WO2012174817A1 - 奈西立肽的制备方法 - Google Patents

奈西立肽的制备方法 Download PDF

Info

Publication number
WO2012174817A1
WO2012174817A1 PCT/CN2011/081307 CN2011081307W WO2012174817A1 WO 2012174817 A1 WO2012174817 A1 WO 2012174817A1 CN 2011081307 W CN2011081307 W CN 2011081307W WO 2012174817 A1 WO2012174817 A1 WO 2012174817A1
Authority
WO
WIPO (PCT)
Prior art keywords
ser
tbu
fmoc
resin
nesiceptin
Prior art date
Application number
PCT/CN2011/081307
Other languages
English (en)
French (fr)
Inventor
文永均
谢期林
王晓莉
郭德文
曾德志
Original Assignee
成都圣诺科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都圣诺科技发展有限公司 filed Critical 成都圣诺科技发展有限公司
Publication of WO2012174817A1 publication Critical patent/WO2012174817A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin

Definitions

  • the invention belongs to the technical field of preparation methods of polypeptide medicines, and particularly relates to a preparation method of nesiceptin.
  • Nesiritide is a human B-type natriuretic peptide, which binds to guanine cyclase receptors of vascular smooth muscle and endothelial cells, increases intracellular cGMP concentration, and relaxes smooth muscle cells. In the expansion of veins and arteries, cGMP plays the role of a second messenger. Nesiritide can relax exfoliating model of isolated human arteries and veins using endothelin or a-adrenergic agonist phenylephrine.
  • nesiritide reduced pulmonary capillary wedge compression (PCWP) in patients with heart failure in a dose-dependent manner.
  • PCWP pulmonary capillary wedge compression
  • nesiritide has no effect on cardiac contractility or cardiac electrophysiology such as atrioventricular node conduction.
  • a biphasic distribution is shown in plasma.
  • the half-life t 1/2 of nesiceptin is about 18 minutes and the AUC is about 27.
  • the average initial elimination phase is estimated to be approximately 2 minutes.
  • V c mean volume of distribution
  • V ss average steady-state volume
  • CL mean clearance
  • the level of plasma nesiritide is increased by about 3 to 6 times from the endogenous basal level.
  • Nesiritide has the following structure:
  • USA20080287650 reports the preparation of high-purity nesiritide, which uses solid-phase synthesis of 1-31 fragment, reacts with the 32nd amino acid, and oxidizes after acid hydrolysis. Purification of the product; US20090035815 reports a genetically engineered preparation method of nesiceptin; US20100317827 reports a purification method of nesiceptin.
  • the structure of this product contains a Ser-Ser-Ser-Ser fragment, which requires 4 accesses to Fmoc- during solid phase coupling.
  • Ser (tBu) when accessing the 2nd, 3rd, and 4th Fmoc-SeittBu), due to the nature of its structure, it is impossible to perform a complete reaction, so a large amount of [-Ser]-na is produced in the production process.
  • Western peptide, [-2Ser]-neisitide and [-3 Ser]-nezilide impurities, and these impurities are similar to the polarity of the nesiceptin, and it is difficult to completely remove it during the purification process.
  • the total yield of conventional solid phase synthesis of the product is very low, only 2 to 5%, and it is difficult to achieve large-scale production.
  • the technical problem to be solved by the present invention is to provide a preparation method of nesiceptin which uses a novel protective amino acid fragment, avoiding [-l Ser]-neissitide, [-2Ser]-nezitide And the production of [-3 Ser]-Nexide peptide impurities, to improve production efficiency, to achieve a large-scale solid phase synthesis process.
  • the preparation method of the nesiceptin of the invention comprises the preparation of the nesilyl peptide linear peptide resin by the solid phase polypeptide synthesis method, the acidification of the nesicept peptide linear peptide resin to obtain the crude nesicept peptide linear peptide; the crude nesicept peptide linear peptide After oxidation, crude nesiceptin is obtained, and the crude nesiceptin is purified to obtain pure nesiceptin.
  • the solid phase polypeptide synthesis method comprises the following steps: sequentially inserting the corresponding Fmoc-protected amino acid in the following sequence on the Fmoc-His (trt)-carrier resin by solid phase coupling synthesis method to obtain the nesicept peptide linear peptide resin:
  • X is Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)
  • Ri is Fmoc, Boc or H
  • R 2 is Trt or H
  • R 3 is Trt or Acm.
  • the Fmoc-protected amino acid used for coupling is Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-Ser(tBu)-OH. , Fmoc-Ser(tBu)-Ser(tBu)-OH, Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)- At least one of Ser(»FMe,Mepro)-OH.
  • Two-stage peptide fragments are sequentially inserted in two couplings, one for Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH, one for Fmoc-Ser(tBu)-OH; or one for Fmoc-Ser(tBu)-Ser(tBu)-OH, one segment is Fmoc-Ser(tBu)-Se ⁇ Me,Mepro)-OH; or two segments are simultaneously Fmoc-Ser(tBu)-Ser(tBu); or The two segments are simultaneously Fmoc-Ser(tBu)-Se ⁇ Me, Mepro).
  • the protected amino acid species are: R SeittBu OH Fmoc-Gln(R 2 )-OH, Fmoc-Cys(R 3 )-OH,
  • Fmoc, Boc, R 2 is Trt or H
  • R 3 is Trt or Acm.
  • Fmoc is 9-fluorenylmethoxycarbonyl
  • tBu is tert-butyl
  • Trt is triphenylmethane
  • OtBu is tert-butoxy
  • Boc is tert-butoxycarbonyl.
  • the Fmoc-Ser(tBu)-Ser(tBu)-OH structure is:
  • the amount of the protected amino acid is 1.2 to 6 times, preferably 2.5 to 3.5 times, based on the total moles of the substituent group of the resin to be charged.
  • the present invention uses a novel protective amino acid fragment, which avoids the production of [-Ser]-nezilide, [-2Ser]-nezilide and [-3 Ser]-neissitide impurities in the production process, and overcomes The shortcomings of the prior art provide guarantee for obtaining high-quality products, the product purity is greater than 99.0%, the single impurity is less than 0.5%, the product yield is remarkably improved, and the reaction operation is simple, and the utility model has wide practical value and application. prospect.
  • the preparation method of the nesiceptin of the invention comprises the preparation of the nesilyl peptide linear peptide resin by the solid phase polypeptide synthesis method, the acidification of the nesicept peptide linear peptide resin to obtain the crude nesicept peptide linear peptide; the crude nesicept peptide linear peptide After oxidation, crude nesiceptin is obtained, and the crude nesiceptin is purified to obtain pure nesiceptin.
  • the solid phase polypeptide synthesis method comprises the following steps: sequentially inserting the corresponding Fmoc-protected amino acid in the following sequence on the Fmoc-His (trt)-carrier resin by solid phase coupling synthesis method to obtain the nesicept peptide linear peptide resin:
  • X is Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)
  • Ri is Fmoc, Boc or H
  • R 2 is Trt or H
  • R 3 is Trt or Acm.
  • the Fmoc-protected amino acid used for coupling is Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-Ser(tBu)-OH. , Fmoc-Ser(tBu)-Ser(tBu)-OH, Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)- At least one of Ser(»FMe,Mepro)-OH.
  • the solid phase coupling synthesis method is specifically: the protective amino acid obtained by the previous step reaction-resin is deprotected from Fmoc and then coupled with the next protective amino acid.
  • the reagent for removing Fmoc protection is 10 ⁇ 30% (V/V) piperidine (PIP)/N, N-dimethyl A formamide (DMF) solution, preferably 20%.
  • the deprotecting agent is used in an amount of 5 to 15 ml per gram of the resin to be charged, preferably 10 ml per gram of the resin to be charged.
  • the deprotection reaction time is from 10 to 60 minutes, preferably from 15 to 25 minutes.
  • a coupling reagent and an activating reagent are added during the coupling, and the condensation reagent is selected from the group consisting of ruthenium, osmium-diisopropylcarbodiimide (DIC),
  • ⁇ , ⁇ -dicyclohexylcarbodiimide DCC
  • benzotriazol-1-yl-oxytripyrrolidinylphosphonium PyBOP
  • 2-(7-aza-1H-benzoate Triazol-1-yl;) -1,1,3,3-tetramethylurea hexafluorophosphate HATU
  • benzotriazole
  • HBTU hexafluorophosphate
  • TBTU ruthenium, osmium-diisopropylcarbodiimide.
  • the molar amount of the condensation reagent is 1.2 to 6 times, preferably 2.5 to 3.5 times, the total mole of the amino group in the amino resin.
  • the activating reagent is selected from the group consisting of 1-hydroxybenzotriazole (HOBt;), N-hydroxy-7-azabenzotriazole (HOAt;), preferably 1-hydroxybenzotriazole.
  • the amount of the activating reagent is 1.2 to 6 times, preferably 2.5 to 3.5 times, based on the total mole of the amino group in the amino resin.
  • the coupling reaction time is from 60 to 300 minutes, preferably from 100 to 140 minutes.
  • the carrier resin has a substitution value of 0.2 to 1.0 mmol/g of a resin, and a preferred substitution value of 0.2 to 0.5 mmol/g of a resin has a high yield.
  • the carrier resin is a trityl chloride resin: such as Trityl-Cl resin, 4-Methyltrityl-Cl resin, 4-Methoxytrityl-Cl resin or 2-Cl-Trityl-Cl resin. Most preferred is a 2-Cl-Trity-Cl resin.
  • the coupling method of Fmoc-His (trt)-OH with the carrier resin is: the carboxyl group of Fmoc-His(trt)-OH and the C1-alkane in the resin act in the base The esterification reaction takes place and the protected amino acid is inserted.
  • the base is at least one selected from the group consisting of N.N-diisopropylethylamine (DIEA;), triethylamine (TEA;), and pyridine, preferably DIEA.
  • DIEA N.N-diisopropylethylamine
  • TEA triethylamine
  • pyridine preferably DIEA.
  • the molar amount of the base is 1.5 to 3 times the number of moles of the protected amino acid.
  • the esterification reaction time is 1 to 6 hours, preferably 3 hours.
  • the nesiceptin linear peptide resin is acid-decomposed while removing the resin and the side chain protecting group to obtain a crude nesicept peptide linear peptide:
  • the acidolytic agent is a mixed solvent of trifluoroacetic acid (TFA;), 1,2-ethanedithiol (EDT) and water.
  • TFA ratio of 80-95% (V/V)
  • EDT The ratio is 1 ⁇ 10% (V/V)
  • the balance is water.
  • the preferred ratio is 89-91%, and the EDT 4-6% balance is water.
  • the ratio is 90%, EDT is 5%, and the balance is water.
  • the amount of the acidolytic agent is 4 to 15 ml of acidolytic agent per gram of the peptide resin. Preferably, 9 to 1 ml of per gram of the peptide resin is required. Acidolytic agent.
  • the cleavage time using the acidulant is 1 to 5 hours at room temperature, preferably 3 hours.
  • crude nesicept peptide linear peptide is oxidized to obtain crude nesiceptin:
  • the crude nesicept peptide linear peptide was taken, dissolved in acetic acid, filtered and oxidized and cyclized with an oxidizing agent to obtain a crude solution of nesiceptin.
  • the volume percentage concentration of acetic acid is 20 to 40%, preferably 30%.
  • the oxidizing agent is selected from the group consisting of air, iodine, H 2 O 2 or DMSO, preferably iodine.
  • the oxidant is added by titration and stops at the end of the oxidation.
  • the method for purifying crude nesiceptin to obtain pure nesilide peptide is as follows:
  • the operation method for purifying high performance liquid chromatography is:
  • the crude nesiceptin solution was filtered through a 0.45 ⁇ mixed microporous membrane, and the purified chromatographic packing was reversed C18 of ⁇ , and the mobile phase system was 0.1% TFA/aqueous solution-0.1% TFA/acetonitrile solution, 77 mm*250 mm column.
  • the flow rate was 90 ml/min, eluted by a gradient system, and purified by circulating injection. After collecting the main peak and distilling off acetonitrile, the intermediate concentrate was purified by nexilide.
  • the nexilide purified intermediate concentrate was filtered through a 0.45 ⁇ filter, and the salt was changed by high performance liquid chromatography.
  • the mobile phase system was 1% acetic acid/water solution-acetonitrile, and the chromatographic packing for purification was reversed C18 of ⁇ .
  • the 77mm*250mm column flow rate is 90ml/min.
  • the nesiceptin linear peptide resin is:
  • the Fm 0C -His(Trt)-2-Cl-Trt-resin was deprotected by Fmoc, and then conjugated with the protected amino acid shown in Table 1 to obtain a nesicept peptide linear peptide resin.
  • the eleventh is the Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu) Ser(tBu)-OH prepared in Example 3.
  • the resin to the Fmoc is added to the second activated protective amino acid solution, and the coupling reaction is carried out for 60 to 300 minutes, and the 2 peptide resin is washed by filtration.
  • the Fmoc-protected amino acid corresponding to the 3rd to 29th amino acids that is, the Fmoc-[l ⁇ (; n-1)] amino acid-HisCTrt-Cl-Trt-resin obtained in the previous step, is sequentially inserted.
  • Coupling reaction with activated Fmoc-protected amino acid (n-th) after Fmoc protection for 60 to 300 minutes, n 2 ⁇ 29.
  • the resin was again protected with Floc for 10 minutes with 10 L of 20% PIP/DMF solution. After filtration and washing, the nesicept peptide linear peptide resin was obtained.
  • the reaction mixture was filtered using a sand funnel, and the filtrate was collected.
  • the resin was washed three times with a small amount of TFA.
  • the filtrate was combined and concentrated under reduced pressure. The mixture was evaporated to dryness diethyl ether and washed three times with anhydrous diethyl ether. It is a crude product of nesiceptin linear peptide.
  • nesicept peptide linear peptide was dissolved in a 30% acetic acid solution and made into a 1 mg/ml solution, and an iodine/30% acetic acid saturated solution was added dropwise to the solution to give a brownish red color.
  • the reaction was stirred for 30 minutes, and then the Vc solution was added dropwise. (Neutation of excess oxidant) to brownish red disappearance, concentration at 40 ° C under reduced pressure, to obtain a crude concentrated solution of nesiceptin.
  • the crude solution of nesiceptin was concentrated, and the solution was filtered through a 0.45 ⁇ m mixed microporous membrane for purification.
  • Purification by high performance liquid chromatography purification of the chromatographic packing material is ⁇ reversed phase C18, mobile phase system is 0.1% TFA / aqueous solution -0.1% TFA / acetonitrile solution, 77mm * 250mm column flow rate is 90ml / min, using Gradient system elution, cycle injection purification, take the crude solution to the column, start the mobile phase elution, collect the main peak and distill off the acetonitrile, The thiopeptide purified intermediate concentrate.
  • the nesiceptin purified intermediate concentrate was filtered and filtered through a 0.45 ⁇ m filter.
  • the salt was exchanged by high performance liquid chromatography.
  • the mobile phase system was 1% acetic acid/water solution-acetonitrile, and the chromatographic packing used for purification was reversed C18 of ⁇ .
  • the column flow rate of 77mm*250mm is 90ml/min (the corresponding flow rate can be adjusted according to the column of different specifications;).
  • Gradient elution, cyclic loading method loading on the column, starting the mobile phase elution, collecting the spectrum, observing the change of the absorbance, collecting the main peak of the salt exchange and detecting the purity with the analytical liquid phase, and combining the salt peak solution,
  • the mixture was concentrated under reduced pressure in a water bath of less than 40 ° C, and most of the acetonitrile was distilled off by a rotary evaporator to obtain an aqueous solution of nesiceptin acetic acid, which was freeze-dried to obtain a product of 196 g, and the total yield was 18.9%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cardiology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种奈西立肽的制备方法,包括在Fmoc-His(trt)-载体树脂上通过固相偶联合成法依次接入奈西立肽序列中相对应的Fmoc-保护氨基酸,其中在接入Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)片段时仅用1或2次固相偶联合成反应,所使用的保护氨基酸为Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH、Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH、Fmoc-Ser(tBu)-Ser(ΨΜe,Μepro)-OH和Fmoc-Ser(tBu)-Ser(tBu)-OH中的至少一种。

Description

奈西立肽的制备方法 技术领域
本发明属于多肽药物制备方法技术领域, 特别涉及奈西立肽的制备方法。
背景技术
奈西立肽 (Nesiritide)是人体 B型尿钠排泄肽, 奈西立肽与血管平滑肌及内皮细胞的鸟 苷酸环化酶受体结合, 细胞内的 cGMP浓度增加, 平滑肌细胞松弛。 在静脉、 动脉的扩张 作用中, cGMP扮演第二信使的角色。 奈西立肽能使用内皮缩血管肽或 a -肾上腺素能的促 效剂去氧肾上腺素制造的离体人动脉和静脉条收缩模型舒张。
在临床试验中, 奈西立肽能使心衰病人的肺毛细血管楔嵌压 (PCWP ) 降低, 呈剂量 依赖性。 在动物试验中, 奈西立肽对心脏收缩能力或心脏电生理如房室结传导等无影响。 给充血性心衰的病人静脉注射奈西立肽后, 在血浆中显示出二相性的分布。 奈西立肽的半 衰期 t1/2大约为 18分钟, AUC大约为 27。 平均初始消除相估计大约为 2分钟。 在这些病 人中, 奈西立肽中心室的平均分布体积(Vc)估计是 0.073L/kg, 平均稳态分布体积 ( Vss ) 是 0.19L/kg,平均清除率(CL)大约是 9.2mL/min/kg。在稳定状态,注射剂量范围从 0.01〜
0.03ug/kg/min的奈西立肽后, 血浆奈西立肽的水平从内源性的基础水平增加大约 3〜6倍。
奈西立肽具有以下的结构:
Ser-Pro-Lys-Met-Val-Gln-Gly-Ser-Gly-Cys-Phe-Gly-Arg-
Lys-Met-Asp-Arg-Ile-Ser-Ser-Ser-Ser-Gly-leu-Gly-Cys-
Lys-Val-Leu-Arg-Arg-His-OH
有关奈西立肽的制备方法, 国内外很少有报道, USA20080287650报道了高纯度奈西立 肽的制备, 采用固相合成 1-31片段, 再与第 32个氨基酸反应, 经酸解后氧化、 纯化得到 产品; US20090035815报道了一种基因工程的奈西立肽制备方法; US20100317827报道了 奈西立肽一种纯化方法。
中国专利 CN200910104860.9、 CN200910104861.3报道了一种固相制备和纯化方法, 采 用 HMPB-AM 树脂为载体树脂, 但 HMPB-AM 树脂在与第一个保护氨基酸 Fmoc-HisCTrt)-OH酯化的时候, 有 50%的 Fmoc-His(Trt)-OH将会发生消旋化, 所以在产品 中存在消旋异构体。
本品结构中含有一个 Ser-Ser-Ser-Ser片段, 在固相偶联时需要分 4次接入 Fmoc- Ser (tBu), 在接入第 2个、 第 3个和第 4个 Fmoc-SeittBu)时, 由于自身结构的特性, 无法 进行完全反应, 所以在生产过程中产生大量的 [-Ser]-奈西立肽、 [-2Ser]-奈西立肽和 [-3 Ser]- 奈西立肽杂质, 同时这些杂质与奈西立肽的极性相近, 在纯化过程中很难完全去掉, 所以 本产品常规固相合成总收率很低, 只有 2〜5%, 很难实现规模化生产。
发明内容
本发明所要解决的技术问题是提供奈西立肽的制备方法, 该制备方法使用了新型的保 护氨基酸片段, 避免了 [-l Ser]-奈西立肽, [-2Ser]-奈西立肽和 [-3 Ser]-奈西立肽杂质的产生, 提高生产效率、 实现规模化的固相合成工艺。
本发明奈西立肽的制备方法, 包括固相多肽合成法制备奈西立肽线性肽树脂、 奈西立 肽线性肽树脂酸解得到奈西立肽线性肽粗品; 奈西立肽线性肽粗品经氧化后得到奈西立肽 粗品, 奈西立肽粗品纯化得到奈西立肽纯品。 其中固相多肽合成法为: 在 Fmoc-His (trt) -载体树脂上通过固相偶联合成法依次接入下列序列中相对应的 Fmoc-保护氨基酸,得到奈 西立肽线性肽树脂:
R1-Ser(tBu)-Pro-Lys(Boc)-Met-Val-Gln(R2)-Gly-Ser(tBu)-
Gly-Cys(R3)-Phe-Gly-Arg(pbf)-Lys(Boc)-Met-Asp(OtBu)-
Arg(pbf)-Ile-X-Gly-Leu-Gly-Cys(R3)-Lys(Boc)-Val-Leu-
Arg(pbf)- Arg(pbf)-HiS(trt)-树脂
其中, X为 Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu), Ri为 Fmoc、 Boc或 H, R2为 Trt或 H,
R3为 Trt或 Acm。
接入 X片段时仅用 1或 2次固相偶联合成反应, 偶联所使用的 Fmoc-保护氨基酸为 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)-Ser(»FMe,Mepro)-OH 中的至 少一禾中。
优选的, 接入 X片段时仅用 1或 2次固相偶联合成反应, 具体为:
1 ) 1次偶联直接接入 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH,
2 ) 分 2次偶联依次接入 2段肽片段, 一段为 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH、 一 段为 Fmoc-Ser(tBu)-OH; 或一段为 Fmoc-Ser(tBu)-Ser(tBu)-OH、 一段为 Fmoc-Ser(tBu)- Se^Me,Mepro)-OH; 或两段 同 时为 Fmoc-Ser(tBu)-Ser(tBu); 或两段 同 时为 Fmoc-Ser(tBu)-Se^Me,Mepro)。 所述保护氨基酸种类分别为: R SeittBu OH Fmoc-Gln(R2)-OH, Fmoc-Cys(R3)-OH,
Fmoc-Arg(pbf)-OH、 Fmoc-Asp(tBu)-OH、 Fmoc-Gly-OH、 Fmoc-Ile-OH、 Fmoc-Leu-OH、
Fmoc-Lys(Boc)-OH、 Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Pro-OH,
Fmoc-VaK Fmoc-Ser(TBu)-OH、 Fmoc- Ser(tBu)- Ser(tBu)-OH Fmoc-Ser(tBu)-Ser(tBu)-
Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)-
8ει·(ΨΜε,ΜερΐΌ)-ΟΗ。
其中, 为 Fmoc、 Boc, R2为 Trt或 H, R3为 Trt或 Acm。
Fmoc为 9-芴甲氧羰基, tBu为叔丁基、 Trt为三苯基甲烷、 OtBu为叔丁氧基、 Boc为 叔丁氧羰酰基。
所述 Fmoc-Ser(t -Ser(tBu)-Ser(tBu)-Ser(tBu)-OH结构为:
Figure imgf000004_0001
所述 Fmoc-Ser(tBu)- r(tBu)-Ser(tBu)-OH结构为:
Figure imgf000004_0002
所述 Fmoc-Ser(tBu)-Ser(tBu)-OH结构为:
Figure imgf000004_0003
所述 Fmoc-SeittBu^Ser M Mepro OH结构为:
Figure imgf000005_0001
保护氨基酸用量为所投料树脂可取代基团总摩尔数的 1.2〜6倍, 优选 2.5〜3.5倍。 本发明使用了新型保护氨基酸片段, 避免了生产过程中 [-Ser]-奈西立肽、 [-2Ser]-奈西 立肽和 [-3 Ser]-奈西立肽杂质的产生, 克服了现有技术的缺点, 为获得高品质的产品提供了 保障, 产品纯度大于 99.0%, 单一杂质小于 0.5%, 显著提高了产品收率, 且具有反应操作 简单等特点, 具有广泛的实用价值和应用前景。
具体实施方式
本发明奈西立肽的制备方法, 包括固相多肽合成法制备奈西立肽线性肽树脂、 奈西立 肽线性肽树脂酸解得到奈西立肽线性肽粗品; 奈西立肽线性肽粗品经氧化后得到奈西立肽 粗品, 奈西立肽粗品纯化得到奈西立肽纯品。 其中固相多肽合成法为: 在 Fmoc-His (trt) -载体树脂上通过固相偶联合成法依次接入下列序列中相对应的 Fmoc-保护氨基酸,得到奈 西立肽线性肽树脂:
R1-Ser(tBu)-Pro-Lys(Boc)-Met-Val-Gln(R2)-Gly-Ser(tBu)-
Gly-Cys(R3)-Phe-Gly-Arg(pbf)-Lys(Boc)-Met-Asp(OtBu)-
Arg(pbf)-Ile-X-Gly-Leu-Gly-Cys(R3)-Lys(Boc)-Val-Leu-
Arg(pbf)- Arg(pbf)-HiS(trt)-树脂
其中, X为 Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu), Ri为 Fmoc、 Boc或 H, R2为 Trt或 H,
R3为 Trt或 Acm。
接入 X片段时仅用 1或 2次固相偶联合成反应, 偶联所使用的 Fmoc-保护氨基酸为 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)-Ser(»FMe,Mepro)-OH 中的至 少一禾中。 固相偶联合成法具体为: 前一步反应得到的保护氨基酸-树脂脱去保护 Fmoc后再与下 一个保护氨基酸偶联反应。 脱去 Fmoc保护的试剂为 10〜30%(V/V)哌啶 (PIP)/N,N-二甲基 甲酰胺 (DMF) 溶液, 优选的为 20%。 使用的去保护试剂用量为每克投料树脂 5〜15ml, 优选为每克投料树脂 10ml。 去保护反应时间为 10〜60分钟, 优选为 15〜25分钟。
偶联时需添加缩合试剂和活化试剂, 缩合试剂选自 Ν,Ν-二异丙基碳二亚胺 (DIC)、
Ν,Ν-二环己基碳二亚胺 (DCC), 六氟磷酸苯并三唑 -1-基 -氧基三吡咯烷基磷 (PyBOP)、 2-(7-氮杂 -1H-苯并三氮唑 -1-基;) -1, 1,3,3-四甲基脲六氟磷酸酯 (HATU)、 苯并三氮唑
-Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸盐 (HBTU)或 0-苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲四氟硼酸酯
(TBTU); 优选的为 Ν,Ν-二异丙基碳二亚胺。
缩合试剂的摩尔用量为氨基树脂中氨基总摩尔数的 1.2〜6倍, 优选为 2.5〜3.5倍。 活化试剂选自 1-羟基苯并三唑 (HOBt;)、 N-羟基 -7-氮杂苯并三氮唑 (HOAt;), 优选的为 1-羟基苯并三唑。
活化试剂用量为氨基树脂中氨基总摩尔数的 1.2〜6倍, 优选的为 2.5〜3.5倍。
偶联反应时间为 60〜300分钟, 优选的为 100〜140分钟。
优选的, 所述载体树脂的取代值为 0.2〜1.0mmol/g 树脂, 优选的取代值为 0.2〜 0.5mmol/g树脂时产率较高。
进一步优选的, 所述载体树脂为三苯甲基氯树脂: 如 Trityl-Cl树脂、 4-Methyltrityl-Cl 树脂、 4-Methoxytrityl-Cl树脂或 2-Cl-Trityl-Cl树脂。 最优选为 2-Cl-Trity-Cl 树脂。
当载体树脂为三苯甲基氯树脂时, Fmoc-His ( trt) -OH 与载体树脂的偶联方法为: Fmoc-His(trt)-OH的羧基与树脂中的 C1-代烷在碱作用下发生酯化反应而接入保护氨基酸。
所述的碱选自 N.N-二异丙基乙基胺 (DIEA;)、 三乙胺 (TEA;)、 吡啶中的至少一种, 优选 为 DIEA。 碱的摩尔用量为保护氨基酸摩尔数的 1.5〜3倍。
酯化反应时间为 1〜6小时, 优选为 3小时。
进一步的, 奈西立肽线性肽树脂经酸解同时脱去树脂及侧链保护基得到奈西立肽线性 肽粗品:
Ser-Pro-Lys-Met-Val-Gln-Gly-Ser-Gly-Cys-Phe-Gly-Arg- Lys-Met-Asp-Arg-Ile-Ser-Ser-Ser-Ser-Gly-leu-Gly-Cys-
Lys- Val -Leu- Arg- Arg-His- OH
酸解剂为三氟醋酸 (TFA;)、 1,2-乙二硫醇 (EDT)和水混合溶剂, 混合溶剂的配比为: TFA 的比例为 80-95% (V/V), EDT的比例为 1〜10% (V/V), 余量为水。优选的配比为 89-91%、 EDT 4-6% 余量为水。 最优的, 配比为 90%、 EDT 5%、 余量为水。
酸解剂用量为每克肽树脂需要 4〜15 ml 酸解剂, 优选的, 每克肽树脂需要 9〜l lml 酸解剂。
使用酸解剂裂解的时间为室温条件下 1〜5小时, 优选的为 3小时。
进一步的, 奈西立肽线性肽粗品经氧化后得到奈西立肽粗品:
取奈西立肽线性肽粗品, 用醋酸溶解, 过滤后用氧化剂氧化环化, 得到奈西立肽粗品 溶液。
醋酸的体积百分比浓度为 20〜40%, 优选为 30%。
氧化剂选自空气、 碘、 H202或DMSO, 优选碘。 氧化剂采用滴定方式加入, 到氧化终 点时停止加入。 进一步的, 奈西立肽粗品纯化得到奈西立肽纯品的方法为: 高效液相色谱纯化的操作 方法为:
奈西立肽粗品溶液用 0.45μιη混合微孔滤膜过滤,纯化用色谱填料为 ΙΟμιη的反相 C18, 流动相系统为 0.1%TFA/水溶液 -0.1%TFA/乙腈溶液, 77mm*250mm 的色谱柱流速为 90ml/min, 采用梯度系统洗脱, 循环进样纯化, 收集主峰蒸去乙腈后, 得奈西立肽纯化中 间体浓缩液。
奈西立肽纯化中间体浓缩液再用 0.45μιη滤膜滤过, 采用高效液相色谱法进行换盐, 流动相系统为 1%醋酸 /水溶液-乙腈,纯化用色谱填料为 ΙΟμιη的反相 C18, 77mm*250mm 的色谱柱流速为 90ml/min。 采用梯度洗脱, 循环上样方法, 上样于色谱柱中, 启动流动相 洗脱, 采集图谱, 观测吸收度的变化, 收集换盐主峰并用分析液相检测纯度, 合并换盐主 峰溶液, 在小于 40°C水浴条件下减压浓缩, 用旋转蒸发仪蒸去大部分乙腈, 得到奈西立肽 醋酸水溶液, 冷冻干燥得奈西立肽醋酸产品。
下述实施例将有助于理解本发明, 但不能限制本发明的内容:
实施例 1 Fmoc-His(Trt)-2-Cl-Trt-Cl树脂的制备
取 2-Cl-Trt-Cl树脂 lKg (取代值为 0.5mmol/g), 用 8L N,N-二甲基酰胺(DMF)溶涨 30 分钟, 加入 Fmoc-His(Trt)-OH 620g ( l.Omol),搅拌 30分钟后加入 260ml DIEA ( 1.5mol) , 室温搅拌反应 3小时, 过滤后树脂分别用 DMF、 二氯甲烷 (DCM)、 甲醇洗涤 3次, 减压干 燥, 得 Fmoc- His(Trt)-2-Cl-Trt-树脂 1576g, 酯化收率 98.7%。
实施例 2 H-His(Trt)-2-Cl-Trt树脂的制备
取上述 Fmoc-His(Trt)-2-Cl-Trt树脂, 用 8L 20%哌啶 (PIP)/NN-二甲基酰胺 (DMF) 溶 液溶涨 10分钟, 过滤后再加入 5L 20%哌啶 (PIP)/NN-二甲基酰胺 (DMF)溶液, 室温搅拌 反应 25分钟, 过滤后树脂分别用 DMF、 二氯甲烷 (DCM)、 甲醇洗涤 3次, 减压干燥即得 H-His(Trt)-2-Cl-Trt树脂的制备。
实施例 3 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH的合成
取 3.0mol Ser(tBu)和 3.0mol HOBt, 用适量 DMF溶解; 另取 3.0mol DIC (Ν,Ν-二异丙 基碳二亚胺), 搅拌下慢慢加入至保护氨基酸 DMF溶液中, 于室温环境中搅拌反应 30分 钟, 得到活化后的保护氨基酸溶液。
取 Fmoc-Ser(tBu)-2-Cl-Trt-树脂 lKg (取代值为 1.0mmol/g); 采用 6L 20% PIP/ DMF溶 液去保护 25分钟, 过滤后树脂分别用 MDF、 DCM洗涤 3次, 加入上述活化后的保护氨基 酸溶液, 室温搅拌反应 3小时, 反应完成后, 过滤后得到二肽树脂分别用 MDF、 DCM洗 涤 3次。
重复上述反应, 二肽树脂与活化后的保护氨基酸溶液反应接入第 3个 Ser(tBu), 然后 重复上述反应接入第 4个 Ser(tBu),制得 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu 2-Cl-Trt- 树脂。
取 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu 2-Cl-Trt-树脂,加入 20L六氟异丙醇/ DCM 溶液, 六氟异丙醇体积浓度为 30%, 搅拌反应 2小时, 过滤收集滤液, 减压蒸干溶剂, 减 压干燥,得 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH 742g,收率为 91.3%,纯度为 95.7%, MS m/z: 814(M+1)。
实施例 4 奈西立肽线性肽树脂的合成
奈西立肽线性肽树脂为:
H-Ser(tBu)-Pro-Lys(Boc)-Met-Val-Gln(Trt)-Gly-Ser(tBu)-
Gly-Cys(Trt)-Phe-Gly-Arg(pbf)-Lys(Boc)-Met-Asp(OtBu)-
Arg(pbf)-Ile-X-Gly-Leu-Gly-Cys(Trt)-Lys(Boc)-Val-Leu-
Arg(pbf)- Arg(Pbf)-His(trt)-树脂
其中, X为 Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)
取 Fm0C-His(Trt)-2-Cl-Trt-树脂, 经 Fmoc去保护后, 依次与表 1所示的保护氨基酸偶 联, 制得奈西立肽线性肽树脂。
其中第 11个为实施例 3制得的 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu) Ser(tBu)-OH。
Figure imgf000009_0001
.0CT80/ll0ZN3/X3d LI^LIIZIOZ OAV 固相偶联合成法具体为:
1、 保护氨基酸的活化:
取 0.9mol保护氨基酸和 0.9mol HOBt, 用适量 DMF溶解; 另取 0.9mol DIC, 搅拌下 慢慢加入至保护氨基酸 DMF溶液中, 于室温环境中搅拌反应 30分钟, 得到活化后的保护 氨基酸溶液。
2、 树脂的脱 Fmoc保护:
取 Fmoc-His(Trt)-2-Cl-Trt-树脂 (取代值为 0.3mmol/g) lKg, 采用 5L 20% PIP/ DMF 溶液去保护 25分钟, 过滤得到去 Fmoc的树脂备用。
3、 偶联:
去 Fmoc的树脂加入第 2个活化后的保护氨基酸溶液, 偶联反应 60〜300分钟, 过滤 洗涤得 2肽树脂。
采用上述同样方法, 依次接入第 3至第 29个氨基酸对应的 Fmoc-保护氨基酸, 即前一 步得到的 Fmoc-[l〜(; n-1)个]氨基酸 -HisCTrt -Cl-Trt-树脂, 脱 Fmoc保护后与活化的 Fmoc- 保护氨基酸 (第 n个) 偶联反应 60〜300分钟, n=2〜29。 接完所有保护氨基酸后, 树脂 再用 10L 20% PIP/ DMF溶液去 Fmoc保护 25分钟, 过滤洗涤后, 即得奈西立肽线性肽树 脂。
实施例 5 奈西立肽线性肽粗品的制备
取实施例 4 制得的奈西立肽线性肽树脂, 加入裂解试剂 [TFA/水/ EDT=95:5:5(V/V) ( 10ml/克树脂), 搅拌均匀, 室温搅拌反应 3小时, 反应混合物使用砂芯漏斗过滤, 收集 滤液, 树脂再用少量 TFA洗涤 3次, 合并滤液后减压浓缩, 加入无水乙醚沉淀, 再用无水 乙醚洗沉淀 3次, 抽干得白色粉末即为奈西立肽线性肽粗品。
实施例 6 奈西立肽粗品的制备
将上述奈西立肽线性肽粗品用 30%醋酸溶液溶解并制成 lmg/ml的溶液, 搅拌下滴加 碘 /30%醋酸饱和溶液至溶液呈棕红色, 搅拌反应 30分钟后滴加 Vc溶液(中和过量的氧化 剂) 至棕红色消失, 40°C减压浓缩, 得奈西立肽粗品浓缩溶液。
实施例 7 奈西立肽粗品的纯化
取奈西立肽粗品浓缩溶液, 溶液用 0.45μιη混合微孔滤膜过滤, 备纯化用。 采用高效 液相色谱法进行纯化, 纯化用色谱填料为 ΙΟμιη的反相 C18, 流动相系统为 0.1%TFA/水溶 液 -0.1%TFA/乙腈溶液, 77mm*250mm的色谱柱流速为 90ml/min, 采用梯度系统洗脱, 循 环进样纯化, 取粗品溶液上样于色谱柱中, 启动流动相洗脱, 收集主峰蒸去乙腈后, 得奈 西立肽纯化中间体浓缩液。
取奈西立肽纯化中间体浓缩液, 用 0.45μιη滤膜滤过备用。 采用高效液相色谱法进行 换盐, 流动相系统为 1%醋酸 /水溶液-乙腈, 纯化用色谱填料为 ΙΟμιη的反相 C18,
77mm*250mm的色谱柱流速为 90ml/min(可根据不同规格的色谱柱, 调整相应的流速;)。 采 用梯度洗脱, 循环上样方法, 上样于色谱柱中, 启动流动相洗脱, 采集图谱, 观测吸收度 的变化, 收集换盐主峰并用分析液相检测纯度, 合并换盐主峰溶液, 在小于 40°C水浴条件 下减压浓缩, 用旋转蒸发仪蒸去大部分乙腈, 得到奈西立肽醋酸水溶液, 冷冻干燥, 得产 品 196g, 总收率为 18.9%。
分子量: 3465(100% M+H); 比旋度: -82.6°;
水分 1.8%; 醋酸: 10.5%; 纯度: 99.5%。

Claims

权利要求书
1、奈西立肽的制备方法, 包括固相多肽合成法制备奈西立肽线性肽树脂、奈西立肽线 性肽树脂酸解得到奈西立肽线性肽粗品;奈西立肽线性肽粗品经氧化后得到奈西立肽粗品, 奈西立肽粗品纯化得到奈西立肽纯品; 其中固相多肽合成法为: 在 Fmoc-His (trt) -载体树 脂上通过固相偶联合成法依次接入下列序列中相对应的 Fmoc-保护氨基酸, 得到奈西立肽 线性肽树脂:
R1-Ser(tBu)-Pro-Lys(Boc)-Met-Val-Gln(R2)-Gly-Ser(tBu)-
Gly-Cys(R3)-Phe-Gly-Arg(pbf)-Lys(Boc)-Met-Asp(OtBu)-
Arg(pbf)-Ile-X-Gly-Leu-Gly-Cys(R3)-Lys(Boc)-Val-Leu-
Arg(pbf)- Arg(pbf)-HiS(trt)-树脂
其中, X为 Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu), Ri为 Fmoc、 Boc或 H, R2为 Trt或 H, R3为 Trt或 Acm, 接入 X片段时仅用 1或 2次固相偶联合成反应。
2、 根据权利要求 1所述的奈西立肽的制备方法, 其特征在于: 接入 X片段时所使用 的保护氨基酸为 Fmoc-Ser(tBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH
Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH Fmoc-Ser(tBu)-Se^Me,Mepro)-OH 、 Fmoc-Ser(tBu)-Ser(tBu)-OH中的至少一种。
3、根据权利要求 1所述的奈西立肽的制备方法, 其特征在于: 所述载体树脂的取代值 为 0.2〜1.0mmol/g。
4、根据权利要求 3所述的奈西立肽的制备方法, 其特征在于: 所述载体树脂的取代值 为 0.2〜0.5mmol/g。
5、 根据权利要求 3或 4所述的奈西立肽的制备方法, 其特征在于: 所述载体树脂为 Trityl-Cl 类型树脂或羟基类型树脂。
6、 根据权利要求 5 所述的奈西立肽的制备方法, 其特征在于: Trityl-Cl 类型树脂为
Trityl-Cl树脂、 4-Methyltrityl-Cl树脂、 4-Methoxytrityl-Cl树脂或 2-C1 Trity-Cl 树脂; 羟基 类型树脂为 Wang树脂或对羟甲基苯氧甲基聚苯乙烯树脂。
7、根据权利要求 6所述的奈西立肽的制备方法, 其特征在于: 当载体树脂为三苯甲基 氯树脂时, Fmoc-His (trt) -OH与载体树脂的偶联方法为: Fmoc-His (trt) -OH的羧基与 树脂中的 C1-代烷在碱作用下发生酯化反应而接入保护氨基酸。
8、 根据权利要求 7所述的奈西立肽的制备方法, 其特征在于: 所述的碱选自 N.N-二 异丙基乙基胺、 三乙胺、 吡啶中的至少一种。
9、根据权利要求 7或 8所述的奈西立肽的制备方法, 其特征在于: 碱的摩尔用量为保 护氨基酸摩尔数的 1.5〜3倍。
10、 根据权利要求 7或 8所述的奈西立肽的制备方法, 其特征在于: 酯化反应时间为 1〜6小时。
11、 根据权利要求 10 所述的奈西立肽的制备方法, 其特征在于: 酯化反应时间为 3 小时。
12、 根据权利要求 1〜11任一项所述的奈西立肽的制备方法, 其特征在于: 所述保护 氨基酸种类分别为 : Ri-SeittBu^OH、 Fmoc-Gln(R2)-OH、 Fmoc-Cys(R3)-OH、 Fmoc-Arg(pbf)-OH Fmoc-Asp(TBu)-OH Fmoc-Gly-OH、 Fmoc-Ile-OH、 Fmoc-Leu-OH、 Fmoc-Lys(Boc)-OH 、 Fmoc-Met-OH 、 Fmoc-Phe-OH 、 Fmoc-Pro-OH 、 Fmoc-Val 、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH 、 Fmoc-Ser(tBu)-Ser(tBu)-Ser(tBu)-Ser(tBu)-OH 、 Fmoc-Ser(TBu)-OH、 Fmoc-Ser(tBu)-Ser(tBu)-OH 、 Fmoc-Ser(tBu)-Ser(»FMe,Mepro)-OH; 其 中, R 为 Fmoc、 Boc, R2为 Trt或 H, R3为 Trt或 Acm。
13、 根据权利要求 1〜11任一项所述的奈西立肽的制备方法, 其特征在于: 奈西立肽 线性肽树脂经酸解同时脱去树脂及侧链保护基得到奈西立肽线性肽粗品:
Ser-Pro-Lys-Met-Val-Gln-Gly-Ser-Gly-Cys-Phe-Gly-Arg- Lys-Met-Asp-Arg-Ile-Ser-Ser-Ser-Ser-Gly-leu-Gly-Cys- Lys- Val -Leu- Arg- Arg-His- OH
酸解剂为三氟醋酸、 1,2-乙二硫醇水混合溶剂, 混合溶剂的配比为: TFA 的体积比为 80-95%、 EDT的体积比为 1〜10%、 余量为水。
PCT/CN2011/081307 2011-06-23 2011-10-26 奈西立肽的制备方法 WO2012174817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101711524A CN102250235A (zh) 2011-06-23 2011-06-23 奈西立肽的制备方法
CN201110171152.4 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012174817A1 true WO2012174817A1 (zh) 2012-12-27

Family

ID=44977834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081307 WO2012174817A1 (zh) 2011-06-23 2011-10-26 奈西立肽的制备方法

Country Status (2)

Country Link
CN (1) CN102250235A (zh)
WO (1) WO2012174817A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102702342B (zh) * 2012-07-06 2015-09-02 上海昂博生物技术有限公司 一种奈西利肽粗品的固相制备方法
CN102875664B (zh) * 2012-09-21 2014-06-18 深圳翰宇药业股份有限公司 一种卡培立肽的纯化方法
CN103275207B (zh) * 2013-03-22 2016-06-22 深圳翰宇药业股份有限公司 一种制备奈西立肽的方法
CN103204922A (zh) * 2013-03-22 2013-07-17 深圳翰宇药业股份有限公司 一种制备奈西立肽的方法
CN103304655A (zh) * 2013-05-27 2013-09-18 成都圣诺生物制药有限公司 齐考诺肽的制备方法
CN103880945B (zh) * 2013-12-28 2016-09-07 郑州大明药物科技有限公司 制备高纯度胸腺法新的方法
CN103990115B (zh) * 2014-05-09 2016-06-15 深圳翰宇药业股份有限公司 一种奈西立肽药物组合物及其制备方法、制剂
CN107286234B (zh) * 2016-03-31 2021-06-08 深圳翰宇药业股份有限公司 一种减少和/或去除多肽固相合成中缺省肽的方法
CN112521482B (zh) * 2019-08-28 2023-09-12 深圳翰宇药业股份有限公司 一种固液结合合成奈西立肽的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287650A1 (en) * 2007-03-01 2008-11-20 Avi Tovi High purity peptides
CN101379075A (zh) * 2006-02-08 2009-03-04 隆萨股份公司 类胰高血糖素肽的合成
CN101519444A (zh) * 2009-01-09 2009-09-02 深圳市翰宇药业有限公司 一种制备奈西利肽的方法
CN101790535A (zh) * 2007-06-29 2010-07-28 隆萨股份公司 制备普兰林肽的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463080B (zh) * 2009-01-09 2011-09-14 深圳翰宇药业股份有限公司 一种纯化奈西利肽的方法
CN101906150B (zh) * 2010-06-28 2013-01-09 上海昂博生物技术有限公司 一种比法卢定的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379075A (zh) * 2006-02-08 2009-03-04 隆萨股份公司 类胰高血糖素肽的合成
US20080287650A1 (en) * 2007-03-01 2008-11-20 Avi Tovi High purity peptides
CN101790535A (zh) * 2007-06-29 2010-07-28 隆萨股份公司 制备普兰林肽的方法
CN101519444A (zh) * 2009-01-09 2009-09-02 深圳市翰宇药业有限公司 一种制备奈西利肽的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABEDINI, A. ET AL.: "Incorporation of Pseudoproline Derivatives Allows the Facile Synthesis of Human IAPP, a Highly Amyloidogenic and Aggregation-Prone Polypeptide", ORGANIC LETTERS, vol. 7, no. 4, 27 January 2005 (2005-01-27), pages 693 - 696, XP002474844, DOI: doi:10.1021/ol047480+ *

Also Published As

Publication number Publication date
CN102250235A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2012174817A1 (zh) 奈西立肽的制备方法
WO2012174816A1 (zh) 比伐卢定的制备方法
CN106892968B (zh) 一种利那洛肽的合成方法
US20090240031A1 (en) Process and intermediate products for preparing cardiodilatin fragments, and highly purified cardiodilatin fragments
WO2013117083A1 (zh) 一种依非巴特的制备方法
CN110903355A (zh) 一种Tirzepatide的制备方法
CN110818790A (zh) 一种替莫瑞林的制备方法
WO2020199461A1 (zh) 一种多肽衍生化合物的合成方法
CN112062829B (zh) 依降钙素的制备方法
CN107778351B (zh) 一种全固相合成奥曲肽的方法
WO2018126525A1 (zh) 一种六胜肽的制备方法及其产品
CN111057129B (zh) 一种用于合成含有两对二硫键的多肽的制备方法及其试剂盒,以及普利卡那肽的制备方法
CN106749611B (zh) 一种艾塞那肽的制备方法及其产品
CN103342745B (zh) 卡培立肽的制备方法
CN112175067B (zh) 一种替度鲁肽的制备方法
CN111518192A (zh) 一种Apraglutide的制备方法
CN110191892B (zh) 丙氨酸—赖氨酸—谷氨酸三肽衍生物及其应用
CN103204923B (zh) 固相片段法制备卡培立肽
CN107778353B (zh) 一种合成特利加压素的方法
CN114585636B (zh) 一种普卡那肽的制备方法
CN103880946B (zh) 卡培立肽的制备方法
CN110964097B (zh) 一种固相片段法合成艾塞那肽
WO2014032257A1 (zh) 一种比伐卢定的制备方法
CN112010945B (zh) 一种卡贝缩宫素杂质Gly9-OH的制备方法
CN110305197B (zh) 一种抑制肿瘤细胞体内肺部转移的多肽及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868349

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868349

Country of ref document: EP

Kind code of ref document: A1