WO2012176895A1 - 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子 - Google Patents

電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子 Download PDF

Info

Publication number
WO2012176895A1
WO2012176895A1 PCT/JP2012/066048 JP2012066048W WO2012176895A1 WO 2012176895 A1 WO2012176895 A1 WO 2012176895A1 JP 2012066048 W JP2012066048 W JP 2012066048W WO 2012176895 A1 WO2012176895 A1 WO 2012176895A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder
electrochemical element
current value
mass
Prior art date
Application number
PCT/JP2012/066048
Other languages
English (en)
French (fr)
Inventor
春樹 岡田
大輔 藤川
光史 野殿
百瀬 扶実乃
綾子 下中
伊藤 公一
明宏 石井
陽 百瀬
Original Assignee
三菱レイヨン株式会社
ダイヤニトリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社, ダイヤニトリックス株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020147001702A priority Critical patent/KR20140037937A/ko
Priority to JP2012531927A priority patent/JP6145693B2/ja
Priority to CN201280039135.8A priority patent/CN103733289B/zh
Priority to US14/128,240 priority patent/US20140193709A1/en
Priority to EP12802582.2A priority patent/EP2725644B1/en
Publication of WO2012176895A1 publication Critical patent/WO2012176895A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode binder for an electrochemical element, an electrode composition for an electrochemical element, an electrode for an electrochemical element, and an electrochemical element.
  • Secondary batteries which are one type of electrochemical element, are used as storage batteries for consumer electronics devices such as notebook computers and mobile phones, and for hybrid vehicles and electric vehicles.
  • a lithium ion secondary battery (hereinafter sometimes simply referred to as a battery) is frequently used.
  • a battery electrode a battery electrode including a current collector and a mixture layer provided on the current collector and holding an electrode active material and a conductive additive by a binder is used.
  • a fluorine-based resin such as polyvinylidene fluoride (PVDF) is used for the positive electrode.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • problems such as the solvent recovery cost during drying and high environmental impact have become apparent.
  • NMP N-methyl-2-pyrrolidone
  • attempts have been made to replace the organic solvent with water.
  • an aqueous dispersion binder such as styrene-butadiene rubber (SBR) latex and a thickener carboxymethyl cellulose (CMC) are used. Yes.
  • CMC is used by being dissolved in water at the time of electrode production, but has a problem that the quality of each supply lot is not stable because it is derived from a natural product. For this reason, the binder which can be supplied with stable quality is desired. In addition, the binder is required to exhibit high battery performance.
  • Patent Document 1 an invention using poly N-vinylacetamide as a binder is disclosed (for example, Patent Document 1).
  • an electrode including poly N-vinylacetamide and a copolymer of ethylene oxide (EO) and propylene oxide (PO) is disclosed (for example, Patent Document 2).
  • Patent Documents 1 and 2 are still insufficient in battery performance, particularly rate characteristics. Then, it aims at providing the binder for electrodes of the electrochemical element which can aim at the improvement of battery performance. Furthermore, it aims at providing the binder for electrodes of the electrochemical element which can distribute
  • the present inventors have obtained the following knowledge about the cause of the deterioration in battery performance of the conventional binder for electrochemical elements.
  • a compound having two or more carbons bonded to the N atom such as N-vinylacetamide, tends to swell in affinity with the electrolyte.
  • the molecular structure of N-vinylacetamide is rigid, there is a concern that the mixture layer may fall off from the current collector during electrode winding or slit processing.
  • the present inventors have been able to suppress a decrease in battery performance due to a decrease in binding properties and an increase in battery internal resistance, and a polymer having an N-vinylformamide unit as a structural unit. The inventors have found that it can be easily dissolved or dispersed, and have reached the present invention.
  • the present invention has the following aspects [1] to [12].
  • An electrode binder for an electrochemical element which is a polymer having an N-vinylformamide unit.
  • the electrode binder for an electrochemical element according to any one of [1] to [8], wherein a reduction current value obtained by cyclic voltammetry under the following condition II is 5 mA / g or less.
  • the current value of the first cycle is measured at a sweep rate of 1 mV / s and a sweep range of 3 to 0 V.
  • the reduction current value is a value obtained by dividing the current value at a voltage value of 0.5 V by the mass of the working electrode.
  • Working electrode A mixture layer comprising 1 part by mass of an electrode binder and 1 part by mass of acetylene black is provided between an aluminum foil and an aluminum mesh.
  • Reference electrode Lithium foil.
  • Counter electrode lithium foil.
  • a composition for an electrode of an electrochemical element comprising the binder for an electrode of an electrochemical element according to any one of [1] to [9].
  • Electrodes for electrochemical elements to be contained.
  • An electrochemical device comprising the electrode for an electrochemical device according to [11].
  • the electrode binder for an electrochemical element of the present invention it is possible to suppress a decrease in battery performance due to a decrease in binding property and an increase in battery internal resistance, and an improvement in battery performance can be achieved. According to the electrode binder for an electrochemical element according to one embodiment of the present invention, it can be distributed in powder form.
  • the electrochemical element is a battery, a capacitor, a capacitor or the like having a non-aqueous electrolyte.
  • the present invention will be described by taking a secondary battery as an electrochemical element, particularly a lithium ion secondary battery as an example.
  • the binder for an electrode of an electrochemical element (hereinafter sometimes simply referred to as a binder) is a polymer having an N-vinylformamide unit.
  • a preferred binder is water soluble.
  • Water-soluble in this paper is a concept including not only that the binder is completely dissolved in water but also that part of the binder is dissolved in water. For example, even when the binder consists of a water-compatible component and a water-insoluble component and phase separation is observed in water, the binder is water-soluble if it is partially dissolved in water. In this paper, when 0.1 part by mass or more dissolves with respect to 100 parts by mass of water, it is assumed to be water-soluble.
  • the N-vinylformamide unit means a structural unit derived from N-vinylformamide in a polymer of N-vinylformamide.
  • the content of N-vinylformamide units in the polymer is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, More preferred is ⁇ 100 mol%.
  • the higher the content of the N-vinylformamide unit the more difficult it is to expand with the electrolytic solution, the easier it is to form a network of conductive assistants, and the rate characteristics increase.
  • the mixture layer is unlikely to peel off from the current collector. That is, the higher the N-vinylformamide unit content, the higher the binder binding properties.
  • the molecular weight of the binder is not particularly limited, but the viscosity average molecular weight is preferably 10,000 to 10,000,000, more preferably 100,000 to 8,000,000, and more preferably 500,000 to 5,000,000. When it is at least the above lower limit value, the binding property is further improved, and when it is at most the above upper limit value, the water solubility becomes better.
  • the viscosity average molecular weight is calculated as a viscosity-converted molecular weight from the viscosity of the aqueous solution of the binder or the viscosity of the organic solvent solution of the binder. The example of the calculation method of a viscosity average molecular weight is shown below.
  • C is the binder concentration (g / dL) in the aqueous binder solution.
  • the measuring method of the reduced viscosity of the aqueous solution of the binder will be described later.
  • the binder is dissolved in 1N saline so that the binder concentration becomes 0.1% by mass to obtain an aqueous solution of the binder.
  • the flow-down time (t1) in 25 degreeC is measured using an Oswald viscometer.
  • the flow-down time (t0) in 25 degreeC is measured using an Oswald viscometer. From the obtained flow-down time, the reduced viscosity ( ⁇ sp / C) is calculated by the following equation (i).
  • C concentration (g / dL) of the binder in the aqueous solution of a binder.
  • the binder may have a structural unit (arbitrary structural unit) other than the N-vinylformamide unit as necessary.
  • a structural unit arbitrary structural unit
  • mechanical properties such as rigidity and bending strength of the mixture layer are enhanced.
  • the monomer (arbitrary monomer) from which the arbitrary structural unit is derived include monomers having a vinyl group that can be polymerized with N-vinylformamide.
  • Optional monomers include vinyl cyanide monomers such as acrylonitrile, methacrylonitrile, ⁇ -cyanoacrylate, dicyanovinylidene and fumaronitrile ethyl; vinyl halides such as vinyl chloride, vinyl bromide and vinylidene chloride Body; carboxyl group-containing monomers such as crotonic acid and salts thereof; aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; maleimides such as maleimide and phenylmaleimide; (meth) allylsulfonic acid, (meth) Sulphonic acid group-containing vinyl monomers such as allyloxybenzene sulfonic acid and styrene sulfonic acid and salts thereof; Phosphoric acid group-containing vinyl monomers and salts thereof; Tertiary salt or quaternary ammonium salt-containing vinyl monomers and their Salts; vinyl acetate, N-vinylpyrrolidone and the
  • the content of arbitrary structural units in the polymer is preferably 0 to 90 mol%, more preferably 0 to 50 mol%, and 0 to 20 More preferred is mol%. If it is below the said upper limit, the fall of battery performance can be suppressed.
  • ⁇ Binder manufacturing method> It does not specifically limit as a manufacturing method of a binder, A conventionally well-known polymerization method is mentioned.
  • the method for polymerizing N-vinylformamide alone or the method for polymerizing N-vinylformamide with an arbitrary monomer is not particularly limited, depending on the type of monomer and the solubility of the polymer to be produced. , Solution polymerization, suspension polymerization, emulsion polymerization and the like. For example, when each monomer is soluble in water and the resulting polymer has high affinity for water, aqueous solution polymerization can be selected.
  • a monomer and a water-soluble polymerization initiator are dissolved in water, and a binder is obtained by external heating or polymerization heat. Moreover, when the solubility of each monomer in water is small, suspension polymerization, emulsion polymerization, or the like can be selected.
  • a monomer, an emulsifier, a water-soluble polymerization initiator, and the like are added to water and heated under stirring to obtain a binder.
  • the polymerization initiator is not particularly limited, but any polymerization initiator can be selected from a thermal polymerization initiator, a photopolymerization initiator, and the like according to the polymerization method to be selected.
  • the polymerization initiator examples include azo compounds and peroxides.
  • a chain transfer agent may be present in the polymerization system.
  • the polymerization temperature is not particularly limited, but is preferably 0 to 200 ° C. from the viewpoint of the progress of the polymerization reaction, the stability of the raw materials, and the operability.
  • the polymerization time is not particularly limited, but is preferably 0.1 to 100 hours from the viewpoint of the progress of the polymerization reaction, the stability of the raw materials, and the operability.
  • a powdery binder can be obtained by removing water by filtering, centrifuging, drying by heating, drying under reduced pressure, and a combination thereof.
  • the binder is preferably electrochemically stable.
  • the electrochemical stability in the binder is evaluated by an oxidation current value or a reduction current value obtained by cyclic voltammetry.
  • the oxidation current value of the binder is obtained by cyclic voltammetry under the following condition I.
  • the smaller the oxidation current value (that is, the closer to 0 mA / g), the better the oxidation stability, and the further improvement of the cycle characteristics of the electrochemical device can be achieved.
  • the oxidation current value is preferably 2 mA / g or less, and more preferably 1.8 mA / g or less.
  • the oxidation current value is represented by an absolute value.
  • the current value in the first cycle is measured at a sweep rate of 1 mV / s and a sweep range of 3.5 to 5 V.
  • the oxidation current value is a value obtained by dividing the current value at a voltage value of 4.8 V by the mass of the working electrode.
  • Working electrode A mixture layer comprising 1 part by mass of an electrode binder and 1 part by mass of acetylene black is provided between an aluminum foil and an aluminum mesh.
  • Reference electrode Lithium foil.
  • Counter electrode lithium foil.
  • the reduction current value of the binder can be obtained by cyclic voltammetry under the following condition II. As the reduction current value is smaller (that is, closer to 0 mA / g), the reduction stability becomes better, and the cycle characteristics of the electrochemical device can be further improved.
  • the reduction current value is preferably 5 mA / g or less, and more preferably 4 mA / g or less.
  • the reduction current value is represented by an absolute value.
  • the current value of the first cycle is measured at a sweep rate of 1 mV / s and a sweep range of 3 to 0 V.
  • the reduction current value is a value obtained by dividing the current value at a voltage value of 0.5 V by the mass of the working electrode.
  • Electrochemical element electrode composition The composition for an electrode of an electrochemical element (hereinafter sometimes simply referred to as an electrode composition) contains a binder.
  • the form of the electrode composition includes a powder form or a slurry form dispersed in a solvent such as water. From the viewpoint of stability during storage or distribution, ease of handling, etc. Is preferred.
  • the content of the binder in the powdered electrode composition is, for example, preferably 50% by mass or more, more preferably 80% by mass or more, and may be 100% by mass. If it is more than the said lower limit, the effect of this invention will be exhibited notably.
  • the content of the binder in the slurry-like electrode composition is, for example, preferably 20% by mass or more, and more preferably 40% by mass or more. If it is more than the said lower limit, the effect of this invention will be exhibited notably.
  • the electrode composition may contain additives such as a viscosity modifier as necessary.
  • the viscosity modifier include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium salts thereof; poly (meth) acrylates such as sodium poly (meth) acrylate; polyvinyl alcohol, polyethylene oxide , Polyvinylpyrrolidone, copolymer of acrylic acid or acrylate and vinyl alcohol, maleic anhydride, maleic acid or copolymer of fumaric acid and vinyl alcohol, modified polyvinyl alcohol, modified polyacrylic acid, polyethylene glycol, polycarboxylic acid Etc.
  • cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium salts thereof
  • poly (meth) acrylates such as sodium poly (meth) acrylate
  • polyvinyl alcohol, polyethylene oxide Polyvinylpyrrolidone, copolymer of acrylic acid or acrylate
  • the content of the additive in the electrode composition is preferably 10% by mass or less when the electrode composition is 100% by mass.
  • the electrode composition preferably contains substantially no additive.
  • Examples of the method for producing an electrode composition include a method of powder-mixing a powdered binder and, if necessary, a powdered additive, a binder, and a powdered additive as necessary. Examples thereof include a method of dispersing in water, an organic solvent, or a mixed liquid of water and an organic solvent.
  • An electrode for an electrochemical element (hereinafter sometimes simply referred to as an electrode) includes a current collector and a mixture layer provided on the current collector.
  • the mixture layer contains an electrode composition and an electrode active material, and is, for example, a layer formed on at least one surface of a plate-like current collector.
  • the thickness of the mixture layer is not particularly limited, but is preferably 20 to 200 ⁇ m, and more preferably 70 to 120 ⁇ m, for example. Since the positive electrode has a smaller active material capacity than the negative electrode, the positive electrode mixture layer is preferably thicker than the negative electrode mixture layer.
  • the electrode active material only needs to have a positive electrode potential and a negative electrode potential different from each other.
  • the positive electrode active material (positive electrode active material) has a higher potential (relative to metallic lithium) than the negative electrode active material (negative electrode active material) and absorbs lithium ions during charge and discharge.
  • a removable material is used.
  • a lithium-containing metal composite oxide containing at least one metal selected from iron, cobalt, nickel, manganese and vanadium and lithium, polyaniline, polythiophene, polyacetylene and derivatives thereof, polyparaphenylene and derivatives thereof,
  • conductive polymers such as polyarylene vinylene and derivatives thereof such as polypyrrole and derivatives thereof, polythienylene and derivatives thereof, polypyridinediyl and derivatives thereof, polyisothianaphthenylene and derivatives thereof.
  • the conductive polymer a polymer of an aniline derivative that is soluble in an organic solvent is preferable.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the negative electrode active material examples include carbon materials such as graphite, amorphous carbon, carbon fiber, coke, and activated carbon; and composites of the carbon materials with metals such as silicon, tin, and silver, or oxides thereof. It is done.
  • a negative electrode active material can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the mixture layer may contain a conductive additive. Battery performance can be further improved by containing a conductive additive.
  • the conductive assistant include graphite, carbon black, acetylene black, carbon nanotube, carbon nanofiber, and conductive polymer. These conductive assistants can be used singly or in appropriate combination of two or more.
  • the composition ratio of the electrode composition and the electrode active material forming the mixture layer is preferably 0.1 to 10 parts by mass of the electrode composition with respect to 100 parts by mass of the electrode active material.
  • the compounding ratio of the conductive assistant and the electrode active material forming the mixture layer is preferably 0 to 10 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
  • the current collector may be a substance having conductivity, and examples thereof include metals such as aluminum, copper, and nickel.
  • the shape of the current collector can be determined according to the shape of the target battery, and examples thereof include a thin film shape, a net shape, and a fiber shape. Among these, a thin film shape is preferable.
  • the thickness of the current collector is not particularly limited, but is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • a conventionally well-known method can be used as a manufacturing method of an electrode. For example, a powdered electrode composition and an electrode active material are dispersed in a solvent such as water to prepare a slurry (in particular, an electrode slurry) (slurry preparation step), and the electrode slurry is collected as a current collector. (Solvent removal step), and a solid layer holding the electrode active material with a binder is obtained.
  • a solvent such as water
  • the electrode composition, the electrode active material, and, if necessary, a conductive additive or additive are dispersed in a solvent.
  • the solvent include water and a mixed liquid of water and an organic solvent.
  • the organic solvent those that easily dissolve or disperse the electrode composition uniformly are selected.
  • NMP, NMP and ester solvents ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, etc.
  • a mixed solution of NMP and a glyme-based solvent diglyme, triglyme, tetraglyme, etc.
  • organic solvents can be used individually by 1 type or in combination of 2 or more types as appropriate. However, since the organic solvent has a high environmental load, it is preferable to use water as the solvent. In addition, the higher the content of N-vinylformamide units in the polymer, the more hydrophilic the binder of the present invention, so that it can be easily dissolved or dispersed in water.
  • the content of the solvent in the electrode slurry may be the minimum necessary amount that can maintain the dissolved or dispersed state of the electrode composition at room temperature.
  • the content of the solvent in the electrode slurry is determined in consideration of the viscosity that can be easily applied to the current collector in the application step.
  • the viscosity of the electrode slurry in the coating step is preferably 0.1 to 100 Pa ⁇ s, more preferably 0.5 to 10 Pa ⁇ s at a shear rate of 100 s ⁇ 1 using a rheometer. If the viscosity exceeds the above upper limit value, the surface of the mixture layer may be blurred or streaked. If the viscosity is less than the lower limit value, unevenness may occur on the surface of the mixture layer.
  • the coating process is not limited as long as the electrode slurry can be applied to the current collector with an arbitrary thickness.
  • the doctor blade method the dip method, the reverse roll method, the direct roll method, the gravure method, the extrusion method, and the brush coating method. And the like.
  • the solvent removal step may be performed under the condition that the solvent can be sufficiently removed and the binder is not decomposed. For example, drying by hot air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams, etc. Law. Among these, as this step, a method of heating at 40 to 140 ° C., preferably 60 to 120 ° C. is preferable. If temperature is more than the said lower limit, the adhesiveness between an active material and an electrical power collector or an active material can be improved more. If temperature is below the said upper limit, a binder will be hard to decompose
  • the mixture layer may be rolled as necessary (rolling step).
  • rolling step By providing a rolling process, the area of the mixture layer can be expanded, the mixture layer can be adjusted to an arbitrary thickness, and the smoothness and electric density of the mixture layer surface can be increased.
  • the pressing method include a mold press and a roll press.
  • the obtained electrode may be cut into arbitrary dimensions (slit processing step).
  • a current collector, a mixture layer, and a mesh may be laminated in this order.
  • the mesh include a metal mesh such as aluminum.
  • Lithium ion secondary battery which is a kind of electrochemical element, includes the above-described electrode.
  • the lithium ion secondary battery for example, the positive electrode and the negative electrode are overlapped via a separator made of a polyethylene microporous membrane, and the wound product obtained by winding this is housed in a battery container together with an electrolytic solution, Etc.
  • the electrolytic solution is obtained by dissolving an electrolyte in an organic solvent that is a solvent.
  • organic solvent for the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; trimethoxymethane, 1,2-dimethoxy Ethers such as ethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; acetonitrile, Nitrogens such as nitromethane and NMP; esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionat
  • LiClO 4 LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, Li [(CO 2) 2] 2 B and the like.
  • a solution in which LiPF 6 is dissolved in carbonates is preferable.
  • ⁇ Method for manufacturing lithium ion secondary battery An example of a method for manufacturing a lithium ion secondary battery will be described. First, the positive electrode and the negative electrode are wound through a separator to form a wound body. The obtained wound body is inserted into a battery can, and a tab terminal previously welded to a negative electrode current collector is welded to the bottom of the battery can. Next, an electrolytic solution is injected into the battery can, and a tab terminal previously welded to the positive electrode current collector is welded to the battery lid. A lid is disposed on the top of the battery can via an insulating gasket, and a portion where the lid and the battery can are in contact is caulked and sealed to obtain a lithium ion secondary battery.
  • the lithium ion secondary battery thus obtained is excellent in battery performance, particularly rate characteristics.
  • the battery performance is excellent because the mixture layer contains the electrode composition of the present invention, so that swelling and expansion of the electrolyte solution are suppressed, and electrical resistance increases or binding properties decrease. This is because high battery performance can be maintained. In addition, since the binding property of the binder is maintained for a long time, the life of the lithium ion secondary battery is extended.
  • a binder solution was obtained by kneading 0.06 g of binder and 2.0 g of water with an autorotation revolution mixer (Nentaro Awatori, manufactured by Thinky) (autorotation 1000 rpm, revolution 2000 rpm).
  • LCO lithium cobaltate
  • AB acetylene black
  • the obtained positive electrode slurry was uniformly applied to a current collector (aluminum foil, thickness 20 ⁇ m) by a doctor blade method, and then dried on a hot plate at 100 ° C. for 10 minutes. Furthermore, it dried under reduced pressure at 0.6 kPa and 100 degreeC with the vacuum dryer for 12 hours, and the positive electrode provided with the 100-micrometer-thick mixture layer was obtained. The peel strength of the obtained positive electrode was measured. The results are shown in Table 1.
  • Example 2 The amount of 2,2′-azobis (2-amidinopropane) diacetate added is 3000 mass ppm (based on monomer), and the amount of t-butyl hydroperoxide added is 400 mass ppm (based on monomer).
  • PNVF powdery poly N-vinylformamide
  • Example 3 A sodium hypophosphite aqueous solution in which 0.5 parts by mass of sodium hypophosphite was mixed with 70 parts by mass of deionized water was heated to 70 ° C. and aerated with nitrogen for 15 minutes. After adding 1 part by mass of 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., V-50) to the sodium hypophosphite aqueous solution after nitrogen aeration, N— 30 parts by mass of vinylformamide was added dropwise over 3 hours.
  • 2,2′-azobis (2-amidinopropane) dihydrochloride manufactured by Wako Pure Chemical Industries, Ltd., V-50
  • N-vinylformamide 0.5 part by weight of V-50 was added as a 10% by weight aqueous solution to the sodium hypophosphite aqueous solution. After the completion of dropping, the mixture was kept at 70 ° C. for 3 hours and then cooled to obtain an aqueous solution. The obtained aqueous solution was put into a large amount of methanol, dehydrated and dried to obtain a solid. The obtained solid was pulverized to obtain poly N-vinylformamide (PNVF) having a viscosity average molecular weight of 680,000, which was used as a binder. With respect to the obtained binder, the oxidation current value and the reduction current value were determined, and the results are shown in Table 1. Using the obtained binder, a positive electrode and a 2016-type coin battery were produced in the same manner as in Example 1, the peel strength, the cycle characteristics, and the rate characteristics were evaluated, and the results are shown in Table 1.
  • PNVF poly N-vinylformamide
  • Example 4 Manufacture of negative electrode for battery> A binder solution was obtained by kneading 0.1 g of the binder of Example 1 and 2.4 g of water with a rotating and rotating mixer. To the binder solution, 5.0 g of a natural graphite-based negative electrode active material (MPGC16, manufactured by Mitsubishi Chemical Corporation) was added and kneaded with a rotation and revolution mixer to obtain a kneaded product. Water was added to the kneaded product to adjust the viscosity so that it could be applied to obtain a negative electrode slurry.
  • MPGC16 natural graphite-based negative electrode active material
  • the obtained negative electrode slurry was uniformly applied to a current collector (copper foil, thickness 18 ⁇ m) by a doctor blade method. Furthermore, it dried under reduced pressure at 0.6 kPa and 100 degreeC with the vacuum dryer for 12 hours, and the negative electrode provided with the 80-micrometer-thick mixture layer (negative electrode layer) was obtained. The peel strength of the obtained negative electrode was measured. The results are shown in Table 1.
  • Example 1 A positive electrode and a 2016-type coin battery were prepared in the same manner as in Example 1 except that poly N-vinylacetamide (PNVA) (GE191-000, manufactured by Showa Denko KK) was used as a binder, and peel strength, cycle characteristics and rate were obtained. The characteristics were evaluated and the results are shown in Table 1. For PNVA, the oxidation current value and the reduction current value were determined, and the results are shown in Table 1.
  • PNVA poly N-vinylacetamide
  • the obtained positive electrode slurry was uniformly applied to a current collector (aluminum foil, thickness 20 ⁇ m) by a doctor blade method, and dried on a hot plate at 140 ° C. for 10 minutes. Furthermore, it dried under reduced pressure at 0.6 kPa and 100 degreeC with the vacuum dryer for 12 hours, and the positive electrode provided with the 100-micrometer-thick mixture layer was obtained.
  • Example 4 A negative electrode and a 2016-type coin battery were prepared in the same manner as in Example 4 except that poly N-vinylacetamide (PNVA) (GE191-000, manufactured by Showa Denko KK) was used as a binder, and peel strength, cycle characteristics and rate were obtained. The characteristics were evaluated and the results are shown in Table 1.
  • PNVA poly N-vinylacetamide
  • the measurement conditions were a peeling rate of 10 mm / min, a peeling angle of 180 °, an environmental temperature of 23 ° C., and an environmental humidity of 40% RH.
  • Example 4 the charge / discharge rate was 0.5 C at 60 ° C., and the battery was charged to 1.5 V by a constant current method (current density: 0.6 mA / g-active material), and 0.05 V Charging / discharging to discharge until 1 cycle.
  • the initial discharge capacity of each example was about 360 mAh / g. A larger discharge capacity at the 50th cycle indicates a longer battery life.
  • the constant current amount during charging is set to 0.2 C, and the constant current amount during discharging is changed in the order of 0.2 C, 0.5 C, 1.0 C, 2.0 C, and 5.0 C each time the cycle is repeated.
  • Charging / discharging was performed by a constant current method.
  • the ratio of the discharge capacity at 5.0 C to the discharge capacity at 0.2 C was expressed as a percentage. The larger this value is, the faster charge / discharge is possible.
  • An aluminum mesh (3 cm ⁇ 3 cm, wire diameter 0.1 mm, mesh opening 0.112 mm) was placed on the applied electrode slurry to obtain a laminate.
  • the obtained laminate was heated on a hot plate at 100 ° C. for 15 minutes to dry the electrode slurry. After drying the electrode slurry, the laminate was cut into 3 cm ⁇ 1 cm to obtain a working electrode. Using the obtained working electrode, a three-electrode electrolytic cell having the following specifications was produced.
  • the current value at the first cycle was measured at 23 ° C., sweep rate 1 mV / s, and sweep range 3.5 to 5V.
  • the oxidation current value is a value obtained by dividing the current value (mA) at a pressure value of 4.8 V by the mass (g) of the working electrode.
  • the current value of the first cycle was measured in the same manner as “ ⁇ Oxidation current value >>” except that the sweep rate was 1 mV / s and the sweep range was 3 to 0 V.
  • the reduction current value is a value obtained by dividing the current value (mA) at a voltage value of 0.5 V by the mass (g) of the working electrode.
  • Examples 1 to 4 in which the present invention was applied to the positive electrode had higher cycle characteristics and rate characteristics than Comparative Examples 1 to 4 in which a polymer having an N-vinylformamide unit was not used as a binder. It was a thing. From the above results, it was found that the binder of the present invention can exhibit excellent battery performance as compared with PNVA, PVDF, and SBR. In addition, the binder of this embodiment is excellent in convenience because it can be supplied as a water-soluble powder.
  • the binder of the present invention is a polymer having an N-vinylformamide unit, it is possible to suppress a decrease in battery performance due to a decrease in binding properties and an increase in battery internal resistance, thereby improving the battery performance. Therefore, the binder of the present invention is useful as a binder for electrodes of various electrochemical elements, particularly secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、N-ビニルホルムアミド単位を有する重合体である電気化学素子の電極用バインダに関するものであり、結着性の低下及び電池内部抵抗の増大に起因する電池性能の低下を抑制でき、電池性能の向上が図れる。

Description

電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子
 本発明は、電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子に関する。
 本願は、2011年6月24日に、日本に出願された特願2011-140358号に基づき優先権を主張し、その内容をここに援用する。
 電気化学素子の1種である二次電池は、ノート型パソコンや携帯電話等、弱電の民生機器用途、ハイブリッド車や電気自動車等の蓄電池として用いられている。二次電池としては、リチウムイオン二次電池(以下、単に電池ということがある。)が多用されている。一般に、電池の電極としては、集電体と、集電体上に設けられ、バインダによって電極活物質及び導電助剤が保持された合剤層とを備えるものが用いられている。
 電池電極用のバインダとしては、例えば、正極用としてポリフッ化ビニリデン(PVDF)等のフッ素系樹脂が用いられている。電極の製造に当たっては、PVDF等のバインダをN-メチル-2-ピロリドン(NMP)等の有機溶剤に溶解して用いるため、乾燥時の溶剤回収コスト、環境に対する負荷が高い等の問題が顕在化している。
 近年、有機溶剤を水へ置き換える試みがなされており、負極用のバインダとして、スチレン-ブタジエンゴム(SBR)ラテックス等の水分散系バインダや、増粘剤であるカルボキシメチルセルロース(CMC)が用いられている。
 ところで、水分散系バインダは、水を含む状態で流通されるため、輸送費が増大するという問題がある。加えて、水分散系バインダには、防カビ剤が添加されているため、水分散系バインダを用いた電池は、長期に放電容量を高く維持(サイクル特性)できなかったり、レート特性が低下する等、電池性能が低下するという懸念を有する。
 ラテックスは、低ガラス転移温度の組成であることが多いため、粉末化すると高分子鎖が絡み、水に分散しにくくなるという問題を有する。
 このため、PVDF粉がNMPに溶解されて用いられるように、電極製造時に水に溶解又は分散して用いられる粉末状のバインダの供給が望まれている。
 一方、CMCは、電極製造時に水に溶解されて用いられるが、天然物由来なために供給ロット毎の品質が安定しないという問題を有する。このため、安定品質で供給可能なバインダが望まれる。
 加えて、バインダには、高い電池性能を発揮することが求められる。
 こうした問題に対し、ポリN-ビニルアセトアミドをバインダとした発明が開示されている(例えば、特許文献1)。また、ポリN-ビニルアセトアミド、及びエチレンオキサイド(EO)とプロピレンオキサイド(PO)との共重合体を含む電極が開示されている(例えば、特許文献2)。
特開2002-251999号公報 特開2002-117860号公報
 しかしながら、特許文献1~2の技術では、電池性能、特にレート特性が未だ不十分であった。
 そこで、電池性能の向上が図れる電気化学素子の電極用バインダを提供することを目的とする。さらに、粉末状で流通できる電気化学素子の電極用バインダを提供することを目的とする。
 本発明者らは、鋭意検討した結果、従来の電気化学素子の電極用バインダの電池性能が低下する原因について、以下の知見を得た。
 N-ビニルアセトアミド等、N原子に結合する炭素を2以上有する化合物は、電解液と親和して膨潤する傾向を示す。
 また、N-ビニルアセトアミドの分子構造は剛直であるため、電極捲回時又はスリット加工時に、合剤層が集電体から粉落ちするという懸念がある。
 本発明者らは、N-ビニルホルムアミド単位を構成単位として有する重合体が、結着性の低下及び電池内部抵抗の増大に起因する電池性能の低下を抑制でき、かつ前記の重合体が水に容易に溶解又は分散することを見出し本発明に至った。
 本発明は、以下の[1]~[12]の態様を有する。
[1]N-ビニルホルムアミド単位を有する重合体である電気化学素子の電極用バインダ。
[2]水溶性である[1]に記載の電気化学素子の電極用バインダ。
[3]前記重合体がN-ビニルホルムアミド単位を10~100モル%有する[1]又は[2]に記載の電気化学素子の電極用バインダ。
[4]前記重合体がN-ビニルホルムアミド単位を50~100モル%有する[1]又は[2]に記載の電気化学素子の電極用バインダ。
[5]前記重合体の粘度平均分子量が1万~1000万である[1]~[4]のいずれかに記載の電気化学素子の電極用バインダ。
[6]前記重合体の粘度平均分子量が10万~800万である[1]~[4]のいずれかに記載の電気化学素子の電極用バインダ。
[7]前記重合体の粘度平均分子量が50万~500万である[1]~[4]のいずれかに記載の電気化学素子の電極用バインダ。
[8]下記条件Iのサイクリックボルタンメトリーで求められる酸化電流値が2mA/g以下である[1]~[7]のいずれかに記載の電気化学素子の電極用バインダ。
 <条件I>
 下記仕様の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3.5~5Vで1サイクル目の電流値を測定する。酸化電流値は、電圧値4.8Vでの電流値を作用極の質量で除した値である。
 ≪3電極式電解セルの仕様≫
 作用極:アルミニウム箔とアルミニウム製のメッシュとの間に、電極用バインダ1質量部とアセチレンブラック1質量部とからなる合剤層が設けられたもの。
 参照極:リチウム箔。
 対極:リチウム箔。
 電解液:1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))。
[9]下記条件IIのサイクリックボルタンメトリーで求められる還元電流値が5mA/g以下である[1]~[8]のいずれかに記載の電気化学素子の電極用バインダ。
 <条件II>
 下記仕様の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3~0Vで1サイクル目の電流値を測定する。還元電流値は、電圧値0.5Vでの電流値を作用極の質量で除した値である。
 ≪3電極式電解セルの仕様≫
 作用極:アルミニウム箔とアルミニウム製のメッシュとの間に、電極用バインダ1質量部とアセチレンブラック1質量部とからなる合剤層が設けられたもの。
 参照極:リチウム箔。
 対極:リチウム箔。
 電解液:1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))。
[10][1]~[9]のいずれかに記載の電気化学素子の電極用バインダを含有する電気化学素子の電極用組成物。
[11]集電体と、前記集電体上に設けられた合剤層とを備え、前記合剤層は、[10]に記載の電気化学素子の電極用組成物と電極活物質とを含有する電気化学素子用の電極。
[12][11]に記載の電気化学素子用の電極を備える電気化学素子。
 本発明の電気化学素子の電極用バインダによれば、結着性の低下及び電池内部抵抗の増大に起因する電池性能の低下を抑制でき、電池性能の向上が図れる。本発明の一実施態様に係る電気化学素子の電極用バインダによれば、粉末状で流通できる。
 本稿において、電気化学素子は、非水電解質を有する電池、キャパシタ、コンデンサ等である。以下、電気化学素子として二次電池、特にリチウムイオン二次電池を例にして、本発明を説明する。
 (電気化学素子の電極用バインダ)
 電気化学素子の電極用バインダ(以下、単にバインダということがある)は、N-ビニルホルムアミド単位を有する重合体である。
 好ましいバインダは、水溶性である。本稿における「水溶性」とは、バインダが、水に全て溶解することのみならず、バインダの一部が水に溶解することを包含する概念である。例えば、バインダが水相溶成分と水不溶成分とからなり、水中で相分離が認められた場合でも、一部が水に溶解していれば水溶性とする。本稿においては、水100質量部に対し、0.1質量部以上溶解する場合、水溶性であるとする。
 N-ビニルホルムアミド単位は、N-ビニルホルムアミドの重合体中のN-ビニルホルムアミドに由来する構成単位を意味する。
 重合体を構成する全ての構成単位の合計を100モル%とした場合、重合体におけるN-ビニルホルムアミド単位の含有率は、10~100モル%が好ましく、50~100モル%がより好ましく、80~100モル%がさらに好ましい。N-ビニルホルムアミド単位の含有率が高いほど、電解液で膨張しにくく、導電助剤のネットワークが形成されやすくなり、レート特性が高まる。加えて、合剤層が集電体から剥がれにくくなる。即ち、N-ビニルホルムアミド単位の含有率が高いほど、バインダの結着性が高まる。
 バインダの分子量は、特に限定されないが、粘度平均分子量として、1万~1000万が好ましく、10万~800万がより好ましく、50万~500万がより好ましい。上記下限値以上であると結着性がより高まり、上記上限値以下であると水溶性がより良好となる。
 粘度平均分子量は、バインダの水溶液の粘度又はバインダの有機溶剤溶液の粘度から、粘度換算分子量として算出される。粘度平均分子量の算出方法の例を以下に示す。
 <粘度平均分子量の算出方法>
 バインダの水溶液の還元粘度(ηsp/C)と、Hugginsの式(ηsp/C=[η]+K’[η]C)とから、固有粘度[η]を算出する。なお、上記式中のCは、バインダの水溶液におけるバインダの濃度(g/dL)である。バインダの水溶液の還元粘度の測定方法は、後述のものである。
 得られた固有粘度[η]から、Mark-Houwinkの式([η]=KM)で粘度平均分子量(M)を算出する。
 なお、1N食塩水において、ポリN-ビニルホルムアミドのパラメータは、K=8.31×10-5、a=0.76、K’=0.31である。
 ≪還元粘度の測定方法≫
 バインダの濃度が0.1質量%となるように、1N食塩水にバインダを溶解して、バインダの水溶液を得る。得られたバインダの水溶液について、オスワルド粘度計を用いて、25℃での流下時間(t1)を測定する。
 ブランクとして、バインダを含まない1N食塩水について、オスワルド粘度計を用いて、25℃での流下時間(t0)を測定する。
 得られた流下時間から、下記(i)式により還元粘度(ηsp/C)を算出する。
 ηsp/C={(t1/t0)-1}/C ・・・(i)
 (i)式中、Cは、バインダの水溶液におけるバインダの濃度(g/dL)である。
 バインダは、必要に応じて、N-ビニルホルムアミド単位以外の構成単位(任意構成単位)を有していてもよい。任意構成単位を有することで、合剤層の剛性や曲げ強度等の機械的特性が高まる。
 任意構成単位の由来源となる単量体(任意単量体)としては、N-ビニルホルムアミドと重合できるビニル基を有する単量体が挙げられる。
 任意単量体としては、アクリロニトリル、メタクリロニトリル、α-シアノアクリレート、ジシアノビニリデン、フマロニトリルエチル等のシアン化ビニル単量体;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル単量体;クロトン酸等のカルボキシル基含有単量体及びその塩;スチレン、α-メチルスチレン等の芳香族ビニル単量体;マレイミド、フェニルマレイミド等のマレイミド類;(メタ)アリルスルホン酸、(メタ)アリルオキシベンゼンスルホン酸、スチレンスルホン酸等のスルホン酸基含有ビニル単量体及びその塩;リン酸基含有ビニル単量体及びその塩;三級塩もしくは四級アンモニウム塩含有ビニル単量体及びその塩;酢酸ビニル、N-ビニルピロリドン等が挙げられる。
 これらの任意単量体は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 重合体を構成する全ての構成単位の合計を100モル%とした場合、重合体における任意構成単位の含有率は、0~90モル%が好ましく、0~50モル%がより好ましく、0~20モル%がさらに好ましい。上記上限値以下であれば、電池性能の低下を抑制できる。
 <バインダの製造方法>
 バインダの製造方法としては、特に限定されず、従来公知の重合方法が挙げられる。
 N-ビニルホルムアミドを単独で重合する方法、又はN-ビニルホルムアミドと任意単量体とを重合する方法は、特に限定されず、単量体の種類及び生成する重合体の溶解性等に応じて、溶液重合、懸濁重合、乳化重合等から選択される。
 例えば、各単量体が水に可溶であり、かつ生成する重合体の水への親和性が高い場合には、水溶液重合を選択できる。水溶液重合は、単量体及び水溶性重合開始剤を水に溶解し、外部からの加熱や重合熱によりバインダを得るものである。
 また、各単量体の水への溶解度が小さい場合は、懸濁重合、乳化重合等を選択できる。乳化重合は、水中に単量体、乳化剤、水溶性の重合開始剤等を加え、撹拌下で加熱してバインダを得るものである。
 重合開始剤は、特に限定されないが、選択する重合法に応じて、熱重合開始剤、光重合開始剤等から任意の重合開始剤を選択できる。重合開始剤としては、アゾ化合物、過酸化物等が挙げられる。
 重合系内には、連鎖移動剤が存在していてもよい。
 重合温度は、特に限定されないが、重合反応の進行、原料の安定性、操作性の観点から、0~200℃が好ましい。
 重合時間は、特に限定されないが、重合反応の進行、原料の安定性、操作性の観点から、0.1~100時間が好ましい。
 さらに、ろ過、遠心分離、加熱乾燥、減圧乾燥及びこれらを組み合わせて水を除去することで、粉末状のバインダを得られる。
 バインダは、電気化学的に安定であることが好ましい。
 バインダにおける電気化学的な安定性は、サイクリックボルタンメトリーで求められる酸化電流値又は還元電流値により評価される。
 バインダの酸化電流値は、下記条件Iのサイクリックボルタンメトリーで求められる。前記酸化電流値が小さいほど(即ち、0mA/gに近いほど)、酸化安定性が良好となって、電気化学素子のサイクル特性のさらなる向上を図れる。酸化電流値は、例えば、2mA/g以下が好ましく、1.8mA/g以下がより好ましい。酸化電流値は、絶対値で表されるものである。
 <条件I>
 下記仕様の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3.5~5Vで1サイクル目の電流値を測定する。酸化電流値は、電圧値4.8Vでの電流値を作用極の質量で除した値である。
 ≪3電極式電解セルの仕様≫
 作用極:アルミニウム箔とアルミニウム製のメッシュとの間に、電極用バインダ1質量部とアセチレンブラック1質量部とからなる合剤層が設けられたもの。
 参照極:リチウム箔。
 対極:リチウム箔。
 電解液:1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))。
 バインダの還元電流値は、下記条件IIのサイクリックボルタンメトリーで求められる。前記還元電流値が小さいほど(即ち、0mA/gに近いほど)、還元安定性が良好となって、電気化学素子のサイクル特性のさらなる向上を図れる。還元電流値は、例えば、5mA/g以下が好ましく、4mA/g以下がより好ましい。還元電流値は、絶対値で表されるものである。
 <条件II>
 前記の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3~0Vで1サイクル目の電流値を測定する。還元電流値は、電圧値0.5Vでの電流値を作用極の質量で除した値である。
 (電気化学素子の電極用組成物)
 電気化学素子の電極用組成物(以下、単に電極用組成物ということがある)は、バインダを含有するものである。
 電極用組成物の形態は、粉末状、又は水等の溶媒に分散されたスラリー状のもの等が挙げられ、保管時又は流通時における安定性や経済性、取り扱いの容易さの観点から粉末状が好ましい。
 粉末状の電極用組成物中のバインダの含有量は、例えば、50質量%以上が好ましく、80質量%以上がより好ましく、100質量%であってもよい。上記下限値以上であれば、本発明の効果が顕著に発揮される。
 スラリー状の電極用組成物中のバインダの含有量は、例えば、20質量%以上が好ましく、40質量%以上がより好ましい。上記下限値以上であれば、本発明の効果が顕著に発揮される。
 電極用組成物は、必要に応じて粘度調整剤等の添加剤を含有してもよい。
 粘度調整剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系重合体及びこれらのアンモニウム塩;ポリ(メタ)アクリル酸ナトリウム等のポリ(メタ)アクリル酸塩;ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸、マレイン酸又はフマル酸とビニルアルコールの共重合体、変性ポリビニルアルコール、変性ポリアクリル酸、ポリエチレングリコール、ポリカルボン酸等が挙げられる。中でも、添加剤は、電極に残留するため、電気化学的安定性のあるものが好ましい。
 電極用組成物が添加剤を含有する場合、電極用組成物中の添加剤の含有量は、電極用組成物を100質量%とした場合、10質量%以下が好ましい。ただし、電池性能をより高める観点から、電極用組成物は添加剤を実質的に含有しないことが好ましい。
 <電極用組成物の製造方法>
 電極用組成物の製造方法としては、例えば、粉末状のバインダと、必要に応じて粉末状の添加剤とを粉体混合する方法や、バインダと、必要に応じて粉末状の添加剤とを水、有機溶剤、又は水と有機溶剤との混合液に分散する方法等が挙げられる。
 (電気化学素子用の電極)
 電気化学素子用の電極(以下、単に電極ということがある)は、集電体と、前記集電体上に設けられた合剤層とを備えるものである。
 合剤層は、電極用組成物と電極活物質とを含有するものであり、例えば、板状の集電体の少なくとも一方の面上に形成された層である。
 合剤層の厚みは、特に限定されないが、例えば、20~200μmが好ましく、70~120μmがより好ましい。なお、正極は、負極と比べ活物質の容量が小さいため、正極の合剤層は、負極の合剤層より厚くされることが好ましい。
 電極活物質は、正極の電位と負極の電位が異なるものであればよい。
 リチウムイオン二次電池の場合、正極の電極活物質(正極活物質)としては、負極の電極活物質(負極活物質)より高電位(金属リチウムに対し)であり、充放電時にリチウムイオンを吸脱できる物質が用いられる。例えば、鉄、コバルト、ニッケル、マンガン及びバナジウムから選ばれる少なくとも1種類以上の金属と、リチウムとを含有するリチウム含有金属複合酸化物、ポリアニリン、ポリチオフェン、ポリアセチレン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリピロール及びその誘導体、ポリチエニレン及びその誘導体、ポリピリジンジイル及びその誘導体、ポリイソチアナフテニレン及びその誘導体等のポリアリーレンビニレン及びそれらの誘導体等の導電性高分子が挙げられる。導電性高分子としては、有機溶媒に可溶なアニリン誘導体の重合体が好ましい。正極活物質は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 負極活物質としては、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭等の炭素材料;前記炭素材料とシリコン、錫、銀等の金属又はこれらの酸化物との複合物等が挙げられる。負極活物質は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 リチウムイオン二次電池においては、正極活物質としてリチウム含有金属複合酸化物を用い、負極活物質として黒鉛を用いることが好ましい。このような組み合わせとすることで、リチウムイオン二次電池の電圧を例えば4V以上に高められる。
 合剤層は、導電助剤を含有してもよい。導電助剤を含有することで、電池性能をより高められる。
 導電助剤としては、黒鉛、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、導電性高分子等が挙げられる。これらの導電助剤は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 合剤層を形成する電極用組成物及び電極活物質の配合比は、電極活物質100質量部に対し、電極用組成物0.1~10質量部が好ましい。
 合剤層を形成する導電助剤及び電極活物質の配合比は、電極活物質100質量部に対し、導電助剤0~10質量部が好ましく、0.1~10質量部がより好ましい。
 集電体は、導電性を有する物質であればよく、例えば、アルミニウム、銅、ニッケル等の金属が挙げられる。
 集電体の形状は、目的とする電池の形態に応じて決定でき、例えば、薄膜状、網状、繊維状が挙げられ、中でも、薄膜状が好ましい。
 集電体の厚みは、特に限定されないが、5~30μmが好ましく、8~25μmがより好ましい。
 <電極の製造方法>
 電極の製造方法としては、従来公知の方法を用いることができる。例えば、粉末状の電極用組成物と電極活物質とを水等の溶媒に分散してスラリー(特に、電極スラリーということがある)を調製し(スラリー調製工程)、この電極スラリーを集電体に塗布し(塗布工程)、溶媒を除去して(溶媒除去工程)、バインダで電極活物質を保持した固層を得る。
 スラリー調製工程では、電極用組成物と、電極活物質と、必要に応じて導電助剤又は添加剤とを溶媒に分散する。
 溶媒は、水、及び水と有機溶剤との混合液が挙げられる。有機溶剤としては、電極用組成物を均一に溶解又は分散しやすいものが選択され、例えば、NMP、NMPとエステル系溶媒(酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート等)との混合溶液、NMPとグライム系溶媒(ジグライム、トリグライム、テトラグライム等)との混合溶液等が挙げられる。これらの有機溶剤は、1種単独で又は2種以上を適宜組み合わせて用いることができる。ただし、有機溶剤は環境への負荷が高いことから、水を溶媒とすることが好ましい。加えて、本発明のバインダは、重合体中のN-ビニルホルムアミド単位の含有率が高いほど、親水性が高まるため、水に容易に溶解又は分散できる。
 電極スラリー中の溶媒の含有量は、常温で電極用組成物が溶解した状態又は分散した状態を保てる必要最低限の量であればよい。加えて、電極スラリー中の溶媒の含有量は、塗布工程において集電体に塗布しやすい粘度を勘案して決定される。塗布工程における電極スラリーの粘度は、レオメーターを用いたせん断速度100s-1の時における粘度が、好ましくは0.1~100Pa・s、より好ましくは0.5~10Pa・sとされる。粘度が上記上限値超であると合剤層の表面にかすれやスジ引きが生じるおそれがあり、粘度が上記下限値未満であると合剤層の表面にムラが生じるおそれがある。
 塗布工程は、集電体に電極スラリーを任意の厚みで塗布できるものであればよく、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、刷毛塗り法等の方法が挙げられる。
 溶媒除去工程は、溶媒を十分に除去でき、かつバインダを分解しない条件であればよく、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥法等が挙げられる。中でも、本工程としては、40~140℃、好ましくは60~120℃で加熱する方法が好ましい。温度が上記下限値以上であれば、活物質と集電体、又は活物質間の密着性をより高められる。温度が上記上限値以下であれば、バインダが分解されにくく、集電体が腐食されにくい。
 本工程の処理時間は、温度条件等を勘案して決定され、例えば、1分~20時間が好ましい。
 溶媒除去工程の後、必要に応じて合剤層を圧延してもよい(圧延工程)。圧延工程を設けることで、合剤層の面積を広げ、かつ合剤層を任意の厚みに調節でき、合剤層表面の平滑度及び電気密度を高めることができる。プレス方法としては、金型プレスやロールプレス等が挙げられる。
 必要に応じて、得られた電極を任意の寸法に切断してもよい(スリット加工工程)。
 電極としては、集電体と合剤層とメッシュとがこの順で積層されたものであってもよい。メッシュとしては、例えば、アルミニウム製等の金属製のメッシュが挙げられる。
 (リチウムイオン二次電池)
 電気化学素子の1種であるリチウムイオン二次電池は、上記の電極を備えるものである。リチウムイオン二次電池としては、例えば、正極と負極とをポリエチレン微多孔膜等からなるセパレータを介して重ね合わせ、これを捲回した捲回物が、電解液と共に電池容器に収容されたもの、等が挙げられる。
 電解液は、溶媒である有機溶剤に電解質を溶解したものである。
 電解液の有機溶剤としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、NMP等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらの有機溶剤は、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 電解質としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li[(COB等が挙げられる。
 リチウムイオン二次電池の電解液としては、カーボネート類にLiPFを溶解したものが好ましい。
 ≪リチウムイオン二次電池の製造方法≫
 リチウムイオン二次電池の製造方法の一例を説明する。
 まず、正極と負極とを、セパレータを介して捲回して捲回体とする。得られた捲回体を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。次いで、電池缶に電解液を注入し、予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接する。蓋を絶縁性のガスケットを介して電池缶の上部に配置し、蓋と電池缶とが接した部分をかしめて密閉して、リチウムイオン二次電池とする。
 こうして得られたリチウムイオン二次電池は、電池性能、特にレート特性に優れるものである。電池性能に優れるのは、合剤層が本発明の電極用組成物を含有するため、電解液で膨潤して膨張することが抑制され、電気抵抗が増大したり、結着性が低下することがなく、高い電池性能を維持できるためである。
 加えて、バインダの結着性が長期に維持されるため、リチウムイオン二次電池の寿命が長くなる。
 以下、本発明について実施例を示して説明するが、本発明は実施例に限定されるものではない。
 (実施例1)
 脱イオン水70質量部に対し、N-ビニルホルムアミド30質量部を混合し、リン酸によりpH=6.3となるように調節して単量体調節液を得た。この単量体調節液を5℃まで冷却した後、温度計を取り付けた断熱反応容器に入れ、15分間窒素曝気を行った。2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬工業株式会社製、V-50)1500質量ppm(対単量体)を12質量%水溶液として単量体調節液に添加した。次いで、t-ブチルハイドロパーオキサイド200質量ppm(対単量体)を10質量%水溶液として、単量体調節液に添加し、亜硫酸水素ナトリウム200質量ppm(対単量体)を10質量%水溶液として、単量体調節液に添加し、重合した。内温が重合発熱のピーク温度を超えた後、1時間熟成し、ゲルを取り出しミートチョッパーで粉砕した。粉砕物を60℃で10時間乾燥し、得られた固体を粉砕して、粘度平均分子量250万の粉末状のポリN-ビニルホルムアミド(PNVF)を得、これをバインダとした。得られたバインダについて、酸化電流値及び還元電流値を求め、その結果を表1に示す。
 <電池用の正極の製造>
 バインダ0.06gと水2.0gとを自転公転ミキサー(泡とり練太郎、Thinky社製)で混練して(自転1000rpm、公転2000rpm)、バインダ溶液を得た。バインダ溶液にコバルト酸リチウム(以下、LCO)(セルシードC-5H、日本化学工業株式会社製)3.0gを加え、自転公転ミキサーで混練し、次いで、アセチレンブラック(以下、AB)(電気化学工業株式会社製)0.15gをバインダ溶液に加え混練して、混練物を得た。混練物に水を加えて塗布可能な粘度に調整して、正極スラリーを得た。
 得られた正極スラリーを集電体(アルミニウム箔、厚み20μm)に、ドクターブレード法によって均一に塗布し、次いで、ホットプレート上で100℃、10分間乾燥した。さらに真空乾燥機にて0.6kPa、100℃で12時間減圧乾燥して厚み100μmの合剤層を備える正極を得た。得られた正極について剥離強度を測定した。その結果を表1に示す。
 <2016型コイン電池(リチウムイオン二次電池)の製造>
 「<電池用の電極の製造>」で得られた正極と、金属リチウム(厚み0.7mm、本城金属株式会社製)の負極とを、セパレータ(セルガード♯2400)を介して対向させた。1mol/Lの六フッ化リン酸リチウム(LiPF)溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))を電解液として用い、2016型コイン電池を製造した。得られた2016型コイン電池を用い、サイクル特性及びレート特性を評価し、その結果を表1に示す。
 (実施例2)
 2,2’-アゾビス(2-アミジノプロパン)二酢酸塩の添加量を3000質量ppm(対単量体)とし、t-ブチルハイドロパーオキサイドの添加量を400質量ppm(対単量体)とし、亜硫酸水素ナトリウムの添加量を400質量ppm(対単量体)とした以外は、実施例1と同様にして、粘度平均分子量150万の粉末状のポリN-ビニルホルムアミド(PNVF)を得、これをバインダとした。得られたバインダについて、酸化電流値及び還元電流値を求め、その結果を表1に示す。得られたバインダを用いて、実施例1と同様にして正極及び2016型コイン電池を作製し、剥離強度、サイクル特性及びレート特性を評価し、その結果を表1に示す。
 (実施例3)
 脱イオン水70質量部に対し、次亜リン酸ナトリウム0.5質量部を混合した次亜リン酸ナトリウム水溶液を70℃に加温し、15分間、窒素曝気を行った。窒素曝気後の次亜リン酸ナトリウム水溶液に、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(和光純薬工業株式会社製、V-50)1質量部を添加した後、N-ビニルホルムアミド30質量部を3時間かけて滴下した。N-ビニルホルムアミドを滴下し始めてから1時間後に、0.5質量部のV-50を10質量%水溶液として次亜リン酸ナトリウム水溶液に追加した。滴下終了後、3時間、70℃を保った後冷却し、水溶液を得た。得られた水溶液を多量のメタノール中に投入し、脱水、乾燥して固体を得た。得られた固体を粉砕して、粘度平均分子量68万のポリN-ビニルホルムアミド(PNVF)を得、これをバインダとした。得られたバインダについて、酸化電流値及び還元電流値を求め、その結果を表1に示す。得られたバインダを用いて実施例1と同様にして正極及び2016型コイン電池を作製し、剥離強度、サイクル特性及びレート特性を評価し、その結果を表1に示す。
 (実施例4)
 <電池用の負極の製造>
 実施例1のバインダ0.1gと水2.4gとを自転公転ミキサーで混練して、バインダ溶液を得た。バインダ溶液に天然黒鉛系負極活物質(MPGC16、三菱化学株式会社製)5.0gを加え、自転公転ミキサーで混練して、混練物を得た。混練物に水を加えて塗布可能な粘度に調整して、負極スラリーを得た。
 得られた負極スラリーを集電体(銅箔、厚み18μm)に、ドクターブレード法によって均一に塗布した。さらに真空乾燥機にて0.6kPa、100℃で12時間減圧乾燥して、厚み80μmの合剤層(負極層)を備える負極を得た。得られた負極について剥離強度を測定した。その結果を表1に示す。
 <2016型コイン電池(リチウムイオン二次電池)の製造>
 「<電池用の負極の製造>」で得られた負極と、市販の正極(金属リチウム箔、厚み0.7mm、本城金属株式会社製)とを、セパレータ(セルガード♯2400)を介して対向させた。1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))を電解液として用い、2016型コイン電池を製造した。得られた2016型コイン電池を用い、サイクル特性及びレート特性を評価し、その結果を表1に示す。
 (比較例1)
 ポリN-ビニルアセトアミド(PNVA)(GE191-000、昭和電工株式会社製)をバインダとした以外は、実施例1と同様にして正極及び2016型コイン電池を作製し、剥離強度、サイクル特性及びレート特性を評価し、その結果を表1に示す。また、PNVAについて、酸化電流値及び還元電流値を求め、その結果を表1に示す。
 (比較例2)
 バインダとしてポリフッ化ビニリデン(PVDF)(PVDF#1100、キシダ化学株式会社製)を用い、下記の方法で正極を製造した以外は実施例1と同様にして、剥離強度、サイクル持性及びレート特性を評価し、その結果を表1に示す。また、PVDFについて、酸化電流値及び還元電流値を求め、その結果を表1に示す。
 <正極の製造>
 PVDF0.06gとN-メチルピロリドン(以下、NMP)2.0gを自転公転ミキサーで混練した。LCO3.0gを加え自転公転ミキサーで混練した。AB0.15gを加え混練した後、NMPを加えて塗工可能な粘度に調整して、正極スラリーを得た。
 得られた正極スラリーを集電体(アルミニウム箔、厚み20μm)にドクターブレード法によって均一に塗布し、ホットプレート上で140℃、10分間乾燥した。さらに真空乾燥機にて0.6kPa、100℃で12時間減圧乾燥して厚み100μmの合剤層を備える正極を得た。
 (比較例3)
 バインダとしてスチレン-ブタジエンゴム(SBR)(TRD2001、JSR株式会社製)を用い、増粘剤としてカルボキシメチルセルロース(CMC)(セロゲン4-H、第一工業製薬株式会社製)を用い、下記の方法で正極を製造した以外は実施例1と同様にして、剥離強度、サイクル特性及びレート特性を評価し、その結果を表1に示す。また、SBRとCMCとの混合物(SBR/CMC=2/1(質量比))について、酸化電流値及び還元電流値を求め、その結果を表1に示す。
 <正極の製造>
 CMC0.06gと水2.0gを自転公転ミキサーで混練した。LCO3.0gを加え、自転公転ミキサーで混練した。AB0.12gを加え混練した後、SBR水分散液(TRD2001、JSR株式会社製)を固形分換算で0.12g加え、次いで水を加えて塗工可能な粘度に調整して、正極スラリーを得た。
 得られた正極スラリーを集電体(アルミニウム箔、厚み20μm)にドクターブレード法によって均一に塗布し、ホットプレート上で100℃、10分間乾燥した。さらに真空乾燥機にて0.6kPa、100℃で12時間減圧乾燥して厚み100μmの合剤層を備える正極を得た。
 (比較例4)
 ポリN-ビニルアセトアミド(PNVA)(GE191-000、昭和電工株式会社製)をバインダとした以外は、実施例4と同様にして負極及び2016型コイン電池を作製し、剥離強度、サイクル特性及びレート特性を評価し、その結果を表1に示す。
 (評価方法)
 <剥離強度>
 各例の正極又は負極(幅2cm)を両面テープ(#570、積水化学工業株式会社製)でポリカーボネート板(2.5cm×10cm×厚み1mm)に貼着して、試験片を得た。この際、合剤層がポリカーボネート板に向くように、正極又は負極をポリカーボネート板に貼着した。
テンシロン(RTC-1210A、株式会社オリエンテック製)を用い、集電体を試料片から剥離した際の平均荷重を測定した。5個の試料片について、前記の平均荷重を測定し、その平均値を剥離強度とした。測定条件は、剥離速度10mm/分、剥離角度180°、環境温度23℃、環境湿度40%RHであった。剥離強度が大きいほど、合剤層が集電体により強固に結着していることを示す。
 <サイクル特性>
 充電と放電とを1サイクルとし、50サイクル目の放電容量により、サイクル特性を評価した。
 実施例1~3、比較例1~3については、60℃で充放電レートを0.5Cとし、定電流法(電流密度:0.6mA/g-活物質)で4.2Vに充電し、3Vまで放電する充放電を1サイクルとした。各例の初期放電容量はいずれも約140mAh/gであった。
 実施例4及び比較例4については、60℃で充放電レートを0.5Cとし、定電流法(電流密度:0.6mA/g-活物質)で、1.5Vに充電し、0.05Vまで放電する充放電を1サイクルとした。各例の初期放電容量は、いずれも約360mAh/gであった。
50サイクル目の放電容量が大きいほど、電池の寿命がより長いことを示す。
 <レート特性>
 充電時の定電流量を0.2Cとし、サイクルを重ねる毎に、放電時の定電流量を0.2C、0.5C、1.0C、2.0C、5.0Cの順で変更し、定電流法で充放電を行った。0.2Cでの放電容量に対する5.0Cでの放電容量の割合を百分率で表した。この値が大きいほど、高速充放電ができることを示す。
 <バインダの電気化学的安定性の評価>
 ≪酸化電流値≫
 酸化電流値をサイクリックボルタンメトリーにより測定した。
 各例のバインダの4質量%水溶液10質量部と、AB0.4質量部とを自転公転ミキサーで混練して(自転1000rpm、公転2000rpm)、混練物を得た。混練物に水を加えて塗布可能な粘度に調整して、電極スラリーを得た。
 アルミニウム箔(3cm×3cm×厚み20μm)に、電極スラリーを2cm×3cmの範囲に塗布厚が100μmとなるように塗布した。塗布した電極スラリー上にアルミニウム製のメッシュ(3cm×3cm、線径0.1mm、目開き0.112mm)を載置して、積層体を得た。得られた積層体を100℃のホットプレート上で15分間加熱して、電極スラリーを乾燥した。電極スラリーを乾燥した後、積層体を3cm×1cmに切り出して、作用極とした。得られた作用極を用い、下記仕様の3電極式電解セルを作製した。
 3電極式電解セルの仕様
 ・参照極:リチウム箔、3cm×0.5cm×厚み700μm。
 ・対極:リチウム箔、3cm×1cm×厚み700μm。
 ・電解液:1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))。
 ・電極間距離:15mm。
 ・電解液量:20mL。
 前記の3電極式電解セルを用い、23℃、掃引速度1mV/s、掃引範囲3.5~5Vで1サイクル目の電流値を測定した。酸化電流値は、圧値4.8Vでの電流値(mA)を作用極の質量(g)で除した値である。
 ≪還元電流値≫
 掃引速度を1mV/sとし、掃引範囲を3~0Vとした以外は、「≪酸化電流値≫」と同様にして、1サイクル目の電流値を測定した。還元電流値は、電圧値0.5Vでの電流値(mA)を作用極の質量(g)で除した値である。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明を正極に適用した実施例1~4は、バインダにN-ビニルホルムアミド単位を有する重合体を用いなかった比較例1~4に比べ、サイクル特性及びレート特性が高いものであった。
 以上の結果から、本発明のバインダは、PNVA、PVDF、SBRに比べて、優れた電池性能を発揮できることが判った。加えて、本実施例のバインダは、水溶性の粉体状として供給できるため利便性に優れる。
 本発明のバインダは、N-ビニルホルムアミド単位を有する重合体であるため、結着性の低下及び電池内部抵抗の増大に起因する電池性能の低下を抑制でき、電池性能の向上が図れる。このため、本発明のバインダは、種々の電気化学素子、特に二次電池の電極用バインダとして有用である。

Claims (9)

  1.  N-ビニルホルムアミド単位を有する重合体である電気化学素子の電極用バインダ。
  2.  水溶性である請求項1に記載の電気化学素子の電極用バインダ。
  3.  前記重合体がN-ビニルホルムアミド単位を10~100モル%有する請求項1に記載の電気化学素子の電極用バインダ。
  4.  前記重合体の粘度平均分子量が1万~1000万である請求項1に記載の電気化学素子の電極用バインダ。
  5.  下記条件Iのサイクリックボルタンメトリーで求められる酸化電流値が2mA/g以下である請求項1に記載の電気化学素子の電極用バインダ。
     <条件I>
     下記仕様の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3.5~5Vで1サイクル目の電流値を測定する。酸化電流値は、電圧値4.8Vでの電流値を作用極の質量で除した値である。
     ≪3電極式電解セルの仕様≫
     作用極:アルミニウム箔とアルミニウム製のメッシュとの間に、電極用バインダ1質量部とアセチレンブラック1質量部とからなる合剤層が設けられたもの。
     参照極:リチウム箔。
     対極:リチウム箔。
     電解液:1mol/Lの六フッ化リン酸リチウム溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=1/2(体積比))。
  6.  下記条件IIのサイクリックボルタンメトリーで求められる還元電流値が5mA/g以下である請求項5に記載の電気化学素子の電極用バインダ。
     <条件II>
     前記の3電極式電解セルを用い、掃引速度1mV/s、掃引範囲3~0Vで1サイクル目の電流値を測定する。還元電流値は、電圧値0.5Vでの電流値を作用極の質量で除した値である。
  7.  請求項1に記載の電気化学素子の電極用バインダを含有する電気化学素子の電極用組成物。
  8.  集電体と、前記集電体上に設けられた合剤層とを備え、前記合剤層は、請求項7に記載の電気化学素子の電極用組成物と電極活物質とを含有する電気化学素子用の電極。
  9.  請求項8に記載の電気化学素子用の電極を備える電気化学素子。
PCT/JP2012/066048 2011-06-24 2012-06-22 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子 WO2012176895A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147001702A KR20140037937A (ko) 2011-06-24 2012-06-22 전기화학 소자의 전극용 바인더, 전기화학 소자의 전극용 조성물, 전기화학 소자의 전극 및 전기화학 소자
JP2012531927A JP6145693B2 (ja) 2011-06-24 2012-06-22 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子
CN201280039135.8A CN103733289B (zh) 2011-06-24 2012-06-22 电化学元件的电极用粘合剂、电化学元件的电极用组合物、电化学元件的电极及电化学元件
US14/128,240 US20140193709A1 (en) 2011-06-24 2012-06-22 Binder for electrode of electrochemical element, composition for electrode of electrochemical element, electrode of electrochemical element and electrochemical element
EP12802582.2A EP2725644B1 (en) 2011-06-24 2012-06-22 Binder for electrode of electrochemical element, composition for electrode of electrochemical element, electrode of electrochemical element, and electrochemical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140358 2011-06-24
JP2011140358 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176895A1 true WO2012176895A1 (ja) 2012-12-27

Family

ID=47422722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066048 WO2012176895A1 (ja) 2011-06-24 2012-06-22 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子

Country Status (7)

Country Link
US (1) US20140193709A1 (ja)
EP (1) EP2725644B1 (ja)
JP (1) JP6145693B2 (ja)
KR (1) KR20140037937A (ja)
CN (1) CN103733289B (ja)
TW (1) TWI474545B (ja)
WO (1) WO2012176895A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081152A1 (ja) * 2011-12-02 2013-06-06 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
JP2013164972A (ja) * 2012-02-10 2013-08-22 Mitsubishi Rayon Co Ltd 二次電池電極バインダ用重合体とその製造方法、二次電池用電極、およびリチウムイオン二次電池
US20140293508A1 (en) * 2013-04-01 2014-10-02 Korea Institute Of Machinery & Materials Electrode composition for supercapacitor, electrode including cured material, and supercapacitor including electrode
JP2014222604A (ja) * 2013-05-13 2014-11-27 三菱レイヨン株式会社 二次電池用水溶性結着性組成物、二次電池電極用合剤、二次電池用電極、リチウムイオン二次電池
JP2014235798A (ja) * 2013-05-31 2014-12-15 三菱レイヨン株式会社 非水電解質二次電池電極用バインダ樹脂、非水電解質二次電池電極用スラリー組成物、非水電解質二次電池用電極、非水電解質二次電池
US20160260975A1 (en) * 2013-10-23 2016-09-08 Mitsubishi Rayon Co., Ltd. Resin composition for secondary battery electrodes, solution or dispersion for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and secondary battery
US12051782B2 (en) 2019-03-29 2024-07-30 Asahi Kasei Kabushiki Kaisha Method for producing non-aqueous alkali metal electricity storage element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037266B1 (ko) * 2012-12-14 2019-10-29 삼성전기주식회사 전극 구조물 및 이를 구비하는 에너지 저장 장치
US20190067698A1 (en) * 2015-10-16 2019-02-28 Mitsubishi Chemical Corporation Binder resin for secondary battery electrodes, binder resin composition for secondary battery electrodes using same, slurry for secondary battery electrodes, electrode for secondary batteries, and secondary battery
TWI675503B (zh) * 2018-05-21 2019-10-21 國立成功大學 鋰電池
JP2020129495A (ja) * 2019-02-08 2020-08-27 エムテックスマート株式会社 全固体電池の製造方法
KR20220123000A (ko) * 2019-12-27 2022-09-05 니폰 제온 가부시키가이샤 전기 화학 디바이스, 전기 화학 디바이스용 전극, 전기 화학 디바이스용 도공액, 및 그 용도

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117860A (ja) 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 電極およびリチウム二次電池
JP2002251999A (ja) 2001-02-22 2002-09-06 Showa Denko Kk 非水電池並びに該電池に用いる電極用ペースト及び電極
JP2007109628A (ja) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd 電池用電極およびその製造方法
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法
WO2010021557A2 (en) * 2008-08-19 2010-02-25 Uniwersytet Jagiellonski Process for the preparation of conductive carbon layers on powdered supports
WO2010114119A1 (ja) * 2009-04-03 2010-10-07 東洋インキ製造株式会社 非水系二次電池電極用バインダー組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162255B1 (en) * 2000-06-07 2008-10-01 Kao Corporation Liquid detergent composition
JP4279264B2 (ja) * 2001-02-21 2009-06-17 昭和電工株式会社 色素増感型太陽電池用金属酸化物分散液、光活性電極及び色素増感型太陽電池
WO2005071704A2 (en) * 2004-01-22 2005-08-04 Showa Denko K.K. Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell
CN101677141B (zh) * 2008-09-18 2011-10-12 比亚迪股份有限公司 一种电解液添加剂及含该添加剂的电解液及锂离子电池
EP2346909B1 (en) * 2008-11-13 2018-05-16 Isp Investments Inc. Polymers derived from n-vinyl formamide, vinyl amides or acrylamides, and reaction solvent, and the uses thereof
JP2010177061A (ja) * 2009-01-30 2010-08-12 Hymo Corp 電池負極用バインダー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117860A (ja) 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd 電極およびリチウム二次電池
JP2002251999A (ja) 2001-02-22 2002-09-06 Showa Denko Kk 非水電池並びに該電池に用いる電極用ペースト及び電極
JP2007109628A (ja) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd 電池用電極およびその製造方法
WO2010021557A2 (en) * 2008-08-19 2010-02-25 Uniwersytet Jagiellonski Process for the preparation of conductive carbon layers on powdered supports
WO2010114119A1 (ja) * 2009-04-03 2010-10-07 東洋インキ製造株式会社 非水系二次電池電極用バインダー組成物
JP2009277660A (ja) * 2009-07-13 2009-11-26 Kyoritsu Kagaku Sangyo Kk リチウム非水電解質電池用電極、及びリチウム非水電解質電池用正極集電体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725644A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081152A1 (ja) * 2011-12-02 2013-06-06 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
US9774038B2 (en) 2011-12-02 2017-09-26 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US10361434B2 (en) 2011-12-02 2019-07-23 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013164972A (ja) * 2012-02-10 2013-08-22 Mitsubishi Rayon Co Ltd 二次電池電極バインダ用重合体とその製造方法、二次電池用電極、およびリチウムイオン二次電池
US20140293508A1 (en) * 2013-04-01 2014-10-02 Korea Institute Of Machinery & Materials Electrode composition for supercapacitor, electrode including cured material, and supercapacitor including electrode
US9318276B2 (en) * 2013-04-01 2016-04-19 Korea Institute Of Machinery & Materials Electrode composition for supercapacitor, electrode including cured material, and supercapacitor including electrode
JP2014222604A (ja) * 2013-05-13 2014-11-27 三菱レイヨン株式会社 二次電池用水溶性結着性組成物、二次電池電極用合剤、二次電池用電極、リチウムイオン二次電池
JP2014235798A (ja) * 2013-05-31 2014-12-15 三菱レイヨン株式会社 非水電解質二次電池電極用バインダ樹脂、非水電解質二次電池電極用スラリー組成物、非水電解質二次電池用電極、非水電解質二次電池
US20160260975A1 (en) * 2013-10-23 2016-09-08 Mitsubishi Rayon Co., Ltd. Resin composition for secondary battery electrodes, solution or dispersion for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JPWO2015060126A1 (ja) * 2013-10-23 2017-03-09 三菱レイヨン株式会社 二次電池電極用樹脂組成物、二次電池電極用溶液または分散液、二次電池電極用スラリー、二次電池用電極および二次電池
US12051782B2 (en) 2019-03-29 2024-07-30 Asahi Kasei Kabushiki Kaisha Method for producing non-aqueous alkali metal electricity storage element

Also Published As

Publication number Publication date
EP2725644A4 (en) 2015-05-27
US20140193709A1 (en) 2014-07-10
CN103733289A (zh) 2014-04-16
JPWO2012176895A1 (ja) 2015-02-23
CN103733289B (zh) 2018-01-09
EP2725644A1 (en) 2014-04-30
JP6145693B2 (ja) 2017-06-14
EP2725644B1 (en) 2018-09-19
KR20140037937A (ko) 2014-03-27
TW201304262A (zh) 2013-01-16
TWI474545B (zh) 2015-02-21

Similar Documents

Publication Publication Date Title
JP6145693B2 (ja) 電気化学素子の電極用バインダ、電気化学素子の電極用組成物、電気化学素子の電極及び電気化学素子
KR101654448B1 (ko) 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
EP2787564B1 (en) Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
EP3193397B1 (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
EP2592678B1 (en) Binder resin composition for electrode of non-aqueous electrolyte battery, slurry composition, electrode and battery each containing the binder resin composition
CN111819716A (zh) 具有纤维素基或弱酸性化合物基导电高分子的电极活性物质及包含其的锂离子电池
JP5953827B2 (ja) 二次電池用電極合剤、その製造方法、二次電池用電極の製造方法、および二次電池の製造方法
TWI833722B (zh) 非水電解質電池用黏合劑、使用其之黏合劑水溶液及漿體組成物、以及非水電解質電池用電極及非水電解質電池
KR101623637B1 (ko) 전극용 슬러리 조성물 및 리튬이온 이차전지
JP6015441B2 (ja) 非水二次電池正極用バインダ樹脂、非水二次電池用正極、および非水二次電池
JP2013164972A (ja) 二次電池電極バインダ用重合体とその製造方法、二次電池用電極、およびリチウムイオン二次電池
Soundarrajan et al. Dual application of non-fluorinated polymer: Influence on mitigating dendrite growth and structural integrity of high energy density lithium metal battery
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池
JP2014222601A (ja) 非水二次電池負極用バインダー樹脂、非水二次電池負極用スラリー組成物、非水二次電池用負極、および非水二次電池
JP6244798B2 (ja) 二次電池電極用バインダ樹脂組成物、二次電池電極用スラリー、二次電池用電極、リチウムイオン二次電池
JP7311059B2 (ja) 負極バインダー組成物、負極、及び二次電池
JP2013149395A (ja) 二次電池用負極、およびリチウムイオン二次電池
JP2001155737A (ja) リチウムイオン二次電池電極用バインダー及びその利用
TW202405120A (zh) 負極黏合劑組成物及其製造方法、負極、以及二次電池
JP6024256B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池、およびそれらの製造方法
JP2016062663A (ja) 二次電池電極用バインダ樹脂、二次電池電極用バインダ樹脂組成物、電極スラリー、二次電池用電極、及びリチウムイオン二次電池
JP2016119279A (ja) 二次電池電極用バインダー、二次電池電極用スラリー、二次電池用電極及び非水二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012802582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001702

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128240

Country of ref document: US