JP2019067791A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2019067791A
JP2019067791A JP2017188268A JP2017188268A JP2019067791A JP 2019067791 A JP2019067791 A JP 2019067791A JP 2017188268 A JP2017188268 A JP 2017188268A JP 2017188268 A JP2017188268 A JP 2017188268A JP 2019067791 A JP2019067791 A JP 2019067791A
Authority
JP
Japan
Prior art keywords
layer
channel formation
semiconductor
semiconductor device
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017188268A
Other languages
English (en)
Inventor
菊池 哲郎
Tetsuro Kikuchi
哲郎 菊池
徹 大東
Toru Daito
徹 大東
今井 元
Hajime Imai
元 今井
鈴木 正彦
Masahiko Suzuki
正彦 鈴木
節治 西宮
Setsuji Nishimiya
節治 西宮
輝幸 上田
Teruyuki Ueda
輝幸 上田
健吾 原
Kengo Hara
健吾 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2017188268A priority Critical patent/JP2019067791A/ja
Priority to CN201811115059.XA priority patent/CN109585455B/zh
Priority to US16/143,528 priority patent/US20190097059A1/en
Publication of JP2019067791A publication Critical patent/JP2019067791A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】安定した特性を有する、信頼性の高い酸化物半導体TFTを備えた半導体装置を提供する。【解決手段】半導体装置における少なくとも1つの薄膜トランジスタ101は、半導体層7、ゲート電極3、ゲート絶縁層5、ソース電極8およびドレイン電極9を含み、半導体層は、第1のチャネル形成層70Aおよび第2のチャネル形成層70Bを含む複数のチャネル形成層と、第1のチャネル形成層および第2のチャネル形成層の間に配置された第1の中間層71aを含む少なくとも1つの中間層とを含む積層構造を有し、第1のチャネル形成層70Aは、第2のチャネル形成層70Bよりもゲート絶縁層側に配置され、かつ、ゲート絶縁層5と接しており、複数のチャネル形成層および少なくとも1つの中間層は、いずれも酸化物半導体層であり、複数のチャネル形成層のそれぞれは、少なくとも1つの中間層よりも高い移動度を有する。【選択図】図1

Description

本発明は、酸化物半導体を用いて形成された半導体装置に関する。
液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなTFT(以下、「画素TFT」)としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。
一方、駆動回路などの周辺回路を、基板上にモノリシック(一体的)に設ける技術が知られている。駆動回路をモノリシックに形成することによって、非表示領域の狭小化や、実装工程簡略化によるコストダウンが実現される。本明細書では、アクティブマトリクス基板にモノリシックに形成された周辺回路を構成するTFTを「回路TFT」と呼ぶ。
近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いる場合がある。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。従って、酸化物半導体TFTは、画素TFTのみでなく、回路TFTとしても好適に用いられ得る。
酸化物半導体TFTにおいて、複数の酸化物半導体層を積層させてなる積層半導体層を活性層として用いることが提案されている。本明細書では、このようなTFT構造を、「積層チャネル構造」、積層チャネル構造を有するTFTを「積層チャネル構造TFT」と呼ぶ。例えば特許文献1は、2層の酸化物半導体層からなる積層半導体層を活性層として用いたTFT(「2層チャネル構造TFT」と呼ぶ。)を開示している。
また、特許文献2は、ボトムゲート構造を有するTFTにおいて、ゲート絶縁膜上に、第1の酸化物半導体層、第2の酸化物半導体層および第3の酸化物半導体層がこの順で積層された3層構造の活性層を用いたTFT(「3層チャネル構造TFT」と呼ぶ。)を開示している。特許文献2に開示された3層チャネル構造TFTでは、第2の酸化物半導体層は、第1および第3の酸化物半導体層よりも小さいエネルギーギャップを有し、チャネルとして機能する。特許文献2によると、第1の酸化物半導体層は、チャネルをゲート絶縁膜から遠ざけ、埋め込みチャネル構造を形成するために配置され、第3の酸化物半導体層は、ソース電極及びドレイン電極の構成元素がチャネルまで拡散することを抑制するためのバッファ層として配置されている。
特開2013−41945号公報 特開2014−033194号公報
酸化物半導体は多結晶シリコンよりも移動度が約1桁小さいことから、酸化物半導体TFTは多結晶シリコンTFTよりも電流駆動力が小さい。このため、酸化物半導体TFTには、さらに高い電流駆動力が求められている。
酸化物半導体TFTの電流駆動力を高めることにより、酸化物半導体TFTを画素TFTとして用いる場合には、アクティブマトリクス基板の大型化あるいは高精細化を実現できる。また、高周波駆動(例えば120Hz)を行うことが可能になる。さらに、回路TFTとして用いる場合には、回路TFTのサイズを低減できるので、周辺回路の面積を小さくできる。このため、アクティブマトリクス基板の低消費電力化または狭額縁化を実現できる。
本発明者が検討したところ、特許文献1、2などに開示された従来のTFT構造によると、閾値電圧Vthを制御しつつ、酸化物半導体TFTの電流駆動力(オン電流)を十分に高めることが困難な場合があることを見出した。詳細は後述する。
本発明の一実施形態は上記事情に鑑みてなされたものであり、その目的は、高い移動度を有し得る酸化物半導体TFTを備えた半導体装置を提供することにある。
本発明の一実施形態の半導体装置は、基板と、前記基板に支持された複数の薄膜トランジスタとを備えた半導体装置であって、前記複数の薄膜トランジスタの少なくとも1つは、半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層と電気的に接続されたソース電極およびドレイン電極を含み、前記半導体層は、第1のチャネル形成層および第2のチャネル形成層を含む複数のチャネル形成層と、前記第1のチャネル形成層および前記第2のチャネル形成層の間に配置された第1の中間層を含む少なくとも1つの中間層とを含む積層構造を有し、前記第1のチャネル形成層は、前記第2のチャネル形成層よりも前記ゲート絶縁層側に配置され、かつ、前記ゲート絶縁層と接しており、前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも酸化物半導体層であり、前記複数のチャネル形成層のそれぞれは、前記少なくとも1つの中間層よりも高い移動度を有する。
ある実施形態において、前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、第1金属元素および第2金属元素を含み、前記第1金属元素はIn、前記第2金属元素はGaおよびZnのいずれか1つであり、前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比と異なっており、前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以上であり、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以下である。
本発明の他の実施形態の半導体装置は、基板と、前記基板に支持された複数の薄膜トランジスタとを備えた半導体装置であって、前記複数の薄膜トランジスタの少なくとも1つは、半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層と電気的に接続されたソース電極およびドレイン電極を含み、前記半導体層は、第1のチャネル形成層および第2のチャネル形成層を含む複数のチャネル形成層と、前記第1のチャネル形成層および前記第2のチャネル形成層の間に配置された第1の中間層を含む少なくとも1つの中間層とを含む積層構造を有し、前記第1のチャネル形成層は、前記第2のチャネル形成層よりも前記ゲート絶縁層側に配置され、かつ、前記ゲート絶縁層と接しており、前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、第1金属元素および第2金属元素を含む酸化物半導体層であって、前記第1金属元素はIn、前記第2金属元素はGaおよびZnのいずれか1つであり、前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比と異なっており、前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以上であり、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以下である。
ある実施形態において、前記第1のチャネル形成層および前記第2のチャネル形成層は、実質的に同じ組成を有している。
ある実施形態において、前記第1の中間層は、前記第1のチャネル形成層および前記第2のチャネル形成層と接している。
ある実施形態において、前記第1のチャネル形成層および前記第2のチャネル形成層の厚さは、それぞれ、前記第1の中間層の厚さよりも小さい。
ある実施形態において、前記複数のチャネル形成層は、前記第2のチャネル形成層の前記第1の中間層と反対側に配置された第3のチャネル形成層をさらに含み、前記少なくとも1つの中間層は、前記第3のチャネル形成層と前記第2のチャネル形成層との間に位置する第2の中間層をさらに含む。
ある実施形態において、前記ゲート電極は、前記半導体層と前記基板との間に配置されている。
ある実施形態において、前記少なくとも1つの薄膜トランジスタは、チャネルエッチ構造を有し、前記半導体層の前記積層構造は、最上層として保護層を含み、前記保護層は、前記複数のチャネル形成層よりも低い移動度を有する酸化物半導体層である。
ある実施形態において、前記少なくとも1つの薄膜トランジスタは、エッチストップ構造を有する。
ある実施形態において、前記少なくとも1つの薄膜トランジスタは、前記半導体層上に上部絶縁層を介して設けられた上部電極をさらに備える。
ある実施形態において、前記複数のチャネル形成層の1つは、前記積層構造の最上層であり、前記上部絶縁層と接している。
ある実施形態において、前記ゲート電極は、前記半導体層の前記基板と反対側に、前記ゲート絶縁層を介して配置されている。
