の制御装置101,201は互いに通信しており、それぞれの相互故障診断部103,203で互いの故障診断を行う。第2の制御装置201は、メインモータ失陥診断部205によりメインモータ6の失陥を診断する。第1の制御装置101に設けられた異常時切替指令部106は、第2の制御装置201からメインモータ6が失陥であるとの診断結果を受けたとき、または前記相互故障診断部103で第2の制御装置201が故障であると診断したときに、前記切替機構17を前記異常時切替形態に切り替えさせ、サブモータ7による転舵を行わせる。メインモータ6が失陥した場合は勿論であるが、メインモータ6を制御する第2の制御装置が故障した場合も、メインモータ6による正常な転舵は行えない。そのため、故障の発生していない第1の制御装置101で制御されるサブモータ7を転舵に用いることで、安全な転舵を行うことができる。
 制御装置5として、第1の制御装置101と第2の制御装置201との2台を設けているが、第1の制御装置101は基本機能として、反力アクチュエータ4とサブモータ7を制御する機能を持ち、第2の制御装置201は基本機能としてメインモータ6を制御する機能を持つ。また、メインモータ6の失陥の診断は第2の制御装置201で行い、サブモータ7の失陥の診断は第1の制御装置101で行う。さらに、第1の制御装置101と第2の制御装置201は相互の診断機能を持つ。このように、制御系を2系統に分け、各系統の役割を最適に分担させたため、転舵用のメインモータ6の失陥と、その制御を行う第2の制御装置201の故障に対する冗長性確保のための多重化が得られる。しかも、平常時は多重化部分を利用した、トー角制御や、第1および第2の制御装置101,201の診断等の高機能化が得られる。すなわち、冗長性確保のための多重化と、平常時の多重化部分を利用した高機能化の両立が可能となる。
 なお、上記第1および第2の操舵角センサ2A,2Bは、互いに完全に独立したセンサである必要はなく、それぞれが独立して検出し出力する機能を持つものであれば良い。例えば、同じセンサ筐体内に設置されてエンコーダ等のセンサターゲットが互いに共通であっても良い。具体例で説明すると、ステアリングホイール1と共に回転する共通のエンコーダに対して、回転方向の検出が可能なように電気角で90°離れて配置されて、90°位相の異なる出力を行う2つのセンサであっても良い。
 また、第1および第2の操舵角センサ2A,2Bのセンサターゲットは、必ずしもステアリングホイール1と機械的に結合されていなくても良く、ステアリングホイール1と同期して回転するものであれば良い。例えば、前記第1の操舵角センサ2Aは、前記操舵反力アクチュエー4の動作量を検出してその検出結果を前記ステアリングホイール1の操舵角の検出結果の出力とするものであっても良い。操舵反力アクチュエータ4の高精度な制御のためには、センサ類を用いた閉ループ制御が必要であるが、その制御用のセンサを第1の操舵角センサ2Aとして利用することで、無駄なく2つの操舵角センサ2A,2Bを備えることができる。
 この発明において、前記異常時切替指令部106は、前記第1および第2の制御装置101,201に対する外部の機器301から指令を受けたときに、前記切替機構17を前記異常時切替形態に切り替えさせる機能を有するものとしても良い。外部の機器301は例えば第1の制御装置101およびは第2の制御装置201以外の制御部や、運転席の入力手段(図示せず)等の機器である。これにより、より多くの形態の異常に対応して、サブモータ7による転舵に切り替えることができる。
 この発明において、前記第1の制御装置101または第2の制御装置201は、第1および第2の操舵角センサ2A,2Bの出力を比較して第2の操舵角センサ2Bの故障を診断するセンサ故障診断部107,207を有し、前記異常時切替指令部106は前記センサ故障診断部107,207により第2の操舵角センサ2Bが故障であると診断された結果を受けたときに、前記切替機構17を前記異常時切替形態に切り替えさせるようにしても良い。第2の制御装置201は、その基本制御機能部202が、第2の操舵角センサ2Bの検出信号によって転舵用のメインモータ6の制御を行うため、第2の操舵角センサ2Bに故障が発生すると、適正な転舵が行えなくなる。その場合に、切替機構17を前記異常時切替形態に切り替えることで、サブモータ7による転舵とはなるが、異常のない第1の操舵角センサ2Aの検出信号を用いて制御でき、正しい転舵が可能となる。
 第2の操舵角センサ2Bの故障に対しては、次のように対処するようにしても良い。すなわち、この発明において、前記第1の制御装置101または第2の制御装置201は、第1および第2の操舵角センサ2A,2Bの出力を比較して第2の操舵角センサ2Bの故障を診断するセンサ故障診断部107,207を有し、かつ前記センサ故障診断部107,207により第2の操舵角センサ2Bが故障であると診断された結果を受けたときに第1の操舵角センサ2Aの出力を第2の制御装置201に通信するセンサ出力転送部108を有し、前記第2の制御装置201は、前記基本制御部202による前記メインモータ6の制御を、第2の操舵角センサ2Bの出力を用いる代わりに、前記センサ出力転送部108から転送された第1の操舵角センサ2Aの出力を用いて行う使用センサ切替部208を有するものとしても良い。このようにセンサ故障の診断を行い、通常時に転舵に使用される第2の操舵角センサ2Bが故障した場合に、第2の制御装置201が使用する操舵角センサを第1の操舵角センサ2Aに切り替えることで、センサ故障が生じてもメインモータ6による転舵が行える。
 この発明において、前記第2の制御装置201は、第1および第2の操舵角センサ2A,2Bの出力を比較して第1の操舵角センサ2Aの故障を診断するセンサ故障診断部107,207を有し、このセンサ故障診断部107,207による第1の操舵角センサ2Aが故障であるとの診断結果を、車両の室内の報知手段に報知させるセンサ異常報知部209を有するものとしても良い。第1の操舵角センサ2Aはトー角の制御に用いられるため、故障が生じても、運転上で最低限必要な転舵は可能である。そのため、特に制御形態の変更を行わなくても、センサ異常報知部209により運転者に異常を伝えることが、センサ異常への適切な対処となる。
 この発明において、前記第1の制御装置101は、前記サブモータ7の失陥を診断するサブモータ失陥診断部105を有し、前記第2の制御装置201は、前記サブモータ失陥診断部105による失陥との診断結果を第1の制御装置101から受けて、この診断結果を、車両の室内の報知手段302に報知させるサブモータ異常報知部210を有するものとしても良い。サブモータ7はトー角の制御に用いられるため、故障が生じても、運転上で最低限必要な転舵は可能である。そのため、特に制御形態の変更を行わなくても、サブモータ異常報知部210により運転者に異常を伝えることが、サブモータ異常への適切な対処となる。
 この発明において、前記第2の制御装置201は、前記相互故障診断部203により第1の制御装置101が故障であると診断した結果を、車両の室内の報知手段302に報知させる制御装置異常報知部211を有するものとしても良い。第1の制御装置101は、反力アクチュエータ4とトー角制御用のモータであるサブモータ7とを制御する装置であるため、第2の制御装置201が正常であれば、最低限の安全な運転は可能である。そのため、第1の制御装置101が故障である場合は、特に制御形態の変更を行わなくても、制御装置異常報知部211により運転者に異常を伝えることが、第1の制御装置101の異常に対する適切な対処となる。
 この発明において、前記第1の制御装置101が、前記反力アクチュエータ4の失陥を診断する反力アクチュエータ失陥診断部109を有し、この診断部109が失陥であると診断した結果を、車両の室内の報知手段302に報知させる反力異常報知部212を有するものとしても良い。反力アクチュエータ4は、ステアリングホイール1に操舵反力を与えて運転者による操舵感覚を向上させるものであり、失陥が生じても、ステアリングホイール1による正確な操舵は可能である。そのため、反力アクチュエータ4が故障である場合は、特に制御形態の変更を行わなくても、反力異常報知部212により運転者に異常を伝えることが、反力アクチュエータの異常に対する適切な対処となる。
 この発明において、前記切替機構17は、トー角調整動力伝達機構30を動力伝達不能状態として前記メインモータ6による転舵のみ行わせるトー角固定時切替形態に切替可能であり、前記第1の制御部101は前記サブモータ7の失陥を診断するサブモータ失陥検出部105、およびこのサブモータ失陥検出部105による失陥であるとの検出結果によって前記切替機構17をトー角固定時切替形態に切替えるトー角固定指令部110を有するものとしても良い。トー角制御は、走行の快適性を向上させる制御ではあるが、トー角固定であっても転舵は適正に行える。したがってトー角制御用のモータであるサブモータ7に失陥が生じた場合は、トー角調整動力伝達機構30を動力伝達不能状態としてメインモータ6による転舵のみ行わせるようにすることが、適切な対処となる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の好ましい実施形態にかかるステアバイワイヤ式操舵装置の制御装置の概略構成を示すブロック図である。 同制御装置の概念構成を示すブロック図である。 (A)は同ステアバイワイヤ式操舵装置における転舵軸駆動部の正常動作時の水平断面図、(B)はそのIIIB部拡大図である。 (A)は同転舵軸駆動部におけるトー角調整用モータ失陥時の水平断面図、(B)はそのIVB部拡大図である。 (A)は同転舵軸駆動部における転舵用モータ失陥時の水平断面図、(B)はそのVB部拡大図である。 (A),(B)は同転舵軸の結合ねじ部のそれぞれ異なる状態を示す縦断面図である。 図3(A)のVII-VII断面図である。 同転舵軸駆動部の回転規制機構の側面図であり、(A),(B)はそれぞれ異なる状態を示す。 通常のスプライン軸のスプライン歯の歯先形状を示す側面図である。 (A)は前記転舵軸駆動部の中間軸の一例の側面図、(B)は同正面図である。 (A)は同転舵軸駆動部の中間軸の他の一例の側面図、(B)は同正面図である。 (A)は同転舵軸駆動部の中間軸のさらに他の一例の側面図、(B)は同正面図である。 (A)は同転舵軸駆動部の中間軸のさらに他の一例の側面図、(B)は同正面図である。 比較例1となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例2となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例3となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例4となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例5となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例6となるステアバイワイヤ式操舵装置の制御装置のブロック図である。 比較例7となるステアバイワイヤ式操舵装置の制御装置のブロック図である。
 この発明の好ましい実施形態を図1~図13(A),(B)と共に説明する。図1は、ステアバイワイヤ式操舵装置100およびその制御装置5の概略構成を示す。ステアバイワイヤ式操舵装置100は、運転者が操舵するステアリングホイール1と、第1および第2の操舵角センサ2A,2Bと、操舵反力アクチュエータ4と、左右の操舵輪13にナックルアーム12およびタイロッド11を介して連結された転舵用の軸方向移動自在な転舵軸10と、この転舵軸10を駆動する転舵軸駆動部14と、転舵角センサ8とを備える。転舵軸10は、伸縮可能な分割構造とされていて、全体の軸方向移動による転舵に加え、伸縮によってトー角調整が可能とされている。
 ステアリングホイール1は、転舵用の転舵軸10と機械的に連結されていない。操舵反力アクチュエータ4は、ステアリングホイール1に反力トルクを付与する駆動源であり、モータ等からなる。第1,2の操舵角センサ2A,2Bは、ステアリングホイール1の操舵角を検出するセンサである。第1の操舵角センサ2Aは、操舵反力アクチュエータ4の回転角度または発生トルク等の動作量を検出するセンサであり、このセンサを、この実施形態での冗長性を得る制御の都合上、ステアリングホイール1の操舵角を間接的に検出するセンサとして兼用させている。第2の操舵角センサ2Bは、アクチュエータ類を介することなく、ステアリングホイール1の操舵角を直接に検出する。なお、第1の操舵角センサ2Aは、操舵反力アクチュエータ4の動作量を検出するセンサとは別に、ステアリングホイール1の操舵角を直接に検出するセンサとして専用に設けても良い。第2の操舵角センサ2Bなど、直接に検出するセンサとしては、レゾルバ、光学式エンコーダ、磁気式エンコーダ等の、回転角を電気的に検出するものを使用する。
 転舵軸駆動部14には、転舵軸10と、操舵輪13(図1)の転舵を行う転舵機構15と、転舵輪13のトー角調整を行うトー角調整機構16と、転舵機構15およびトー角調整機構16の各動力伝達機構18,30を切り換える切替機構17とが設けられている。転舵機構15は、転舵用モータであるメインモータ6と、このメインモータ6の回転を転舵軸10に伝える転舵動力伝達機構18とで構成される。トー角調整機構16は、トー角調整のモータであるサブモータ7と、このサブモータ7の回転を転舵軸10に伝えるトー角調整動力伝達機構30とで構成される。
 切替機構17は、転舵動力伝達機構18およびトー角調整機構16を介してメインモータ6およびサブモータ7で転舵およびトー角調整をそれぞれ行わせる通常時の切替形態から、転舵動力伝達機構18に対してメインモータ6を切り離し、サブモータ7の回転を伝えて転舵可能とする異常時切替形態に切替可能である。また、切替機構17は、トー角調整動力伝達機構30を動力伝達不能状態としてメインモータ6による転舵のみ行わせるトー角固定時切替形態に切替可能である。切替機構17は、クラッチ機構やその組み合わせ等によって構成される。
 制御装置5は、車両の全体を制御するメインのECU(電気制御ユニット)3の一部として、またはメインECU3とは別に設けられて、転舵およびトー角調整に関する制御を行う装置である。制御装置5は、この実施形態の特徴として、互いに通信し合う第1の制御装置101と第2の制御装置201とで構成される。これら第1および第2の制御装置101,201は、マイクロコンピュータおよびその制御プログラムを含む電子回路等により構成される。第1の制御装置101と第2の制御装置201とは、互いに独立して、すなわちそれぞれの処理機能が別の電子部品によって得られるように、互いに独立したハードウェア資源で構成されるが、共通の筐体(図示せず)内に配置されていても、また共通の回路基板上に設けられていても良い。
 制御装置5の構成を図2と共に説明すると共に、図14~図20の比較例1~7との比較を行う。なお、転舵動力伝達機構18、トー角調整動力伝達機構30、および切替機構17の具体的構成例については、後に図3(A),(B)~図13(A),(B)と共に説明する。
 図2において、第1の制御装置101および第2の制御装置201は、図の中央にブロックとして図示すると共に、そのブロック内の構成要素を図の左右両側にそれぞれ示す。第1の制御装置101は、第1の操舵角センサ2Aの検出信号を受け取って反力アクチュエータ4とトー角調整用のサブモータ7を駆動制御することを基本機能とし、この基本機能を達成する手段である基本制御機能部102を有する。基本制御機能部102は、サブモータ7の回転センサ115による回転角の検出信号を用い、通常走行時のトー角制御を行う。第2の制御装置201は、第2の操舵角センサ2Bの検出信号を受け取って転舵用のメインモータ6を駆動制御することを基本機能とし、この基本機能を達成する手段である基本制御機能部202を有する。基本制御機能部202は、メインモータ6の回転センサ215による回転角の検出信号を用い、通常走行時の転舵制御を行う。
 第1および第2の各制御装置101,201は、互いの故障を診断する相互故障診断部103,203をそれぞれ有する。第1の制御装置101は、サブモータ7の失陥を診断するサブモータ失陥診断部105を有し、第2の制御装置201は、メインモータ6の失陥を診断して第1の制御装置101へ診断結果を伝えるメインモータ失陥診断部205を有する。各モータ6,7の失陥は、例えばロータの固着等である。また、第1および第2の各制御装置101,201は、それぞれ、第1の転舵角センサ2Aおよび第2の転舵角センサ2Bの失陥を検出するセンサ故障診断部107,207をそれぞれ有する。これらセンサ故障診断部107,207は、第1の転舵角センサ2Aの検出値と第2の転舵角センサ2Bの検出値とを比較し、定められた条件に従って失陥状態であることを検出する。第1の制御装置101は、さらに、反力アクチュエータ4の失陥を診断する反力アクチュエータ失陥診断部109を有している。
 第1の制御装置101は、異常時切替指令部106を有し、異常時切替指令部106は、次の条件1~4の充足判定を行っていずれかの条件が充足されると、切替機構17を前記異常時切替形態に切り替えさせる。
 条件1は、第2の制御装置201のメインモータ失陥診断部205から、メインモータ6が失陥であるとの診断結果を受けたときである。
 条件2は、第1の制御装置101の相互故障診断部103によって、第2の制御装置201が故障であると診断されたときである。
 条件3は、外部の機器301から異常時切替形態への切り替えの指令を受けたときである。外部の機器301は、第1および第2の制御装置101,201に対する外部の機器である。例えば、ECU3(図1)における前記制御装置5以外の制御部や、運転席の入力手段(図示せず)等の機器である。
 条件4は、第2の制御装置201のセンサ故障診断部207から第2の操舵角センサ2Bが故障であると診断された結果を受けたときである。なお、条件4の場合は、異常時切替形態への切り替えを行わず、次のセンサ出力転送部108および使用センサ切替部208による制御としても良い。
 センサ出力転送部108は、第1の制御装置101に設けられており、第2の制御装置201のセンサ故障診断部207によりにより第2の操舵角センサ2Bが故障であると診断された結果を受けたときに、第1の操舵角センサ2Aの出力を第2の制御装置201に通信する。使用センサ切替部208は、第2の制御装置201に設けられており、基本制御部202によるメインモータ6の制御を、第2の操舵角センサ2Bの出力を用いる代わりに、センサ出力転送部108から転送された第1の操舵角センサ2Aの出力を用いて行わせる。これらセンサ出力転送部108および使用センサ切替部208を設けるか、前記異常時切替指令部106により第4の条件で前記異常時切替形態に切り替えさせるようにするかは、選択的に定められる。
 第1の制御装置101は、上記各部の他に、トー角固定指令部110を有し、サブモータ失陥検出部105によるサブモータ7が失陥であるとの検出結果によって切替機構17を前記トー角固定時切替形態に切替える。
 第2の制御装置201は、各種の報知部、すなわちセンサ異常報知部209、サブモータ異常報知部210、制御装置異常報知部211、および反力異常報知部212を有しており、これらの報知部209~212は、定められた軽微な異常の場合に、特に車両の走行に関する制御は行わず、車両の室内の運転席等にある報知手段302に、定められた報知を行わせる。上記の軽微な異常は、車両の安全な走行が維持できる範囲の異常である。報知手段302は、例えば液晶表示装置等の表示装置303またはスピーカ304等の音を発生する手段等である。なお、上記各報知部209~212は、第1の制御装置101に設けても良い。
 センサ異常報知部209は、第1の制御装置101のセンサ故障診断部107により、第1の操舵角センサ2Aが故障であるとの診断がなされ、その診断結果が第2の制御装置201に送られたときに、前記報知手段302に、第1の操舵角センサ2Aが故障である旨の報知を行わせる。
 サブモータ異常報知部210は、第1の制御装置101のサブモータ失陥診断部105によりサブモータ7が失陥との診断がなされ、第1の制御装置101から第2の制御装置201にその診断結果が送られたときに、この診断結果を前記報知手段302に報知させる。
 制御装置異常報知部211は、第1の制御装置101の相互故障診断部103により第1の制御装置101が故障であると診断された場合、その診断結果を前記報知手段302に報知させる。制御装置異常報知部211は、第2の制御装置201に設ける代わりに、第1の制御装置101に設けてもよい。
 次に上記構成の動作を説明する。第1および第2の制御装置101,201は互いに通信しており、転舵角度等の各種情報を共有すると共に、相互故障診断部103,203によって互いの故障診断を行う。各制御装置101、201は、サブモータ失陥診断部105、メインモータ失陥診断部205、センサ故障診断部107、207、反力アクチュエータ失陥診断部109等により、各種のセンサを用い、各モータ6,7等の失陥の検出を行う。また、第1および第2の制御装置101,201間の通信により、第1および第23の操舵角センサ2A,2Bの出力を常に比較し、センサ故障を検出する。
 異常時切替指令部106は、以下の条件A~Cのいずれかが充足される場合、切替機構17を異常時切替形態に、つまり転舵動力伝達機構18に対してメインモータ6を切り離し、サブモータ7の回転を伝えて転舵可能とする形態であるフェールセーフモードに切り替えさせる。
 条件A:第2の制御装置201のメインモータ失陥診断部205から、メインモータ6が失陥であるとの診断結果を受けたとき。
 条件B:第1の制御装置101の相互故障診断部103によって、第2の制御装置201が故障であると診断したとき。
 条件C:外部の機器301から異常時切替形態への切り替えの指令を受けたとき。
 メインモータ6が失陥した場合は勿論であるが、メインモータ6を制御する第2の制御装置201が故障した場合も、メインモータ6による正常な転舵は行えない。そのため、故障の発生していない第1の制御装置101で制御されるサブモータ7を転舵に用いることで、安全な転舵を行うことができる。
 次の条件Dの場合は、異常時切替指令部106によって切替機構17を前記異常時切替形態とするようにしても、また他の制御を採るようにしても良い。
 条件D:第2の制御装置201のセンサ故障診断部207から第2の操舵角センサ2Bが故障であると診断された結果を受けたとき。
 条件Dの場合の他の制御は、第2の制御装置201のセンサ故障診断部207から第2の操舵角センサ2Bが故障であると診断された結果を第1の制御装置内101が受けたとき、使用センサ切替部208により、第1の操舵角センサ2Aの出力を第2の制御装置201に通信し、第2の制御装置201の使用センサ切替部208が、基本制御機能部202によるメインモータ6の制御を、センサ出力転送部108から転送された第1の操舵角センサ2Aの出力を用いて行わせる制御である。
 以下の条件異常の場合は、各報知部209~212により報知手段302を介して運転者に異常を伝えるが、異常時切替形態(フェールセーフモード)へは移行しない。
・操舵角センサ2A,2Bの出力の比較により、第2の制御装置201が第1の操舵角センサ2Aの異常を検出した場合。
・サブモータ7の失陥を第1の制御装置101が検出し、通信により第2の制御装置201に伝えた場合。
・相互故障診断により、第2の制御装置201が第1の制御装置101を故障であると診断した場合。
・第1の制御装置101が反力アクチュエータ4の失陥(トルク抜けなど)を検出した場合。
 この実施形態によると、次の利点が得られる。上記のように、制御装置5として、第1の制御装置101と第2の制御装置201との2台を設けているが、第1の制御装置101は基本機能として、反力アクチュエータ4とサブモータ7を制御する機能を持ち、第2の制御装置201は基本機能としてメインモータ6を制御する機能を持つ。また、メインモータ6の失陥の診断は第2の制御装置201で行い、サブモータ7の失陥の診断は第1の制御装置101で行う。さらに、第1の制御装置101と第2の制御装置201は相互の診断機能を持つ。
 このように、制御系を2系統に分け、各系統の役割を最適に分担させたため、転舵用のメインモータ6の失陥と、その制御を行う第2の制御装置201の故障に対する冗長性確保のための多重化が得られる。この冗長性により、故障発生時に、車両を近くの安全な場所に退避させたり、修理工場に走行させる場合に、安全な転舵が可能なとなる。しかも、平常時は多重化部分を利用した、トー角制御や、第1および第2の制御装置の診断等の高機能化が得られる。すなわち、冗長性確保のための多重化と、平常時の多重化部分を利用した高機能化の両立が可能となる。
 この実施形態の優位性は、次の点にある。
・どれか一つの要素が故障しても、重大事故の原因となる転舵機能失陥を回避できる。
・制御系を2系統に分け、各系統の役割を最適に分担させ、高機能化した構成となる。
・構成要素数・通信経路を最小にした構成となる。
 図14~図20に示す比較例1~7と比較して、この実施形態の優位性を説明する。
 図14に示す比較例1は、1台の制御装置5Aで、転舵およびトー角制御に関する全ての制御を行うようにしたものである。この比較例では、制御装置5Aの破損や異常時には冗長性を保てない。これに対して、上記実施形態では、制御装置5を第1および第2の制御装置101,201に分けて制御機能を適宜分担させたため、第1および第2の制御装置101,201のいずれかに破損や異常が生じても、最低限の転舵は安全に行える。
 図15に示す比較例2は、第1および第2の制御装置101,201を設けるが、メインモータ6の制御用の第2の制御装置201に切替機構17を切り替える機能を持たせたものである。この比較例では、メインモータ6の制御用の制御装置201に異常が生じた場合に切り替え不能であり、冗長性が保てない。これに対して、上記実施形態では、サブモータ駆動用の第1の制御装置101に切替機構17の切り替えを行う異常時切替指令部106を設けたため、メインモータ6の制御用の第2の制御装置201に異常が発生しても切り替えが行える。なお、サブモータ駆動用の第1の制御装置101は、異常が発生してもメインモータ6による転舵が可能である。ただし、第1の制御装置101の異常が相互診断部203等により検出された場合は、第1の制御装置101は停止させるか、またはその出力を遮断させるようにするのが良い。
 図16に示す比較例3は、メインモータ6の制御を行う第2の制御装置101に、反力アクチュエータ4の制御機能を持たせたものである。この比較例では、機能的には実施形態と同等の機能が得られる。しかし、使用頻度の低いサブモータ7のみを制御する第1の制御装置101と、常に駆動するメインモータ6の制御および反力アクチュエータ4の制御を行う第2の制御装置201とで、分担する機能の偏りがあり、第2の制御装置201に計算量の集中が発生している。これに対して、上記実施形態では、使用頻度の低いサブモータ7を制御する第1の制御装置101に反力アクチュエータ4の制御機能を持たせたため、第1の制御装置101と第2の制御装置201とで、計算量の均衡が得られる。
 図17に示す比較例4は、第1および第2の制御装置101,201の両方に、切替機構17を切り替える機能を持たせたものである。切替機構17により切り替えることが必要な場合は、メインモータ6や第2の制御装置201に異常が発生した場合であり、また両制御装置101,201は相互の通信経路を持つ。このため、第2の制御装置201から切替機構17への通信・制御経路401は不要であり、無駄となっている。上記実施形態では、このような無駄な通信・制御経路401は設けられていない。
 図18に示す比較例5は、転舵およびトー角調整に関する全ての機能を有する制御装置5Bを、メイン用とサブ用とに2台設け、メインの制御装置5Bの異常時にサブの制御装置5Bに制御を切り替えるようにしたものである。この例の場合、冗長性を確保できる。しかし、配線が複雑で、制御装置5が大形化する。また、正常時の無駄が多い。これに対して上記実施形態では、制御系を2系統に分け、役割を適切に分担させるようにしたため、構成要素数、通信経路数を最小にできる。
 図19に示す比較例6は、サブモータ7の制御用の第1の制御装置101と、メインモータ6の制御用の第2の制御装置201に加え、反力アクチュエータ4の制御用の第3の制御装置501を設けたものである。この場合、制御装置101,201,501間の通信量が多くなり、制御装置増加による利点が少ない。
 図20に示す比較例7は、第1の操舵角センサ2Aの出力を第1,第2の制御装置101,201の両方に接続し、第2の操舵角センサ2Bの出力についても、第1,第2の制御装置101,201の両方に接続したものである。この比較例7では、実施形態よりも高い冗長性が得られる。しかし、操舵角センサ2A,2Bと制御装置101,201間の信号線の電気的分離を考慮する必要がある。例えば、第1の制御装置101が高電圧を受け破壊された場合、その高電圧が第1の制御装置101-第1の操舵角センサ2A-第2の制御装置201の経路を通じて第2の制御装置201に伝わり、第2の制御装置201が破壊される恐れがある。そのため、この経路上で電気的分離を行う必要があるが、大形化、コスト増の原因となる。上記実施形態では、このような電気的分離が不要である。
 これら比較例1~7との比較でわかるように、上記実施形態は、制御系を2系統に分けて各系統の役割を最適に分担させ、高機能化した構成であり、冗長性確保のための多重化、平常時の多重化を利用した高機能化が両立できて、どれか一つの要素が故障しても重大事故の原因となる転舵機能失陥を回避でき、かつ構成要素数・通信経路を最小にした構成となる等の優位性を併せ持つことができる。
 図3(A),(B)~図13(A),(B)と共に、ステアバイワイヤ式操舵装置100の機械的構成部分の一例を説明する。転舵軸10は、非回転分割軸10Aと回転分割軸10Bとに軸方向に2分割され、これら両分割軸10A,10Bを軸中心と同心のねじ結合部10Cで互いに結合した軸である。転舵軸駆動部14のハウジング19から突出した非回転分割軸10Aおよび回転分割軸10Bの先端部に、左右のタイロッド11(図1)がそれぞれ連結されている。
 図6(A),(B)に示すように、ねじ結合部10Cは、非回転分割軸10Aに設けられた雄ねじ81と、非回転分割軸10Bに設けられた雌ねじ82とを有する。ねじの種類は、角ねじまたは台形ねじが好ましい。ねじの種類が角ねじまたは台形ねじであるねじ結合部10Cは、非回転分割軸10Aと回転分割軸10Bとの結合が堅固である。
 雄ねじ81は、非回転分割軸10Aのボールねじ軸部10aから回転分割軸10B側に突出する嵌合軸部83の先端に設けられている。雌ねじ部82は、回転分割軸10Bの筒状部84の内周に形成されている。回転分割軸10Bには、前記筒状部84から非回転分割軸10Aに延びる延長筒状部85が設けられており、この延長筒状部85の内径孔86に前記嵌合軸部83が嵌合している。内径孔86は、転舵軸10の軸中心と同心である。
 このねじ結合部10Cには、前記内径孔86から前記嵌合軸部83が抜けるのを防止する抜け止め手段88が設けられている。この抜け止め手段88は、嵌合軸部83の外周に形成された環状の外周溝89に嵌合するサークリップ90と、内径孔86の内径面に形成された環状の内周溝91とでなる。図6(A)の部分拡大図に示すように、内周溝91の非回転分割軸10Aと反対側の段面91aは、外側に向かい次第に溝深さが浅くなるテーパ状になっている。
 通常は、図6(A)のように、サークリップ90と内周溝91との軸方向位置がずれており、サークリップ90は内径孔86の内径面に押されて縮径した状態になっている。この状態で、非回転分割軸10Aに対し回転分割軸10Bを回転させると、ねじ結合部10Cの螺合長さが調整される。図6(B)のように、サークリップ90と内周溝91とが軸方向同位置になると、サークリップ90が自身の弾性反発力で拡径して内周溝91に係合する。それにより、ねじ結合部10Cの螺合長さを短くする方向の動作が規制され、内径孔86から嵌合軸部83が抜けなくなる。内周溝91の段面91aは前記形状のテーパ状になっているので、ねじ結合部10Cの螺合長さを短くする方向の動作は規制されない。
 非回転分割軸10Aは、回り止め手段93により、転舵軸駆動部14のハウジング19に対して軸方向に進退自在かつ軸回りに回転不能とされている。回り止め手段93は、図7に示すように、非回転分割軸10Aにおける前記ボールねじ軸部10aの外側に続く部分である非同心円部10bと、ハウジング19に固定して設けられ、前記非同心円部10bが軸方向に摺動自在に嵌合する滑り軸受94とで構成される。非同心円部10bの軸方向と垂直な断面の形状は、外形が軸中心の同心円とは異なる形状である。この図例では、非同心円部10bは、円周の一部を直線で切り落とした断面形状とされているが、他の断面形状であってもよい。この構成の回り止め手段93は、構成が簡単で、転舵軸10の非回転分割軸10Aを確実に回り止めできる。
 転舵軸10全体は、以下のようにハウジング19に支持されている。すなわち、非回転分割軸10Aは、ボールねじ軸部10aに螺合する後記ボールナット26を介して複列アンギュラ玉軸受29aおよび深溝玉軸受29bにより支持されると共に、前記滑り軸受94によって支持される。また、回転分割軸10Bは、その外周にスプライン嵌合する後記スプラインナット40を介して転がり軸受44により支持されている。さらに、ボールねじ軸部10aの外径面が、滑り軸受95によって支持されている。滑り軸受95の軸方向位置は、ねじ結合部10Cとボールナット26との間とされている。
 転舵機構15は、転舵軸10の非回転分割軸10Aおよび回転分割軸10Bを一体に軸方向に移動させて操舵輪13の転舵を行う。この転舵機構15は、メインモータ6と、このメインモータ6の回転により転舵軸10を軸方向に移動させる転舵動力伝達機構18とを備える。
 メインモータ6は、転舵軸駆動部14のハウジング19に、前記転舵軸10と平行に取付けられている。メインモータ6は中空モータであって、筒状の中空モータ軸20を有する。この中空モータ軸20は、一対の軸受23によりハウジング19に回転自在に支持されている。中空モータ軸20の中空部内には、転舵軸10と平行に設けた転舵用中間軸21が、針状ころ軸受22を介して回転自在かつ軸方向に移動自在に支持されている。転舵用中間軸21は、後記トー角調整用中間軸35と共に、切替機構17の直動アクチュエータ47により、図3(A),(B)に示す基準位置と、図4(A),(B)に示すサブモータ失陥時位置と、図5(A),(B)に示すメインモータ失陥時位置の各位置に軸方向に位置切替される。
 転舵動力伝達機構18は、メインモータ6の前記中空モータ軸20と、前記転舵用中間軸21と、この転舵用中間軸21の外周にキー(図示せず)を介して回転伝達可能に嵌合した出力ギヤ24と、この出力ギヤ24とカウンタギヤ24aを介して噛み合う入力ギヤ25と、この入力ギヤ25に固定され前記転舵軸10の非回転分割軸10Aのボールねじ軸部10aに螺合するボールナット26とでなる。
 入力ギヤ24は、転がり軸受28を介して前記ハウジング19に支持されている。また、ボールナット26は、軸方向両側に配した複列アンギュラ玉軸受29aおよび深溝玉軸受29bにより、ハウジング19に回転自在に支持されている。複列アンギュラ玉軸受29aおよび深溝玉軸受29bを組み合わせてボールナット26を支持すると、ボールナット26に作用する軸方向荷重およびモーメント荷重の両方を受けることができる。転舵用中間軸21は、前記のように、メインモータ6の中空モータ軸20に針状ころ軸受22を介して嵌合し、かつ出力ギヤ24にキーを介して嵌合しているため、軸方向への移動が許容されている。
 中空モータ軸20の内周に内歯からなるスプライン歯20a、転舵用中間軸21の外周に外歯からなるスプライン歯21aがそれぞれ形成されており、転舵軸駆動部14の正常時状態(図3(A),(B))では、これらスプライン歯20a,21aが互いに噛み合ってスプライン嵌合部27を構成することで、中空モータ軸20と転舵用中間軸21とが回転伝達可能に連結されている。中空モータ軸20のスプライン歯20aは軸方向に長く、どの軸方向箇所にも転舵用中間軸21のスプライン歯21aが噛み合うことができる。
 転舵軸駆動部14の正常時状態(図3(A),(B))において、メインモータ6の回転出力は、転舵用中間軸21、出力ギヤ24、カウンタギヤ24a、入力ギヤ25を経てボールナット26に伝達され、ボールナット26の回転が転舵軸10の軸方向への移動に変換されて転舵が行なわれる。
 トー角調整機構16は、非回転分割軸10Aに対して回転分割軸10Bを回転させて、ねじ結合部10Cの螺合長さを調整することにより、前記左右のタイロッド間距離を変更して操舵輪13のトー角を変える。このトー角調整機構16は、サブモータ7と、このサブモータ7の回転によりトー角を調整させるトー角調整動力伝達機構30とを備える。
 サブモータ7は、転舵軸駆動部14のハウジング19に、転舵軸10と同心に取付けられている。サブモータ7も中空モータであって、その筒状の中空モータ軸31が転舵軸10におけるねじ結合部10Cの外周に設けられている。
 トー角調整動力伝達機構30は、前記中空モータ軸31に固定された出力ギヤ32と、この出力ギヤ32とカウンタギヤ32aを介して噛み合う第1中間ギヤ33と、この第1中間ギヤ33とスプライン嵌合部34で噛み合うトー角調整用中間軸35と、このトー角調整用中間軸35とスプライン嵌合部36で噛み合う第2中間ギヤ37と、この第2中間ギヤ37とカウンタギヤ37aを介して噛み合う入力ギヤ38と、この入力ギヤ38に固定されたスプラインナット40とでなる。転舵軸10の回転分割軸10Bは外周に歯溝が形成されたスプライン軸であって、この回転分割軸10Bに前記スプラインナット40がスプライン嵌合している。回転分割軸10Bとスプラインナット40とは、両者が滑り接触していても、あるいはボール(図示せず)を介して互いに転がり接触していてもよい。いずれであっても、スプラインナット40から回転分割軸10Bへ、回転を良好に伝達することができる。
 第1中間ギヤ33および第2中間ギヤ37とトー角調整用中間軸35とは、両中間ギヤ33,37に形成された内歯からなるスプライン歯33a,37aとトー角調整用中間軸35に形成された外歯からなるスプライン歯35a,35bとが互いに噛み合うことで、スプライン嵌合部34,36を構成する。トー角調整用中間軸35のスプライン歯35bは軸方向に長く、どの軸方向箇所にも第2中間ギヤ37のスプライン歯37aが噛み合うことができる。
 中空モータ軸31は転がり軸受41を介して、第1中間ギヤ33は転がり軸受42を介して、第2中間ギヤ37は転がり軸受43を介して、スプラインナット40は転がり軸受44を介して、それぞれハウジング19に支持されている。また、第1中間ギヤ33と第2中間ギヤ37間には転がり軸受45が介在し、両ギヤ33,37は互いに回転自在である。トー角調整用中間軸35は、前記のように、第2中間ギヤ37にスプライン嵌合部36で噛み合っているため、軸方向への移動が許容されている。操舵用中間軸21とトー角調整用中間軸35は、同軸上に互いに隣接して配置されており、両中間軸21,35の互いに対向する軸端間にスラスト軸受46を介在させてある。これにより、両中間軸21,35が相対回転可能となるようにされている。
 転舵軸駆動部14の正常時状態(図3(A),(B))において、サブモータ7の回転出力は、中空モータ軸31、出力ギヤ32、カウンタギヤ32a、第1中間ギヤ33、トー角調整用中間軸35、第2中間ギヤ37、カウンタギヤ37a、入力ギヤ38を経てスプラインナット40に伝達され、スプラインナット40の回転で転舵軸10の回転分割軸10Bが回転させられる。非回転分割軸10Aに対し回転分割軸10Bを回転させることで、ねじ結合部10Cの螺合長さを調整して、転舵軸10を伸縮させる。それにより、左右のタイロッド間距離を変更して、操舵輪13(図1)のトー角を変える。このトー角調整の際、後述するように、転舵動力伝達機構18およびトー角調整動力伝達機構30は、ステアリング制御手段5aの制御により、左右の転舵輪13の転舵角が目標値に一致するように互いに協調して動作させられる。
 切替機構17は、メインモータ6が失陥したとき、並びにサブモータ7が失陥したとき等に、転舵動力伝達機構18およびトー角調整動力伝達機構30の動力伝達系統を切り替えるためのものである。この切替機構17は、転舵用中間軸21およびトー角調整用中間軸35と、これら中間軸21,35を一緒に軸方向に移動させる直動アクチュエータ47と、両中間軸21,35が常に互いに接する状態に維持されるように押圧力を付与する押圧機構48と、両中間軸21,35の移動により転舵動力伝達機構18およびトー角調整動力伝達機構30の各伝動連結部の伝動を係脱する伝動係脱機構49とを備える。
 直動アクチュエータ47は、ばね部材51と、ばね係脱機構52とでなる。さらに、ばね係脱機構52は、ばね部材51の直線運動を回転運動に変換する直線・回転運動変換機構53と、この直線・回転運動変換機構53で得られる回転運動を規制する回転規制機構54とでなる。
 この例では、ばね部材51は圧縮コイルばねであり、サポート部材55を図3(A),(B)~図5(A),(B)の左方向に付勢している。つまり、ばね部材51は、サポート部材55に接する側の端部が左右方向に直線運動をする。サポート部材55は操舵用中間軸21と同軸上に互いに隣接して設けられている。サポート部材55と転舵用中間軸21間にスラスト軸受56を、サポート部材55とばね部材51間にスラストころ軸受57をそれぞれ介在させてあり、サポート部材55は中心軸回りに回転自在である。
 また、この例では、直線・回転運動変換機構53はボールねじ機構であり、サポート部材55と一体のボールねじ軸58と、このボールねじ軸58に螺合するボールナット59とで構成される。直線・回転運動変換機構53はボールねじ機構以外の構成であってもよく、例えばラックとピニオンを組み合わせたものとしてもよい。
 図8(A),(B)に示すように、回転規制機構54は、回転軸であるボールねじ軸58に設けた突起物60、この突起物60に引っ掛かることでボールねじ軸58の回転を止める役割を果たすレバー61、およびこのレバー61を作動させる回転規制駆動源62で構成される。突起物60は、外周の一部が他よりも外径側に張り出す突起部60aとなった板状の部材で、その突起部60aの周方向一方端に、レバー61が当たる段面60bが形成されている。厳密には、突起物60の突起部60aが、レバー61が引っ掛かる突起物である。レバー61は、ボールねじ軸58と平行な回動中心軸61aに回動自在に設けられ、前記突起物60の突起部60aに引っ掛かる一対の引っ掛かり部61b,61cを有する。回転規制駆動源62は、直動式のアクチュエータからなり、例えばリニアソレノイドとされる。回転規制駆動源62は、一方向(上下方向)に進退作動する進退ロッド62aを有し、この進退ロッド62aが前記レバー61に連結リンク63を介して連結されている。
 図8(A)は、転舵軸駆動部14が正常時状態にあるときの回転規制機構54の状態を示す。この状態では、レバー61の一方の引っ掛かり部61bが突起物60の突起部60aに引っ掛かっており、それによって突起物60およびそれと一体のボールねじ軸58の回転が拘束されている。そのため、ボールねじ機構からなる直線・回転運動変換機構53の作用により、ボールねじ軸58が軸方向に移動できず、ばね部材51(図3(A))がサポート部材55(図3(A))を押すことが規制されている。つまり、ばね部材51は圧縮状態に保持され、両中間軸21,35(図3(A),(B))を軸方向に付勢することが不能な無付勢状態になっている。
 図8(A)の状態から回転規制駆動源62の進退ロッド62aを後退させると、レバー61の引っ掛かり部61bと突起物60の突起部60aとの引っ掛かりが解除され、ボールねじ軸58が回転可能になる。それにより、ばね部材51の弾性反発力によって、ボールねじ軸58がボールナット59に対して回転しながら図3(A)の左方向へ移動する。つまり、ばね部材51は前記圧縮状態から開放され、両中間軸21,35を軸方向に付勢する状態となる。突起物60が所定の位相だけ回転すると、図8(B)のように、突起物60の突起部60aがレバー61のもう一方の引っ掛かり部61cに引っ掛かり、突起物60およびボールねじ軸58の回転が拘束される。この間、両中間軸21,35は左側へ軸方向移動して、図4(A),(B)のサブモータ失陥時位置になる。
 図8(B)の状態から回転規制駆動源62の進退ロッド62aを進出させると、レバー61の引っ掛かり部61cと突起物60の突起部60aとの引っ掛かりが解除され、ボールねじ軸58が回転可能になる。それにより、前記同様、ばね部材51が両中間軸21,35を軸方向に付勢する状態となり、両中間軸21,35が左側へ軸方向移動する。それに伴い、突起物60とレバー61の軸方向位置が外れる。そのため、突起物60が回転しても突起部60aがレバー61のいずれの引っ掛かり部61b,61cにも引っ掛からなくなり、ばね部材51は直線運動範囲端まで移動する。このばね部材51が直線運動範囲端まで移動したときの両中間軸21,35の位置が、図5(A),(B)のメインモータ失陥時位置である。
 前記ばね係脱機構52は、作用的な面から見た場合、次のように言うこともできる。すなわち、ばね係脱機構52は、ばね部材51の直線運動範囲内、またはばね部材51と共に直線運動する部材であるボールねじ軸58の運動範囲内に配されて直線運動を妨げる障害物と、この障害物を取り除くことでばね部材51を圧縮状態から開放する障害物取り除き機構Bとでなる。この場合、障害物は、ボールねじ軸58に取付けた突起物60に引っ掛かってボールねじ軸58の直線運動を妨げるレバー61であり、障害物取り除き機構Bは、ボールねじ軸58の運動範囲内に突出させた障害物としてのレバー61を取り去るように作用する回転規制駆動源62と連結リンク63とを組み合わせた機構である。
 押圧機構48は、図3(A),(B)~図5(A),(B)に示すように、トー角調整用中間軸35に隣接して転舵用およびトー角調整用両中間軸21,35と同軸上に配置された押圧軸64と、この押圧軸64をトー角調整用中間軸35に押付ける側に弾性付勢するコイルばね65とでなる。押圧軸64およびコイルばね65は、ハウジング19の一部である押圧機構収容部19aに収容されている。押圧軸64とトー角調整用中間軸35の互いに対向する軸端間にはスラスト軸受66が配置され、これにより押圧軸64に対してトー角調整用中間軸35が回転自在となるようにされている。
 伝動係脱機構49は、第1~第3伝動係脱機構71~73を有する。第1伝動係脱機構71は、メインモータ6の中空モータ軸20と、転舵用中間軸21と、トー角調整用駆動側部材である第1中間ギヤ33とでなる。両中間軸21,35が図3(A),(B)の基準位置にあるとき、ならびに図4(A),(B)のサブモータ失陥時位置にあるときは、中空モータ軸20のスプライン歯20aと転舵用中間軸21のスプライン歯21aが互いに噛み合ってスプライン嵌合部27を構成することにより、中空モータ軸20と転舵用中間軸21とが結合する。両中間軸21,35が図5(A),(B)のメインモータ失陥時位置では、転舵用中間軸21のスプライン歯21aが中空モータ軸20のスプライン歯20aから外れ、転舵用中間軸21のスプライン歯21aが第1中間ギヤ33のスプライン歯33aと噛み合ってスプライン嵌合部74を構成することにより、転舵用中間軸21が第1中間ギヤ33と結合する。
 第2伝動係脱機構72は、転舵用中間軸21と、トー角調整用駆動側部材である第1中間ギヤ33と、トー角調整用中間軸35とでなる。両中間軸21,35が図3(A),(B)の基準位置にあるときは、第1中間ギヤ33のスプライン歯33aとトー角調整用中間軸35のスプライン歯35aが互いに噛み合ってスプライン嵌合部34を構成することにより、第1中間ギヤ33とトー角調整用中間軸35とが結合する。両中間軸21,35が図4(A),(B)のサブモータ失陥時位置にあるとき、ならびに図5(A),(B)のメインモータ失陥時位置にあるときは、上記スプライン嵌合部34の噛み合いが外れて、第1中間ギヤ33とトー角調整用中間軸35とが非結合になる。
 第3伝動係脱機構73は、トー角調整用中間軸35と、トー角調整用従動側部材である第2中間ギヤ37と、ハウジング19とでなる。ハウジング19の前記押圧機構収容部19aの基端には、内歯からなるスプライン歯75aが形成されている。両中間軸21,35が図3(A),(B)の基準位置にあるときは、トー角調整用中間軸35のスプライン歯35bと第2中間ギヤ37のスプライン歯37aが互いに噛み合ってスプライン嵌合部36を構成することにより、トー角調整用中間軸35と第2中間ギヤ37とが結合する。両中間軸21,35が図4(A),(B)のサブモータ失陥時位置にあるとき、ならびに図5(A),(B)のメインモータ失陥時位置にあるときは、上記スプライン嵌合部36に加えて、トー角調整用中間軸35のスプライン歯35bとハウジング19スプライン歯75aが互いに噛み合って、スプライン嵌合部75が構成される。このスプライン嵌合部75により、トー角調整用中間軸35は、ハウジング19に結合されて回転が拘束される。
 上記伝動係脱機構49の切替動作において、両中間軸21,35が基準位置からメインモータ失陥時位置へ軸方向移動する過程で、トー角調整用中間軸35が第1中間ギヤ33から外れるのよりも先に、トー角調整用中間軸35がハウジング19に結合されるように各部材の位置関係が設定されている。
 上記伝動係脱機構49の切替動作を円滑に行うために、転舵用中間軸21のスプライン歯21a、およびトー角調整用中間軸35のスプライン歯35a,35bは、図9に示す通常のスプライン軸80におけるスプライン歯80aのように歯先の形状を平坦な形状とせず、例えば図10(A),(B)または図11(A),(B)に示すように、その歯先の形状を鋭角状とするのが望ましい。あるいは、他の例として、図12(A),(B)または図13(A),(B)に示すように、スプライン歯21a,35ab,35bの歯先の形状を歯先凸部の無いテーパ状とするのが望ましい。
 また、図11(A),(B)または図13(A),(B)に示すように、転舵用中間軸21のトー角調整用中間軸35に対向する側の先端に、スプライン歯21aよりも軸端側に突出させて突出部76を設けてもよい。この突出部76の外径は、スプライン歯21aの歯底半径以下とする。このような突出部76が転舵用中間軸21の先端に設けられていれば、転舵用中間軸21およびトー角調整用中間軸35が基準位置からメインモータ失陥時位置に位置切替するときに、突出部76の軸方向長さ分だけ、先にトー角調整中間軸35のスプライン歯35aが第1中間ギヤ33のスプライン歯33aから外れ、その後で転舵用中間軸21のスプライン歯21aが第1中間ギヤ33のスプライン歯33aに噛み合う。つまり、サブモータ7とトー角調整用中間軸35との動力的な結合が解除されてから、サブモータ7と転舵用中間軸21とが動力的に結合される。なお、図3(A),(B)~図5(A),(B)に示す転舵軸駆動部14には、図11(A),(B)または図13(A),(B)に示す軸端形状の転舵用中間軸21が採用されている。
 次に、このステアバイワイヤ式操舵装置の転舵軸駆動部14での動作を説明する。メインモータ6およびサブモータ7が正常である場合には、図3(A),(B)のように、メインモータ6の中空モータ軸20の回転が転舵動力伝達機構18を介してボールナット26に伝達されると共に、サブモータ7の中空モータ軸31の回転がトー角調整動力伝達機構30を介してスプラインナット40に伝達される。転舵軸10の非回転分割軸10Aのボールねじ軸部10aに螺合するボールナット26の回転は、非回転分割軸10Aおよび回転分割軸10Bを一体に軸方向に移動させ、これにより操舵輪13の操舵が行なわれる。転舵軸10の回転分割軸10Bにスプライン嵌合するスプラインナット40の回転は回転分割軸10Bを回転させ、この回転により転舵軸10の両端のトー角調整用雄ねじ部10cに連結されたタイロッド11が進退して、トー角調整が行なわれる。
 このトー角調整は、具体的には次のように転舵用動力伝達機構18およびトー角調整動力伝達機構の30を互いに協調する動作により行われる。すなわち、サブモータ7によりスプラインナット40を回転させると、スプラインナット40と共に、回転分割軸10Bが回転する。回転分割軸10Bは非回転分割輪10Aに対して、互いに同心のねじ結合部10Cで螺合していて、スプラインナット40に対して軸方向に移動自在であるため、回転分割軸10Bが回転すると、ねじ結合部10Cにおける回転量に応じた軸方向距離だけ、非回転分割輪10Aに対して回転分割軸10Bが軸方向に移動する。これにより、非回転分割輪10Aおよび回転分割軸10Bからなる転舵軸10の長さが変わるため、トー角が変わる。しかし、非回転分割軸10Bだけ移動したのでは、転舵角が変わることになる。
 そこで、メインモータ6によってボールナット26を回転させ、回転分割軸10Aを非回転分割軸10Bの移動方向に対して逆方向に軸方向させる。すなわち、サブモータ7による、非回転分割軸10Bの回転分割軸10Aに対する軸方向の相対移動長さの半分だけ、メインモータ6によって回転分割軸10Aを移動させ、転舵軸10の全体長さの中心位置を維持させる。これにより、左右の転舵輪13の転舵角度が共に目標値に一致するように、つまり転舵角を変えることなく、トー角調整が行われる。ECU3の制御装置5は、このようにサブモータ7と共にメインモータ6を移動させ、非回転分割軸10Bの偏った移動を相殺させて、転舵角を変えることなくトー角調整を行わせる。
 サブモータ7が失陥した場合など、前記トー角固定時切替形態とするときは、切替機構17の回転規制駆動源62を作動させて、回転規制機構54を図8(A)の状態から同図(B)の状態に切り替える。それにより、直動アクチュエータ47を構成するばね部材51の弾性反発力によって、両中間軸21,35が図4(A),(B)のサブモータ失陥時位置まで軸方向移動して停止する。
 サブモータ失陥時位置では、第1伝動係脱機構71により転舵用中間軸21は中空モータ軸20に結合したままに保持され、第2伝動係脱機構72によりトー角調整用中間軸35は第1中間ギヤ33に対し非結合になり、第3伝動係脱機構73によりトー角調整用中間軸35がハウジング19に結合された状態となる。すなわち、トー角調整動力伝達機構30が動力伝達不能状態となると共に、トー角調整用中間軸35の回転が拘束される。その結果、メインモータ6による転舵のみが行われる。前述したように、この転舵軸駆動部14には、図11(A),(B)または図13(A),(B)に示す軸端形状の転舵用中間軸21が採用されており、サブモータ7とトー角調整用中間軸35との動力的な結合が解除されてから、サブモータ7と転舵用中間軸21とが動力的に結合されるため、伝動系統の変換動作が円滑に行える。
 メインモータ6が失陥した場合など、前記異常時切替形態とするときは、切替機構17の回転規制駆動源62を作動させて、回転規制機構54を図8(A)の状態から同図(B)の状態を経てから同図(A)の状態に戻す。それにより、ばね部材51の弾性反発力によって、両中間軸21,35が、前記サブモータ失陥時位置を経由して、図5(A),(B)のメインモータ失陥時位置まで軸方向移動する。
 メインモータ失陥時位置では、第1伝動係脱機構71および第2伝動係脱機構72により、転舵用中間軸21と中空モータ軸20の結合、ならびにトー角調整用中間軸35と第1中間ギヤ33の結合が外れて、新たに転舵用中間軸21が第1中間ギヤ33と結合し、第3伝動係脱機構73によりトー角調整用中間軸35がハウジング19に結合された状態となる。すなわち、メインモータ6が転舵動力伝達機構18から切り離され、かつトー角調整用中間軸35の回転を拘束したうえで、転舵用中間軸21がトー角調整動力伝達機構30に連結される。それにより、メインモータ6に代えて、サブモータ7の回転を転舵用動力伝達機構18に伝えて転舵することが可能になる。
 このように、このステアバイワイヤ式操舵装置100では、切替機構17により、メインモータ6が失陥したときに、メインモータ6を転舵動力伝達機構18から切り離し、かつトー角の変化を止めておき、メインモータ6に代えてサブモータ7の回転を転舵動力伝達機構18に伝えて転舵可能とすることにより、メインモータ失陥時でも転舵可能なフェールセーフ機能を持たせられる。また、切替機構17により、サブモータ7が失陥したときに、トー角調整動力伝達機構30を動力伝達不能状態としてメインモータ6による転舵のみ行わせることにより、サブモータ失陥時にトー角調整機構16を固定して安全に走行できる。これらメインモータ失陥時およびサブモータ失陥時における転舵動力伝達機構18およびトー角調整動力伝達機構30の動力伝達系統を切り替える一連の動作は、直動アクチュエータ47で転舵用およびトー角調整用の各中間軸21,35を軸方向に移動させることで、伝動係脱機構49により確実に行われる。
 転舵軸10を、非回転分割軸10Aと回転分割軸10Bとに軸方向に2分割し、これら両分割軸10A,10Bを軸中心と同心のねじ結合部10Cで互いに結合した軸としたことにより、非回転分割軸10Aに対し回転分割軸10Bを回転させることで、左右のタイロッド間距離を変更させられる。左右のタイロッド11は、非回転分割軸および回転分割軸転舵軸にそれぞれ直接連結することができる。このため、このステアバイワイヤ式操舵装置は、構成がコンパクトで、かつ転舵軸10が設けられている箇所の全体の軸方向長さを短くでき、車両に搭載しやすい。なお、転舵軸が軸方向に分割されていない場合は、転舵軸の両端に、転舵軸の回転に応じて軸方向に進退する進退部材を設け、これら進退部材に左右のタイロッドを取付ける構成とする必要がある。そのため、転舵軸が設けられている箇所の全体の軸方向長さが長くなる。
 なお、サブモータ7によるトー角調整およびメインモータ6の失陥のときの転舵用駆動源としての代替は、車両走行時に行う動作であるため、その最大発生トルクは、据え切り動作時にメインモータ6に必要なトルクよりもはるかに小さなものである。したがって、サブモータ7は、メインモータ6よりも小型のもので良い。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…ステアリングホイール
2A…第1の操舵角センサ
2B…第2の操舵角センサ
3…ECU
4…反力アクチュエータ
5…制御装置
6…メインモータ
7…サブモータ
10…転舵軸
11…タイロッド
14…転舵軸駆動部
15…転舵機構
16…トー角調整機構
17…切替機構
18…転舵動力伝達機構
30…トー角調整動力伝達機構
100…ステアバイワイヤ式操舵装置
101…第1の制御装置
102…基本制御機能部
103…相互故障診断部
105…サブモータ失陥診断部
106…異常時切替指令部
107…センサ故障診断部
108…センサ出力転送部
109…反力アクチュエータ失陥診断部
110…トー角固定指令部
201…第2の制御装置
202…基本制御機能部
203…相互故障診断部
205…メインモータ失陥診断部
207…センサ故障診断部
209…センサ異常報知部
210…サブモータ異常報知部
211…制御装置異常報知部
212…反力異常報知部
301…外部の機器
302…報知手段

Claims (10)

  1.  ステアバイワイヤ式操舵装置を制御する制御装置であって、
     前記ステアバイワイヤ式操舵装置が、
     左右両端にタイロッドが設けられた転舵軸と、ステアリングホイールと、このステアリングホイールに操舵反力を与える反力アクチュエータと、前記ステアリングホイールの操舵角をそれぞれ検出する第1および第2の操舵角センサと、メインモータおよびサブモータと、前記メインモータの回転を前記転舵軸に伝える転舵動力伝達機構と、前記サブモータの回転によりトー角を調整させるトー角調整動力伝達機構と、
     前記転舵動力伝達機構に対して前記メインモータを切り離しサブモータの回転を伝えて転舵可能とする異常時切替形態に切替可能な切替機構とを備え、
     前記制御装置が相互に通信し合う第1の制御装置と第2の制御装置とでなり、
     前記第1の制御装置は、前記第1の操舵角センサの検出信号を受け取って前記反力アクチュエータとサブモータを制御する基本制御機能部を有し、
     前記第2の制御装置は、前記第2の操舵角センサの検出信号を受け取って前記メインモータを制御する基本制御機能部を有し、
     第1および第2の各制御装置は互いの故障を診断する相互故障診断部をそれぞれ有し、
     第2の制御装置はメインモータの失陥を診断して第1の制御装置へ診断結果を伝えるメインモータ失陥診断部を有し、
     第1の制御装置は第2の制御装置からメインモータが失陥であるとの診断結果を受けたとき、または前記相互故障診断部で第2の制御装置が故障であると診断したときに、前記切替機構を前記異常時切替形態に切り替えさせる異常時切替指令部を有する、
     冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  2.  請求項1において、前記第1の操舵角センサは、前記操舵反力アクチュエータの動作量を検出してその検出結果を前記ステアリングホイールの操舵角の検出結果の出力とする冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  3.  請求項1において、前記異常時切替指令部は、前記第1および第2の制御装置に対する外部の機器から指令を受けたときに、前記切替機構を前記異常時切替形態に切り替えさせる機能を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  4.  請求項1において、前記第1の制御装置または第2の制御装置は、第1および第2の操舵角センサの出力を比較して第2の操舵角センサの故障を診断するセンサ故障診断部を有し、前記異常時切替指令部は前記センサ故障診断部により第2の操舵角センサが故障であると診断された結果を受けたときに、前記切替機構を前記異常時切替形態に切り替えさせる冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  5.  請求項1において、前記第1の制御装置または第2の制御装置は、第1および第2の操舵角センサの出力を比較して第2の操舵角センサの故障を診断するセンサ故障診断部を有し、かつ前記センサ故障診断部により第2の操舵角センサが故障であると診断された結果を受けたときに第1の操舵角センサの出力を第2の制御装置に通信するセンサ出力転送部を有し、前記第2の制御装置は、前記基本制御部による前記メインモータの制御を、第2の操舵角センサの出力を用いる代わりに、前記センサ出力転送部から転送された第1の操舵角センサの出力を用いて行う使用センサ切替部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  6.  請求項1において、前記第1または第2の制御装置は、第1および第2の操舵角センサの出力を比較して第1の操舵角センサの故障を診断するセンサ故障診断部を有し、このセンサ故障診断部による第1の操舵角センサが故障であるとの診断結果を、車両の室内の報知手段に報知させるセンサ異常報知部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  7.  請求項1において、前記第1の制御装置は、前記サブモータの失陥を診断するサブモータ失陥診断部を有し、前記第2の制御装置は、前記サブモータ失陥診断部による失陥との診断結果を第1の制御装置から受けて、この診断結果を、車両の室内の報知手段に報知させるサブモータ異常報知部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  8.  請求項1において、前記第2の制御装置は、前記相互故障診断部により第1の制御装置が故障であると診断した結果を、車両の室内の報知手段に報知させる制御装置異常報知部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  9.  請求項1において、前記第1の制御装置が、前記反力アクチュエータの失陥を診断する反力アクチュエータ失陥診断部を有し、この診断部が失陥であると診断した結果を、車両の室内の報知手段に報知させる反力異常報知部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
  10.  請求項1において、前記切替機構は、トー角調整動力伝達機構を動力伝達不能状態として前記メインモータによる転舵のみ行わせるトー角固定時切替形態に切替可能であり、前記第1の制御部は前記サブモータの失陥を診断するサブモータ失陥検出部、およびこのサブモータ失陥検出部による失陥であるとの検出結果によって前記切替機構をトー角固定時切替形態に切替えるトー角固定指令部を有する冗長機能付きステアバイワイヤ式操舵装置の制御装置。
PCT/JP2012/068267 2011-07-29 2012-07-19 冗長機能付きステアバイワイヤ式操舵装置の制御装置 WO2013018548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/234,703 US20140172236A1 (en) 2011-07-29 2012-07-19 Control device for steer-by-wire steering device having redundancy function
CN201280037521.3A CN103732478B (zh) 2011-07-29 2012-07-19 带有冗余功能的线控转向式操舵装置的控制装置
EP12819871.0A EP2738067B1 (en) 2011-07-29 2012-07-19 Device for controlling steer-by-wire steering device having redundancy function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-167090 2011-07-29
JP2011167090A JP5816019B2 (ja) 2011-07-29 2011-07-29 冗長機能付きステアバイワイヤ式操舵装置の制御装置

Publications (1)

Publication Number Publication Date
WO2013018548A1 true WO2013018548A1 (ja) 2013-02-07

Family

ID=47629076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068267 WO2013018548A1 (ja) 2011-07-29 2012-07-19 冗長機能付きステアバイワイヤ式操舵装置の制御装置

Country Status (5)

Country Link
US (1) US20140172236A1 (ja)
EP (1) EP2738067B1 (ja)
JP (1) JP5816019B2 (ja)
CN (1) CN103732478B (ja)
WO (1) WO2013018548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019902A1 (ja) * 2013-08-09 2015-02-12 Ntn株式会社 後輪転舵装置
US20150166099A1 (en) * 2013-11-11 2015-06-18 Daniel Kee Young Kim Intuitive drive-by-wire steering with redundant mechanical control

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826680B2 (ja) * 2012-03-09 2015-12-02 Ntn株式会社 ステアバイワイヤ式操舵機構の制御装置
JP6282452B2 (ja) * 2013-12-05 2018-02-21 Ntn株式会社 車両操舵用制御装置
DE102014002034A1 (de) * 2014-02-13 2015-08-13 Macgregor Hatlapa Gmbh & Co. Kg Ruderantriebssystem und Verfahren
US9199667B2 (en) * 2014-03-14 2015-12-01 Mitsubishi Electric Research Laboratories, Inc. System and method for semi-autonomous driving of vehicles
JP6283737B2 (ja) * 2014-03-19 2018-02-21 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
EP3025929B1 (en) 2014-11-28 2017-06-14 Aktiebolaget SKF User interface actuator for a pilot-by-wire system
CN104536358B (zh) * 2014-12-17 2017-10-17 中船航海科技有限责任公司 船用自动操舵仪双操舵控制信号的自动切换方法及装置
DE102015115123A1 (de) * 2015-09-09 2017-03-09 Robert Bosch Automotive Steering Gmbh Vorrichtung zum Betreiben eines Servolenksystems, Servolenksystem
JP6505257B2 (ja) * 2016-01-14 2019-04-24 三菱電機株式会社 電動パワーステアリング装置
DE102016106814A1 (de) 2016-04-13 2017-10-19 Infineon Technologies Ag Vorrichtung und Verfahren zum Überwachen eines Signalpfads und Signalverarbeitungssystem
DE102016004593A1 (de) * 2016-04-19 2017-10-19 Thyssenkrupp Ag Transportschüssel für ein Steer by Wire-Lenksystem für Kraftfahrzeuge
US10442459B2 (en) * 2017-07-07 2019-10-15 GM Global Technology Operations LLC Fail operational control of steer-by-wire system without mechanical backup connection
CN109521689B (zh) * 2018-03-16 2022-03-15 陕西飞机工业(集团)有限公司 一种飞机双余度速压调节式舵面角度控制系统的设计方法
JP7202930B2 (ja) * 2018-03-20 2023-01-12 Ntn株式会社 ステアリングシステムおよびそれを備えた車両
JP6981354B2 (ja) 2018-04-23 2021-12-15 トヨタ自動車株式会社 操舵システム
JP6981353B2 (ja) 2018-04-23 2021-12-15 トヨタ自動車株式会社 操舵システム
KR102033559B1 (ko) * 2018-05-08 2019-10-17 주식회사 만도 조향 제어 장치 및 방법과, 조향 장치
CN109080696A (zh) * 2018-06-07 2018-12-25 奇瑞汽车股份有限公司 线控转向系统的保护装置及线控转向系统
JP7035843B2 (ja) * 2018-06-26 2022-03-15 トヨタ自動車株式会社 車両用ステアリングシステム
JP7017130B2 (ja) * 2018-08-13 2022-02-08 トヨタ自動車株式会社 ステアリングシステム
JP7061055B2 (ja) * 2018-11-06 2022-04-27 日立Astemo株式会社 ステアリング装置
JP7099307B2 (ja) * 2018-12-25 2022-07-12 トヨタ自動車株式会社 ステアリング装置
JP7115971B2 (ja) 2018-12-26 2022-08-09 日立Astemo株式会社 車載制御システム
EP3792149B1 (en) 2019-08-22 2023-09-27 Jtekt Corporation Steering device and steering method
EP3782875B1 (en) * 2019-08-22 2022-07-20 Jtekt Corporation Steering device and method for detecting anomaly in steering device
US12015365B2 (en) 2019-08-26 2024-06-18 Moog Inc. Fault tolerant actuator assembly
JP7539909B2 (ja) 2019-10-31 2024-08-26 日本精工株式会社 車両用操向装置
JP7252881B2 (ja) * 2019-10-31 2023-04-05 株式会社デンソー モータ駆動システム
JP7284690B2 (ja) * 2019-11-11 2023-05-31 株式会社デンソー モータ駆動システム
JP7387404B2 (ja) * 2019-11-19 2023-11-28 Thk株式会社 アクチュエータ又はサスペンション
CN111267946A (zh) * 2020-01-22 2020-06-12 清华大学 融入主动转向控制的双电机冗余电动助力转向控制方法
JP7269432B2 (ja) * 2020-02-17 2023-05-08 日立Astemo株式会社 回転角検出装置
CN113978480A (zh) * 2020-05-20 2022-01-28 华为技术有限公司 一种冗余电子控制系统及设备
CN112249151B (zh) * 2020-08-14 2024-02-27 北京国家新能源汽车技术创新中心有限公司 一种线控转向系统、控制方法以及汽车
CN112721894B (zh) * 2021-01-21 2022-01-11 江苏大学 一种三电机集成式高可靠智能线控系统及其控制方法
CN113247088B (zh) * 2021-06-30 2023-02-24 中国第一汽车股份有限公司 一种具有冗余功能的线控转向装置及控制方法
CN113815720B (zh) * 2021-11-05 2023-09-22 安徽奇米智能科技有限公司 一种无人驾驶汽车线控转向系统的故障观测器的设计方法
CN113830168B (zh) * 2021-11-05 2023-09-22 安徽奇米智能科技有限公司 一种基于故障估计的车辆前轮转角容错控制方法、系统
CN118465633B (zh) * 2024-07-12 2024-09-13 东营南科电气有限责任公司 一种变压器故障诊断方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146229A (ja) * 2001-11-12 2003-05-21 Koyo Seiko Co Ltd 車両用操舵装置
JP2004010024A (ja) * 2002-06-12 2004-01-15 Toyoda Mach Works Ltd 車両の操舵制御装置及び車両の操舵制御方法
JP2005349845A (ja) 2004-06-08 2005-12-22 Toyoda Mach Works Ltd ステアバイワイヤシステム
JP2008126752A (ja) * 2006-11-17 2008-06-05 Jtekt Corp 車両用操舵装置
JP2010069895A (ja) * 2008-09-16 2010-04-02 Ntn Corp ステアバイワイヤ式操舵装置
JP2010149540A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd 車両用操舵装置
JP2011001041A (ja) * 2009-06-22 2011-01-06 Fujitsu Ten Ltd 操舵装置
WO2011001904A1 (ja) * 2009-07-02 2011-01-06 Ntn株式会社 ステアバイワイヤ式操舵装置
JP2011084178A (ja) 2009-10-16 2011-04-28 Ntn Corp ステアバイワイヤ式操舵装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262148A (ja) * 1994-03-22 1995-10-13 Nec Corp コンピュータシステム
JP3412349B2 (ja) * 1994-12-28 2003-06-03 株式会社日立製作所 制御装置
JP2001001041A (ja) * 1999-06-21 2001-01-09 Sanyo Special Steel Co Ltd 熱間押出用メインラム高圧水量調整装置
US7178049B2 (en) * 2002-04-24 2007-02-13 Medius, Inc. Method for multi-tasking multiple Java virtual machines in a secure environment
JP2006139621A (ja) * 2004-11-12 2006-06-01 Nec Electronics Corp マルチプロセッシングシステム及びマルチプロセッシング方法
JP4853053B2 (ja) * 2006-03-03 2012-01-11 日産自動車株式会社 車両用操舵制御装置
JP2010163016A (ja) * 2009-01-15 2010-07-29 Ntn Corp ステアバイワイヤ式操舵装置
JP4803275B2 (ja) * 2009-03-23 2011-10-26 日本電気株式会社 プロセッサ、サーバシステム、プロセッサ追加方法およびプロセッサ追加プログラム
DE102009019089A1 (de) * 2009-04-20 2010-11-04 Pilz Gmbh & Co. Kg Verfahren und Vorrichtung zum Erstellen eines Anwenderprogramms für eine Sicherheitssteuerung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146229A (ja) * 2001-11-12 2003-05-21 Koyo Seiko Co Ltd 車両用操舵装置
JP2004010024A (ja) * 2002-06-12 2004-01-15 Toyoda Mach Works Ltd 車両の操舵制御装置及び車両の操舵制御方法
JP2005349845A (ja) 2004-06-08 2005-12-22 Toyoda Mach Works Ltd ステアバイワイヤシステム
JP2008126752A (ja) * 2006-11-17 2008-06-05 Jtekt Corp 車両用操舵装置
JP2010069895A (ja) * 2008-09-16 2010-04-02 Ntn Corp ステアバイワイヤ式操舵装置
JP2010149540A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd 車両用操舵装置
JP2011001041A (ja) * 2009-06-22 2011-01-06 Fujitsu Ten Ltd 操舵装置
WO2011001904A1 (ja) * 2009-07-02 2011-01-06 Ntn株式会社 ステアバイワイヤ式操舵装置
JP2011084178A (ja) 2009-10-16 2011-04-28 Ntn Corp ステアバイワイヤ式操舵装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019902A1 (ja) * 2013-08-09 2015-02-12 Ntn株式会社 後輪転舵装置
US20150166099A1 (en) * 2013-11-11 2015-06-18 Daniel Kee Young Kim Intuitive drive-by-wire steering with redundant mechanical control
US9434431B2 (en) * 2013-11-11 2016-09-06 Lit Motors Corporation Intuitive drive-by-wire steering with redundant mechanical control

Also Published As

Publication number Publication date
EP2738067B1 (en) 2019-04-10
JP5816019B2 (ja) 2015-11-17
EP2738067A4 (en) 2017-04-26
US20140172236A1 (en) 2014-06-19
EP2738067A1 (en) 2014-06-04
CN103732478A (zh) 2014-04-16
CN103732478B (zh) 2016-10-05
JP2013028312A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5816019B2 (ja) 冗長機能付きステアバイワイヤ式操舵装置の制御装置
WO2011001904A1 (ja) ステアバイワイヤ式操舵装置
JP5506529B2 (ja) ステアバイワイヤ式操舵装置
JP6017588B2 (ja) 車両用操舵装置
CN109478858B (zh) 马达控制装置和电动助力转向装置
JP2015063270A (ja) ステアバイワイヤ式操舵装置の制御装置
US9393989B2 (en) Clutch device and steering device
WO2010082458A1 (ja) ステアバイワイヤ式操舵装置
WO2016194885A1 (ja) 後輪転舵制御装置
JP5871077B2 (ja) クラッチ装置および操舵装置
JP5239245B2 (ja) 車両用操舵制御装置
JP6407564B2 (ja) 後輪転舵制御装置
JP5377215B2 (ja) ステアバイワイヤ式操舵装置
JP5528087B2 (ja) ステアバイワイヤ式操舵装置
WO2017033884A1 (ja) 車両操舵装置
JP2014054916A (ja) 操舵装置
JP6214984B2 (ja) 後輪転舵装置の制御装置
JP5419565B2 (ja) ステアバイワイヤ式操舵装置
JP5419564B2 (ja) ステアバイワイヤ式操舵装置
JP5797930B2 (ja) ステアバイワイヤ式操舵装置
CN107921994B (zh) 用于运行伺服转向系统的装置以及伺服转向系统
JP7510308B2 (ja) 舵システム
WO2014057516A1 (ja) 操舵装置
JP2015058865A (ja) 後輪転舵装置の制御装置
JP2012086655A (ja) ステアバイワイヤ式操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14234703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE