WO2016167179A1 - 撮像パネル、及びそれを備えたx線撮像装置 - Google Patents

撮像パネル、及びそれを備えたx線撮像装置 Download PDF

Info

Publication number
WO2016167179A1
WO2016167179A1 PCT/JP2016/061421 JP2016061421W WO2016167179A1 WO 2016167179 A1 WO2016167179 A1 WO 2016167179A1 JP 2016061421 W JP2016061421 W JP 2016061421W WO 2016167179 A1 WO2016167179 A1 WO 2016167179A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic film
tft
imaging panel
film
region
Prior art date
Application number
PCT/JP2016/061421
Other languages
English (en)
French (fr)
Inventor
貴翁 斉藤
泰 高丸
庸輔 神崎
誠二 金子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/566,464 priority Critical patent/US10535692B2/en
Publication of WO2016167179A1 publication Critical patent/WO2016167179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Definitions

  • the present invention relates to an imaging panel and an X-ray imaging apparatus including the imaging panel.
  • Patent Document 1 discloses an X-ray sensor in which each pixel includes a thin film transistor (TFT: Thin Film Transistor) made of an oxide semiconductor and a photodiode.
  • TFT Thin Film Transistor
  • a passivation film is provided over an oxide semiconductor layer included in a thin film transistor, and an insulating film is provided under the oxide semiconductor layer.
  • silicon dioxide (SiO 2 ) is used for the passivation film or the insulating film, a defect level is generated when these films are irradiated with X-rays.
  • charge is trapped in the defect level, the threshold voltage of the thin film transistor is shifted, and the thin film transistor cannot be stably operated.
  • An object of the present invention is to provide an imaging panel and an X-ray imaging apparatus capable of suppressing a shift in threshold voltage of a thin film transistor during X-ray irradiation.
  • An imaging panel has a plurality of pixels, and is an imaging panel for imaging scintillation light obtained by converting X-rays irradiated from an X-ray light source with a scintillator, A conversion element that is provided in each of the plurality of pixels and that receives the scintillation light and converts it into charges, a thin film transistor that is provided in each of the plurality of pixels and that reads the charges converted by the conversion elements, and more than the conversion element
  • the thin film transistor includes an oxide semiconductor layer, a gate terminal, a source terminal formed in part on the oxide semiconductor layer, and the oxide semiconductor layer. A contact terminal for connecting the conversion element and the drain terminal in one pixel. Besides it is provided region, the region where the organic film does not exist in the upper layer is present than the thin film transistor.
  • the threshold voltage shift of the thin film transistor can be suppressed, and the thin film transistor can be operated stably.
  • FIG. 1 is a schematic diagram illustrating an X-ray imaging apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the imaging panel.
  • FIG. 3 is a plan view of pixels of the imaging panel shown in FIG. 4 is a cross-sectional view taken along the line AA of the pixel shown in FIG. 2 taken along the line AA.
  • FIG. 5A is a diagram showing the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in a configuration in which no organic film exists above the TFT.
  • FIG. 1 is a schematic diagram illustrating an X-ray imaging apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the imaging panel.
  • FIG. 5A
  • FIG. 5B is a diagram showing the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in a conventional configuration in which an organic film exists above the TFT.
  • 6 is a cross-sectional view showing a manufacturing process of the gate electrode and the gate insulating film shown in FIG. 7 is a cross-sectional view illustrating a manufacturing process of the oxide semiconductor layer, the source electrode, and the drain electrode illustrated in FIG. 8 is a cross-sectional view showing a manufacturing process of the interlayer insulating film shown in FIG.
  • FIG. 9 is a cross-sectional view showing an intermediate process of the manufacturing process of the organic film shown in FIG. 10 is a cross-sectional view showing a manufacturing process of the photodiode shown in FIG.
  • FIG. 11 is a cross-sectional view showing a manufacturing process of the upper electrode shown in FIG.
  • FIG. 12 is a cross-sectional view of the image pickup panel according to the second embodiment, taken along line AA in FIG.
  • FIG. 13 is a cross-sectional view of the image pickup panel according to the second embodiment, taken along line AA in FIG.
  • FIG. 14 shows the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in a configuration in which no organic film exists in a layer above the TFT in the region near the TFT.
  • FIG. FIG. 15 is a cross-sectional view of the pixel in FIG. 3 taken along line AA in the imaging panel according to the third embodiment.
  • FIG. 16 is a cross-sectional view of another configuration of the imaging panel according to the third embodiment, in which the pixel in FIG. 3 is cut along line AA.
  • FIG. 17 is a cross-sectional view illustrating an intermediate process of the manufacturing process of the second organic film in the manufacturing method of the imaging panel illustrated in FIG. 16.
  • FIG. 18 is a cross-sectional view illustrating the final state of the second organic film manufacturing process in the imaging panel manufacturing method illustrated in FIG. 16.
  • FIG. 19 is a cross-sectional view of the imaging panel according to the fourth embodiment, taken along line AA in FIG.
  • FIG. 20 is a cross-sectional view of another configuration of the imaging panel according to the fourth embodiment, taken along line AA in FIG.
  • An imaging panel has a plurality of pixels, and is an imaging panel for imaging scintillation light obtained by converting X-rays irradiated from an X-ray light source with a scintillator, A conversion element that is provided in each of the plurality of pixels and that receives the scintillation light and converts it into charges, a thin film transistor that is provided in each of the plurality of pixels and that reads the charges converted by the conversion elements, and more than the conversion element
  • the thin film transistor includes an oxide semiconductor layer, a gate terminal, a source terminal formed in part on the oxide semiconductor layer, and the oxide semiconductor layer. A contact terminal for connecting the conversion element and the drain terminal in one pixel. Is other than area provided, the region where the organic film does not exist in the upper layer is present than the TFT (first configuration).
  • the first configuration since there is a region where no organic film exists in a layer above the thin film transistor, water and hydrogen in the organic film can be released from this region. Accordingly, even when a defect level is generated in an interlayer insulating film existing on the oxide semiconductor layer or a gate insulating film existing below the oxide semiconductor layer at the time of X-ray irradiation, the water in the organic film is And the positive charge of hydrogen can be prevented from being trapped in the defect level. Thereby, the shift amount of the threshold voltage of the thin film transistor due to X-ray irradiation can be reduced.
  • the organic film may not exist above the thin film transistor (second configuration).
  • the second configuration since there is no organic film above the thin film transistor, for example, an interlayer insulating film that exists on the oxide semiconductor layer or a gate insulating film that exists below the oxide semiconductor layer at the time of X-ray irradiation.
  • an interlayer insulating film that exists on the oxide semiconductor layer or a gate insulating film that exists below the oxide semiconductor layer at the time of X-ray irradiation When a defect level is generated in the film, it is possible to more effectively suppress the positive charges of water and hydrogen in the organic film from being captured by the defect level. Thereby, the shift amount of the threshold voltage of the thin film transistor due to X-ray irradiation can be reduced.
  • the organic film includes a first organic film and a second organic film provided above the first organic film, and the contact in one pixel.
  • a region in which at least one of the first organic film and the second organic film does not exist may be present in a layer above the thin film transistor (third configuration). ).
  • the shift amount of the threshold voltage of the thin film transistor due to the X-ray irradiation can be reduced even in the configuration including two layers of organic films.
  • At least one of the first organic film and the second organic film may not exist above the thin film transistor (fourth configuration).
  • the shift amount of the threshold voltage of the thin film transistor due to the X-ray irradiation can be reduced more effectively in the configuration including the two-layer organic film.
  • the X-ray imaging apparatus controls any one of the first to fourth imaging panels, an X-ray light source that irradiates X-rays, and a gate voltage of the thin film transistor, according to the electric charge converted by the conversion element A control unit for reading out signals (fifth configuration).
  • the fifth configuration it is possible to provide an X-ray imaging apparatus in which the shift amount of the threshold voltage of the thin film transistor due to X-ray irradiation is reduced.
  • FIG. 1 is a schematic diagram illustrating an X-ray imaging apparatus according to the first embodiment.
  • the X-ray imaging apparatus 1 includes an imaging panel 10, a scintillator 10 ⁇ / b> A, a control unit 20, and an X-ray light source 30.
  • the subject S is irradiated with X-rays from the X-ray light source 30, and the X-ray transmitted through the subject S is converted into fluorescence (hereinafter referred to as scintillation light) by the scintillator 10 ⁇ / b> A at the top of the imaging panel 10.
  • the X-ray imaging apparatus 1 acquires an X-ray image by imaging scintillation light with the imaging panel 10 and the control unit 20.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the imaging panel 10.
  • the imaging panel 10 includes a plurality of gate lines 11 and a plurality of data lines 12 that intersect with the plurality of gate lines 11.
  • the imaging panel 10 has a plurality of regions (hereinafter referred to as pixels) 13 surrounded by the gate lines 11 and the data lines 12.
  • FIG. 2 shows an example having 16 (4 ⁇ 4) pixels 13, the number of pixels in the imaging panel 10 is not limited to this.
  • Each pixel 13 is provided with a thin film transistor (TFT) 14 connected to the gate line 11 and the data line 12 and a photodiode 15 connected to the TFT 14.
  • TFT thin film transistor
  • each pixel 13 is provided with a bias wiring 16 (see FIG. 3) for supplying a bias voltage to the photodiode 15 in substantially parallel to the data line 12.
  • the scintillation light obtained by converting the X-ray transmitted through the subject S is converted by the photodiode 15 into a charge corresponding to the light amount.
  • Each gate line 11 in the imaging panel 10 is sequentially switched to a selected state by the gate control unit 20A, and the TFT 14 connected to the selected gate line 11 is turned on.
  • the TFT 14 is turned on, a data signal corresponding to the electric charge converted by the photodiode 15 is read out to the signal reading unit 20B via the data line 12.
  • FIG. 3 is a plan view of the pixel 13 of the imaging panel 10 shown in FIG.
  • FIG. 4 is a cross-sectional view of the pixel in FIG. 3 taken along line AA.
  • the pixel 13 is formed on the substrate 40.
  • the substrate 13 is an insulating substrate such as a glass substrate, a silicon substrate, a heat-resistant plastic substrate, or a resin substrate.
  • a resin substrate such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic, polyimide, or the like may be used as the plastic substrate or the resin substrate.
  • the TFT 14 includes a gate electrode 141, an oxide semiconductor layer 142 disposed on the gate electrode 141 with the gate insulating film 41 interposed therebetween, and a source electrode 143S and a drain electrode 143D connected to the oxide semiconductor layer 142. .
  • the gate electrode 141 is configured by the gate line 11 branching in the extending direction of the data line 12 as shown in FIG. 3, and is in contact with one surface in the thickness direction of the substrate 40 as shown in FIG. Is formed.
  • the gate electrode 141 is made of, for example, a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or an alloy thereof. Alternatively, these metal nitrides are used. Further, the gate electrode 141 may be formed by stacking a plurality of metal films, for example.
  • the gate insulating film 41 is formed on the substrate 40 and covers the gate electrode 141.
  • the gate insulating film 41 for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy) (x> y), silicon nitride oxide (SiNxOy) (x> y), or the like may be used.
  • the gate insulating film 41 may have a laminated structure in order to prevent diffusion of impurities and the like from the substrate 40.
  • silicon nitride (SiNx) or silicon nitride oxide (SiNxOy) (x> y) or the like is used for the lower layer side
  • silicon oxide (SiOx) or silicon oxynitride (SiOxNy) (x> y) is used for the upper layer side.
  • Etc. may be used.
  • a rare gas element such as argon may be included in the reaction gas and mixed into the insulating film.
  • the oxide semiconductor layer 142 is formed in contact with the gate insulating film 41.
  • the oxide semiconductor layer 142 includes an oxide semiconductor containing indium (In), gallium (Ga), and zinc (Zn) at a predetermined ratio.
  • the source electrode 143S and the drain electrode 143D are formed in contact with the oxide semiconductor layer 142 and the gate insulating film 41.
  • the source electrode 143 ⁇ / b> S is configured by the data line 12 branching in the extending direction of the gate line 11.
  • the drain electrode 143D is connected to the photodiode 15 through the contact hole CH1.
  • the drain electrode 143 ⁇ / b> D functions as a drain electrode of the TFT 14 and also functions as a lower electrode of the photodiode 15.
  • the source electrode 143S, the data line 12, and the drain electrode 143D are formed on the same layer.
  • the source electrode 143S, the data line 12, and the drain electrode 143D are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), etc. These metals or their alloys, or these metal nitrides.
  • indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide containing silicon oxide (ITSO), indium oxide (In 2) O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), a light-transmitting material such as titanium nitride, and a combination of them may be used as appropriate.
  • the source electrode 143S, the data line 12, and the drain electrode 143D may be formed by stacking a plurality of metal films, for example.
  • the interlayer insulating film 42 covers the oxide semiconductor layer 142, the source electrode 143S, the data line 12, and the drain electrode 143D.
  • the interlayer insulating film 42 may have a single layer structure made of silicon oxide (SiO 2 ) or silicon nitride (SiN), or may have a stacked structure in which silicon nitride (SiN) and silicon oxide (SiO 2 ) are stacked in this order.
  • the film thickness of the interlayer insulating film 42 is, for example, about 0.5 ⁇ m.
  • the organic film 43 is formed on the interlayer insulating film 42 and covers the interlayer insulating film 42. However, in the present embodiment, the organic film 43 does not exist above the TFT 14, more specifically, above the gate electrode 141 for the reason described later. In the present embodiment, the organic film 43 does not exist in a region wider than the region where the TFT 14 is provided, but the organic film 43 does not exist in a region having the same area as the region where the TFT 14 is provided. Also good.
  • An organic film is a film made of an organic polymer compound.
  • an organic resin such as polyimide is used as the material of the organic film 43.
  • the organic film 43 has a function as a planarizing film for planarizing the surface.
  • the photodiode 15 covers the organic film 43 in the region where the organic film 43 is formed, covers the interlayer insulating film 42 in the region where the organic film 43 is not formed, and is a contact hole penetrating the organic film 43 and the interlayer insulating film 42. It is formed in contact with the drain electrode 143D through CH1.
  • the photodiode 15 includes an n-type amorphous silicon layer, an intrinsic amorphous silicon layer, and a p-type amorphous silicon layer (all not shown).
  • the n-type amorphous silicon layer is made of amorphous silicon doped with an n-type impurity (for example, phosphorus).
  • the n-type amorphous silicon layer is formed in contact with the drain electrode 143D.
  • the thickness of the n-type amorphous silicon layer is, for example, 20 to 100 nm.
  • the intrinsic amorphous silicon layer is made of intrinsic amorphous silicon.
  • the intrinsic amorphous silicon layer is formed in contact with the n-type amorphous silicon layer.
  • the thickness of the intrinsic amorphous silicon layer is, for example, 200 to 2000 nm.
  • the p-type amorphous silicon layer is made of amorphous silicon doped with a p-type impurity (for example, boron).
  • the p-type amorphous silicon layer is formed in contact with the intrinsic amorphous silicon layer.
  • the thickness of the p-type amorphous silicon layer is, for example, 10 to 50 nm.
  • the electrode 44 is formed on the photodiode 15 and functions as an upper electrode of the photodiode 15.
  • the electrode 44 supplies a voltage of a bias wiring 16 to be described later to the photodiode 15 as a reference voltage (bias voltage) for photoelectric conversion.
  • a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
  • the bias wiring 16 is formed on the electrode 44 substantially in parallel with the data line 12.
  • the bias wiring 16 is connected to the voltage control unit 20D (see FIG. 1).
  • the bias wiring 16 applies a bias voltage input from the voltage control unit 20 ⁇ / b> D to the electrode 44.
  • the bias wiring 16 has, for example, a stacked structure in which indium zinc oxide (IZO) and molybdenum (Mo) are stacked.
  • the protective film 45 is formed on the electrode 44 so as to cover the bias wiring 16.
  • the protective film 45 may have a single layer structure made of silicon oxide (SiO 2 ) or silicon nitride (SiN), or may have a stacked structure in which silicon nitride (SiN) and silicon oxide (SiO 2 ) are stacked in this order.
  • a scintillator 10A (see FIG. 1) is provided on the imaging panel 10, that is, on the protective film 45.
  • the threshold voltage of the TFT 14 is shifted by capturing. This is presumably because positive charges in the organic film 43 are trapped by defect levels generated in the interlayer insulating film 42 and the gate insulating film 41 during X-ray irradiation. Accordingly, in the present embodiment, the shift of the threshold voltage of the TFT 14 due to X-ray irradiation is suppressed by not providing the organic film 43 above the TFT 14.
  • FIG. 5A is a diagram showing the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in the configuration of the present embodiment in which the organic film 43 does not exist above the TFT 14.
  • FIG. 5B is a diagram showing the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in a conventional configuration in which an organic film exists above the TFT. 5A and 5B, the gate-source voltage Vgs when the drain current Id increases rapidly is the threshold voltage of the TFT 14.
  • the control unit 20 includes a gate control unit 20A, a signal reading unit 20B, an image processing unit 20C, a voltage control unit 20D, and a timing control unit 20E.
  • a plurality of gate lines 11 are connected to the gate control unit 20A as shown in FIG.
  • the gate control unit 20 ⁇ / b> A applies a predetermined gate voltage to the TFT 14 connected to the gate line 11 via the gate line 11.
  • a plurality of data lines 12 are connected to the signal reading unit 20B.
  • the signal reading unit 20 ⁇ / b> B reads a data signal corresponding to the electric charge converted by the photodiode 15 included in the pixel 13 through each data line 12.
  • the signal reading unit 20B generates an image signal based on the data signal and outputs it to the image processing unit 20C.
  • the image processing unit 20C generates an X-ray image based on the image signal output from the signal reading unit 20B.
  • the voltage control unit 20 ⁇ / b> D is connected to the bias wiring 16.
  • the voltage control unit 20 ⁇ / b> D applies a predetermined bias voltage to the bias wiring 16.
  • a bias voltage is applied to the photodiode 15 via the electrode 44 connected to the bias wiring 16.
  • the timing control unit 20E controls the operation timing of the gate control unit 20A, the signal reading unit 20B, and the voltage control unit 20D.
  • the gate control unit 20A selects one gate line 11 from the plurality of gate lines 11 based on the control signal from the timing control unit 20E.
  • the gate control unit 20A applies a predetermined gate voltage to the TFT 14 connected to the gate line 11 through the selected gate line 11.
  • the signal reading unit 20B selects one data line 12 from the plurality of data lines 12 based on the control signal from the timing control unit 20E.
  • the signal readout unit 20B reads out a data signal corresponding to the electric charge converted by the photodiode 15 in the pixel 13 through the selected data line 12.
  • the pixel 13 from which the data signal is read is connected to the data line 12 selected by the signal reading unit 20B, and is connected to the gate line 11 selected by the gate control unit 20A.
  • the timing control unit 20E outputs a control signal to the voltage control unit 20D, for example, when X-rays are emitted from the X-ray light source 30. Based on this control signal, the voltage control unit 20 ⁇ / b> D applies a predetermined bias voltage to the electrode 44.
  • X-rays are emitted from the X-ray light source 30.
  • the timing control unit 20E outputs a control signal to the voltage control unit 20D.
  • a signal indicating that X-rays are emitted from the X-ray light source 30 is output from the control device that controls the operation of the X-ray light source 30 to the timing control unit 20E.
  • the timing control unit 20E outputs a control signal to the voltage control unit 20D.
  • the voltage control unit 20D applies a bias voltage to the bias wiring 16 based on a control signal from the timing control unit 20E.
  • the X-rays emitted from the X-ray light source 30 pass through the subject S and enter the scintillator 10A.
  • the X-rays incident on the scintillator 10A are converted into scintillation light, and the scintillation light enters the imaging panel 10.
  • the photodiode 15 When the scintillation light is incident on the photodiode 15 provided in each pixel 13 in the imaging panel 10, the photodiode 15 converts the scintillation light into an electric charge according to the amount of scintillation light.
  • a data signal corresponding to the electric charge converted by the photodiode 15 is transmitted to the data line when the TFT 14 is turned on by a gate voltage (positive voltage) output from the gate control unit 20A through the gate line 11. 12 is read by the signal reading unit 20B. An X-ray image corresponding to the read data signal is generated by the image processing unit 20C.
  • FIG. 10 Manufacturing method of imaging panel 10.
  • 6 to 12 are cross-sectional views of the pixel 13 in each manufacturing process of the imaging panel 10.
  • a metal film in which aluminum and titanium are laminated is formed on the substrate 40 by sputtering or the like. Then, the metal film is patterned by photolithography to form the gate electrode 141.
  • the thickness of this metal film is, for example, 300 nm.
  • a gate insulating film 41 made of silicon oxide (SiOx), silicon nitride (SiNx) or the like is formed on the substrate 40 so as to cover the gate electrode 141 by plasma CVD or sputtering.
  • the thickness of the gate insulating film 41 is, for example, 20 to 150 nm.
  • an oxide semiconductor containing indium (In), gallium (Ga), and zinc (Zn) is formed over the gate insulating film 41 by, for example, sputtering, and photolithography is performed.
  • the oxide semiconductor layer 142 is formed by patterning the oxide semiconductor by a method. After the oxide semiconductor layer 142 is formed, heat treatment may be performed in an atmosphere containing oxygen at a high temperature (eg, 350 ° C. or higher) (eg, in the air). In this case, oxygen defects in the oxide semiconductor layer 142 can be reduced.
  • the thickness of the oxide semiconductor layer 142 is, for example, 5 to 100 nm.
  • a metal film containing aluminum is formed on the gate insulating film 41 and the oxide semiconductor layer 142 by sputtering or the like. Then, the metal film is patterned by photolithography and dry etching is performed to form the source electrode 143S, the data line 12, and the drain electrode 143D. As a result, a bottom gate type TFT 14 is formed. Note that the thicknesses of the source electrode 143S and the drain electrode 143D are, for example, 50 to 500 nm.
  • an interlayer insulating film 42 made of silicon oxide (SiO 2 ) or silicon nitride (SiN) is formed on the source electrode 143S and the drain electrode 143D, for example, by plasma CVD.
  • an organic film 43 containing an organic resin such as polyimide is formed on the interlayer insulating film 42 by plasma CVD.
  • the thickness of the organic film 43 is, for example, 2 to 3 ⁇ m.
  • patterning is performed by photolithography to remove the organic film 43 existing above the TFT 14, and a contact hole is formed on a part of the drain electrode 143D. CH1 is formed. Then, an n-type amorphous silicon layer, an intrinsic amorphous silicon layer, and a p-type amorphous silicon layer are sequentially formed on the organic film 43 by sputtering or the like. Thereafter, patterning is performed by photolithography, and dry etching is performed to form the photodiode 15. Thereby, the photodiode 15 and the drain electrode 143D are connected via the contact hole CH1.
  • indium zinc oxide IZO
  • sputtering or the like a photolithography method
  • a metal film in which, for example, indium zinc oxide (IZO) and molybdenum (Mo) are stacked is formed on the electrode 44 by sputtering or the like, and a pattern is formed by photolithography.
  • a protective film 45 is formed by depositing silicon oxide (SiO 2 ) or silicon nitride (SiN) on the electrode 44 and the bias wiring 16 by plasma CVD or the like.
  • the imaging panel according to the first embodiment has a structure in which the organic film 43 does not exist above the TFT 14.
  • the organic film 43 exists above the TFT 14, but there is a region where the organic film 43 does not exist in one pixel other than the region where the contact hole CH ⁇ b> 1 is provided. .
  • FIG. 1 the schematic diagram of the X-ray imaging apparatus in this embodiment is the same as FIG. 1, and the schematic diagram which shows the schematic structure of an imaging panel is the same as FIG.
  • the plan view of the pixels of the imaging panel is the same as FIG.
  • FIG. 13 is a cross-sectional view of the pixel in FIG. 3 taken along line AA in the imaging panel according to the second embodiment.
  • an organic film 43 exists above the TFT 14 and between the interlayer insulating film 42 and the photodiode 15. However, the organic film 43 does not exist in the region S1 in the vicinity of the TFT 14.
  • the organic film 43 since there is a region where the organic film 43 does not exist in addition to the region where the contact hole CH1 is provided, water and hydrogen in the organic film 43 can be released from this region. Thereby, it is possible to suppress the trapping of positive charges of water and hydrogen in the organic film 43 in the defect levels generated in the interlayer insulating film 42 and the gate insulating film 41 during X-ray irradiation.
  • the shift amount of the threshold voltage of the TFT 14 due to the line irradiation can be reduced.
  • the region S 1 where the organic film 43 does not exist is preferably close to the TFT 14. .
  • the region where the organic film 43 does not exist other than the region where the contact hole CH1 is provided does not need to be near the TFT 14, and may be provided within one pixel.
  • the number of regions where the organic film 43 does not exist is not limited to one, but may be a plurality.
  • FIG. 14 is a diagram showing the relationship between the gate-source voltage Vgs and the drain current Id before and after X-ray irradiation in the configuration of the present embodiment in which the organic film 43 does not exist in the region S1 near the TFT 14. It is. Even in the configuration of the present embodiment, the threshold voltage shift ⁇ Vth3 of the TFT 14 occurs before and after the X-ray irradiation. However, this threshold voltage shift ⁇ Vth3 is equal to the threshold voltage shift ⁇ Vth2 (see FIG. 5B) in the conventional configuration in which the organic film 43 is provided, except for the region where the contact hole CH1 is provided in one pixel. It is small compared to about 0.6 times ⁇ Vth2.
  • the organic film 43 exists above the TFT 14, but in the configuration of this embodiment in which there is a region where the organic film 43 does not exist in addition to the region where the contact hole CH 1 is provided in one pixel, The shift amount of the threshold voltage of the TFT 14 due to the line irradiation can be reduced.
  • the image pickup panel manufacturing method according to the second embodiment differs from the image pickup panel manufacturing method according to the first embodiment (see FIGS. 6 to 12) in that an organic film 43 is formed on the interlayer insulating film. After the film formation, the organic film 43 is removed not in the upper part of the TFT 14 but in the region S1 in the vicinity of the TFT 14, and the rest is the same as the manufacturing method of the imaging panel in the first embodiment.
  • the imaging panel according to the first embodiment described above has a configuration in which only one organic film is provided, and no organic film is provided above the TFT 14. In the imaging panel according to the third embodiment, when two organic films are stacked, at least one organic film is not provided above the TFT 14.
  • FIG. 1 the schematic diagram of the X-ray imaging apparatus in this embodiment is the same as FIG. 1, and the schematic diagram which shows the schematic structure of an imaging panel is the same as FIG.
  • the plan view of the pixels of the imaging panel is the same as FIG.
  • FIG. 15 is a cross-sectional view of the pixel in FIG. 3 taken along the line AA in the imaging panel according to the third embodiment.
  • an organic film 46 is provided on the protective film 45.
  • an organic resin such as polyimide is used.
  • the organic film 43 is referred to as a first organic film 43
  • the organic film 46 is referred to as a second organic film 46.
  • the second organic film 46 functions as a flattening film for flattening the surface.
  • the first organic film 43 is not provided above the TFT 14 as in the imaging panel in the first embodiment. That is, the second organic film 46 is provided above the TFT 14, but the first organic film 43 is not provided. Even in this configuration, compared to the configuration in which both the first organic film 43 and the second organic film 46 are provided above the TFT 14, there is an effect of suppressing the shift of the threshold voltage of the TFT 14 due to X-ray irradiation. .
  • the process up to the step of forming the protective film 45 is the same as the manufacturing method of the imaging panel in the first embodiment (see FIGS. 6 to 12).
  • a second organic film 46 containing an organic resin such as polyimide is formed by plasma CVD.
  • FIG. 16 is a cross-sectional view of another configuration of the imaging panel according to the third embodiment, in which the pixel in FIG. 3 is cut along line AA.
  • the second organic film 46 is provided on the protective film 45.
  • the second organic film 46 is not provided above the TFT 14.
  • the first organic film 43 is also provided above the TFT 14. That is, the first organic film 43 is provided above the TFT 14, but the second organic film 46 is not provided. Even in this configuration, compared to the configuration in which both the first organic film 43 and the second organic film 46 are provided above the TFT 14, there is an effect of suppressing the shift of the threshold voltage of the TFT 14 due to X-ray irradiation. .
  • the process up to the step of forming the protective film 45 is substantially the same as the manufacturing method of the imaging panel in the first embodiment (see FIGS. 6 to 12).
  • patterning is performed by a photolithography method, and the first organic film 43 existing above the TFT 14 is removed.
  • the first organic film 43 existing above the TFT 14 is not removed.
  • a second organic film 46 containing an organic resin such as polyimide is formed by plasma CVD as shown in FIG. Then, as shown in FIG. 18, patterning is performed by photolithography to remove the second organic film 46 from above the TFT 14.
  • the imaging panel according to the second embodiment described above in the configuration in which only one organic film is provided, the organic film is present above the TFT 14, but the contact hole CH1 is provided in one pixel. In addition to the region, there is a region where no organic film exists.
  • the imaging panel according to the fourth embodiment when two layers of organic films are stacked, two layers of organic films are provided above the TFT 14, but a contact hole CH1 is provided in one pixel. In addition to the region, there is a region where at least one organic film does not exist.
  • FIG. 1 the schematic diagram of the X-ray imaging apparatus in this embodiment is the same as FIG. 1, and the schematic diagram which shows the schematic structure of an imaging panel is the same as FIG.
  • the plan view of the pixels of the imaging panel is the same as FIG.
  • FIG. 19 is a cross-sectional view of the image pickup panel according to the fourth embodiment, taken along line AA in FIG. Also in the imaging panel according to the fourth embodiment, the organic film 46 is provided on the protective film 45.
  • a material of the organic film 46 for example, an organic resin such as polyimide is used.
  • the organic film 43 is referred to as a first organic film 43 and the organic film 46 is referred to as a second organic film 46.
  • the first organic film 43 and the second organic film 46 exist above the TFT 14. However, in the region S2 in the vicinity of the TFT 14, the second organic film 46 exists, but the first organic film 43 does not exist.
  • This configuration also has an effect of suppressing the shift of the threshold voltage of the TFT 14 due to X-ray irradiation.
  • the region S2 where the first organic film 43 is not provided is preferably close to the TFT.
  • the region where the first organic film 43 is not provided need not be near the TFT 14 and may be provided within one pixel.
  • the number of regions in which the first organic film 43 is not provided is not limited to one, but may be plural.
  • a second organic film 46 containing an organic resin such as polyimide is formed by plasma CVD.
  • FIG. 20 shows another configuration of the imaging panel according to the fourth embodiment, and is a cross-sectional view of the pixel shown in FIG. 3 taken along the line AA.
  • the second organic film 46 is provided on the protective film 45 in the imaging panel shown in FIG. Referring to FIG. 20, the first organic film 43 and the second organic film 46 exist above the TFT 14. However, in the region S3 in the vicinity of the TFT 14, the first organic film 43 exists, but the second organic film 46 does not exist. This configuration also has an effect of suppressing the shift of the threshold voltage of the TFT 14 due to X-ray irradiation.
  • the region S3 where the second organic film 46 is not provided is preferably close to the TFT 14.
  • the region where the second organic film 46 is not provided need not be near the TFT 14 and may be provided in one pixel.
  • the number of regions where the second organic film 46 is not provided is not limited to one, but may be a plurality.
  • the manufacturing method of the imaging panel shown in FIG. 20 is substantially the same as the manufacturing method of the imaging panel shown in FIG. However, in the imaging panel manufacturing method shown in FIG. 16, after the second organic film 46 is formed on the protective film 45, patterning is performed by photolithography, and the second organic film existing above the TFT 14 is formed. Although the film 46 has been removed, in the imaging panel manufacturing method shown in FIG. 20, the second organic film 46 is formed on the protective film 45, and then patterned by photolithography to obtain a region in the vicinity of the TFT 14. The second organic film 46 present in S3 is removed.
  • the oxide semiconductor layer 142 includes an oxide semiconductor containing indium (In), gallium (Ga), and zinc (Zn) at a predetermined ratio.
  • the oxide semiconductor layer 142 includes an oxide semiconductor having higher electron mobility than an oxide semiconductor containing In, Ga, and Zn at a predetermined ratio.
  • An oxide semiconductor whose electron mobility is higher than that of an oxide semiconductor containing In, Ga, and Zn at a predetermined ratio includes at least one material of In, Ga, Zn, and tin (Sn). It is an oxide semiconductor containing In, Sn, and Zn at a predetermined ratio.
  • an oxide semiconductor containing In, Ga, and Zn may be used in which the composition ratio of In, Ga, and Zn is changed so that electron mobility is increased.
  • the threshold voltage shift amount of the TFT 14 due to X-ray irradiation increases. Therefore, the effect of suppressing the shift of the threshold voltage of the TFT 14 due to X-ray irradiation is enhanced by providing a region in which no organic film exists in a layer above the TFT 14 in one pixel.
  • the present invention is not limited to the above-described embodiment.
  • the oxide semiconductor layer 142 is not limited to the structure described above.
  • the TFT 14 is not limited to the bottom gate type, and may be a top gate type.
  • a configuration in which both the first organic film 43 and the second organic film 46 do not exist above the TFT 14 may be employed.
  • three or more organic films may be stacked. In this case as well, any structure that does not include at least one organic film above the TFT 14 may be used.
  • not only the first organic film 43 but also the second organic film 46 may not exist in the region S2 of FIG. 19, or the second organic film in the region S3 of FIG.
  • a configuration in which not only the first organic film 43 but also the first organic film 43 does not exist may be employed.
  • three or more organic films may be stacked. In this case as well, a configuration in which at least one organic film does not exist in a layer above the TFT 14 other than the region in which the contact hole CH1 is provided in one pixel may be used.
  • SYMBOLS 1 X-ray imaging device, 10 ... Imaging panel, 10A ... Scintillator, 11 ... Gate line, 12 ... Data line, 13 ... Pixel, 14 ... Thin-film transistor (TFT), 15 ... Photodiode, 16 ... Bias wiring, 20 ... Control , 20A: gate control unit, 20B: signal reading unit, 20C: image processing unit, 20D: voltage control unit, 20E: timing control unit, 30: X-ray light source, 41: gate insulating film, 42: interlayer insulating film, DESCRIPTION OF SYMBOLS 43 ... Organic film (1st organic film), 44 ... Upper electrode, 45 ... Protective film, 46 ... Organic film (2nd organic film), 141 ... Gate electrode, 142 ... Oxide semiconductor layer, 143S ... Source electrode , 143D ... Drain electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

X線照射時の薄膜トランジスタの閾値電圧のシフトを抑制する。複数の画素を有し、X線光源から照射されたX線をシンチレータで変換したシンチレーション光を撮像するための撮像パネルは、フォトダイオード15と、TFT14と、有機膜43とを備える。フォトダイオード15は、複数の画素の各々に設けられ、シンチレーション光を受光して電荷に変換する。TFT14は、複数の画素の各々に設けられ、フォトダイオード15によって変換された電荷を読み出すためのものである。TFT14は、酸化物半導体層142と、ゲート電極141と、酸化物半導体層142上の一部に形成されたソース電極143S及びドレイン電極143Dとを有する。1つの画素内において、フォトダイオード15とドレイン電極143Dとを接続するコンタクトホールCH1が設けられた領域以外に、TFT14よりも上の層に有機膜43が存在しない領域が存在する。

Description

撮像パネル、及びそれを備えたX線撮像装置
 本発明は、撮像パネル、及びそれを備えたX線撮像装置に関する。
 複数の画素を備える撮像パネルによって、X線画像を撮影するX線撮像装置が知られている。下記特許文献1には、各画素に、酸化物半導体からなる薄膜トランジスタ(TFT:Thin Film Transistor)とフォトダイオードとを備えるX線センサが開示されている。
特開2013-30682号公報
 特許文献1に記載のX線センサでは、薄膜トランジスタを構成する酸化物半導体層の上にはパッシベーション膜が設けられ、酸化物半導体層の下には絶縁膜が設けられている。パッシベーション膜や絶縁膜に、例えば二酸化珪素(SiO)が使用された場合、これらの膜にX線が照射されると、欠陥準位が生じる。欠陥準位に電荷が捕捉されると、薄膜トランジスタの閾値電圧がシフトして、薄膜トランジスタを安定して動作させることができなくなる。
 本発明は、X線照射時の薄膜トランジスタの閾値電圧のシフトを抑制することができる撮像パネル及びX線撮像装置を提供することを目的とする。
 本発明の一実施形態における撮像パネルは、複数の画素を有し、X線光源から照射されたX線をシンチレータで変換したシンチレーション光を撮像するための撮像パネルであって、前記複数の画素の各々に設けられ、前記シンチレーション光を受光して電荷に変換する変換素子と、前記複数の画素の各々に設けられ、前記変換素子によって変換された電荷を読み出すための薄膜トランジスタと、前記変換素子よりも上または下に設けられた有機膜と、を備え、前記薄膜トランジスタは、酸化物半導体層と、ゲート端子と、前記酸化物半導体層上の一部に形成されたソース端子と、前記酸化物半導体層上の一部に形成されたドレイン端子と、を有し、1つの前記画素内において、前記変換素子と前記ドレイン端子とを接続するコンタクトホールが設けられた領域以外に、前記薄膜トランジスタよりも上の層に前記有機膜が存在しない領域が存在する。
 本発明によれば、薄膜トランジスタの閾値電圧のシフトを抑制して、薄膜トランジスタを安定して動作させることができる。
図1は、第1実施形態におけるX線撮像装置を示す模式図である。 図2は、撮像パネルの概略構成を示す模式図である。 図3は、図2に示す撮像パネルの画素の平面図である。 図4は、図2に示す画素をA-A線で切断したA-A断面図である。 図5Aは、TFTの上方に有機膜が存在しない構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。 図5Bは、TFTの上方に有機膜が存在する従来の構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。 図6は、図4に示すゲート電極及びゲート絶縁膜の製造工程を示す断面図である。 図7は、図4に示す酸化物半導体層とソース電極及びドレイン電極の製造工程を示す断面図である。 図8は、図4に示す層間絶縁膜の製造工程を示す断面図である。 図9は、図4に示す有機膜の製造工程の途中過程を示す断面図である。 図10は、図4に示すフォトダイオードの製造工程を示す断面図である。 図11は、図4に示す上部電極の製造工程を示す断面図である。 図12は、第2の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。 図13は、第2の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。 図14は、TFTの近傍の領域において、TFTよりも上の層に有機膜が存在しない構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。 図15は、第3の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。 図16は、第3の実施形態における撮像パネルの別の構成であって、図3における画素をA-A線で切断した断面図である。 図17は、図16に示す撮像パネルの製造方法のうち、第2の有機膜の製造工程の途中過程を示す断面図である。 図18は、図16に示す撮像パネルの製造方法のうち、第2の有機膜の製造工程の最終状態を示す断面図である。 図19は、第4の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。 図20は、第4の実施形態における撮像パネルの別の構成であって、図3における画素をA-A線で切断した断面図である。
 本発明の一実施形態における撮像パネルは、複数の画素を有し、X線光源から照射されたX線をシンチレータで変換したシンチレーション光を撮像するための撮像パネルであって、前記複数の画素の各々に設けられ、前記シンチレーション光を受光して電荷に変換する変換素子と、前記複数の画素の各々に設けられ、前記変換素子によって変換された電荷を読み出すための薄膜トランジスタと、前記変換素子よりも上または下に設けられた有機膜と、を備え、前記薄膜トランジスタは、酸化物半導体層と、ゲート端子と、前記酸化物半導体層上の一部に形成されたソース端子と、前記酸化物半導体層上の一部に形成されたドレイン端子と、を有し、1つの前記画素内において、前記変換素子と前記ドレイン端子とを接続するコンタクトホールが設けられた領域以外に、前記薄膜トランジスタよりも上の層に前記有機膜が存在しない領域が存在する(第1の構成)。
 第1の構成によれば、薄膜トランジスタよりも上の層に有機膜が存在しない領域が存在することにより、有機膜中の水や水素をこの領域から逃がすことができる。これにより、X線の照射時に、例えば酸化物半導体層の上に存在する層間絶縁膜や酸化物半導体層の下に存在するゲート絶縁膜に欠陥準位が生じた場合でも、有機膜中の水や水素のプラス電荷が欠陥準位に捕捉されるのを抑制することができる。これにより、X線照射による薄膜トランジスタの閾値電圧のシフト量を小さくすることができる。
 第1の構成において、前記薄膜トランジスタの上方に前記有機膜が存在しない構成としてもよい(第2の構成)。
 第2の構成によれば、薄膜トランジスタの上方に有機膜が存在しないので、X線の照射時に、例えば酸化物半導体層の上に存在する層間絶縁膜や酸化物半導体層の下に存在するゲート絶縁膜に欠陥準位が生じた場合に、有機膜中の水や水素のプラス電荷が欠陥準位に捕捉されるのをより効果的に抑制することができる。これにより、X線照射による薄膜トランジスタの閾値電圧のシフト量を小さくすることができる。
 第1の構成において、前記有機膜には、第1の有機膜、及び前記第1の有機膜よりも上に設けられた第2の有機膜が含まれ、1つの前記画素内において、前記コンタクトホールが設けられた領域以外に、前記薄膜トランジスタよりも上の層に前記第1の有機膜及び前記第2の有機膜の少なくとも一方が存在しない領域が存在するようにしてもよい(第3の構成)。
 第3の構成によれば、2層の有機膜を含む構成であっても、X線照射による薄膜トランジスタの閾値電圧のシフト量を小さくすることができる。
 第3の構成において、前記薄膜トランジスタの上方には前記第1の有機膜及び前記第2の有機膜の少なくとも一方が存在しない構成としてもよい(第4の構成)。
 第4の構成によれば、2層の有機膜を含む構成において、より効果的にX線照射による薄膜トランジスタの閾値電圧のシフト量を小さくすることができる。
 X線撮像装置は、第1から第4のいずれかの撮像パネルと、X線を照射するX線光源と、前記薄膜トランジスタのゲート電圧を制御して、前記変換素子によって変換された電荷に応じた信号を読み出す制御部と、を備える(第5の構成)。
 第5の構成によれば、X線照射による薄膜トランジスタの閾値電圧のシフト量を小さくしたX線撮像装置を提供することができる。
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [第1の実施形態]
 図1は、第1の実施形態におけるX線撮像装置を示す模式図である。X線撮像装置1は、撮像パネル10と、シンチレータ10Aと、制御部20と、X線光源30とを備える。被写体Sに対しX線光源30からX線が照射され、被写体Sを透過したX線が、撮像パネル10の上部にあるシンチレータ10Aによって蛍光(以下、シンチレーション光)に変換される。X線撮像装置1は、シンチレーション光を撮像パネル10及び制御部20によって撮像することにより、X線画像を取得する。
 図2は、撮像パネル10の概略構成を示す模式図である。図2に示すように、撮像パネル10には、複数のゲート線11と、複数のゲート線11と交差する複数のデータ線12とが形成されている。撮像パネル10は、ゲート線11とデータ線12とに囲まれた複数の領域(以下、画素と称する)13を有する。図2では、16個(4×4)の画素13を有する例を示しているが、撮像パネル10における画素数はこれに限定されない。
 各画素13には、ゲート線11とデータ線12とに接続された薄膜トランジスタ(TFT)14と、TFT14に接続されたフォトダイオード15とが設けられている。また、図2において図示を省略するが、各画素13には、フォトダイオード15にバイアス電圧を供給するバイアス配線16(図3参照)がデータ線12と略平行に配置されている。
 画素13において、被写体Sを透過したX線を変換したシンチレーション光を、フォトダイオード15により、その光量に応じた電荷に変換する。
 撮像パネル10における各ゲート線11は、ゲート制御部20Aによって順次選択状態に切り替えられ、選択状態のゲート線11に接続されたTFT14がオン状態となる。TFT14がオン状態になると、フォトダイオード15によって変換された電荷に応じたデータ信号がデータ線12を介して信号読出部20Bに読み出される。
 次に、画素13の具体的な構成について説明する。図3は、図2に示す撮像パネル10の画素13の平面図である。また、図4は、図3における画素をA-A線で切断した断面図である。
 図4に示すように、画素13は、基板40の上に形成されている。基板13は、例えば、ガラス基板、シリコン基板、耐熱性を有するプラスチック基板、又は樹脂基板等、絶縁性を有する基板である。特に、プラスチック基板又は樹脂基板として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等を用いてもよい。
 TFT14は、ゲート電極141と、ゲート絶縁膜41を介してゲート電極141の上に配置された酸化物半導体層142と、酸化物半導体層142に接続されたソース電極143S及びドレイン電極143Dとを備える。
 ゲート電極141は、図3に示すように、ゲート線11がデータ線12の延伸方向に分岐することによって構成され、図4に示すように、基板40の厚さ方向の一方の面に接して形成されている。ゲート電極141は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属、又はこれらの合金、若しくはこれら金属窒化物からなる。また、ゲート電極141は、例えば、複数の金属膜を積層したものであってもよい。
 図4に示すように、ゲート絶縁膜41は、基板40上に形成され、ゲート電極141を覆う。ゲート絶縁膜41は、例えば、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等を用いてもよい。
 なお、基板40からの不純物等の拡散を防止するため、ゲート絶縁膜41を積層構造にしてもよい。例えば、下層側に、窒化珪素(SiNx)、又は窒化酸化珪素(SiNxOy)(x>y)等を用い、上層側に、酸化珪素(SiOx)、又は酸化窒化珪素(SiOxNy)(x>y)等を用いてもよい。さらに、低い成膜温度でゲートリーク電流の少ない緻密なゲート絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませて絶縁膜中に混入させてもよい。
 図4に示すように、酸化物半導体層142は、ゲート絶縁膜41に接して形成されている。酸化物半導体層142は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)を所定の比率で含有する酸化物半導体を含む。
 ソース電極143S及びドレイン電極143Dは、酸化物半導体層142及びゲート絶縁膜41に接して形成されている。ソース電極143Sは、図3に示すように、データ線12がゲート線11の延伸方向に分岐することによって構成されている。ドレイン電極143Dは、図4に示すように、コンタクトホールCH1を介してフォトダイオード15に接続されている。ドレイン電極143Dは、TFT14のドレイン電極として機能するとともに、フォトダイオード15の下部電極として機能する。
 ソース電極143S、データ線12、ドレイン電極143Dは、同一層上に形成されている。ソース電極143S、データ線12、ドレイン電極143Dは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はこれらの合金、若しくはこれら金属窒化物からなる。また、ソース電極143S、データ線12、ドレイン電極143Dの材料として、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、窒化チタン等の透光性を有する材料及びそれらを適宜組み合わせたものを用いてもよい。また、ソース電極143S、データ線12、及びドレイン電極143Dは、例えば、複数の金属膜を積層したものであってもよい。
 図4に示すように、層間絶縁膜42は、酸化物半導体層142、ソース電極143S、データ線12、ドレイン電極143Dを覆っている。層間絶縁膜42は、酸化珪素(SiO)又は窒化珪素(SiN)からなる単層構造でもよいし、窒化珪素(SiN)、酸化珪素(SiO)をこの順に積層した積層構造でもよい。本実施形態において、層間絶縁膜42の膜厚は、例えば、0.5μm程度である。
 有機膜43は、層間絶縁膜42の上に形成され、層間絶縁膜42を覆う。ただし、本実施形態では、後述する理由から、TFT14の上方、より詳しくは、ゲート電極141の上方には、有機膜43が存在しない。本実施形態では、TFT14が設けられている領域よりも広い領域において有機膜43が存在しない構成としているが、TFT14が設けられている領域と同じ広さの領域において有機膜43が存在しない構成としてもよい。
 有機膜とは、有機高分子化合物を素材とする膜のことである。本実施形態では、有機膜43の材料として、例えば、ポリイミド等の有機系樹脂を用いる。有機膜43は、表面を平坦化するための平坦化膜としての機能を有する。
 フォトダイオード15は、有機膜43が形成されている領域では有機膜43を、有機膜43が形成されていない領域では層間絶縁膜42を覆い、有機膜43及び層間絶縁膜42を貫通するコンタクトホールCH1を介してドレイン電極143Dに接して形成されている。フォトダイオード15は、n型非晶質シリコン層と、真性非晶質シリコン層と、p型非晶質シリコン層とを含む(いずれも図示略)。n型非晶質シリコン層は、n型不純物(例えば、リン)がドーピングされたアモルファスシリコンからなる。n型非晶質シリコン層は、ドレイン電極143Dに接して形成されている。n型非晶質シリコン層の厚みは、例えば、20~100nmである。真性非晶質シリコン層は、真性のアモルファスシリコンからなる。真性非晶質シリコン層は、n型非晶質シリコン層に接して形成されている。真性非晶質シリコン層の厚みは、例えば、200~2000nmである。p型非晶質シリコン層は、p型不純物(例えば、ボロン)がドーピングされたアモルファスシリコンからなる。p型非晶質シリコン層は、真性非晶質シリコン層に接して形成されている。p型非晶質シリコン層の厚みは、例えば、10~50nmである。
 電極44は、フォトダイオード15の上に形成され、フォトダイオード15の上部電極として機能する。電極44は、後述のバイアス配線16の電圧を光電変換の際の基準電圧(バイアス電圧)としてフォトダイオード15へ供給する。電極44の材料としては、例えば、インジウム錫酸化物(ITO)、又はインジウム亜鉛酸化物(IZO)等の透明導電膜を用いることができる。
 バイアス配線16は、図3及び図4に示すように、電極44の上に、データ線12と略平行に形成されている。バイアス配線16は、電圧制御部20D(図1参照)に接続されている。バイアス配線16は、電圧制御部20Dから入力されるバイアス電圧を電極44に印加する。バイアス配線16は、例えば、インジウム亜鉛酸化物(IZO)とモリブデン(Mo)とを積層した積層構造を有する。
 保護膜45は、電極44の上に、バイアス配線16を覆うように形成されている。保護膜45は、酸化珪素(SiO)又は窒化珪素(SiN)からなる単層構造でもよいし、窒化珪素(SiN)、酸化珪素(SiO)をこの順に積層した積層構造でもよい。
 なお、図3及び図4では図示を省略するが、撮像パネル10の上、すなわち、保護膜45の上には、シンチレータ10A(図1参照)が設けられている。
 TFT14の上方に、有機膜43を設けない理由について説明する。
 X線の照射時に、酸化物半導体層142の上に設けられている層間絶縁膜42、及び酸化物半導体層142の下に設けられているゲート絶縁膜41に欠陥準位が生じ、そこに電荷が捕捉されることで、TFT14の閾値電圧がシフトすることが分かった。これは、X線の照射時に、層間絶縁膜42及びゲート絶縁膜41に生じる欠陥準位に、有機膜43中のプラス電荷が捕捉されることに起因すると考えられる。従って、本実施形態では、TFT14の上方に有機膜43を設けないことによって、X線照射によるTFT14の閾値電圧のシフトを抑制する。
 図5Aは、TFT14の上方に有機膜43が存在しない本実施形態の構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。また、図5Bは、TFTの上方に有機膜が存在する従来の構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。図5A及び図5Bにおいて、ドレイン電流Idが急激に大きくなるときのゲート-ソース間電圧VgsがTFT14の閾値電圧である。
 図5Bに示すように、TFTの上方に有機膜が存在する従来の構成では、X線照射前とX線照射後において、TFTの閾値電圧のシフトΔVth2が生じている。一方、図5Aに示すように、TFT14の上方に有機膜43が存在しない本実施形態の構成でも、X線照射前とX線照射後において、TFT14の閾値電圧のシフトΔVth1は生じている。しかし、この閾値電圧のシフトΔVth1は、TFTの上方に有機膜を設けた従来の構成における閾値電圧のシフトΔVth2に比べて小さく、ΔVth2の約0.5倍である。すなわち、本実施形態によれば、X線照射によるTFT14の閾値電圧のシフト量を小さくすることができる。
 図1に戻り、制御部20の構成について説明する。制御部20は、ゲート制御部20Aと、信号読出部20Bと、画像処理部20Cと、電圧制御部20Dと、タイミング制御部20Eとを備える。
 ゲート制御部20Aには、図2に示すように、複数のゲート線11が接続されている。ゲート制御部20Aは、ゲート線11を介して、ゲート線11に接続されたTFT14に所定のゲート電圧を印加する。
 信号読出部20Bには、図2に示すように、複数のデータ線12が接続されている。信号読出部20Bは、各データ線12を介して、画素13が備えるフォトダイオード15で変換された電荷に応じたデータ信号を読み出す。信号読出部20Bは、データ信号に基づく画像信号を生成し、画像処理部20Cに出力する。
 画像処理部20Cは、信号読出部20Bから出力された画像信号に基づいて、X線画像を生成する。
 電圧制御部20Dは、バイアス配線16に接続されている。電圧制御部20Dは、所定のバイアス電圧をバイアス配線16に印加する。これにより、バイアス配線16に接続された電極44を介してフォトダイオード15にバイアス電圧が印加される。
 タイミング制御部20Eは、ゲート制御部20A、信号読出部20B及び電圧制御部20Dの動作タイミングを制御する。
 ゲート制御部20Aは、タイミング制御部20Eからの制御信号に基づいて、複数のゲート線11から1つのゲート線11を選択する。ゲート制御部20Aは、選択したゲート線11を介して、当該ゲート線11に接続されたTFT14に所定のゲート電圧を印加する。
 信号読出部20Bは、タイミング制御部20Eからの制御信号に基づいて、複数のデータ線12から1つのデータ線12を選択する。信号読出部20Bは、選択したデータ線12を介して、画素13におけるフォトダイオード15により変換された電荷に応じたデータ信号を読み出す。データ信号が読み出される画素13は、信号読出部20Bによって選択されたデータ線12に接続され、且つ、ゲート制御部20Aによって選択されたゲート線11に接続されている。
 タイミング制御部20Eは、例えば、X線光源30からX線が照射されている場合に、電圧制御部20Dに対して、制御信号を出力する。この制御信号に基づいて、電圧制御部20Dは、電極44に対して、所定のバイアス電圧を印加する。
 (X線撮像装置1の動作)
 まず、X線光源30からX線が照射される。このとき、タイミング制御部20Eは、制御信号を電圧制御部20Dに出力する。具体的には、例えば、X線光源30からX線が照射されていることを示す信号が、X線光源30の動作を制御する制御装置からタイミング制御部20Eに出力される。当該信号がタイミング制御部20Eに入力された場合に、タイミング制御部20Eは、制御信号を電圧制御部20Dに出力する。電圧制御部20Dは、タイミング制御部20Eからの制御信号に基づいて、バイアス配線16にバイアス電圧を印加する。
 X線光源30から照射されたX線は、被写体Sを透過し、シンチレータ10Aに入射する。シンチレータ10Aに入射したX線はシンチレーション光に変換され、撮像パネル10にシンチレーション光が入射する。
 撮像パネル10における各画素13に設けられたフォトダイオード15にシンチレーション光が入射すると、フォトダイオード15により、シンチレーション光の光量に応じた電荷に変換される。
 フォトダイオード15によって変換された電荷に応じたデータ信号は、ゲート制御部20Aからゲート線11を介して出力されるゲート電圧(プラスの電圧)によってTFT14がON状態となっているときに、データ線12を通じて信号読出部20Bにより読み出される。読み出されたデータ信号に応じたX線画像が、画像処理部20Cによって生成される。
 (撮像パネル10の製造方法)
 次に、撮像パネル10の製造方法について説明する。図6~図12は、撮像パネル10の各製造工程における画素13の断面図である。
 図6に示すように、基板40の上に、スパッタリング等により、アルミニウムとチタンとを積層した金属膜を形成する。そして、フォトリソグラフィ法により、この金属膜をパターニングしてゲート電極141を形成する。この金属膜の厚さは、例えば、300nmである。
 次に、基板40の上に、プラズマCVD法、又はスパッタリング等により、ゲート電極141を覆うように、酸化珪素(SiOx)又は窒化珪素(SiNx)等からなるゲート絶縁膜41を形成する。ゲート絶縁膜41の厚さは、例えば、20~150nmである。
 続いて、図7に示すように、ゲート絶縁膜41の上に、例えば、スパッタリング等で、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)を含む酸化物半導体を成膜し、フォトリソグラフィ法により、酸化物半導体をパターニングすることで酸化物半導体層142を形成する。酸化物半導体層142を形成した後、高温(例えば、350℃以上)の酸素を含む雰囲気中(例えば、大気中)で熱処理してもよい。この場合、酸化物半導体層142における酸素欠陥を減少させることができる。酸化物半導体層142の厚さは、例えば、5~100nmである。
 次に、ゲート絶縁膜41の上、及び酸化物半導体層142の上に、スパッタリング等により、例えば、アルミニウムを含む金属膜を形成する。そして、フォトリソグラフィ法により、この金属膜をパターニングし、ドライエッチングを行うことにより、ソース電極143S、データ線12、ドレイン電極143Dを形成する。これにより、ボトムゲート型のTFT14が形成される。なお、ソース電極143S及びドレイン電極143Dの厚さは、例えば、50~500nmである。
 次に、図8に示すように、ソース電極143S及びドレイン電極143Dの上に、例えば、プラズマCVD法により、酸化珪素(SiO)又は窒化珪素(SiN)からなる層間絶縁膜42を形成する。続いて、図9に示すように、層間絶縁膜42の上に、プラズマCVD法により、ポリイミド等の有機系樹脂を含む有機膜43を成膜する。本実施形態において、有機膜43の厚さは、例えば、2~3μmである。
 有機膜43の成膜後、図10に示すように、フォトリソグラフィ法によりパターンニングして、TFT14の上方に存在する有機膜43を除去するとともに、ドレイン電極143Dの一部の上に、コンタクトホールCH1を形成する。そして、有機膜43の上に、スパッタリング等により、n型非晶質シリコン層、真性非晶質シリコン層、p型非晶質シリコン層の順に成膜する。その後、フォトリソグラフィ法によりパターンニングし、ドライエッチングすることによりフォトダイオード15を形成する。これにより、コンタクトホールCH1を介してフォトダイオード15とドレイン電極143Dとが接続される。
 続いて、図11に示すように、フォトダイオード15の上に、スパッタリング等により、例えば、インジウム亜鉛酸化物(IZO)を成膜し、フォトリソグラフィ法によりパターンニングして電極44を形成する。
 次に、図12に示すように、電極44の上に、スパッタリング等により、例えば、インジウム亜鉛酸化物(IZO)とモリブデン(Mo)とを積層した金属膜を成膜し、フォトリソグラフィ法によりパターンニングしてバイアス配線16を形成する。その後、電極44及びバイアス配線16の上に、プラズマCVD法等により、酸化珪素(SiO)又は窒化珪素(SiN)を成膜して保護膜45を形成する。
 [第2の実施形態]
 第1の実施形態における撮像パネルでは、TFT14の上方に有機膜43が存在しない構造であった。第2の実施形態における撮像パネルでは、TFT14の上方には有機膜43が存在するが、1画素内において、コンタクトホールCH1が設けられている領域以外に、有機膜43が存在しない領域が存在する。
 なお、本実施形態におけるX線撮像装置の模式図は、図1と同じであり、撮像パネルの概略構成を示す模式図は、図2と同じである。また、撮像パネルの画素の平面図は、図3と同じである。
 図13は、第2の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。図13に示すように、TFT14の上方であって、層間絶縁膜42とフォトダイオード15との間には、有機膜43が存在する。しかしながら、TFT14の近傍の領域S1には有機膜43が存在しない。
 1画素内において、コンタクトホールCH1が設けられている領域以外に、有機膜43が存在しない領域があることにより、有機膜43中の水や水素をこの領域から逃がすことができる。これにより、X線の照射時に、層間絶縁膜42及びゲート絶縁膜41に生じる欠陥準位に、有機膜43中の水や水素のプラス電荷が捕捉されるのを抑制することができるので、X線照射によるTFT14の閾値電圧のシフト量を小さくすることができる。有機膜43が存在しない領域から有機膜43中の水や水素を逃がして、TFT14の閾値電圧のシフト量を小さくするためには、有機膜43が存在しない領域S1は、TFT14に近いことが好ましい。
 ただし、コンタクトホールCH1が設けられている領域以外に有機膜43が存在しない領域がTFT14の近くである必要はなく、1画素内に設けられていればよい。また、コンタクトホールCH1が設けられている領域以外に有機膜43が存在しない領域は、1つだけでなく、複数でもよい。
 図14は、TFT14の近傍の領域S1に有機膜43が存在しない本実施形態の構成において、ゲート-ソース間電圧Vgsとドレイン電流Idとの関係をX線照射前とX線照射後において示す図である。本実施形態の構成でも、X線照射前とX線照射後において、TFT14の閾値電圧のシフトΔVth3は生じている。しかし、この閾値電圧のシフトΔVth3は、1画素内において、コンタクトホールCH1が設けられている領域以外は、有機膜43が設けられている従来の構成における閾値電圧のシフトΔVth2(図5B参照)に比べて小さく、ΔVth2の約0.6倍である。
 すなわち、TFT14の上方に有機膜43が存在するが、1画素内において、コンタクトホールCH1が設けられている領域以外に、有機膜43が存在しない領域が存在する本実施形態の構成においても、X線照射によるTFT14の閾値電圧のシフト量を小さくすることができる。
 第2の実施形態における撮像パネルの製造方法のうち、第1の実施形態における撮像パネルの製造方法(図6~図12参照)と異なるのは、層間絶縁膜42の上に有機膜43を成膜した後、有機膜43を除去するのがTFT14の上方ではなく、TFT14の近傍の領域S1である点であり、それ以外は、第1の実施形態における撮像パネルの製造方法と同じである。
 [第3の実施形態]
 上述した第1の実施形態における撮像パネルでは、有機膜が1層だけ設けられている構成において、TFT14の上方に有機膜を設けない構成であった。第3の実施形態における撮像パネルでは、有機膜が2層積層されている場合に、少なくとも1層の有機膜がTFT14の上方に設けられていない。
 なお、本実施形態におけるX線撮像装置の模式図は、図1と同じであり、撮像パネルの概略構成を示す模式図は、図2と同じである。また、撮像パネルの画素の平面図は、図3と同じである。
 図15は、第3の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。第3の実施形態における撮像パネルでは、図15に示すように、保護膜45の上に有機膜46が設けられている。有機膜46の材料としては、例えば、ポリイミド等の有機系樹脂を用いる。ここでは、有機膜43を第1の有機膜43、有機膜46を第2の有機膜46と呼ぶ。
 第2の有機膜46は、表面を平坦化するための平坦化膜として機能する。
 図15に示す撮像パネルでは、第1の実施形態における撮像パネルと同様に、TFT14の上方には、第1の有機膜43が設けられていない。すなわち、TFT14の上方に、第2の有機膜46は設けられているが、第1の有機膜43は設けられていない。この構成においても、TFT14の上方に第1の有機膜43及び第2の有機膜46の両方が設けられている構成と比べて、X線照射によるTFT14の閾値電圧のシフトを抑制する効果がある。
 図15に示す撮像パネルの製造方法のうち、保護膜45を形成する工程までは、第1の実施形態における撮像パネルの製造方法(図6~図12参照)と同じである。保護膜45を形成した後、プラズマCVD法により、ポリイミド等の有機系樹脂を含む第2の有機膜46を成膜する。
 図16は、第3の実施形態における撮像パネルの別の構成であって、図3における画素をA-A線で切断した断面図である。
 図16に示す撮像パネルでも、保護膜45の上に第2の有機膜46が設けられている。ただし、TFT14の上方には、第2の有機膜46は設けられていない。一方、第1の有機膜43は、TFT14の上方にも設けられている。すなわち、TFT14の上方に、第1の有機膜43は設けられているが、第2の有機膜46は設けられていない。この構成においても、TFT14の上方に第1の有機膜43及び第2の有機膜46の両方が設けられている構成と比べて、X線照射によるTFT14の閾値電圧のシフトを抑制する効果がある。
 なお、図15に示す構成と図16に示す構成とでは、TFT14の上方において、TFT14に近い第1の有機膜43が設けられていない図15に示す構成の方がX線照射によるTFT14の閾値電圧のシフトを抑制する効果が高い。
 図16に示す撮像パネルの製造方法のうち、保護膜45を形成する工程までは、第1の実施形態における撮像パネルの製造方法(図6~図12参照)と概ね同じである。ただし、第1の有機膜43の成膜後、第1の実施形態における撮像パネルの製造方法では、フォトリソグラフィ法によりパターンニングして、TFT14の上方に存在する第1の有機膜43を除去したが(図10参照)、図16に示す撮像パネルの製造方法では、TFT14の上方に存在する第1の有機膜43を除去しない。
 保護膜45を形成した後、図17に示すように、プラズマCVD法により、ポリイミド等の有機系樹脂を含む第2の有機膜46を成膜する。そして、図18に示すように、フォトリソグラフィ法によりパターンニングして、TFT14の上方から第2の有機膜46を除去する。
 [第4の実施形態]
 上述した第2の実施形態における撮像パネルでは、有機膜が1層だけ設けられている構成において、TFT14の上方には有機膜が存在するが、1画素内において、コンタクトホールCH1が設けられている領域以外に、有機膜が存在しない領域が存在している。第4の実施形態における撮像パネルでは、有機膜が2層積層されている場合に、TFT14の上方には有機膜が2層設けられているが、1画素内において、コンタクトホールCH1が設けられている領域以外に、少なくとも1層の有機膜が存在しない領域が存在する。
 なお、本実施形態におけるX線撮像装置の模式図は、図1と同じであり、撮像パネルの概略構成を示す模式図は、図2と同じである。また、撮像パネルの画素の平面図は、図3と同じである。
 図19は、第4の実施形態における撮像パネルにおいて、図3における画素をA-A線で切断した断面図である。第4の実施形態における撮像パネルでも、保護膜45の上に有機膜46が設けられている。有機膜46の材料としては、例えば、ポリイミド等の有機系樹脂を用いる。第3の実施形態と同様に、有機膜43を第1の有機膜43、有機膜46を第2の有機膜46と呼ぶ。
 図19を参照して、TFT14の上方には、第1の有機膜43及び第2の有機膜46が存在する。しかしながら、TFT14の近傍の領域S2には、第2の有機膜46は存在するが、第1の有機膜43は存在しない。この構成においても、X線照射によるTFT14の閾値電圧のシフトを抑制する効果がある。
 第2の実施形態で説明したように、第1の有機膜43を設けない領域S2は、TFT14に近いことが好ましい。ただし、第1の有機膜43を設けない領域がTFT14の近くである必要はなく、1画素内に設けられていればよい。また、コンタクトホールCH1が設けられている領域以外に第1の有機膜43を設けない領域は、1つだけでなく、複数でもよい。
 図19に示す撮像パネルの製造方法のうち、保護膜45を形成する工程までは、第2の実施形態における撮像パネルの製造方法と同じである。保護膜45を形成した後、プラズマCVD法により、ポリイミド等の有機系樹脂を含む第2の有機膜46を成膜する。
 図20は、第4の実施形態における撮像パネルの別の構成であって、図3における画素をA-A線で切断した断面図である。
 図20に示す撮像パネルでも、保護膜45の上に第2の有機膜46が設けられている。図20を参照して、TFT14の上方には、第1の有機膜43及び第2の有機膜46が存在する。しかしながら、TFT14の近傍の領域S3には、第1の有機膜43は存在するが、第2の有機膜46は存在しない。この構成においても、X線照射によるTFT14の閾値電圧のシフトを抑制する効果がある。
 第2の有機膜46を設けない領域S3は、TFT14に近いことが好ましい。ただし、第2の有機膜46を設けない領域がTFT14の近くである必要はなく、1画素内に設けられていればよい。また、第2の有機膜46を設けない領域は、1つだけでなく、複数でもよい。
 図20に示す撮像パネルの製造方法は、図16に示す撮像パネルの製造方法と概ね同じである。ただし、図16に示す撮像パネルの製造方法では、保護膜45の上に第2の有機膜46を成膜した後、フォトリソグラフィ法によりパターンニングして、TFT14の上方に存在する第2の有機膜46を除去したが、図20に示す撮像パネルの製造方法では、保護膜45の上に第2の有機膜46を成膜した後、フォトリソグラフィ法によりパターンニングして、TFT14の近傍の領域S3に存在する第2の有機膜46を除去する。
 [第5の実施形態]
 上述した第1~第4の実施形態における撮像パネルでは、酸化物半導体層142は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)を所定の比率で含有する酸化物半導体を含んでいた。第5の実施形態における撮像パネルでは、酸化物半導体層142として、In、Ga、Znを所定の比率で含有する酸化物半導体よりも電子移動度が高い酸化物半導体を含む。
 In、Ga、Znを所定の比率で含有する酸化物半導体よりも電子移動度が高い酸化物半導体とは、In、Ga、Zn、錫(Sn)のうち少なくとも1種類以上の材料を含み、例えば、In、Sn、Znを所定の比率で含有する酸化物半導体である。また、In、Ga、Znを含むが、電子移動度が高くなるように、In、Ga、Znの組成比率を変更した酸化物半導体であってもよい。
 酸化物半導体層142に含まれる酸化物半導体の電子移動度が高くなるほど、X線照射によるTFT14の閾値電圧のシフト量は大きい。従って、1つの画素内において、TFT14よりも上の層に有機膜が存在しない領域が存在する構成とすることにより、X線照射によるTFT14の閾値電圧のシフトを抑制する効果が高くなる。
 本発明は、上述した実施形態に限定されない。例えば、酸化物半導体層142は、上述した構成のものに限定されることはない。
 TFT14はボトムゲート型に限定されることはなく、トップゲート型でもよい。
 第3の実施形態において、TFT14の上方に第1の有機膜43及び第2の有機膜46の両方が存在しない構成であってもよい。また、第3の実施形態において、有機膜は3層以上積層されていてもよい。この場合も、TFT14の上方において、少なくとも1層の有機膜が存在しない構成であればよい。
 第4の実施形態において、図19の領域S2に第1の有機膜43だけでなく第2の有機膜46も存在しない構成であってもよいし、図20の領域S3に第2の有機膜46だけでなく第1の有機膜43も存在しない構成であってもよい。また、第4の実施形態において、有機膜は3層以上積層されていてもよい。この場合も、1つの画素内において、コンタクトホールCH1が設けられた領域以外に、TFT14よりも上の層に少なくとも1層の有機膜が存在しない領域が存在する構成であればよい。
 1…X線撮像装置、10…撮像パネル、10A…シンチレータ、11…ゲート線、12…データ線、13…画素、14…薄膜トランジスタ(TFT)、15…フォトダイオード、16…バイアス配線、20…制御部、20A…ゲート制御部、20B…信号読出部、20C…画像処理部、20D…電圧制御部、20E…タイミング制御部、30…X線光源、41…ゲート絶縁膜、42…層間絶縁膜、43…有機膜(第1の有機膜)、44…上部電極、45…保護膜、46…有機膜(第2の有機膜)、141…ゲート電極、142…酸化物半導体層、143S…ソース電極、143D…ドレイン電極

Claims (5)

  1.  複数の画素を有し、X線光源から照射されたX線をシンチレータで変換したシンチレーション光を撮像するための撮像パネルであって、
     前記複数の画素の各々に設けられ、前記シンチレーション光を受光して電荷に変換する変換素子と、
     前記複数の画素の各々に設けられ、前記変換素子によって変換された電荷を読み出すための薄膜トランジスタと、
     前記変換素子よりも上または下に設けられた有機膜と、
    を備え、
     前記薄膜トランジスタは、
     酸化物半導体層と、
     ゲート端子と、
     前記酸化物半導体層上の一部に形成されたソース端子と、
     前記酸化物半導体層上の一部に形成されたドレイン端子と、を有し、
     1つの前記画素内において、前記変換素子と前記ドレイン端子とを接続するコンタクトホールが設けられた領域以外に、前記薄膜トランジスタよりも上の層に前記有機膜が存在しない領域が存在する、撮像パネル。
  2.  前記薄膜トランジスタの上方には前記有機膜が存在しない、請求項1に記載の撮像パネル。
  3.  前記有機膜には、第1の有機膜、及び前記第1の有機膜よりも上に設けられた第2の有機膜が含まれ、
     1つの前記画素内において、前記コンタクトホールが設けられた領域以外に、前記薄膜トランジスタよりも上の層に前記第1の有機膜及び前記第2の有機膜の少なくとも一方が存在しない領域が存在する、請求項1に記載の撮像パネル。
  4.  前記薄膜トランジスタの上方には前記第1の有機膜及び前記第2の有機膜の少なくとも一方が存在しない、請求項3に記載の撮像パネル。
  5.  請求項1から4のいずれか一項に記載の撮像パネルと、
     X線を照射するX線光源と、
     前記薄膜トランジスタのゲート電圧を制御して、前記変換素子によって変換された電荷に応じた信号を読み出す制御部と、
    を備えるX線撮像装置。
PCT/JP2016/061421 2015-04-13 2016-04-07 撮像パネル、及びそれを備えたx線撮像装置 WO2016167179A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/566,464 US10535692B2 (en) 2015-04-13 2016-04-07 Imaging panel and X-ray imaging device including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081809 2015-04-13
JP2015-081809 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167179A1 true WO2016167179A1 (ja) 2016-10-20

Family

ID=57126440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061421 WO2016167179A1 (ja) 2015-04-13 2016-04-07 撮像パネル、及びそれを備えたx線撮像装置

Country Status (2)

Country Link
US (1) US10535692B2 (ja)
WO (1) WO2016167179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573983A (zh) * 2017-03-13 2018-09-25 京东方科技集团股份有限公司 光学探测器及其制备方法、指纹识别传感器、显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355040B2 (en) * 2016-02-29 2019-07-16 Sharp Kabushiki Kaisha Photoelectric conversion device
KR20200119454A (ko) * 2019-04-09 2020-10-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139209A1 (ja) * 2008-05-12 2009-11-19 コニカミノルタエムジー株式会社 放射線画像検出器および放射線画像検出器の製造方法
JP2011114229A (ja) * 2009-11-27 2011-06-09 Fujifilm Corp 放射線センサおよび放射線画像撮影装置
JP2011176274A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 放射線検出素子
JP2013140987A (ja) * 2008-02-29 2013-07-18 Fujifilm Corp 電磁波検出素子
JP2013157347A (ja) * 2012-01-26 2013-08-15 Japan Display West Co Ltd 撮像装置およびその製造方法ならびに撮像表示システム
JP2014078651A (ja) * 2012-10-12 2014-05-01 Nlt Technologies Ltd 光電変換装置及びその製造方法並びにx線画像検出装置
US20140217399A1 (en) * 2013-02-05 2014-08-07 Innolux Corporation Active matrix image sensing panel and apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034309B2 (en) * 2001-11-13 2006-04-25 Canon Kabushiki Kaisha Radiation detecting apparatus and method of driving the same
JP2004096079A (ja) * 2002-07-11 2004-03-25 Sharp Corp 光電変換装置、画像読取装置および光電変換装置の製造方法
JP5207583B2 (ja) * 2005-07-25 2013-06-12 キヤノン株式会社 放射線検出装置および放射線検出システム
US7452782B2 (en) * 2005-11-21 2008-11-18 Hannstar Display Corp. Image TFT array of a direct X-ray image sensor and method of fabricating the same
KR101350795B1 (ko) * 2007-06-11 2014-01-10 삼성디스플레이 주식회사 엑스레이 검출기용 박막 트랜지스터 어레이
JP5185013B2 (ja) * 2008-01-29 2013-04-17 富士フイルム株式会社 電磁波検出素子
JP2009252835A (ja) * 2008-04-02 2009-10-29 Fujifilm Corp 電磁波検出素子
JP2012141291A (ja) * 2010-12-16 2012-07-26 Fujifilm Corp 放射線撮影装置
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ
US9397282B2 (en) * 2012-12-13 2016-07-19 Cbrite Inc. Active matrix light emitting diode array and projector display comprising it
CN105122338A (zh) * 2013-03-29 2015-12-02 夏普株式会社 有源矩阵基板和显示装置
US20170236855A1 (en) * 2014-08-05 2017-08-17 Sharp Kabushiki Kaisha Method of producing imaging panel, imaging panel, and x-ray imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140987A (ja) * 2008-02-29 2013-07-18 Fujifilm Corp 電磁波検出素子
WO2009139209A1 (ja) * 2008-05-12 2009-11-19 コニカミノルタエムジー株式会社 放射線画像検出器および放射線画像検出器の製造方法
JP2011114229A (ja) * 2009-11-27 2011-06-09 Fujifilm Corp 放射線センサおよび放射線画像撮影装置
JP2011176274A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 放射線検出素子
JP2013157347A (ja) * 2012-01-26 2013-08-15 Japan Display West Co Ltd 撮像装置およびその製造方法ならびに撮像表示システム
JP2014078651A (ja) * 2012-10-12 2014-05-01 Nlt Technologies Ltd 光電変換装置及びその製造方法並びにx線画像検出装置
US20140217399A1 (en) * 2013-02-05 2014-08-07 Innolux Corporation Active matrix image sensing panel and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573983A (zh) * 2017-03-13 2018-09-25 京东方科技集团股份有限公司 光学探测器及其制备方法、指纹识别传感器、显示装置

Also Published As

Publication number Publication date
US10535692B2 (en) 2020-01-14
US20180122842A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
US9806123B2 (en) Image sensor and manufacturing method thereof
WO2016002562A1 (ja) 撮像パネル及びx線撮像装置
US10353082B2 (en) Imaging panel and X-ray imaging device
US10811449B2 (en) Active matrix substrate and x-ray imaging panel including same
WO2016002625A1 (ja) 撮像パネル、及びそれを備えたx線撮像装置
WO2016195000A1 (ja) フォトセンサ基板
CN110268525B (zh) 摄像面板及其制造方法
WO2015141777A1 (ja) 光検出装置
WO2016163347A1 (ja) フォトセンサ基板
WO2016002612A1 (ja) 撮像パネル及び当該撮像パネルを備えるx線撮像システム
WO2016195001A1 (ja) アクティブマトリクス基板
WO2016002626A1 (ja) 撮像パネル、及びそれを備えたx線撮像装置
WO2016002627A1 (ja) 撮像パネル、及びそれを備えたx線撮像装置
WO2016111192A1 (ja) 撮像パネル及びx線撮像装置
WO2016167179A1 (ja) 撮像パネル、及びそれを備えたx線撮像装置
JP6448784B2 (ja) アクティブマトリクス基板
CN110164884B (zh) 有源矩阵基板、具备其的x射线摄像面板及其制造方法
WO2016021472A1 (ja) 撮像パネルの製造方法、撮像パネル、及びx線撮像装置
US20210111218A1 (en) Imaging panel and method for manufacturing same
US20190170884A1 (en) Imaging panel and method for producing same
WO2015163288A1 (ja) 光検出装置
WO2016002611A1 (ja) X線撮像システム
WO2016167277A1 (ja) 撮像パネル、及びそれを備えたx線撮像装置
CN111668244A (zh) 摄像面板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP