WO2012172647A1 - 多軸モータ駆動システム及び多軸モータ駆動装置 - Google Patents

多軸モータ駆動システム及び多軸モータ駆動装置 Download PDF

Info

Publication number
WO2012172647A1
WO2012172647A1 PCT/JP2011/063619 JP2011063619W WO2012172647A1 WO 2012172647 A1 WO2012172647 A1 WO 2012172647A1 JP 2011063619 W JP2011063619 W JP 2011063619W WO 2012172647 A1 WO2012172647 A1 WO 2012172647A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
wiring
drive
unit
motors
Prior art date
Application number
PCT/JP2011/063619
Other languages
English (en)
French (fr)
Inventor
勇 松村
俊信 吉良
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2012525780A priority Critical patent/JP5164030B2/ja
Priority to PCT/JP2011/063619 priority patent/WO2012172647A1/ja
Priority to CN201180071632.1A priority patent/CN103609014B/zh
Priority to DE112011105542.0T priority patent/DE112011105542T5/de
Publication of WO2012172647A1 publication Critical patent/WO2012172647A1/ja
Priority to US14/103,853 priority patent/US9488687B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/67Testing the correctness of wire connections in electric apparatus or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42301Detect correct connection of servomotor to powersupply

Definitions

  • the embodiment of the disclosure relates to a multi-axis motor drive system that drives a plurality of motors with position detectors and a multi-axis motor drive device provided in the multi-axis motor drive system.
  • Patent Document 1 describes a control device for avoiding a danger caused by an abnormal operation immediately after starting an automatic machine having a plurality of servo-controlled axes and contributing to cause elimination.
  • This control device forcibly cuts off the power supply to the servo amplifier at a predetermined time after the start of power supply to the servo amplifier and after the movement command is input to the servo controller.
  • a power cut-off means is provided.
  • the control device first drives all the axes simultaneously by a movement command after the energization of the servo amplifiers for all the axes is turned on. Next, internal data (latest torque command value (current command value) for each axis, current feedback value, movement command value (integrated value), position feedback value) serving as an abnormality determination index during driving is stored. Next, the above drive and storage are repeated until a predetermined time is reached, and the energization of the servo amplifiers for all axes is forcibly cut off at the predetermined time. Finally, the incorrect wiring is checked based on the stored internal data.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a multi-axis motor drive system and a multi-axis motor drive apparatus that can quickly and accurately determine the cause of erroneous wiring. Is to provide.
  • a plurality of motors including position detectors, a host controller that outputs a motor control command, and the plurality of motors based on the motor control command.
  • a multi-axis motor drive device that drives the motor, and the multi-axis motor drive device is individually connected to the corresponding motor, and supplies power to the motor to drive it, and the drive The power is sequentially supplied to each motor through the unit, and based on the detection signal of the position detector, at least one of the motor wiring connecting the driving unit and the motor and the detector wiring from the position detector
  • a multi-axis motor drive system having a control unit that discriminates the presence or absence of incorrect wiring for each of the drive units is applied.
  • the multi-axis motor drive system of the present invention it is possible to quickly and accurately determine the cause of miswiring.
  • 1 is a system configuration diagram conceptually showing the configuration of a multi-axis motor drive system of an embodiment. It is a flowchart showing the control content which an integrated control part performs at the time of setup of a multi-axis motor drive system. 1 is a system configuration diagram conceptually showing a configuration of a multi-axis motor drive system, showing an example of erroneous wiring of the multi-axis motor drive system. FIG.
  • FIG. 1 is a diagram showing a system configuration when the multi-axis motor drive system 1 of this embodiment is correctly wired.
  • the multi-axis motor drive system 1 includes a plurality (eight in this example) of rotary motors 100, a host controller 200 that outputs a motor control command, and motor control of the host controller 200.
  • a multi-axis motor driving device 300 that drives each motor 100 based on the command is provided.
  • Each motor 100 is a three-phase AC motor in this example, and detects the speed (angular velocity) and position (angle) of the brake 101 and the rotating shaft, and uses the detection signal as a feedback pulse to the multi-axis motor driving device 300.
  • an encoder 102 position detector for outputting.
  • a motor without the brake 101 may be used.
  • the multi-axis motor drive device 300 includes a power supply unit 301 to which AC power is input, a general control unit 302 that controls communication with the host control device 200 and the overall control of the multi-axis motor drive device 300, and a corresponding motor 100.
  • a plurality of (eight in this example) drive units 303 that are individually connected via the motor wiring 401 and supply power to the motor 100 to drive, and each axis control unit 304 that controls the plurality of drive units 303. And have.
  • the overall control unit 302 corresponds to an example of a control unit described in the claims.
  • first to eighth drive units 303 the eight drive units 303 are appropriately referred to as first to eighth drive units 303, and the motors corresponding to the first to eighth drive units 303 are referred to as first to eighth motors 100, respectively.
  • the motor wiring 401 that connects the first to eighth motors 303 corresponding to the first to eighth driving units 303 is appropriately referred to as first to eighth motor wirings 401.
  • the multi-axis motor driving device 300 has a relay unit 310 that relays the detection position by the encoder 102 to the overall control unit 302.
  • the relay unit 310 is configured by a substrate, a module, or the like, and is provided integrally with the multi-axis motor driving device 300. Note that the relay unit 310 may be configured separately from the multi-axis motor driving device 300.
  • This relay section 310 has a plurality (eight in this example) of connectors 311 to which the encoder wiring 402 from the encoder 102 is connected, and corresponds to the first to eighth motors 100, respectively.
  • the connectors 311 corresponding to the first to eighth motors 100 will be referred to as first to eighth connectors 311.
  • first to eighth encoder wirings 402 that connects the first to eighth connectors 311 corresponding to the encoders 102 of the first to eighth motors 100 will be appropriately referred to as first to eighth encoder wirings 402, respectively.
  • the relay unit 310 may not be provided, and the wiring from the encoder 102 may be directly connected to the overall control unit 302.
  • the encoder wiring 402 corresponds to an example of the detector wiring described in the claims.
  • the detection signal of each encoder 102 is input to the overall control unit 302 via the relay unit 310.
  • the overall control unit 302 sequentially supplies power to each motor 100 via each drive unit 303, and connects the drive unit 303 and the motor 100 based on the detection signal of the encoder 102 from the relay unit 310 at that time.
  • Whether or not there is an incorrect wiring in at least one of the motor wiring 401 and the encoder wiring 402 from the encoder 102 is determined for each drive unit 303.
  • the incorrect wiring in the motor wiring 401 means that there is an erroneous wiring in each phase (U phase, V phase, W phase) of the motor wiring 401 (for example, between the drive unit 303 and the motor 100).
  • the miswiring in the encoder wiring 402 includes miswiring due to the connection between the non-compliant encoder 102 and the connector 311 (for example, when the encoder 102 of the fifth motor 100 and the sixth connector 311 are connected). It is a waste.
  • the engineering tool 500 is connected to the multi-axis motor driving device 300.
  • the engineering tool 500 is composed of, for example, a portable handy controller or the like, and an operator can input various commands and data.
  • the multi-axis motor driving apparatus 300 includes a display unit 305 such as a liquid crystal panel.
  • the display unit 305 displays various information including the determination result by the overall control unit 302.
  • the multi-axis motor driving device 300 does not have the display unit 305, and is configured to perform various displays on an external display device (for example, a PC display) or the display unit of the engineering tool 500. Also good.
  • the overall control unit 302 starts the flow shown in FIG. 2 when the power of the multi-axis motor driving device 300 is turned on, for example. It is assumed that the arrangement of the motor wiring 401 and the encoder wiring 402 is completed regardless of the presence or absence of incorrect wiring before the power is turned on. In addition, it is assumed that the engineering tool 500 is connected to the multi-axis motor driving device 300 in advance and the power is turned on.
  • step S ⁇ b> 5 the overall control unit 302 releases the brake function by the brake 101 for all the motors 100 connected to the multi-axis motor driving device 300.
  • step S10 the overall control unit 302 initializes a variable i for counting the number of driving units 303 to 0, and sets i0 representing the total number of driving units to a predetermined value.
  • i0 8.
  • the value of i0 is manually input by the operator via the engineering tool 500. Further, when the power is turned on, the value of i0 may be determined by automatically recognizing the number of drive units 303 to which the overall control unit 302 is connected.
  • step S15 the overall control unit 302 selects one drive unit 303 from among a plurality of drive units 303 included in the multi-axis motor drive device 300.
  • step S ⁇ b> 20 the overall control unit 302 inputs detection signals (detection signals of all encoders 102) from the relay unit 310, and based on the detection signals, all the encoders 102 connected to the connectors 311 of the relay unit 310.
  • the detected position is stored as an initial position in a predetermined storage unit (memory or the like).
  • the overall control unit 302 outputs a servo-on signal to the drive unit 303 selected in step S15, and puts the drive unit 303 in a servo-on state in which the corresponding motor 100 is positioned at the position when the energization is started. .
  • the overall control unit 302 outputs a position command corresponding to the drive amount 0 to the drive unit 303 to perform position loop control.
  • the servo-on state corresponds to an example of a first positioning control state described in the claims.
  • step S25 the overall control unit 302 determines whether all the motors 100 have not been driven based on the detection signals from the relay unit 310 (detection signals from all the encoders 102). If any one of the motors 100 is driven (NO in step S25), the process proceeds to step S30.
  • step S30 the overall control unit 302 determines whether or not the driven motor 100 is a motor corresponding to the drive unit 303 that is in the servo-on state in step S20.
  • the process proceeds to step S35, and the overall control unit 302 determines each phase (U-phase) in the motor wiring 401 of the motor 100. , V-phase, W-phase) wiring is determined to be erroneous.
  • step S30 when the motor 100 that does not correspond to the drive unit 303 in the servo-on state is driven in step S30 (NO in step S30), the process moves to step S40, and the overall control unit 302 determines that the motor that does not correspond to the drive unit 303. 100 is erroneously connected, or it is determined that the connector 311 that does not correspond to the encoder 102 is erroneously connected. This means that the drive of the motor 100 that does not correspond to the drive unit 303 in the servo-on state is detected.
  • the overall control unit 302 moves the control procedure to step S45 after step S35 or step S40.
  • step S45 the overall control unit 302 outputs a servo-off signal to the drive unit 303 that is in the servo-on state in step S20, sets the servo-off state, and brakes 101 for all the motors 100 connected to the multi-axis motor drive device 300.
  • the servo-off state indicates a state different from the servo-on state described above, that is, a state in which energization of the motor 100 selected in step S20 is forcibly stopped.
  • the overall control unit 302 uses the display unit 305 to perform display for prompting the corresponding wiring to be checked. For example, if it is determined in step S35 that there is an incorrect wiring, a display prompting the check of the wiring of each phase (U phase, V phase, W phase) in the motor wiring 401 is performed, and there is an incorrect wiring in step S40. Is displayed, a display prompting the user to check the motor wiring 401 (whether the non-corresponding driving unit 303 and the motor 100 are connected) or the encoder wiring 402 is displayed. Then, this flow ends.
  • step S25 If all the motors 100 are not driven in the previous step S25 (YES in step S25), the process proceeds to step S55.
  • step S55 the overall control unit 302 outputs a position command of a predetermined drive amount via each axis control unit 304 to the drive unit 303 which is in the servo-on state in step S20, and the corresponding drive unit 303 is responded.
  • the positioning control state is such that the motor 100 to be driven is positioned at a position driven by a predetermined amount from the position at the start of energization.
  • This positioning control state corresponds to an example of a second positioning control state described in the claims.
  • the predetermined drive amount is appropriately set to a drive amount that does not hinder the load machine.
  • step S60 the overall control unit 302 receives a detection signal (detection signals of all the encoders 102) from the relay unit 310, and compares the detection position based on the detection signal with the initial position stored in step S20.
  • the drive amount is calculated, and it is determined whether or not the motor 100 corresponding to the drive unit 303 that has output the position command in step S55 has been normally driven by the drive amount corresponding to the position command.
  • the motor 100 not corresponding to the drive unit 303 that has output the position command is driven, or when the motor 100 corresponding to the drive unit 303 that has output the position command is driven but the drive amount is not normal (NO in step S60) ).
  • the process proceeds to step S65.
  • step S65 the overall control unit 302 determines whether or not the motor 100 corresponding to the drive unit 303 that has output the position command in step S55 has been driven. If the motor 100 corresponding to the drive unit 303 that has output the position command has been driven abnormally (YES in step S65), the process moves to step S70, and the overall control unit 302 moves the motor 100 in the motor wiring 401 of the motor 100. It is determined that there is an incorrect wiring in the wiring of the phases (U phase, V phase, W phase) or that the connector 311 not corresponding to the encoder 102 is erroneously connected.
  • Step S60, Step S65, and Step S70 after Step S25 it is determined that the wiring of each phase (U phase, V phase, W phase) in the motor wiring 401 of the motor 100 is normal in Step S25. Since there is a high possibility of being able to do so, there is a possibility that the erroneous wiring in step S70 can be specified as a case where there is an erroneous wiring in the encoder wiring 402.
  • step S65 when the motor 100 that does not correspond to the drive unit 303 that has output the position command is driven in step S65 (NO in step S65), the process proceeds to step S75, and the overall control unit 302 does not correspond to the drive unit 303. It is determined that the motor 100 is erroneously connected, or that the connector 311 that does not correspond to the encoder 102 is erroneously connected.
  • the overall control unit 302 sets the drive unit 303 that is in the servo-on state in step S20 in step S45 to the servo-off state, and brakes 101 for all the motors 100 connected to the multi-axis motor drive device 300. Turn on the brake function.
  • the overall control unit 302 uses the display unit 305 to perform a display that prompts the corresponding wiring to be checked. Then, this flow ends.
  • step S60 when the motor 100 corresponding to the drive unit 303 that has output the position command in step S55 has been driven normally by the drive amount corresponding to the position command (YES in step S60), The process moves to step S80.
  • step S80 the overall control unit 302 determines that there is no miswiring in the motor wiring 401 and the encoder wiring 402, and in the next step S85, displays that the wiring is normally performed using the display unit 305. I do.
  • the overall control unit 302 adds 1 to the variable i.
  • the overall control unit 302 determines whether or not the variable i matches the total number of drive units i0. If the variable i does not match the total number of drive units i0 (NO in step S95), the process returns to the previous step S15. That is, the processes in steps S15 to S95 are repeatedly executed for all the driving units 303 included in the multi-axis motor driving device 300. On the other hand, if the variable i matches the total number of drive units i0 (YES in step S95), this flow ends. In the example shown in FIG. 1, when the processes of steps S15 to S95 are executed for all of the first to eighth drive units 303, the variable i matches the number of all axes i0, and this flow ends. .
  • the third drive unit 303 and the fourth motor 100 are connected, and the fourth drive unit 303 and the third motor 100 are connected.
  • An incorrect wiring of the motor wiring 401 due to the connection with the motor 100 occurs.
  • the corresponding phases are not connected between the seventh drive unit 303 and the seventh motor 100, and this is an incorrect wiring of the wiring of each phase (U phase, V phase, W phase) of the motor wiring 401.
  • the encoder 102 and the sixth connector 311 of the fifth motor 100 are connected, and the encoder 102 and the fifth connector 311 of the sixth motor 100 are connected, and these are not compatible with the encoder 102 and the connector 311. Incorrect wiring due to connection with
  • the fourth motor 100 is There is a case to drive.
  • a detection signal is input from the encoder 102 of the fourth motor 100 to the fourth connector 311 of the relay unit 310 and detected as driving of the fourth motor 100.
  • step S25 the motor 100 that does not correspond to the drive unit 303 in the servo-on state is driven (NO in step S25, NO in step S30), so that the third drive unit 303 and the fourth motor 100 are erroneously connected.
  • the encoder 102 of the third motor 100 and the fourth connector 311 are erroneously connected (step S40), and a message to that effect is displayed (step S50).
  • the operator checks the motor wiring 401 and the encoder wiring 402 corresponding to the third driving unit 303, and in this example, the encoder wiring 402 is correctly wired.
  • the fourth motor 100 can be determined to be erroneously connected.
  • Step S ⁇ b> 55 a detection signal is input from the encoder 102 of the fourth motor 100 to the fourth connector 311 of the relay unit 310 and detected as driving of the fourth motor 100. Therefore, this corresponds to the case where the motor 100 that does not correspond to the drive unit 303 that has output the position command is driven (NO in Step S60 and Step S65), and therefore the third drive unit 303 and the fourth motor 100 are erroneously connected.
  • step S75 the encoder 102 of the third motor 100 and the fourth connector 311 are erroneously connected (step S75), and a message to that effect is displayed (step S50).
  • the operator can ascertain that the third drive unit 303 and the fourth motor 100 are connected by mistake.
  • the operator can determine that the fourth drive unit 303 and the third motor 100 are erroneously connected.
  • step S20 when the fifth driving unit 303 is in the servo-on state (step S20), When the fifth motor 100 is driven, a detection signal is input from the encoder 102 of the fifth motor 100 to the sixth connector 311 of the relay unit 310 and detected as driving of the sixth motor 100. Therefore, this corresponds to the case where the motor 100 that does not correspond to the drive unit 303 in the servo-on state is driven (NO in step S25, NO in step S30), so that the fifth drive unit 303 and the sixth motor 100 are erroneously connected.
  • step S40 the encoder 102 of the fifth motor 100 and the sixth connector 311 are erroneously connected (step S40), and a message to that effect is displayed (step S50).
  • the operator checks the motor wiring 401 and the encoder wiring 402 corresponding to the fifth drive unit 303.
  • the motor wiring 401 is correctly wired. It can be determined that the encoder 102 and the sixth connector 311 are erroneously connected.
  • Step S ⁇ b> 55 a detection signal is input from the encoder 102 of the fifth motor 100 to the sixth connector 311 of the relay unit 310 and detected as driving of the sixth motor 100. Accordingly, this corresponds to the case where the motor 100 that does not correspond to the drive unit 303 that has output the position command is driven (NO in Step S60 and Step S65), so that the fifth drive unit 303 and the sixth motor 100 are erroneously connected.
  • step S75 the encoder 102 of the fifth motor 100 and the sixth connector 311 are erroneously connected (step S75), and a message to that effect is displayed (step S50).
  • step S50 the operator can ascertain that the encoder 102 of the fifth motor 100 and the sixth connector 311 are erroneously connected.
  • the sixth drive unit 303 the operator can ascertain that the encoder 102 of the sixth motor 100 and the fifth connector 311 are erroneously connected.
  • the seventh drive unit 303 the wiring of each phase (U phase, V phase, W phase) of the motor wiring 401 is erroneously connected between the seventh drive unit 303 and the seventh motor 100. Therefore, when the seventh drive unit 303 is in the servo-on state (step S20), the seventh motor 100 may be driven. When driven, a detection signal is input from the encoder 102 of the seventh motor 100 to the seventh connector 311 of the relay unit 310 and detected as driving of the seventh motor 100.
  • step S35 the motor 100 corresponding to the drive unit 303 in the servo-on state is driven (NO in step S25, YES in step S30), so that the wiring of each phase in the motor wiring 401 of the seventh motor 100 is incorrect. It is determined that there is a wiring (step S35), and that effect is displayed (step S50). As a result, the operator can find out that there is an incorrect wiring in the wiring of each phase in the motor wiring 401 of the seventh motor 100.
  • Step S55 When the seventh motor 100 is abnormally driven, it corresponds to the case where the motor 100 corresponding to the drive unit 303 that has output the position command is driven but the drive amount is not normal (NO in Step S60). YES in step S65), it is determined that there is an incorrect wiring in the wiring of each phase in the motor wiring 401 of the seventh motor 100 (step S70), and that fact is displayed (step S50).
  • the miswiring is determined in a state where the driving unit 303 is further driven by a predetermined amount. Therefore, it is possible to improve the accuracy of detecting miswiring.
  • each drive unit 303 of the multi-axis motor drive device 300 and the corresponding motor 100 are individually connected via the motor wiring 401, and the encoder 102 of each motor 100 is connected.
  • the connector 311 of the relay unit 310 are individually connected through the encoder wiring 402.
  • a method of checking for incorrect wiring in the motor wiring 401 and the encoder wiring 402 it is repeatedly executed for a predetermined time to store all the motors 100 simultaneously and store the internal data as an abnormality determination index.
  • a method of checking for incorrect wiring based on the stored internal data can be considered.
  • the number of axes increases, so there are various combinations of possible miswiring factors, and it may take time to pursue accurate miswiring factors. is there.
  • the overall control unit 302 of the multi-axis motor driving device 300 sequentially supplies power to each motor 100 via each driving unit 303, and based on the detection signal of the encoder 102 at that time.
  • the presence or absence of incorrect wiring in the motor wiring 401 and the encoder wiring 402 is determined for each drive unit 303.
  • the cause of erroneous wiring is limited to only the wiring portion corresponding to each drive unit 303 regardless of the number of axes (that is, the number of drive units 303 or motors 100). Can do.
  • abnormal operation of the load machine that may occur due to erroneous wiring can be prevented in advance.
  • the overall control unit 302 sets each drive unit 303 in a servo-on state, and determines whether or not there is a miswiring based on the detection signal. In this servo-on state, the overall control unit 302 outputs a position command corresponding to the drive amount 0 to the drive unit 303 to perform position loop control.
  • the motor 100 is locked at a position at the start of energization including the current phase of each phase (U phase, V phase, W phase). If there is an incorrect wiring in the wiring of each phase (U phase, V phase, W phase), the current phase of each phase (U phase, V phase, W phase) is shifted, so the motor 100 may be driven.
  • the overall control unit 302 detects each drive unit 303 in a positioning control state in which the corresponding motor 100 is positioned at a position driven by a predetermined amount from the position at the start of energization. The presence or absence of miswiring is determined based on the signal. At this time, if each wiring is normal, the motor 100 is driven by a predetermined amount and stopped. However, if there is an incorrect wiring in each phase of the motor wiring 401 or the encoder wiring 402 is erroneous. When wiring is present, the driving amount of the motor 100 may become abnormal.
  • each phase in the motor wiring 401 of the motor 100 is detected. It can be determined that there is an incorrect wiring in the wiring, or that the connector 311 that does not correspond to the encoder 102 is erroneously connected.
  • a non-compliant device is connected to either the motor wiring 401 or the encoder wiring 402. It can be determined that there is an incorrect wiring.
  • the miswiring is determined in a state where the driving unit 303 is further driven by a predetermined amount, thereby determining the miswiring twice for each driving unit 303. Therefore, the detection accuracy of erroneous wiring can be increased.
  • the multi-axis motor driving device 300 includes a display unit 305 that displays a determination result by the overall control unit 302.
  • the display unit 305 displays that fact to prompt the operator to check the corresponding wiring, and abnormal operation of the load machine that may occur due to the incorrect wiring Can be prevented in advance.
  • the fact that it is displayed on the display unit 305 can give the worker a sense of security.
  • each driver 303 is determined to have incorrect wiring in the servo-on state
  • the wrong wiring is further determined in a state where it is driven by a predetermined amount.
  • the wiring is determined has been described as an example, only one of the erroneous wirings may be determined for each driving unit 303.
  • the multi-axis motor drive system has the rotary motor 100
  • the motor need not be a rotary type, and a linear motor, for example, may be used.
  • 2 is executed by the overall control unit 302, it may be executed by each axis control unit 304.
  • the multi-axis motor drive system of 8-axis drive has been described as an example.
  • the number of axes is not limited to this, and may be changed as appropriate.
  • the multi-axis motor driving device 300 includes the display unit 305
  • the engineering tool 500 or the host control device 200 may include the display unit.
  • information displayed on the engineering tool 500 or the host control device 200 by the multi-axis motor drive device 300 may be output using a means such as communication.
  • Multi-axis motor drive system 101 Motor 102 Encoder (position detector) 200 Host Controller 300 Multi-axis Motor Drive 302 General Control Unit (Control Unit) 303 Drive unit 305 Display unit 401 Motor wiring 402 Detector wiring

Abstract

【課題】誤配線要因を迅速且つ正確に判別できるようにする。 【解決手段】エンコーダ102を備えた複数のモータ100と、モータ制御指令を出力する上位制御装置200と、モータ制御指令に基づき、複数のモータ100を駆動する多軸モータ駆動装置300と、を有し、多軸モータ駆動装置300は、対応するモータ100に個別に接続され、モータ100に電力を供給して駆動する複数の駆動部303と、駆動部303を介して各モータ100に順次電力を供給し、エンコーダ102の検出信号に基づき、駆動部303とモータ100とを接続するモータ用配線401及びエンコーダ102からの検出器用配線402の少なくとも一方における誤配線の有無を、駆動部303ごとに判別する統括制御部302とを有する。

Description

多軸モータ駆動システム及び多軸モータ駆動装置
 開示の実施形態は、複数の位置検出器付きモータを駆動する多軸モータ駆動システム及びこれに備えられた多軸モータ駆動装置に関する。
 特許文献1には、サーボ制御される複数の軸を有する自動機械の始動直後の異常動作による危険を回避し、原因除去に資するための制御装置が記載されている。この制御装置は、サーボアンプへの通電が開始された後であって、且つ、サーボ制御器に移動指令が入力された後の所定の時点にサーボアンプへの通電を強制的に遮断する強制的通電遮断手段を備えている。
特開2000-181521号公報
 上記従来技術では、制御装置は、まず、全軸のサーボアンプの通電をオンした後に移動指令により全軸を同時に駆動する。次に、駆動時の異常判断指標となる内部データ(最新の各軸毎のトルク指令値(電流指令値)、電流フィードバック値、移動指令値(積算値)、位置フィードバック値)を記憶する。次に、所定の時点になるまで上記駆動と記憶を繰り返し、所定の時点で全軸のサーボアンプの通電を強制遮断する。最後に、記憶した内部データに基づいて誤配線をチェックする。
 このように、全軸を同時に駆動した際に記憶した内部データに基づいて誤配線をチェックする場合、軸数が多くなるにつれ内部データの情報量も多くなるため、考えられる誤配線要因の組合せが多岐に渡ってしまい、正確な誤配線要因の追求に時間を要する恐れがある。
 本発明はこのような問題点に鑑みてなされたものであり、本発明の目的とするところは、誤配線要因を迅速且つ正確に判別することができる多軸モータ駆動システム及び多軸モータ駆動装置を提供することにある。
 上記課題を解決するため、本発明の一の観点によれば、位置検出器を備えた複数のモータと、モータ制御指令を出力する上位制御装置と、前記モータ制御指令に基づき、前記複数のモータを駆動する多軸モータ駆動装置と、を有し、前記多軸モータ駆動装置は、対応する前記モータに個別に接続され、前記モータに電力を供給して駆動する複数の駆動部と、前記駆動部を介して各モータに順次電力を供給し、前記位置検出器の検出信号に基づき、前記駆動部と前記モータとを接続するモータ用配線及び前記位置検出器からの検出器用配線の少なくとも一方における誤配線の有無を、前記駆動部ごとに判別する制御部と、を有する多軸モータ駆動システムが適用される。
 本発明の多軸モータ駆動システムによれば、誤配線要因を迅速且つ正確に判別することができる。
実施形態の多軸モータ駆動システムの構成を概念的に表すシステム構成図である。 多軸モータ駆動システムのセットアップ時に統括制御部が実行する制御内容を表すフローチャートである。 多軸モータ駆動システムの誤配線の一例を表す、多軸モータ駆動システムの構成を概念的に表すシステム構成図である。
 以下、一実施形態について図面を参照しつつ説明する。
 図1は、本実施形態の多軸モータ駆動システム1が正しく配線された場合のシステム構成を表す図である。図1に示すように、多軸モータ駆動システム1は、複数(この例では8つ)の回転型のモータ100と、モータ制御指令を出力する上位制御装置200と、上位制御装置200のモータ制御指令に基づき、各モータ100を駆動する多軸モータ駆動装置300とを備えている。各モータ100はこの例では三相交流モータであり、それぞれ、ブレーキ101と、回転軸の速度(角速度)や位置(角度)を検出して当該検出信号をフィードバックパルスとして多軸モータ駆動装置300に出力するエンコーダ102(位置検出器)とを有している。なお、ブレーキ101を有しないモータとしてもよい。
 多軸モータ駆動装置300は、交流電源が入力される電源部301と、上位制御装置200との通信制御や多軸モータ駆動装置300全体の制御を司る統括制御部302と、対応するモータ100にモータ用配線401を介して個別に接続され、モータ100に電力を供給して駆動する複数(この例では8つ)の駆動部303と、これら複数の駆動部303を制御する各軸制御部304とを有している。なお、統括制御部302が、特許請求の範囲に記載の制御部の一例に相当する。
 以下では、上記8つの駆動部303を適宜第1~第8駆動部303と呼称し、また、第1~第8駆動部303の各々に対応するモータを第1~第8モータ100と呼称する。また、第1~第8駆動部303と対応する第1~第8モータ100とをそれぞれ接続するモータ用配線401を、適宜第1~第8モータ用配線401と呼称する。
 多軸モータ駆動装置300は、エンコーダ102による検出位置を統括制御部302に対して中継する中継部310を有している。この中継部310は、基板又はモジュール等で構成されており、多軸モータ駆動装置300に一体的に設けられている。なお、中継部310を多軸モータ駆動装置300とは別体として構成してもよい。この中継部310は、エンコーダ102からのエンコーダ用配線402が接続される複数(この例では8つ)のコネクタ311を有しており、第1~第8モータ100にそれぞれ対応している。以下では、第1~第8モータ100の各々に対応するコネクタ311を第1~第8コネクタ311と呼称する。また、第1~第8モータ100のエンコーダ102と対応する第1~第8コネクタ311とをそれぞれ接続するエンコーダ用配線402を、適宜第1~第8エンコーダ用配線402と呼称する。なお、中継部310を有さず、エンコーダ102からの配線を、直接統括制御部302に接続するように構成しても良い。また、エンコーダ用配線402が、特許請求の範囲に記載の検出器用配線の一例に相当する。
 各エンコーダ102の検出信号は、中継部310を介して統括制御部302に入力される。この統括制御部302は、各駆動部303を介して各モータ100に順次電力を供給し、その際の中継部310からのエンコーダ102の検出信号に基づき、駆動部303とモータ100とを接続するモータ用配線401及びエンコーダ102からのエンコーダ用配線402の少なくとも一方における誤配線の有無を、駆動部303ごとに判別する。ここで、モータ用配線401における誤配線とは、モータ用配線401の各相(U相、V相、W相)の配線に誤配線がある場合(例えば駆動部303とモータ100との間で対応する相同士が接続されていない場合)と、非対応の駆動部303とモータ100との接続による誤配線(例えば第3駆動部303と第4モータ100とが接続されている場合)を含むものである。また、エンコーダ用配線402における誤配線とは、非対応のエンコーダ102とコネクタ311との接続による誤配線(例えば第5モータ100のエンコーダ102と第6コネクタ311とが接続されている場合)を含むものである。
 多軸モータ駆動装置300には、エンジニアリングツール500が接続されている。このエンジニアリングツール500は、例えば携帯型のハンディコントローラ等で構成されており、作業者が各種指令やデータ等を入力することが可能である。また、多軸モータ駆動装置300は、液晶パネル等の表示部305を有している。この表示部305は、統括制御部302による判別結果を含む、各種情報を表示する。なお、多軸モータ駆動装置300が表示部305を有さず、外部に設けた表示装置(例えばPCのディスプレイ等)や、上記エンジニアリングツール500の表示部で各種の表示を行うように構成しても良い。
 次に、多軸モータ駆動システム1の配線チェック時に統括制御部302が実行する制御内容について、図2を用いて説明する。統括制御部302は、例えば多軸モータ駆動装置300の電源が投入された際に図2に示すフローを開始する。なお、電源投入前に、各モータ用配線401及び各エンコーダ用配線402は、誤配線の有無に関わらず配設が完了されているものとする。また、エンジニアリングツール500は事前に多軸モータ駆動装置300に接続されており、その電源は投入されているものとする。
 ステップS5では、統括制御部302は、多軸モータ駆動装置300に接続された全モータ100について、ブレーキ101によるブレーキ機能の解除を行う。
 ステップS10では、統括制御部302は、駆動部303の数をカウントするための変数iを0に初期化すると共に、全駆動部数を表すi0を所定の値に設定する。図1に示す例では、駆動部303の数は全部で8つであるため、i0=8となる。なお、このi0の値は、作業者によりエンジニアリングツール500を介して手動入力される。また、電源投入時に、統括制御部302が接続された駆動部303の数を自動認識して、このi0の値を決定しても良い。
 ステップS15では、統括制御部302は、多軸モータ駆動装置300が有する複数の駆動部303の中から1つの駆動部303を選択する。例えば図1に示す例では、i=0では第1駆動部303、i=1では第2駆動部303、というようにiに応じて駆動部303が順次選択される。
 ステップS20では、統括制御部302は、中継部310からの検出信号(全てのエンコーダ102の検出信号)を入力し、当該検出信号に基づき、中継部310のコネクタ311に接続された全エンコーダ102の検出位置を、初期位置として所定の記憶部(メモリ等)に格納する。また、統括制御部302は、上記ステップS15で選択した駆動部303に対してサーボオン信号を出力し、当該駆動部303を、対応するモータ100が通電開始時点の位置に位置決めされるサーボオン状態とする。このサーボオン状態では、統括制御部302は駆動量0に対応する位置指令を駆動部303に出力して位置ループ制御を行う。なお、上記サーボオン状態が、特許請求の範囲に記載の第1位置決め制御状態の一例に相当する。
 ステップS25では、統括制御部302は、中継部310からの検出信号(全てのエンコーダ102の検出信号)に基づき、全てのモータ100が駆動しなかったか否かを判定する。いずれかのモータ100が駆動した場合には(ステップS25でNO)、ステップS30に移る。
 ステップS30では、統括制御部302は、駆動したモータ100が上記ステップS20でサーボオン状態とした駆動部303に対応したモータであるか否かを判定する。サーボオン状態とした駆動部303に対応したモータ100が駆動した場合には(ステップS30でYES)、ステップS35に移り、統括制御部302は、当該モータ100のモータ用配線401における各相(U相、V相、W相)の配線に誤配線があると判別する。これは、サーボオン状態においては、モータ用配線401の相配線が正常である場合にはモータ100は各相(U相、V相、W相)の電流位相を含む通電開始時点の位置にロックされた状態となるが、相配線に誤配線がある場合には、上述した各相(U相、V相、W相)の電流位相がずれた状態となるため、モータ100に駆動が生じる場合があるからである。
 一方、上記ステップS30において、サーボオン状態とした駆動部303に対応しないモータ100が駆動した場合には(ステップS30でNO)、ステップS40に移り、統括制御部302は、駆動部303と対応しないモータ100とが誤って接続されている、又は、エンコーダ102と対応しないコネクタ311とが誤って接続されていると判別する。これは、サーボオン状態とした駆動部303に対応しないモータ100の駆動が検出されるということは、エンコーダ用配線402が対応するエンコーダ102とコネクタ311との間で正しく配線されている場合には、駆動部303と対応しないモータ100とが誤って接続されていると考えられ、モータ用配線401が対応する駆動部303とモータ100との間で正しく配線されている場合には、エンコーダ102と対応しないコネクタ311とが誤って接続されていると考えられるからである。
 統括制御部302は、上記ステップS35又は上記ステップS40の後、ステップS45に制御手順を移行する。このステップS45では、統括制御部302は、上記ステップS20でサーボオン状態とした駆動部303にサーボオフ信号を出力してサーボオフ状態とし、多軸モータ駆動装置300に接続された全モータ100について、ブレーキ101によるブレーキ機能をオンにする。なお、サーボオフ状態とは、上述したサーボオン状態とは異なる状態、すなわち、上記ステップS20で選択されたモータ100への通電を強制的に止める状態を示す。
 次のステップS50では、統括制御部302は、表示部305を用いて対応する配線のチェックを促す表示を行う。例えば、上記ステップS35で誤配線ありと判別した場合には、モータ用配線401における各相(U相、V相、W相)の配線のチェックを促す表示を行い、上記ステップS40で誤配線ありと判別した場合には、モータ用配線401(非対応の駆動部303とモータ100とが接続されていないか)又はエンコーダ用配線402のチェックを促す表示を行う。そして、本フローを終了する。
 なお、先のステップS25において、全てのモータ100が駆動しなかった場合には(ステップS25でYES)、ステップS55に移る。
 ステップS55では、統括制御部302は、上記ステップS20でサーボオン状態とした駆動部303に対し、各軸制御部304を介して所定の駆動量の位置指令を出力し、当該駆動部303を、対応するモータ100が通電開始時点の位置から所定量駆動された位置に位置決めされる位置決め制御状態とする。この位置決め制御状態が、特許請求の範囲に記載の第2位置決め制御状態の一例に相当する。なお、上記所定の駆動量は、負荷機械に支障がない程度の駆動量に適宜設定される。
 ステップS60では、統括制御部302は、中継部310からの検出信号(全てのエンコーダ102の検出信号)を入力し、当該検出信号に基づく検出位置と上記ステップS20で格納した初期位置との比較により駆動量を算出し、上記ステップS55で位置指令を出力した駆動部303に対応したモータ100が当該位置指令に対応した駆動量分だけ正常に駆動したか否かを判定する。位置指令を出力した駆動部303に対応しないモータ100が駆動した場合、あるいは、位置指令を出力した駆動部303に対応したモータ100が駆動したが駆動量が正常でない場合には(ステップS60でNO)、ステップS65に移る。
 ステップS65では、統括制御部302は、上記ステップS55で位置指令を出力した駆動部303に対応したモータ100が駆動したか否かを判定する。位置指令を出力した駆動部303に対応したモータ100が正常でない駆動をした場合には(ステップS65でYES)、ステップS70に移り、統括制御部302は、当該モータ100のモータ用配線401における各相(U相、V相、W相)の配線に誤配線がある、又は、エンコーダ102と対応しないコネクタ311とが誤って接続されていると判別する。これは、モータ用配線401の相配線が正常である場合にはモータ100は上記位置指令に対応した所定量だけ駆動して停止した状態となるが、相配線又はエンコーダ用配線402に誤配線がある場合には、駆動量が異常となる場合(駆動しない場合を含む)が生じるからである。但し、ステップS25を経た、ステップS60、ステップS65、ステップS70の過程の場合、ステップS25において当該モータ100のモータ用配線401における各相(U相、V相、W相)の配線は正常と判断できる可能性が高いため、ステップS70における誤配線はエンコーダ用配線402に誤配線がある場合として特定できる可能性がある。
 一方、上記ステップS65において、位置指令を出力した駆動部303に対応しないモータ100が駆動した場合には(ステップS65でNO)、ステップS75に移り、統括制御部302は、駆動部303と対応しないモータ100とが誤って接続されている、又は、エンコーダ102と対応しないコネクタ311とが誤って接続されていると判別する。
 その後は上記と同様に、統括制御部302は、ステップS45において、上記ステップS20でサーボオン状態とした駆動部303をサーボオフ状態とし、多軸モータ駆動装置300に接続された全モータ100について、ブレーキ101によるブレーキ機能をオンにする。そしてステップS50において、統括制御部302は、表示部305を用いて対応する配線のチェックを促す表示を行う。そして、本フローを終了する。
 なお、先のステップS60において、上記ステップS55で位置指令を出力した駆動部303に対応したモータ100が当該位置指令に対応した駆動量分だけ正常に駆動した場合には(ステップS60でYES)、ステップS80に移る。
 ステップS80では、統括制御部302は、モータ用配線401及びエンコーダ用配線402に誤配線はないと判別し、次のステップS85において、表示部305を用いて正常に配線されている旨を表す表示を行う。
 次のステップS90では、統括制御部302は、変数iに1を加える。そして次のステップS95では、統括制御部302は、変数iが全駆動部数i0と一致するか否かを判定する。変数iと全駆動部数i0とが一致しない場合には(ステップS95でNO)、先のステップS15に戻る。すなわち、多軸モータ駆動装置300が有する全ての駆動部303に対してステップS15~ステップS95の処理を繰り返して実行する。一方、変数iと全駆動部数i0とが一致する場合には(ステップS95でYES)、本フローを終了する。図1に示す例では、第1~第8駆動部303の全てに対してステップS15~ステップS95の処理を実行した際に、変数iと全軸数i0とが一致し、本フローを終了する。
 次に、上記制御によって判別される誤配線の具体例について図3を用いて説明する。図3に示す例では、第3駆動部303と第4モータ100とが接続されると共に、第4駆動部303と第3モータ100とが接続されており、これらが非対応の駆動部303とモータ100との接続によるモータ配線401の誤配線を生じている。また、第7駆動部303と第7モータ100との間で対応する相同士が接続されておらず、これがモータ用配線401の各相(U相、V相、W相)の配線の誤配線を生じている。さらに、第5モータ100のエンコーダ102と第6コネクタ311とが接続されると共に、第6モータ100のエンコーダ102と第5コネクタ311とが接続されており、これらが非対応のエンコーダ102とコネクタ311との接続による誤配線を生じている。
 このような誤配線を有する多軸モータ駆動システム1において、統括制御部302が図2に示す制御内容を実行した場合、第1駆動部303及び第2駆動部303については誤配線なしと判別される。第3駆動部303については、第3駆動部303と第4モータ100とが誤って接続されているため、第3駆動部303をサーボオン状態とした際に(ステップS20)、第4モータ100が駆動する場合がある。駆動した場合には、第4モータ100のエンコーダ102から中継部310の第4コネクタ311に検出信号が入力され、第4モータ100の駆動として検出される。したがって、サーボオン状態とした駆動部303に対応しないモータ100が駆動した場合に相当するので(ステップS25でNO、ステップS30でNO)、第3駆動部303と第4モータ100とが誤って接続されている、又は、第3モータ100のエンコーダ102と第4コネクタ311とが誤って接続されていると判別され(ステップS40)、その旨が表示される(ステップS50)。その結果、作業者は第3駆動部303に対応するモータ用配線401及びエンコーダ用配線402をチェックすることで、この例ではエンコーダ用配線402が正しく配線されていることから、第3駆動部303と第4モータ100とが誤って接続されていることを突き止めることができる。
 なお、第3駆動部303をサーボオン状態とした際に第4モータ100が駆動しなかった場合でも(ステップS25でYES)、第3駆動部303に所定の駆動量の位置指令を出力した際に(ステップS55)、第4モータ100のエンコーダ102から中継部310の第4コネクタ311に検出信号が入力され、第4モータ100の駆動として検出される。したがって、位置指令を出力した駆動部303に対応しないモータ100が駆動した場合に相当するので(ステップS60及びステップS65でNO)、第3駆動部303と第4モータ100とが誤って接続されている、又は、第3モータ100のエンコーダ102と第4コネクタ311とが誤って接続されていると判別され(ステップS75)、その旨が表示される(ステップS50)。その結果、作業者は第3駆動部303と第4モータ100とが誤って接続されていることを突き止めることができる。第4駆動部303についても同様にして、作業者は第4駆動部303と第3モータ100とが誤って接続されていることを突き止めることができる。
 一方、第5駆動部303については、第5モータ100のエンコーダ102と第6コネクタ311とが誤って接続されているため、第5駆動部303をサーボオン状態とした際に(ステップS20)、第5モータ100が駆動した場合には、第5モータ100のエンコーダ102から中継部310の第6コネクタ311に検出信号が入力され、第6モータ100の駆動として検出される。したがって、サーボオン状態とした駆動部303に対応しないモータ100が駆動した場合に相当するので(ステップS25でNO、ステップS30でNO)、第5駆動部303と第6モータ100とが誤って接続されている、又は、第5モータ100のエンコーダ102と第6コネクタ311とが誤って接続されていると判別され(ステップS40)、その旨が表示される(ステップS50)。その結果、作業者は第5駆動部303に対応するモータ用配線401及びエンコーダ用配線402をチェックすることで、この例ではモータ用配線401が正しく配線されていることから、第5モータ100のエンコーダ102と第6コネクタ311とが誤って接続されていることを突き止めることができる。
 なお、第5駆動部303をサーボオン状態とした際に第5モータ100が駆動しなかった場合でも(ステップS25でYES)、第5駆動部303に所定の駆動量の位置指令を出力した際に(ステップS55)、第5モータ100のエンコーダ102から中継部310の第6コネクタ311に検出信号が入力され、第6モータ100の駆動として検出される。したがって、位置指令を出力した駆動部303に対応しないモータ100が駆動した場合に相当するので(ステップS60及びステップS65でNO)、第5駆動部303と第6モータ100とが誤って接続されている、又は、第5モータ100のエンコーダ102と第6コネクタ311とが誤って接続されていると判別され(ステップS75)、その旨が表示される(ステップS50)。その結果、作業者は第5モータ100のエンコーダ102と第6コネクタ311とが誤って接続されていることを突き止めることができる。第6駆動部303についても同様にして、作業者は第6モータ100のエンコーダ102と第5コネクタ311とが誤って接続されていることを突き止めることができる。
 他方、第7駆動部303については、当該第7駆動部303と第7モータ100との間でモータ用配線401の各相(U相、V相、W相)の配線が誤って接続されているため、第7駆動部303をサーボオン状態とした際に(ステップS20)、第7モータ100が駆動する場合がある。駆動した場合には、第7モータ100のエンコーダ102から中継部310の第7コネクタ311に検出信号が入力され、第7モータ100の駆動として検出される。したがって、サーボオン状態とした駆動部303に対応したモータ100が駆動した場合に相当するので(ステップS25でNO、ステップS30でYES)、第7モータ100のモータ用配線401における各相の配線に誤配線があると判別され(ステップS35)、その旨が表示される(ステップS50)。その結果、作業者は第7モータ100のモータ用配線401における各相の配線に誤配線があることを突き止めることができる。
 なお、第7駆動部303をサーボオン状態とした際に第7モータ100が駆動しなかった場合でも(ステップS25でYES)、第7駆動部303に所定の駆動量の位置指令を出力した際に(ステップS55)、第7モータ100が異常駆動した場合には、位置指令を出力した駆動部303に対応したモータ100が駆動したが駆動量が正常でない場合に相当するので(ステップS60でNO、ステップS65でYES)、第7モータ100のモータ用配線401における各相の配線に誤配線があると判別され(ステップS70)、その旨が表示される(ステップS50)。このように、各駆動部303に対し、サーボオン状態での誤配線の判別後、さらに所定量駆動させた状態での誤配線の判別を行うことで、各駆動部303ごとに2回の誤配線の判別を行うことができるので、誤配線の検出精度を高めることができる。
 以上説明した多軸モータ駆動システム1においては、多軸モータ駆動装置300の各駆動部303と対応するモータ100とがモータ用配線401を介して個別に接続されており、各モータ100のエンコーダ102と中継部310のコネクタ311とがエンコーダ用配線402を介して個別に接続されている。このようなシステムにおいて、モータ用配線401及びエンコーダ用配線402における誤配線をチェックする方法として、全てのモータ100について同時に駆動して異常判断指標となる内部データを記憶することを所定の時間繰り返し実行した上で、記憶した内部データに基づいて誤配線をチェックする方法が考えられる。しかしながら、この場合には、軸数が多くなるにつれ内部データの情報量も多くなるため、考えられる誤配線要因の組合せが多岐に渡ってしまい、正確な誤配線要因の追求に時間を要する恐れがある。
 これに対し、本実施形態においては、多軸モータ駆動装置300の統括制御部302が、各駆動部303を介して各モータ100に順次電力を供給させ、その際のエンコーダ102の検出信号に基づき、モータ用配線401及びエンコーダ用配線402における誤配線の有無を各駆動部303ごとに判別する。このように各駆動部303ごとに判別を行うことにより、軸数(すなわち駆動部303又はモータ100の数)に関わらず、誤配線要因を各駆動部303に対応する配線部分のみに限定することができる。これにより、正確な誤配線要因の追求に要する時間を短縮できるので、誤配線要因を迅速且つ正確に判別することができる。その結果、誤配線に起因して発生する可能性がある負荷機械の異常動作を事前に阻止することができる。
 また、本実施形態では特に、統括制御部302は、各駆動部303をサーボオン状態とした上で、検出信号に基づき誤配線の有無を判別する。このサーボオン状態では、統括制御部302は駆動量0に対応する位置指令を駆動部303に出力して位置ループ制御を行う。このとき、各配線が正常である場合にはモータ100は各相(U相、V相、W相)の電流位相を含む通電開始時点の位置にロックされた状態となるが、モータ用配線401の各相(U相、V相、W相)の配線に誤配線がある場合には、上述した各相(U相、V相、W相)の電流位相がずれた状態となるため、モータ100に駆動が生じる場合がある。したがって、位置決め制御された駆動部303に対応するモータ100の駆動が検出された場合には、モータ用配線401の各相の配線に誤配線があると判別することができる。一方、位置決め制御された駆動部303に対応しないモータ100の駆動が検出された場合には、モータ用配線401及びエンコーダ用配線402のいずれかに非対応機器の接続による誤配線があると判別することができる。他方、複数のモータ100の全てが駆動しないことが検出された場合には、誤配線がないと判別することができる。
 また、本実施形態では特に、統括制御部302は、各駆動部303を、対応するモータ100が通電開始時点の位置から所定量駆動された位置に位置決めされる位置決め制御状態とした上で、検出信号に基づき誤配線の有無を判別する。このとき、各配線が正常である場合には、モータ100は所定量駆動して停止した状態となるが、モータ用配線401の各相の配線に誤配線がある場合又はエンコーダ用配線402に誤配線がある場合には、上記モータ100の駆動量が異常となる場合がある。したがって、所定量駆動されるように制御された状態の駆動部303に対応するモータ100の駆動量が異常であることが検出された場合には、当該モータ100のモータ用配線401における各相の配線に誤配線がある、又は、エンコーダ102と対応しないコネクタ311とが誤って接続されていると判別することができる。一方、所定量駆動されるように制御された状態の駆動部303に対応しないモータ100の駆動が検出された場合には、モータ用配線401及びエンコーダ用配線402のいずれかに非対応機器の接続による誤配線があると判別することができる。他方、所定量駆動されるように制御された状態の駆動部303に対応するモータ100の駆動量が正常であることが検出された場合には、誤配線がないと判別することができる。また、各駆動部303に対し、サーボオン状態での誤配線の判別後、さらに所定量駆動させた状態での誤配線の判別を行うことで、各駆動部303ごとに2回の誤配線の判別を行うことができるので、誤配線の検出精度を高めることができる。
 また、本実施形態では特に、多軸モータ駆動装置300が、統括制御部302による判別結果を表示する表示部305を有している。これにより、誤配線がある場合にはその旨を表示部305で表示することで、対応する配線のチェックを作業者に促し、誤配線に起因して発生する可能性がある負荷機械の異常動作を事前に阻止することができる。また、誤配線がない場合にはその旨を表示部305で表示することで、作業者に安心感を与えることができる。
 なお、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。
 例えば、以上では、各駆動部303に対し、サーボオン状態での誤配線の判別後、さらに所定量駆動させた状態での誤配線の判別を行うことで、各駆動部303ごとに2回の誤配線の判別を行う場合を一例として説明したが、いずれか一方のみの誤配線の判別を各駆動部303ごとに行うようにしてもよい。
 また以上では、多軸モータ駆動システムが回転型のモータ100を有する場合を一例として説明したが、モータは回転型である必要はなく、例えばリニアモータを用いてもよい。また、図2に示す制御内容を統括制御部302で実行するようにしたが、各軸制御部304で実行してもよい。また以上では、8軸駆動の多軸モータ駆動システムを一例として説明したが、軸数はこれに限るものではなく、適宜変更してもよい。
 また以上では、多軸モータ駆動装置300が表示部305を有する場合を一例として説明したが、エンジニアリングツール500もしくは上位制御装置200が表示部を有しても良い。この場合、多軸モータ駆動装置300がエンジニアリングツール500もしくは上位制御装置200に対して表示する情報を通信等の手段を用いて出力すれば良い。
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
 その他、一々例示はしないが、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
 1        多軸モータ駆動システム
 101      モータ
 102      エンコーダ(位置検出器)
 200      上位制御装置
 300      多軸モータ駆動装置
 302      統括制御部(制御部)
 303      駆動部
 305      表示部
 401      モータ用配線
 402      検出器用配線

Claims (11)

  1.  位置検出器を備えた複数のモータと、
     モータ制御指令を出力する上位制御装置と、
     前記モータ制御指令に基づき、前記複数のモータを駆動する多軸モータ駆動装置と、を有し、
     前記多軸モータ駆動装置は、
     対応する前記モータに個別に接続され、前記モータに電力を供給して駆動する複数の駆動部と、
     前記駆動部を介して各モータに順次電力を供給し、前記位置検出器の検出信号に基づき、前記駆動部と前記モータとを接続するモータ用配線及び前記位置検出器からの検出器用配線の少なくとも一方における誤配線の有無を、前記駆動部ごとに判別する制御部と、を有する
    ことを特徴とする多軸モータ駆動システム。
  2.  前記制御部は、
     前記駆動部を、対応する前記モータが通電開始時点の位置に位置決めされる第1位置決め制御状態とした上で、前記検出信号に基づき誤配線の有無を判別する
    ことを特徴とする請求項1に記載の多軸モータ駆動システム。
  3.  前記制御部は、
     前記検出信号に基づき、第1位置決め制御状態とした前記駆動部に対応する前記モータの駆動を検出した場合には、当該モータの前記モータ用配線に誤配線があると判別する
    ことを特徴とする請求項2に記載の多軸モータ駆動システム。
  4.  前記制御部は、
     前記検出信号に基づき、第1位置決め制御状態とした前記駆動部に対応しない前記モータの駆動を検出した場合には、前記モータ用配線及び前記検出器用配線のいずれかに誤配線があると判別する
    ことを特徴とする請求項2に記載の多軸モータ駆動システム。
  5.  前記制御部は、
     前記検出信号に基づき、前記複数のモータの全てが駆動しないことを検出した場合には、前記モータ用配線及び前記検出器用配線のいずれにも誤配線がないと判別する
    ことを特徴とする請求項2に記載の多軸モータ駆動システム。
  6.  前記制御部は、
     前記駆動部を、対応する前記モータが通電開始時点の位置から所定量駆動された位置に位置決めされる第2位置決め制御状態とした上で、前記検出信号に基づき、誤配線の有無を判別する
    ことを特徴とする請求項1乃至5のいずれか1項に記載の多軸モータ駆動システム。
  7.  前記制御部は、
     前記検出信号に基づき、第2位置決め制御状態とした前記駆動部に対応する前記モータの駆動量が異常であることを検出した場合には、当該モータの前記モータ用配線及び前記検出器用配線のいずれかに誤配線があると判別する
    ことを特徴とする請求項6に記載の多軸モータ駆動システム。
  8.  前記制御部は、
     前記検出信号に基づき、第2位置決め制御状態とした前記駆動部に対応しない前記モータの駆動を検出した場合には、前記モータ用配線及び前記検出器用配線のいずれかに誤配線があると判別する
    ことを特徴とする請求項6に記載の多軸モータ駆動システム。
  9.  前記制御部は、
     前記検出信号に基づき、第2位置決め制御状態とした前記駆動部に対応する前記モータの駆動量が正常であることを検出した場合には、前記モータ用配線及び前記検出器用配線のいずれにも誤配線がないと判別する
    ことを特徴とする請求項6に記載の多軸モータ駆動システム。
  10.  前記多軸モータ駆動装置は、
     前記制御部による判別結果を表示する表示部を有する
    ことを特徴とする請求項1乃至9のいずれか1項に記載の多軸モータ駆動システム。
  11.  上位制御装置から出力されるモータ制御指令に基づき、位置検出器を備えた複数のモータを駆動する多軸モータ駆動装置であって、
     対応する前記モータに個別に接続され、前記モータに電力を供給して駆動する複数の駆動部と、
     前記駆動部を介して各モータに順次電力を供給し、前記位置検出器の検出信号に基づき、前記駆動部と前記モータとを接続するモータ用配線及び前記位置検出器からの検出器用配線の少なくとも一方における誤配線の有無を、前記駆動部ごとに判別する制御部と、を有する
    ことを特徴とする多軸モータ駆動装置。
PCT/JP2011/063619 2011-06-14 2011-06-14 多軸モータ駆動システム及び多軸モータ駆動装置 WO2012172647A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012525780A JP5164030B2 (ja) 2011-06-14 2011-06-14 多軸モータ駆動システム及び多軸モータ駆動装置
PCT/JP2011/063619 WO2012172647A1 (ja) 2011-06-14 2011-06-14 多軸モータ駆動システム及び多軸モータ駆動装置
CN201180071632.1A CN103609014B (zh) 2011-06-14 2011-06-14 多轴马达驱动系统以及多轴马达驱动装置
DE112011105542.0T DE112011105542T5 (de) 2011-06-14 2011-06-14 Mehrachsen-Motor-Antriebssystem und Mehrachsen-Motor-Ansteuervorrichtung
US14/103,853 US9488687B2 (en) 2011-06-14 2013-12-12 Multiaxial motor driving apparatus and multiaxial motor drive device for determining whether or not there is a miswiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063619 WO2012172647A1 (ja) 2011-06-14 2011-06-14 多軸モータ駆動システム及び多軸モータ駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/103,853 Continuation US9488687B2 (en) 2011-06-14 2013-12-12 Multiaxial motor driving apparatus and multiaxial motor drive device for determining whether or not there is a miswiring

Publications (1)

Publication Number Publication Date
WO2012172647A1 true WO2012172647A1 (ja) 2012-12-20

Family

ID=47356674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063619 WO2012172647A1 (ja) 2011-06-14 2011-06-14 多軸モータ駆動システム及び多軸モータ駆動装置

Country Status (5)

Country Link
US (1) US9488687B2 (ja)
JP (1) JP5164030B2 (ja)
CN (1) CN103609014B (ja)
DE (1) DE112011105542T5 (ja)
WO (1) WO2012172647A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181438A1 (ja) * 2013-05-09 2014-11-13 株式会社安川電機 モータ駆動システム、モータ駆動装置、多軸モータ駆動システム及び多軸モータ駆動装置
JP2015119600A (ja) * 2013-12-20 2015-06-25 東海旅客鉄道株式会社 電力変換器の制御装置及び電気車
JP2019134546A (ja) * 2018-01-30 2019-08-08 住友重機械工業株式会社 インバータ装置、ロール・ツー・ロール搬送システム、モータ制御システム
JP2020154772A (ja) * 2019-03-20 2020-09-24 ファナック株式会社 産業用機械の制御システム
JP2021505113A (ja) * 2017-12-18 2021-02-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 複数モーターについてのモーター識別

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226008B3 (de) * 2014-12-16 2016-03-17 Kuka Roboter Gmbh Verfahren zur Überprüfung der Zuordnung eines Antriebs zu einer Steuereinrichtung
RU2583843C1 (ru) * 2015-04-22 2016-05-10 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Многодвигательный электромеханический привод и способ его работы
RU168844U1 (ru) * 2015-12-25 2017-02-21 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Многодвигательный электромеханический привод
JP6219424B2 (ja) * 2016-03-02 2017-10-25 平田機工株式会社 制御方法、作業システムおよび製造方法
US10109996B2 (en) * 2016-03-07 2018-10-23 Whirlpool Corporation Method and system for detecting miswiring of a power supply for a domestic appliance
JP6443365B2 (ja) * 2016-03-10 2018-12-26 オムロン株式会社 モータ制御装置、制御方法、情報処理プログラム、および記録媒体
CN106100465B (zh) * 2016-07-29 2020-01-17 福建睿能科技股份有限公司 一种驱动系统及驱动器
JP6237938B1 (ja) * 2016-10-18 2017-11-29 株式会社安川電機 多軸モータ制御システム、モータ制御装置、及びモータ制御方法
WO2018179268A1 (ja) * 2017-03-30 2018-10-04 株式会社安川電機 モータ制御システム、制御方法及びモータ制御装置
EP3462192A1 (de) * 2017-09-29 2019-04-03 Siemens Aktiengesellschaft Verfahren zur installation eines antriebssystems und antriebssystem
WO2019130564A1 (ja) * 2017-12-28 2019-07-04 三菱電機株式会社 電気車制御装置
JP6703021B2 (ja) * 2018-02-20 2020-06-03 ファナック株式会社 サーボ制御装置
JP7000295B2 (ja) * 2018-10-31 2022-01-19 株式会社日研工作所 送り軸およびウォームギヤ異常判定システム
JP7283978B2 (ja) * 2019-05-28 2023-05-30 ファナック株式会社 制御装置、および結線判定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230319A (ja) * 1994-02-18 1995-08-29 Shimaden:Kk サーボコントローラ系における配線異状の検出方法
JP2000032616A (ja) * 1998-07-08 2000-01-28 Toyota Motor Corp 電動機の誤接続検出装置
JP2003348870A (ja) * 2002-05-23 2003-12-05 Sumitomo Heavy Ind Ltd 誤動作防止機能付モータ制御システム
JP2007060864A (ja) * 2005-08-26 2007-03-08 Yaskawa Electric Corp 電動機制御装置およびそのフィルタ設定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289466A (ja) 1995-04-17 1996-11-01 Sanyo Electric Co Ltd 電源誤配線検知装置
DE19607688B4 (de) 1995-06-30 2005-10-13 Mitsubishi Denki K.K. Verfahren und Vorrichtung zur Erfassung und Diagnose eines anormalen Betriebszustandes in einem Servosteuersystem
JP3625901B2 (ja) 1995-06-30 2005-03-02 三菱電機株式会社 サーボ制御システムの自動適正化方法および装置
JP3217334B2 (ja) 1998-10-05 2001-10-09 ファナック株式会社 自動機械のための制御装置
EP1020776B1 (en) 1998-10-05 2004-04-28 Fanuc Ltd Controller for automatic machine
DE10056146A1 (de) 2000-11-13 2002-06-06 Siemens Ag Verfahren und Vorrichtung zur automatischen Zuordnung eines Motorgebers zu einem Leistungsteil innerhalb eines elektrischen Antriebssystems
JP4767976B2 (ja) 2008-01-04 2011-09-07 日本電信電話株式会社 直流電源システム
JP5331523B2 (ja) 2009-03-12 2013-10-30 山洋電気株式会社 誤配線検出機能を備えた三相同期電動機の制御装置
CN102064751B (zh) * 2009-11-17 2013-03-27 深圳市博巨兴实业发展有限公司 双变频控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230319A (ja) * 1994-02-18 1995-08-29 Shimaden:Kk サーボコントローラ系における配線異状の検出方法
JP2000032616A (ja) * 1998-07-08 2000-01-28 Toyota Motor Corp 電動機の誤接続検出装置
JP2003348870A (ja) * 2002-05-23 2003-12-05 Sumitomo Heavy Ind Ltd 誤動作防止機能付モータ制御システム
JP2007060864A (ja) * 2005-08-26 2007-03-08 Yaskawa Electric Corp 電動機制御装置およびそのフィルタ設定方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10063166B2 (en) 2013-05-09 2018-08-28 Kabushiki Kaisha Yaskawa Denki Motor driving system, motor driving device, multi-axis motor driving system, and multi-axis motor driving device
WO2014181438A1 (ja) * 2013-05-09 2014-11-13 株式会社安川電機 モータ駆動システム、モータ駆動装置、多軸モータ駆動システム及び多軸モータ駆動装置
JP6083469B2 (ja) * 2013-05-09 2017-02-22 株式会社安川電機 モータ駆動システム、モータ駆動装置、多軸モータ駆動システム及び多軸モータ駆動装置
CN105191112A (zh) * 2013-05-09 2015-12-23 株式会社安川电机 电机驱动系统、电机驱动装置、多轴电机驱动系统及多轴电机驱动装置
WO2015093128A1 (ja) * 2013-12-20 2015-06-25 東海旅客鉄道株式会社 電力変換器の制御装置及び電気車
US9654031B2 (en) 2013-12-20 2017-05-16 Central Japan Railway Company Power system, power converter controlling apparatus, and electric vehicle having the power system
JP2015119600A (ja) * 2013-12-20 2015-06-25 東海旅客鉄道株式会社 電力変換器の制御装置及び電気車
TWI646769B (zh) * 2013-12-20 2019-01-01 日商東海旅客鐵道股份有限公司 電力轉換器之控制裝置及電動車
JP2021505113A (ja) * 2017-12-18 2021-02-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 複数モーターについてのモーター識別
JP7015922B2 (ja) 2017-12-18 2022-02-03 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 複数モーターについてのモーター識別
JP2019134546A (ja) * 2018-01-30 2019-08-08 住友重機械工業株式会社 インバータ装置、ロール・ツー・ロール搬送システム、モータ制御システム
JP7094709B2 (ja) 2018-01-30 2022-07-04 住友重機械工業株式会社 インバータ装置、ロール・ツー・ロール搬送システム、モータ制御システム
JP2020154772A (ja) * 2019-03-20 2020-09-24 ファナック株式会社 産業用機械の制御システム
US11193987B2 (en) 2019-03-20 2021-12-07 Fanuc Corporation Control system of industrial machine

Also Published As

Publication number Publication date
US20140097859A1 (en) 2014-04-10
JPWO2012172647A1 (ja) 2015-02-23
CN103609014A (zh) 2014-02-26
JP5164030B2 (ja) 2013-03-13
CN103609014B (zh) 2016-06-15
DE112011105542T5 (de) 2014-04-30
US9488687B2 (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP5164030B2 (ja) 多軸モータ駆動システム及び多軸モータ駆動装置
JP6083469B2 (ja) モータ駆動システム、モータ駆動装置、多軸モータ駆動システム及び多軸モータ駆動装置
EP1814217B1 (en) Motor control method and motor control apparatus
JP5929127B2 (ja) 並列インバータ装置の誤配線検出装置
US9069346B2 (en) Multi-axis motor driving system and multi-axis motor driving apparatus
JPWO2008129658A1 (ja) 電動機制御装置
JPWO2017037779A1 (ja) 電動パワーステアリング装置
CN109195859B (zh) 电子控制装置及其动作控制方法
JP2009113618A (ja) 電動パワーステアリング装置
US11193987B2 (en) Control system of industrial machine
US7843671B2 (en) Electric machine control system
EP3118991B1 (en) Motor control device, motor control system, motor control method, and motor control program
CN104796046A (zh) 半导体器件和驱动设备
JP5081633B2 (ja) モータ制御装置
JP2954615B2 (ja) モータ駆動制御装置
US20180034391A1 (en) Motor control device, motor control method, and non-transitory computer readable medium encoded with computer program
JP2023004194A (ja) ロボットシステム及びその誤配線検出方法
JP2007288891A (ja) 電力変換装置
EP3319226A1 (en) Servomotor drive device
JP6339144B2 (ja) 2軸型インバータ装置およびその逐次監視切替方法
JP2002369262A (ja) 機器制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012525780

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111055420

Country of ref document: DE

Ref document number: 112011105542

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867780

Country of ref document: EP

Kind code of ref document: A1