WO2013018448A1 - 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ - Google Patents

電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ Download PDF

Info

Publication number
WO2013018448A1
WO2013018448A1 PCT/JP2012/065616 JP2012065616W WO2013018448A1 WO 2013018448 A1 WO2013018448 A1 WO 2013018448A1 JP 2012065616 W JP2012065616 W JP 2012065616W WO 2013018448 A1 WO2013018448 A1 WO 2013018448A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
semiconductor film
field effect
effect transistor
film
Prior art date
Application number
PCT/JP2012/065616
Other languages
English (en)
French (fr)
Inventor
雅司 小野
真宏 高田
文彦 望月
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147001825A priority Critical patent/KR101549797B1/ko
Priority to CN201280035996.9A priority patent/CN103688364B/zh
Publication of WO2013018448A1 publication Critical patent/WO2013018448A1/ja
Priority to US14/160,730 priority patent/US8956907B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a method for manufacturing a field effect transistor, and a field effect transistor, a display device, an image sensor, and an X-ray sensor.
  • field effect transistors have been used as unit elements of semiconductor memory integrated circuits, high-frequency signal amplifying elements, liquid crystal driving elements, and the like. Yes.
  • a silicon semiconductor or a compound thereof As a semiconductor channel layer (active layer) for forming a field effect transistor, a silicon semiconductor or a compound thereof has been conventionally used in many cases. For high-frequency amplifying elements and integrated circuits that require high-speed operation, Although low-speed operation is sufficient, amorphous silicon is used for liquid crystal drive devices that are required to support large areas such as display applications, but amorphous silicon performance has been improved for larger size and higher definition. There is a demand for TFT characteristics that surpass it. Recently, flexible displays that are lightweight and bendable have attracted attention. For flexible devices, a highly flexible resin substrate is mainly used, and a lower temperature process is required than a liquid crystal display process (400 ° C.).
  • IGZO In-Ga-Zn-O-based oxide semiconductor that has better electrical characteristics than amorphous silicon and can be manufactured by a liquid crystal process or a low-temperature process
  • IGZO is regarded as a promising semiconductor element material for next-generation displays, and universities / manufacturers around the world are actively conducting research and development toward practical application.
  • a field effect transistor using such a semiconductor film such as IGZO as an active layer may be mounted on an organic EL display device or a liquid crystal display device having a blue light emitting layer.
  • the field effect transistor capable of receiving blue light has a low characteristic deterioration with respect to light irradiation in a wavelength region smaller than 450 nm. If the optical band gap of IGZO is relatively narrow and the region has optical absorption, the threshold shift of the transistor occurs.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-67710 includes an active layer made of an oxide semiconductor and an oxide containing an element species having a stronger bonding force with oxygen than the oxide semiconductor of the active layer.
  • a method of manufacturing a field effect transistor including an oxide semiconductor layer having a three-layer structure of an intermediate layer having a thickness of 1 nm to 200 nm and a resistance layer having a lower electrical conductivity than the active layer is disclosed.
  • this manufacturing method also discloses that heat treatment is performed in the atmosphere as a post-treatment after forming the resistance layer of the oxide semiconductor layer.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-258431
  • a second oxide semiconductor film is formed over the first oxide semiconductor film so as to have a thickness of 10 nm to 300 nm, and then the atmospheric atmosphere. It is disclosed that heat treatment is performed at 250 ° C. or higher and 500 ° C. or lower.
  • Patent Document 1 when an intermediate layer is formed on an active layer having a high electrical conductivity in a three-layer structure of an oxide semiconductor layer, the exposed surface of the active layer is damaged by the film formation. As a result, a surface defect that may affect a threshold shift or the like during light irradiation may occur.
  • the film formation if the sputtering method or CVD method that generates plasma is used from the viewpoint of productivity / barrier properties, the exposed surface of the active layer is particularly damaged by the plasma, resulting in worsening of the threshold shift during light irradiation. The surface defects that cause this increase.
  • the threshold shift itself may be improved by heat treatment even if the surface defects cannot be compensated for, but it is assumed that the threshold shift itself during light irradiation is not improved by the heat treatment after forming the resistance layer.
  • the present invention has been made in view of the above circumstances, and provides a method for manufacturing a field effect transistor that stabilizes TFT characteristics during light irradiation, and a field effect transistor, a display device, an image sensor, and an X-ray sensor.
  • the purpose is to do.
  • ⁇ 1> a first step of forming a first oxide semiconductor film on a gate insulating layer disposed on a gate electrode; and after the first step, on the first oxide semiconductor film, A second step of forming a second oxide semiconductor film having a cation composition different from that of the first oxide semiconductor film and having a lower electrical conductivity than the first oxide semiconductor film; and after the second step A third step of heat-treating above 300 ° C.
  • a cation composition is different from that of the first oxide semiconductor film on the second oxide semiconductor film
  • the heat treatment in the third step includes performing a plurality of times.
  • the thickness of the second oxide semiconductor film is Z (nm)
  • the heat treatment temperature in the third step is T (° C.)
  • the diffusion distance of oxygen into the second oxide semiconductor film and the first oxide semiconductor film is L (nm)
  • 0 ⁇ Z ⁇ L 8 ⁇ 10 ⁇ 6 ⁇ T 3 ⁇ 0.0092 ⁇
  • ⁇ 3> During the second step and the third step, the thickness of the second oxide semiconductor film and the heat treatment temperature are adjusted so as to satisfy the relational expression of Z ⁇ L ⁇ 3.0, ⁇ 2 The method for producing a field effect transistor according to>.
  • ⁇ 4> In the second step and the third step, the thickness of the second oxide semiconductor film and the heat treatment temperature are adjusted so as to satisfy a relational expression of L-15.0 ⁇ Z. ⁇ 2 > Or ⁇ 3> The method for producing a field effect transistor according to ⁇ 3>.
  • ⁇ 5> The thickness of the second oxide semiconductor film and the heat treatment temperature so as to satisfy the relational expression of L-11.0 ⁇ Z ⁇ L-8.0 during the second step and the third step
  • the third oxide semiconductor film is formed such that the cation composition ratio of the third oxide semiconductor film is the same as the cation composition ratio of the second oxide semiconductor film.
  • 5> The manufacturing method of the field effect transistor as described in any one of 5>.
  • the total thickness of the second oxide semiconductor film and the third oxide semiconductor film is adjusted to be more than 10 nm and less than 70 nm, ⁇ 1
  • the first oxide semiconductor film, the second oxide semiconductor film, and the third oxide semiconductor film each include at least one of In, Ga, and Zn.
  • the first oxide semiconductor film includes In, and an In composition ratio of the first oxide semiconductor film is higher than an In composition ratio of the second oxide semiconductor film.
  • the manufacturing method of the field effect transistor of description is described.
  • the second oxide semiconductor film contains Ga, and a Ga composition ratio of the second oxide semiconductor film is higher than a Ga composition ratio of the first oxide semiconductor film, ⁇ 8> or ⁇ 9>
  • ⁇ 12> The method for producing a field effect transistor according to any one of ⁇ 8> to ⁇ 11>, wherein the heat treatment temperature in the third step and the fifth step is adjusted to less than 600 ° C.
  • the composition of the first oxide semiconductor film is represented by In (a) Ga (b) Zn (c) O (d) (a, b, c, d> 0), ⁇ 1> The method for producing a field effect transistor according to any one of ⁇ 13>.
  • the composition of the first oxide semiconductor film is as follows: c ⁇ 3/5, b> 0, b ⁇ 3a / 7-3 / 14, b ⁇ 9a / 5-53 / 50, b ⁇ ⁇ 8a / ⁇ 14>
  • the method for producing a field effect transistor according to ⁇ 14>, wherein the composition is in a range represented by 5 + 33/25, b ⁇ 91a / 74 ⁇ 17 / 40 (where a + b + c 1).
  • composition of the first oxide semiconductor film is represented by In (x) Zn (1-x) O (y) (y> 0, 0 ⁇ x ⁇ 1). 13> The method for producing a field-effect transistor according to any one of 13>. ⁇ 19> The method for producing a field effect transistor according to ⁇ 18>, wherein the composition of the first oxide semiconductor film is a composition within a range represented by 0.4 ⁇ x ⁇ 0.75. ⁇ 20> The method for manufacturing a field effect transistor according to ⁇ 19>, wherein the composition of the first oxide semiconductor film is a composition within a range represented by 0.4 ⁇ x ⁇ 0.5.
  • composition of the second oxide semiconductor film is represented by In (e) Ga (f) Zn (g) O (h) (e, f, g, h> 0), ⁇ 1>
  • ⁇ 22> The field-effect transistor according to ⁇ 21>, wherein the composition of the second oxide semiconductor film is a composition within a range represented by 0.250 ⁇ f / (e + f) ⁇ 0.875. Production method.
  • ⁇ 23> The electric field according to any one of ⁇ 1> to ⁇ 22>, wherein each of the first step, the second step, and the fourth step is performed using a film forming method that generates plasma. Method for producing effect transistor.
  • ⁇ 24> The method for manufacturing a field effect transistor according to any one of ⁇ 1> to ⁇ 23>, wherein the five steps are performed after the electrode formation step.
  • the channel stacked film is an oxide semiconductor layer containing In, Ga, and Zn, respectively, and the first, second, and third oxidation layers are formed from the gate insulating film side.
  • the In content in the first oxide semiconductor film is higher than that in the second and third oxide semiconductor films, and the lattice defect density in the second oxide semiconductor layer is A field effect transistor having a small lattice defect density of the third oxide semiconductor layer.
  • a bottom having a gate insulating layer on the gate electrode, a channel stacked film on which electrons travel is formed on the gate insulating layer, and a source electrode and a drain electrode are formed on the channel stacked film
  • the channel stacked film is an oxide semiconductor layer containing In, Ga, and Zn, respectively, and the first, second, and third oxidation layers are formed from the gate insulating film side.
  • a display device comprising the field effect transistor manufactured by the method for manufacturing a field effect transistor according to any one of ⁇ 1> to ⁇ 24>.
  • ⁇ 28> a substrate, a field effect transistor disposed on the substrate and manufactured by the method of manufacturing a field effect transistor according to any one of ⁇ 1> to ⁇ 24>, and the field effect transistor
  • a bottom emission type display device comprising: an organic electroluminescent element electrically connected to the field effect transistor; and light emitted from the organic electroluminescent element is extracted from the substrate side.
  • An image sensor comprising a field effect transistor manufactured by the method for manufacturing a field effect transistor according to any one of ⁇ 1> to ⁇ 24>.
  • An X-ray sensor comprising a field effect transistor manufactured by the method for manufacturing a field effect transistor according to any one of ⁇ 1> to ⁇ 24>.
  • a method for manufacturing a field effect transistor that stabilizes TFT characteristics during light irradiation and a field effect transistor, a display device, an image sensor, and an X-ray sensor.
  • FIG. 1 is a schematic diagram showing an example of a top contact type TFT having a bottom gate structure, which is a TFT according to an embodiment of the present invention.
  • FIG. 2A is a process diagram of a method of manufacturing the top contact type TFT having the bottom gate structure shown in FIG.
  • FIG. 2B is a process diagram of the TFT manufacturing method subsequent to FIG. 2A.
  • FIG. 2C is a process diagram of the manufacturing method of the TFT subsequent to FIG. 2B.
  • FIG. 2D is a process diagram of the manufacturing method of the TFT subsequent to FIG. 2C.
  • FIG. 2E is a process diagram of the manufacturing method of the TFT subsequent to FIG. 2D.
  • FIG. 2F is a process diagram of the TFT manufacturing method subsequent to FIG. 2E.
  • FIG. 2A is a process diagram of a method of manufacturing the top contact type TFT having the bottom gate structure shown in FIG.
  • FIG. 2B is a process diagram of the TFT manufacturing method subsequent to FIG. 2A
  • FIG. 2G is a process diagram of the manufacturing method of the TFT subsequent to FIG. 2F.
  • FIG. 2H is a process diagram of the manufacturing method of the TFT subsequent to FIG. 2G.
  • FIG. 3 is a schematic cross-sectional view of a part of the liquid crystal display device according to the embodiment of the electro-optical device of the invention.
  • FIG. 4 is a schematic configuration diagram of electrical wiring of the liquid crystal display device shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of a part of an active matrix type organic EL display device according to an embodiment of the electro-optical device of the invention.
  • FIG. 6 is a schematic configuration diagram of electrical wiring of the organic EL display device shown in FIG. FIG.
  • FIG. 7 is a schematic cross-sectional view of a part of an X-ray sensor that is an embodiment of the sensor of the present invention.
  • FIG. 8 is a schematic configuration diagram of electric wiring of the X-ray sensor shown in FIG.
  • FIG. 9A is a plan view of TFTs of examples and comparative examples.
  • 9B is a cross-sectional view of the TFT shown in FIG. 9A, taken along line AA.
  • FIG. 10 is a diagram showing an outline of TFT characteristic measurement under monochrome light irradiation.
  • FIG. 11 is a diagram showing the Vg-Id characteristics of the TFT according to Example 1 under monochrome light irradiation.
  • FIG. 12 is a diagram showing the Vg-Id characteristics of the TFT according to Example 2 under monochrome light irradiation.
  • FIG. 13 is a diagram showing Vg-Id characteristics of the TFT according to Example 3 under monochrome light irradiation.
  • FIG. 14 is a diagram showing Vg-Id characteristics of the TFT according to Comparative Example 1 under monochrome light irradiation.
  • FIG. 15 is a diagram showing SIMS analysis results for the sample of Experimental Example 1.
  • FIG. 16 is a diagram showing the SIMS analysis results for the sample of Experimental Example 2.
  • FIG. 17 is a diagram showing the SIMS analysis results for the sample of Experimental Example 3.
  • FIG. 18 is a diagram showing the SIMS analysis results for the sample of Experimental Example 4.
  • FIG. 16 is a diagram showing the SIMS analysis results for the sample of Experimental Example 2.
  • FIG. 17 is a diagram showing the SIMS analysis results for the sample of Experimental Example 3.
  • FIG. 18 is a diagram showing the SIMS analysis results for the
  • FIG. 19 is a graph plotting the relationship between the obtained oxygen diffusion distance L and the heat treatment temperature.
  • FIG. 20 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 7, which is a typical Vg-Id characteristic among the measurement results.
  • FIG. 21 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 9, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 22 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 10, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 20 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 7, which is a typical Vg-Id characteristic among the measurement results.
  • FIG. 21 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 9, which is a representative Vg-Id characteristic
  • FIG. 23 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 11, which is a typical Vg-Id characteristic among the measurement results.
  • FIG. 24 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 12, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 25 is a diagram illustrating the relationship between the thickness Z of the second oxide semiconductor film and the field effect mobility ⁇ and the relationship between the thickness Z and ⁇ Vth based on the results shown in Table 3.
  • FIG. 26 is an image diagram for explaining characteristic deterioration when Z ⁇ L.
  • FIG. 27 is a phase diagram of the In—Ga—Zn ternary system, in which a specific composition range is specified.
  • FIG. 28 is a phase diagram of the In—Ga—Zn ternary system, in which a specific composition range is specified.
  • 5 is a diagram showing SIMS analysis results for samples obtained by heat-treating three IGZO films of 1: 1.5: 1 under the same conditions as in Experimental Example 4.
  • a field effect transistor according to an embodiment of the present invention is a thin film transistor: TFT, which includes at least a gate electrode, a gate insulating layer, an oxide semiconductor layer, a source electrode, and a drain electrode, and applies a voltage to the gate electrode.
  • TFT thin film transistor
  • the active element has a function of controlling a current flowing through the oxide semiconductor layer and switching a current between the source electrode and the drain electrode.
  • the element structure of the TFT according to the embodiment of the present invention takes a so-called inverted staggered structure (also referred to as a bottom gate type) based on the position of the gate electrode. Further, based on a contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), a so-called top contact type is adopted. Note that the bottom gate type is a mode in which a gate electrode is disposed below a gate insulating layer and an active layer is formed above the gate insulating layer.
  • the top contact type is a form in which the active layer is formed before the source / drain electrodes and the upper surface of the active layer is in contact with the source / drain electrodes.
  • FIG. 1 is a schematic diagram showing an example of a top contact type TFT 10 having a bottom gate structure, which is a TFT according to an embodiment of the present invention.
  • a gate electrode 14, a gate insulating layer 16, and an oxide semiconductor layer 18 are sequentially stacked on one main surface of the substrate 12.
  • a source electrode 20 and a drain electrode 22 are provided so as to be separated from each other.
  • the oxide semiconductor layer 18 further includes three layers of a first oxide semiconductor film 24, a second oxide semiconductor film 26, and a third oxide semiconductor film 28 in order from the gate insulating layer 16 side. Divided into layers.
  • first oxide semiconductor film 24, the second oxide semiconductor film 26, and the third oxide semiconductor film 28 are distinguished from each other in contrast by a cross-sectional TEM (Transmission Electron Microscope) analysis of the oxide semiconductor layer 18. This can be done due to differences.
  • TEM Transmission Electron Microscope
  • the field effect transistor manufacturing method described above includes a first step of forming a first oxide semiconductor film 24 on a gate insulating layer 16 disposed on a gate electrode 14.
  • the second oxide having a cation composition different from that of the first oxide semiconductor film 24 and having an electric conductivity lower than that of the first oxide semiconductor film 24 on the first oxide semiconductor film 24.
  • a fourth step of forming a third oxide semiconductor film 28 having a cation composition different from that of the first oxide semiconductor film 24 and having an electric conductivity lower than that of the first oxide semiconductor film 24 After the fourth step, oxidizing A source electrode 20 and a drain electrode 22 are formed on the third oxide semiconductor film 28 after a fifth step of heat treatment under an atmosphere, between the fourth step and the fifth step, or after the fifth step.
  • the first oxide semiconductor film 24 and the second oxide film 24 are formed by performing the heat treatment in the third step after forming the second oxide semiconductor film 26 in the second step. By compensating for interface defects with the oxide semiconductor film 26 by oxygen diffusion, ⁇ Vth at the time of light irradiation can be improved.
  • Electrode conductivity is a physical property value that represents the ease of electrical conduction of a substance.
  • Carrier mobility refers to electron mobility.
  • the first oxide semiconductor film 24, the second oxide semiconductor film 26, or the third oxide semiconductor film 28 is a p-type semiconductor
  • carriers are holes
  • the carrier concentration is the hole carrier concentration.
  • the carrier mobility refers to hole mobility.
  • the carrier concentration and carrier mobility of the substance can be obtained by Hall measurement.
  • the electrical conductivity can be determined by measuring the sheet resistance of a film whose thickness is known. Although the electrical conductivity of a semiconductor varies with temperature, the electrical conductivity described in the text indicates the electrical conductivity at room temperature (20 ° C.). The method for manufacturing the field effect transistor as described above will be specifically described below with reference to FIG.
  • FIG. 2 is a process diagram of a manufacturing method of a TFT 10 having a bottom gate structure and a top contact type.
  • a gate electrode 14 is formed on one main surface of the substrate 12.
  • the structure of the substrate may be a single layer structure or a laminated structure.
  • a substrate made of an inorganic material such as glass or YSZ (yttrium stabilized zirconium), a resin, a resin composite material, or the like can be used as the substrate 12. Among these, a substrate made of a resin or a resin composite material is preferable in terms of light weight and flexibility.
  • a substrate made of a composite plastic material of a resin or the like and particles having a clay mineral or a mica-derived crystal structure, a laminated plastic substrate having at least one bonding interface between a thin glass and any of the aforementioned synthetic resins, inorganic By alternately laminating layers and organic layers (the aforementioned synthetic resins), at least one contact Insulating the surface by subjecting a substrate made of a composite material having a barrier property having an interface, a stainless steel substrate, a metal multilayer substrate in which stainless steel and a dissimilar metal are laminated, an aluminum substrate or a surface to an oxidation treatment (for example, anodization treatment).
  • the resin substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like.
  • the resin substrate may include a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving the flatness of the resin substrate and adhesion with the lower electrode, and the like.
  • the gate electrode 14 In the formation of the gate electrode 14, first, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method is used. A conductive film is formed according to a method appropriately selected in consideration of suitability with the material to be used. After film formation, the gate electrode 14 is formed from the conductive film by patterning the conductive film into a predetermined shape by photolithography, an etching method, a lift-off method, or the like. At this time, it is preferable to pattern the gate electrode 14 and the gate wiring simultaneously.
  • the conductive film constituting the gate electrode 14 is preferably a conductive film having a high conductivity.
  • a conductive film having a high conductivity For example, Al, Mo, Cr, Ta, Ti, Au, Au and other metals, Al—Nd, Ag alloy, tin oxide,
  • a metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), or indium zinc oxide (IZO) can be used as a single layer or a stacked structure of two or more layers.
  • a gate insulating layer 16 is formed on the gate electrode 14 and the exposed surface of the substrate 12, as shown in FIG. 2B.
  • a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • an insulating film is formed according to a method appropriately selected in consideration of suitability with the material to be used.
  • the insulating film constituting the gate insulating layer 16 is preferably one having high insulating properties, for example, an insulating film such as SiO 2 , SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , Alternatively, an insulating film including at least two of these compounds may be used. Note that the gate insulating layer 16 needs to have a thickness for reducing the leakage current and improving the voltage resistance.
  • the thickness of the gate insulating layer 16 depends on the material, it is preferably 10 nm or more and 10 ⁇ m or less, more preferably 50 nm or more and 1000 nm or less, and particularly preferably 100 nm or more and 400 nm or less.
  • a first step of forming a first oxide semiconductor film 24 as a part of the oxide semiconductor layer 18 on the gate insulating layer 16 is performed.
  • a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as a CVD or plasma CVD method is used.
  • the first oxide semiconductor film 24 is formed in accordance with a method appropriately selected in consideration of suitability for the material.
  • a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a CVD method or a plasma CVD method from the viewpoint of easy control of the film thickness.
  • a vapor phase film forming methods sputtering method and pulsed laser deposition method (PLD method) are more preferable.
  • PLD method pulsed laser deposition method
  • the sputtering method is more preferable from the viewpoint of mass productivity.
  • the film is formed by controlling the degree of vacuum and the oxygen flow rate by RF magnetron sputtering deposition.
  • IGZO is formed as the first oxide semiconductor film 24
  • a composite oxide target adjusted to have a desired cation composition may be used, or In 2 O 3 , Ga 2 O 3 may be used.
  • ZnO ternary co-sputtering may be used.
  • the first oxide semiconductor film 24 only needs to be mainly composed of an oxide semiconductor, and may further contain impurities or the like.
  • the “main body” represents a component that is contained in the largest amount among the components constituting the first oxide semiconductor film 24.
  • the oxide semiconductor may be either amorphous or crystalline, but an amorphous oxide semiconductor is preferably used.
  • the semiconductor film is formed using an oxide semiconductor, the charge mobility is much higher than that of an amorphous silicon semiconductor film, and the semiconductor film can be driven at a low voltage.
  • an oxide semiconductor is used, a semiconductor film with higher light transmittance than silicon can be formed.
  • An oxide semiconductor particularly an amorphous oxide semiconductor, can be uniformly formed at a low temperature (for example, room temperature), and thus is particularly advantageous when a flexible resin substrate such as a plastic is used.
  • the constituent materials of the oxide semiconductor include conventionally known materials. For example, in addition to oxides of transition metals such as In, Ti, Nb, Sn, Zn, Gd, Cd, Zr, Y, La, Ta, SrTiO 3 , oxides such as CaTiO 3 , ZnO.Rh 2 O 3 , CuGaO 2 , and SrCu 2 O 2 .
  • an oxide semiconductor used for the first oxide semiconductor film 24 is not particularly limited, but a metal oxide containing at least one of In, Sn, Zn, Ga, and Cd is preferable. Further, a metal oxide containing at least one of In, Sn, Zn, and Ga is more preferable, and a metal oxide containing at least one of In, Ga, and Zn (for example, an In—O system) is more preferable.
  • the first oxide semiconductor film 24 preferably contains In, and the In composition ratio of the first oxide semiconductor film 24 is preferably higher than the In composition ratio of the second oxide semiconductor film 26. This is because by increasing the In composition ratio, there is a tendency that the electron affinity is relatively increased, and the conductive carriers are easily concentrated on the first oxide semiconductor film 24.
  • an oxide containing at least two of In, Ga, and Zn (for example, an In—Zn—O system, an In—Ga—O system, and a Ga—Zn—O system) is preferable, and all of In, Ga, and Zn are used.
  • the oxide containing is more preferable. That is, the composition of the first oxide semiconductor film 24 is preferably represented by In (a) Ga (b) Zn (c) O (d) (a, b, c, d> 0).
  • the composition of the first oxide semiconductor film 24 is such that c ⁇ 3/5, b> 0, b ⁇ 3a / 7-3 / 14, b ⁇ 9a / 5 ⁇ 53 / 50, b ⁇ ⁇ 8a /
  • the composition of the first oxide semiconductor film 24 is as follows: b ⁇ 17a / 23 ⁇ 28 / 115, b ⁇ 3a / 37, b ⁇ 9a / 5 ⁇ 53 / 50, b ⁇ 1/5 (where a + b + c
  • the composition is preferably within the range represented by This is because within this composition range, a field effect mobility of more than 30 cm 2 / Vs can be obtained after the TFT 10 is formed.
  • the composition of the first oxide semiconductor film 24 is In (x) Zn (1-x) O (y) (y> 0 , 0 ⁇ x ⁇ 1).
  • the composition of the first oxide semiconductor film 24 is preferably a composition within a range represented by 0.4 ⁇ x ⁇ 0.75.
  • the first oxide semiconductor film 24 it is preferable to form the first oxide semiconductor film 24 so that the thickness is less than 10 nm.
  • the first oxide semiconductor film 24 it is preferable to use IZO or an extremely In-rich IGZO film that easily achieves high mobility as described above, but such a high mobility film has a high carrier concentration. Therefore, pinch-off is relatively difficult, and the threshold value may be greatly shifted to the negative side. Therefore, by setting the thickness of the first oxide semiconductor film 24 to less than 10 nm, it is possible to avoid pinch-off from becoming difficult because the total carrier concentration in the oxide semiconductor layer 18 is excessive.
  • the electric conductivity of the first oxide semiconductor film 24 is preferably 10 ⁇ 6 Scm ⁇ 1 or more and less than 10 2 Scm ⁇ 1 . More preferably, it is 10 ⁇ 4 Scm ⁇ 1 or more and less than 10 2 Scm ⁇ 1 , and further preferably 10 ⁇ 1 Scm ⁇ 1 or more and less than 10 2 Scm ⁇ 1 .
  • the cation composition is different from that of the first oxide semiconductor film 24 on the first oxide semiconductor film 24 and is lower than that of the first oxide semiconductor film 24.
  • a second step of forming the second oxide semiconductor film 26 having electrical conductivity is performed.
  • the second oxide semiconductor film 26 as a part of the oxide semiconductor layer 18 is also similar to the first oxide semiconductor film 24 on the assumption that the second oxide semiconductor film 26 has a lower electrical conductivity than the first oxide semiconductor film 24.
  • Materials can be used.
  • the second oxide semiconductor film 26 preferably contains Ga, and the Ga composition ratio of the second oxide semiconductor film 26 is preferably higher than the Ga composition ratio of the first oxide semiconductor film 24. This is because by increasing the Ga composition ratio, a tendency that the electron affinity is relatively reduced is obtained, and the conductive carriers are easily concentrated on the first oxide semiconductor film 24. Further, by increasing the Ga content, it is possible to reduce the contribution of the conduction carriers on the back channel side, so that the off-current is easily reduced.
  • the composition of the second oxide semiconductor film 26 is preferably represented by In (e) Ga (f) Zn (g) O (h) (e, f, g, h> 0).
  • the composition of the second oxide semiconductor film 26 is preferably within a range represented by 0.250 ⁇ f / (e + f) ⁇ 0.875.
  • the electron affinity of the second region becomes relatively large, so that a conduction path is formed in the second oxide semiconductor film 26 or the second oxidation is performed. It becomes easy to induce excessive conduction carriers in the physical semiconductor film 24.
  • the composition range of the second oxide semiconductor film 26 is preferably 0.250 ⁇ f / (e + f) ⁇ 0.875 as described above.
  • the electric conductivity of the second oxide semiconductor film 26 can take the same range as the first oxide semiconductor film 24 on the assumption that the electric conductivity of the second oxide semiconductor film 26 is lower than that of the first oxide semiconductor film 24. It is preferably 10 ⁇ 7 Scm ⁇ 1 or more and less than 10 1 Scm ⁇ 1 . More preferably, it is 10 ⁇ 7 Scm ⁇ 1 or more and less than 10 ⁇ 1 Scm ⁇ 1 .
  • a third step is performed in which heat treatment is performed above 300 ° C. in an oxidizing atmosphere.
  • the reason for performing the third step is to stabilize the TFT characteristics during light irradiation as described above.
  • the heat treatment temperature is higher than 300 ° C. because oxygen in the oxidizing atmosphere or oxygen in the second oxide semiconductor film 26 is higher than 300 ° C. to the second oxide semiconductor film 26 and the first oxide. Since diffusion into the semiconductor film 24 occurs, in order to reduce interface defects in the first oxide semiconductor film 24 and bulk defects in the first oxide semiconductor film 24 and the second oxide semiconductor film 26 due to oxygen diffusion. This is because a heat treatment at a temperature higher than 300 ° C. is required.
  • the heat treatment in the third step may be repeated a plurality of times.
  • the thickness of the second oxide semiconductor film 26 is set to Z (nm)
  • the heat treatment temperature in the third step is set to T (° C.)
  • the oxygen diffusion distance Is L (nm)
  • the TFT characteristics will be specifically described in Examples, but when oxygen in an oxidizing atmosphere is supplied to the inside of the interface of the first oxide semiconductor film 24 through the second oxide semiconductor film 26, Since the holes of the electron-hole pairs induced at the time of light irradiation are not easily trapped at the interface between the first oxide semiconductor film 24 and the second oxide semiconductor film 26, the Vg-Id characteristic has two levels. It is possible not to show the rise of.
  • the thickness and heat treatment temperature of the second oxide semiconductor film 26 it is preferable to adjust the thickness and heat treatment temperature of the second oxide semiconductor film 26 so as to satisfy the relational expression of Z ⁇ L ⁇ 3.0. This is because the initial characteristics (before light irradiation) after the formation of the TFT 10 are good. Specifically, the threshold voltage Vth is a positive value. On the other hand, it is preferable to adjust the thickness and heat treatment temperature of the second oxide semiconductor film 26 so that the relational expression L-15.0 ⁇ Z is satisfied in the second step and the third step. This is because the heat treatment in the third step prevents oxygen field defects from being deeply filled in the first oxide semiconductor film 24 to reduce field effect mobility.
  • the thickness and heat treatment temperature of the second oxide semiconductor film 26 are adjusted so that the relational expression L-11.0 ⁇ Z ⁇ L-8.0 is satisfied in the second step and the third step. Is preferred. This is because the field effect mobility of the TFT 10 rapidly increases within this range. The field effect mobility does not change particularly before or after light irradiation.
  • the heat treatment temperature T in the third step is adjusted in consideration of the relationship with the thickness Z of the first insulating film 24, but is preferably less than 600 ° C.
  • the heat treatment temperature is lower than 600 ° C., it is possible to suppress the occurrence of interdiffusion of cations between the first oxide semiconductor film 24 and the second oxide semiconductor film 26 and the mixing of the two regions. is there.
  • the conductive carriers are easily concentrated only on the first oxide semiconductor film 24. Whether or not cation mutual diffusion occurs in the first oxide semiconductor film 24 and the second oxide semiconductor film 26 can be confirmed, for example, by performing analysis by cross-sectional TEM.
  • the oxygen partial pressure in the oxidizing atmosphere is not particularly limited, but is preferably substantially 100% from the viewpoint of further improving ⁇ Vth during light irradiation.
  • the oxygen partial pressure in the oxidizing atmosphere is 5% or more of the whole. It is preferable.
  • the second oxide semiconductor film 26 has a cation composition different from that of the first oxide semiconductor film 24 and lower than the first oxide semiconductor film 24.
  • a fourth step of forming a third oxide semiconductor film 28 having conductivity is performed.
  • the same film formation method as in the second step can be used.
  • This film formation method is suitable for the manufacturing method of this embodiment because the surface of the first oxide semiconductor film 24 is easily damaged by the formation of the second oxide semiconductor film 26. Further, in many cases, a film with a high deposition rate and high uniformity can be formed, and an oxide semiconductor film with a low cost and a large area can be provided.
  • the third oxide semiconductor film 28 as a part of the oxide semiconductor layer 18 also has a lower electrical conductivity than the first oxide semiconductor film 24 and the first oxide semiconductor film 24. Similar materials can be used.
  • the cation composition ratio of the third oxide semiconductor film 28 is not a problem as long as the electron affinity is lower than that of the first oxide semiconductor film 24 and the second oxide semiconductor film 26. This is to prevent parallel conduction at the interface when there is a large mismatch in electronic properties.
  • the same oxide semiconductor is used for the second oxide semiconductor film 26 and the third oxide semiconductor film 28 as compared with the case where oxide semiconductor films having three kinds of cation compositions are stacked. The cost is lower when a film is used.
  • the first oxide semiconductor film 24, the second oxide semiconductor film 26, and the third oxide semiconductor film 28 are each made of In, Ga, and Zn. It is preferable that at least one of these is included.
  • the first oxide semiconductor film 24, the second oxide semiconductor film 26, and the third oxide semiconductor film 28 are each preferably amorphous. This is because, if these films are amorphous, they can be formed at a low temperature of 400 ° C. or lower, and a film with high uniformity can be obtained without crystal grain boundaries. Whether or not the first oxide semiconductor film 24, the second oxide semiconductor film 26, and the third oxide semiconductor film 28 are amorphous can be confirmed by X-ray diffraction measurement. That is, when a clear peak indicating a crystal structure is not detected by X-ray diffraction measurement, it can be determined that the film is amorphous.
  • the total thickness of the second oxide semiconductor film 26 and the third oxide semiconductor film 28 is adjusted to be more than 10 nm and less than 70 nm. This is because when the total thickness of the second oxide semiconductor film 26 and the third oxide semiconductor film 28 is 10 nm or more, reduction of off current and suppression of deterioration of S value can be expected. Further, when the total thickness of the second oxide semiconductor film 26 and the third oxide semiconductor film 28 is less than 70 nm, the resistance of the source / drain electrodes 20 and 22 and the first oxide semiconductor film 24 increases. As a result, it is possible to suppress a decrease in mobility.
  • the total film thickness of the oxide semiconductor layer 18 is preferably 10 nm or more and 200 nm or less from the viewpoint of film uniformity and total carrier concentration in the active layer.
  • the carrier concentration (and electrical conductivity) of each film of the oxide semiconductor layer 18 can be controlled not only by composition modulation but also by oxygen partial pressure control during film formation. Specifically, the oxygen concentration can be controlled by controlling the oxygen partial pressure during film formation in the first oxide semiconductor film 24 and the second oxide semiconductor film 26, respectively. If the oxygen partial pressure at the time of film formation is increased, the carrier concentration can be reduced, and a reduction in off-current can be expected accordingly. On the other hand, if the oxygen partial pressure during film formation is lowered, the carrier concentration can be increased, and an increase in field effect mobility can be expected accordingly.
  • the oxidation of the film is promoted, and the amount of oxygen vacancies in the first oxide semiconductor film 24 is reduced. It is possible to make it.
  • the band gap of the film can be increased by doping Mg. For example, by doping Mg into each region of the first oxide semiconductor film 24, the second oxide semiconductor film 26, and the third oxide semiconductor film 28, the composition ratio of only In, Ga, and Zn is controlled.
  • the band gap can be increased while maintaining the band profile of the laminated film.
  • a material that tends to be a cation having a relatively large valence eg, Ti, Zr, Hf, Ta, etc.
  • doping a cation having a large valence the number of constituent elements of the oxide semiconductor film increases, which is disadvantageous in terms of simplifying the film formation process and reducing the cost.
  • a fifth step is performed in which heat treatment is performed in an oxidizing atmosphere.
  • the heat treatment temperature in the fifth step is preferably adjusted to less than 600 ° C. for reasons of interdiffusion of cations. Further, similarly to the third step, it is preferably over 300 ° C. from the viewpoint of causing oxygen diffusion, and is 415 ° C. or more from the viewpoint of improving the light irradiation stability (for example,
  • the oxide semiconductor layer 18 is patterned into a predetermined shape by photolithography, an etching method, a lift-off method, or the like as necessary. Do. Specifically, a resist pattern is formed on the remaining portion by photolithography, and the pattern is formed by etching with an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid.
  • an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid.
  • This patterning can be performed immediately after the first step, the second step, and the fourth step, respectively, but from the viewpoint of not damaging the first oxide semiconductor film 24 through which carriers flow, the oxide semiconductor It is preferable to be immediately after the layer 18 is formed (immediately after the fourth step) or immediately after the fifth step.
  • an electrode forming step for forming the source electrode 20 and the drain electrode 22 on the third oxide semiconductor film 28 is performed.
  • a wet method such as a printing method or a coating method
  • a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method is used.
  • a conductive film is formed according to a method appropriately selected in consideration of suitability for the material.
  • a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or a plasma CVD method from the viewpoint of easy control of the film thickness.
  • a vapor phase film forming methods sputtering method and pulsed laser deposition method (PLD method) are more preferable.
  • PLD method pulsed laser deposition method
  • the sputtering method is more preferable from the viewpoint of mass productivity.
  • the conductive film constituting the source / drain electrodes 20 and 22 is a conductive film having high conductivity, for example, metal such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide.
  • a metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), or indium zinc oxide (IZO) can be used.
  • these conductive films can be used as a single layer structure or a laminated structure of two or more layers.
  • the film thickness of the conductive film to be formed is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 100 nm or less in consideration of film forming property, patterning property by etching or lift-off method, conductivity, and the like. .
  • the TFT 10 shown in FIG. 1 can be manufactured through the above procedure.
  • TFT 10 is manufactured using the method of manufacturing a field effect transistor according to the embodiment of the present invention can be confirmed by performing a secondary ion-microprobe mass spectrometry (SIMS) analysis.
  • SIMS secondary ion-microprobe mass spectrometry
  • TDS thermal desorption gas analysis
  • the secondary ion intensity negative ion
  • primary acceleration voltage 1.0 kV
  • detection region 100 ⁇ m ⁇ 100 ⁇ m using an analyzer PHI ADEPT1010 manufactured by ULVAC-PHI
  • the TFT 10 manufactured using the method for manufacturing a field effect transistor according to the embodiment of the present invention has a gate insulating layer on a gate electrode, and a channel laminated film on which electrons travel is formed on the gate insulating layer.
  • a bottom-gate top-contact field-effect transistor that is configured and has a source electrode and a drain electrode formed on the channel stacked film
  • Each of the channel stacked films is an oxide semiconductor layer containing In, Ga, and Zn, and includes first, second, and third oxide semiconductor films from the gate insulating film side, and the first oxide
  • the In content in the semiconductor film is higher than that in the second and third oxide semiconductor films, and the lattice defect density in the second oxide semiconductor layer is equal to the lattice defect density in the third oxide semiconductor layer.
  • the TFT 10 manufactured using the method for manufacturing a field effect transistor according to the embodiment of the present invention has a gate insulating layer on a gate electrode, and a channel laminated film on which electrons travel is formed on the gate insulating layer.
  • a bottom-gate top-contact field effect transistor having a source electrode and a drain electrode formed on the channel multilayer film, wherein the channel multilayer film includes In, Ga, and Zn, respectively.
  • the first oxide semiconductor film is composed of first, second, and third oxide semiconductor films from the gate insulating film side, and the In content in the first oxide semiconductor film is the second and third oxides.
  • a field effect type in which the oxygen content density in the second oxide semiconductor layer is higher than that in the semiconductor film and is higher than the oxygen content density in the third oxide semiconductor layer ( Film) is considered to be a transistor.
  • the term “lattice defect” means a correlation between the degree of deviation from a thermally stable atomic position, and the composition of metal elements satisfying the formula of oxygen vacancies or the number of atoms of In + the number of atoms of Ga ⁇ 2 ⁇ the number of atoms of Zn. It means the degree of deviation.
  • the oxygen content density means the oxygen content per unit volume in each oxide semiconductor layer.
  • oxygen diffusion occurs in the second oxide semiconductor film 26 due to the third step.
  • all TFTs subjected to a heat treatment (third step) at a temperature higher than 300 ° C. in which oxygen diffusion occurs result in improvement in light irradiation characteristics. This is because the second oxide semiconductor film 26 (desirably together with the interface between the first and second oxide semiconductor films) is compensated for defects by oxygen diffusion in an external oxidizing atmosphere. Since oxygen diffusion occurs under heat treatment conditions, such an oxygen diffusion heat treatment, which is an amorphous structure, promotes rearrangement of lattice atoms to thermally stable positions.
  • the TFT 10 obtained according to this embodiment has a lattice defect density in the second oxide semiconductor film 26 smaller than that in the third oxide semiconductor 28.
  • the second oxide semiconductor film 26 has oxygen diffusion from the external oxidizing atmosphere in the third step, and has an oxygen-containing density as compared with the third oxide semiconductor film 28. It is thought to increase. Therefore, it is assumed that the TFT 10 with improved light irradiation characteristics obtained by the manufacturing method of the present embodiment has the above-described characteristics.
  • the lattice defect density the lattice defects of the first, second, and third oxide semiconductor films are used in the defect analysis of solar cells, etc. by the DLCP method (defect density depth direction analysis), etc. It is possible to evaluate the density.
  • SIMS analysis is mentioned as a method of detecting an oxygen-containing density difference.
  • the TFT according to this embodiment can have various configurations other than the above.
  • an insulating layer is provided on the substrate 12 or exposed from between the source electrode 20 and the drain electrode 22.
  • a protective layer may be provided on the surface of the oxide semiconductor layer 18.
  • an electro-optical device for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, an inorganic EL display device
  • a driving element particularly a large area device.
  • the field effect transistor according to the embodiment is particularly suitable for a device that can be manufactured by a low-temperature process using a resin substrate (for example, a flexible display), various sensors such as an X-ray sensor, MEMS (Micro Electro Mechanical System), and the like.
  • the present invention is suitably used as a drive element (drive circuit) in various electronic devices.
  • Electro-optical device and sensor includes the above-described field-effect transistor (TFT 10).
  • electro-optical devices include display devices (eg, liquid crystal display devices, organic EL display devices, inorganic EL display devices, etc.).
  • display devices eg, liquid crystal display devices, organic EL display devices, inorganic EL display devices, etc.
  • an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), an X-ray sensor, or the like is suitable.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the “characteristic” referred to here is a display characteristic in the case of an electro-optical device (display device), and a sensitivity characteristic in the case of a sensor.
  • a liquid crystal display device, an organic EL display device, and an X-ray sensor will be described as representative examples of the electro-optical device or sensor including the field effect transistor manufactured according to the present embodiment.
  • FIG. 3 is a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the electro-optical device of the present invention
  • FIG. 4 is a schematic configuration diagram of the electric wiring.
  • the liquid crystal display device 100 of the present embodiment includes a pixel on the oxide semiconductor layer 18 protected by the top contact type TFT 10 and the passivation layer 102 of the TFT 10 in the bottom gate structure shown in FIG. 1.
  • a liquid crystal layer 108 sandwiched between the lower electrode 104 and the counter upper electrode 106 and an RGB color filter 110 for developing different colors corresponding to each pixel are provided.
  • the substrate 10 side of the TFT 10 and the RGB color filter 110 are provided.
  • the liquid crystal display device 100 of this embodiment includes a plurality of gate wirings 112 that are parallel to each other, and data wirings 114 that are parallel to each other and intersect the gate wirings 112.
  • the gate wiring 112 and the data wiring 114 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.
  • the gate electrode 14 of the TFT 10 is connected to the gate wiring 112, and the source electrode 20 of the TFT 10 is connected to the data wiring 114.
  • the drain electrode 22 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating layer 16 (a conductor is embedded in the contact hole 116).
  • the pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.
  • the TFT of this embodiment has very high stability during light irradiation, the reliability of the liquid crystal display device is increased.
  • FIG. 5 is a schematic sectional view of a part of an active matrix type organic EL display device according to an embodiment of the electro-optical device of the present invention
  • FIG. 6 is a schematic configuration diagram of electric wiring.
  • the simple matrix method has an advantage that it can be manufactured at low cost.
  • the number of scanning lines and the light emission time per scanning line are inversely proportional. Therefore, it is difficult to increase the definition and increase the screen size.
  • the active matrix method has a high manufacturing cost because a transistor and a capacitor are formed for each pixel.
  • it is suitable for high definition and large screen.
  • the substrate 12 is, for example, a flexible support, and is a plastic film such as PEN.
  • the substrate 12 has a substrate insulating layer 202 on the surface in order to be insulating.
  • a patterned color filter layer 204 is disposed thereon.
  • the driving TFT portion has a gate electrode 14, and a gate insulating film 110 is provided on the gate electrode 14.
  • a connection hole is opened in part of the gate insulating film 16 for electrical connection.
  • An oxide semiconductor layer 18 is provided in the driving TFT portion, and a source electrode 20 and a drain electrode 22 are provided thereon.
  • the drain electrode 22 and the pixel electrode (anode) 206 of the organic EL element are continuous and integrated, and are formed by the same material and the same process.
  • the drain electrode 22 of the switching TFT and the driving TFT are electrically connected through a connection hole by a connection electrode 208. Further, the whole is covered with the insulating film 210 except for the portion where the organic EL element of the pixel electrode portion is formed.
  • an organic layer 212 including a light emitting layer and a cathode 214 are provided to form an organic EL element portion.
  • the organic EL display device 200 of the present embodiment includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220.
  • the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated.
  • the gate electrode 14 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 20 of the switching TFT 10 b is connected to the data wiring 222.
  • the drain electrode 22 of the switching TFT 10b is connected to the gate electrode 14 of the driving TFT 10, and the driving TFT 10a is kept on by using the capacitor 226.
  • the source electrode 20 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 22 is connected to the organic layer 212.
  • the TFT manufactured according to the present invention has very high stability during light irradiation, it is suitable for manufacturing a highly reliable organic EL display device.
  • the top electrode of the organic layer 212 may be a top emission type using a transparent electrode, or the bottom electrode of the organic layer 212 and each electrode of the TFT may be a transparent electrode. It may be an emission type.
  • FIG. 7 shows a schematic sectional view of a part of an X-ray sensor which is an embodiment of the sensor of the present invention
  • FIG. 8 shows a schematic configuration diagram of its electrical wiring.
  • FIG. 7 is a schematic cross-sectional view in which a part of the X-ray sensor array is enlarged more specifically.
  • the X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed.
  • a passivation film 308 is provided on the TFT 10.
  • the capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314.
  • the capacitor upper electrode 314 is connected to either the source electrode 20 or the drain electrode 22 (the drain electrode 22 in FIG. 7) of the TFT 10 through a contact hole 318 provided in the insulating film 316.
  • the charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
  • the X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
  • the upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.
  • the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wiring 320 and are parallel to each other.
  • the gate wiring 320 and the data wiring 322 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.
  • the gate electrode 14 of the TFT 10 is connected to the gate wiring 320, and the source electrode 20 of the TFT 10 is connected to the data wiring 322.
  • the drain electrode 22 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.
  • X-rays are irradiated from the upper part (upper electrode 306 side) in FIG. 7, and electron-hole pairs are generated in the X-ray conversion layer 304.
  • the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.
  • the X-ray sensor 300 of this embodiment includes the TFT 10 having high stability during light irradiation, an image with excellent uniformity can be obtained.
  • FIG. 9A is a plan view of the TFT of the example and the comparative example
  • FIG. 9B is a cross-sectional view taken along the line AA of the TFT shown in FIG. 9A.
  • a p-type Si substrate 502 with a thermal oxide film 504 (1 inch angle, thickness: 525 ⁇ mt, thermal oxide film (SiO 2 ): 100 nmt) manufactured by Mitsubishi Materials Corporation is used as the substrate, and thermal oxidation is performed.
  • a simple TFT 500 using the film 504 as a gate insulating layer was manufactured.
  • the oxide semiconductor layer 505 formed over the substrate 502 is divided into the first oxide semiconductor film 506, the second oxide semiconductor film 507, and the third oxide semiconductor film 508 as described above. The films were continuously formed between the films without being exposed to the atmosphere.
  • Sputtering of each film was performed by ternary co-sputtering using an In 2 O 3 target, a Ga 2 O 3 target, and a ZnO target for the first to third oxide semiconductor films 506 to 508.
  • the film thickness in each region was adjusted by adjusting the film formation time.
  • a first oxide semiconductor film 506 was formed by sputtering on the thermal oxide film 504 of the substrate 502 (first process).
  • the other sputtering conditions were as follows.
  • a second oxide semiconductor film 507 was formed by sputtering on the first oxide semiconductor film 506 with a thickness of 5 nm (second process).
  • the second oxide semiconductor film 507 has a composition ratio of In (a) Ga (b) Zn (c) O (d), (a> 0, b> 0, c> 0, d> 0), b /
  • the oxidizing atmosphere with an oxygen partial pressure of 100% flows from a gas cylinder, and the moisture content contained in the entire atmosphere is -36 ° C. or less in terms of dew point temperature (absolute humidity 0.21 g / m ⁇ 3 or less). belongs to.
  • an IGZO film having the same composition as the second oxide semiconductor film 507 was formed as the third oxide semiconductor film 508 by 45 nm (fourth step). Note that sputtering conditions for the second oxide semiconductor film 507 and the third oxide semiconductor film 508 are as follows.
  • each sputter film formation a pattern film is formed using a metal mask. Further, it was confirmed by X-ray diffraction measurement that each film of the oxide semiconductor layer 505 was an amorphous film, and the same result was obtained in the following examples, comparative examples, and experimental examples. In addition, with respect to a single film formed with the same composition, the resistivity of the first oxide semiconductor film 506 was confirmed to be lower than the resistivity of the second oxide semiconductor film 507 by hole measurement.
  • Example 2 used the same manufacturing method as TFT 1 except for the heat treatment step, that is, the heat treatment atmosphere in the third step and the fifth step. Specifically, the TFT according to Example 2 was obtained using an air atmosphere as the heat treatment atmosphere in the third step and using an oxidizing atmosphere with an oxygen partial pressure of 100% as the heat treatment atmosphere in the fifth step.
  • Example 3 used the same manufacturing method as TFT 1 except for the heat treatment step, that is, the heat treatment atmosphere of the third step and the fifth step. Specifically, a TFT according to Example 3 was obtained by using an oxidizing atmosphere with an oxygen partial pressure of 100% in the third process and using an oxidizing atmosphere with an oxygen partial pressure of 100% as the heat treatment atmosphere in the fifth process.
  • TFT according to Comparative Example 1 used the same manufacturing method as TFT 1 except for the heat treatment step, that is, the third step and the fifth step. Specifically, the third step was not performed, and in the fifth step, a TFT according to Comparative Example 1 was obtained by using a heat treatment temperature of 450 ° C. and an oxidizing atmosphere with an oxygen partial pressure of 100% as the heat treatment atmosphere.
  • TFTs according to Examples 1 to 3 and Comparative Example 1 were evaluated for Vg-Id characteristics, and then irradiated with wavelength-variable monochromatic light to evaluate the stability of the TFT characteristics against light irradiation.
  • a semiconductor parameter analyzer 4156C manufactured by Agilent Technologies
  • the Vg-Id characteristics are measured by fixing the drain voltage (Vd) to 10 V, sweeping the gate voltage (Vg) within the range of ⁇ 30 V to +30 V, and drain current at each gate voltage (Vg). This was done by measuring (Id).
  • the field effect mobility is linearly moved from the Vg-Id characteristics in the linear region obtained by sweeping the gate voltage (Vg) in the range of -30V to + 30V with the drain voltage (Vd) fixed at 1V. The degree is calculated.
  • FIG. 10 is a diagram showing an outline of TFT characteristic measurement under monochrome light irradiation.
  • each TFT was placed on the probe stage base 600, and after flowing dry air for 2 hours or more, TFT characteristics were measured in the dry air atmosphere.
  • the irradiation intensity of the monochrome light source is 10 ⁇ W / cm 2
  • the wavelength ⁇ is in the range of 380 to 700 nm
  • the light irradiation is performed by comparing the Vg-Id characteristics when the monochrome light is not irradiated and the Vg-Id characteristics when the monochrome light is irradiated. Stability (threshold shift: ⁇ Vth) was evaluated.
  • FIG. 11 is a diagram showing the Vg-Id characteristics of the TFT according to Example 1 under monochrome light irradiation.
  • FIG. 12 is a diagram showing the Vg-Id characteristics of the TFT according to Example 2 under monochrome light irradiation.
  • FIG. 13 is a diagram showing Vg-Id characteristics of the TFT according to Example 3 under monochrome light irradiation.
  • FIG. 14 is a diagram showing Vg-Id characteristics of the TFT according to Comparative Example 1 under monochrome light irradiation.
  • Table 1 is a list of TFT fabrication conditions and TFT characteristics of Examples 1 to 3 and Comparative Example 1.
  • means field effect mobility
  • Vth means threshold voltage
  • ⁇ Vth means threshold shift when light with a wavelength of 420 nm is irradiated, and the same applies to other tables. is there.
  • the heat treatment temperature in the third step and the fifth step (1) Verification of the oxygen diffusion depth in the heat treatment> In the third and fifth heat treatments, it was verified how deeply the oxide semiconductor layer diffuses oxygen in the oxidizing atmosphere in relation to the heat treatment temperature.
  • a p-type Si substrate with a thermal oxide film (1 inch angle ⁇ 1 mmt, thickness: 525 ⁇ mt, thermal oxide film (SiO 2 ): thickness: 100 nm) also serving as a gate electrode was prepared.
  • a p-type Si substrate was prepared. This substrate is boron-doped and has a resistivity of 0.001 to 0.0013 ⁇ cm.
  • the sample heat-treated at 300 ° C. is the sample of Experimental Example 1
  • the sample heat-treated at 350 ° C. is the sample of Experimental Example 2
  • the sample heat-treated at 400 ° C. is the sample of Experimental Example 3
  • the sample heat-treated at 450 ° C. Is called the sample of Experimental Example 4.
  • SIMS analysis was performed on the samples of Experimental Examples 1 to 4.
  • model number PHI ADEPT1010 manufactured by ULVAC-PHI, Inc. was specifically used as a SIMS analyzer.
  • the analysis environment was set to primary ion species: Cs +, primary acceleration voltage: 3.0 kV, and detection region: 56 ⁇ 56 ( ⁇ m ⁇ ⁇ m).
  • the secondary ion from the sample detected negative polarity.
  • FIG. 15 is a diagram showing SIMS analysis results for the sample of Experimental Example 1.
  • FIG. 16 is a diagram showing the SIMS analysis results for the sample of Experimental Example 2.
  • FIG. 17 is a diagram showing the SIMS analysis results for the sample of Experimental Example 3.
  • FIG. 18 is a diagram showing the SIMS analysis results for the sample of Experimental Example 4.
  • FIG. 19 is a graph plotting the relationship between the obtained oxygen diffusion distance L and the heat treatment temperature.
  • the heat treatment temperature T is 400 ° C., as shown in FIG. 19, O18 is diffused from the oxidizing atmosphere to the Ga 2 O 3 film to about 12 nm (incorporated). I understand).
  • This result also confirms that the Ga 2 O 3 film does not change even with a film of another material such as an IGZO film. Accordingly, the thickness of the second oxide semiconductor film 507 is Z, the heat treatment temperature in the third step is T, and the inside of the interface of the first oxide semiconductor film 506 is oxidized through the second oxide semiconductor film 507.
  • the thickness Z modulation of the second oxide semiconductor film 507 is performed by fixing the heat treatment conditions in the third step and the fifth step to atmosphere: oxygen 100% and heat treatment temperature T: 450 ° C. This was done by systematically changing the thickness of the membrane 507 between 3 and 50 nm. Specifically, the configuration and composition of the TFT were the same as those in Example 1, and only the thickness Z of the second oxide semiconductor film 507 was produced in the TFTs according to Examples 4 to 12 modulated between 3 and 50 nm.
  • the total thickness of the second oxide semiconductor film 507 and the third oxide semiconductor film 508 is 50 nm, which is common to Examples 4 to 11. Note that in Example 12, the third oxide semiconductor film 508 is not provided, and the third process, the electrode formation process, and the fifth process are performed in this order.
  • TFTs according to Examples 4 to 11 were evaluated for Vg-Id characteristics, and then irradiated with wavelength-variable monochrome light to evaluate the stability of the TFT characteristics against light irradiation.
  • the evaluation method is the same as the method described above.
  • Table 3 is a list of thicknesses Z and TFT characteristics of the second oxide semiconductor films 507 of Examples 4 to 12 and Comparative Example 1.
  • the field effect mobility ⁇ hardly changed both before and after the light irradiation.
  • Table 3 shows the field effect mobility ⁇ before the light irradiation.
  • Vth is a threshold voltage (V) before light irradiation
  • ⁇ Vth is a threshold shift when light having a wavelength of 420 nm is irradiated toward the TFT.
  • FIG. 20 is a diagram showing a Vg-Id characteristic under light irradiation of the TFT of Example 7, which is a typical Vg-Id characteristic among the measurement results.
  • FIG. 21 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 9, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 22 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 10, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 23 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 11, which is a typical Vg-Id characteristic among the measurement results.
  • FIG. 21 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 9, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 22 is a diagram showing the Vg-Id characteristic under light
  • FIG. 24 is a diagram showing the Vg-Id characteristic under light irradiation of the TFT of Example 12, which is a representative Vg-Id characteristic among the measurement results.
  • FIG. 25 is a graph showing the relationship between the thickness Z of the second oxide semiconductor film 507 and the field effect mobility ⁇ and the relationship between the thickness Z and ⁇ Vth based on the results shown in Table 3.
  • the TFTs of Examples 4 to 14 had a ⁇ Vth at the time of light irradiation of about 1/10 or less that of Comparative Example 1 compared with Comparative Example 1, which was greatly improved. I found out. Further, it was found that by adjusting the thickness Z of the second oxide semiconductor film 507, both the initial characteristics of the field effect mobility ⁇ and Vth and the light irradiation characteristics such as ⁇ Vth are changed.
  • FIG. 20 to FIG. 24 are compared, in FIG. 22 to FIG. 24, two stages of rising can be confirmed compared to FIG. 20 and FIG.
  • the heat treatment temperature T and the thickness Z satisfy the relational expression of 0092 ⁇ T 2 + 3.6 ⁇ T-468 ⁇ 0.1, two-stage rising was confirmed. This is because the interface defect between the first oxide semiconductor film 506 and the second oxide semiconductor film 507 is not compensated, and the first oxide semiconductor film 506 and the second oxide semiconductor film 507 This means that the resistance of the interface is lowered and the channel is open even when no gate bias is applied.
  • FIG. 26 is an image diagram for explaining characteristic deterioration when Z ⁇ L.
  • the characteristic deterioration will be described repeatedly with reference to FIG. 26.
  • Z ⁇ L the resistance of the high mobility layer / high resistance layer interface is likely to be lowered, and a conduction channel is likely to be formed near the interface (Vg -Equivalent to the rise of the first stage of Id data).
  • oxygen defect compensation is not sufficient, holes are trapped at the interface during light irradiation, and as a result, electrons concentrate on the interface, so that the current at the rising portion of the first stage appears to increase. Since the second stage (main channel) is not affected, the threshold seems to be improved.
  • TFT characteristics during light irradiation can be improved.
  • the improvement of the TFT characteristics means that it is possible to prevent the two-stage rise in the initial Vg-Id characteristics as described above.
  • the thickness Z of the second oxide semiconductor film 507 is set to 15 nm or less, that is, the relationship of Z ⁇ L ⁇ 3.0 in the second step and the third step. It was found that when the thickness of the second oxide semiconductor film 507 and the heat treatment temperature were adjusted so as to satisfy the equation, all the threshold voltages Vth became positive values and the initial characteristics were good. Accordingly, it has been found that it is preferable to adjust the thickness and heat treatment temperature of the second oxide semiconductor film 507 so that the relational expression Z ⁇ L ⁇ 3.0 is satisfied in the second step and the third step. It was.
  • the second oxide semiconductor film 507 has a thickness Z of less than 3 nm, that is, the second oxidation so as to satisfy the relation of L-15.0> Z in the second step and the third step.
  • the thickness of the physical semiconductor film 507 and the heat treatment temperature are adjusted, considering the tendency shown in FIG. 25, oxygen diffused from the oxidizing atmosphere by the heat treatment in the third step is conducted through the second oxide semiconductor film 507 through the conductive carrier. It was found that the field-effect mobility may be reduced to 20 cm 2 / Vs or less in order to strongly compensate for oxygen defects in the entire first oxide semiconductor film 506 that is a pass.
  • the thickness and heat treatment temperature of the second oxide semiconductor film 507 so that the relational expression L-15.0 ⁇ Z is satisfied in the second step and the third step. It was. Further, from the results shown in Table 3 and FIG. 25, when the thickness Z of the second oxide semiconductor film 507 is 7 nm or more, that is, in the second step and the third step, L-11.0 ⁇ Z. In the case where the thickness of the second oxide semiconductor film 507 and the heat treatment temperature are adjusted so as to satisfy the relational expression, the mobility is favorable as exceeding 30 cm 2 / Vs.
  • the TFT was changed to 415 ° C. (Example 14) and 450 ° C. (Example 15).
  • heat treatment was performed at a temperature of 450 ° C. in an atmosphere with an oxygen partial pressure of 100%, and the atmosphere in the fifth step was an oxygen partial pressure of 100%.
  • Example 15 Example 7
  • Table 4 summarizes the heat treatment temperature of the fifth step, TFT characteristics, and light irradiation stability.
  • the TFTs according to Examples 13 to 15 have both high field effect mobility and light irradiation stability.
  • the comparison with Example 13 and Example 14 shows that the light irradiation stability is improved by one digit or more ( ⁇ Vth is reduced by one digit) when the heat treatment temperature in the fifth step is 415 ° C. or higher than when the heat treatment temperature is 360 ° C.
  • the heat processing temperature of a 5th process is 415 degreeC or more.
  • Example 16 Example 7
  • Table 5 shows the production conditions of Examples 16 to 24 when the composition of the first oxide semiconductor film 506 is IGZO-based.
  • Table 5 shows the examples of the composition when the first oxide semiconductor film 506 is composition-modulated as an IZO-based.
  • Table 6 shows the production conditions of 25-31.
  • the second oxide semiconductor film 507 and the third oxide semiconductor film 508 have a common composition, which corresponds to the same composition as that in Example 7, and other manufacturing except the conditions in Tables 5 and 6 below.
  • the method and conditions were the same as in Example 7.
  • Table 7 summarizes the field effect mobility and off-current results of the TFTs according to Examples 16 to 24.
  • Table 8 summarizes the results of field effect mobility and off-current of the TFTs according to Examples 25 to 31.
  • a TFT having a field effect mobility of 30 cm 2 / Vs or more is obtained. It can be seen that it can be produced.
  • This composition range corresponds to the range B in FIG. In Examples 22, 23, and 24 in which the In content was increased, high field effect mobility was obtained, but the carrier concentration was excessive, and the threshold value was greatly shifted to the negative side.
  • the TFTs according to Examples 25 to 30 had good field effect mobility of 20 cm 2 / Vs or more.
  • the In content x is within the composition range represented by 0.40 ⁇ x ⁇ 0.75 (enclosed by the compositions of Examples 25 to 29).
  • a TFT with Vth> 0 can be manufactured with a field effect mobility of 30 cm 2 / Vs or more.
  • a normally-off TFT can be manufactured with a field-effect mobility of 30 cm 2 / Vs or more. I understand.
  • the first oxide semiconductor film 506 (IGZO type, IZO type) in the stacked TFT structure is formed. It has been found that TFT characteristics with high mobility can be obtained within a specific composition range by modulating the composition.
  • the conditions for forming the first oxide semiconductor film 506 are exactly the same as in Example 7.
  • the composition of the second oxide semiconductor film 507 and the third oxide semiconductor film 508 is In (e) Ga (f) Zn (g) O (h) (e, f, g, h> 0). It is an oxide semiconductor film represented by these.
  • transistor characteristics Vg-Id characteristics
  • mobility ⁇ mobility ⁇
  • threshold voltage Vth threshold voltage
  • Table 10 summarizes the field effect mobility and threshold voltage results of the TFTs according to Examples 32 to 37.
  • the composition of the second oxide semiconductor film 507 and the third oxide semiconductor film 508 is In (e) Ga (f) Zn (g ) O (h) (e, f, g, h> 0) is preferable, and at this time, the second oxide semiconductor film 507 has 0.250 ⁇ f / It was found that a transistor with high mobility and low off-state current can be manufactured when the composition range is represented by (e + f) ⁇ 0.875.
  • Examples 38 to 41 and evaluation- The TFTs according to Examples 38 to 41 were fabricated as top contact type TFTs with the same bottom gate as in Example 7. These correspond to the structure in Example 7 in which the second oxide semiconductor film 507 and the third oxide semiconductor film 508 have a common composition.
  • the TFT structure and the composition of the first oxide semiconductor film 506 and the second oxide semiconductor film 507 (common to the third oxide semiconductor film 508) are also the same as in Example 7, and the second oxide semiconductor A transistor in which only the total thickness of the film 507 and the third oxide semiconductor film 508 (hereinafter simply referred to as total thickness) was changed to 10 nm, 30 nm, 50 nm, and 70 nm was manufactured.
  • Table 11 summarizes the TFT configurations and TFT characteristics according to Examples 38 to 41.
  • the total thickness of the second oxide semiconductor film 507 and the third oxide semiconductor film 508 is 10 nm or less, the mobility increases, but the S value deteriorates (over 1 V / decade), It was found that the off-current tends to increase.
  • the total thickness is 30 nm or more, the S value is good (1 V / decade or less), and a reduction in off-current can be expected.
  • the total thickness is preferably more than 10 nm and more preferably 30 nm or more.
  • the mobility is slightly lowered when the total thickness is 70 nm or more, it has been found that the total thickness is more preferably less than 70 nm.
  • Examples 42 to 43- As a TFT according to Experimental Example 43, a TFT structure and composition were the same as in Example 7, and a TFT in which only the thickness of the first oxide semiconductor film 506 was changed to 10 nm was manufactured.
  • Table 12 summarizes the comparison of the characteristics of Example 42 and Example 43. Note that the “first film” in the table is an abbreviation for the first oxide semiconductor film 506.
  • the thickness of the first oxide semiconductor film 506 is 10 nm or more, the field-effect mobility is sufficiently secured, but the threshold value is shifted to the minus side, and the off-state current is greatly increased. This is because a high carrier concentration oxide semiconductor is used for the first oxide semiconductor film 506.
  • the thickness of the first oxide semiconductor film 506 increases, the total carrier concentration increases and pinch-off becomes difficult. It is to become. Accordingly, it was found that the thickness of the first oxide semiconductor film 506 is desirably less than 10 nm.
  • the composition and thickness of the stacked structure of the oxide semiconductor layers (the first oxide semiconductor film 506, the second oxide semiconductor film 507, and the third oxide semiconductor film 508), It has been found that a TFT with high mobility is possible in the composition and thickness of characteristics.
  • This IGZO film was produced by the same method as in Example 1.
  • SIMS analysis for each sample according to FIGS. 29 to 30 is performed using the same method as the SIMS analysis described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 光照射時のTFT特性を安定化する。 ゲート電極(14)上に配置されたゲート絶縁層(16)上に、第一の酸化物半導体膜(24)を成膜する第一工程と、第一の酸化物半導体膜(24)とカチオン組成が異なり、且つ第一の酸化物半導体膜(24)より低い電気伝導度を有する第二の酸化物半導体膜(26)を成膜する第二工程と、酸化性雰囲気の下300℃超で熱処理する第三工程と、第一の酸化物半導体膜(24)とカチオン組成が異なり、且つ第一の酸化物半導体膜(24)より低い電気伝導度を有する第三の酸化物半導体膜(28)を成膜する第四工程と、酸化性雰囲気の下300℃超で熱処理する第五工程と、第三の酸化物半導体膜(28)上に、ソース電極(20)及びドレイン電極(22)を形成する電極形成工程と、を有している。

Description

電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びX線センサ
 本発明は、電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びX線センサに関する。
 近年、電界効果型トランジスタは、半導体メモリ用集積回路の単位素子や高周波信号増幅素子、液晶駆動用素子等に用いられており、特に薄膜化したものは薄膜トランジスタ(TFT)として幅広い分野で用いられている。
 電界効果型トランジスタを形成する半導体チャネル層(活性層)としては、従来からシリコン半導体やその化合物が多く用いられており、高速動作が必要な高周波増幅素子、集積回路等には単結晶シリコン、又は低速動作で十分であるが、ディスプレイ用途等大面積化への対応が要求される液晶駆動装置用にはアモルファスシリコンが用いられているが、大型化/高精細化に向けて、アモルファスシリコン性能を凌ぐ、TFT特性が求められている。また、近年軽量かつ曲げられるフレキシブルディスプレイが注目を浴びている。フレキシブルデバイスには、可撓性の高い樹脂基板が主に用いられ、液晶ディスプレイプロセス(400℃)より低温プロセスが必要である。このような中、アモルファスシリコンより電気特性が良く、且つ液晶プロセス、また低温プロセスで作製可能なIn-Ga-Zn-O系(以下IGZOと記す)の酸化物半導体が、東京工業大学細野らにより発見された。このIGZOは、次世代ディスプレイ用の半導体素子材料として有望視されており、世界中の大学/メーカーが盛んに実用化に向けて、研究開発を行っている。
 そして、このようなIGZO等の半導体膜を活性層として用いた電界効果型トランジスタは、青色発光層を有する有機EL表示装置や液晶表示装置等に搭載される場合がある。この青色発光層はλ=450nm程度のピークを持つブロードな発光を示すが、その光の発光スペクトルの裾は420nmまで続いていること、青色カラーフィルタは400nmの光を70%程度は通すこと等を考慮すると、青色光を受け得る電界効果型トランジスタとして450nmよりも小さい波長域での光照射に対する特性劣化が低いことが要求される。仮にIGZOの光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまうという問題が生じる。
 ここで、特許文献1(特開2010-67710号公報)には、酸化物半導体からなる活性層と、活性層の酸化物半導体よりも酸素との結合力の強い元素種を含む酸化物を含有し、厚みが1nm~200nmの中間層と、活性層よりも電気伝導度の低い抵抗層と、の三層構造からなる酸化物半導体層を備えた電界効果型トランジスタの製造方法が開示されている。さらに、この製造方法においては、酸化物半導体層の抵抗層を形成した後の後処理として大気中で熱処理を行うことも開示されている。
 また、特許文献2(特開2010-258431号公報)には、第一の酸化物半導体膜上に第二の酸化物半導体膜を10nm~300nmの厚みとなるように成膜した後、大気雰囲気の下250℃以上500℃以下で熱処理を行うことが開示されている。
 しかしながら、特許文献1の製造方法では、酸化物半導体層の三層構造の中で電気伝導度の高い活性層上に、中間層を成膜した際、当該成膜により活性層の露出面がダメージを受け、結果、光照射時の閾値シフト等を左右し得る表面欠陥が発生してしまう場合がある。成膜の中でも、生産性/バリア性の観点からプラズマを発生するスパッタ法やCVD法を用いると、そのプラズマにより活性層の露出面が特にダメージを受け、結果、光照射時の閾値シフトが悪化する要因となる表面欠陥が増大してしまう。この表面欠陥を回復するには、特許文献1に記載されているような製造方法で酸化物半導体層の抵抗層を形成した後の熱処理をすることが有効であるとも考えられるが、抵抗層を形成した後の熱処理では、抵抗層の厚み分だけ、活性層に酸素が到達しなくなり、プラズマダメージを受けた活性層の面の表面欠陥を補填できない。また、表面欠陥を補填できなくても熱処理することで、閾値シフト自体が改善することも考えられるが、抵抗層を形成した後の熱処理では光照射時の閾値シフト自体も改善されないものと想定される。
 また、特許文献2の製造方法では、第二の酸化物半導体膜を成膜した後に熱処理を行っているが、酸化物半導体層が三層構造でなく、また、第一の酸化物半導体膜は、ソース電極及びドレイン電極と第二の酸化物半導体膜とを接続するバッファ領域となるものであって、活性層となる領域は第二の酸化物半導体膜である。したがって、熱処理の後、活性層となる領域の第二の酸化物半導体膜上に保護層等を成膜すると、当該成膜により第二の酸化物半導体膜の露出面がダメージを受け、結果、光照射時の閾値シフトが悪化する要因となる表面欠陥が発生してしまう。そして、第二の酸化物半導体膜上に保護層等を成膜した後は、発生した表面欠陥の補填や光照射時の閾値シフト自体を改善するような対策を行っていない。
 本発明は上記事情に鑑みてなされたものであり、光照射時のTFT特性を安定化する電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びX線センサを提供することを目的とする。
 本発明の上記課題は下記の手段によって解決された。
<1>ゲート電極上に配置されたゲート絶縁層上に、第一の酸化物半導体膜を成膜する第一工程と、前記第一工程後に、前記第一の酸化物半導体膜上に、前記第一の酸化物半導体膜とカチオン組成が異なり、且つ前記第一の酸化物半導体膜より低い電気伝導度を有する第二の酸化物半導体膜を成膜する第二工程と、前記第二工程後に、酸化性雰囲気の下300℃超で熱処理する第三工程と、前記第三工程後に、前記第二の酸化物半導体膜上に、前記第一の酸化物半導体膜とカチオン組成が異なり、且つ前記第一の酸化物半導体膜より低い電気伝導度を有する第三の酸化物半導体膜を成膜する第四工程と、前記第四工程後に、酸化性雰囲気の下で熱処理する第五工程と、前記第四工程と前記第五工程の間又は前記第五工程後に、前記第三の酸化物半導体膜上に、ソース電極及びドレイン電極を形成する電極形成工程と、を有する電界効果型トランジスタの製造方法。
 なお、上記第三工程の熱処理は複数回行うことも含む。
<2>前記第二工程と前記第三工程の際に、前記第二の酸化物半導体膜の厚みをZ(nm)とし、前記第三工程での熱処理温度をT(℃)とし、前記第二の酸化物半導体膜及び前記第一の酸化物半導体膜中への酸素の拡散距離をL(nm)としたとき、0<Z<L=8×10-6×T-0.0092×T+3.6×T-468±0.1の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、<1>に記載の電界効果型トランジスタの製造方法。
<3>前記第二工程と前記第三工程の際に、Z≦L-3.0の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、<2>に記載の電界効果型トランジスタの製造方法。
<4>前記第二工程と前記第三工程の際に、L-15.0≦Zの関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、<2>又は<3>に記載の電界効果型トランジスタの製造方法。
<5>前記第二工程と前記第三工程の際に、L-11.0≦Z≦L-8.0の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、<2>~<4>の何れか1つに記載の電界効果型トランジスタの製造方法。
<6>前記第四工程では、前記第三の酸化物半導体膜のカチオン組成比が、前記第二の酸化物半導体膜のカチオン組成比と同じになるように成膜する、<1>~<5>の何れか1つに記載の電界効果型トランジスタの製造方法。
<7>前記第二工程と前記第四工程の際、前記第二の酸化物半導体膜と前記第三の酸化物半導体膜の厚みの合計が10nm超70nm未満となるように調整する、<1>~<6>の何れか1つに記載の電界効果型トランジスタの製造方法。
<8>前記第一の酸化物半導体膜と、前記第二の酸化物半導体膜と、前記第三の酸化物半導体膜は、それぞれIn、Ga及びZnのうちの少なくとも1種を含む、<1>~<7>の何れか1つに記載の電界効果型トランジスタの製造方法。
<9>前記第一の酸化物半導体膜はInを含み、前記第一の酸化物半導体膜のIn組成比率が、前記第二の酸化物半導体膜のIn組成比率よりも高い、<8>に記載の電界効果型トランジスタの製造方法。
<10>前記第二の酸化物半導体膜はGaを含み、前記第二の酸化物半導体膜のGa組成比率が前記第一の酸化物半導体膜のGa組成比率よりも高い、<8>又は<9>に記載の電界効果型トランジスタの製造方法。
<11>前記第一の酸化物半導体膜と、前記第二の酸化物半導体膜と、前記第三の酸化物半導体膜は、それぞれ非晶質である、<8>~<10>の何れか1つに記載の電界効果型トランジスタの製造方法。
<12>前記第三工程及び前記第五工程での熱処理温度を600℃未満に調整する、<8>~<11>の何れか1つに記載の電界効果型トランジスタの製造方法。
<13>前記第一工程では、前記第一の酸化物半導体膜の厚みが10nm未満となるように成膜する、<1>~<12>の何れか1つに記載の電界効果型トランジスタの製造方法。
<14>前記第一の酸化物半導体膜の組成は、In(a)Ga(b)Zn(c)O(d)(a,b,c,d>0)で表される、<1>~<13>の何れか1つに記載の電界効果型トランジスタの製造方法。
<15>前記第一の酸化物半導体膜の組成は、c≦3/5,b>0,b≧3a/7-3/14,b≧9a/5-53/50,b≦-8a/5+33/25,b≦91a/74-17/40(但しa+b+c=1とする)で表される範囲内の組成である、<14>に記載の電界効果型トランジスタの製造方法。
<16>前記第一の酸化物半導体膜の組成は、b≦17a/23-28/115,b≧3a/37,b≧9a/5-53/50,b≦1/5(但しa+b+c=1とする)で表される範囲内の組成である、<15>に記載の電界効果型トランジスタの製造方法。
<17>前記第一の酸化物半導体膜の組成は、b≦7a/13-11/65,b≧3a/37,b≦-2a+11/10(但しa+b+c=1とする)で表される範囲内の組成である、<16>に記載の電界効果型トランジスタの製造方法。
<18>前記第一の酸化物半導体膜の組成は、In(x)Zn(1-x)O(y)(y>0,0<x<1)で表される、<1>~<13>の何れか1つに記載の電界効果型トランジスタの製造方法。
<19>前記第一の酸化物半導体膜の組成は、0.4≦x≦0.75で表される範囲内の組成である、<18>に記載の電界効果型トランジスタの製造方法。
<20>前記第一の酸化物半導体膜の組成は、0.4≦x≦0.5で表される範囲内の組成である、<19>に記載の電界効果型トランジスタの製造方法。
<21>前記第二の酸化物半導体膜の組成は、In(e)Ga(f)Zn(g)O(h)(e,f,g,h>0)で表される、<1>~<20>の何れか1つに記載の電界効果型トランジスタの製造方法。
<22>前記第二の酸化物半導体膜の組成は、0.250<f/(e+f)≦0.875で表される範囲内の組成である、<21>に記載の電界効果型トランジスタの製造方法。
<23>前記第一工程と前記第二工程と前記第四工程では、それぞれプラズマを発生する成膜法を用いて成膜する、<1>~<22>の何れか1つに記載の電界効果型トランジスタの製造方法。
<24>前記五工程は、前記電極形成工程後に行う、<1>~<23>の何れか1つに記載の電界効果型トランジスタの製造方法。
<25>ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く且つ、前記第二の酸化物半導体層における格子欠陥密度が、前記第三の酸化物半導体層の格子欠陥密度に対して少ない電界効果型トランジスタ。
<26>ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く、且つ、前記第二の酸化物半導体層中の酸素含有密度が、前記第三の酸化物半導体層の酸素含有密度に対して多くなっている電界効果型トランジスタ。
<27><1>~<24>の何れか1つに記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とする表示装置。
<28>基板と、前記基板上に配置され、<1>~<24>の何れか1つに記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタと、前記電界効果型トランジスタ上で、前記電界効果型トランジスタに電気的に接続されている有機電界発光素子と、を備え、前記有機電界発光素子から発せられる光が、前記基板側から取り出されるボトムエミッション型の表示装置。
<29><1>~<24>の何れか1つに記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とするイメージセンサ。
<30><1>~<24>の何れか1つに記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とするX線センサ。
 本発明によれば、光照射時のTFT特性を安定化する電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びX線センサを提供することができる。
図1は、本発明の実施形態に係るTFTであって、ボトムゲート構造でトップコンタクト型のTFTの一例を示す模式図である。 図2Aは、図1に示すボトムゲート構造で且つトップコンタクト型のTFTの製造方法の一工程図である。 図2Bは、図2Aに続くTFTの製造方法の一工程図である。 図2Cは、図2Bに続くTFTの製造方法の一工程図である。 図2Dは、図2Cに続くTFTの製造方法の一工程図である。 図2Eは、図2Dに続くTFTの製造方法の一工程図である。 図2Fは、図2Eに続くTFTの製造方法の一工程図である。 図2Gは、図2Fに続くTFTの製造方法の一工程図である。 図2Hは、図2Gに続くTFTの製造方法の一工程図である。 図3は、本発明の電気光学装置の一実施形態の液晶表示装置について、その一部分の概略断面図を示す図である。 図4は、図3に示す液晶表示装置の電気配線の概略構成図を示す。 図5は、本発明の電気光学装置の一実施形態のアクティブマトリックス方式の有機EL表示装置について、その一部分の概略断面図を示す図である。 図6は、図5に示す有機EL表示装置の電気配線の概略構成図を示す。 図7は、本発明のセンサの一実施形態であるX線センサについて、その一部分の概略断面図を示す図である。 図8は、図7に示すX線センサの電気配線の概略構成図を示す。 図9Aは実施例及び比較例のTFTの平面図である。 図9Bは図9Aに示すTFTのA-A線矢視断面図である。 図10は、モノクロ光照射下におけるTFT特性測定の概略を示す図である。 図11は、実施例1に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。 図12は、実施例2に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。 図13は、実施例3に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。 図14は、比較例1に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。 図15は、実験例1のサンプルに対するSIMS分析結果を示す図である。 図16は、実験例2のサンプルに対するSIMS分析結果を示す図である。 図17は、実験例3のサンプルに対するSIMS分析結果を示す図である。 図18は、実験例4のサンプルに対するSIMS分析結果を示す図である。 図19は、求めた酸素の拡散距離Lと熱処理温度の関係をプロットしたグラフ図である。 図20は、測定結果のうち代表的なVg-Id特性である実施例7のTFTについての光照射下におけるVg-Id特性を示す図である。 図21は、測定結果のうち代表的なVg-Id特性である実施例9のTFTについての光照射下におけるVg-Id特性を示す図である。 図22は、測定結果のうち代表的なVg-Id特性である実施例10のTFTについての光照射下におけるVg-Id特性を示す図である。 図23は、測定結果のうち代表的なVg-Id特性である実施例11のTFTについての光照射下におけるVg-Id特性を示す図である。 図24は、測定結果のうち代表的なVg-Id特性である実施例12のTFTについての光照射下におけるVg-Id特性を示す図である。 図25は、表3に示す結果に基づき、第二の酸化物半導体膜の厚みZと電界効果移動度μとの関係及び厚みZとΔVthとの関係を示した図である。 図26は、Z≧Lでの特性劣化を説明するイメージ図である。 図27は、In-Ga-Zn三元系の相図であり、この中で特定の組成範囲を明記した図である。 図28は、In-Ga-Zn三元系の相図であり、この中で特定の組成範囲を明記した図である。 図29は、Ga膜を最表面に含む実験例3のサンプルに対するSIMS分析結果とIGZO膜(In:Ga:Zn=1:0.9:0.7)を最表面に含むサンプルに対するSIMS分析結果を示す図である。 図30は、In,Ga,Znの組成比がIn:Ga:Zn=1.85:0.15:1, In:Ga:Zn=1:1:1, In:Ga:Zn=0.5:1.5:1の3つのIGZO膜を、それぞれ実験例4と同一の条件で熱処理した各サンプルに対するSIMS分析結果を示す図である。
 以下、添付の図面を参照しながら、本発明の実施形態に係る電界効果型トランジスタの製造方法、及び、表示装置、イメージセンサ、X線センサについて具体的に説明する。なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、以下で説明する場合に用いる「上」及び「下」という用語は、便宜的に用いるものであって、方向に拘束されるべきでない。
1.電界効果型トランジスタの構成
 まず、電界効果型トランジスタの製造方法を説明する前に、当該製造方法によって作製される電界効果型トランジスタの構成について概略を説明する。
 本発明の実施形態に係る電界効果型トランジスタは、薄膜トランジスタ:TFTであって、少なくとも、ゲート電極、ゲート絶縁層、酸化物半導体層、ソース電極及びドレイン電極を有し、ゲート電極に電圧を印加して、酸化物半導体層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。
 本発明の実施形態のTFTの素子構造としては、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)の態様をとる。また、活性層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型の態様をとる。なお、ボトムゲート型とは、ゲート絶縁層の下側にゲート電極が配置され、ゲート絶縁層の上側に活性層が形成された形態である。また、トップコンタクト型とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
 図1は、本発明の実施形態に係るTFTであって、ボトムゲート構造でトップコンタクト型のTFT10の一例を示す模式図である。
 図1に示すTFT10では、基板12の一方の主面上にゲート電極14と、ゲート絶縁層16と、酸化物半導体層18と、が順に積層されている。この酸化物半導体層18の表面上には、ソース電極20及びドレイン電極22が互いに離間して設置されている。そして、本実施形態ではさらに酸化物半導体層18が、ゲート絶縁層16側から順に第一の酸化物半導体膜24と第二の酸化物半導体膜26と第三の酸化物半導体膜28との三層に分かれている。
 なお、第一の酸化物半導体膜24と第二の酸化物半導体膜26と第三の酸化物半導体膜28との区別は、酸化物半導体層18の断面TEM(Transmission Electron Microscope)分析によるコントラストの違い等により行うことができる。
2.電界効果型トランジスタの製造方法
 以上説明した電界効果型トランジスタの製造方法は、ゲート電極14上に配置されたゲート絶縁層16上に、第一の酸化物半導体膜24を成膜する第一工程と、前記第一の酸化物半導体膜24上に、前記第一の酸化物半導体膜24とカチオン組成が異なり、且つ前記第一の酸化物半導体膜24より低い電気伝導度を有する第二の酸化物半導体膜26を成膜する第二工程と、前記第二工程後に、酸化性雰囲気の下300℃超で熱処理する第三工程と、前記第三工程後に、前記第二の酸化物半導体膜26上に、前記第一の酸化物半導体膜24とカチオン組成が異なり、且つ前記第一の酸化物半導体膜24より低い電気伝導度を有する第三の酸化物半導体膜28を成膜する第四工程と、前記第四工程後に、酸化性雰囲気の下で熱処理する第五工程と、前記第四工程と前記第五工程の間又は前記第五工程後に、前記第三の酸化物半導体膜28上に、ソース電極20及びドレイン電極22を形成する電極形成工程と、を有している。
 そして、このような製造方法によれば、第二工程での第二の酸化物半導体膜26を成膜した後に第三工程の熱処理を行うことによって、第一の酸化物半導体膜24と第二の酸化物半導体膜26との界面欠陥を酸素拡散により補償することで、光照射時のΔVthを改善することができ、仮に、第三工程によって酸化性雰囲気から界面まで酸素拡散が到達しない場合においても、第三工程を行わない場合と比較して第二の酸化物半導体膜26のバルク中欠陥を低減させることが出来るため、もってTFT特性を安定化することができる。
 なお、「電気伝導度」とは、物質の電気伝導のしやすさを表す物性値であり、物質のキャリア濃度n、電気素量をe、キャリア移動度μとするとdrudeモデルを仮定した場合、物質の電気伝導度σは以下の式で表される。
   σ=neμ
 第一の酸化物半導体膜24、第二の酸化物半導体膜26、又は第三の酸化物半導体膜28がn型半導体である時はキャリアは電子であり、キャリア濃度とは電子キャリア濃度を、キャリア移動度とは電子移動度を示す。同様に第一の酸化物半導体膜24、第二の酸化物半導体膜26、又は第三の酸化物半導体膜28がp型半導体ではキャリアは正孔であり、キャリア濃度とは、正孔キャリア濃度を、キャリア移動度とは正孔移動度を示す。尚、物質のキャリア濃度とキャリア移動度は、ホール測定により求めることができる。
 電気伝導度の求め方は、厚みが分かっている膜のシート抵抗を測定することにより、膜の電気伝導度を求めることができる。半導体の電気伝導度は温度より変化するが、本文記載の電気伝導度は、室温(20℃)での電気伝導度を示す。
 以上のような電界効果型トランジスタの製造方法について、以下図2を用いながら具体的に説明する。
 図2は、ボトムゲート構造で且つトップコンタクト型のTFT10の製造方法の工程図である。
-ゲート電極14の形成-
 まず、図2Aに示すように、TFT10を形成するための基板12を用意した後、 基板12の一方の主面上に、ゲート電極14を形成する。
 基板12の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。基板12としては、例えば、ガラスやYSZ(イットリウム安定化ジルコニウム)等の無機材料、樹脂や樹脂複合材料等からなる基板を用いることができる。中でも軽量である点、可撓性を有する点から樹脂あるいは樹脂複合材料からなる基板が好ましい。具体的には、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミドーオレフィン、セルロース、エピスルフィド化合物等の合成樹脂からなる基板、既述の合成樹脂等と酸化珪素粒子との複合プラスチック材料からなる基板、既述の合成樹脂等と金属ナノ粒子、無機酸化物ナノ粒子もしくは無機窒化物ナノ粒子等との複合プラスチック材料からなる基板、既述の合成樹脂等とカーボン繊維もしくはカーボンナノチューブとの複合プラスチック材料からなる基板、既述の合成樹脂等とガラスフェレーク、ガラスファイバーもしくはガラスビーズとの複合プラスチック材料からなる基板、既述の合成樹脂等と粘土鉱物もしくは雲母派生結晶構造を有する粒子との複合プラスチック材料からなる基板、薄いガラスと既述のいずれかの合成樹脂との間に少なくとも1回の接合界面を有する積層プラスチック基板、無機層と有機層(既述の合成樹脂)を交互に積層することで、少なくとも1回以上の接合界面を有するバリア性能を有する複合材料からなる基板、ステンレス基板またはステンレスと異種金属とを積層した金属多層基板、アルミニウム基板または表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板等を用いることができる。
 なお、樹脂基板としては、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、および低吸湿性等に優れていることが好ましい。樹脂基板は、水分や酸素の透過を防止するためのガスバリア層や、樹脂基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
 ゲート電極14の形成では、まず例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って導電膜を成膜する。成膜後、導電膜をフォトリソグラフィー及びエッチング法又はリフトオフ法等により所定の形状にパターンニングすることにより、導電膜からゲート電極14を形成する。この際、ゲート電極14及びゲート配線を同時にパターンニングすることが好ましい。
 ゲート電極14を構成する導電膜は、高い導電性を有するものを用いることが好ましく、例えばAl,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜等を単層または2層以上の積層構造として用いることができる。
-ゲート絶縁層16の形成-
 ゲート電極14を形成した後は、図2Bに示すように、当該ゲート電極14上及び基板12の露出面上にゲート絶縁層16を形成する。
 ゲート絶縁層16の形成では、まず例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って絶縁膜を成膜する。成膜後、必要に応じて、フォトリソグラフィー及びエッチング法又はリフトオフ法等によって所定の形状にパターンニングを行い、絶縁膜からゲート絶縁層16を形成する。
 ゲート絶縁層16を構成する絶縁膜は、高い絶縁性を有するものが好ましく、例えばSiO,SiNx,SiON,Al,Y,Ta,HfO等の絶縁膜、又はこれらの化合物を少なくとも二つ以上含む絶縁膜としてもよい。
 なお、ゲート絶縁層16は、リーク電流の低下及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁層の厚みが大きすぎると駆動電圧の上昇を招いてしまう。 ゲート絶縁層16の厚みは、その材質にもよるが、10nm以上10μm以下が好ましく、50nm以上1000nm以下がより好ましく、100nm以上400nm以下が特に好ましい。
-第一工程-
 ゲート絶縁層16を形成した後は、図2Cに示すように、当該ゲート絶縁層16上に酸化物半導体層18の一部としての第一の酸化物半導体膜24を成膜する第一工程を行う。
 この第一工程では、例えば印刷方式やコーティング方式等の湿式方式、真空蒸着法やスパッタリング法、イオンプレーティング法等の物理的方式、CVDやプラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って第一の酸化物半導体膜24を成膜する。これらの中でも、膜厚の制御がし易いという観点から、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD又はプラズマCVD法等の気相成膜法を用いるのが好ましい。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)がより好ましい。さらに、量産性の観点から、スパッタリング法がさらに好ましい。例えば、RFマグネトロンスパッタリング蒸着法により、真空度及び酸素流量を制御して成膜される。また第一の酸化物半導体膜24として例えばIGZOを成膜する場合には、所望のカチオン組成になるように調整した複合酸化物ターゲットを用いても良いし、In,Ga,ZnOの3元共スパッタを用いても良い。
 第一の酸化物半導体膜24は、酸化物半導体を主体としていればよく、その他に不純物等を含有していても良い。ここで、「主体」とは、第一の酸化物半導体膜24を構成する構成成分のうち、最も多く含有されている成分を表す。
 酸化物半導体は、非晶質又は結晶質のいずれであってもよいが、好ましくは、非晶質酸化物半導体が用いられる。半導体膜を酸化物半導体により構成すれば、非晶質シリコンの半導体膜に比べて電荷の移動度がはるかに高く、低電圧で駆動させることができる。また、酸化物半導体を用いれば、通常、シリコンよりも光透過性が高い半導体膜を形成することができる。また、酸化物半導体、特に非晶質酸化物半導体は、低温(例えば室温)で均一に成膜が可能であるため、プラスチックのような可撓性のある樹脂基板を用いるときに特に有利となる。
 酸化物半導体の構成材料としては、従来公知のものが包含され、例えばIn,Ti,Nb,Sn,Zn,Gd,Cd,Zr,Y,La,Ta等の遷移金属の酸化物の他、SrTiO3,CaTiO3,ZnO・Rh,CuGaO,SrCu等の酸化物等が挙げられる。
 このように、第一の酸化物半導体膜24に用いられる酸化物半導体は、特に限定されることはないが、In、Sn、Zn、Ga及びCdのうち少なくとも1種を含む金属酸化物が好ましく、In、Sn、Zn及びGaのうち少なくとも1種を含む金属酸化物がより好ましく、In、Ga及びZnのうちの少なくとも1種を含む金属酸化物(例えばIn-O系)がさらに好ましい。
 特に、第一の酸化物半導体膜24はInを含み、第一の酸化物半導体膜24のIn組成比率が、第二の酸化物半導体膜26のIn組成比率よりも高いことが好ましい。In組成比率を高くすることで相対的に電子親和力が増大する傾向が得られ、第一の酸化物半導体膜24に伝導キャリアが集中しやすくなるからである。また、In含有率を増大させた方が伝導キャリア濃度を増大させることが容易になるため、高いキャリア移動度を得やすくなるからである。
 さらに、In、Ga及びZnのうちの少なくとも2種を含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)が好ましく、In、Ga及びZnを全て含む酸化物がより好ましい。すなわち、第一の酸化物半導体膜24の組成は、In(a)Ga(b)Zn(c)O(d)(a,b,c,d>0)で表されることが好ましい。その際、第一の酸化物半導体膜24の組成が、c≦3/5,b>0, b≧3a/7-3/14,b≧9a/5-53/50,b≦-8a/5+33/25,b≦91a/74-17/40(但しa+b+c=1とする)で表される範囲内の組成であることが好ましい。この組成範囲内であれば、TFT10形成後に20cm/Vs超の電界効果移動度が得られるからである。また後述する第三工程での熱処理温度や第二の酸化物半導体膜26の膜厚にもよるが閾値電圧VthがVth>0となるからである。
 さらにその際、第一の酸化物半導体膜24の組成は、b≦17a/23-28/115,b≧3a/37,b≧9a/5-53/50,b≦1/5(但しa+b+c=1とする)で表される範囲内の組成であることが好ましい。この組成範囲内であれば、TFT10形成後に30cm/Vs超の電界効果移動度が得られるからである。
 さらにまたその際、第一の酸化物半導体膜24の組成は、b≦7a/13-11/65,b≧3a/37,b≦-2a+11/10(但しa+b+c=1とする)で表される範囲内の組成であることが好ましい。この組成範囲内であれば、TFT10形成後に30cm/Vs超の電界効果移動度とノーマリーオフ(ゲート電圧:Vg=0でのドレイン電流:Idが10-9A以下)が両立できるからである。
 また、In、Ga及びZnのうちの2種のみを含む酸化物の場合、第一の酸化物半導体膜24の組成は、In(x)Zn(1-x)O(y)(y>0,0<x<1)で表されることが好ましい。その際、第一の酸化物半導体膜24の組成は、0.4≦x≦0.75で表される範囲内の組成であることが好ましい。この組成範囲内であれば、TFT10形成後に30cm/Vs以上の電界効果移動度が得られるからである。さらにその際、第一の酸化物半導体膜24の組成は、0.4≦x≦0.5で表される範囲内の組成であることが好ましい。この組成範囲内であれば、TFT10形成後に30cm/Vs以上の電界効果移動度とノーマリーオフ(ゲート電圧:Vg=0でのドレイン電流:Idが10-9A以下)が両立できるからである。
 また、この第一工程では、第一の酸化物半導体膜24の厚みが10nm未満となるように成膜することが好ましい。第一の酸化物半導体膜24は、上述したように高移動度化を実現しやすいIZOや極めてIn-richなIGZO膜を用いることが好ましいが、このような高移動度膜はキャリア濃度が高いためにピンチオフが比較的難しく、閾値が大きくマイナス側にシフトする可能性がある。したがって、第一の酸化物半導体膜24の厚みを10nm未満とすることで、酸化物半導体層18におけるトータルのキャリア濃度が過剰な状態となってピンチオフが困難となることを回避することができる。
 第一の酸化物半導体膜24の電気伝導度は、好ましくは、10-6Scm-1以上10Scm-1未満である。より好ましくは10-4Scm-1以上10Scm-1未満であり、さらに好ましくは10-1Scm-1以上10Scm-1未満である。
-第二工程-
 第一工程後は、図2Dに示すように、第一の酸化物半導体膜24上に、当該第一の酸化物半導体膜24とカチオン組成が異なり、且つ第一の酸化物半導体膜24より低い電気伝導度を有する第二の酸化物半導体膜26を成膜する第二工程を行う。
 酸化物半導体層18の一部としての第二の酸化物半導体膜26も、第一の酸化物半導体膜24より低い電気伝導度を有することを前提として第一の酸化物半導体膜24と同様の材料を用いることができる。
 ただし、第二の酸化物半導体膜26はGaを含み、当該第二の酸化物半導体膜26のGa組成比率が第一の酸化物半導体膜24のGa組成比率よりも高いことが好ましい。Ga組成比率を大きくすることで相対的に電子親和力が減少する傾向が得られ、第一の酸化物半導体膜24に伝導キャリアが集中しやすくなるからである。また、Ga含有率を増大させることで、バックチャネル側の伝導キャリアの寄与を減少させることが可能であるため、オフ電流が低減しやすくなるからである。
 特に、第二の酸化物半導体膜26の組成は、In(e)Ga(f)Zn(g)O(h)(e,f,g,h>0)で表されることが好ましい。その際、第二の酸化物半導体膜26の組成は、0.250<f/(e+f)≦0.875で表される範囲内の組成であることが好ましい。f/(e+f)≦0.250の場合には、第2の領域の電子親和力が相対的に大きくなるため、第二の酸化物半導体膜26にも伝導パスが形成されたり、第二の酸化物半導体膜24に過剰な伝導キャリアを誘起しやすくなる。第二の酸化物半導体膜26において、f/(e+f)>0.250の範囲であれば第一の酸化物半導体膜24と比較して電子親和力が小さくなるためにキャリア濃度が相対的に低くなる。そのためゲート電圧を負に印加した場合に第二の酸化物半導体膜26がピンチオフしやすく、結果ソース・ドレイン電極20,22と第一の酸化物半導体膜24が切り離されるため、オフ電流が低減する効果が期待できる。一方で、f/(e+f)≦0.875であると、ソース・ドレイン電極20,22と第二の酸化物半導体膜26の間のコンタクト抵抗が高くなることを抑制できる。従って、第二の酸化物半導体膜26の組成範囲は、上述したように0.250<f/(e+f)≦0.875であることが好ましい。
 第二の酸化物半導体膜26の電気伝導度は、第一の酸化物半導体膜24より低い電気伝導度を有することを前提として、第一の酸化物半導体膜24と同様の範囲を取り得るが、好ましくは、10-7Scm-1以上10Scm-1未満である。より好ましくは10-7Scm-1以上10-1Scm-1未満である。
-第三工程-
 第二工程後は、図2Eに示すように、酸化性雰囲気の下300℃超で熱処理する第三工程を行う。第三工程を行う理由は、上述した通り、光照射時のTFT特性を安定化するためである。なお、熱処理温度を300℃超としたのは、酸化性雰囲気中の酸素又は第二の酸化物半導体膜26中の酸素が300℃超から第二の酸化物半導体膜26や第一の酸化物半導体膜24への拡散が生じるため、酸素拡散による第一の酸化物半導体膜24の界面欠陥や第一の酸化物半導体膜24及び第二の酸化物半導体膜26のバルク欠陥を低減するためには、300℃超の温度での熱処理が必要となるからである。また、この第三工程の熱処理は、複数回繰り返してもよい。
 ここで、第二工程と第三工程の際に、第二の酸化物半導体膜26の厚みをZ(nm)とし、第三工程での熱処理温度をT(℃)とし、さらに酸素の拡散距離をL(nm)としたとき、0<Z<L=8×10-6×T-0.0092×T+3.6×T-468±0.1の関係式を満たすように第二の酸化物半導体膜26の厚みと上記熱処理温度を調整することが好ましい。このように、第二の酸化物半導体膜26の厚みZと熱処理温度Tの調整を行った上で第三工程の熱処理をすることによって、酸化性雰囲気中の酸素を第二の酸化物半導体膜26を介して第一の酸化物半導体膜24の界面内部にまで確実に供給することができるため、第二工程の成膜によって成膜ダメージを受けた第一の酸化物半導体膜24の表面欠陥を十分に補填でき、光照射時のTFT特性を改善することができる。このTFT特性については具体的には実施例で説明するが、酸化性雰囲気中の酸素を第二の酸化物半導体膜26を介して第一の酸化物半導体膜24の界面内部にまで供給すると、第一の酸化物半導体膜24と第二の酸化物半導体膜26との界面に、光照射時に誘起された電子-正孔対のうち正孔がトラップされ難いため、Vg-Id特性が2段階の立ち上がりを示めさないようにすることができる。
 また、第二工程と第三工程の際に、Z≦L-3.0の関係式を満たすように第二の酸化物半導体膜26の厚みと熱処理温度を調整することが好ましい。TFT10形成後の初期特性(光照射前)が良好となるからである。具体的には、閾値電圧Vthが正の値となるからである。
 一方で、第二工程と第三工程の際に、L-15.0≦Zの関係式を満たすように第二の酸化物半導体膜26の厚みと熱処理温度を調整することが好ましい。第三工程での熱処理によって、第一の酸化物半導体膜24の奥深くまで酸素欠陥を補填して電界効果移動度が低減してしまうことを抑制するためである。
 さらに、第二工程と第三工程の際に、L-11.0≦Z≦L-8.0の関係式を満たすように第二の酸化物半導体膜26の厚みと熱処理温度を調整することが好ましい。この範囲内であるとTFT10の電界効果移動度が急激に上昇するからである。なお、この電界効果移動度は、光照射前であっても光照射後であっても特に変化はしない。
 このように、第三工程での熱処理温度Tは、第一の絶縁膜24の厚みZとの関係を考慮して値を調整することになるが、600℃未満であることが好ましい。600℃未満の熱処理温度だと、第一の酸化物半導体膜24と第二の酸化物半導体膜26の間でカチオンの相互拡散が起こって2つの領域が交じりあってしまうことを抑制できるからである。また、この場合には第一の酸化物半導体膜24だけに伝導キャリアを集中させ易くなる。第一の酸化物半導体膜24と第二の酸化物半導体膜26でのカチオンの相互拡散が起こっているかどうかは、例えば断面TEMによる分析を行うことで確認できる。
 また、酸化性雰囲気中の酸素分圧についても特に限定されないが、光照射時のΔVthをより改善する観点から実質的に100%であることが好ましい。また、初期特性において、Vthがマイナスへシフトする可能性がある事(酸素欠損による余剰キャリアの発生を抑制するという観点)を考慮すると酸化性雰囲気中の酸素分圧は全体の5%以上であることが好ましい。
-第四工程-
 第三工程後は、図2Fに示すように、第二の酸化物半導体膜26上に、第一の酸化物半導体膜24とカチオン組成が異なり、且つ第一の酸化物半導体膜24より低い電気伝導度を有する第三の酸化物半導体膜28を成膜する第四工程を行う。
 この第四工程では、第二工程と同様の成膜法を用いることができる。ただし、第一工程と第二工程と第四工程では、それぞれプラズマを発生する成膜法を用いて成膜することが好ましい。この成膜法であると第一の酸化物半導体膜24の表面が第二の酸化物半導体膜26の成膜によりダメージを受け易いので、本実施形態の製造方法に適している。また、成膜速度が速く、また均一性の高い膜が形成可能である場合が多く、低コスト且つ大面積の酸化物半導体膜を提供できる。
 また、酸化物半導体層18の一部としての第三の酸化物半導体膜28も、第一の酸化物半導体膜24より低い電気伝導度を有することを前提として第一の酸化物半導体膜24と同様の材料を用いることができる。
 ただし、第四工程では、第三の酸化物半導体膜28のカチオン組成比が、第二の酸化物半導体膜26のカチオン組成比と同じになるように成膜することが好ましい。第三の酸化物半導体膜28のカチオン組成比は第一の酸化物半導体膜24、第二の酸化物半導体膜26よりも電子親和力が小さければ問題ないが、第二の酸化物半導体膜26と電子物性に大きな不整合があるときに界面でのパラレル伝導を引き起こしたりすることを抑制するためである。また、製造面から考えても、3種類のカチオン組成の酸化物半導体膜を積層する場合と比較して、第二の酸化物半導体膜26と第三の酸化物半導体膜28に同じ酸化物半導体膜を用いた場合の方が低コストである。
 以上の観点と移動度を高めるという観点から、第一の酸化物半導体膜24と、第二の酸化物半導体膜26と、第三の酸化物半導体膜28は、それぞれIn、Ga及びZnのうちの少なくとも1種を含むことが好ましい。
 また、第一の酸化物半導体膜24と、第二の酸化物半導体膜26と、第三の酸化物半導体膜28は、それぞれ非晶質であることが好ましい。これらの膜が非晶質であれば、400℃以下の低温で成膜することが可能である他、結晶粒界が存在せず、均一性の高い膜が得られるからである。第一の酸化物半導体膜24と、第二の酸化物半導体膜26と、第三の酸化物半導体膜28が非晶質であるかどうかは、X線回折測定により確認することができる。すなわち、X線回折測定により、結晶構造を示す明確なピークが検出されなかった場合は、その膜は非晶質であると判断することができる。
 また、第二工程と第四工程の際、第二の酸化物半導体膜26と第三の酸化物半導体膜28の厚みの合計が10nm超70nm未満となるように調整することが好ましい。第二の酸化物半導体膜26と第三の酸化物半導体膜28の厚みの合計が10nm以上であると、オフ電流の低減やS値の劣化抑制が期待できるからである。また、第二の酸化物半導体膜26と第三の酸化物半導体膜28の厚みの合計が70nm未満であると、ソース・ドレイン電極20,22と第一の酸化物半導体膜24の抵抗が増大して結果的に移動度の低下を招くことを抑制するためである。
 なお、酸化物半導体層18の総膜厚は、膜の均一性、及び活性層中のトータルのキャリア濃度という観点から10nm以上200nm以下であることが好ましい。
 また、酸化物半導体層18の各膜のキャリア濃度(及び電気伝導度)の制御は、組成変調によって行う他、成膜時の酸素分圧制御によっても行うことができる。
 酸素濃度の制御は、具体的には第一の酸化物半導体膜24、第二の酸化物半導体膜26における成膜時の酸素分圧をそれぞれ制御することによって行う事が出来る。成膜時の酸素分圧を高めれば、キャリア濃度を低減させることが出来、それに伴ってオフ電流の低減が期待できる。一方、成膜時の酸素分圧を低くすれば、キャリア濃度を増大させることが出来、それに伴って電界効果移動度の増大が期待できる。また、例えば第一の酸化物半導体膜24の成膜後に酸素ラジカルやオゾンを照射する処理を施すことによっても膜の酸化を促進し、第一の酸化物半導体膜24中の酸素欠損量を低減させる事が可能である。
 また、酸化物半導体層18のZnの一部を、よりバンドギャップの広がる元素イオンをドーピングすることによって、光学バンドギャップ増大に伴う光照射安定性を付与することが出来る。具体的には、Mgをドーピングすることにより膜のバンドギャップを大きくすることが可能である。例えば、第一の酸化物半導体膜24、第二の酸化物半導体膜26、第三の酸化物半導体膜28の各領域にMgをドープすることで、In、Ga、Znのみの組成比を制御した系に比べて、積層膜のバンドプロファイルを保ったままバンドギャップの増大が可能である。
 そして、有機ELに用いられる青色発光層はλ=450nm程度にピークを持つブロードな発光を示すことから、仮にIGZO膜の光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまうという問題が生じる。従って、特に有機EL駆動用に用いられるTFTとしては、酸化物半導体層18に用いる材料のバンドギャップが、より大きいことが好ましい。
 また、第一の酸化物半導体膜24等のキャリア密度はカチオンドーピングによっても任意に制御することができる。キャリア密度を増やしたい際には、相対的に価数の大きなカチオンになりやすい材料(例えばTi、Zr、Hf、Ta等)をドーピングすればよい。但し、価数の大きいカチオンをドーピングする場合は、酸化物半導体膜の構成元素数が増えるため、成膜プロセスの単純化、低コスト化の面で不利であることから、酸素濃度(酸素欠損量)により、キャリア密度を制御することが好ましい。
-第五工程-
 第四工程後は、図2Gに示すように、酸化性雰囲気の下で熱処理する第五工程を行う。
 第五工程での熱処理温度は、第三工程と同様に、カチオンの相互拡散の理由から600℃未満に調整することが好ましい。また、第三工程と同様に、酸素拡散を引き起こすという観点から300℃超であることが好ましく、光照射安定性を高めるという観点(例えば|ΔVth|≦0.1V)から、415℃以上であることがより好ましい。
 酸化物半導体層18の成膜直後(第四工程直後)又は第五工程直後は、必要に応じて、フォトリソグラフィー及びエッチング法又はリフトオフ法等によって酸化物半導体層18を所定の形状にパターンニングを行う。具体的には、残存させる部分にフォトリソグラフィーによりレジストパターンを形成し、塩酸、硝酸、希硫酸、または燐酸、硝酸および酢酸の混合液等の酸溶液によりエッチングすることによりパターンを形成する。なお、このパターニングは、第一工程、第二工程及び第四工程の直後にそれぞれ行うこともできるが、キャリアが流れる第一の酸化物半導体膜24にダメージを与えないという観点から、酸化物半導体層18の成膜直後(第四工程直後)又は第五工程直後であることが好ましい。
-電極形成工程-
 第四工程と第五工程の間又は第五工程後は、図2Hに示すように、第三の酸化物半導体膜28上に、ソース電極20及びドレイン電極22を形成する電極形成工程を行う。ただし、オーミックコンタクト形成の観点から、電極形成工程後に第五工程の熱処理を行うことが好ましい。電極形成工程では、まず例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って導電膜を成膜する。これらの中でも、膜厚の制御がし易いという観点から、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD又はプラズマCVD法等の気相成膜法を用いるのが好ましい。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)がより好ましい。さらに、量産性の観点から、スパッタリング法がさらに好ましい。成膜後、必要に応じて、フォトリソグラフィー及びエッチング法又はリフトオフ法等によって所定の形状にパターンニングを行い、導電膜からソース・ドレイン電極20,22を形成する。この際、ソース・ドレイン電極20,22に接続する配線を同時にパターンニングすることが好ましい。
 ソース・ドレイン電極20,22を構成する導電膜は、高い導電性を有するものを用い、例えばAl,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜等を用いて形成することが出来る。ソース・ドレイン電極20,22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることが出来る。
 成膜する導電膜の膜厚は、成膜性やエッチングやリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上100nm以下であることがより好ましい。
 以上の手順を経ることにより、図1に示すTFT10を作製することができる。
 本発明の実施形態に係る電界効果型トランジスタの製造方法を用いて作製したTFT10であるかどうかは、SIMS(Secondary Ion-microprobe Mass Spectrometry)分析を行うことによって確認できる。本実施形態のIGZOやIZO系の酸化物半導体膜を250℃以上の温度で熱処理した場合、昇温脱離ガス分析(TDS)よりZn元素の減少が観測される。従って、例えば後述する実施例のように450℃での熱処理を2回施したTFTにおいては、積層膜表面と、積層膜内部にZn元素の減少した部位が見られるはずである。具体的に、後述する実施例7と同じ活性層構造のIGZO膜(第一の酸化物半導体膜24がIn:Ga:Zn=0.617:0.050:0.333、第二の酸化物半導体膜26及び第三の酸化物半導体膜28がIn:Ga:Zn,第二の酸化物半導体膜26成膜後に第3工程として450℃でアニール)に対して四重極型二次イオン質量分析装置(アルバックファイ株式会社製PHI ADEPT1010)を用い、一次イオン種Cs、一次加速電圧1.0kV、検出領域100μm×100μmの設定条件下において、2次イオン強度(負イオン)を観測した場合を考える。観測されるIn+O(In元素とO元素の結合イオン種)、Zn+Oの分子(Zn元素とO元素の結合イオン種)のイオン強度が10超となる様な感度の条件下で、2次イオン強度の深さ方向分布測定を行った場合、第二の酸化物半導体膜26領域において、Zn+Oイオン強度が減少している振る舞いが観測される。又、InやZnイオンを含まない酸化物半導体膜の場合でも、第三工程の熱処理温度が、第五工程の熱処理温度より高い場合、第三工程熱処理時に表面に晒される第二の酸化物半導体膜26領域において、H、OHイオンの減少が観測される。したがって、本発明の実施形態に係る電界効果型トランジスタの製造方法を用いて作製したTFT10であるかどうかは、酸化物半導体層18の組成分布をSIMS分析評価することで判断できる。
 また、本発明の実施形態に係る電界効果型トランジスタの製造方法を用いて作製したTFT10は、ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、
 前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く且つ、前記第二の酸化物半導体層における格子欠陥密度が、前記第三の酸化物半導体層の格子欠陥密度に対して少ない電界効果型トランジスタであるものと考えられる。
 また、本発明の実施形態に係る電界効果型トランジスタの製造方法を用いて作製したTFT10は、ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く、且つ、前記第二の酸化物半導体層中の酸素含有密度が、前記第三の酸化物半導体層の酸素含有密度に対して多くなっている電界効果型(薄膜)トランジスタであると考えられる。
 なお、格子欠陥とは、熱的に安定な原子位置からのズレの程度や、酸素空孔、あるいはInの原子数+Gaの原子数≒2×Znの原子数の式を満たす金属元素組成の相関からのズレの程度を意味する。また、酸素含有密度はそれぞれの酸化物半導体層における、単位体積あたりの酸素含有量を意味する。
 ここで、図2の第三工程に着目する。本発明の実施形態に係る電界効果型トランジスタの製造方法を用いて作製したTFT10は、第三工程によって、第二の酸化物半導体膜26中に酸素拡散が起こる事はO18アニールによる酸素侵入の結果から明らかである(実施例参照)。本発明によって酸素拡散が起こる300℃超での熱処理(第三工程)を行ったTFTでは全て光照射特性が向上する結果が得られている。これは第二の酸化物半導体膜26が(望ましくは第一,第二酸化物半導体膜の界面と共に)外部酸化性雰囲気下の酸素拡散によって欠陥補償されているためである。熱処理条件下で酸素拡散が起こるために、アモルファス構造ではあるもの、このような酸素拡散熱処理は格子原子の熱的安定な位置への再配列を促す。そのため、本実施形態によって得られたTFT10は第二の酸化物半導体膜26における格子欠陥密度が第三の酸化物半導体28よりも小さくなると考えられる。また当然ではあるが、第二の酸化物半導体膜26は、第三工程での外部酸化性雰囲気からの酸素拡散が起こっており、第三の酸化物半導体膜28と比較して酸素含有密度が増大するものと考えられる。したがって本実施形態の製造方法によって得られる光照射特性が向上したTFT10は、上記の様な特徴を有していると想定される。
 なお、格子欠陥密度に関しては、太陽電池セル等の欠陥分析にて使用される、DLCP法(欠陥密度の深さ方向分析)等によって第一,第二,第三の酸化物半導体膜の格子欠陥密度を評価することが可能である。また、酸素含有密度差を検出する方法としてSIMS分析が挙げられる。
3.変形例
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わせて実施可能である。また、以下の変形例同士を、適宜、組み合わせてもよい。
 例えば、本実施形態に係るTFTは、上記以外にも、様々な構成をとることが可能であり、例えば基板12上に絶縁層を設けたり、ソース電極20とドレイン電極22との間から露出する酸化物半導体層18の面上に、保護層を設けたりすることもできる。
 なお、日本出願2011-167093の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
4.応用
 以上で説明した本実施形態にて製造される電界効果型トランジスタの用途には特に限定はないが、例えば電気光学装置(例えば液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置、等)における駆動素子、特に大面積デバイスに用いる場合に好適である。
 更に実施形態の電界効果型トランジスタは、樹脂基板を用いた低温プロセスで作製可能なデバイスに特に好適であり(例えばフレキシブルディスプレイ等)、X線センサなどの各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として、好適に用いられるものである。
5.電気光学装置及びセンサ
 本実施形態の電気光学装置又はセンサは、前述の電界効果型トランジスタ(TFT10)を備えて構成される。
 電気光学装置の例としては、表示装置(例えば液晶表示装置、有機EL表示装置、無機EL表示装置、等)がある。
 センサの例としては、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサや、X線センサ等が好適である。
 本実施形態のTFTを用いた電気光学装置およびセンサは、いずれも特性の面内均一性が高い。なお、ここで言う「特性」とは、電気光学装置(表示装置)の場合には表示特性、センサの場合には感度特性である。
 以下、本実施形態によって製造される電界効果型トランジスタを備えた電気光学装置又はセンサの代表例として、液晶表示装置、有機EL表示装置、X線センサについて説明する。
6.液晶表示装置
 図3に、本発明の電気光学装置の一実施形態の液晶表示装置について、その一部分の概略断面図を示し、図4にその電気配線の概略構成図を示す。
 図3に示すように、本実施形態の液晶表示装置100は、図1に示したボトムゲート構造でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護された酸化物半導体層18上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのRGBカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。
 また、図4に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。
 TFT10のゲート電極14は、ゲート配線112に接続されており、TFT10のソース電極20はデータ配線114に接続されている。また、TFT10のドレイン電極22はゲート絶縁層16に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。
 本実施形態のTFTは光照射時の安定性が非常に高いことから、液晶表示装置の信頼性が増す。
7.有機EL表示装置
 図5に、本発明の電気光学装置の一実施形態のアクティブマトリックス方式の有機EL表示装置について、その一部分の概略断面図を示し、図6に電気配線の概略構成図を示す。
 有機EL表示装置の駆動方式には、単純マトリックス方式とアクティブマトリックス方式の2種類がある。単純マトリックス方式は低コストで作製できるメリットがあるが、走査線を1本ずつ選択して画素を発光させることから、走査線数と走査線あたりの発光時間は反比例する。そのため高精細化、大画面化が困難となっている。アクティブマトリックス方式は画素ごとにトランジスタやキャパシタを形成するため製造コストが高くなるが、単純マトリックス方式のように走査線数を増やせないという問題はないため高精細化、大画面化に適している。
 本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1に示したボトムゲート構造のTFT10が、基板12上に設けられている。この基板12は例えば可撓性支持体であって、PENなどのプラスチックフィルムであり、絶縁性とするために表面に基板絶縁層202を有する。その上にパターニングされたカラーフィルタ層204が設置される。駆動TFT部にゲート電極14を有し、さらにゲート絶縁膜110がゲート電極14上に設けられる。ゲート絶縁膜16の一部には電気的接続のためにコネクションホールが開けられる。駆動TFT部に酸化物半導体層18が設けられ、その上にソース電極20及びドレイン電極22が設けられる。ドレイン電極22と有機EL素子の画素電極(陽極)206とは、連続した一体であって、同一材料・同一工程で形成される。スイッチングTFTのドレイン電極22と駆動TFTは、コネクション電極208によってコネクションホールで電気的に接続される。さらに、画素電極部の有機EL素子が形成される部分を除いて、全体が絶縁膜210で覆われる。画素電極部の上に、発光層を含む有機層212および陰極214が設けられ有機EL素子部が形成される。
 また、図6に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極14は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極20はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極22は駆動用TFT10のゲート電極14に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極20は駆動配線224に接続され、ドレイン電極22は有機層212に接続される。
 本発明により製造されるTFTは光照射時における安定性が非常に高いことから、信頼性の高い有機EL表示装置の製造に適している。
 なお、図5に示した有機EL表示装置において、有機層212の上部電極を透明電極としてトップエミッション型としてもよいし、有機層212の下部電極およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。
8.X線センサ
 図7に、本発明のセンサの一実施形態であるX線センサについて、その一部分の概略断面図を示し、図8にその電気配線の概略構成図を示す。
 図7は、より具体的にはX線センサアレイの一部を拡大した概略断面図である。本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。
 キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極20およびドレイン電極22のいずれか一方(図7においてはドレイン電極22)と接続されている。
 電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
 X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
 上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
 図8に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。
 TFT10のゲート電極14は、ゲート配線320に接続されており、TFT10のソース電極20はデータ配線322に接続されている。また、TFT10のドレイン電極22は電荷収集用電極302に接続されており、さらにこの電荷収集用電極302は、キャパシタ310に接続されている。
 本実施形態のX線センサ300において、X線は図7中、上部(上部電極306側)から照射され、X線変換層304で電子-正孔対を生成する。このX線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。
 本実施形態のX線センサ300は、光照射時の安定性が高いTFT10を備えるため、均一性に優れた画像を得ることができる。
 以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。
<第三工程の熱処理による光照射特性の検証>
 第二の酸化物半導体膜の成膜から第三の酸化物半導体膜の成膜までの間に熱処理工程(第三工程)を導入することで、光照射特性がどのように変化するのか、以下のようなボトムゲート・トップコンタクト型のTFTを実施例1~3のTFT及び比較例1のTFTとして作製し、光照射時のTFT特性を評価することで検証した。
-実施例1-
 まず、実施例1に係るTFTを以下のような製造方法を用いて作製した。
 図9Aは実施例及び比較例のTFTの平面図であり、図9Bは図9Aに示すTFTのA-A線矢視断面図である。
 図9A及び図9Bに示すように、基板として三菱マテリアル社製の熱酸化膜504付p型Si基板502(1inch角、厚み:525μmt、熱酸化膜(SiO):100nmt)を用い、熱酸化膜504をゲート絶縁層として用いる簡易型のTFT500を作製した。
 基板502上に形成する酸化物半導体層505は、上述の通り、第一の酸化物半導体膜506と、第二の酸化物半導体膜507と、第三の酸化物半導体膜508とに分けたが、各膜間で大気中に暴露することなく連続して成膜を行った。各膜のスパッタは、第一~第三の酸化物半導体膜506~508においてはInターゲット、Gaターゲット、ZnOターゲットを用いた3元共スパッタを用いて行った。各領域の膜厚調整は成膜時間の調整にて行った。
 具体的に、まず基板502の熱酸化膜504上に第一の酸化物半導体膜506を5nmスパッタ成膜した(第一工程)。第一の酸化物半導体膜506は、In(a)Ga(b)Zn(c)O(d),(a>0,b>0,c>0,d>0,a+b+c=1)としたとき組成比がa:b:c=0.617:0.050:0.333のIGZO膜とした。この成膜の際、ターゲット投入電力(W)は、In:Ga:ZnO=47.3:23.1:14.0とした。
 また、他のスパッタ条件は、次のようにした。
 到達真空度;6×10-6Pa
 成膜圧力;4.4×10-1Pa
 成膜温度;室温
 酸素分圧/アルゴン分圧;0.067
 次に、第一の酸化物半導体膜506上に第二の酸化物半導体膜507を5nmスパッタ成膜した(第二工程)。第二の酸化物半導体膜507は、組成比がIn(a)Ga(b)Zn(c)O(d),(a>0,b>0,c>0,d>0)、b/(a+b)=0.750(a:b:c=0.167:0.500:0.333)で表されるIGZO膜とした。
 その後、第三工程として酸素分圧100%の酸化性雰囲気の下450℃で熱処理を行った。なお、酸素分圧100%の酸化性雰囲気は、ガスボンベからフローしたものであり、雰囲気全体に含まれる水分含有量が露点温度換算で-36℃以下(絶対湿度0.21g/m-3以下)のものである。
 熱処理の後、第三の酸化物半導体膜508として、第二の酸化物半導体膜507と同じ組成のIGZO膜を45nm成膜した(第四工程)。なお、第二の酸化物半導体膜507及び第三の酸化物半導体膜508のスパッタ条件は以下の通りである。
到達真空度;6×10-6Pa
成膜圧力;4.4×10-1Pa
成膜温度;室温
酸素分圧/アルゴン分圧;0.067
In、Ga、ZnOターゲットの投入電力比;19.3:70.0:14.5
 なお、各スパッタ成膜では、メタルマスクを用いてパターン成膜している。また、X線回折測定により酸化物半導体層505の各膜は非晶質膜であることを確認し、これは以下の実施例、比較例及び実験例でも同じ結果となった。また、同じ組成で成膜した単膜について、ホール測定により、第一の酸化物半導体膜506の抵抗率が第二の酸化物半導体膜507の抵抗率よりも低いことを確認した。
 第三の酸化物半導体膜508の成膜後、メタルマスクを介した真空蒸着法により、Ti(10nm)/Au(40nm)から成る電極層(ソース電極510・ドレイン電極512)を第三の酸化物半導体膜508上に形成した(電極形成工程)。ソース・ドレイン電極510,512のサイズは各々1mm角とし、電極間距離は0.15mmとした。
 電極層形成後は、酸化性雰囲気(=大気雰囲気)の下450℃で熱処理を行った(第五工程)。なお、大気雰囲気とは、酸素分圧が21%であり、雰囲気全体に含まれる水分含有量が露点温度換算で16℃(絶対湿度13.6g/m-3)のものである。
 以上により、チャネル長180μm、チャネル幅1mmの実施例1に係るボトムゲート型のTFTを得た。
-実施例2-
 実施例2に係るTFTは、熱処理工程すなわち第三工程と第五工程の熱処理雰囲気以外はTFT1と同様の製造方法を用いた。具体的に、第三工程では熱処理雰囲気として大気雰囲気を用い、第五工程では熱処理雰囲気として酸素分圧100%の酸化性雰囲気を用いて、実施例2に係るTFTを得た。
-実施例3-
 実施例3に係るTFTは、熱処理工程すなわち第三工程と第五工程の熱処理雰囲気以外はTFT1と同様の製造方法を用いた。具体的に、第三工程では酸素分圧100%の酸化性雰囲気を用い、第五工程では熱処理雰囲気として酸素分圧100%の酸化性雰囲気を用いて、実施例3に係るTFTを得た。
-比較例1-
 比較例1に係るTFTは、熱処理工程すなわち第三工程と第五工程以外はTFT1と同様の製造方法を用いた。具体的に、第三工程は行わず、第五工程では熱処理温度を450℃とし熱処理雰囲気として酸素分圧100%の酸化性雰囲気を用いて、比較例1に係るTFTを得た。
-評価-
 作製した実施例1~3及び比較例1に係るTFTはVg-Id特性を評価した後、波長可変のモノクロ光を照射することで、光照射に対するTFT特性の安定性を評価した。
 TFT特性の評価は、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いた。その装置にて、Vg-Id特性の測定は、ドレイン電圧(Vd)を10Vに固定し、ゲート電圧(Vg)を-30V~+30Vの範囲内で掃引し、各ゲート電圧(Vg)におけるドレイン電流(Id)を測定することにて行った。また電界効果移動度は、ドレイン電圧(Vd)を1Vに固定した状態でゲート電圧(Vg)を-30V~+30Vの範囲内で掃引して得た、線形領域でのVg-Id特性から線形移動度を算出したものである。
 図10は、モノクロ光照射下におけるTFT特性測定の概略を示す図である。
 図10に示すように、プローブステージ台600に各TFTを置き、乾燥大気を2時間以上流した後、当該乾燥大気雰囲気下にてTFT特性を測定した。モノクロ光源の照射強度は10μW/cm、波長λの範囲を380~700nmとし、モノクロ光非照射時のVg-Id特性と、モノクロ光照射時のVg-Id特性を比較することで、光照射安定性(閾値シフト:ΔVth)を評価した。モノクロ光照射下におけるTFT特性の測定条件は、Vds=10Vに固定し、Vg=-15~15Vの範囲でゲート電圧を掃引して測定した。なお、以下で特に言及している場合を除き、全ての測定は、モノクロ光を10分照射した時に行っている。
 図11は、実施例1に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。図12は、実施例2に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。図13は、実施例3に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。図14は、比較例1に係るTFTについて、モノクロ光照射下におけるVg-Id特性を示す図である。
 また、表1は、実施例1~3及び比較例1のTFT作製条件とTFT特性の一覧である。なお、表中の「μ」は電界効果移動度を意味し、Vthは閾値電圧を意味し、ΔVthは、波長420nmの光を照射したときの閾値シフトを意味し、他の表についても同様である。
Figure JPOXMLDOC01-appb-T000001
 表1や図11~図14に示す結果から、熱処理工程(第三工程)を行わなかった比較例1については、波長:420nmのモノクロ光に対してΔVth=-1.15Vと1Vを上回る閾値シフトを示していることが分かった。一方、第三工程を行った実施例1~3においては波長:420nmのモノクロ光に対して全て|ΔVth|≦1Vと、光照射安定性が向上(改善)していることが分かる。特に光照射安定性の向上度合いは、大気中(酸素分圧21%)で熱処理を行うよりも、酸素分圧100%の雰囲気下だけで熱処理を行った場合(実施例3)の方が大きいことを見出した。
<第三工程及び第五工程の熱処理温度について(1):熱処理における酸素拡散深さの検証>
 第三工程や第五工程の熱処理にて酸化性雰囲気中の酸素が熱処理温度との関係で、酸化物半導体層のどの程度深くまで拡散していくのか検証した。
-実験例1~実験例4-
 実験例1では、基板としてゲート電極を兼ねる熱酸化膜付p型Si基板(1inch角×1mmt、厚み:525μmt、熱酸化膜(SiO):厚み:100nm)を用意した。
 具体的には、レジスト塗布/ベーク、エッチングによる裏面SiO剥離(BHF使用)、純粋洗浄、レジスト剥離(硫酸過水使用)、純粋洗浄/リンス、Nブローして作製された熱酸化膜付p型Si基板を用意した。なお、この基板はボロンドープで抵抗率:0.001~0.0013Ωcmのものである。
 この基板上に、背圧:5×10-6Pa、成膜圧力:0.8Pa、Ar:30sccm(5.07×10-2Pa m/s)、O:0.25sccm(4.225×10-4Pa m/s)、DC:50Wの条件の下、IGZO膜(In:Ga:Zn=1:1:1)を厚み50nmとしてDCスパッタにより成膜した。なお、通常ではIGZO膜形成後にフォトリソグラフィー及びエッチングによりパターニングを行うが、本発明の効果をより正確に確認するためフォトリソグラフィー及びエッチングでのIGZO膜界面の汚染やダメージの影響を排除するために、実験例1ではメタルマスクを用いたパターン成膜を行っている。なお、X線回折測定によりこのIGZO膜は非晶質膜であることを確認した。
 次に、IGZO膜面上に、ソース電極やドレイン電極は形成せずに、背圧:5×10-6Pa、成膜圧力:0.4Pa、Ar:30sccm(5.07×10-2Pa m/s)、O:0.3sccm(5.07×10-4Pa m/s)、RF:50Wの条件の下、厚み50nmのGa膜からなる保護層をRFスパッタ成膜した。そしてこれらの工程を繰り返して、サンプルを4つ用意した。
 用意した4つのサンプルに対して、酸素安定同位体であるO18ガス(大陽日酸社の市販18Oガス)雰囲気の下、300℃、350℃、400℃又は450℃の熱処理温度で加熱処理を行った。酸素安定同位体であるO18は通常のO16と実質的に同じ拡散長を有し、保護層や活性層へ拡散していくことが予想される。なお、300℃で熱処理したサンプルを実験例1のサンプルとし、350℃で熱処理したサンプルを実験例2のサンプルとし、400℃で熱処理したサンプルを実験例3のサンプルとし、450℃で熱処理したサンプルを実験例4のサンプルと呼称する。
-SIMS分析-
 次に、実験例1~実験例4のサンプルに対して、SIMS分析を行った。SIMS分析では、具体的にSIMS分析装置としてアルバックファイ株式会社の型式:PHI ADEPT1010を用いた。また、分析環境は、一次イオン種:Cs+、一次加速電圧:3.0kV、検出領域:56×56(μm×μm)とした。また、サンプルからの二次イオンは負極性を検出した。
 図15は、実験例1のサンプルに対するSIMS分析結果を示す図である。図16は、実験例2のサンプルに対するSIMS分析結果を示す図である。図17は、実験例3のサンプルに対するSIMS分析結果を示す図である。図18は、実験例4のサンプルに対するSIMS分析結果を示す図である。
 図15から、実験例1のサンプル、つまり300℃の熱処理では、酸素が拡散(保護層等への取り込み)自体していないことが分かった。次に、図16~図18を見ると、熱処理温度が高くなるにつれて、酸素の拡散距離Lが長くなっていることが分かった。
 そこで、図15~図18の分析結果に基づいて、各熱処理温度にて18O/(O16+O18)の強度が見え始める深さ、つまりO18(=O16)の拡散距離L(nm)を求めて、表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 次に、求めた酸素の拡散距離Lと熱処理温度の関係をグラフにプロットした。図19は、求めた酸素の拡散距離Lと熱処理温度の関係をプロットしたグラフ図である。
 そして、図19中のプロットに基づいて、酸素の拡散距離Lと熱処理温度の関係を示す3次関数の近似曲線を算出した。この算出の結果、L=8×10-6×T-0.0092×T+3.6×T-468±0.1という関係式が得られた。なお、「±0.1」は測定(及び算出)誤差であり、図中では、誤差バーで示し、その誤差バーを見やすくするため、「±0.1」より大きく示している。
 以上の結果から、例えば熱処理温度Tが400℃の場合を例に挙げると、図19に示すように、酸化性雰囲気からGa膜へ約12nmまでO18が拡散している(取り込まれている)のが分かる。なお、この結果は、Ga膜がIGZO膜等の他の材料の膜でも変化しないことも確認している。
 よって、第二の酸化物半導体膜507の厚みをZとし、第三工程の熱処理温度をTとして、第二の酸化物半導体膜507を介して第一の酸化物半導体膜506の界面内部に酸化性雰囲気中の酸素を供給するためには、Z<L=8×10-6×T-0.0092×T+3.6×T-468±0.1となるように第二工程と第三工程を調整することが好ましいものと想定できる。
 そこで、第三工程の温度を固定して第二の酸化物半導体膜507の厚みZを変化させることで、Z<LのときとZ≧Lのときの効果(TFT特性及び光照射安定性)の違い等を以下の厚み依存性の実験にて確かめた。
<光照射安定性の第二の酸化物半導体膜507の厚み依存性>
-実施例4~12-
 第二の酸化物半導体膜507の厚みZ変調は、第三工程及び第五工程での熱処条件を雰囲気:酸素100%且つ熱処理温度T:450℃に固定して、第二の酸化物半導体膜507の厚みを3~50nmの間で系統的に変化させることによって行った。具体的に、TFTの構成、組成は実施例1と同様であり、第二の酸化物半導体膜507の厚みZのみ3~50nmの間で変調した実施例4~12に係るTFTを作製した。第二の酸化物半導体膜507と第三の酸化物半導体膜508の合計の厚みは50nmであり、実施例4~11で共通である。なお、実施例12については、第三の酸化物半導体膜508はなく、第三工程、電極形成工程、第五工程の順で作製している。
-評価-
 作製した実施例4~11に係るTFTはVg-Id特性を評価した後、波長可変のモノクロ光を照射することで、光照射に対するTFT特性の安定性を評価した。なお、評価の方法は、上述した方法と同一である。
 表3は、実施例4~12及び比較例1の第二の酸化物半導体膜507の厚みZとTFT特性の一覧である。なお、電界効果移動度μは、光照射前であっても光照射後であってもほとんど変化しなかったので、表3では光照射前の電界効果移動度μを記載している。なお、Vthは、光照射前の閾値電圧(V)であり、ΔVthは波長420nmの光をTFTに向けて照射したときの閾値シフトである。
Figure JPOXMLDOC01-appb-T000003
 図20は、測定結果のうち代表的なVg-Id特性である実施例7のTFTについての光照射下におけるVg-Id特性を示す図である。図21は、測定結果のうち代表的なVg-Id特性である実施例9のTFTについての光照射下におけるVg-Id特性を示す図である。図22は、測定結果のうち代表的なVg-Id特性である実施例10のTFTについての光照射下におけるVg-Id特性を示す図である。図23は、測定結果のうち代表的なVg-Id特性である実施例11のTFTについての光照射下におけるVg-Id特性を示す図である。図24は、測定結果のうち代表的なVg-Id特性である実施例12のTFTについての光照射下におけるVg-Id特性を示す図である。また、図25は、表3に示す結果に基づき、第二の酸化物半導体膜507の厚みZと電界効果移動度μとの関係及び厚みZとΔVthとの関係を示した図である。
 表3、図20~図25に示す結果から、まず実施例4~14のTFTは、比較例1に比べて、光照射時のΔVthが比較例1の約1/10以下となり大幅に改善していることが分かった。また、第二の酸化物半導体膜507の厚みZを変調することで、電界効果移動度μやVthの初期特性、及び、ΔVth等の光照射特性が共に変化していることが分かった。
 ここで、図20~図24を比較すると、図20及び図21に比べ図22~図24には、2段階の立ち上がりが確認できた(図中○部分)。具体的に、第二の酸化物半導体膜507の厚みZが、熱処理温度:450℃での酸素拡散距離L:18nm以上である、すなわちZ≧L=8×10-6×T-0.0092×T+3.6×T-468±0.1の関係式を満たすような熱処理温度Tと厚みZであると、2段階の立ち上がりが確認できた。
 これは第一の酸化物半導体膜506と第二の酸化物半導体膜507との界面欠陥が補償されておらず、また第一の酸化物半導体膜506と第二の酸化物半導体膜507との界面が低抵抗化し、ゲートバイアスを印加していない状態でもチャネルが開いている、事を意味しているものと考えられる。光照射時に誘起された電子-正孔対の内、ホールが界面欠陥にトラップされるため、界面付近のパラレル伝導チャネルのキャリアが増大し、1段階目の立ち上がり部分が(閾値を定義するとすれば)、大きくマイナスシフトしている。メインチャネル(ゲート絶縁膜(熱酸化膜504)/第一の酸化物半導体膜506に存在)付近にはホールトラップの影響が及ばないため、従来通りメインチャネルの立ち上がりから閾値を計算した場合、閾値は改善しているように見えるものと考えられる。
 図26は、Z≧Lでの特性劣化を説明するイメージ図である。
 図26を参照しながら特性劣化を繰り返し説明すると、Z≧Lであると、まず第1に高移動度層/高抵抗層界面が低抵抗化しやすく結果、界面付近に伝導チャネルが出来やすい(Vg-Idデータの1段目の立ち上がりに相当)。第2に酸素欠陥補償が十分なされないため、光照射時に界面にホールがトラップされ、結果界面に電子が集中するため、1段目の立ち上がり部の電流が増大しているように見える。2段目(メインチャネル)の方には影響が及ばないため、閾値は改善しているように見えるものと考えられる。
  しかしながら、このような2段階立ち上がりを示す実施例10~12のTFTは比較例1よりかは良いが実用化には不向きであるので、実施例4~9のTFTの方が好ましい。すなわち、0<Z<L=8×10-6×T-0.0092×T+3.6×T-468±0.1の関係式を満たすように第二の酸化物半導体膜506の厚みと第三工程での熱処理温度を調整することが好ましい。このように、第二の酸化物半導体膜26の厚みZと熱処理温度Tの調整を行った上で第三工程の熱処理をすることによって、酸化性雰囲気中の酸素を第二の酸化物半導体膜507を介して第一の酸化物半導体膜506の界面内部にまで確実に供給することができるため、第二工程の成膜によって成膜ダメージを受けた第一の酸化物半導体膜506の表面欠陥を十分に補填でき、光照射時のTFT特性を改善することができる。このTFT特性の改善とは、上述したように初期のVg-Id特性において2段階の立ち上がりを示めさないようにすることができることである。
 また、表3及び図25に示す結果から、第二の酸化物半導体膜507の厚みZを15nm以下にする、すなわち第二工程と第三工程の際に、Z≦L-3.0の関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整すると、閾値電圧Vthが全て正の値となり、初期特性が良好になることが分かった。これにより、第二工程と第三工程の際に、Z≦L-3.0の関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整することが好ましいことを見出した。
 一方で、第二の酸化物半導体膜507の厚みZが3nm未満となる、すなわち第二工程と第三工程の際に、L-15.0>Zの関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整すると、図25に示す傾向から考えると、第三工程の熱処理によって酸化性雰囲気から拡散する酸素が、第二の酸化物半導体膜507を介して伝導キャリアパスである第一の酸化物半導体膜506全体の酸素欠陥を強く補償するため、電界効果移動度が20cm/Vs以下に低減してしまう虞があることが分かった。これにより、第二工程と第三工程の際に、L-15.0≦Zの関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整することが好ましいことを見出した。
 さらに、表3及び図25に示す結果から、第二の酸化物半導体膜507の厚みZを7nm以上とした場合、すなわち第二工程と第三工程の際に、L-11.0≦Zの関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整した場合、移動度が30cm/Vs超と良好である。これは伝導キャリアパスである第一の酸化物半導体膜506の欠陥補償量が適度であり、界面の欠陥補償が十分になされ、且つ第一の酸化物半導体膜506中の、キャリア濃度が殆ど低減しないためであると思われる。これにより、第二工程と第三工程の際に、L-11.0≦Zの関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整することが好ましいことを見出した。
 さらにまた、図25に示す結果から、第二の酸化物半導体膜507の厚みZを7nm以上10nm以下とした場合、すなわち第二工程と第三工程の際に、L-11.0≦Z≦L-8.0の関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整した場合、電界効果移動度μが急激に上昇することが分かった。これにより、第二工程と第三工程の際に、L-11.0≦Z≦L-8.0の関係式を満たすように第二の酸化物半導体膜507の厚みと熱処理温度を調整することが好ましいことを見出した。
<第五工程の熱処理温度依存性>
 第五工程の熱処理温度によってどのようにTFT特性・光照射安定性が変化するかを確かめた。
-実施例13~15-
 実施例13~15に係るTFTとして、後述する製造条件以外は実施例7(Z=8nm)と同じTFT構造、組成及び製造方法を用い第五工程の熱処理温度を360℃(実施例13)、415℃(実施例14)、450℃(実施例15)と変えたTFTを作製した。
 第三工程は酸素分圧100%の雰囲気下で450℃の温度で熱処理を行い、第五工程も雰囲気は酸素分圧100%の雰囲気を用いた。
-評価-
 実施例13~15に係るTFTについてTFT特性及び光照射安定性を評価した。評価方法は、上述した方法と同一である(実施例15=実施例7)。
 表4は、第5工程の熱処理温度と、TFT特性・光照射安定性についてまとめたものである。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、実施例13~15に係るTFTはそれぞれ、高い電界効果移動度と光照射安定性を両立していることが分かる。その中で、実施例13と実施例14の比較から第五工程の熱処理温度を360℃とした場合より415℃以上としたほうが、光照射安定性が1桁以上向上(ΔVthが一桁低下)していることが分かる。これにより、第五工程の熱処理温度は415℃以上であることが好ましいことを見出した。
<TFT初期特性の第一の酸化物半導体膜506組成依存性>
 次に、TFTの酸化物半導体層において特定の組成の酸化物半導体膜を積層することによって、高移動度のトランジスタが得られる事を以下のような構成のTFTを作製することで検証した。また、第一の酸化物半導体膜506の組成変調を行い、特定の組成範囲において高移動度が得られる事も確かめた。
-実施例16~31-
 まず、実施例7と同様の膜厚条件にて、ボトムゲートでトップコンタクト型のTFTを実施例16~31(実施例16=実施例7)として作製した。第一の酸化物半導体膜506をIGZO系として組成変調した場合の実施例16~24の製造条件を表5に示し、第一の酸化物半導体膜506をIZO系として組成変調した場合の実施例25~31の製造条件を表6に示す。
 ここでは、第二の酸化物半導体膜507と第三の酸化物半導体膜508が共通の組成であり実施例7と同じ組成に相当し、以下の表5及び表6の条件を除くその他の製造方法及び条件は実施例7と同様にした。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

-評価-
 作製した実施例16~31に係るTFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて、トランジスタ特性(Vg-Id特性)、移動度μ、オフ電流Ioffの測定を行った。なお、オフ電流は、Vg-Id特性においてVg=0Vにおける電流値で定義した。その他の定義や測定方法については、上述した方法と同一の方法を用いた。
 表7は、実施例16~24に係るTFTの電界効果移動度とオフ電流の結果をまとめたものである。表8は、実施例25~31に係るTFTの電界効果移動度とオフ電流の結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7に示す結果から、実施例16~24に係るTFTは、電界効果移動度が20cm/Vs以上で良好であることが分かった。また、第一の酸化物半導体膜506の組成が、c≦3/5,b>0, b≧3a/7-3/14,b≧9a/5-53/50,b≦-8a/5+33/25,b≦91a/74-17/40(但しa+b+c=1とする)で表される範囲内(実施例7(表7の実施例16)、21、20、18、25、26の組成で囲まれる領域)に在れば、電界効果移動度μが20cm/Vs以上でVth>0のTFTが作製可能であることが分かる。なお、この組成範囲は、図18中のAの範囲に相当する。
 さらに、第一の酸化物半導体膜506の組成が、b≦17a/23-28/115,b≧3a/37,b≧9a/5-53/50,b≦1/5(但しa+b+c=1とする)で表される範囲内(実施例7(表7の実施例16)、21、19、18の組成で囲まれる領域)にあれば、電界効果移動度30cm/Vs以上のTFTが作製可能であることが分かる。なお、この組成範囲は、図27中のBの範囲に相当する。
 また、In含有量を増大させた実施例22,23,24では高い電界効果移動度は得られるものの、キャリア濃度が過剰な状態になっており、閾値が大きくマイナス側にシフトしている。
 さらにまた、第一の酸化物半導体膜506の組成が、b≦7a/13-11/65,b≧3a/37,b≦-2a+11/10(但しa+b+c=1とする)で表される範囲内にあれば、電界効果移動度30cm/Vs以上でノーマリーオフのTFTを作製可能であることが分かる。なお、この組成範囲は、図27及び図28中のCの範囲に相当する。
 また、表8に示す結果から、実施例25~30に係るTFTは、電界効果移動度が20cm/Vs以上で良好であることが分かった。
 さらに、第一の酸化物半導体膜506にIZO系を用いた場合にIn含有率xが0.40≦x≦0.75で表される組成範囲内(実施例25~29の組成で囲まれる領域)にあれば、電界効果移動度30cm/Vs以上でVth>0のTFTを作製可能であることが分かる。
 さらにまた、In含有率xが0.40≦x≦0.50で表される組成範囲内にあれば、電界効果移動度30cm/Vs以上でノーマリーオフのTFTを作製可能であることが分かる。
 上記のように第二の酸化物半導体膜507と第三の酸化物半導体膜508のカチオン組成を固定した場合に、積層TFT構造における第一の酸化物半導体膜506(IGZO系、IZO系)を組成変調することで、特定の組成範囲内で高移動度のTFT特性が得られる事を見出した。
<TFT特性における第二の酸化物半導体膜507と第三の酸化物半導体膜508の組成依存性>
 次に、実施例16のTFTと同様の構成において、第一の酸化物半導体膜506の組成を実施例16と同じ組成に固定した上で第二の酸化物半導体膜507と第三の酸化物半導体膜508の組成変調を行う事で、特定の組成範囲において良好な特性が得られるか否か実験した。
-実施例32~37-
 実施例32~37(実施例32=実施例7)に係るTFTとして、実施例7と同様のボトムゲート及びトップコンタクト型のTFTを作製した。これは実施例7の製造方法における、第二の酸化物半導体膜507と第三の酸化物半導体膜508が共通の組成である構成に相当する。第一の酸化物半導体膜506の成膜条件は実施例7と全く同じである。第二の酸化物半導体膜507(Z=8nm)と第三の酸化物半導体膜508の成膜条件は、到達真空度,成膜圧力,成膜温度,酸素/アルゴン分圧は共通で、それぞれ、6×10-6Pa,4.4×10-6Pa,室温、酸素/アルゴン分圧が0.067であり、カチオン組成比を以下の表9の通り変調した。なお、第二の酸化物半導体膜507と第三の酸化物半導体膜508の組成は、In(e)Ga(f)Zn(g)O(h)(e,f,g,h>0)で表される酸化物半導体膜である。
Figure JPOXMLDOC01-appb-T000009
-評価-
 作製した実施例32~37に係るTFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて、トランジスタ特性(Vg-Id特性)、移動度μ、閾値電圧Vthの測定を行った。なお、各定義や測定方法については、上述した方法と同一の方法を用いた。
 表10は、実施例32~37に係るTFTの電界効果移動度と閾値電圧の結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000010
 表10から、f/(e+f)が0.875超である場合には、TFT駆動し難いことが分かった。これは、ソース・ドレイン電極510,512と第二の酸化物半導体膜507と第三の酸化物半導体膜508の接触抵抗が増大したためと考えられる(ただし成膜時の酸素分圧を低く調整することで、駆動するTFTを作製することは可能となる)。これにより、第一の酸化物半導体膜506の組成を同一のものとした場合、第二の酸化物半導体膜507と第三の酸化物半導体膜508におけるf/(e+f)は、0.875以下であることが好ましいことを見出した。
 一方f/(e+f)を減少させていった場合、実験例36のようにf/(e+f)=0.250とした場合には閾値が-21.4Vと大きくマイナス側にシフトしており、トランジスタが低抵抗化しやすいことが分かる。これは、もともとの第二の酸化物半導体膜507のキャリア濃度が相対的に高い他、電子親和力も比較的大きいため、第一の酸化物半導体膜506から第二の酸化物半導体膜507と第三の酸化物半導体膜508へキャリアが多く流れ込んだり、あるいは第二の酸化物半導体膜507及び第三の酸化物半導体膜508中に伝導キャリアが生じるためであると考えられる。このようなVth<0となるトランジスタではオフ電流が増大する傾向にある。そのため、高移動度且つ、オフ電流の低いトランジスタを作製するためには(熱処理温度を300℃とした場合には)、f/(e+f)>0.250であることが好ましいことを見出した。
 このように、第一の酸化物半導体膜506の組成を固定した場合、第二の酸化物半導体膜507と第三の酸化物半導体膜508の組成はIn(e)Ga(f)Zn(g)O(h)(e,f,g,h>0)で表される酸化物半導体膜である事が望ましく、この時、前記第二の酸化物半導体膜507が、0.250<f/(e+f)≦0.875で表される組成範囲にあると、高移動度でオフ電流の低いトランジスタを作製可能であることが分かった。
<TFT特性における第二の酸化物半導体膜507及び第三の酸化物半導体膜508の合計膜厚依存性>
 続いて、第二の酸化物半導体膜507及び第三の酸化物半導体膜508の合計厚みがどのようにTFT特性に影響を与えるか検証した。
-実施例38~41及び評価-
 実施例38~41に係るTFTは、実施例7と同様のボトムゲートでトップコンタクト型のTFTとして作製した。これらは実施例7における、第二の酸化物半導体膜507及び第三の酸化物半導体膜508が共通の組成である構成に相当する。TFT構造及び、第一の酸化物半導体膜506及び第二の酸化物半導体膜507(第三の酸化物半導体膜508と共通)の組成も実施例7と同じであり、第二の酸化物半導体膜507及び第三の酸化物半導体膜508の厚みの合計(以下、単に厚み合計と略す)だけを10nm,30nm,50nm,70nmと変化させたトランジスタを作製した。
 表11は、実施例38~41に係るTFTの構成とTFT特性をまとめたものである。
Figure JPOXMLDOC01-appb-T000011
 このように、第二の酸化物半導体膜507及び第三の酸化物半導体膜508の厚み合計が10nm以下の場合には移動度は高くなるものの、S値が悪化(1V/decade超)し、オフ電流が増大する傾向にあることが分かった。一方で、この厚み合計が30nm以上であれば、S値は良好(1V/decade以下)でありオフ電流の低減が期待できる。これにより、厚み合計は10nm超が好ましく、30nm以上であることがより好ましいことを見出した。また、厚み合計が70nm以上であると移動度の若干の低下が見られることから、厚み合計は70nm未満であることがさらに好ましいことを見出した。
<TFT特性における第一の酸化物半導体膜506の厚み依存性>
 続いて、TFT特性における第一の酸化物半導体膜506の厚み依存性について検証した。
-実施例42~43-
 実験例43に係るTFTとして、TFT構造と組成は、実施例7と同様で、第一の酸化物半導体膜506の厚みのみを10nmに変更したTFTを作製した。
-評価-
 作製した実施例42(実施例7と同じもの)~43に係るTFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて、トランジスタ特性(Vg-Id特性)、移動度μ、閾値電圧Vth、オフ電流Ioffの測定を行った。なお、各定義や測定方法については、上述した方法と同一の方法を用いた。
 表12は、実施例42と実施例43の特性の比較をまとめたものである。なお、表中の「第一の膜」とは、第一の酸化物半導体膜506の略語である。
Figure JPOXMLDOC01-appb-T000012
 表12より、第一の酸化物半導体膜506の厚みが10nm以上になると、電界効果移動度は十分確保できているが、閾値がマイナス側にシフトし、オフ電流が大きく増大することが分かる。これは第一の酸化物半導体膜506に高キャリア濃度の酸化物半導体を用いているためで、第一の酸化物半導体膜506の厚みが増大すると、トータルのキャリア濃度が増大しピンチオフが困難になるためである。これにより、第一の酸化物半導体膜506の厚みは10nm未満であることが望ましいことを見出した。
 以上のように、酸化物半導体層の積層構造(第一の酸化物半導体膜506、第二の酸化物半導体膜507、第三の酸化物半導体膜508)の組成と厚みを変調することで、特性の組成・厚みにおいて高移動度のTFTが可能であることが分かった。
<第三工程及び第五工程の熱処理温度について(2)>
 Ga/(In+Ga)=0.75のIGZO膜とGa/(In+Ga)=0.25のIGZO膜を5層積層した積層膜の断面STEM像を、積層直後(アニール処理前)及び熱処理温度が600℃で処理した後に、それぞれ観察したところ、600℃で熱処理されてもある程度積層構造を維持していることが確認できるものの、異なるカチオン組成の界面で、コントラストがぼけている様子が見て取れた。これは異相の相互拡散が起こり始めている事を示唆しており、第三工程及び第五工程の熱処理における上限温度は600℃以下であることが好ましいことを見出した。
<他の材料への関係式の適用性の検証>
 次に、上述した「以上の結果から、例えば熱処理温度Tが400℃の場合を例に挙げると、図19に示すように、酸化性雰囲気からGa膜へ約12nmまでO18が拡散している(取り込まれている)のが分かる。なお、この結果は、Ga膜がIGZO膜等の他の材料の膜でも変化しない」という点について検証する。すなわち、第二の酸化物半導体膜がGa膜でなくても、他の材料、例えば金属酸化物であっても、図28に基づく上記の関係式「L=8×10-6×T-0.0092×T+3.6×T-468±0.1」がそのまま当てはめられるか検証した。
 図29は、Ga膜を最表面に含む実験例3のサンプルに対するSIMS分析結果とIGZO膜(In:Ga:Zn=1:0.9:0.7)を最表面に含むサンプルに対するSIMS分析結果を示す図である。なお、このIGZO膜は、実施例1と同一の方法により作成した。
 また、図30は、In,Ga,Znの組成比がIn:Ga:Zn=1.85:0.15:1, In:Ga:Zn=1:1:1, In:Ga:Zn=0.5:1.5:1の3つのIGZO膜を、それぞれ実験例4と同一の条件で熱処理した各サンプルに対するSIMS分析結果を示す図である。
 なお、図29~図30に係る各サンプルに対するSIMS分析は、上述したSIMS分析と同一の方法を用いて行っている。
 図29に示すSIMS分析結果から、「Ga中」に係る実験データと「IGZO中」に係る実験データの間で、18O/(16O+18O)の割合は異なるものの、18O/(16O+18O)の割合が一定となり始める表面からの距離は同じであることが分かる。すなわち、各実験データから、Ga膜に対する18O(=16O)の拡散距離Lと、IGZO膜(In:Ga:Zn=1:0.9:0.7)に対する18O(=16O)の拡散距離Lは、同じ12nmであることが分かった。
 この実験事実から、Ga膜とIGZO膜は酸素の拡散距離Lが同じであり、この拡散距離Lは「L=8×10-6×T-0.0092×T+3.6×T-468±0.1」で表されるという結論が得られた。
 また、図30に示すSIMS分析結果から、IGZO中のIn,Ga,Znの組成比がIn:Ga:Zn=1.85:0.15:1, In:Ga:Zn=1:1:1, In:Ga:Zn=0.5:1.5:1と変化しても、18O/(16O+18O)の割合が一定となり始める表面からの距離Lは同じ18nmであることが分かった。
 この実験事実から、IGZO膜はその組成比が変わっても酸素の拡散距離Lが同じであり、この拡散距離Lは「L=8×10-6×T-0.0092×T+3.6×T-468±0.1」で表されるという結論が得られた。
 以上、図29~図30全ての実験事実を組み合わせれば、18O、すなわち酸素の拡散距離Lは、半導体材料や絶縁体材料とは関係がなく、IGZOやGa等の材料、特に金属酸化物であれば変化せず(違いはなく)、上記関係式が「L=8×10-6×T-0.0092×T+3.6×T-468±0.1」で表されるという結論が得られた。
 すなわち、Ga膜における酸素の拡散距離Lが「L=8×10-6×T-0.0092×T+3.6×T-468±0.1」で表された場合、第二の酸化物半導体膜がGa以外の他の材料で構成されていても、上記の関係式がそのまま当てはめられるという結論が得られた。

Claims (30)

  1.  ゲート電極上に配置されたゲート絶縁層上に、第一の酸化物半導体膜を成膜する第一工程と、
     前記第一工程後に、前記第一の酸化物半導体膜上に、前記第一の酸化物半導体膜とカチオン組成が異なり、且つ前記第一の酸化物半導体膜より低い電気伝導度を有する第二の酸化物半導体膜を成膜する第二工程と、
     前記第二工程後に、酸化性雰囲気の下300℃超で熱処理する第三工程と、
     前記第三工程後に、前記第二の酸化物半導体膜上に、前記第一の酸化物半導体膜とカチオン組成が異なり、且つ前記第一の酸化物半導体膜より低い電気伝導度を有する第三の酸化物半導体膜を成膜する第四工程と、
     前記第四工程後に、酸化性雰囲気の下で熱処理する第五工程と、
     前記第四工程と前記第五工程の間又は前記第五工程後に、前記第三の酸化物半導体膜上に、ソース電極及びドレイン電極を形成する電極形成工程と、
     を有する電界効果型トランジスタの製造方法。
  2.  前記第二工程と前記第三工程の際に、前記第二の酸化物半導体膜の厚みをZ(nm)とし、前記第三工程での熱処理温度をT(℃)とし、前記第二の酸化物半導体膜及び前記第一の酸化物半導体膜中への酸素の拡散距離をL(nm)としたとき、0<Z<L=8×10-6×T-0.0092×T+3.6×T-468±0.1の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、
     請求項1に記載の電界効果型トランジスタの製造方法。
  3.  前記第二工程と前記第三工程の際に、Z≦L-3.0の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、
     請求項2に記載の電界効果型トランジスタの製造方法。
  4.  前記第二工程と前記第三工程の際に、L-15.0≦Zの関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、
     請求項2又は請求項3に記載の電界効果型トランジスタの製造方法。
  5.  前記第二工程と前記第三工程の際に、L-11.0≦Z≦L-8.0の関係式を満たすように前記第二の酸化物半導体膜の厚みと前記熱処理温度を調整する、
     請求項2~請求項4の何れか1項に記載の電界効果型トランジスタの製造方法。
  6.  前記第四工程では、前記第三の酸化物半導体膜のカチオン組成比が、前記第二の酸化物半導体膜のカチオン組成比と同じになるように成膜する、
     請求項1~請求項5の何れか1項に記載の電界効果型トランジスタの製造方法。
  7.  前記第二工程と前記第四工程の際、前記第二の酸化物半導体膜と前記第三の酸化物半導体膜の厚みの合計が10nm超70nm未満となるように調整する、
     請求項1~請求項6の何れか1項に記載の電界効果型トランジスタの製造方法。
  8.  前記第一の酸化物半導体膜と、前記第二の酸化物半導体膜と、前記第三の酸化物半導体膜は、それぞれIn、Ga及びZnのうちの少なくとも1種を含む、
     請求項1~請求項7の何れか1項に記載の電界効果型トランジスタの製造方法。
  9.  前記第一の酸化物半導体膜はInを含み、前記第一の酸化物半導体膜のIn組成比率が、前記第二の酸化物半導体膜のIn組成比率よりも高い、
     請求項8に記載の電界効果型トランジスタの製造方法。
  10.  前記第二の酸化物半導体膜はGaを含み、前記第二の酸化物半導体膜のGa組成比率が前記第一の酸化物半導体膜のGa組成比率よりも高い、
     請求項8又は請求項9に記載の電界効果型トランジスタの製造方法。
  11.  前記第一の酸化物半導体膜と、前記第二の酸化物半導体膜と、前記第三の酸化物半導体膜は、それぞれ非晶質である、
     請求項8~請求項10の何れか1項に記載の電界効果型トランジスタの製造方法。
  12.  前記第三工程及び前記第五工程での熱処理温度を600℃未満に調整する、
     請求項8~請求項11の何れか1項に記載の電界効果型トランジスタの製造方法。
  13.  前記第一工程では、前記第一の酸化物半導体膜の厚みが10nm未満となるように成膜する、
     請求項1~請求項12の何れか1項に記載の電界効果型トランジスタの製造方法。
  14.  前記第一の酸化物半導体膜の組成は、In(a)Ga(b)Zn(c)O(d)(a,b,c,d>0)で表される、
     請求項1~請求項13の何れか1項に記載の電界効果型トランジスタの製造方法。
  15.  前記第一の酸化物半導体膜の組成は、c≦3/5,b>0, b≧3a/7-3/14,b≧9a/5-53/50,b≦-8a/5+33/25,b≦91a/74-17/40(但しa+b+c=1とする)で表される範囲内の組成である、
     請求項14に記載の電界効果型トランジスタの製造方法。
  16.  前記第一の酸化物半導体膜の組成は、b≦17a/23-28/115,b≧3a/37,b≧9a/5-53/50,b≦1/5(但しa+b+c=1とする)で表される範囲内の組成である、
     請求項15に記載の電界効果型トランジスタの製造方法。
  17.  前記第一の酸化物半導体膜の組成は、b≦7a/13-11/65,b≧3a/37,b≦-2a+11/10(但しa+b+c=1とする)で表される範囲内の組成である、
     請求項16に記載の電界効果型トランジスタの製造方法。
  18.  前記第一の酸化物半導体膜の組成は、In(x)Zn(1-x)O(y)(y>0,0<x<1)で表される、
     請求項1~請求項13の何れか1項に記載の電界効果型トランジスタの製造方法。
  19.  前記第一の酸化物半導体膜の組成は、0.4≦x≦0.75で表される範囲内の組成である、
     請求項18に記載の電界効果型トランジスタの製造方法。
  20.  前記第一の酸化物半導体膜の組成は、0.4≦x≦0.5で表される範囲内の組成である、
     請求項19に記載の電界効果型トランジスタの製造方法。
  21.  前記第二の酸化物半導体膜の組成は、In(e)Ga(f)Zn(g)O(h)(e,f,g,h>0)で表される、
     請求項1~請求項20の何れか1項に記載の電界効果型トランジスタの製造方法。
  22.  前記第二の酸化物半導体膜の組成は、0.250<f/(e+f)≦0.875で表される範囲内の組成である、
     請求項21に記載の電界効果型トランジスタの製造方法。
  23.  前記第一工程と前記第二工程と前記第四工程では、それぞれプラズマを発生する成膜法を用いて成膜する、
     請求項1~請求項22の何れか1項に記載の電界効果型トランジスタの製造方法。
  24.  前記五工程は、前記電極形成工程後に行う、
     請求項1~請求項23の何れか1項に記載の電界効果型トランジスタの製造方法。
  25.  ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、
     前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く且つ、前記第二の酸化物半導体層における格子欠陥密度が、前記第三の酸化物半導体層の格子欠陥密度に対して少ない電界効果型トランジスタ。
  26.  ゲート電極上にゲート絶縁層を有し、前記ゲート絶縁層上に、電子が走行するチャネル積層膜が構成され、前記チャネル積層膜上に、ソース電極、及びドレイン電極が形成されるボトムゲート型でトップコンタクト型の電界効果型トランジスタにおいて、
     前記チャネル積層膜がそれぞれIn、Ga、Znを含む酸化物半導体層であり、前記ゲート絶縁膜側から、第一、第二、第三の酸化物半導体膜で構成され、前記第一の酸化物半導体膜におけるIn含有率が前記第二、第三の酸化物半導体膜よりも高く、且つ、前記第二の酸化物半導体層中の酸素含有密度が、前記第三の酸化物半導体層の酸素含有密度に対して多くなっている電界効果型トランジスタ。
  27.  請求項1~請求項24の何れか1項に記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とする表示装置。
  28.  基板と、
     前記基板上に配置され、請求項1~請求項24の何れか1項に記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタと、
     前記電界効果型トランジスタ上で、前記電界効果型トランジスタに電気的に接続されている有機電界発光素子と、
     を備え、前記有機電界発光素子から発せられる光が、前記基板側から取り出されるボトムエミッション型の表示装置。
  29.  請求項1~請求項24の何れか1項に記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とするイメージセンサ。
  30.  請求項1~請求項24の何れか1項に記載の電界効果型トランジスタの製造方法により製造された電界効果型トランジスタを備えたことを特徴とするX線センサ。
PCT/JP2012/065616 2011-07-29 2012-06-19 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ WO2013018448A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147001825A KR101549797B1 (ko) 2011-07-29 2012-06-19 전계 효과형 트랜지스터의 제조 방법, 그리고 전계 효과형 트랜지스터, 표시 장치, 이미지 센서 및 x 선 센서
CN201280035996.9A CN103688364B (zh) 2011-07-29 2012-06-19 场效晶体管的制造方法及场效晶体管、及其应用
US14/160,730 US8956907B2 (en) 2011-07-29 2014-01-22 Method for producing field effect transistor, field effect transistor, display device, image sensor, and X-ray sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-167093 2011-07-29
JP2011167093A JP4982620B1 (ja) 2011-07-29 2011-07-29 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/160,730 Continuation US8956907B2 (en) 2011-07-29 2014-01-22 Method for producing field effect transistor, field effect transistor, display device, image sensor, and X-ray sensor

Publications (1)

Publication Number Publication Date
WO2013018448A1 true WO2013018448A1 (ja) 2013-02-07

Family

ID=46678935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065616 WO2013018448A1 (ja) 2011-07-29 2012-06-19 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ

Country Status (6)

Country Link
US (1) US8956907B2 (ja)
JP (1) JP4982620B1 (ja)
KR (1) KR101549797B1 (ja)
CN (1) CN103688364B (ja)
TW (1) TWI612584B (ja)
WO (1) WO2013018448A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496411B2 (en) 2014-05-23 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9880019B2 (en) 2012-06-05 2018-01-30 Apple Inc. Generation of intersection information by a mapping service
US9903732B2 (en) 2012-06-05 2018-02-27 Apple Inc. Providing navigation instructions while device is in locked mode
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US10006505B2 (en) 2012-06-05 2018-06-26 Apple Inc. Rendering road signs during navigation
US10018478B2 (en) 2012-06-05 2018-07-10 Apple Inc. Voice instructions during navigation
US10318104B2 (en) 2012-06-05 2019-06-11 Apple Inc. Navigation application with adaptive instruction text
US10911759B2 (en) 2017-01-03 2021-02-02 Interdigital Vc Holdings, Inc. Method and apparatus for encoding and decoding motion information
US11055912B2 (en) 2012-06-05 2021-07-06 Apple Inc. Problem reporting in maps

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180608B (zh) * 2009-10-09 2020-10-02 株式会社半导体能源研究所 移位寄存器和显示装置以及其驱动方法
WO2011089844A1 (en) * 2010-01-24 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ
JP5052693B1 (ja) * 2011-08-12 2012-10-17 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
JP2014027263A (ja) * 2012-06-15 2014-02-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TWI608616B (zh) * 2012-11-15 2017-12-11 半導體能源研究所股份有限公司 半導體裝置
TWI613813B (zh) 2012-11-16 2018-02-01 半導體能源研究所股份有限公司 半導體裝置
US9406810B2 (en) * 2012-12-03 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20150074189A (ko) * 2012-12-14 2015-07-01 후지필름 가부시키가이샤 산화물 반도체 소자, 산화물 반도체 소자의 제조 방법, 표시 장치, 이미지 센서 및 x 선 센서
JP6141777B2 (ja) * 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE102014208859B4 (de) * 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
JP6662432B2 (ja) * 2013-06-28 2020-03-11 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
KR101607938B1 (ko) * 2013-07-04 2016-04-01 연세대학교 산학협력단 용액 공정 기반 적층형 산화물 박막 트랜지스터 바이오 센서 및 그를 제조하는 제조 방법
TWI653755B (zh) * 2013-09-12 2019-03-11 日商新力股份有限公司 顯示裝置、其製造方法及電子機器
US9425217B2 (en) * 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI642186B (zh) * 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 半導體裝置
WO2016046685A1 (en) * 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP6570417B2 (ja) * 2014-10-24 2019-09-04 株式会社半導体エネルギー研究所 撮像装置および電子機器
KR102308669B1 (ko) * 2014-12-05 2021-10-05 엘지디스플레이 주식회사 유기전계발광 표시장치 및 그 제조방법
WO2016167179A1 (ja) 2015-04-13 2016-10-20 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
EP3284104B1 (en) 2015-04-13 2020-08-12 Carestream Health, Inc. Reduction of tft instabiltity in digital x-ray detectors
US20160308067A1 (en) * 2015-04-17 2016-10-20 Ishiang Shih Metal oxynitride transistor devices
TWI577032B (zh) * 2015-04-24 2017-04-01 群創光電股份有限公司 顯示裝置
US10431956B2 (en) 2015-07-14 2019-10-01 International Business Machines Corporation Nanocavity monolayer laser monolithically integrated with LED pump
US9786856B2 (en) * 2015-08-20 2017-10-10 Dpix, Llc Method of manufacturing an image sensor device
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR102423436B1 (ko) * 2015-12-16 2022-07-20 엘지디스플레이 주식회사 산화물 박막 트랜지스터 기판 및 그를 이용한 디스플레이 장치
CN105576038A (zh) * 2016-01-12 2016-05-11 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
US9929215B2 (en) 2016-07-12 2018-03-27 Dpix, Llc Method of optimizing an interface for processing of an organic semiconductor
KR102550604B1 (ko) * 2016-08-03 2023-07-05 삼성디스플레이 주식회사 반도체장치 및 그 제조방법
DE112017004841T5 (de) * 2016-09-27 2019-06-19 Sharp Kabushiki Kaisha Halbleitervorrichtung und Verfahren zu deren Herstellung
JP2018067672A (ja) * 2016-10-21 2018-04-26 株式会社ブイ・テクノロジー 酸化物半導体装置及びその製造方法
WO2018123660A1 (ja) * 2016-12-27 2018-07-05 シャープ株式会社 酸化物半導体tftを備えた半導体装置
KR20180079086A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 산화물 박막트랜지스터 및 그 제조 방법과, 이를 이용한 표시패널 및 표시장치
JP2019067791A (ja) * 2017-09-28 2019-04-25 シャープ株式会社 半導体装置
WO2019132905A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Multiple channel layers for vertical thin film transistors
JP7127802B2 (ja) 2018-04-18 2022-08-30 三国電子有限会社 タッチ検出機能付き表示装置及びその製造方法
TW202018819A (zh) * 2018-07-12 2020-05-16 日商Flosfia股份有限公司 半導體裝置和半導體系統
WO2020026636A1 (ja) * 2018-07-30 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子装置
CN116864510A (zh) 2019-03-19 2023-10-10 群创光电股份有限公司 具有晶体管元件的工作模块
CN110061011B (zh) * 2019-03-25 2022-04-05 北海惠科光电技术有限公司 薄膜晶体管基板及其制备方法
US11296163B2 (en) * 2020-05-27 2022-04-05 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel and OLED display device
KR20220064481A (ko) * 2020-11-11 2022-05-19 삼성디스플레이 주식회사 디스플레이 장치
CN113675223B (zh) * 2021-05-17 2023-06-20 松山湖材料实验室 一种光电突触器件及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305658A (ja) * 2006-05-09 2007-11-22 Bridgestone Corp 酸化物トランジスタ及びその製造方法
JP2008060419A (ja) * 2006-08-31 2008-03-13 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタの製法
JP2010021333A (ja) * 2008-07-10 2010-01-28 Fujifilm Corp 金属酸化物膜とその製造方法、及び半導体装置
JP2011124360A (ja) * 2009-12-10 2011-06-23 Fujifilm Corp 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309420A (zh) * 2001-03-26 2001-08-22 立生半导体股份有限公司 沟道式功率金属氧化物半导体场效应晶体管的制造方法
JP4947006B2 (ja) * 2008-08-05 2012-06-06 ソニー株式会社 光電変換装置及び光電変換素子
JP5339825B2 (ja) 2008-09-09 2013-11-13 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP2011003522A (ja) * 2008-10-16 2011-01-06 Semiconductor Energy Lab Co Ltd フレキシブル発光装置、電子機器及びフレキシブル発光装置の作製方法
JP5538797B2 (ja) * 2008-12-12 2014-07-02 キヤノン株式会社 電界効果型トランジスタ及び表示装置
KR101681884B1 (ko) * 2009-03-27 2016-12-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치, 표시장치 및 전자기기
US8338226B2 (en) 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5322787B2 (ja) * 2009-06-11 2013-10-23 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー
KR102221207B1 (ko) * 2009-09-04 2021-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 제작하기 위한 방법
KR101035357B1 (ko) * 2009-12-15 2011-05-20 삼성모바일디스플레이주식회사 산화물 반도체 박막 트랜지스터, 그 제조방법 및 산화물 반도체 박막 트랜지스터를 구비한 유기전계 발광소자
WO2011074409A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305658A (ja) * 2006-05-09 2007-11-22 Bridgestone Corp 酸化物トランジスタ及びその製造方法
JP2008060419A (ja) * 2006-08-31 2008-03-13 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタの製法
JP2010021333A (ja) * 2008-07-10 2010-01-28 Fujifilm Corp 金属酸化物膜とその製造方法、及び半導体装置
JP2011124360A (ja) * 2009-12-10 2011-06-23 Fujifilm Corp 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323701B2 (en) 2012-06-05 2019-06-18 Apple Inc. Rendering road signs during navigation
US11956609B2 (en) 2012-06-05 2024-04-09 Apple Inc. Context-aware voice guidance
US10508926B2 (en) 2012-06-05 2019-12-17 Apple Inc. Providing navigation instructions while device is in locked mode
US9903732B2 (en) 2012-06-05 2018-02-27 Apple Inc. Providing navigation instructions while device is in locked mode
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US10006505B2 (en) 2012-06-05 2018-06-26 Apple Inc. Rendering road signs during navigation
US10018478B2 (en) 2012-06-05 2018-07-10 Apple Inc. Voice instructions during navigation
US10318104B2 (en) 2012-06-05 2019-06-11 Apple Inc. Navigation application with adaptive instruction text
US9880019B2 (en) 2012-06-05 2018-01-30 Apple Inc. Generation of intersection information by a mapping service
US11727641B2 (en) 2012-06-05 2023-08-15 Apple Inc. Problem reporting in maps
US10732003B2 (en) 2012-06-05 2020-08-04 Apple Inc. Voice instructions during navigation
US10718625B2 (en) 2012-06-05 2020-07-21 Apple Inc. Voice instructions during navigation
US10911872B2 (en) 2012-06-05 2021-02-02 Apple Inc. Context-aware voice guidance
US11290820B2 (en) 2012-06-05 2022-03-29 Apple Inc. Voice instructions during navigation
US11055912B2 (en) 2012-06-05 2021-07-06 Apple Inc. Problem reporting in maps
US11082773B2 (en) 2012-06-05 2021-08-03 Apple Inc. Context-aware voice guidance
US9831326B2 (en) 2014-05-23 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9496411B2 (en) 2014-05-23 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10911759B2 (en) 2017-01-03 2021-02-02 Interdigital Vc Holdings, Inc. Method and apparatus for encoding and decoding motion information

Also Published As

Publication number Publication date
TW201306136A (zh) 2013-02-01
US20140131696A1 (en) 2014-05-15
JP4982620B1 (ja) 2012-07-25
CN103688364A (zh) 2014-03-26
CN103688364B (zh) 2016-05-25
JP2013030682A (ja) 2013-02-07
US8956907B2 (en) 2015-02-17
KR20140041795A (ko) 2014-04-04
TWI612584B (zh) 2018-01-21
KR101549797B1 (ko) 2015-09-02

Similar Documents

Publication Publication Date Title
JP4982620B1 (ja) 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ
JP5052693B1 (ja) 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
JP4982619B1 (ja) 半導体素子の製造方法及び電界効果型トランジスタの製造方法
JP5497417B2 (ja) 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP5626978B2 (ja) 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP5679933B2 (ja) 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
US8884272B2 (en) Amorphous oxide semiconductor material, field-effect transistor, and display device
JP5657433B2 (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、センサ及びx線デジタル撮影装置
JP5995504B2 (ja) 電界効果型トランジスタ及びその製造方法、表示装置、イメージセンサ並びにx線センサ
WO2013172236A1 (ja) 電界効果型トランジスタの製造方法
KR101687468B1 (ko) 박막 트랜지스터 및 그 제조 방법, 표시 장치, 이미지 센서, x 선 센서 그리고 x 선 디지털 촬영 장치
KR101717336B1 (ko) 박막 트랜지스터의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147001825

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819710

Country of ref document: EP

Kind code of ref document: A1