ある実施形態において、前記ゲート絶縁層は、前記半導体層の一部上に配置され、かつ、前記半導体層と前記ゲート電極との間にのみ位置しており、前記半導体層、前記ゲート電極および前記ゲート絶縁層を覆う層間絶縁層をさらに備え、前記ソース電極および前記ドレイン電極は、それぞれ、前記層間絶縁層上に配置され、前記層間絶縁層に形成された開口部内で前記半導体層と接している。
ある実施形態において、前記少なくとも1つの薄膜トランジスタは、前記基板と前記半導体層との間に配置された下部電極と、前記下部電極と前記半導体層との間に配置された下部絶縁層とをさらに備える。
ある実施形態において、前記複数のチャネル形成層の1つは、前記積層構造の最下層であり、前記下部絶縁層と接している。
ある実施形態において、前記半導体装置は、複数の画素を有する表示領域と、前記表示領域以外の非表示領域とを備えたアクティブマトリクス基板である。
ある実施形態において、前記少なくとも1つの薄膜トランジスタは、前記複数の画素のそれぞれに配置された画素TFTを含む。
ある実施形態において、前記非表示領域に配置された駆動回路をさらに備え、前記少なくとも1つの薄膜トランジスタは、前記駆動回路を構成する回路TFTを含む。
ある実施形態において、前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、In、GaおよびZnを含む。
ある実施形態において、前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、結晶質酸化物半導体層である。
本発明の一実施形態によると、高い移動度を有し得る酸化物半導体TFTを備えた半導体装置を提供できる。
(a)は、第1の実施形態の半導体装置におけるTFT101の模式的な断面図であり、(b)は、TFT101の半導体層7の拡大断面図である。 (a)〜(c)は、それぞれ、比較例1〜比較例3のTFTにおける半導体層91、92、93の模式的な断面図である。 実施例および各比較例のTFTのVG(ゲート−ソース電圧)−ID(ドレイン電流)特性を例示する図である。 半導体層7の変形例を示す拡大断面図である。 (a)および(b)は、それぞれ、半導体層7の他の変形例を示す拡大断面図である。 第1の実施形態における他のTFT102を例示する模式的な断面図である。 第1の実施形態の半導体装置(アクティブマトリクス基板)1000の一例を示す模式的な平面図である。 (a)および(b)は、それぞれ、アクティブマトリクス基板1000における1つの画素領域Pの平面図およびI−I’線に沿った断面図である。 ゲートドライバ(モノリシックゲートドライバ)GDを構成するシフトレジスタ回路を例示する図である。 (a)は、単位回路SRkの一例を示す図であり、(b)は、単位回路SRkにおける信号波形を示す図である。 (a)は、第2の実施形態におけるTFT103の断面図であり、(b)はTFT103の半導体層7の拡大断面図である。 (a)は、第2の実施形態におけるTFT104(ゲートドライバの出力トランジスタT5)を例示する平面図であり、(b)は、II−II’線に沿ったTFT104の断面図である。 (a)は、第3の実施形態におけるTFT105の断面図であり、(b)はTFT105の半導体層27の拡大断面図である。 第3の実施形態における他のTFT106を例示する模式的な断面図である。
(第1の実施形態)
以下、図面を参照しながら、半導体装置の第1の実施形態を説明する。本実施形態の半導体装置は、酸化物半導体TFTを備えていればよく、アクティブマトリクス基板などの回路基板、各種表示装置、電子機器などを広く含む。
図1(a)は、本実施形態の半導体装置における酸化物半導体TFT101の一例を示す模式的な断面図であり、図1(b)は、TFT101の半導体層7の拡大断面図である。
本実施形態の半導体装置は、基板1と、酸化物半導体TFT(以下、単に「TFT」と呼ぶ)101とを備える。TFT101は、上部絶縁層11で覆われていてもよい。
TFT101は、基板1上に支持されたゲート電極3と、半導体層7と、半導体層7とゲート電極3との間に配置されたゲート絶縁層5と、半導体層7に電気的に接続されたソース電極8およびドレイン電極9とを備える。
この例では、TFT101は、チャネルエッチ型のボトムゲート構造TFTである。ゲート電極3は、半導体層7の基板1側に配置されている。ゲート絶縁層5はゲート電極3を覆っている。半導体層7は、ゲート絶縁層5上に、ゲート絶縁層5を介してゲート電極3と重なるように配置されている。また、ソース電極8およびドレイン電極9は、それぞれ、半導体層7の上面の一部と接するように配置されている。半導体層7のうち、ソース電極8と接する部分をソースコンタクト領域7s、ドレイン電極9と接する部分をドレインコンタクト領域7dと呼ぶ。基板1の法線方向から見たとき、ソースコンタクト領域7sおよびドレインコンタクト領域7dの間に位置し、かつ、ゲート電極3と重なっている領域が「チャネル領域7c」となる。
本実施形態における半導体層7は、積層構造を有する。半導体層7の積層構造は、第1のチャネル形成層70Aおよび第2のチャネル形成層70Bを含む複数のチャネル形成層(以下、「チャネル形成層70」と総称する。)と、第1のチャネル形成層70Aと第2のチャネル形成層70Bとの間に配置された第1の中間層71aを含む少なくとも1つの中間層(以下、「中間層71」と総称する。)とを有している。第1のチャネル形成層70Aは、第2のチャネル形成層70Bよりもゲート絶縁層5側に配置され、ゲート絶縁層5と接している。チャネル形成層70および中間層71は、いずれも、酸化物半導体層である。
チャネル形成層70は、中間層71よりも高い移動度を有する(言い換えると、チャネル形成層70は中間層71よりも低いバンドギャップを有する)。あるいは、チャネル形成層70および中間層71の組成(組成比)は、それぞれ、チャネル形成層70が中間層71よりも高い移動度を示し得るように制御されている。
この例では、半導体層7は、ゲート絶縁層5側から、第1のチャネル形成層70A、第1の中間層71a、および第2のチャネル形成層70Bがこの順に積み重ねられた3層構造を有する。第1のチャネル形成層70Aはゲート絶縁層5と接し、半導体層7の最上層(この例では第2のチャネル形成層70B)は、上部絶縁層11と接している。第1のチャネル形成層70Aのゲート絶縁層5と反対側の表面(ここでは上面)は第1の中間層71aと接していてもよい。また、第2のチャネル形成層70Bの第1の中間層71a側の表面は、第1の中間層71aと接していてもよい。
本実施形態によると、半導体層7における複数のチャネル形成層70(ここでは、第1および第2のチャネル形成層70A、70B)が、主にキャリアが流れる層(以下、「キャリア移動層」)CMLとして機能する。この例では、図1(b)に矢印で示すように、キャリア(電子)は、ソース電極8とドレイン電極9との間で、第1および第2のチャネル形成層70A、70B内を移動する。半導体層7内に、キャリア移動層CMLが複数(ここでは2層)形成されるので、キャリア移動層CMLが1層の場合よりもオン電流を高めることが可能になる。
また、2つのキャリア移動層CMLの間に、移動度の低い中間層71を設けることにより、TFT101の閾値電圧Vthをプラス方向にシフトさせることができる。このため、例えばTFT101を回路TFTに使用する場合に、回路TFTのオフリーク電流を低減できるので、オフリーク電流に起因する動作不良を抑制できる。
このように、本実施形態によると、高い電流駆動力を有するとともに、駆動電圧Vthを所望の値に制御されたTFT101が得られる。TFT101は、例えば、アクティブマトリクス基板の画素TFTおよび回路TFTの両方に好適に適用することが可能である。
半導体層7は、第1のチャネル形成層70A、第1の中間層71aおよび第2のチャネル形成層70Bを含む積層構造を有していればよく、3層構造に限定されない。半導体層7は、積層数にかかわらず、チャネル形成層70と中間層71とが交互に積み重ねられた構造を有していることが好ましい。このような構造において、半導体層7におけるチャネル形成層70の数を増やすことで、電流駆動力をさらに向上できる。
なお、特許文献1等に開示された従来の2層チャネル構造TFTでは、2層構造の半導体層は、ゲート絶縁層側から、高い移動度を有し得る酸化物半導体層(高移動度層)と、移動度の低い低移動度層とを有している。この構成では、2層のうち高移動度層のみがキャリア移動層CMLとして機能する。つまり、キャリア移動層CMLは1層である。これに対し、本実施形態によると、キャリア移動層CMLを複数設けることができるので、TFT101のオン電流をさらに高めることができる。
また、特許文献2に開示された従来の3層チャネル構造TFTでは、3層構造の半導体層の中間にエネルギーギャップの低い第2の酸化物半導体層(高移動度層)を配置し、高移動度層を挟むように、エネルギーギャップの高い第1および第3の酸化物半導体層(低移動度層)を配置している。本発明者が検討したところ、この構成では、ゲート絶縁層と接する低移動度層にもキャリアの一部が流れてしまうため、高いオン電流が得られない場合がある。特に、閾値電圧Vthの制御のために低移動度層を厚くすると、キャリアは低移動度層を流れやすくなるので、オン電流がさらに低下する可能性がある。一方、低移動度層を薄くすると、オン電流の低下は抑制されるが、TFTの閾値電圧Vthをプラスシフトさせる効果が十分に得られない可能性がある。従って、閾値電圧Vthの制御と高い電流駆動力とを両立することが困難である。これに対し、本実施形態によると、中間層71を厚くしても、キャリアは主にチャネル形成層70を流れるので、電流駆動力を確保しつつ、中間層71によって高い自由度で閾値電圧Vthを制御することができる。
<半導体層7の各層の組成および厚さ>
チャネル形成層70および中間層71の組成は、それぞれ、チャネル形成層70が中間層71よりも高い移動度を示し得るように制御されていてもよい。なお、チャネル形成層70が高い移動度を示し得る組成を有する場合でも、プロセスダメージなどによって、一部のチャネル形成層70の実際の移動度が低下してしまうことがある。例えば、チャネルエッチ型TFTにおいて、半導体層7の最上層となるチャネル形成層70(ここでは第2のチャネル形成層70B)は、ソース・ドレイン分離工程でダメージを受ける可能性がある。
チャネル形成層70および中間層71は、いずれも、Inと、Gaおよび/またはZnとを含んでいてもよい。本明細書では、Inを「第1金属元素」、GaおよびZnのいずれか1つを「第2金属元素」と呼ぶ。例えば、酸化物半導体における第1金属元素の比率が高いほど移動度が高くなり、第2金属元素の比率が高いほど、移動度は下がるが結晶性が高くなる傾向が知られている。従って、これらの金属元素の比率を調整することで、所望の移動度を有する酸化物半導体層を形成できる。
チャネル形成層70のそれぞれにおける、全金属元素に対する第1金属元素の原子数比と、中間層71における、全金属元素に対する第1金属元素の原子数比とは異なっていてもよい。一例として、チャネル形成層70のそれぞれにおける、全金属元素に対する第1金属元素の原子数比は、第2金属元素の原子数比以上であってもよい。好ましくは、第1金属元素の原子数比は第2金属元素の原子数比よりも大きくてもよい。一方、中間層71における、全金属元素に対する第1金属元素の原子数比は、第2金属元素の原子数比以下であってもよい。これにより、チャネル形成層70の移動度を、中間層71よりも高めることが可能である。
チャネル形成層70および中間層71の組成は上記に限定されない。チャネル形成層70および中間層71が、互いに同じ金属元素から構成されている(例えば、チャネル形成層70および中間層71がいずれもIn−Ga−Zn−O系半導体層である)場合には、第2金属元素の原子数比に関わらず、チャネル形成層70におけるInの原子数比を、中間層71におけるInの原子数比よりも高くしてもよい。これにより、チャネル形成層70の移動度を中間層71よりも高めることができる。
チャネル形成層70および中間層71として用いることの可能な、第1金属元素および第2金属元素を含む酸化物半導体層として、In−Ga−Zn−O系半導体層、In−Sn−Zn−O系半導体層、In−Al−Sn−Zn−O系半導体層、In−Zn−O系半導体層、In−Ga−O系半導体層、In−Ga−Zn−Sn−O系半導体層、In−Ga−Sn−O系半導体層などが挙げられる。なお、チャネル形成層70および/または中間層71は、第1金属元素および第2金属元素の一方または両方を含まなくてもよい。チャネル形成層70と中間層71とは、同じ金属元素から構成されていてもよいし、互いに異なる金属元素から構成されていてもよい。
半導体層7に含まれる複数のチャネル形成層70の組成は同じでもよいし、互いに異なっていてもよい。「組成が異なる」とは、各層に含まれる金属元素の種類または組成比が異なることをいう。また、各チャネル形成層70の厚さは同じでもよいし、異なっていてもよい。一例として、第1のチャネル形成層70Aおよび第2のチャネル形成層70Bは、実質的に同じ組成および厚さを有して(つまり、同じ組成および厚さを有するような条件で形成されて)いてもよい。これにより、TFT101の半導体層7内に、同じ特性のキャリア移動層CMLを複数配置させることが可能となり、TFT特性をより容易に制御できる。同様に、半導体層7が複数の中間層71を有する場合、各中間層71の組成は同じでもよいし、異なっていてもよい。また、各中間層71の厚さは同じでもよいし、異なっていてもよい。
以下、チャネル形成層70および中間層71の好ましい組成をより具体的に説明する。以下の説明では、酸化物半導体を構成する全ての金属元素に対するInの原子数比(組成比)を「In比率」、酸化物半導体を構成する全ての金属元素に対するZnの原子数比を「Zn比率」と略する。例えばIn−Ga−Zn−O系半導体層のIn比率は、In、GaおよびZnの合計原子数に対するInの原子数の割合である。Inの原子数を[In]、Gaの原子数を[Ga]、亜鉛の原子数を[Zn]と表記すると、In比率は、[In]/([In]+[Ga]+[Zn])で表される。
チャネル形成層70のIn比率は、Zn比率またはGa比率以上であってもよい([In]≧[Zn]および/または[In]≧[Ga])。チャネル形成層70におけるIn比率は、例えば1/3以上であってもよい。チャネル形成層70がIn−Ga−Zn−O系半導体層である場合、Ga比率またはZn比率は1/3以下であってもよい。
チャネル形成層70がIn−Ga−Zn−O系半導体層である場合の好ましい組成範囲の一例は次の通りである。
[In]/([In]+[Ga]+[Zn])≧1/3
[In]≧[Ga]、[In]≧[Zn]、[Zn]≧[Ga]
[Ga]/([In]+[Ga]+[Zn])≦1/3
チャネル形成層70には、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)、In:Ga:Zn=3:1:2(=3/6:1/6:2/6)、In:Ga:Zn=4:2:3(=4/9:2/9:3/9)、In:Ga:Zn=5:1:3(=5/9:1/9:3/9)、In:Ga:Zn=5:3:4(=5/12:3/12:4/12)、In:Ga:Zn=6:2:4(=6/12:2/12:4/12)、In:Ga:Zn=7:1:3(=7/11:1/11:3/11)、あるいはIn:Ga:Zn=5:1:4(=5/10:1/10:4/10)の組成(原子数比)のIn−Ga−Zn系酸化物やその組成の近傍の酸化物半導体を用いることができる。なお、上記組成を有するスパッタリングターゲットを用いて酸化物半導体層を形成すると、プロセス上で誤差が生じたり、不純物がドープされる場合があるが、そのような場合でも、形成後の酸化物半導体層は、スパッタリングターゲットの組成に対応する(略等しい)組成を有し得る。
一方、中間層71のZn比率あるいはGa比率は、In比率よりも高くてもよい([In]<[Zn]および/または[In]<[Ga])。Zn比率あるいはGa比率は、例えば1/2以上であってもよい。中間層71がIn−Ga−Zn−O系半導体層である場合、In比率は1/3未満であってもよい。
中間層71がIn−Ga−Zn−O系半導体層である場合の好ましい組成範囲の一例は次の通りである。
[In]/([In]+[Ga]+[Zn])<1/3
[Zn]>[In]
[Ga]>[In]
あるいは、チャネル形成層70のIn比率がZn比率またはGa比率よりも大きい場合([In]>[Zn]および/または[In]>[Ga])には、中間層71のZn比率および/あるいはGa比率は、In比率より高くてもよいし、In比率と同じであってもよい([In]=[Zn]および/または[In]=[Ga])。
中間層71には、In:Ga:Zn=1:3:2(=1/6:3/6:2/6)、In:Ga:Zn=2:4:3(=2/9:4/9:3/9)、In:Ga:Zn=1:5:3(=1/9:5/9:3/9)、In:Ga:Zn=1:3:6(=1/10:3/10:6/10)、あるいはIn:Ga:Zn=1:1:1(=1/3:1/3:1/3)の組成(原子数比)のIn−Ga−Zn−O系酸化物やその組成の近傍の酸化物半導体を用いることができる。
チャネル形成層70の厚さは、特に限定しないが、例えば5nm以上であってもよい。5nm以上であれば、オン電流をより効果的に高めることができる。一方、チャネル形成層70が厚すぎると、閾値電圧Vthがマイナス方向にシフトし、所望のオフ特性が得られない可能性がある。このため、チャネル形成層70の厚さは、例えば20nm以下であってもよい。
中間層71は、チャネル形成層70よりも厚くてもよい。中間層71の厚さは、特に限定しないが、例えば20nm超であってもよい。20nm超であれば、TFT101の閾値電圧Vthをプラスシフトさせる効果が十分に得られる。一方、中間層71が厚すぎると、逆に閾値電圧Vthが低下してしまうおそれがある。このため、中間層71の厚さは、例えば80nm以下であってもよい。
半導体層7全体の厚さは、特に限定しないが、例えば、30nm以上120nm以下であってもよい。
<TFT101の製造方法>
以下、図1を参照しながら、TFT101の製造方法の一例を説明する。
まず、基板1上に、ゲート電極3を形成する。基板1としては、例えばガラス基板、シリコン基板、耐熱性を有するプラスチック基板(樹脂基板)などを用いることができる。ゲート電極3は、後述するゲートバスラインGLと同じ導電膜(以下、「ゲート用導電膜」)を用いて形成され得る。ここでは、基板(例えばガラス基板)1上に、スパッタ法などによって、図示しないゲート用導電膜(厚さ:例えば50nm以上500nm以下)を形成する。次いで、ゲート用導電膜をパターニングすることにより、ゲート電極3およびゲートバスラインGLを得る。ゲート用導電膜として、例えば、Ti膜(厚さ:30nm)を下層、Cu膜(厚さ:300nm)を上層とする積層膜を用いる。なお、ゲート用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。
次いで、ゲート電極3上にゲート絶縁層5を形成する。ゲート絶縁層5は、CVD法等によって形成され得る。ゲート絶縁層5としては、酸化珪素(SiO)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ゲート絶縁層5は積層構造を有していてもよい。例えば、基板側(下層)に、基板1からの不純物等の拡散防止のために窒化珪素層、窒化酸化珪素層等を形成し、その上の層(上層)に、絶縁性を確保するために酸化珪素層、酸化窒化珪素層等を形成してもよい。ここでは、厚さ50nmのSiO膜を上層、厚さ300nmのSiNx膜を下層とする積層膜を用いる。このように、ゲート絶縁層5の最上層(すなわち酸化物半導体層と接する層)として、酸素を含む絶縁層(例えばSiOなどの酸化物層)を用いると、半導体層7に酸素欠損が生じた場合に、酸化物層に含まれる酸素によって酸素欠損を回復することが可能となるので、半導体層7の酸素欠損を低減できる。
続いて、ゲート絶縁層5上に、ゲート絶縁層5側から第1のチャネル形成層70A、第1の中間層71aおよび第2のチャネル形成層70Bをこの順で含む半導体層7を形成する。
半導体層7の形成は次のようにして行う。
まず、例えば、スパッタ法を用いて、ゲート絶縁層5側から第1酸化物半導体膜、中間酸化物半導体膜および第2酸化物半導体膜を形成し、酸化物半導体積層膜を得る。各酸化物半導体膜は、それぞれ、第1のチャネル形成層70A、第1の中間層71aおよび第2のチャネル形成層70Bに対応する組成および厚さを有する。各酸化物半導体膜は、結晶質酸化物半導体膜であってもよいし、非晶質酸化物半導体膜であってもよい。
ここでは、第1および第2酸化物半導体膜は、例えば原子数比In:Ga:Znが5:1:4であるターゲットを用いて、スパッタ法で形成する。スパッタリングガス(雰囲気)としては、アルゴン等の希ガス原子と酸化性ガスの混合ガスを用いることができる。酸化性ガスとはO、CO、O、HO、NO等が挙げられる。ここでは、Arガスおよび酸素(O)ガスを含む混合ガスを用いる。スパッタ法による成膜時の酸素ガスの割合は、例えば、分圧比で5%以上20%以下に設定される。また、成膜時の基板温度は、例えば27〜180℃に設定される。気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、例えば0.1〜3.0Paに設定される。
中間酸化物半導体膜は、例えば原子数比In:Ga:Znが1:3:2であるターゲットを用いて、スパッタ法で形成する。スパッタリングガスとして、Arガスおよび酸素(O)ガスを含む混合ガスを用いる。スパッタ法による成膜時の酸素ガスの割合は、例えば、分圧比で0%超20%以下に設定される。成膜時の基板温度およびスパッタ圧力は、第1酸化物半導体膜を形成する際の基板温度及びスパッタ圧力と同じであってもよい。
次いで、酸化物半導体積層膜のアニール処理を行う。ここでは、大気雰囲気中、300℃以上500℃以下の温度で熱処理を行う。熱処理時間は、例えば30分以上2時間以下である。
次いで、熱処理後の酸化物半導体積層膜のパターニングを行い、半導体層7を得る。酸化物半導体積層膜のパターニングは、例えばリン硝酢酸エッチング液を用いてウェットエッチングによって行う。これにより、ゲート絶縁層5側から、第1のチャネル形成層70A、第1の中間層71aおよび第2のチャネル形成層70Bをこの順で含む半導体層7を得る。
次いで、ソース電極8およびドレイン電極9を、半導体層7の上面と接するように形成する。ソース電極8およびドレイン電極9は、単層構造を有していてもよいし、積層構造を有していてもよい。ソース電極8およびドレイン電極9は、後述するソースバスラインSLと同じ導電膜(以下、「ソース用導電膜」)を用いて形成され得る。ここでは、ソース用導電膜として、半導体層7の側からTi膜(厚さ:30nm)、Cu膜(厚さ:300nm)の2層をこの順で積み重ねた積層膜を形成する。あるいは、Ti膜(厚さ:30nm)、Al(厚さ:300nm)、およびTi膜(厚さ50nm)の3層を積み重ねてもよい。ソース用導電膜は、例えばスパッタ法などによって形成される。
続いて、ソース用導電膜をパターニングすることによってソース電極8およびドレイン電極9を得る(ソース・ドレイン分離)。
ソース電極8は半導体層7のソースコンタクト領域7s、ドレイン電極9は半導体層7のドレインコンタクト領域7dと接するように配置される。この工程で、半導体層7の表面部分(ここでは第2のチャネル形成層70Bの表面部分)もエッチングされる場合がある(オーバーエッチング)。この後、半導体層7のチャネル領域に対し酸化処理、例えばNOガスを用いたプラズマ処理を行ってもよい。このようにして、TFT101を得る。
次に、TFT101のチャネル領域7cと接するように、上部絶縁層11を形成する。上部絶縁層11は、例えば無機絶縁層(パッシベーション膜)である。無機絶縁層は、例えば、酸化珪素(SiO)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等であってもよい。ここでは、無機絶縁層として、CVD法により、厚さが例えば300nmのSiO層を形成する。無機絶縁層の形成温度は、例えば200℃以上450℃以下であってもよい。図示していないが、上部絶縁層11上に有機絶縁層を形成してもよい。有機絶縁層として、例えば、厚さが2000nmのポジ型の感光性樹脂膜を形成してもよい。
<実施例および比較例>
本発明者は、本実施形態における積層チャネル構造の効果を確認するために、実施例および比較例のボトムゲート構造TFTを作製し、それらのTFT特性の評価を行った。
以下の説明では、高い移動度を示す組成を有し、チャネルとして機能し得る酸化物半導体層を「高移動度層」、高移動度層よりも低い移動度を示す組成を有する酸化物半導体層を「低移動度層」と呼ぶ。
実施例のTFTは、図1に示す3層チャネル構造TFTである。半導体層7は、In−Ga−Zn−O系半導体層であり、高移動度層である第1のチャネル形成層70A、第2のチャネル形成層70Bと、それらの間に位置する低移動度層である中間層71とを有する。
比較例1〜3のTFTは、それぞれ、実施例のTFTと異なる半導体層を有する。半導体層以外の構造は実施例のTFTと同様である。
図2(a)〜(c)は、それぞれ、比較例1〜比較例3のTFTにおける半導体層91、92、93の模式的な断面図である。これらの半導体層は、いずれも、In−Ga−Zn−O系半導体層である。
比較例1のTFTでは、半導体層91は、高移動度層170を中間層とし、その上層および下層に低移動度層171a、171bが配置された3層構造を有する。なお、高移動度層を中間に位置させる3層構造は、例えば特許文献2に開示されている。
比較例2のTFTでは、半導体層92は、ゲート絶縁層5側から、高移動度層270および低移動度層271をこの順で積み重ねた2層構造を有する。このような2層構造は、例えば特許文献1に開示されている。
比較例3のTFTでは、半導体層93は、高移動度層370の単層構造を有する。
実施例および比較例1〜3の半導体層における各層の組成および厚さを表1に示す。
Figure 2019067791
次いで、実施例および各比較例のTFTの評価結果を説明する。
図3は、実施例および各比較例のTFTのVG(ゲート−ソース電圧)−ID(ドレイン電流)特性を例示する図である。また、実施例および各比較例のTFTの閾値電圧VthおよびTFT移動度μを測定した結果を表1に併せて示す。なお、TFT移動度μは、積層半導体層全体としての移動度である。
表1から分かるように、実施例のTFTでは、比較例1〜3よりも高いTFT移動度μが得られた。この理由として、次のように推察される。
比較例1のTFTでは、図2(a)に示すように、キャリアが、最もゲート絶縁層側に位置する低移動度層171aを流れるか、あるいは、キャリアが低移動度層171aと高移動度層170とに分散して蓄積される。低移動度層171a内をキャリアが移動するので、比較例1のTFT移動度μは、高移動度層がキャリア移動層CMLとなる実施例および比較例2、3のTFT移動度μよりも大幅に低下したと考えられる。
一方、比較例2のTFTでは、図2(b)に示すように、キャリアは、ゲート絶縁層側に位置する高移動度層270を流れるので、高移動度層270がキャリア移動層CMLとなる。比較例3のTFTでは、図2(c)に示すように、高移動度層370がキャリア移動層CMLとして機能する。比較例2および比較例3のTFTでは、キャリア移動層CMLは1層である。
これに対し、実施例のTFTでは、高移動度層である第1のチャネル形成層70Aおよび第2のチャネル形成層70Bの2層がキャリア移動層CMLとして機能する(図1(b)参照)。このため、1層の場合(比較例2、3)よりもキャリア移動層CMLを流れるキャリアの数が増加し、オン電流(TFT移動度μ)が向上したと考えられる。具体的には、実施例のTFT移動度μは、比較例2、3のTFT移動度μよりも30%程度高くなることが分かった。
また、実施例および比較例1、2のTFTでは、比較例3のTFTよりも高い(プラス方向に大きい)閾値電圧Vthが得られた。この結果から、半導体層に低移動度層を設けることで、閾値電圧Vthがプラス方向にシフトすることが確認された。特に、実施例および比較例2のTFTでは、半導体層7、92に比較的厚い低移動度層71a、271が設けられているため、より高い閾値電圧Vthが得られた。一方、比較例1のTFTでは、低移動度層171a、171bが薄いため、閾値電圧Vthをプラス方向にシフトさせる効果が十分に得られなかったと考えられる。なお、比較例1の半導体層91の低移動度層171a、171bを厚くすると、閾値電圧Vthを高くできるが、低移動度層171aを流れるキャリアの数が増加し、TFT移動度μがさらに低くなると推察される。
従って、これらの結果から、実施例のTFTによると、閾値電圧Vthを所望の正電圧に制御しつつ、比較例1〜3のTFTよりもTFT移動度μを向上できることが確認される。
<変形例>
半導体層7は、チャネル形成層70および中間層71以外の層をさらに含んでいてもよい。例えば、TFT101がチャネルエッチ構造を有する場合、半導体層7の最上層として、保護層(犠牲層ともいう)となる酸化物半導体層を形成してもよい。
図4は、半導体層7の変形例を示す拡大断面図である。図4および以降の図面において、図1と同様の構成要素には同じ参照符号を付し、説明を適宜省略する。
図4に例示する半導体層7は、第2のチャネル形成層70Bと上部絶縁層11との間に、第2のチャネル形成層70Bを保護するための保護層72を有している。保護層72の上面は、上部絶縁層11と接していてもよい。
保護層72は、例えば、チャネル形成層70よりも低い移動度を有する酸化物半導体層である。保護層72の組成および厚さは、例えば、中間層71と同じであってもよい。
第2のチャネル形成層70B上に保護層72を設けることにより、例えばソース・ドレイン分離工程において、第2のチャネル形成層70Bが受けるプロセスダメージを低減できる。従って、TFT特性のばらつき、閾値電圧のマイナスシフト等が抑制され、信頼性に優れたTFT101を実現できる。
図1では、TFT101の半導体層7が2つのチャネル形成層70を有する例を示したが、チャネル形成層70と中間層71とを交互に積み重ねることにより、3層以上のチャネル形成層70を含む半導体層7を形成してもよい。
図5(a)および(b)は、それぞれ、半導体層7の他の変形例を示す拡大断面図である。
図5(a)に示す例では、半導体層7の積層構造は、第3のチャネル形成層70Cと、第2の中間層71bとをさらに含む点で、図1に示すTFT101と異なる。第3のチャネル形成層70Cは、第2のチャネル形成層70Bの第1の中間層71aと反対側(ここでは上部絶縁層11側)に配置されている。第2の中間層71bは、第2のチャネル形成層70Bと第3のチャネル形成層70Cとの間に配置されている。
半導体層7における第1のチャネル形成層70A、第2のチャネル形成層70Bおよび第3のチャネル形成層70Cは、キャリア移動層CMLとして機能する。このように、半導体層7内に3層のチャネル形成層70を形成することで、チャネル形成層70が2層の場合(図1)よりもオン電流をさらに向上することが可能になる。
なお、図示していないが、同様にして、4層以上のチャネル形成層70を有する半導体層を形成することも可能である。
また、図5(b)に示すように、半導体層7の最上層として(ここでは第3のチャネル形成層70C上に)、保護層72を形成してもよい。保護層72は、図4を参照して説明したように、チャネル形成層70よりも移動度の低い酸化物半導体層である。
図6は、本実施形態における他のTFT102を例示する模式的な断面図である。TFT102は、エッチストップ型のTFTである。
図1に示すように、チャネルエッチ型のTFT101では、チャネル領域7c上にエッチストップ層が形成されておらず、ソース電極8およびドレイン電極9のチャネル側の端部下面は、半導体層7の上面と接するように配置されている。
これに対し、エッチストップ型のTFT102では、図6に示すように、チャネル領域7c上にエッチストップ層(チャネル保護層)21が形成されている。ソース電極8およびドレイン電極9のチャネル側の端部下面は、例えばエッチストップ層21上に位置する。ソース電極8およびドレイン電極9は、それぞれ、エッチストップ層21に形成された開口部内で半導体層7のソースコンタクト領域7sおよびドレインコンタクト領域7dと接している。エッチストップ層21として、特に限定しないが、例えば、酸化シリコン層、窒化シリコン層、酸化窒化シリコン層等(厚さ:例えば30nm以上200nm以下)を用いることができる。
エッチストップ型のTFT102は、例えば、半導体層7のチャネル領域となる部分を覆うエッチストップ層21を形成した後、半導体層7およびエッチストップ層21上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。TFT102では、エッチストップ層21によって、半導体層7の最上層へのプロセスダメージを低減できる。このため、保護層72を設けず、最上層にチャネル形成層70を配置する場合でも、プロセスダメージに起因する特性劣化を抑制できる。
<アクティブマトリクス基板の構造>
本実施形態は、例えば表示装置のアクティブマトリクス基板に適用され得る。本実施形態をアクティブマトリクス基板に適用する場合、アクティブマトリクス基板に設けられる複数のTFTの少なくとも一部が、上述した積層チャネル構造を有するTFT101、102であればよい。例えば、各画素に配置される画素TFTおよび/またはモノリシックドライバを構成するTFT(回路TFT)が、積層チャネル構造を有していてもよい。
以下、図面を参照しながら、アクティブマトリクス基板の構成を説明する。
図7は、本実施形態のアクティブマトリクス基板1000の平面構造の一例を示す概略図である。
アクティブマトリクス基板1000は、表示領域DRと、表示領域DR以外の領域(非表示領域または額縁領域)FRとを有している。表示領域DRは、マトリクス状に配列された画素領域Pによって構成されている。画素領域Pは、表示装置の画素に対応する領域であり、単に「画素」と呼ぶこともある。各画素領域Pは、画素TFTである薄膜トランジスタTpと、画素電極PEとを有する。図示していないが、アクティブマトリクス基板1000をFFS(Fringe Field Switching)モードなどの横電界モードの表示装置に適用する場合、アクティブマトリクス基板1000には、画素電極PEと絶縁層(誘電体層)を介して対向するように共通電極が設けられる。
