WO2012172831A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2012172831A1
WO2012172831A1 PCT/JP2012/054376 JP2012054376W WO2012172831A1 WO 2012172831 A1 WO2012172831 A1 WO 2012172831A1 JP 2012054376 W JP2012054376 W JP 2012054376W WO 2012172831 A1 WO2012172831 A1 WO 2012172831A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
life
active material
electrolyte secondary
electrode active
Prior art date
Application number
PCT/JP2012/054376
Other languages
English (en)
French (fr)
Inventor
松野真輔
山本大
佐竹秀喜
高見則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP12801291.1A priority Critical patent/EP2722923B1/en
Priority to CN201280029044.6A priority patent/CN103608961B/zh
Publication of WO2012172831A1 publication Critical patent/WO2012172831A1/ja
Priority to US14/107,713 priority patent/US9214669B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries that are charged and discharged by moving Li ions between a negative electrode and a positive electrode have been actively researched and developed as high-energy density batteries.
  • Such a non-aqueous electrolyte secondary battery is expected as a power source for large-sized electric vehicles and hybrid vehicles using both an engine and a motor, from the viewpoint of environmental problems.
  • nonaqueous electrolyte secondary batteries as power sources have attracted considerable attention.
  • Such a non-aqueous electrolyte secondary battery is more important than the non-aqueous electrolyte secondary battery used in a small mobile phone, a notebook personal computer, or the like, because it has a characteristic of instantly releasing a large current.
  • lithium iron phosphate (LiFePO 4 ) having an olivine type is attracting attention from the viewpoints of resource stability, high environmental harmony, electrochemical stability, thermal safety, and the like.
  • a battery using a lithium-titanium composite oxide as a negative electrode and lithium iron phosphate as a positive electrode can be an innovative secondary battery having a much safer and longer life than a conventional lithium ion secondary battery.
  • lithium iron phosphate reacts easily with moisture, and there is a problem that iron is easily eluted from the positive electrode active material.
  • the inventors have also confirmed that a large amount of crystal water is contained in a lithium titanium composite oxide having a very fine particle size used as a negative electrode.
  • the lithium iron phosphate is easily dissolved by a large amount of crystal water contained in the negative electrode, and capacity deterioration is likely to occur, and the potential of the original positive electrode and negative electrode can be sufficiently extracted. could not.
  • a method of coating a substance such as Li 3 PO 4 that is inert to water or carbon that provides electronic conductivity is already known.
  • the substances mentioned in the examples do not occlude / release lithium themselves, and thus do not contribute to the charge / discharge capacity.
  • lithium diffusion hardly occurs inside the solid in Li 3 PO 4 or carbon. Therefore, since such a coating becomes a factor for inhibiting diffusion into lithium iron phosphate, it is not suitable for applications requiring a large current.
  • an object of the present invention is to provide a nonaqueous electrolyte secondary battery having a positive electrode active material excellent in water resistance.
  • the non-aqueous electrolyte secondary battery according to the embodiment includes an olivine-type LiFePO 4 at the center, an intermediate portion having lithium iron phosphate that can be expressed by LiFe x P y O z outside the center, and the intermediate portion.
  • the molar concentration ratio of Fe to P of the lithium iron phosphate in the central portion is larger than the average of x / y of the LiFe x P y O z , and the LiFe a P b O c of the surface portion of the positive electrode active material particles the average value of a / b, the LiFe x P y O z smaller than the average of x / y in, LiFe x P y O z of x / y of the central portion toward the center portion direction from the surface portion, the continuous In other words, a region that increases periodically or intermittently is included.
  • FIG. 1 is a partial cross-sectional view of the nonaqueous electrolyte secondary battery of the embodiment.
  • the inventors have found that the higher the molar concentration ratio of Fe of lithium iron phosphate of the positive electrode active material to P, the smoother the lithium ion diffusion, the lower the effect of preventing water erosion.
  • the molar concentration ratio of Fe to P is represented by x / y when the lithium iron phosphate is LiFe x P y O z , for example.
  • x / y 1 is expressed.
  • the positive electrode active material of the embodiment includes lithium iron phosphate having olivine-type LiFePO 4 in the center, and an intermediate part having lithium iron phosphate that can be expressed by LiFe x P y O z outside the center, composed of a lithium iron phosphate which can be on the outside of the intermediate portion represented by LiFe a P b O c.
  • the particles of the cathode active material, LiFe x P y O z continuously or intermittently larger area x / y is in the central direction from the surface part of the are included in the positive active material particles.
  • the diffusion of lithium can proceed smoothly.
  • by reducing the a / b of the surface portion of the positive electrode active material it has a form that prevents erosion of water, for the surface portion is not the coating layer such as Li 3 PO 4, the surface portion to charge and discharge Can contribute.
  • the positive electrode active material particles of the embodiment can be subjected to surface composition analysis by X-ray by XPS (X-ray Photon Spectroscopy). By XPS measurement, the bonding state of each element of the positive electrode active material and the composition ratio of each element can be calculated.
  • the composition ratio of each element in the embodiment for example, the molar concentration ratio of Fe to P of lithium iron phosphate represented by LiFe x P y O z is all measured by XPS.
  • the molar concentration ratios of Fe to P in other lithium iron phosphates are all measured by XPS.
  • the active material powder can be measured, but it can also be measured in the state of electrodes.
  • the electrode when the electrode is used, it is necessary to dry the solvent at room temperature for 10 hours or more after washing with methyl ethyl carbonate (MEC) solvent for 1 hour while maintaining an inert atmosphere. Thereafter, a sample is introduced into the XPS chamber while the inert electrode is maintained in an inert atmosphere, and measurement is performed. In particular, it is necessary to maintain an inert atmosphere until immediately before measurement because it may be easily affected by moisture in the atmosphere after the electrode or battery is manufactured.
  • MEC methyl ethyl carbonate
  • the average particle diameter of the positive electrode active material particles is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m or more and 20 ⁇ m.
  • an arbitrary point on the outermost surface or surface portion of the positive electrode active material particles is defined as P1, and a point satisfying the following condition is defined as P2 with respect to the particle depth direction on the line connecting P1 and the center of the positive electrode active material particles.
  • the deep part of the particle is measured by etching from the surface. If P1 is the point on the outermost surface, etching is not performed in the measurement of P1.
  • Fe / P (molar ratio of Fe to P) of lithium iron phosphate of P1 and P2 is represented as C (P1) and C (P2).
  • C (P1) ⁇ C (P2) is satisfied, it is regarded as “a form in which the Fe concentration increases with respect to P in the center direction (center portion) from the surface portion of the positive electrode active material”.
  • the determination of the P2 point is that the concentration ratio C is 0 at a point where C (P2) is in the range of 0.95 to 1.05 or in the range of 1000 nm to 2000 nm in the depth direction from the surface.
  • the first point at which the change becomes small is regarded as P2.
  • Depth distance between P2 and P1 is calculated by the etching time by SiO 2 conversion.
  • Fe / P of each lithium iron phosphate Is C (P1), C (P2), C (P3), and C (P4). If C (P1) ⁇ C (P2) is satisfied, and C (P3) and C (P4) are not less than C (P1) and not more than C (P2), “the Fe concentration with respect to P increases in the intermediate portion. Considered as “form”.
  • composition change and the range of the region in which Fe changes continuously or intermittently with respect to P can be found by shifting the positions of P3 and P4 and examining the intermediate part in detail by XPS measurement. Can do.
  • the range of the continuously or intermittently changing region preferably starts from a point deeper than 0.1% of the diameter of the particle from the outermost surface of the positive electrode active material particle toward the center from the viewpoint of water resistance.
  • the region is preferably included in the range of 0.1% or more and 20% or less of the diameter of the particle from the outermost surface of the positive electrode active material particle toward the center. More preferably, the above-mentioned range of 0.5% to 15% includes this continuously or intermittently changing region.
  • the concentration change region in the middle part is short or the concentration change is very steep, it is easy to take a structure in which a region with a high or low lithium concentration surrounds the core portion of the active material like a shell (core Shell structure).
  • a shell core Shell structure
  • the diffusion rate of lithium changes even at the same charging depth, and as a result, the input / output characteristics may be greatly different. Therefore, it is not preferable because the handling is difficult in controlling the battery.
  • the central part of the positive electrode active material particles is mostly or entirely olivine-type LiFePO 4 , and besides this, Li 3 PO 4 , LiFeP 2 O 7 , LiFe 4 (P 2 O 7 ) 3 , Li 3 Fe 2 ( PO 4 ) 3 or the like may be included.
  • the molar concentration ratio of Fe with respect to P of lithium iron phosphate in the central part is larger than the average of x / y of LiFe x P y O z in the intermediate part. Further, the molar concentration ratio of Fe to P of lithium iron iron phosphate in the central part is 0.95 or more and 1.05 or less, and the amount of change in the concentration ratio in the region is LiFe x P in the intermediate region. less than the amount of change in y O z of x / y.
  • the surface portion of the positive electrode active material particles means a region up to less than 0.1% of the diameter from the outermost surface of the positive electrode active material particles toward the center.
  • the change amount of a / b of LiFe a P b O c is smaller than the change amount of x / y of LiFe x P y O z in the region of the intermediate part.
  • the average of the LiFe a P b O c of a / b of the surface portion is smaller than the average of LiFe x P y O z of x / y of the intermediate section.
  • the surface area of LiFe a P b O c is more preferable as a / b is smaller from the viewpoint of water resistance.
  • a / b is too small, it is not preferable that the diffusibility of Li ions is lowered.
  • a / b is smaller than 0.1 also from a viewpoint of charging / discharging capacity.
  • the surface also contains olivine-type LiFePO 4 . From the above, it is preferable that the surface contains olivine-type LiFePO 4 and a / b is 0.1 or more lithium iron phosphate.
  • a / b is preferably 0.5 or less. From the above, it is preferable that a / b of LiFe a P b O c in the surface portion is 0.1 or more and 0.5 or less.
  • the surface portion of the positive electrode active material particles is composed of at least one compound selected from Li 3 PO 4 , Li 1 + ⁇ FeP 2 O 7 , Li ⁇ Fe 4 (P 2 O 7 ) 3 , and Li 3 + ⁇ Fe 2 (PO 4 ) 3 .
  • olivine-type LiFePO 4 . ⁇ , ⁇ , and ⁇ satisfy the conditions of 0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 3, and 0 ⁇ ⁇ ⁇ 2. What kind of compound is formed can be known by analysis and analysis of the crystal phase by TEM-EDX.
  • the TEM measurement it is possible to measure only the active material powder, but it can also be measured in an electrode state.
  • the electrode it is necessary to dry the solvent at room temperature for 10 hours or more after washing with methyl ethyl carbonate (MEC) solvent for 1 hour while maintaining an inert atmosphere. Thereafter, the obtained electrode is etched while maintaining an inert atmosphere, and a sample is introduced into the TEM and measured.
  • MEC methyl ethyl carbonate
  • the positive electrode active material particles can be obtained by subjecting olivine-type LiFePO 4 to an acid or water washing treatment and a heat treatment in an inert atmosphere.
  • the acid used for the treatment may be any acid that dissolves iron such as hydrochloric acid, sulfuric acid, and nitric acid.
  • the acid type, concentration, and treatment temperature are adjusted as appropriate to adjust the surface of the positive electrode active material particles and the concentration of iron in the inside thereof.
  • Fe is partially eluted from LiFePO 4 in advance, and the molar concentration ratio of Fe to P in the surface portion and the central portion is lower than that in the central portion.
  • the surface layer (surface portion) has a disordered structure in such a state where the acid / water washing treatment is performed.
  • Li 1 + ⁇ FeP 2 O 7 , Li ⁇ Fe 4 (P 2 O 7 ) 3 , Li 3 Fe 2 (PO 4 ) and olivine-type LiFePO 4 are included on the treated surface, Li 1 + ⁇ FeP 2 O 7 , Li ⁇ Fe 4 (P 2 O 7 ) 3 , Li 3 Fe 2 (PO 4 ) 3 phase, etc. are not sufficiently formed.
  • Li 1 + ⁇ FeP 2 O 7 , Li ⁇ Fe 4 (P 2 O 7 ) 3 , Li 3 Fe 2 (PO 4 ) 3 phase, etc. are not sufficiently formed.
  • lithium diffusion into the particles is inhibited.
  • the erosion reaction of water is promoted instead. Therefore, after the acid / water washing treatment, the positive electrode active material particles having excellent lithium diffusibility and water resistance can be obtained by heating in an inert atmosphere to bring the surface structure into a desired form and
  • the synthesized positive electrode active material, conductive agent and binder are suspended in an appropriate solvent, and the suspension is applied to a current collector such as an aluminum foil, dried and pressed to form a strip electrode. It is produced by.
  • a current collector such as an aluminum foil
  • various oxides, sulfides, and lithium composite oxides may be mixed in the positive electrode active material.
  • manganese dioxide MnO 2
  • lithium manganese composite oxide eg LiMn 2 O 4 or LiMnO 2
  • lithium nickel composite oxide eg LiNiO 2
  • lithium cobalt composite oxide LiCoO 2
  • lithium nickel cobalt composite oxide LiNi 1-x Co x O 2
  • lithium manganese cobalt composite oxide for example, LiMn x Co 1-x O 2
  • the conductive agent include acetylene black, carbon black, and graphite.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), carboxymethylcellulose (CMC), and the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR ethylene-butadiene rubber
  • CMC carboxymethylcellulose
  • the compounding ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • the negative electrode is prepared by suspending, for example, a negative electrode mixture comprising a mixed active material of lithium titanium composite oxide and lithium composite oxide containing the negative electrode material for a nonaqueous electrolyte battery of the present invention, a conductive agent and a binder in a suitable solvent. The mixture is mixed and applied to one or both sides of the current collector and dried.
  • a carbon material is usually used as a conductive agent used for the negative electrode. If the carbon material used for the negative electrode active material described above has high alkali metal occlusion and conductivity, the carbon material described above used as the negative electrode active material can also be used as a conductive agent. However, since only the graphite having high carbon occlusion such as mesophase pitch carbon fiber has low conductivity, it is preferable to use, for example, acetylene black or carbon black as the negative electrode as the carbon material used as the conductive agent.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR ethylene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the compounding ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 70 to 95% by weight of the negative electrode active material, 0 to 25% by weight of the conductive agent, and 2 to 10% by weight of the binder.
  • the non-aqueous electrolyte is a liquid non-aqueous electrolyte (non-aqueous electrolyte) prepared by dissolving an electrolyte in a non-aqueous solvent, and a polymer gel electrolyte containing the non-aqueous solvent and the electrolyte in a polymer material.
  • non-aqueous electrolyte a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in a non-aqueous solvent, and a polymer gel electrolyte containing the non-aqueous solvent and the electrolyte in a polymer material.
  • examples thereof include a polymer solid electrolyte containing the electrolyte in a polymer material and an inorganic solid electrolyte having lithium ion conductivity.
  • non-aqueous solvent used in the liquid non-aqueous electrolyte a known non-aqueous solvent can be used in a lithium battery.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC)
  • cyclic carbonates and cyclic Examples thereof include a nonaqueous solvent mainly composed of a mixed solvent with a nonaqueous solvent (hereinafter referred to as a second solvent) having a viscosity lower than that of carbonate.
  • Examples of the second solvent include chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, ⁇ -butyrolactone, acetonitrile, methyl propionate, ethyl propionate, cyclic ether such as tetrahydrofuran, 2-methyltetrahydrofuran, and the like.
  • Examples of the ethers include dimethoxyethane and diethoxyethane.
  • Examples of the electrolyte include alkali salts, and particularly lithium salts.
  • lithium salts lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium perchlorate (LiClO 4 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ) and the like.
  • lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) are preferable.
  • the amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / L.
  • the solvent and the electrolyte are dissolved in a polymer material as a gel electrolyte to form a gel
  • the polymer material is a single amount of polyacrylonitrile, polyacrylate, polyvinylidene fluoride (PVdF), polyethylene oxide (PECO), or the like. And polymers with other monomers.
  • the electrolyte As the solid electrolyte, the electrolyte is dissolved in a polymer material and solidified.
  • the polymer material include polymers of monomers such as polyacrylonitrile, polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), and copolymers with other monomers.
  • the ceramic material containing lithium is mentioned as an inorganic solid electrolyte. Among these, Li 3 N, Li 3 PO 4 —Li 2 S—SiS 2 glass, and the like can be given.
  • a separator can be disposed between the positive electrode and the negative electrode.
  • a gel-like or solid nonaqueous electrolyte layer may be used in combination with this separator, or a gel-like or solid nonaqueous electrolyte layer may be used instead of the separator.
  • the separator is for preventing contact between the positive electrode and the negative electrode, and is made of an insulating material.
  • a shape in which the electrolyte can move between the positive electrode and the negative electrode is used.
  • a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or a cellulose-based separator can be used.
  • FIG. 1 An example of a partial cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery which is an embodiment of a nonaqueous electrolyte battery is shown in FIG.
  • an insulator 2 is disposed at the bottom of a bottomed cylindrical container 1 made of stainless steel.
  • the electrode group 3 is accommodated in the container 1.
  • the electrode group 3 is produced by winding the positive electrode 4 and the negative electrode 6 in a spiral shape with a separator 5 interposed therebetween.
  • Example 1 Preparation of positive electrode>
  • the olivine type lithium iron phosphate (LiFePO 4 ) powder was immersed in 0.5 N sulfuric acid for 30 minutes, and then washed with water and filtered to remove moisture. Thereafter, heat treatment was performed in an Ar atmosphere for 3 hours.
  • the obtained positive electrode active material was mixed with acetylene black, graphite, and polyvinylidene fluoride (PVdF) at a ratio of 100: 8: 8: 6 (all by weight%) using a mixer. Further, N-methylpyrrolidone was added and mixed, applied to a current collector of aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to prepare a positive electrode having an electrode density of 1.9 g / cm 3 .
  • Examples of the negative electrode active material include spinel type lithium titanium oxide, 85% by weight of negative electrode active material powder, 5% by weight of graphite as a conductive agent, 3% by weight of acetylene black as a conductive agent, and 7% by weight of PVdF. NMP was added and mixed, applied to a current collector made of an aluminum foil having a thickness of 11 ⁇ m, dried, and pressed to prepare a negative electrode.
  • LiPF 6 lithium hexafluorophosphate
  • MEC methyl ethyl carbonate
  • the electrode group and the electrolyte solution were respectively stored in a stainless steel bottomed cylindrical container to assemble a cylindrical nonaqueous electrolyte secondary battery.
  • the manufactured battery was charged and discharged three times at a 1 C rate in the range of 2.3 V to 1.0 V, and the capacity was confirmed.
  • Example 2 An active material was produced and a battery was produced in the same manner as in Example 1 except that the production conditions of the positive electrode were changed.
  • Table 1 summarizes the composition of the surface composition and the like similar to Example 1.
  • Example 1 A battery was produced in the same manner as in Example 1 except that bare LiFePO 4 was used for the positive electrode.
  • Example 2 A battery was produced in the same manner as in Example 1 except that LiFePO 4 of the positive electrode was coated with 2.5 wt% carbon.
  • Example 3 A battery was produced in the same manner as in Example 1 except that LiFePO 4 was simply coated with Li 3 PO 4 on the positive electrode without a concentration gradient.
  • Rate test> The batteries of Examples 1 to 1 and Comparative Example 1 to 1 were subjected to capacity measurement at 1C rate and capacity measurement at 30C rate. Table 2 summarizes the capacity retention rate at the 30C rate relative to the capacity at the 1C rate.
  • the carbon-coated LiFePO 4 is excellent in water resistance as in Comparative Example 2, but the rate characteristics are inferior to those in Example 1 and the like. From the above results, it was confirmed that by applying the present invention, high temperature durability was maintained while maintaining rate characteristics.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】耐水性に優れた正極活物質を有する非水電解質二次電池を提供することを目的とする。 【解決手段】実施形態の非水電解質二次電池は、中心部にオリビン型LiFePOと、前記中心部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する中間部と、前記中間部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する表面部とで構成される正極活物質粒子を含有する正極と、チタン酸リチウムを含有する負極とを備え、前記中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は、前記LiFeのx/yの平均より大きく、前記正極活物質粒子の表面部のLiFeのa/bの平均値は、前記LiFeのx/yの平均より小さく、前記中心部のLiFeのx/yが表面部から中心部方向に向かって、連続的又は断続的に大きくなる領域が含まれることを特徴とする。

Description

非水電解質二次電池
 本発明の実施形態は、非水電解質二次電池に関する。
 近年、Liイオンが負極と正極を移動することにより充放電が行われる非水電解質二次電池は、高エネルギー密度電池として盛んに研究開発が進められている。このような非水電解質二次電池は、環境問題の観点から、特に電気自動車やエンジンとモーターを併用するハイブリッド自動車などの大型用電源として期待されている。また自動車用途に限らず、電源としての非水電解質二次電池は非常に着目されている。
 このようなこの非水電解質二次電池は、小型の携帯電話やノートパソコン等に用いられる非水電解質二次電池以上に、瞬間的に大電流を放出する特性が重要視される。
 また正極として、資源的な観点、高い環境調和性の他、電気化学的な安定性、熱的安全性などの観点からオリビン型を持つリチウムリン酸鉄(LiFePO)が注目されている。
 リチウムチタン複合酸化物を負極に、リチウムリン酸鉄を正極に用いた電池では、従来のリチウムイオン二次電池よりも、はるかに安全、長寿命を有する革新的な二次電池となりうる。
 ところが、リチウムリン酸鉄は水分と容易に反応し、正極活物質から鉄が溶出しやすいといった問題がある。また、負極として用いる粒子サイズの非常に細かいリチウムチタン複合酸化物には大量の結晶水が含まれていることを発明者らは確認した。つまり、このような正極・負極の組み合わせの場合、負極に含まれる大量の結晶水により、リチウムリン酸鉄は溶解し、容量劣化を招きやすく、本来の正極・負極のポテンシャルを十分に引き出すことができなかった。
 このような水分等との反応を抑制するために、例えば水に不活性なLiPOといった物質や、電子導電性をもたらすカーボンを被覆するといった手法は既に知られている。しかし例に挙げた物質等はそれ自身リチウムを吸蔵・放出することがないため、充放電容量に寄与しない。また、リチウムリン酸鉄が反応に寄与する平衡電極電位では、LiPOやカーボン内においてリチウム拡散が固体内部で殆ど起こらない。従って、このような被覆はリチウムリン酸鉄への拡散阻害要因になるため、大電流を必要とする用途には不向きである。
特開2000-67925
 そこで、実施形態にかかる発明は、耐水性に優れた正極活物質を有する非水電解質二次電池を提供することを目的とする。
 実施形態の非水電解質二次電池は、中心部にオリビン型LiFePOと、前記中心部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する中間部と、前記中間部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する表面部とで構成される正極活物質粒子を含有する正極と、チタン酸リチウムを含有する負極とを備え、
 前記中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は、前記LiFeのx/yの平均より大きく、前記正極活物質粒子の表面部のLiFeのa/bの平均値は、前記LiFeのx/yの平均より小さく、前記中心部のLiFeのx/yが表面部から中心部方向に向かって、連続的又は断続的に大きくなる領域が含まれることを特徴とする。
図1は、実施形態の非水電解質二次電池の部分断面図である。
 発明者らは、正極活物質のリチウムリン酸鉄のFeのPに対するモル濃度比が高くなるほどリチウムイオン拡散をスムーズに行うことが出来る反面、水の浸食を防ぐ効果が減少する傾向を見出した。ここでFeのPに対するモル濃度比は、例えば、リチウムリン酸鉄がLiFeの場合はx/yで表す。例えば正極活物質がすべてLiFePOの場合、x/y=1として表される。
 まず、正極活物質粒子について説明する。
 実施形態の正極活物質は、中心部にオリビン型LiFePOを有するリチウムリン酸鉄と、前記中心部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する中間部と、中間部の外側にLiFeで表すことのできるリチウムリン酸鉄とで構成される。そして、正極活物質の粒子中に、LiFeのx/yが表面部から中心方向に連続的又は断続的に大きくなる領域が前記正極活物質粒子中に含まれる。増加する領域が含まれることによって、リチウムの拡散を円滑に進めることができる。また、正極活物質の表面部のa/bを小さくすることで、水の浸食を防ぐ形態となっており、この表面部がLiPO等の被覆層ではないため、充放電に表面部が寄与することができる。
 実施形態の正極活物質粒子は、XPS(X-ray Photon Spectroscopy)で、X線による表面組成分析をすることができる。XPS測定によって、正極活物質の各元素の結合状態及び各元素の組成割合を算出することができる。実施形態における各元素の組成割合、例えばLiFeで表されるリチウムリン酸鉄のPに対するFeのモル濃度比であるx/yは、すべてXPSで測定による。その他のリチウムリン酸鉄のPに対するFeのモル濃度比も、すべてXPSの測定による。
 XPSの測定では、活物質粉末のみを測定することもできるが、電極にした状態でも測定できる。特に電極にした状態では、不活性雰囲気を保った状態にて、メチルエチルカーボネート(MEC)溶媒にて1時間洗浄後、室温にて溶媒を10時間以上乾燥させる必要がある。その後、得られた電極を不活性雰囲気を維持したままXPSチャンバー内に試料を導入し、測定する。特に電極や電池作製後では、大気中の水分等の影響を受けやすくなっている可能性があるため、測定直前まで不活性雰囲気を保つ必要がある。
 正極活物質粒子の平均粒径は0.1μm以上50μm以下が好ましく、さらに好ましくは1μm以上20μmである。
 ここで正極活物質粒子の最表面又は表面部の任意の点をP1、P1と正極活物質粒子の中心を結ぶ線上の粒子深さ方向に対し、下記の条件を満たす点をP2とする。XPS測定では表面から、エッチングを行うことで、粒子の深部の測定を行う。P1を最表面の点とすれば、P1の測定において、エッチングは行わない。このときP1とP2のリチウムリン酸鉄のFe/P(Pに対するFeのモル濃度比)をC(P1)、C(P2)として表す。そして、C(P1)<C(P2)を満たしていれば、「正極活物質の表面部から中心方向(中心部)にPに対してFe濃度が濃くなる形態」としてみなす。P2地点の判断は、C(P2)が0.95以上1.05以下の範囲になった地点、あるいは、表面から深さ方向に対して1000nm以上2000nm以下の範囲にて濃度比率Cが0.85以上で±0.05/100nmの範囲以下内にての変化に留まったとき、変化が小さくなった最初の点をP2としてみなす。
 P2とP1の深さ距離は、SiO換算によるエッチング時間により算出される。このときP2とP1の間の中間部から任意に選んだ2点を表面部に近い順にP3、P4としたとき、同様にそれぞれのリチウムリン酸鉄のFe/P(Pに対するFeのモル濃度比)をC(P1)、C(P2)、C(P3)、C(P4)とする。C(P1)<C(P2)を満たし、かつC(P3)、C(P4)はC(P1)以上、C(P2)以下であれば、「中間部において、Pに対するFe濃度が濃くなる形態」としてみなす。
 さらに、C(P1)<C(P3)<C(P4)<C(P2)の関係がP1からP2の間のFe/Pが変化する範囲内のすべてで満たされるとき、これらは「中間部においてPに対してFe濃度が連続的に濃くなるように変化している形態」とみなす。一時的に深さ方向に対して濃度変化がない領域、つまりC(P1)=C(P3)やC(P3)=C(P4)といった領域、あるいは一時的に濃度が逆転している領域、つまりC(P3)>C(P4)といった領域が含まれる場合、これらは「中間部においてPに対してFe濃度が断続的に濃くなるように変化している形態」とみなす。
 Pに対してFeが連続的又は断続的に濃くなるように変化する領域の組成変化や領域の範囲は、上記P3とP4の位置をずらしてXPS測定によって中間部を詳細に調べることで知ることができる。
 その連続的又は断続的に変化する領域の範囲は、耐水性の観点から、正極活物質粒子の最表面から中心方向に粒子の直径の0.1%以上深い点から始まることが好ましい。また、あまり深い点にまで連続的又は断続的に変化する領域が存在すると、Liイオンの拡散時間が長くなってしまうことから、レート特性や入力・出力特性に悪影響である。そこで、最表面から中心方向に粒子の直径の20.0%以下深い点にまで連続的又は断続的に変化する領域に含まれることが好ましい。そこで、領域は、前記正極活物質粒子の最表面から中心方向に粒子の直径の0.1%以上20%以下の範囲内に含まれることが好ましい。上記の0.5%~15%の範囲にこの連続的又は断続的に変化する領域が含まれることがより好ましい。
 中間部の濃度変化領域が短い、あるいは、濃度変化が非常に急峻な場合、活物質のコア部分を取り囲むようにリチウム濃度の濃いあるいは薄い領域がシェルのように取り囲む構造をとりやすくなる(コア・シェル構造)。このようなリチウム濃度の濃い領域と薄い領域とが分離するような構造をとると、同じ充電深度でもリチウムの拡散速度が変わるため、結果として入出力特性が大きく異なる可能性がある。したがって電池を制御する上で取り扱いが難しいため好ましくない。
 正極活物質粒子の中心部は、大部分又はすべてがオリビン型のLiFePOで、これ以外に、LiPO、LiFeP、LiFe(P、LiFe(PO等のいずれかを含む場合がある。そして、中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は、中間部のLiFeのx/yの平均より大きい。また、中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は0.95以上1.05以下であり、その領域内での濃度比の変化量は、中間部の領域内におけるLiFeのx/yの変化量よりも小さい。
 正極活物質粒子の表面部と中心部の縞の模様、格子間隔の違いをTEM観察して、結晶相の違いを確認することで、正極活物質の表面と中心部の化合物の違いを確認することができる。
 正極活物質粒子の表面部とは、正極活物質の粒子の最表面から中心方向に向かって、その直径の0.1%未満までの領域を意味する。そして、表面部の領域内において、LiFeのa/bの変化量は、中間部の領域内におけるLiFeのx/yの変化量よりも小さい。また、表面部のLiFeのa/bの平均は、中間部のLiFeのx/yの平均より小さい。
 表面部のLiFeは耐水性の観点からa/bが小さいほど好ましい。しかし、a/bが小さすぎると、Liイオンの拡散性が低くなることが好ましくない。また、充放電容量の観点からも、a/bが0.1より小さいことは好ましくない。製造工程の観点及び電気化学的熱的安定性の観点からは、表面にもオリビン型のLiFePOが含まれていることが好ましい。以上のことから、表面にはオリビン型のLiFePOを含み、a/bは0.1以上のリチウムリン酸鉄であることが好ましい。また、a/bが多くなると、不可避的なチタン酸リチウム等由来の水によって、正極活物質中の鉄が溶出しやすくなるため、a/bは0.5以下であることが好ましい。以上のことから、表面部のLiFeのa/bは0.1以上0.5以下であることが好ましい。
 正極活物質粒子の表面部は、LiPO、Li1+αFeP、LiβFe(P、Li3+γFe(POのうち少なくとも1種類以上の化合物とオリビン型のLiFePOが含まれている。なお、α、β、γは、0≦α≦1、0≦β≦3、0≦γ≦2の条件を満たす。どのような化合物で構成されているかは、TEM-EDXによる結晶相の分析と解析によって知ることができる。
 TEMの測定では、活物質粉末のみを測定することもできるが、電極にした状態でも測定できる。特に電極にした状態では、不活性雰囲気を保った状態にて、メチルエチルカーボネート(MEC)溶媒にて1時間洗浄後、室温にて溶媒を10時間以上乾燥させる必要がある。その後、得られた電極を不活性雰囲気を維持したままエッチング加工、TEM内に試料を導入し、測定する。特に電極や電池作製後では、大気中の水分等の影響を受けやすくなっている可能性があるため、測定直前まで不活性雰囲気を保つ必要がある。
 次に、正極の製造方法について説明する。
 正極活物質粒子は、オリビン型のLiFePOを酸又は水洗処理を行い、不活性雰囲気下にて熱処理することで得られる。処理に用いる酸は、塩酸、硫酸、硝酸などの鉄を溶解する酸であればよい。酸の種類、濃度、処理温度を適宜調整して、正極活物質粒子の表面やその内部の鉄の濃度を調整する。酸あるいは水洗処理を行うことで、予めLiFePOからFeを一部溶出させ、表面部及び中心部のPに対するFeのモル濃度比が中心部より低い形態となる。このような酸・水洗処理を施した状態では表面層(表面部)は乱れた構造となっている。例えば、処理後の表面にLi+αFeP、LiβFe(P、LiFe(PO)とオリビン型LiFePOを含む場合、Li+αFeP、LiβFe(P、LiFe(PO)3相などが十分に形成されていない。この状態では粒子内部へのリチウム拡散が阻害される。また、酸・水洗処理により粒子内部に結晶水として蓄積されるため、そのままではかえって水の侵食反応を助長させてしまう。よって、酸・水洗処理の後、不活性雰囲気下にて加熱することで、表面の構造を所望の形態にし、結晶水を除去することにより、リチウム拡散性及び耐水性に優れる正極活物質粒子を合成することができる。
 その後、合成した正極活物質、導電剤および結着剤を適当な溶媒に懸濁させ、この懸濁物をアルミニウム箔などの集電体に塗布し、乾燥し、プレスして帯状電極にすることにより作製される。前記正極活物質には、合成したリチウム複合リン酸化合物の他、種々の酸化物、硫化物、リチウム複合酸化物を混合してもよい。例えば、二酸化マンガン(MnO)、リチウムマンガン複合酸化物(例えばLiMnまたはLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-xCo)、リチウムマンガンコバルト複合酸化物(例えばLiMnCo1-x)を挙げることができる。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが挙げられる。
 正極活物質、導電剤及び結着剤の配合比は、正極活物質80~95重量%、導電剤3~20重量%、結着剤2~7重量%の範囲にすることが好ましい。
 次に、負極とその製造方法について説明する。
 負極は、例えば、本発明の非水電解質電池用負極材料を含むリチウムチタン複合酸化物とリチウム複合酸化物の混合活物質、導電剤及び結着剤からなる負極合剤を適当な溶媒に懸濁して混合し、塗液としたものを集電体の片面もしくは両面に塗布し、乾燥することにより作製される。
 さらに、負極には使用される導電剤としては、通常炭素材料が使用される。前述した負極活物質に用いる炭素材料として、アルカリ金属の吸蔵性と導電性との両特性の高いものがあれば、負極活物質として用いる前述の炭素材料を導電剤と兼用させることが可能であるが、メソフェーズピッチカーボンファイバーなどの炭素吸蔵性の高い黒鉛のみでは導電性が低くなるため、導電剤として使用される炭素材料としては、例えばアセチレンブラック、カーボンブラック等を負極に使用することが好ましい。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが挙げられる。
 前記負極活物質、導電剤及び結着剤の配合比は、負極活物質70~95重量%、導電剤0~25重量%、結着剤2~10重量%の範囲にすることが好ましい。
 次に、非水電解質について説明する。
 前記非水電解質は、非水溶媒に電解質を溶解することにより調製される液体状非水電解質(非水電解液)、高分子材料に前記非水溶媒と前記電解質を含有した高分子ゲル状電解質、高分子材料に前記電解質を含有した高分子固体電解質、リチウムイオン伝導性を有する無機固体電解質が挙げられる。
 液状非水電解質に用いられる非水溶媒としては、リチウム電池で公知の非水溶媒を用いることができ、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)などの環状カーボネートや、環状カーボネートと環状カーボネートより低粘度の非水溶媒(以下第2の溶媒)との混合溶媒を主体とする非水溶媒などを挙げることができる。
 第2の溶媒としては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート、γ-ブチロラクトン、アセトニトリル、プロピオン酸メチル、プロピオン酸エチル、環状エーテルとしてテトラヒドロフラン、2-メチルテトラヒドロフランなど、鎖状エーテルとしてジメトキシエタン、ジエトキシエタンなどが挙げられる。
 電解質としては、アルカリ塩が挙げられるが、とくにリチウム塩が挙げられる。リチウム塩として、六フッ化リン酸リチウム(LiPF)、四フッ化硼酸リチウム(LiBF)、六フッ化ヒ素リチウム(LiAsF)、過塩素酸リチウム(LiClO)、トリフルオロメタスルホン酸リチウム(LiCFSO)などが挙げられる。特に、六フッ化リン酸リチウム(LiPF)、四フッ化硼酸リチウム(LiBF)が好ましい。前記電解質の前記非水溶媒に対する溶解量は、0.5~2モル/Lとすることが好ましい。
 ゲル状電解質として前記溶媒と前記電解質を高分子材料に溶解しゲル状にしたもので、高分子材料としてはポリアクリロニトリル、ポリアクリレート、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキシド(PECO)などの単量体の重合体または他の単量体との共重合体が挙げられる。
 固体電解質としては、前記電解質を高分子材料に溶解し、固体化したものである。高分子材料としてはポリアクリロニトリル、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキシド(PEO)などの単量体の重合体または他の単量体との共重合体が挙げられる。また、無機固体電解質として、リチウムを含有したセラミック材料が挙げられる。なかでもLiN、LiPO-LiS-SiSガラスなどが挙げられる。
 正極と負極の間には、セパレータを配置することができる。また、このセパレータと併せてゲル状もしくは固体の非水電解質層を用いても良いし、セパレータの代わりにゲル状もしくは固体の非水電解質層を用いることも可能である。セパレータは、正極および負極が接触するのを防止するためのものであり、絶縁性材料で構成される。さらに、正極および負極の間を電解質が移動可能な形状のものが使用される。具体的には、例えば合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムあるいは、セルロース系のセパレータが可能である。
 以下、図1の非水電解質二次電池を参考に、本発明の実施形態について詳細に説明する。
 非水電解質電池の一実施形態である円筒形非水電解質二次電池を示す部分断面図の一例を図1に示す。例えば、ステンレスからなる有底円筒状の容器1内の底部には、絶縁体2が配置されている。電極群3は、前記容器1内に収納されている。前記電極群3は、正極4と負極6をその間にセパレータ5を介在して渦巻き状に捲回することにより作製される。
(実施例1)
<正極の作製>
 オリビン型リチウムリン酸鉄(LiFePO)粉末を0.5Nの硫酸内に30分間浸した後、水洗・ろ過を行い、水分を除去した。その後、Ar雰囲気下にて3時間熱処理を行った。
 処理したリチウムリン酸鉄の平均粒子径を調査したところ、8.5μmであった。この正極粉末についてエッチングを行わずにXPS測定を行い、Pに対するFeのモル濃度比(Fe/P)を算出したところ、0.35であった。その後、エッチングを行いながら、XPS測定を行った結果、310nm以上掘り進めると、Feの濃度に変化が見られなくなった。その際のPに対するFeのモル濃度比は0.98であった。つまり、濃度変化層が終了し、LiFePOにほぼ達したとみなせる。平均粒子径に対して3.6%の濃度変化層があると計算された。最表面と310nmより浅い任意の点2点、ここでは80nmと220nmについて、Pに対するFeのモル濃度比算出した結果、0.48、及び0.82であった。従って、Pに対するFeのモル濃度比は連続に変化していた。また、粒子のTEM観察を行い、表面近傍の格子縞を観察した。その結果、表面層と粒子中心部では縞の模様、格子間隔が異なっており、粒子内の結晶相が異なることを確認した。TEM-EDXから、それぞれの結晶相の組成比を計算した結果、オリビン型LiFePOの他に最表面にLiPO、中間部分にLiFeP層が存在することを確認した。
 得られた正極活物質に、アセチレンブラック、グラファイト、ポリフッ化ビニリデン(PVdF)を、100:8:8:6の割合(いずれも重量%)にてミキサーを用いて混合した。さらにN-メチルピロリドンを加えて混合し、厚さ15μmのアルミニウム箔の集電体に塗布し、乾燥後、プレスすることにより電極密度1.9g/cmの正極を作製した。
<負極の作製>
 負極活物質としては、スピネル型リチウムチタン酸化物に、負極活物質材料の粉末85重量%に導電剤としてのグラファイト5重量%と、同じく導電剤としてのアセチレンブラック3重量%と、PVdF7重量%と、NMPとを加えて混合し、厚さ11μmのアルミ箔からなる集電体に塗布し、乾燥し、プレスすることにより負極を作製した。
<電極群の作製>
 前記正極、ポリエチレン製多孔質フィルム及びセルロースからなるセパレータ、前記負極、及び前記セパレータをそれぞれこの順序で積層した後、前記負極が最外周に位置するように渦巻き状に捲回して電極群を作製した。
<非水電解液の調製>
 さらに、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の混合溶媒に(混合体積比率1:2)に六フッ化リン酸リチウム(LiPF)を1.0モル/L溶解して非水電解液を調製した。
 前記電極群及び前記電解液をステンレス製の有底円筒状容器内にそれぞれ収納して円筒形非水電解質二次電池を組み立てた。
 作製した電池について、2.3V-1.0Vの範囲で1Cレートで3回充放電を行い、容量の確認を行った。
(実施例2~6)
 正極の作製条件を変えた他は、実施例1と同様に活物質を作製、電池を作製した。実施例1同様の表面組成等の構成を表1にまとめて記載した。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 正極にベアのLiFePOを用いたこと以外は実施例1と同様な方法にて電池を作製した。
(比較例2)
 正極のLiFePOに2.5wt%のカーボンにて被覆させたこと以外は実施例1と同様な方法にて電池を作製した。
(比較例3)
 正極にLiFePOにLiPOを単に濃度勾配なしに被覆させたこと以外は実施例1と同様な方法にて電池を作製した。
<実験結果:容量測定、貯蔵試験>
 実施例1~および、比較例1~の電池をSOC 100%状態に調整し、80℃環境下にて貯蔵試験を行った。1週間おきに25℃に戻し、容量測定を行った。その後、再びSOC 100%状態に調整し、80℃環境下にて貯蔵を繰り返し行い、合計10週間試験した。貯蔵前の容量に対する10週間後の容量比率(%)を表2にまとめた。
その結果、比較例1のように、裸のLiFePOは耐水性が低く、容量劣化が著しかった。
一方、実施例1をはじめ、表面のFe濃度の比率が低いほうが容量劣化が小さいことを確認した。これは負極等に含まれる水分の影響を受けにくくなったことに由来していると考えられる。
<実験結果:レート試験>
 実施例1~および、比較例1~の電池を1Cレートでの容量、ならびに30Cレートでの容量測定を行った。1Cレートでの容量に対する30Cレートの容量維持率について表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 その結果、比較例2のように、カーボンコートしたLiFePOは耐水性は優れるものの、レート特性が実施例1等に比べると劣る。
 以上の結果より、本発明を施すことにより、レート特性を維持しつつ、高い高温耐久性を有することが確認できた。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (11)

  1.  中心部にオリビン型LiFePOと、前記中心部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する中間部と、前記中間部の外側にLiFeで表すことのできるリチウムリン酸鉄を有する表面部とで構成される正極活物質粒子を含有する正極と、
     チタン酸リチウムを含有する負極とを備え、
     前記中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は、前記LiFeのx/yの平均より大きく、
     前記正極活物質粒子の表面部のLiFeのa/bの平均値は、前記LiFeのx/yの平均より小さく、
     前記中間部のLiFeのx/yが表面部から中心部方向に向かって、連続的又は断続的に大きくなる領域が含まれることを特徴とする非水電解質二次電池。
  2.  前記領域は、前記正極活物質粒子の最表面から中心方向に粒子の直径の0.1%以上20%以下の範囲内に含まれることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記領域は、前記正極活物質粒子の最表面から中心方向に粒子の直径の0.5%以上15%以下の範囲内に含まれることを特徴とする請求項1に記載の非水電解質二次電池。
  4.  前記正極活物質粒子の表面部のXPS測定によるLiFeのx/yは0.1以上0.5以下であることを特徴とする請求項1に記載の非水電解質二次電池。
  5.  前記正極活物質粒子の表面部には、LiPO、Li1+αFeP、LiβFe(P、Li3+γFe(PO(0≦α≦1、0≦β≦3、0≦γ≦2)のうち、少なくとも1種類以上の化合物とオリビン型LiFePOが含まれていることを特徴とする請求項1に記載の非水電解質二次電池。
  6.  前記正極活物質粒子は、酸又は水洗処理し、不活性雰囲気下で加熱処理したものであることを特徴とする請求項1に記載の非水電解質二次電池。
  7.  前記中間部及び表面部は、酸又は水洗処理し、不活性雰囲気下で加熱処理したものであることを特徴とする請求項1に記載の非水電解質二次電池。
  8.  前記連続的又は断続的に変化する領域の範囲は、前記正極活物質粒子の最表面から中心方向に粒子の直径の0.1%以上深い点から始まることを特徴とする請求項1に記載の非水電解質二次電池。
  9.  前記中心部のリチウムリン酸鉄のPに対するFeのモル濃度比は0.95以上1.05以下であることを特徴とする請求項1に記載の非水電解質二次電池。
  10.  前記中心部のリチウムリン酸鉄のPに対するFeのモル濃度比の変化量は、前記中間部の領域内におけるLiFeのx/yの変化量よりも小さいことを特徴とする請求項1に記載の非水電解質二次電池。
  11.  前記表面部のLiFeのa/bの平均は、前記中間部のLiFeのx/yの平均より小さいことを特徴とする請求項1に記載の非水電解質二次電池。
PCT/JP2012/054376 2011-06-15 2012-02-23 非水電解質二次電池 WO2012172831A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12801291.1A EP2722923B1 (en) 2011-06-15 2012-02-23 Nonaqueous electrolyte secondary battery
CN201280029044.6A CN103608961B (zh) 2011-06-15 2012-02-23 非水电解质二次电池
US14/107,713 US9214669B2 (en) 2011-06-15 2013-12-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-133555 2011-06-15
JP2011133555A JP5981101B2 (ja) 2011-06-15 2011-06-15 非水電解質二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/107,713 Continuation US9214669B2 (en) 2011-06-15 2013-12-16 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2012172831A1 true WO2012172831A1 (ja) 2012-12-20

Family

ID=47356831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054376 WO2012172831A1 (ja) 2011-06-15 2012-02-23 非水電解質二次電池

Country Status (5)

Country Link
US (1) US9214669B2 (ja)
EP (1) EP2722923B1 (ja)
JP (1) JP5981101B2 (ja)
CN (1) CN103608961B (ja)
WO (1) WO2012172831A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071980A (ja) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 正極材料、正極材料の製造方法、正極およびリチウムイオン電池
JP7375222B2 (ja) 2021-01-21 2023-11-07 寧徳時代新能源科技股▲分▼有限公司 正極活性材料、リチウムイオン二次電池、電池モジュール、電池パックおよび電気装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283747B2 (en) 2014-03-17 2019-05-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
JP6741390B2 (ja) * 2014-04-25 2020-08-19 住友大阪セメント株式会社 正極材料、ペースト及びナトリウムイオン電池
KR102519442B1 (ko) * 2015-12-16 2023-04-11 삼성전자주식회사 양극 활물질, 이를 포함하는 양극 및 리튬 전지, 상기 양극 활물질의 제조방법
US11522191B2 (en) 2016-03-16 2022-12-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
WO2018069957A1 (ja) * 2016-10-11 2018-04-19 富士通株式会社 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池
JP7096981B2 (ja) 2019-03-20 2022-07-07 トヨタ自動車株式会社 リチウムイオン二次電池
WO2023206449A1 (zh) * 2022-04-29 2023-11-02 宁德时代新能源科技股份有限公司 二次电池以及包含其的电池模块、电池包及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067925A (ja) 1998-08-25 2000-03-03 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法及び製造装置
JP2005050556A (ja) * 2003-07-29 2005-02-24 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2010517240A (ja) * 2007-01-25 2010-05-20 マサチューセッツ インスティテュート オブ テクノロジー 酸化リチウム粒子上の酸化コーティング
JP2011071019A (ja) * 2009-09-28 2011-04-07 Sumitomo Osaka Cement Co Ltd リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP2011515813A (ja) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド リチウム二次電池用のリン酸鉄リチウム正極材料を調製する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964118B2 (en) * 2005-09-21 2011-06-21 Kanto Denka Kogyo Co., Ltd. Positive electrode active material and method of producing the same and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
EP2124272B1 (en) 2006-12-28 2015-06-03 GS Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
JP5242315B2 (ja) * 2008-09-25 2013-07-24 株式会社東芝 非水電解質二次電池
JP5376894B2 (ja) * 2008-10-20 2013-12-25 古河電池株式会社 オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
CN102640332B (zh) * 2010-09-27 2014-11-05 松下电器产业株式会社 锂离子二次电池用正极活性物质粒子、使用了该正极活性物质粒子的正极及锂离子二次电池
CN102009969B (zh) * 2010-11-10 2012-07-25 河北力滔电池材料有限公司 一种锂离子电池正极材料磷酸铁锂的处理方法
KR101350811B1 (ko) * 2010-11-17 2014-01-14 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067925A (ja) 1998-08-25 2000-03-03 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法及び製造装置
JP2005050556A (ja) * 2003-07-29 2005-02-24 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2010517240A (ja) * 2007-01-25 2010-05-20 マサチューセッツ インスティテュート オブ テクノロジー 酸化リチウム粒子上の酸化コーティング
JP2011515813A (ja) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド リチウム二次電池用のリン酸鉄リチウム正極材料を調製する方法
JP2011071019A (ja) * 2009-09-28 2011-04-07 Sumitomo Osaka Cement Co Ltd リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722923A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071980A (ja) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 正極材料、正極材料の製造方法、正極およびリチウムイオン電池
JP7375222B2 (ja) 2021-01-21 2023-11-07 寧徳時代新能源科技股▲分▼有限公司 正極活性材料、リチウムイオン二次電池、電池モジュール、電池パックおよび電気装置

Also Published As

Publication number Publication date
EP2722923A4 (en) 2014-11-19
JP2013004284A (ja) 2013-01-07
CN103608961A (zh) 2014-02-26
EP2722923A1 (en) 2014-04-23
CN103608961B (zh) 2016-05-18
EP2722923B1 (en) 2017-01-18
US20140106225A1 (en) 2014-04-17
US9214669B2 (en) 2015-12-15
JP5981101B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5981101B2 (ja) 非水電解質二次電池
US10361428B2 (en) Anode active material, method of preparing the same, and lithium secondary battery including the anode active material
JP4595987B2 (ja) 正極活物質
US20150072240A1 (en) Porous silicon-based particles, method of preparing the same, and lithium secondary battery including the porous silicon-based particles
JP2010267540A (ja) 非水電解質二次電池
US10249874B2 (en) Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
JP2008181850A (ja) 非水電解質二次電池
JP2009064714A (ja) 電極体およびそれを用いたリチウム二次電池
JP2017152294A (ja) 正極活物質材料及びリチウムイオン二次電池
JP5813336B2 (ja) 非水電解質二次電池
JP2011001254A (ja) 窒化Li−Ti複合酸化物の製造方法、窒化Li−Ti複合酸化物およびリチウム電池
JP5505480B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP5151329B2 (ja) 正極体およびそれを用いたリチウム二次電池
JP6077345B2 (ja) 非水二次電池用正極材料、非水二次電池用正極および非水二次電池
JP2015162356A (ja) 被覆正極活物質、被覆正極活物質の製造方法およびリチウム電池
JP2013110104A (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP6051038B2 (ja) リチウムイオン二次電池の正極集電体用箔とその製造方法、及び、リチウムイオン二次電池
JP2013229303A (ja) リチウムイオン二次電池
JP5888512B2 (ja) 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池
US9899673B2 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing the same
JP6567289B2 (ja) リチウムイオン二次電池
JP2016058343A (ja) 二次電池用電極
JP2011070802A (ja) 非水電解質二次電池
JP6344507B2 (ja) 非水電解質二次電池用負極およびこれを用いた非水電解質二次電池
JP5733184B2 (ja) 非水電解質二次電池用の負極炭素材料、及び非水電解質二次電池、並びにその負極炭素材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801291

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012801291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012801291

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE