WO2012174816A1 - 比伐卢定的制备方法 - Google Patents

比伐卢定的制备方法 Download PDF

Info

Publication number
WO2012174816A1
WO2012174816A1 PCT/CN2011/081306 CN2011081306W WO2012174816A1 WO 2012174816 A1 WO2012174816 A1 WO 2012174816A1 CN 2011081306 W CN2011081306 W CN 2011081306W WO 2012174816 A1 WO2012174816 A1 WO 2012174816A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
bivalirudin
fmoc
gly
glu
Prior art date
Application number
PCT/CN2011/081306
Other languages
English (en)
French (fr)
Inventor
文永均
谢期林
王晓莉
郭德文
曾德志
Original Assignee
成都圣诺科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都圣诺科技发展有限公司 filed Critical 成都圣诺科技发展有限公司
Publication of WO2012174816A1 publication Critical patent/WO2012174816A1/zh
Priority to US14/135,608 priority Critical patent/US20140187745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/815Protease inhibitors from leeches, e.g. hirudin, eglin

Definitions

  • the invention belongs to the technical field of preparation methods of polypeptide medicines, and particularly relates to a preparation method of bivalirudin.
  • Bivalirudin is a direct thrombin inhibitor (DTI) consisting of 20 amino acid residues.
  • DTI direct thrombin inhibitor
  • DTI is a group of peptides that directly inhibit the activity of thrombin without the involvement of cofactors. It not only has anticoagulant function, but also inhibits platelet aggregation. Compared with other anticoagulants, its pharmacological effects and pharmacokinetic characteristics are superior, especially in cardiovascular diseases.
  • Bivalirudin is a hirudin derivative (fragment), a synthetic polypeptide containing 20 amino acid residues. It consists mainly of two parts, a part of which is a short peptide chain at the amino terminus (N-terminus) containing a phenylalanine-valine-arginine-proline sequence that specifically binds to the active site of thrombin. The other part is a 12-peptide chain containing a carboxyl terminal (C-terminus), and the two parts are linked by tetraglycine, which have high affinity to both binding sites of thrombin. The binding of bivalirudin to thrombin is reversible.
  • Bivalirudin is mainly removed by peptidase degradation, and a small part is excreted by the kidney by the prototype, so it is safe to use in renal insufficiency.
  • Bivalirudin has the following structure:
  • Patent WO98/50563 reports a series of genetic engineering preparation methods for polypeptides, including bivalirudin.
  • Chinese patent 200910028793 reports a liquid phase synthesis method, which firstly synthesizes three fully protected fragments: N-terminally protected 6-peptide, mid-protected 6-peptide, C-terminal fully protected 8 peptide, and then these three The fragments are sequentially condensed to obtain fully protected bivalirudin. Finally, all protecting groups are removed to obtain crude bivalirudin, which is then purified by high performance liquid chromatography to obtain pure bivalirudin.
  • US2008005155 reports a method for preparing bivalirudin using a starting resin of Trityl-Cl resin.
  • the bivalirudin structure contains a Gly-Gly-Gly-Gly fragment, which is inserted into the Fmoc-Gly process in the solid phase method. Due to the characteristics of Gly itself, the following impurities are produced in the product: [+lGly]-Bifur Lu Ding, [+2Gly]-Bivalirudin,
  • [-IGly]-Bivalirudin, [-2Gly]-bivalirudin, and these impurities are similar to the polarity of bivalirudin itself, so it is difficult to completely purify it during purification, and the total yield of the product cannot be It is effectively improved, the purity of the product is lowered, and the safety of the drug is affected.
  • the technical problem to be solved by the present invention is to provide a preparation method of bivalirudin which uses the protected amino acid fragment Fmoc-Gly-Gly-Gly-Gly-OH to avoid [+l Gly]-bivalirudin, [-IGly]-Bivalirudin, [+2Gly]-Bivalirudin, [-2Gly]-Bivalirudin impurities, improve product yield and purity, high reaction efficiency, and facilitate scale Solid phase synthesis process.
  • the preparation method of the bivalirudin of the present invention comprises the preparation of bivalirudin resin by solid phase polypeptide synthesis, the acidolysis of bivalirudin resin to obtain crude bivalirudin, and the crude product of bivalirudin to obtain pure bivalirudin, wherein
  • the method for preparing bivalirudin resin by solid phase peptide synthesis method is as follows: The corresponding Fmoc-protected amino acid in the following sequence is sequentially connected to the Fmoc-Leu-carrier resin by solid phase coupling synthesis method to obtain bivalirudin resin. :
  • Fmoc-Gly-Gly-Gly-Gly-Gly-OH The Fmoc-protected amino acid species are: R 3 -D-Phe-OH, Fmoc-X-OH, Fmoc-Asn(R 2 )-OH
  • X is Gly-Gly-Gly-Gly, R 2 is Trt or H, and R 3 is Fmoc or Boc.
  • Fmoc is 9-fluorenylmethoxycarbonyl
  • tBu is tert-butyl
  • Trt is triphenylmethane
  • OtBu is tert-butoxy
  • Boc is tert-butoxycarbonyl.
  • the amount of each Fmoc-protected amino acid is 1.2 to 6 times, preferably 3 times, the total mole of the resin to be charged.
  • Fmoc-Gly-OH is used to access the 11th Gly amino acid
  • the 13-17th Gly amino acid is accessed using Fmoc-Gly-Gly-Gly-Gly-OH.
  • Fmoc-Gl -Gly-Gly-Gly-OH the structure is:
  • the purity is greater than 99.5% and the single impurity is less than 0.2%.
  • the process of the invention has the characteristics of simple reaction operation, mild reaction condition, and the like, and has wide practical value and application prospect.
  • the preparation method of the bivalirudin of the present invention comprises the preparation of bivalirudin resin by solid phase polypeptide synthesis, the acidolysis of bivalirudin resin to obtain crude bivalirudin, and the crude product of bivalirudin to obtain pure bivalirudin, wherein
  • the method for preparing bivalirudin resin by solid phase peptide synthesis method is as follows: The corresponding Fmoc-protected amino acid in the following sequence is sequentially connected to the Fmoc-Leu-carrier resin by solid phase coupling synthesis method to obtain bivalirudin resin. :
  • X is Gly-Gly-Gly-Gly, R is R 3 or H, R 2 is Trt or H, and R 3 is Fmoc or Boc.
  • the solid phase coupling synthesis method is specifically: the protective amino acid obtained by the previous step reaction-resin is deprotected from Fmoc and then coupled with the next protective amino acid.
  • the reagent for removing Fmoc protection is 10 to 30% (v/v) piperidine (PIP) / N, N-dimethylformamide (DMF) solution, preferably 20%.
  • PIP piperidine
  • DMF N-dimethylformamide
  • the deprotecting agent is used in an amount of 5 to 15 ml per gram of the resin to be charged, preferably 10 ml per gram of the resin to be charged.
  • the deprotection reaction time is from 10 to 60 minutes, preferably from 15 to 25 minutes.
  • a coupling reagent and an activating reagent are added during the coupling, and the condensation reagent is selected from the group consisting of ruthenium, osmium-diisopropylcarbodiimide (DIC),
  • ⁇ , ⁇ -dicyclohexylcarbodiimide DCC
  • benzotriazol-1-yl-oxytripyrrolidinylphosphonium PyBOP
  • 2-(7-aza-1H-benzoate Triazol-1-yl;) -1,1,3,3-tetramethylurea hexafluorophosphate HATU
  • benzotriazole
  • HBTU hexafluorophosphate
  • TBTU 0-benzotriazole-oxime, oxime, ⁇ ', ⁇ '-tetramethylurea tetrafluoroborate
  • Preferred is ruthenium, osmium-diisopropylcarbodiimide.
  • the molar amount of the condensation reagent is 1.2 to 6 times, preferably 2.5 to 3.5 times, the total mole of the amino group in the amino resin.
  • the activating reagent is selected from the group consisting of 1-hydroxybenzotriazole (HOBt;), N-hydroxy-7-azabenzotriazole (HOAt;), preferably 1-hydroxybenzotriazole.
  • the amount of the activating reagent is 1.2 to 6 times, preferably 2.5 to 3.5 times, based on the total mole of the amino group in the amino resin.
  • the coupling reaction time is from 60 to 300 minutes, preferably from 100 to 140 minutes.
  • the substitution value of the Fmoc-Leu-carrier resin is 0.5 to 1.5 mmol/g, and the preferred substitution value is 0.8 ⁇
  • the yield was higher at 1.2 mmol/g resin.
  • the carrier resin is a Trityl-Cl type resin or a hydroxy type resin, wherein the Trityl-Cl type resin is preferably a Troyl-Cl resin, a 4-Methyltrityl-Cl resin, a 4-Methoxytrityl-Cl resin or a 2-C1 Trity-Cl resin;
  • the hydroxy type resin is preferably a Wang resin or a p-hydroxymethylphenoxymethyl polystyrene (HMP) resin.
  • the coupling method of Fmoc-Leu-OH with the carrier resin is:
  • the carboxyl group of Fmoc-Leu-OH and the C1-alkane in the resin undergo esterification reaction under the action of a base to access the protected amino acid.
  • the base is at least one selected from the group consisting of N.N-diisopropylethylamine (DIEA;), triethylamine (TEA;), and pyridine, preferably DIEA.
  • DIEA N.N-diisopropylethylamine
  • TEA triethylamine
  • pyridine preferably DIEA.
  • the molar amount of the base is 1.5 to 3 times the number of moles of the protected amino acid.
  • the esterification reaction time is 1 to 6 hours, preferably 3 hours.
  • the coupling method of Fmoc-Leu-OH with the carrier resin is:
  • the carboxyl group of Fmoc-Leu-OH and the hydroxyl group in the resin undergo esterification reaction under the action of a coupling agent, an activator and a base catalyst to access the protected amino acid.
  • the coupling agent is selected from the group consisting of ruthenium, osmium-diisopropylcarbodiimide (DIC), ruthenium, osmium-dicyclohexylcarbodiimide (DCC), benzotriazol-1-yloxy-hexafluorophosphate Tripyrrolidinylphosphine (PyBOP), 2-(7-aza-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU;) , benzotriazole-oxime, hydrazine, ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate (HBTU;), 0-benzotriene At least one of azole, hydrazine, hydrazine, hydrazine, ⁇ '-tetramethyluronium tetrafluoroborate (TBTU), preferably DIC.
  • the base catalyst was 4-indole, fluorene-dimethylpyridine (DMAP) in an amount of 0.1 times the total moles of the resin charged.
  • the activator is at least one selected from the group consisting of 1-hydroxybenzotriazole (HOBt;) and N-hydroxy-7-azabenzotriazole (HO At), preferably HOBt.
  • the activator is used in an amount of from 1.2 to 6 times, preferably 3 times, the total moles of the resin to be charged.
  • the esterification reaction time is 12 to 36 hours, preferably 18 hours.
  • bivalirudin resin is acid-decomposed while removing the resin and the side chain protecting group to obtain crude bivalirudin:
  • the acidolytic agent is a mixed solvent of trifluoroacetic acid (TFA;), 1,2-ethanedithiol (EDT) and water.
  • TFA trifluoroacetic acid
  • EDT 1,2-ethanedithiol
  • the ratio of the mixed solvent is: the ratio of TFA is 80-95% (V/V).
  • the ratio of EDT is 1 to 10% (V/V), and the balance is water.
  • the preferred ratio is 89-91%, and the EDT 4-6% balance is water.
  • the ratio is 90%, EDT is 5%, and the balance is water.
  • the amount of the acidulant is 4 to 15 ml of the acidulant per gram of the bivalirudin resin. Preferably, 9 to 11 ml of the acidulant is required per gram of the bivalirudin resin.
  • the cleavage time using the acidulant is 1 to 5 hours at room temperature, preferably 2 hours.
  • the crude bivalirudin was purified by high performance liquid chromatography and lyophilized to obtain pure bivalirudin.
  • the purification method is specifically:
  • the bivalirudin purified intermediate concentrate was filtered through a 0.45 ⁇ m filter.
  • the salt was changed by high performance liquid chromatography.
  • the mobile phase system was 0.1% TFA/water solution-acetonitrile, and the chromatographic packing for purification was reversed C18 of ⁇ .
  • the flow rate of the 77mm*250mm column is 90ml/min (the corresponding flow rate can be adjusted according to the column of different specifications;).
  • the above Fmoc-Leu-Wang resin was stirred and lyophilized with 5 L of 20% piperidine ( ⁇ )/ ⁇ -dimethylformamide (DMF) solution for 10 minutes. After filtration, 5 L of 20% PIP/DMF solution was added, and the reaction was stirred at room temperature. After the filtration, the resin was washed three times with DMF, DCM, and methanol, respectively, and dried under reduced pressure to obtain a H-Leu-Wang resin.
  • the resin was washed three times with MDF and DCM, and the above-mentioned protected amino acid solution was added thereto, and the reaction was stirred at room temperature for 3 hours. After the completion of the reaction, the resin was washed three times with MDF and DCM, respectively.
  • Bivalirudin resin is:
  • the Fmoc-Leu-Wang resin was coupled with the protected amino acid shown in Table 1 in order to obtain a bivalirudin resin.
  • the protected amino acids corresponding to the second to 17th amino acids of the protected amino acid used in this example are as follows: Table 1
  • the activation method for protecting amino acids is: 1.5 mol of protected amino acid and 1.5 mol of HOBt were taken and dissolved in an appropriate amount of DMF; another 1.5 mol of DIC was added to the protected amino acid DMF solution while stirring, and the reaction was stirred at room temperature for 30 minutes to obtain a protected amino acid solution after activation.
  • Fmoc-Leu-Wang resin (substitution value: 1.0 mmol/g) 0.5 Kg was taken and protected with 5 L of 20% PIP/DMF solution for 25 minutes, and the resin obtained by removing Fmoc was removed by filtration.
  • the resin to the Fmoc is added to the activated second amino acid solution, and the coupling reaction is carried out for 60 to 300 minutes, and the 2 peptide resin is washed by filtration.
  • 2 Peptide resin was protected by Fmoc for 5 minutes with 5L of 20% PIP/DMF solution, filtered and washed, and coupled with the third activated protective amino acid solution for 60 to 300 minutes, and washed to obtain 3 peptide resin.
  • the Fmoc-protected amino acid corresponding to the 4th to 17th amino acids that is, the Fmoc-[l ⁇ (;n-1)] amino acid-Wang resin obtained in the previous step, is sequentially added, after Fmoc protection
  • After receiving all the protected amino acids use 5L of 20% PIP/DMF solution for Fmoc protection for 25 minutes. After filtration and washing, the bivalirudin resin is obtained.
  • the reaction mixture was filtered using a sand funnel, the filtrate was collected, and the resin was washed three times with a small amount of TFA.
  • the filtrate was combined and concentrated under reduced pressure. The precipitate was evaporated to dry diethyl ether and washed three times with anhydrous diethyl ether. That is the crude product of bivalirudin.
  • Purification by high performance liquid chromatography purification of the chromatographic packing material is ⁇ reversed phase C18, mobile phase system is 0.1% TFA / aqueous solution -0.1% TFA / acetonitrile solution, 77mm * 250mm column flow rate is 90ml / min, using Gradient system elution, cycle injection purification, take the crude solution to the column, start the mobile phase elution, collect the main peak and distill off the acetonitrile, then obtain the bivalirudin purification intermediate concentrate.
  • the bivalirudin purified intermediate concentrate was filtered and filtered through a 0.45 ⁇ filter.
  • High-performance liquid chromatography was used for salt exchange.
  • the mobile phase system was 0.1% TFA/water solution-acetonitrile.
  • the chromatographic packing used for purification was reversed C18 with ⁇ , and the flow rate of 77mm*250mm column was 90ml/min (according to different specifications). Column, adjust the corresponding flow rate;).

Abstract

提供一种比伐卢定的制备方法,包括固相多肽合成法制备比伐卢定树脂、比伐卢定树脂酸解得到比伐卢定粗品、比伐卢定粗品纯化得到比伐卢定纯品,其中固相多肽合成法制备比伐卢定树脂的方法为:在Fmoc-Leu-载体树脂上通过固相偶联合成法依次接入以下序列中相对应的Fmoc-保护氨基酸,得到比伐卢定树脂: R1-D-Phe-Pro-Arg(Pbf)-ProX-Asn(R2)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-树脂接入X片段时仅用1次固相偶联合成反应,对应的Fmoc-保护氨基酸为Fmoc-Gly-Gly-Gly-Gly-OH。产品纯度大于99.5%,单一杂质小于0.2%。

Description

比伐卢定的制备方法 技术领域
本发明属于多肽药物制备方法技术领域, 特别涉及比伐卢定的制备方法。
背景技术
比伐卢定 (Bivalirudin)属于直接凝血酶抑制剂 (direct thrombin inhibitor, DTI), 由 20 个氨基酸残基组成。 直接凝血酶抑制剂 (DTI) 是一组不需要辅助因子参与而直接抑制凝 血酶活性的多肽, 它不仅有抗凝血功能, 还能抑制血小板的聚集。 与其他抗凝药相比, 其 药理作用及药动学特点更优越, 尤其在心血管疾病中有良好的用途。
比伐卢定为水蛭素衍生物 (片段), 人工合成的包含 20个氨基酸残基的多肽。 它主要 由两部分构成, 一部分是氨基末端 (N端) 的短肽链, 含有苯丙氨酸-脯氨酸-精氨酸 -脯氨 酸序列, 能与凝血酶的活性部位发生特异性结合, 另一部分是含羧基末端(C端)的 12肽 链, 两部分靠四甘氨酸连接, 它们与凝血酶的两个结合部位都有很高的亲和力。 比伐卢定 与凝血酶的结合是可逆的, 结合后很容易在凝血酶的活性部位断开成两部分并分解出多肽 链中的脯氨酸- 精氨酸序列, 使凝血酶的催化活性很快恢复, 所以它的半衰期只有 20〜
25min。 半衰期短使它比水蛭素更安全。 比伐卢定主要经肽酶降解后清除, 少部分以原型 经肾排泄, 所以在肾功能不全时使用安全。
比伐卢定具有以下的结构:
D-Phe-Pro-Arg-Pro-Gly-Gly-Gly-Gly-Asn-Gly-
Asp-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-OH
有关比伐卢定的制备方法, 国内外有大量的报道, 专利 WO98/50563报道了一系列多 肽的基因工程制备方法, 其中包括比伐卢定。
中国专利 200910028793报道了液相合成方法, 首先逐步合成三个全保护的片段: N- 端全保护的 6肽、 中段全保护的 6肽、 C-端全保护的 8肽, 然后将这三个片段依次缩合得 到全保护的比伐卢定, 最后脱除所有保护基团得到比伐卢定粗品, 再经过高效液相色谱纯 化, 得到比伐卢定纯品。
Okayama et al. (1996, Chem. Pharm. Bull. 44: 1344-1350) 禾口 Steinmetzer et al. (1999, Eur. J. Biochem. 265:598-605) 报道了比伐卢定的 Fmoc固相合成法, 采用王树脂为开始的载体 树脂, 依次接入保护氨基酸, 所得肽树脂采用三氟醋酸 (TFA)酸解。 专利 WO91/02750报道了比伐卢定的 Boc固相合成法, 采用 Boc-Leu-Mrrifiled树脂为 开始的载体树脂, 依次接入保护氨基酸, 所得肽树脂采用氟化氢 (TFA)酸解。
US20070093423 US20100029916 US20100273982 报道了一种高纯度比伐卢定制备 方法, 采用的方法为固相片段缩合, 所得比伐卢定的纯度大于 98.5%, 总杂质小于 1.5%, 每个杂质小于 1.0%, [Asp9-比伐卢定] 小于 0.5%。
US20100056755报道了一种商业化比伐卢定制备方法, 采用的方法为固相片段缩合;
US2008005155 报道了一种制备比伐卢定的方法, 采用的开始树脂为 Trityl-Cl 树脂,
4-Methyltrityl -C1 树脂, 4-Methoxytrityl -C1树脂, 或 2-C1 Trity-Cl 树脂, Fmoc-Leu-Wang 树脂, 用 TFA酸解, C18液相色谱纯化; US 20090062511、 US20100292436报道了一种改 进的比伐卢定制备方法, 与上述专利类似, 为制备方法优化专利。
比伐卢定结构中含有一个 Gly-Gly-Gly-Gly片段,在固相法依次接入 Fmoc-Gly过程中, 由于 Gly自身的特性, 使产品中产生以下杂质: [+lGly]-比伐卢定, [+2Gly]-比伐卢定,
[-IGly]-比伐卢定, [-2Gly]-比伐卢定,而这些杂质与比伐卢定自身的极性相近,所以在纯化的 时候很难完全纯化掉, 产品总收率无法得到有效提高, 产品纯度降低, 影响用药的安全性。
以上专利均无法解决比伐卢定结构 Gly增加和减少问题, 为了解决上述问题, 以色利
NOVETIDE公司 WO2010117725专利, 在接肽过程中使用 Fmoc-Gly-Gly-OH为原料接入
Gly-Gly-Gly-Gly片段, 但仅仅解决了 [+lGly]-比伐卢定和 [-IGly]-比伐卢定杂质的产生, 而 无法解决 [+2Gly]-比伐卢定和 [-2Gly]-比伐卢定的产生。
发明内容
本发明所要解决的技术问题是提供比伐卢定的制备方法, 该制备方法使用了保护氨基 酸片段 Fmoc-Gly-Gly-Gly-Gly-OH, 避免了 [+l Gly]-比伐卢定、 [-IGly]-比伐卢定、 [+2Gly]- 比伐卢定、 [-2Gly]-比伐卢定杂质的产生, 提高了产品收率和纯度, 反应效率高、 有利于实 现规模化的固相合成工艺。
本发明比伐卢定的制备方法, 包括固相多肽合成法制备比伐卢定树脂、 比伐卢定树脂 酸解得到比伐卢定粗品、 比伐卢定粗品纯化得到比伐卢定纯品, 其中固相多肽合成法制备 比伐卢定树脂的方法为: 在 Fmoc-Leu-载体树脂上通过固相偶联合成法依次接入下列序列 中相对应的 Fmoc-保护氨基酸, 得到比伐卢定树脂:
R1-D-Phe-Pro-Arg(Pbf)-Pro-X-Asn(R2)-Gly-Asp(OtBu)- Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)- Tyr Bu)-Leu-树脂 其中, X为 Gly-Gly-Gly-Gly, R 为 R3或 H, R2为 Trt或 H, R3为 Fmoc或 Boc。 接入 X片段时仅用 1 次固相偶联合成反应, 接入 X 时对应的 Fmoc-保护氨基酸为
Fmoc-Gly-Gly-Gly-Gly-OH。 所述 Fmoc-保护氨基酸种类分别为: R3-D-Phe-OH、 Fmoc-X-OH、 Fmoc-Asn(R2)-OH
Fmoc-Arg(pbf)-OH 、 Fmoc-Asp(OtBu)-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Gly-OH 、
Fmoc-Ile-OH、 Fmoc-Leu-OH Fmoc-Phe-OH、 Fmoc-Pro-OH、 Fmoc-Tyr(tBu)-OH。
其中, X为 Gly-Gly-Gly-Gly, R2为 Trt或 H, R3为 Fmoc或 Boc。
Fmoc为 9-芴甲氧羰基, tBu为叔丁基、 Trt为三苯基甲烷、 OtBu为叔丁氧基、 Boc为 叔丁氧羰酰基。
各个 Fmoc-保护氨基酸用量为所投料树脂总摩尔数的 1.2〜6倍, 优选 3倍。 其中 Fmoc-Gly-OH是应用于接入第 11个 Gly氨基酸的时侯, 第 13-17个 Gly氨基酸 接入时使用的是 Fmoc-Gly-Gly-Gly-Gly-OH。
Fmoc-Gl -Gly-Gly-Gly-OH, 结构为:
Figure imgf000004_0001
纯度大于 99.5%, 单一杂质小于 0.2%。 与已有技术相比, 本发明工艺具有反应操作简单、 反应条件温和等特点, 具有广泛的实用价值和应用前景。
具体实施方式
本发明比伐卢定的制备方法, 包括固相多肽合成法制备比伐卢定树脂、 比伐卢定树脂 酸解得到比伐卢定粗品、 比伐卢定粗品纯化得到比伐卢定纯品, 其中固相多肽合成法制备 比伐卢定树脂的方法为: 在 Fmoc-Leu-载体树脂上通过固相偶联合成法依次接入下列序列 中相对应的 Fmoc-保护氨基酸, 得到比伐卢定树脂:
R1-D-Phe-Pro-Arg(Pbf)-Pro-X-Asn(R2)-Gly-Asp(OtBu)- Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)- Tyr Bu)-Leu-树脂
其中, X为 Gly-Gly-Gly-Gly, R 为 R3或 H, R2为 Trt或 H, R3为 Fmoc或 Boc。 固相偶联合成法具体为: 前一步反应得到的保护氨基酸-树脂脱去保护 Fmoc后再与下 一个保护氨基酸偶联反应。 脱去 Fmoc保护的试剂为 10〜30%(V/V)哌啶 (PIP)/N,N-二甲基 甲酰胺 (DMF) 溶液, 优选的为 20%。 使用的去保护试剂用量为每克投料树脂 5〜15ml, 优选为每克投料树脂 10ml。 去保护反应时间为 10〜60分钟, 优选为 15〜25分钟。
偶联时需添加缩合试剂和活化试剂, 缩合试剂选自 Ν,Ν-二异丙基碳二亚胺 (DIC)、
Ν,Ν-二环己基碳二亚胺 (DCC), 六氟磷酸苯并三唑 -1-基 -氧基三吡咯烷基磷 (PyBOP)、 2-(7-氮杂 -1H-苯并三氮唑 -1-基;) -1, 1,3,3-四甲基脲六氟磷酸酯 (HATU)、 苯并三氮唑
-Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸盐 (HBTU)或 0-苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲四氟硼酸酯 (TBTU); 优选的为 Ν,Ν-二异丙基碳二亚胺。
缩合试剂的摩尔用量为氨基树脂中氨基总摩尔数的 1.2〜6倍, 优选为 2.5〜3.5倍。 活化试剂选自 1-羟基苯并三唑 (HOBt;)、 N-羟基 -7-氮杂苯并三氮唑 (HOAt;), 优选的为 1-羟基苯并三唑。
活化试剂用量为氨基树脂中氨基总摩尔数的 1.2〜6倍, 优选的为 2.5〜3.5倍。
偶联反应时间为 60〜300分钟, 优选的为 100〜140分钟。
优选的, 所述 Fmoc-Leu-载体树脂的取代值为 0.5〜1.5mmol/g, 优选的取代值为 0.8〜
1.2mmol/g树脂时产率较高。
所述载体树脂为 Trityl-Cl 类型树脂或羟基类型树脂, 其中 Trityl-Cl 类型树脂优选为 Trityl-Cl树脂、 4-Methyltrityl-Cl树脂、 4-Methoxytrityl-Cl树脂或 2-C1 Trity-Cl 树脂; 羟基 类型树脂优选为 Wang树脂或对羟甲基苯氧甲基聚苯乙烯 (HMP) 树脂。
当载体树脂为三苯甲基氯树脂时, Fmoc-Leu-OH 与载体树脂的偶联方法为:
Fmoc-Leu-OH的羧基与树脂中的 C1-代烷在碱作用下发生酯化反应而接入保护氨基酸。
所述的碱选自 N.N-二异丙基乙基胺 (DIEA;)、 三乙胺 (TEA;)、 吡啶中的至少一种, 优选 为 DIEA。 碱的摩尔用量为保护氨基酸摩尔数的 1.5〜3倍。
酯化反应时间为 1〜6小时, 优选为 3小时。
当载体树脂为羟基类型树脂时, Fmoc-Leu-OH 与载体树脂的偶联方法为:
Fmoc-Leu-OH的羧基与树脂中的羟基在偶联剂、活化剂和碱催化剂的作用下发生酯化反应 而接入保护氨基酸。
偶联剂选自 Ν,Ν-二异丙基碳二亚胺 (DIC)、 Ν,Ν-二环己基碳二亚胺 (DCC)、 六氟磷 酸苯并三唑 -1-基 -氧基三吡咯烷基磷 (PyBOP)、 2-(7-氮杂 -1H-苯并三氮唑 -1-基) -1, 1,3,3-四 甲基脲六氟磷酸酯 (HATU;)、苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸盐 (HBTU;)、 0-苯并三 氮唑 -Ν,Ν,Ν',Ν'-四甲基脲四氟硼酸酯 (TBTU)中的至少一种, 优选为 DIC。 偶联剂用量为所 投料树脂总摩尔数的 1.2〜6倍, 优选为 3倍。
碱催化剂为 4-Ν,Ν-二甲基吡啶 (DMAP), 用量为为所投料树脂总摩尔数的 0.1倍。 活化剂选自 1-羟基苯并三唑 (HOBt;)、 N-羟基 -7-氮杂苯并三氮唑 (HO At)中的至少一种, 优选为 HOBt。 活化剂用量为所投料树脂总摩尔数的 1.2〜6倍, 优选的为 3倍。
酯化反应时间为 12〜36小时, 优选为 18小时。
进一步的, 比伐卢定树脂经酸解同时脱去树脂及侧链保护基得到比伐卢定粗品:
D-Phe-Pro-Arg-Pro-X-Asn-Gly-Asp-Phe- Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-OH
其中, X为 Gly-Gly-Gly-Gly
酸解剂为三氟醋酸 (TFA;)、 1,2-乙二硫醇 (EDT)和水混合溶剂, 混合溶剂的配比为: TFA 的比列为 80-95% (V/V), EDT的比例为 1〜10% (V/V), 余量为水。优选的配比为 89-91%、 EDT 4-6% 余量为水。 最优的, 配比为 90%、 EDT 5%、 余量为水。
酸解剂用量为每克比伐卢定树脂需要 4〜15 ml酸解剂, 优选的, 每克比伐卢定树脂需 要 9〜llml酸解剂。
使用酸解剂裂解的时间为室温条件下 1〜5小时, 优选的为 2小时。
进一步的, 比伐卢定粗品经高效液相色谱纯化、 冻干得到比伐卢定纯品。 纯化方法具 体为:
称取比伐卢定粗品粉末, 加入至水中 (约 20ml 水 /g 粗品), 搅拌下滴加稀氨水调 pH=4.5〜5.5, 溶液用 0.45μιη混合微孔滤膜过滤, 备用。
高效液相色谱法进行纯化时色谱填料为 ΙΟμιη的反相 C18, 流动相为 0.1%TFA/水溶液
-0.1%TFA/乙腈溶液, 77mm*250mm的色谱柱流速为 90ml/min, 采用梯度系统洗脱, 循环 进样纯化。 取粗品溶液上样于色谱柱中, 启动流动相洗脱, 收集主峰蒸去乙腈后, 得比伐 卢定纯化中间体浓缩液。
取比伐卢定纯化中间体浓缩液, 用 0.45μιη滤膜滤过备用。 采用高效液相色谱法进行 换盐, 流动相系统为 0.1%TFA/水溶液-乙腈, 纯化用色谱填料为 ΙΟμιη的反相 C18,
77mm*250mm的色谱柱流速为 90ml/min(可根据不同规格的色谱柱, 调整相应的流速;)。 采 用梯度洗脱, 循环上样方法, 上样于色谱柱中, 启动流动相洗脱, 采集图谱, 观测吸收度 的变化, 收集换盐主峰并用分析液相检测纯度, 合并换盐主峰溶液, 在小于 40°C水浴条件 下减压浓缩, 用旋转蒸发仪蒸去大部分乙腈, 得到比伐卢定三氟醋酸盐水溶液, 冷冻干燥 但 口
付广口口。
下述实施例将有助于理解本发明, 但不能限制本发明的内容:
实施例 1 Fmoc-Leu-Wang树脂的制备
取 wang树脂 500g (取代值为 1.0mmol/g), 用 5L Ν,Ν-二甲基酰胺 (DMF) 溶涨 30分 钟,加入 Fmoc-Leu-OH 353g ( l.Omol),搅拌 30分钟后加入 155ml DIC(1.0mol) 135g HOBt (1.0mol) 6.1g(0.05mol) DMAP, 室温搅拌反应 18小时, 过滤后树脂分别用 DMF、 二氯甲 烷DCM;)、 甲醇洗涤 3次, 减压干燥, 得 Fmoc-Leu-Wang树脂 651g, 酯化收率 95.6%。 实施例 2 Fmoc-Leu-Wan 树脂脱 Fmoc保护得到 H-Leu-Wang树脂
取上述 Fmoc-Leu-Wang树脂, 用 5L 20%哌啶 (ΡΙΡ)/ΝΝ-二甲基酰胺 (DMF) 溶液溶涨 10分钟, 过滤后再加入 5L 20%PIP/ DMF溶液, 室温搅拌反应 25分钟, 过滤后树脂分别 用 DMF、 DCM、 甲醇洗涤 3次, 减压干燥即得 H-Leu-Wang树脂的制备。
实施例 3 Fmoc-Leu-2-Cl-Trt树脂的制备
取 2-Cl-Trt-Cl树脂 500g (取代值为 1.0mmol/g), 用 5L Ν,Ν-二甲基酰胺 (DMF) 溶涨 30分钟, 加入 Fmoc-Leu-OH 353g ( l.Omol), 搅拌 30分钟后加入 260ml DIEA ( 1.5mol), 室温搅拌反应 3 小时, 过滤后树脂分别用 DMF、 DCM、 甲醇洗涤 3 次, 减压干燥, 得 Fmoc-Leu-2-Cl-Trt树脂 655g, 酯化收率 98.1%。
实施例 4 Fmoc-Leu-2-Cl-Trt树脂脱 Fmoc保护得到 H-Leu-2-Cl-Trt树脂
取上述 Fmoc-Leu-2-Cl-Trt树脂, 用 5L 20% PIP/ DMF溶液溶涨 10分钟, 过滤后再加 入 5L 20% PIP/ DMF溶液, 室温搅拌反应 25分钟, 过滤后树脂分别用 DMF、 DCM、 甲醇 洗涤 3次, 减压干燥即得 H-Leu-2-Cl-Trt树脂的制备。
实施例 5 Fmoc-Gly-Gly-Gly-Gly-OH的合成
取 3.0mol Fmoc-Gly和 3.0mol HOBt, 用适量 DMF溶解; 另取 3.0mol DIC, 搅拌下慢 慢加入至保护氨基酸 DMF溶液中, 于室温环境中搅拌反应 30分钟, 得到活化后的保护氨 基酸溶液。
取 Fmoc-Gly-2-Cl-Trt-树脂 lKg (取代值为 1.0mmol/g), 采用 5L 20% PIP/ DMF溶液去
Fmoc保护 25分钟, 过滤后树脂分别用 MDF、 DCM洗涤 3次, 加入上述保护氨基酸溶液, 室温搅拌反应 3小时, 反应完成后, 过滤后树脂分别用 MDF、 DCM洗涤 3次。
重复上述两步反应, 接入另外 3个 Gly, 制得 Fmoc-Gly-Gly-Gly-Gly-2-Cl-Trt-树脂。 取 Fmoc-Gly-Gly-Gly-Gly-2-Cl-Trt-树脂, 加入 20L 30%六氟异丙醇/ DCM溶液, 搅拌 反应 2小时,过滤收集滤液,减压蒸干溶剂,减压干燥,得 Fmoc-Gly-Gly-Gly-Gly-OH 457g, 收率为 97.2%, 纯度为 98.3%, MS m/z: 469(M+1)
实施例 6 比伐卢定树脂的合成
比伐卢定树脂为:
H-D-Phe-Pro-Arg(Pbf)-Pro-X-Asn(Trt)-Gly-Asp(aBu)- Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-
Tyr Bu)-Leu-树脂
其中, X为 Gly-Gly-Gly-Gly。
取 Fmoc-Leu-Wang树脂, 依次与表 1所示的保护氨基酸偶联, 制得比伐卢定树脂。 本 实施例使用的保护氨基酸从树脂起算第 2至第 17个氨基酸相对应的保护氨基酸如下所示: 表 1
Figure imgf000008_0001
其中第 13个为实施例 5制得的 Fmoc-Gly-Gly-Gly-Gly-OH。
保护氨基酸的活化方法为: 取 1.5mol保护氨基酸和 1.5mol HOBt, 用适量 DMF溶解; 另取 1.5mol DIC, 搅拌下 慢慢加入至保护氨基酸 DMF溶液中, 于室温环境中搅拌反应 30分钟, 得到活化后的保护 氨基酸溶液。
取 Fmoc-Leu-Wang树脂(取代值为 1.0mmol/g) 0.5Kg, 采用 5L 20% PIP/ DMF溶液去 保护 25分钟, 过滤得到去 Fmoc的树脂备用。
去 Fmoc的树脂加入活化后的第 2个保护氨基酸溶液, 偶联反应 60〜300分钟, 过滤 洗涤得 2肽树脂。 2肽树脂用 5L 20% PIP/ DMF溶液去 Fmoc保护 25分钟, 过滤洗涤后, 与第 3个活化后的保护氨基酸溶液偶联反应 60〜300分钟, 过滤洗涤后得 3肽树脂。
采用上述同样方法, 依次接入第 4至第 17个氨基酸对应的 Fmoc-保护氨基酸, 即前一 步得到的 Fmoc-[l〜(; n-1)个]氨基酸 -Wang树脂, 脱 Fmoc保护后与活化的 Fmoc-保护氨基 酸(第 n个)偶联反应 60〜300分钟, n=2〜17。接完所有保护氨基酸后, 再用 5L 20% PIP/ DMF溶液去 Fmoc保护 25分钟, 过滤洗涤后, 即得比伐卢定树脂。
实施例 7 比伐卢定树脂的酸解
取实施例 6制得的比伐卢定树脂,加入裂解试齐 [J[TFA/水/ EDT=95:5:5(V/V) ( 10ml/克树 脂), 搅拌均匀, 室温搅拌反应 3小时, 反应混合物使用砂芯漏斗过滤, 收集滤液, 树脂再 用少量 TFA洗涤 3次, 合并滤液后减压浓缩, 加入无水乙醚沉淀, 再用无水乙醚洗沉淀 3 次, 抽干得白色粉末即为比伐卢定粗品。
实施例 8 比伐卢定粗品的纯化
称取比伐卢定粗品粉末, 将粗品加入至纯化水中 (约 20ml水 /g粗品), 搅拌下滴加稀 氨水调 pH, 将 pH控制在〜 5.0, 溶液用 0.45μιη混合微孔滤膜过滤, 备纯化用。
采用高效液相色谱法进行纯化, 纯化用色谱填料为 ΙΟμιη的反相 C18, 流动相系统为 0.1%TFA/水溶液 -0.1%TFA/乙腈溶液, 77mm*250mm的色谱柱流速为 90ml/min, 采用梯度 系统洗脱, 循环进样纯化, 取粗品溶液上样于色谱柱中, 启动流动相洗脱, 收集主峰蒸去 乙腈后, 得比伐卢定纯化中间体浓缩液。
取比伐卢定纯化中间体浓缩液, 用 0.45μιη滤膜滤过备用。 采用高效液相色谱法进行 换盐, 流动相系统为 0.1%TFA/水溶液-乙腈, 纯化用色谱填料为 ΙΟμιη的反相 C18, 77mm*250mm的色谱柱流速为 90ml/min(可根据不同规格的色谱柱, 调整相应的流速;)。 采 用梯度洗脱, 循环上样方法, 上样于色谱柱中, 启动流动相洗脱, 采集图谱, 观测吸收度 的变化, 收集换盐主峰并用分析液相检测纯度, 合并换盐主峰溶液, 在小于 40°C水浴条件 下减压浓缩, 用旋转蒸发仪蒸去大部分乙腈, 得到比伐卢定三氟醋酸水溶液, 冷冻干燥, W 得产品 608g, 总收率为 55.8%。
分子量: 2181.2(100% M+H); 比旋度: -H6. 水分 2.1%; 三氟醋酸: 9.5%; 纯度: 99.8%

Claims

1、 比伐卢定的制备方法, 包括固相多肽合成法制备比伐卢定树脂、 比伐卢定树脂酸解 得到比伐卢定粗品、 比伐卢定粗品纯化得到比伐卢定纯品, 其中固相多肽合成法制备比伐 卢定树脂的方法为: 在 Fmoc-Leu-载体树脂上通过固相偶联合成法依次接入下列序列中相 对应的 Fmoc-保护氨基酸, 得到比伐卢定树脂:
R1-D-Phe-Pro-Arg(Pbf)-Pro-X-Asn(R2)-Gly-Asp(OtBu)- Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)- Tyr Bu)-Leu-树脂
其中, X为 Gly-Gly-Gly-Gly, 为 R3或 H, R2为 Trt或 H, R3为 Fmoc或 Boc; 接入
X片段时仅用 1次固相偶联合成反应。
2、根据权利要求 1所述的比伐卢定的制备方法, 其特征在于: 所述载体树脂的取代值 为 0.5〜1.5mmol/g。
3、根据权利要求 2所述的比伐卢定的制备方法, 其特征在于: 所述载体树脂的取代值 为 0.8〜1.2mmol/g。
4、根据权利要求 1所述的比伐卢定的制备方法,其特征在于:所述载体树脂为 Trityl-Cl 类型树脂或羟基类型树脂。
5、 根据权利要求 4所述的比伐卢定的制备方法, 其特征在于: Trityl-Cl 类型树脂为
Trityl-Cl树脂、 4-Methyltrityl-Cl树脂、 4-Methoxytrityl-Cl树脂或 2-C1 Trity-Cl 树脂; 羟基 类型树脂为 Wang树脂或对羟甲基苯氧甲基聚苯乙烯树脂。
6、根据权利要求 4或 5所述的比伐卢定的制备方法, 其特征在于: 当载体树脂为三苯 甲基氯树脂时, Fmoc-Leu-OH与载体树脂的偶联方法为: Fmoc-Leu-OH的羧基与树脂中的 C1-代烷在碱作用下发生酯化反应而接入保护氨基酸。
7、 根据权利要求 6所述的比伐卢定的制备方法, 其特征在于: 所述的碱选自 N.N-二 异丙基乙基胺、 三乙胺、 吡啶中的至少一种。
8、根据权利要求 4或 5所述的比伐卢定的制备方法, 其特征在于: 当载体树脂为羟基 类型树脂时, Fmoc-Leu-OH与载体树脂的偶联方法为: Fmoc-Leu-OH的羧基与树脂中的羟 基在偶联剂、 活化剂和碱催化剂的作用下发生酯化反应而接入保护氨基酸。
9、 根据权利要求 8所述的比伐卢定的制备方法, 其特征在于: 偶联剂选自 Ν,Ν-二异 丙基碳二亚胺、 Ν,Ν-二环己基碳二亚胺、六氟磷酸苯并三唑 -1-基-氧基三吡咯烷基磷、 2-(7- 氮杂 -1H-苯并三氮唑 -1-基;) -1, 1,3,3-四甲基脲六氟磷酸酯、苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六 氟磷酸盐、 0-苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲四氟硼酸酯中的至少一种。
10、 根据权利要求 8所述的比伐卢定的制备方法, 其特征在于: 碱催化剂为 4-Ν,Ν-二 甲基吡啶。
11、 根据权利要求 8所述的比伐卢定的制备方法, 其特征在于: 活化剂选自 1-羟基苯 并三唑、 Ν-羟基 -7-氮杂苯并三氮唑中的至少一种。
12、根据权利要求 1〜11任一项所述的比伐卢定的制备方法,其特征在于:所述 Fmoc- 保护氨基酸种类分别为: R3-D-Phe-OH、 Fmoc-X-OH、 Fmoc-Asn(R2)-OH、 Fmoc-Arg(pbf)-OH、 Fmoc-Asp (OtBu)-OH Fmoc-Glu(OtBu)-OH、 Fmoc-Gly-OH、 Fmoc-Ile-OH、 Fmoc-Leu-OH、 Fmoc-Phe-OH、 Fmoc-Pro-OH Fmoc-Tyr(tBu)-OH, 其中, X为 Gly-Gly-Gly-Gly, R2为 Trt 或 H, R3为 Pmoc或 Boc。
13、 根据权利要求 1〜11任一项所述的比伐卢定的制备方法, 其特征在于: 比伐卢定 树脂经酸解同时脱去树脂及侧链保护基得到比伐卢定粗品:
D-Phe-Pro-Arg-Pro-Y-Asn-Gly-Asp-Phe- Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-OH
其中, Y为 Gly-Gly-Gly-Gly;
酸解试剂为三氟醋酸、 1,2-乙二硫醇和水的混合溶剂, 其用量为每克树脂 4〜15ml; 酸 解试剂混合溶剂的配比为: TFA的体积比为 80〜95%, EDT的体积比为 1〜10%, 余量为 水。
PCT/CN2011/081306 2011-06-23 2011-10-26 比伐卢定的制备方法 WO2012174816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/135,608 US20140187745A1 (en) 2011-06-23 2013-12-20 Method for preparing bivalirudin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110170669.1A CN102286076B (zh) 2011-06-23 2011-06-23 比伐卢定的制备方法
CN201110170669.1 2011-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/135,608 Continuation-In-Part US20140187745A1 (en) 2011-06-23 2013-12-20 Method for preparing bivalirudin

Publications (1)

Publication Number Publication Date
WO2012174816A1 true WO2012174816A1 (zh) 2012-12-27

Family

ID=45332851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081306 WO2012174816A1 (zh) 2011-06-23 2011-10-26 比伐卢定的制备方法

Country Status (3)

Country Link
US (1) US20140187745A1 (zh)
CN (1) CN102286076B (zh)
WO (1) WO2012174816A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223296A (zh) * 2015-10-16 2016-01-06 江苏开元医药化工有限公司 一类多肽的纯化方法
USRE46830E1 (en) 2004-10-19 2018-05-08 Polypeptide Laboratories Holding (Ppl) Ab Method for solid phase peptide synthesis

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532274B (zh) * 2012-02-13 2014-04-23 成都圣诺生物制药有限公司 一种比伐卢定的制备方法
CN102731624B (zh) * 2012-06-14 2015-09-23 无锡市凯利药业有限公司 一种固相片段法合成比伐卢定的方法
CN103965293B (zh) * 2013-02-05 2020-02-14 深圳信立泰药业股份有限公司 一种高纯度比伐卢定及其工业化制备方法
AU2014234314B2 (en) 2013-03-21 2018-02-15 Sanofi-Aventis Deutschland Gmbh Synthesis of cyclic imide containing peptide products
US10087221B2 (en) 2013-03-21 2018-10-02 Sanofi-Aventis Deutschland Gmbh Synthesis of hydantoin containing peptide products
CN103242431B (zh) * 2013-05-20 2015-05-13 齐鲁制药有限公司 一种比伐卢定的制备方法
CN103319570A (zh) * 2013-05-30 2013-09-25 深圳翰宇药业股份有限公司 一种比伐卢定的制备方法
WO2017148416A1 (zh) * 2016-03-03 2017-09-08 凯惠科技发展(上海)有限公司 一种美登素酯的制备方法及其中间体
CN106478813A (zh) * 2016-10-24 2017-03-08 合肥国肽生物科技有限公司 一种比伐卢定的高效合成方法
CN108383905A (zh) * 2016-12-30 2018-08-10 江苏金斯瑞生物科技有限公司 一种比伐卢定的制备方法
CN108663439A (zh) * 2017-03-31 2018-10-16 江苏汉邦科技有限公司 一种使用高效液相色谱纯化比伐卢定的方法
CN109988062B (zh) * 2017-12-29 2020-09-04 深圳翰宇药业股份有限公司 一种液相球形载体及其制备方法和应用
CN108434459B (zh) * 2018-03-15 2020-09-11 国家纳米科学中心 一种多肽药物偶联物及其制备方法和应用
EP3810627A4 (en) * 2018-06-19 2022-03-09 Shanghai Space Peptides Pharmaceutical Co., Ltd. METHODS OF SYNTHESIS OF BIVALIRUNDIN
CN109721654A (zh) * 2019-03-15 2019-05-07 苏州纳微科技股份有限公司 一种比伐芦定的分离纯化方法
CN110204611B (zh) * 2019-06-26 2023-11-07 海南中和药业股份有限公司 一种固相片段法合成比伐卢定

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033383A2 (en) * 2005-09-14 2007-03-22 Novetide, Ltd. Process for production of bivalirudin
WO2007067979A2 (en) * 2005-12-09 2007-06-14 Bracco International B.V. Targeting vector-phospholipid conjugates
US20090062511A1 (en) * 2007-09-05 2009-03-05 Raghavendracharyulu Venkata Palle Process for the preparation of bivalirudin and its pharmaceutical compositions
WO2010117725A2 (en) * 2009-04-06 2010-10-14 Novetide, Ltd. Production of peptides containing poly-gly sequences using fmoc chemistry
CN101906150A (zh) * 2010-06-28 2010-12-08 上海昂博生物技术有限公司 一种比法卢定的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033249B (zh) * 2006-03-10 2011-05-11 周逸明 固相多肽合成比筏芦定的制备方法
WO2008109079A2 (en) * 2007-03-01 2008-09-12 Novetide, Ltd. High purity peptides
CN101475631B (zh) * 2009-01-08 2011-08-17 苏州中科天马肽工程中心有限公司 比伐卢定的液相合成方法
CN101555274B (zh) * 2009-05-15 2013-08-21 海南双成药业股份有限公司 一种多肽固相合成比法卢定粗品的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033383A2 (en) * 2005-09-14 2007-03-22 Novetide, Ltd. Process for production of bivalirudin
WO2007067979A2 (en) * 2005-12-09 2007-06-14 Bracco International B.V. Targeting vector-phospholipid conjugates
US20090062511A1 (en) * 2007-09-05 2009-03-05 Raghavendracharyulu Venkata Palle Process for the preparation of bivalirudin and its pharmaceutical compositions
WO2010117725A2 (en) * 2009-04-06 2010-10-14 Novetide, Ltd. Production of peptides containing poly-gly sequences using fmoc chemistry
CN101906150A (zh) * 2010-06-28 2010-12-08 上海昂博生物技术有限公司 一种比法卢定的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46830E1 (en) 2004-10-19 2018-05-08 Polypeptide Laboratories Holding (Ppl) Ab Method for solid phase peptide synthesis
CN105223296A (zh) * 2015-10-16 2016-01-06 江苏开元医药化工有限公司 一类多肽的纯化方法

Also Published As

Publication number Publication date
US20140187745A1 (en) 2014-07-03
CN102286076A (zh) 2011-12-21
CN102286076B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2012174816A1 (zh) 比伐卢定的制备方法
CN102532274B (zh) 一种比伐卢定的制备方法
CN104031127B (zh) 一种固液结合制备比伐卢定的方法
WO2008109079A2 (en) High purity peptides
CN107056927B (zh) 一种利拉鲁肽的制备方法
CN103304660A (zh) 一种利拉鲁肽的合成方法
US9394341B2 (en) Eptifibatide preparation method
WO2012174817A1 (zh) 奈西立肽的制备方法
CN101747426B (zh) 一种合成普兰林肽的方法
US20100292436A1 (en) Method for producing bivalirudin
CN102702320B (zh) 一种制备爱啡肽的方法
CN102408471A (zh) 特利加压素的制备方法
CN108047329A (zh) 一种阿巴帕肽的制备方法
CN107176975A (zh) 一种固相合成戈那瑞林的方法
CN109575109B (zh) 片段缩合制备地加瑞克的方法
CN102924575B (zh) 一种比伐卢定的制备方法
CN102977204A (zh) 一种固相合成glp-1类似物的方法
CN107540727B (zh) 布舍瑞林或戈舍瑞林的制备方法
CN109734794A (zh) 一种阿巴帕肽的制备方法
CN106632655B (zh) 一种艾塞那肽的制备方法及其产品
CN104844706A (zh) 一种合成利西拉来的方法
CN110204611A (zh) 一种固相片段法合成比伐卢定
CN105037496B (zh) 一种依替巴肽的制备方法
CN112062835B (zh) 一种比伐芦定的制备方法
CN104530224A (zh) 一种固相合成比伐芦定的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868238

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868238

Country of ref document: EP

Kind code of ref document: A1