非表示領域FRは、表示領域DRの周辺に位置し、表示に寄与しない領域である。非表示領域FRは、端子部が形成される端子部形成領域、駆動回路が一体的(モノリシック)に設けられる駆動回路形成領域などを含んでいる。駆動回路形成領域には、例えばゲートドライバGD、検査回路(不図示)などがモノリシックに設けられている。ソースドライバSDは、例えば、アクティブマトリクス基板1000に実装されている。表示領域DRには、行方向に延びる複数のゲートバスラインGLと、列方向に延びる複数のソースバスラインSLとが形成されている。各画素は、例えばゲートバスラインGLおよびソースバスラインSLで規定されている。ゲートバスラインGLは、それぞれ、ゲートドライバGDの各端子に接続されている。ソースバスラインSLは、それぞれ、アクティブマトリクス基板1000に実装されたソースドライバSDの各端子に接続されている。
・画素領域Pの構成
次いで、アクティブマトリクス基板1000における各画素領域Pの構成を説明する。ここでは、FFSモードのLCDパネルに適用されるアクティブマトリクス基板を例に説明する。
図8(a)および(b)は、それぞれ、アクティブマトリクス基板1000における1つの画素領域Pの平面図およびI−I’線に沿った断面図である。
画素領域Pは、ソースバスラインSL、および、ソースバスラインSLと交差する方向に延びるゲートバスラインGLに包囲された領域である。画素領域Pは、基板1と、基板1に支持された薄膜トランジスタ(画素TFT)Tpと、下部透明電極15と、上部透明電極19とを有している。この例では、下部透明電極15は共通電極CEであり、上部透明電極19は画素電極PEである。なお、下部透明電極15が画素電極PE、上部透明電極19が共通電極CEであってもよい。
薄膜トランジスタTpとして、図1、図4〜図6に示すような、積層チャネル構造TFTが用いられ得る。図8(b)では、薄膜トランジスタTpとして、図1に示すチャネルエッチ型TFTを例示している。
薄膜トランジスタTpのゲート電極3は対応するゲートバスラインGLに接続され、ソース電極8は対応するソースバスラインSLに接続されている。ドレイン電極9は画素電極PEと電気的に接続されている。ゲート電極3およびゲートバスラインGLは、同一の導電膜を用いて一体的に形成されていてもよい。ソース電極8、ドレイン電極9およびソースバスラインSLは、同一の導電膜を用いて一体的に形成されていてもよい。
層間絶縁層13は、特に限定しないが、例えば、無機絶縁層(パッシベーション膜)13aと、無機絶縁層13a上に配置された有機絶縁層13bとを含んでいてもよい。なお、層間絶縁層13は有機絶縁層13bを含んでいなくてもよい。
画素電極PEおよび共通電極CEは、誘電体層17を介して部分的に重なるように配置される。画素電極PEは、画素毎に分離されている。共通電極CEは、画素毎に分離されていなくても構わない。この例では、共通電極CEは、層間絶縁層13上に形成されている。画素電極PEは、誘電体層17上に形成され、層間絶縁層13および誘電体層17に設けられた開口部CH1内で、ドレイン電極9と電気的に接続されている。図示していないが、画素電極PEは、画素ごとに少なくとも1つのスリットまたは切り欠き部を有している。共通電極CEは、開口部CH1が形成されている領域を除く画素領域P全体に亘って形成されていてもよい。
画素電極PEおよび共通電極CEは、それぞれ、例えばITO(インジウム・錫酸化物)膜、In−Zn−O系酸化物(インジウム・亜鉛酸化物)膜、ZnO膜(酸化亜鉛膜)などから形成されていてもよい。画素電極PEおよび共通電極CEの厚さは、それぞれ、例えば50nm以上200nm以下であってもよい。誘電体層17は、例えば、窒化珪素(SiNx)膜、酸化珪素(SiOx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等であってもよい。誘電体層17の厚さは、例えば70nm以上300nm以下であってもよい。
このようなアクティブマトリクス基板1000は、例えばFFSモードの表示装置に適用され得る。FFSモードは、一方の基板に一対の電極(画素電極PEおよび共通電極CE)を設けて、液晶分子に、基板面に平行な方向(横方向)に電界を印加する横方向電界方式のモードである。
共通電極CE上に誘電体層17を介して画素電極PEが配置される電極構造は、例えば国際公開第2012/086513号に記載されている。画素電極PE上に誘電体層17を介して共通電極CEが配置されている電極構造は、例えば特開第2008−032899号公報、特開第2020008758号公報に記載されている。参考のため、国際公開第2012/086513号、特開第2008−032899号公報および特開第2020008758号公報の開示内容の全てを本明細書に援用する。
・駆動回路
次いで、アクティブマトリクス基板1000に一体的に形成された駆動回路の構成を、ゲートドライバGDを例に説明する。ゲートドライバGDは、シフトレジスタを含んでいる。シフトレジスタは、多段に接続された複数の単位回路を含んでいる。
図9は、ゲートドライバ(モノリシックゲートドライバ)GDを構成するシフトレジスタ回路を例示する図である。
シフトレジスタ回路は、複数の単位回路SR1〜SRnを有している。各段の単位回路SRk(kは1≦k≦nの自然数)は、セット信号SETを入力するセット端子、出力信号GOUTを出力する出力端子、リセット信号RESETを入力するリセット端子、Low電源電位VSSを入力するLow電源入力端子、および、クロック信号CLK1、CLK2を入力するクロック入力端子を備えている。単位回路SRk(k≧2)において、セット端子には前段の単位回路SRk−1の出力信号GOUTk−1が入力される。初段の単位回路SR1のセット端子にはゲートスタートパルス信号GSPが入力される。各段の単位回路SRk(k≧1)において、出力端子は、表示領域に配置された対応する走査信号線に出力信号GOUTkを出力する。単位回路SRk(k≦n−1)のリセット端子には、次段の単位回路SRk+1の出力信号GOUTk+1が入力される。最終段の単位回路SRnのリセット端子にはクリア信号CLRが入力される。
Low電源入力端子には、各単位回路SRkにおける低電位側の電源電圧であるLow電源電位VSSが入力される。2つのクロック入力端子の一方にクロック信号CLK1が入力されるとともに他方のクロック入力端子にクロック信号CLK2が入力される。クロック入力端子に入力されるクロック信号は、隣接する段間で交互に入れ替わるように構成されている。クロック信号CLK1とクロック信号CLK2とは、アクティブなクロックパルス期間(ここではHighレベル期間)が互いに重ならない相補的な位相関係を有している。クロック信号CLK1、CLK2のHighレベル側(アクティブ側)の電圧はVGHで、Lowレベル側(非アクティブ側)の電圧はVGLである。Low電源電圧VSSはクロック信号CLK1、CLK2のLowレベル側の電圧VGLに等しい。ゲートスタートパルス信号GSPは、1フレーム期間の最初のクロックパルス期間にアクティブとなる信号である。クリア信号CLRは、1フレーム期間の最後のクロックパルス期間にアクティブ(ここではHigh)となる信号である。
シフトレジスタ回路では、1フレーム期間の最初に、シフトパルスとしてゲートスタートパルス信号GSPが初段の単位回路SR1のセット端子に入力される。シフトレジスタ回路は、縦続接続された各段の単位回路SRkがこのシフトパルスを順に受け渡しすることにより、出力信号GOUTkのアクティブなパルスを出力する。
図10(a)は、単位回路SRkの一例を示す図である。図10(b)は単位回路SRkにおける信号波形を示す図である。
単位回路SRkは、5つのnチャネル型薄膜トランジスタT1〜T5および容量部CAPを備えている。
薄膜トランジスタT1〜T5の全部または一部は、上述した積層チャネル構造を有していてもよい。これらの薄膜トランジスタのうち薄膜トランジスタT5には、特に大きな電流駆動力が求められ、TFTのサイズ(チャネル幅)も大きい。このため、少なくとも薄膜トランジスタT5に本実施形態の積層チャネル構造を適用すると有利である。
T1は入力トランジスタである。T1のゲートおよびドレインはセット端子に接続され、T1のソースはT5のゲートに接続されている。T5は出力トランジスタである。T5のドレインはクロック入力端子に、ソースは出力端子に、それぞれ接続されている。すなわち、T5は伝送ゲートとして、クロック入力端子に入力されるクロック信号CLK1の通過および遮断を行う。
容量部(ブートストラップ容量部)CAPは、出力トランジスタであるT5のゲートとソースとの間に接続されている。また、T5のゲートに接続されたノードを「ノードnetA」、出力端子に接続されたノードを「ノードGOUT」と称する。容量部CAPの一方の電極は、T5のゲートおよびノードnetAに接続され、他方の電極は、T5のソースおよびノードGOUTに接続されている。
T3は、Low電源入力端子とノードnetAとの間に配置されている。T3は、ノードnetAの電位を低下させるためのプルダウントランジスタである。T3のゲートはリセット端子に、ドレインはノードnetAに、ソースはLow電源入力端子に、それぞれ接続されている。プルダウントランジスタ(ここではT3)のゲートに接続されたノードを「ノードnetB」と称する。
ノードGOUTにはT2、T4が接続されている。T4のゲートはリセット端子に、ドレインは出力端子に、ソースはLow電源入力端子に、それぞれ接続されている。T2のゲートはクロック信号CLK2の入力端子に、ドレインはノードGOUTに、ソースはLow電源入力端子に、それぞれ接続されている。
単位回路SRkでは、セット端子にシフトパルスが入力されるまでは、T4、T5がハイインピーダンス状態であるとともに、T2がクロック入力端子から入力されるクロック信号CLK2がHighレベルになるたびにON状態となり、出力端子はLowを保持する期間となる。
図10(b)に示すように、セット端子にシフトパルスが入力されると、出力信号GOUTのアクティブなパルスであるゲートパルスの生成期間が開始され、T1がON状態となって容量部CAPを充電する。容量部CAPが充電されることにより、ゲートパルスのHighレベルをVGH、T1の閾値電圧をVthとすると、ノードnetAの電位V(netA)はVGH−Vthまで上昇する(V(netA)=VGH−Vth)。この結果、T5がON状態になり、クロック入力端子から入力されたクロック信号CLK1がTFT35のソースに現れる。このクロックパルス(Highレベル)が入力された瞬間に容量部CAPのブートストラップ効果によってノードnetAの電位が突き上げられるので、T5は大きなオーバドライブ電圧を得ることとなる。これにより、クロック入力端子に入力されたクロックパルスのVGHのほぼ全振幅が出力端子に伝送されて出力され、ゲートパルスとなる。
セット端子へのシフトパルスの入力が終了すると、T1はOFF状態となり、netAはフローティング状態を保持する。ゲート出力(GOUT)完了後、リセットパルス信号により、各ノードのフローティング状態は解除される。具体的には、次段の単位回路SRk+1のゲートパルスがリセットパルスとしてリセット端子に入力される。これにより、T3、T4がオン状態となり、ノードnetAおよび出力端子がLow電源電圧VSSに接続される。従って、T5がOFF状態となる。リセットパルスの入力が終了すると、この単位回路SRkのゲートパルスの生成期間は終了し、出力端子は再びLowを保持する期間となる。
(第2の実施形態)
第2の実施形態の半導体装置は、酸化物半導体層を挟んで2つのゲート電極が配置されたデュアルゲート構造を有するTFTを備える。
図11(a)は、本実施形態におけるTFT103の断面図であり、図11(b)は、TFT103の半導体層7の拡大断面図である。
TFT103は、チャネル形成層70および中間層71を含む半導体層7を活性層とする積層チャネル構造TFTである。図11(b)に示す例では、半導体層7は3層構造を有するが、図5(a)に例示したような5層以上の積層構造を有してもよい。
TFT103は、半導体層7上に、層間絶縁層13を介して上部電極16を有する点で、図1に示すTFT101と異なる。上部電極16は、層間絶縁層13を介して半導体層7の少なくともチャネル領域7cに対向するように配置されている。層間絶縁層13は、ゲート絶縁層(上部ゲート絶縁層ともいう。)として機能する。
上部電極16は、接地(GND電位に固定)されていてもよい。これにより、TFT31の特性の安定性を確保できる。上部電極16は、図示しないコンタクト部によって、ソース電極8に接続されていてもよい。あるいは、上部電極16はゲート電極3と電気的に接続されていてもよい。
上部電極16は、例えば画素電極PEまたは共通電極CEと同じ透明導電膜を用いて形成された透明電極であってもよい。あるいは、金属電極であってもよい。例えば、共通電極CEを補助するための低抵抗な金属補助配線を設ける場合には、金属補助配線と同じ金属膜から上部電極16を形成してもよい。
層間絶縁層13は、図1に示す上部絶縁層11と同様の無機絶縁層でもよい。または、図8(b)に例示したように、無機絶縁層13aと、その上に配置された有機絶縁層13bとの積層構造を有してもよい。
本実施形態におけるTFT103では、ゲート電極3および上部電極16のそれぞれに所定の電圧が印加されると、半導体層7における複数のチャネル形成層70が、キャリア移動層CMLとして機能する。本実施形態では、半導体層7の最下層である第1のチャネル形成層70Aがゲート絶縁層5と接するだけでなく、最上層である第2のチャネル形成層70Bも下部ゲート絶縁層として機能する層間絶縁層13と接する。従って、TFT101よりも、第2のチャネル形成層70Bを流れるキャリアを増加させることができ、オン電流をさらに高めることが可能になる。
本実施形態では、半導体層7の最下層(ゲート絶縁層5側)だけでなく最上層(層間絶縁層13側)にもチャネル形成層70を配置することが好ましい。つまり、チャネル形成層70の1つは、半導体層7の最上層であり、層間絶縁層13と接していることが好ましい。チャネル形成層70と層間絶縁層13との間に他の半導体層(例えば図4に示す保護層72など)を設けると、キャリアの一部が保護層72を流れてしまう可能性がある。これに対し、チャネル形成層70を層間絶縁層13に接するように配置すると、キャリアは主にチャネル形成層70を流れるので、効果的にオン電流を高めることができる。
なお、前述した比較例1、2のTFTでは、上部ゲート絶縁層として機能する層間絶縁層13側に低移動度層が配置されているので、上部電極を利用したオン電流向上効果が小さくなる。これに対し、本実施形態によると、層間絶縁層13と接するようにチャネル形成層70(ここでは第2のチャネル形成層70B)が配置されるので、上部電極16を利用して、オン電流をさらに高めることが可能になる。
本実施形態のTFTも、図7〜図10を参照して前述したアクティブマトリクス基板において、画素TFTおよび/または回路TFTとして使用され得る。
以下、本実施形態のデュアルゲート構造TFTを、ゲートドライバを構成する回路TFT(例えば出力トランジスタT5(図10参照))に適用した例を説明する。
図12(a)は、ゲートドライバの出力トランジスタT5を例示する平面図であり、図12(b)は、図12(a)のII−II’線に沿った出力トランジスタT5の断面図である。
出力トランジスタT5として機能するTFT104は、他の回路TFTよりもチャネル幅が大きくなるように構成されている。ここでは、出力トランジスタT5のソース電極8およびドレイン電極9は、いわゆる櫛歯構造を有している。ソース電極8およびドレイン電極9は、それぞれ、例えば第1方向に延びる主部8m、9mと、主部から第1方向と交差する第2方向に延びる1つまたは複数の枝部(櫛歯部)8r、9rとを有している。ソース電極8およびドレイン電極9の櫛歯部8r、9rが互いにかみ合うように対向して配置されている。
TFT104の上方において、層間絶縁層13のうち有機絶縁層13bには開口部13qが配置されていてもよい。基板1の法線方向から見たとき、開口部13qは、半導体層7のうち少なくともチャネル領域となる部分と重なるように配置されてもよい。これにより、無機絶縁層13aのみを上部ゲート絶縁層として機能させることができる。
上部電極16は、コンタクト部CTにおいて、ソース電極8の主部8mに接続されている。この例では、画素電極PEは上部透明電極、共通電極CEは下部透明電極であり、上部電極16は共通電極CEと同じ透明導電膜を用いて(すなわち下部透明導電層内に)形成されている。コンタクト部CTでは、上部電極16は、画素電極PEと同じ透明導電膜を用いて(すなわち上部透明導電層内に)形成された島状の透明接続部18を介して、ソース電極8に電気的に接続されている。具体的には、透明接続部18は、誘電体層17に形成された開口部17p内で上部電極16と接し、かつ、誘電体層17に形成された開口部17p内および層間絶縁層13に形成された開口部13p内でソース電極8と接している。
なお、薄膜トランジスタT5およびコンタクト部CTの構造は図示する例に限定されない。例えば、下部透明導電層内に上部電極16を形成してもよい。この場合には、コンタクト部CTにおいて、上部電極16は、層間絶縁層13に形成された開口部内でソース電極8と接してもよい。
(第3の実施形態)
第3の実施形態における半導体装置は、半導体層の基板と反対側にゲート電極が配置されたトップゲート構造TFTを有する。
図13(a)は、本実施形態におけるTFT105の断面図であり、図13(b)は、TFT105の半導体層7の拡大断面図である。
TFT105は、半導体層27、ゲート絶縁層30、ゲート電極32、ソース電極28およびドレイン電極29を有する。
半導体層27は、基板1上に形成されている。半導体層27は、基板1に形成された下部絶縁層25の上に配置されていてもよい。半導体層27は、例えばIn−Ga−Zn−O系半導体を含む。
半導体層27は、前述の実施形態で説明した半導体層7と同様の積層構造を有している。ここでは、半導体層27は、下部絶縁層25上に、第2のチャネル形成層70B、中間層71および第1のチャネル形成層70Aがこの順に積み重ねられた(すなわち、ゲート絶縁層30側から、第1のチャネル形成層70A、中間層71および第2のチャネル形成層70Bをこの順で含む)3層構造を有している。第1のチャネル形成層70Aは、ゲート絶縁層30と接している。これにより、前述の実施形態と同様に、第1のチャネル形成層70A、70Bの2層をキャリア移動層CMLとして機能させることができるので、オン電流を高めることが可能である。なお、図示していないが、半導体層27は、5層以上の積層構造を有してもよい(図5参照)。また、第2のチャネル形成層70Bの基板1側に、チャネル形成層70および中間層71以外の酸化物半導体層をさらに有していてもよい。
ゲート絶縁層30は、半導体層27の一部上に設けられている。ゲート絶縁層30は、ゲート電極32に重なる領域にのみ島状に形成されていてもよい。ゲート電極32は、ゲート絶縁層30上に設けられている。ゲート電極32は、ゲート絶縁層30を介して半導体層27に対向する。
半導体層27、ゲート絶縁層30およびゲート電極32は、層間絶縁層35で覆われている。ソース電極28およびドレイン電極29は、層間絶縁層35上に配置されており、層間絶縁層35に形成されたコンタクトホール内で半導体層27に接続されている。
本実施形態のTFT105を製造する際には、半導体層27をゲート絶縁層30、ゲート電極32および層間絶縁層35で保護した状態で、ソース・ドレイン分離工程を行う。このため、半導体層27の最上層となる第1のチャネル形成層70Aはプロセスダメージを受け難い。従って、第1のチャネル形成層70Aを含む全てのチャネル形成層70の移動度をより確実に高くできるので、積層チャネル構造によってより効果的にオン特性を向上できる。
<TFT105の製造方法>
TFT105は、例えば次のようにして形成され得る。まず、絶縁層(例えばSiO層)25上に、3層構造を有する半導体層27を形成する。半導体層27は、TFT101の半導体層7と同様の方法で形成され得る。
次いで、半導体層27を覆うように、ゲート絶縁膜および上部ゲート用導電膜を形成する。ゲート絶縁膜として、酸化珪素(SiO)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層、酸化アルミニウム層または酸化タンタル層等を適宜用いることができる。ここでは、ゲート絶縁膜として、CVD法を用いて、酸化シリコン(SiOx)層(厚さ:80nm以上250nm以下、例えば150nm)を形成する。上部ゲート用導電膜として、TFT101のゲート電極3と同様の導電膜を用いてもよい。ここでは、上部ゲート用導電膜として、Ti膜を下層、Cu膜を上層とする積層膜をスパッタリング法で形成する。
次いで、上部ゲート用導電膜およびゲート絶縁膜のエッチングを行い、ゲート電極32およびゲート絶縁層30を得る。ここでは、上部ゲート用導電膜上にレジストマスクを形成し、レジストマスクを用いて、上部ゲート用導電膜およびゲート絶縁膜のエッチング(ここではドライエッチング)を同時に行う。従って、ゲート絶縁膜のうちゲート電極32で覆われていない部分は除去される。
この後、ゲート電極32の上方から、基板1の全面にプラズマ処理を施してもよい。これにより、半導体層27のうちゲート電極32で覆われていない領域のみがプラズマ処理によって低抵抗化される。
続いて、半導体層27、ゲート絶縁層30およびゲート電極32を覆うように、層間絶縁層35(厚さ:例えば100nm以上500nm以下)を形成する。層間絶縁層35として、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜を単層又は積層させて形成することができる。ここでは、層間絶縁層35として、SiNx(厚さ:100nm)およびSiO膜(厚さ:300nm)をCVD法で連続して形成する。
なお、ゲート電極32およびゲート絶縁層30のパターニング後に、半導体層7の上面のうちゲート電極32から露出している部分と接するように、酸化物半導体を還元させる絶縁膜(例えばSiNxなどの窒化膜)を形成してもよい。これにより、半導体層27の露出部分が還元されて低抵抗化される(セルフアライメント構造)。この場合には、上述したプラズマ処理を行わなくてもよい。
この後、層間絶縁層35に、半導体層27の一部を露出するコンタクトホールを形成する。続いて、層間絶縁層35上およびコンタクトホール内に、ソース配線用導電膜を形成する。ここでは、TFT101と同様のソース配線用導電膜(Ti膜を下層、Al膜を上層とする積層膜)を用いる。次いで、ソース配線用導電膜のパターニングを行うことで、ソース電極28およびドレイン電極29を得る。このようにして、TFT105が製造される。
<変形例>
図14は、本実施形態における他のTFT106を例示する断面図である。
TFT106は、基板1と下部絶縁層25との間に下部電極23が配置されたデュアルゲート構造を有する点で、図13に示すTFT105と異なる。
下部電極23は、基板1の法線方向から見たとき、少なくともチャネル領域7cと重なるように配置されている。下部電極23は金属層であってもよい。これにより、下部電極23は、TFT106の遮光層としても機能し得る。例えば、下部電極23は、ゲートバスラインGL(図1)と同じ導電膜から形成されていてもよい。
下部電極23は、接地されていてもよい。これにより、TFT106の特性の安定性を確保できる。下部電極23はソース電極28に電気的に接続されていてもよい。あるいは、下部電極23がゲート電極32と同電位になるように、下部電極23をゲート電極32(またはゲートバスライン)に電気的に接続させてもよい。
TFT106は、デュアルゲート構造を有するので、TFT103と同様に、半導体層27の最上層(ゲート絶縁層30側)のみでなく、最下層としてもチャネル形成層70を配置することが好ましい。つまり、チャネル形成層70の1つは、半導体層27の最下層であり、下部絶縁層25と接することが好ましい。これにより、下部電極23を配置することによるオン電流向上効果が得られる。
TFT106は、基板1上に下部電極23を形成する点以外は、上述したTFT105と同様の方法で製造され得る。下部電極23は、基板1上に下部電極用導電膜(厚さ:例えば50nm以上500nm以下)を形成し、パターニングを行うことで形成される。下部電極用導電膜として、TFT101のゲート電極3と同様の膜を用いることができる。ここでは、下部電極用導電膜として、Ti膜を下層、Cu膜を上層とする積層膜をスパッタリング法で形成する。下部電極用導電膜のパターニングは、例えばドライエッチングで行う。
次いで、下部電極23を覆うように、下部絶縁層25を形成する。この後の工程は、TFT105と同様である。
本実施形態におけるTFT105、106も、図7〜図10を参照して説明したアクティブマトリクス基板において、画素TFTおよび/または回路TFTとして適用され得る。
(TFT構造および酸化物半導体について)
TFT構造は、第1〜第3の実施形態で例示した構造に限定されない。例えば、図1に示すTFT101は、ソースおよびドレイン電極が半導体層の上面と接するトップコンタクト構造を有しているが、ソースおよびドレイン電極が半導体層の下面と接するボトムコンタクト構造を有していてもよい。また、トップゲート構造およびボトムゲート構造TFTの構成も、上述した構成に限定されない。
上記の実施形態において、酸化物半導体層に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
酸化物半導体層は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含む積層構造を有してもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでもよく、また、複数の非晶質酸化物半導体層を含んでもよい。非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014−007399号公報に記載されている。参考のために、特開2014−007399号公報の開示内容の全てを本明細書に援用する。
半導体層7を構成する各酸化物半導体層(チャネル形成層70および中間層71)は、それぞれ、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。酸化物半導体層は、例えば、In−Ga−Zn−O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In−Ga−Zn−O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層は、In−Ga−Zn−O系の半導体を含む酸化物半導体膜から形成され得る。
In−Ga−Zn−O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In−Ga−Zn−O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In−Ga−Zn−O系の半導体が好ましい。
なお、結晶質In−Ga−Zn−O系の半導体の結晶構造は、例えば、上述した特開2014−007399号公報、特開2012−134475号公報、特開2014−209727号公報などに開示されている。参考のために、特開2012−134475号公報および特開2014−209727号公報の開示内容の全てを本明細書に援用する。In−Ga−Zn−O系半導体層を有するTFTは、高い移動度(a−SiTFTに比べ20倍超)および低いリーク電流(a−SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
チャネル形成層70および中間層71は、In−Ga−Zn−O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn−Sn−Zn−O系半導体(例えばIn−SnO−ZnO;InSnZnO)を含んでもよい。In−Sn−Zn−O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層は、In−Al−Zn−O系半導体、In−Al−Sn−Zn−O系半導体、Zn−O系半導体、In−Zn−O系半導体、Zn−Ti−O系半導体、Cd−Ge−O系半導体、Cd−Pb−O系半導体、CdO(酸化カドミウム)、Mg−Zn−O系半導体、In−Ga−Sn−O系半導体、In−Ga−O系半導体、Zr−In−Zn−O系半導体、Hf−In−Zn−O系半導体、Al−Ga−Zn−O系半導体、Ga−Zn−O系半導体、In−Ga−Zn−Sn−O系半導体、In−Ga−Sn−O系半導体などを含んでいてもよい。
上記の実施形態は、酸化物半導体TFTを用いたアクティブマトリクス基板に好適に適用される。アクティブマトリクス基板は、液晶表示装置、有機EL表示装置、無機EL表示装置などの種々の表示装置、および表示装置を備えた電子機器等に用いられ得る。アクティブマトリクス基板では、酸化物半導体TFTは、各画素に設けられるスイッチング素子として使用されるだけでなく、ドライバなどの周辺回路の回路用素子として用いることもできる(モノリシック化)。このような場合、本発明における酸化物半導体TFTは、高い移動度(例えば10cm/Vs以上)を有する酸化物半導体層を活性層として用いているので、回路用素子としても好適に用いられる。
本発明の実施形態は、酸化物半導体TFTを有する種々の半導体装置に広く適用され得る。例えばアクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置、MEMS表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置にも適用される。
1 基板
3、32 ゲート電極
5、30 ゲート絶縁層
7、27 半導体層
7c チャネル領域
7d ドレインコンタクト領域
7s ソースコンタクト領域
8、28 ソース電極
9、29 ドレイン電極
11 上部絶縁層
13、35 層間絶縁層
16 上部電極
21 エッチストップ層
23 下部電極
25 下部絶縁層
70A 第1のチャネル形成層
70B 第2のチャネル形成層
70C 第3のチャネル形成層
71a 第1の中間層
71b 第2の中間層
72 保護層
170、270、370 高移動度層
171a、171b、271 低移動度層
101、102、103、104、105、106 薄膜トランジスタ
1000 アクティブマトリクス基板
CML キャリア移動層
CE 共通電極
PE 画素電極
CT コンタクト部
DR 表示領域
FR 非表示領域
GD ゲートドライバ
GL ゲートバスライン
SD ソースドライバ
SL ソースバスライン
Tp、T1〜T5 薄膜トランジスタ

Claims (20)

  1. 基板と、前記基板に支持された複数の薄膜トランジスタとを備えた半導体装置であって、
    前記複数の薄膜トランジスタの少なくとも1つは、半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層と電気的に接続されたソース電極およびドレイン電極を含み、
    前記半導体層は、
    第1のチャネル形成層および第2のチャネル形成層を含む複数のチャネル形成層と、
    前記第1のチャネル形成層および前記第2のチャネル形成層の間に配置された第1の中間層を含む少なくとも1つの中間層と
    を含む積層構造を有し、
    前記第1のチャネル形成層は、前記第2のチャネル形成層よりも前記ゲート絶縁層側に配置され、かつ、前記ゲート絶縁層と接しており、
    前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも酸化物半導体層であり、前記複数のチャネル形成層のそれぞれは、前記少なくとも1つの中間層よりも高い移動度を有する、半導体装置。
  2. 前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、第1金属元素および第2金属元素を含み、前記第1金属元素はIn、前記第2金属元素はGaおよびZnのいずれか1つであり、
    前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比と異なっており、
    前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以上であり、
    前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以下である、請求項1に記載の半導体装置。
  3. 基板と、前記基板に支持された複数の薄膜トランジスタとを備えた半導体装置であって、
    前記複数の薄膜トランジスタの少なくとも1つは、半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層と電気的に接続されたソース電極およびドレイン電極を含み、
    前記半導体層は、
    第1のチャネル形成層および第2のチャネル形成層を含む複数のチャネル形成層と、
    前記第1のチャネル形成層および前記第2のチャネル形成層の間に配置された第1の中間層を含む少なくとも1つの中間層と
    を含む積層構造を有し、
    前記第1のチャネル形成層は、前記第2のチャネル形成層よりも前記ゲート絶縁層側に配置され、かつ、前記ゲート絶縁層と接しており、
    前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、第1金属元素および第2金属元素を含む酸化物半導体層であって、前記第1金属元素はIn、前記第2金属元素はGaおよびZnのいずれか1つであり、
    前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は、前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比と異なっており、
    前記複数のチャネル形成層のそれぞれにおける、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以上であり、
    前記少なくとも1つの中間層における、全金属元素に対する前記第1金属元素の原子数比は前記第2金属元素の原子数比以下である、半導体装置。
  4. 前記第1のチャネル形成層および前記第2のチャネル形成層は、実質的に同じ組成を有している、請求項1から3のいずれかに記載の半導体装置。
  5. 前記第1の中間層は、前記第1のチャネル形成層および前記第2のチャネル形成層と接している、請求項1から4のいずれかに記載の半導体装置。
  6. 前記第1のチャネル形成層および前記第2のチャネル形成層の厚さは、それぞれ、前記第1の中間層の厚さよりも小さい、請求項1から5のいずれかに記載の半導体装置。
  7. 前記複数のチャネル形成層は、前記第2のチャネル形成層の前記第1の中間層と反対側に配置された第3のチャネル形成層をさらに含み、
    前記少なくとも1つの中間層は、前記第3のチャネル形成層と前記第2のチャネル形成層との間に位置する第2の中間層をさらに含む、請求項1から6のいずれかに記載の半導体装置。
  8. 前記ゲート電極は、前記半導体層と前記基板との間に配置されている、請求項1から7のいずれかに記載の半導体装置。
  9. 前記少なくとも1つの薄膜トランジスタは、チャネルエッチ構造を有し、
    前記半導体層の前記積層構造は、最上層として保護層を含み、前記保護層は、前記複数のチャネル形成層よりも低い移動度を有する酸化物半導体層である、請求項8に記載の半導体装置。
  10. 前記少なくとも1つの薄膜トランジスタは、エッチストップ構造を有する、請求項8に記載の半導体装置。
  11. 前記少なくとも1つの薄膜トランジスタは、前記半導体層上に上部絶縁層を介して設けられた上部電極をさらに備える、請求項8に記載の半導体装置。
  12. 前記複数のチャネル形成層の1つは、前記積層構造の最上層であり、前記上部絶縁層と接している、請求項11に記載の半導体装置。
  13. 前記ゲート電極は、前記半導体層の前記基板と反対側に、前記ゲート絶縁層を介して配置されている、請求項1から7のいずれかに記載の半導体装置。
  14. 前記ゲート絶縁層は、前記半導体層の一部上に配置され、かつ、前記半導体層と前記ゲート電極との間にのみ位置しており、
    前記半導体層、前記ゲート電極および前記ゲート絶縁層を覆う層間絶縁層をさらに備え、
    前記ソース電極および前記ドレイン電極は、それぞれ、前記層間絶縁層上に配置され、前記層間絶縁層に形成された開口部内で前記半導体層と接している、請求項13に記載の半導体装置。
  15. 前記少なくとも1つの薄膜トランジスタは、
    前記基板と前記半導体層との間に配置された下部電極と、
    前記下部電極と前記半導体層との間に配置された下部絶縁層と
    をさらに備える、請求項13または14に記載の半導体装置。
  16. 前記複数のチャネル形成層の1つは、前記積層構造の最下層であり、前記下部絶縁層と接している、請求項15に記載の半導体装置。
  17. 前記半導体装置は、複数の画素を有する表示領域と、前記表示領域以外の非表示領域とを備えたアクティブマトリクス基板である、請求項1から16のいずれかに記載の半導体装置。
  18. 前記少なくとも1つの薄膜トランジスタは、前記複数の画素のそれぞれに配置された画素TFTを含む、請求項17に記載の半導体装置。
  19. 前記非表示領域に配置された駆動回路をさらに備え、
    前記少なくとも1つの薄膜トランジスタは、前記駆動回路を構成する回路TFTを含む、請求項17または18に記載の半導体装置。
  20. 前記複数のチャネル形成層および前記少なくとも1つの中間層は、いずれも、In、GaおよびZnを含む、請求項1から19のいずれかに記載の半導体装置。
JP2017188268A 2017-09-28 2017-09-28 半導体装置 Pending JP2019067791A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017188268A JP2019067791A (ja) 2017-09-28 2017-09-28 半導体装置
CN201811115059.XA CN109585455B (zh) 2017-09-28 2018-09-25 半导体装置
US16/143,528 US20190097059A1 (en) 2017-09-28 2018-09-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188268A JP2019067791A (ja) 2017-09-28 2017-09-28 半導体装置

Publications (1)

Publication Number Publication Date
JP2019067791A true JP2019067791A (ja) 2019-04-25

Family

ID=65808022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188268A Pending JP2019067791A (ja) 2017-09-28 2017-09-28 半導体装置

Country Status (3)

Country Link
US (1) US20190097059A1 (ja)
JP (1) JP2019067791A (ja)
CN (1) CN109585455B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535038A (ja) * 2019-06-04 2022-08-04 アプライド マテリアルズ インコーポレイテッド 薄膜トランジスタ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113875022B (zh) * 2019-06-04 2024-05-14 堺显示器制品株式会社 薄膜晶体管及其制造方法以及显示装置
CN113838938A (zh) * 2020-06-24 2021-12-24 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板以及电子装置
CN114141788A (zh) * 2021-11-17 2022-03-04 惠州华星光电显示有限公司 显示面板及其制作方法
US20230178642A1 (en) * 2021-12-05 2023-06-08 International Business Machines Corporation High electron mobility transistor with source and drain electrodes below the channel
CN116435310A (zh) * 2022-01-13 2023-07-14 夏普显示科技株式会社 半导体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ
WO2013168748A1 (ja) * 2012-05-09 2013-11-14 株式会社神戸製鋼所 薄膜トランジスタおよび表示装置
KR20140009023A (ko) * 2012-07-13 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014025002A1 (en) * 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
CN103412450A (zh) * 2013-07-26 2013-11-27 京东方科技集团股份有限公司 阵列基板及其制作方法和显示装置
CN103872139B (zh) * 2014-02-24 2016-09-07 北京京东方光电科技有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535038A (ja) * 2019-06-04 2022-08-04 アプライド マテリアルズ インコーポレイテッド 薄膜トランジスタ
JP7498197B2 (ja) 2019-06-04 2024-06-11 アプライド マテリアルズ インコーポレイテッド 薄膜トランジスタ

Also Published As

Publication number Publication date
CN109585455B (zh) 2023-06-27
CN109585455A (zh) 2019-04-05
US20190097059A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
CN109585455B (zh) 半导体装置
KR101739154B1 (ko) 반도체 장치 및 그 제조 방법
CN109661696B (zh) 有源矩阵基板及其制造方法
JP6227016B2 (ja) アクティブマトリクス基板
US10629630B2 (en) Active matrix substrate, and liquid crystal display device provided with active matrix substrate
WO2017094682A1 (ja) 半導体装置およびその製造方法
JPWO2018061969A1 (ja) 半導体装置およびその製造方法
EP3451323B1 (en) Electrostatic discharge circuit, array substrate, and display device
CN107851668B (zh) 半导体装置及其制造方法
CN110692125A (zh) 有源矩阵基板及其制造方法
US20210384276A1 (en) Active matrix substrate and method for manufacturing same
JP6718988B2 (ja) アクティブマトリクス基板およびそれを用いた表示装置
CN113903752A (zh) 有源矩阵基板及其制造方法
US11476282B2 (en) Active matrix substrate and method for manufacturing same
KR20210105326A (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US20200183208A1 (en) Active matrix substrate
WO2017131078A1 (ja) アクティブマトリクス基板およびその製造方法
CN113903753A (zh) 有源矩阵基板及其制造方法
CN112714960A (zh) 显示装置
US11791345B2 (en) Active matrix substrate and method for manufacturing same
WO2017094548A1 (ja) アクティブマトリクス基板およびそれを備える液晶表示パネル
US11631704B2 (en) Active matrix substrate and display device
US20140252355A1 (en) Semiconductor device and method for producing same