WO2015093128A1 - 電力変換器の制御装置及び電気車 - Google Patents

電力変換器の制御装置及び電気車 Download PDF

Info

Publication number
WO2015093128A1
WO2015093128A1 PCT/JP2014/076560 JP2014076560W WO2015093128A1 WO 2015093128 A1 WO2015093128 A1 WO 2015093128A1 JP 2014076560 W JP2014076560 W JP 2014076560W WO 2015093128 A1 WO2015093128 A1 WO 2015093128A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
voltage
value
amplitude
command value
Prior art date
Application number
PCT/JP2014/076560
Other languages
English (en)
French (fr)
Inventor
啓 坂上
宏和 加藤
拓紀 下山
与貴 西嶋
潤一 石井
松本 康
菊地 寿江
Original Assignee
東海旅客鉄道株式会社
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海旅客鉄道株式会社, 富士電機株式会社 filed Critical 東海旅客鉄道株式会社
Priority to EP14871585.7A priority Critical patent/EP3086465A1/en
Priority to KR1020167015113A priority patent/KR20160084856A/ko
Priority to CN201480066964.4A priority patent/CN105814789A/zh
Publication of WO2015093128A1 publication Critical patent/WO2015093128A1/ja
Priority to US15/177,338 priority patent/US9654031B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a system for driving a plurality of induction motors by a single power converter, and a power converter having a function of detecting an incorrect wiring in the phase sequence of at least one induction motor among the plurality of induction motors.
  • the present invention relates to a control device and an electric vehicle including the control device.
  • Patent Document 1 discloses a control device for a three-phase synchronous motor having an erroneous wiring detection function.
  • FIG. 6 is a block diagram showing the overall configuration of this prior art.
  • the torque command generator 1 calculates a torque command value T CMD from the deviation between the speed command value V c and the feedback speed signal V cF.
  • the current command generator 2 calculates a q-axis current command value I qC and a d-axis current command value I dC based on the torque command value T CMD , and these current command values I qC and I dC are the armature current supply devices. 3 is input.
  • the armature current supply device 3 includes a power converter 3e such as an inverter, and the three-phase output voltage is supplied to the synchronous motor M.
  • An encoder 6 is attached to the synchronous motor M, and the rotor position signal ⁇ m is input to the feedback speed signal generator 7 to generate the feedback speed signal V cF.
  • a current detector 4 is provided on the input side of the synchronous motor M, and U-phase and V-phase current signals I U and I V detected by the current detector 4 are input to the orthogonal biaxial converter 5.
  • the orthogonal biaxial converter 5 uses the SIN signal and COS signal generated by the signal generator 9 based on the rotor position signal ⁇ m to convert the current signals I U and I V into the d-axis current feedback signal I dF , q-axis current feedback signal I qF .
  • the current controllers 3 a and 3 b include q-axis voltage command values V qC and d that eliminate respective deviations between the current command values I qC and I dC and the feedback signals I qF and I dF.
  • the shaft voltage command value VdC is calculated.
  • These voltage command values V qC and V dC are input to the coordinate converter 3c.
  • the coordinate converter 3c converts the voltage command values V qC and V dC into three-phase voltage command values V UC , V VC , and V WC using the SIN signal and the COS signal, and supplies them to the PWM controller 3d.
  • the PWM controller 3d performs PWM control of the power converter 3e by a drive signal generated from the voltage command values V UC , V VC , V WC , converts the DC voltage into a three-phase AC voltage, and drives the synchronous motor M Yes.
  • the prior art shown in FIG. 6 is provided with a miswiring detector 8 that detects a two-phase miswiring or a three-phase miswiring in the phase sequence of the synchronous motor M with respect to the output phase of the power converter 3e.
  • the q-axis current command value I qC becomes saturated
  • the q-axis current feedback signal I qF exceeds a predetermined value
  • the q-axis current feedback signal I qF The feedback speed signal V cF has a reverse polarity.
  • the miswiring detector 8 pays attention to this, detects miswiring, and outputs an alarm signal AS.
  • the erroneous wiring detection unit 8 includes a saturation state determination unit 8a, a q-axis current feedback signal determination unit 8b, an integration unit 8c, and a determination unit 8d.
  • two-phase miswiring in the phase sequence by the miswiring detection unit 8 (for example, the input phase of the synchronous motor M is in the phase sequence of U-W-V with respect to the output phase U-V-W of the power converter 3e).
  • the operation of detecting a state of being connected will be described with reference to FIGS.
  • the saturation state determination unit 8a determines that the q-axis current command value IqC is saturated as shown in FIG. 8B, and outputs the determination result to the integration unit 8c.
  • the q-axis current feedback signal determination unit 8b determines that the q-axis current feedback signal I qF is equal to or greater than a predetermined value, and outputs the determination result to the integration unit 8c.
  • the negative time of the speed signal V cF is integrated and output as an integrated value IV.
  • the determination unit 8d outputs an alarm signal AS for notifying erroneous wiring when the integrated value IV reaches the cumulative time RT.
  • Patent Document 1 In the prior art described in Patent Document 1, there is no description about a method of detecting an incorrect wiring when a plurality of electric motors are driven by a power converter. As described above, an erroneously wired motor is included in the plurality of electric motors. Can not solve the problem. In the first place, Patent Document 1 is intended for synchronous motors, and does not mention miswiring of induction motors.
  • a problem to be solved by the present invention is to convert power that enables detection that the phase sequence of at least one of the plurality of induction motors connected in parallel with each other and mechanically coupled is incorrect wiring. It is an object to provide a control device for a container and an electric vehicle equipped with the control device.
  • a control device for a power converter mechanically combines three-phase AC voltages obtained by converting a DC voltage by operation of a semiconductor switching element, connected in parallel to each other.
  • Current detection means for detecting an output current of the power converter;
  • Current control means for generating a voltage command value such that the current detection value by the current detection means matches the current command value;
  • Voltage command amplitude calculating means for calculating the amplitude of the voltage command value;
  • Storage means for storing a combination of the primary frequency of the induction motor and the amplitude of the voltage command value at each sampling period; A value obtained by dividing an increase in amplitude of the voltage command value by an increase in the primary frequency based on the storage information of the storage means is calculated, and when the division result falls below a predetermined reference value, a plurality of the Gradient detecting means for determining that there is at least one induction motor in
  • a control device for a power converter is a plurality of induction motors in which three-phase AC voltages obtained by converting a DC voltage by operation of a semiconductor switching element are mechanically coupled in parallel with each other.
  • Current detection means for detecting an output current of the power converter
  • Voltage detection means for detecting the output voltage of the power converter
  • Current control means for generating a voltage command value such that the current detection value by the current detection means matches the current command value
  • Voltage detection value amplitude calculation means for calculating the amplitude of the voltage detection value by the voltage detection means
  • Storage means for storing a combination of the primary frequency of the induction motor and the amplitude of the voltage detection value at that time for each sampling period; A value obtained by dividing an increase in amplitude of the voltage command value by an increase in the primary frequency based on the storage information of the storage means is calculated, and when the division result falls below a predetermined reference value, a plurality of the Gradient detecting
  • the control device in the electric vehicle according to the first or second aspect, is mounted on a vehicle together with the power converter, and a plurality of induction motors for driving wheels are operated by the power converter. It is characterized by doing.
  • the gradient detecting means outputs the failure signal when the vehicle is operated with a power running notch having the lowest torque performance. It is characterized by.
  • the electric vehicle according to claim 5 is characterized in that, in the electric vehicle according to claim 3, when the speed of the vehicle is equal to or lower than a predetermined value, the gradient detecting means outputs the failure signal.
  • An electric vehicle according to a sixth aspect is the electric vehicle according to the third aspect, wherein the vehicle is operated with a power running notch having the lowest torque performance, and the speed of the vehicle is equal to or less than a predetermined value.
  • the gradient detecting means outputs the failure signal.
  • the present invention among a plurality of induction motors connected in parallel to each other and mechanically coupled, there is at least one induction motor whose phase sequence is miswired to the power converter. This can be reliably detected based on the ratio of the increase in the amplitude of the voltage command value or the voltage detection value to the increase in the primary frequency.
  • FIG. 1 shows an induction motor drive system to which an embodiment of the present invention is applied, and corresponds to the invention according to claim 1.
  • a DC power source 20 is connected to a power converter 10 such as an inverter, and the DC voltage of the DC power source 20 is converted into a three-phase AC voltage by the operation of a semiconductor switching element in the power converter 10. It is supplied to the induction motor group 40.
  • the induction motor group 40 is composed of a plurality of (for example, four) induction motors 41 connected in parallel to each other and mechanically coupled.
  • control device of the power converter 10 is configured as follows.
  • the slip frequency (slip angular frequency) command value ⁇ se * and the rotational speed detection value ⁇ re of the induction motor group 40 are added by the primary frequency calculating means 50 to generate the primary frequency (primary angular frequency) ⁇ 1.
  • the primary frequency ⁇ 1 is integrated by the integrating unit 60 to calculate the angle ⁇ necessary for vector control, and is also input to the storage unit 110.
  • current detection means 30 is provided on the output side of the power converter 10, and three-phase current detection values i u , i v and i w are input to the coordinate conversion means 70.
  • the coordinate conversion means 70 converts the current detection values i u , i v , i w into a two-phase d-axis current detection value i d and a q-axis current detection value i q based on the angle ⁇ , and the current control means 90. Output to.
  • the current control unit 90 matches the d-axis current detection value i d with the d-axis current command value i d * and the d-axis voltage that matches the q-axis current detection value i q with the q-axis current command value i q *.
  • the command value v d * and the q-axis voltage command value v q * are calculated and output. Note that the d-axis current command value i d * and the q-axis current command value i q * are given from a host controller (not shown).
  • the coordinate conversion means 80 converts the d-axis voltage command value v d * and the q-axis voltage command value v q * into a three-phase voltage command value based on the angle ⁇ , and gives this voltage command value to the power converter 10. .
  • the power converter 10 generates a three-phase AC voltage according to the voltage command value and supplies it to the induction motor group 40 by the switching operation of the semiconductor switching element.
  • the d-axis voltage command value v d * and the q-axis voltage command value v q * output from the current control unit 90 are also input to the voltage command amplitude calculation unit 100.
  • Voltage command amplitude calculating unit 100, in the storage unit 110 calculates the amplitude v a * of the voltage command value according to Equation 1.
  • Storage means 110 stores the amplitude v a * of the primary frequency omega 1 and the voltage command values sampled at regular intervals. For example, when the primary frequency obtained in the kth sampling period is ⁇ 1 (k) and the amplitude of the voltage command value is v a * (k), these ⁇ 1 (k) and v a * (k) Are stored in the storage means 110.
  • the gradient detection unit 120 uses ⁇ 1 (k), v a * (k) that is newly obtained k-th data and ⁇ 1 (k ⁇ 1), v a * (k ⁇ 1) that is the previous data. ) And the ratio ( ⁇ v a * / ⁇ 1 ) of the increase in the amplitude of the voltage command value with respect to the increase in the primary frequency, using Equation 2.
  • the gradient detecting means 120 if the above ratio ( ⁇ v a * / ⁇ 1) falls below a predetermined reference value, the phase sequence power conversion of at least one induction motor 41 in the induction motor group 40 It is detected that the two-phase wiring is incorrect with respect to the output phase of the device 10.
  • the phase sequence of the induction motor group 40 is a two-phase incorrect wiring with respect to the output phase of the power converter 10, for example, the input phase of the induction motor 41 with respect to the output phase U-V-W of the power converter 10. Is connected in U-W-V phase order.
  • the gradient detection means 120 detects that the phase sequence of at least one induction motor 41 is a two-phase incorrect wiring with respect to the output phase of the power converter 10, it generates a fault signal and outputs it to the power converter 10. .
  • the power converter 10 that has received the failure signal stops power supply to the induction motor group 40 by turning off all semiconductor switching elements (all gates off).
  • FIG. 2 is a T-type equivalent circuit of the induction motor 41.
  • This T-type equivalent circuit is represented by a primary resistance R s , a primary side leakage inductance L s , a secondary side leakage inductance L r , an excitation inductance M, and a secondary resistance R r .
  • a d-axis voltage v d and a q-axis voltage v q are applied from the power converter to the induction motor 41, and the d-axis current i d and q-axis are generated by this voltage. It can be considered that a current i q (indicated by i dq in the figure) flows.
  • FIG. 3 is an equivalent circuit when a plurality of induction motors 41 are connected in parallel to each other as shown in FIG.
  • Equation 4 when the voltage equation of the induction motor 41 is expressed in a complex vector format, Equation 4 is obtained.
  • Equation 4 v dq : voltage applied by the power converter 10, ⁇ dq : secondary magnetic flux vector, i dq : current vector, ⁇ 1 : primary frequency, ⁇ L s : leakage inductance (M / L r (L s + L r It takes a value almost equal to).
  • Equation 5 the induced voltage generated by the secondary magnetic flux ⁇ dq obtained by subtracting the voltage drop at the primary resistance R s and the leakage inductance ⁇ L s from the applied voltage v dq is assumed to be edq , the dq-axis current i dq on the primary side and the induced voltage The relationship with edq is as shown in Equation 5. In Equation 5, the differential term is ignored and the steady state is considered.
  • Formula 5 represents the relationship between the primary current i dq and the induced voltage edq, and by dividing both sides by the primary current i dq , the impedance Z on the secondary side of the induction motor can be obtained.
  • FIG. 4 shows a calculation example of the magnitude of the secondary side impedance Z of the wired induction motor and the induction motor in which the phase order is incorrectly wired.
  • the constant of the induction motor for vector control of rated voltage 200 [V] and rated output 7.5 [kW] is used for the motor constant.
  • the total value of the rotation speed and the primary frequency is the slip frequency as shown in Equation 3 above. That is, since the primary frequency decreases as the rotational speed increases under a constant slip frequency, the secondary side impedance Z obtained from Equation 5 can be obtained even if the rotational speed increases as shown in FIG. Remains low.
  • FIG. 5 shows a case where a plurality of induction motors connected in parallel (for example, four) are all correctly wired in the correct phase sequence, and a phase sequence of one of the plurality of induction motors is a two-phase incorrect wiring. The calculation result of the synthetic
  • the slope of the combined impedance with respect to the rotational speed is reduced in the case of including the incorrectly wired induction motor as compared to the case where all the induction motors are normally wired.
  • the control device of the power converter 10 since the control device of the power converter 10 performs current control, it acts as a current source for a plurality of induction motors 41 as shown in FIG. Therefore, when a current based on the same current command value is passed through each induction motor 41, a voltage having an amplitude proportional to the magnitude of the combined impedance corresponding to each case as shown in FIG. It will appear at the output end.
  • the gradient detection means 120 performs the calculation of Equation 2 to detect the ratio ( ⁇ v a * / ⁇ 1 ) of the increase in the voltage command amplitude v a * to the increase in the primary frequency ⁇ 1 (increase in rotation speed). . Detection of incorrect wiring in the phase sequence of at least one induction motor 41 based on the fact that this ratio is below a predetermined reference value, in other words, the amount of change in the combined impedance with respect to the rotational speed is below the predetermined reference value. can do.
  • a fault signal may be output from the gradient detection means 120 and processing such as operation stop of the power converter 10 may be executed.
  • the amplitude of the voltage command value is used for detection of erroneous wiring, but the amplitude of the voltage detection value may be used. That is, although not shown, as described in claim 2, the output voltage of the power converter 10 is detected by the voltage detection means, and the amplitude of the voltage detection value is replaced with the voltage command amplitude calculation means 100 of FIG. Calculated by the voltage detection value amplitude calculation means. At the same time, the combination of the amplitude of the voltage detection value and the primary frequency is stored in the storage unit 110.
  • the gradient detection unit 120 calculates the ratio of the increase in the amplitude of the voltage detection value to the increase in the primary frequency, and when the ratio falls below a predetermined reference value, incorrect wiring in the phase sequence of the induction motor 41 is performed. It is to detect.
  • the present invention can also be realized as an electric vehicle that drives a plurality of induction motors for driving wheels by a power converter such as a variable voltage variable frequency inverter (VVVF inverter) mounted on the vehicle.
  • VVVF inverter variable voltage variable frequency inverter
  • electrical equipment and wiring between devices may be removed and installed during vehicle assembly, maintenance and inspection.
  • a running test is performed such as starting the electric vehicle with one notch of power running and gradually accelerating from a low speed. By such a running test, it can be confirmed that each electric device operates normally.
  • the power running 1 notch is the power running notch to which the lowest torque performance is assigned.
  • the present invention when the present invention is applied to an electric vehicle, it is preferable to detect an incorrect wiring of the induction motor 41 when the vehicle is operated with one notch of power running. Moreover, you may make it detect the incorrect wiring of the induction motor 41, when a vehicle is below a predetermined speed (for example, the maximum speed which can be accelerated by 1 notch of power running). Furthermore, when the vehicle is driven with one notch of power running and when the vehicle is below a predetermined speed, an incorrect wiring of the induction motor 41 may be detected.
  • a predetermined speed for example, the maximum speed which can be accelerated by 1 notch of power running

Abstract

 互いに並列に接続され、かつ機械的に結合された複数台の誘導電動機41を運転するインバータ等の電力変換器10の制御装置において、電力変換器10の出力電流を検出する電流検出手段30と、その電流検出値を電流指令値に一致させる電圧指令値を生成する電流制御手段90と、電圧指令値の振幅を演算する電圧指令振幅演算手段100と、サンプリング周期ごとに誘導電動機41の一次周波数とその時の電圧指令値の振幅との組み合わせを記憶する記憶手段110と、記憶手段110の記憶情報に基づいて電圧指令値の振幅の増加分を一次周波数の増加分で除算した値を演算し、その除算結果が所定の基準値を下回るときに、複数台の誘導電動機41の中に電力変換器10に対して相順が誤配線された誘導電動機41が少なくとも1台存在することを判定して故障信号を出力する勾配検出手段120と、を備える。

Description

電力変換器の制御装置及び電気車
 この発明は、1台の電力変換器により複数台の誘導電動機を駆動するシステムにおいて、複数台の誘導電動機のうち少なくとも1台の誘導電動機の相順の誤配線検出機能を備えた電力変換器の制御装置、及び、この制御装置を備えた電気車に関するものである。
 特許文献1には、誤配線検出機能を備えた三相同期電動機の制御装置が開示されている。
 図6は、この従来技術の全体的な構成を示すブロック図である。図6において、トルク指令発生部1は、速度指令値Vとフィードバック速度信号VcFとの偏差からトルク指令値TCMDを演算する。電流指令発生部2は、トルク指令値TCMDに基づいてq軸電流指令値IqC及びd軸電流指令値IdCを演算し、これらの電流指令値IqC,IdCは電機子電流供給装置3に入力される。
 電機子電流供給装置3はインバータ等の電力変換器3eを備え、その三相出力電圧は同期電動機Mに供給されている。同期電動機Mにはエンコーダ6が取り付けられており、回転子位置信号θがフィードバック速度信号発生部7に入力されて前記フィードバック速度信号VcFが生成される。
 同期電動機Mの入力側には電流検出器4が設けられており、電流検出器4により検出したU相及びV相の電流信号I,Iが直交二軸変換部5に入力される。直交二軸変換部5では、回転子位置信号θに基づいて信号発生器9が生成したSIN信号、COS信号を用いて、前記電流信号I,Iをd軸電流フィードバック信号IdF、q軸電流フィードバック信号IqFに変換する。
 電機子電流供給装置3において、電流制御器3a,3bは、電流指令値IqC,IdCとフィードバック信号IqF,IdFとのそれぞれの偏差をなくすようなq軸電圧指令値VqC、d軸電圧指令値VdCを演算する。これらの電圧指令値VqC,VdCが座標変換器3cに入力される。
 座標変換器3cは、前記SIN信号、COS信号を用いて、電圧指令値VqC,VdCを三相電圧指令値VUC,VVC,VWCに変換し、PWM制御器3dに供給する。
 PWM制御器3dは、電圧指令値VUC,VVC,VWCから生成した駆動信号により電力変換器3eをPWM制御し、直流電圧を三相交流電圧に変換して同期電動機Mを駆動している。
 さて、図6に示す従来技術には、電力変換器3eの出力相に対する同期電動機Mの相順の二相誤配線または三相誤配線を検出する誤配線検出部8が設けられている。二相誤配線または三相誤配線がある場合にはq軸電流指令値IqCが飽和状態になり、q軸電流フィードバック信号IqFが所定値以上になると共に、q軸電流フィードバック信号IqFとフィードバック速度信号VcFとが逆極性になる。誤配線検出部8は、このことに着目して誤配線を検出し、アラーム信号ASを出力する。
 誤配線検出部8は、図7に示すごとく、飽和状態判定部8a、q軸電流フィードバック信号判定部8b、積算部8c及び判定部8dによって構成されている。
 次に、誤配線検出部8による相順の二相誤配線(例えば、電力変換器3eの出力相U-V-Wに対し、同期電動機Mの入力相がU-W-Vの相順で接続されているような状態)の検出動作を、図7,図8に基づいて説明する。
 飽和状態判定部8aは、図8(b)に示すようにq軸電流指令値IqCが飽和状態になったことを判定してその判定結果を積算部8cに出力する。また、q軸電流フィードバック信号判定部8bは、q軸電流フィードバック信号IqFが所定値以上であることを判定してその判定結果を積算部8cに出力する。積算部8cでは、q軸電流フィードバック信号IqFが正極性であることを判定した時から、図8(a),(c)に示すように、速度指令Vに追従せずに振動するフィードバック速度信号VcFの負極性の時間を積算し、これを積算値IVとして出力する。判定部8dでは、図8(c),(d)に示すごとく、積算値IVが累積時間RTに達した時点で、誤配線を報知するためのアラーム信号ASを出力する。
特開2010-213557号公報 特開2000-032616号公報 特開2008-253008号公報 特開平9-016233号公報 特開2007-318955号公報
 しかしながら、互いに並列に接続され、かつ機械的に結合された複数台の誘導電動機を1台の電力変換器により駆動する場合、仮に1台の電動機の相順が誤配線されていたとしても、正常に配線された電動機の出力トルクに牽引されて誤配線状態の電動機も駆動される。この結果、負荷の速度は指令値どおりに調整可能となってしまう。従って、速度や速度指令値を用いる従来技術を複数台の誘導電動機に適用することができない。
 特許文献1に記載された従来技術では、複数台の電動機を電力変換器により駆動する場合の誤配線検出方法について記載されておらず、上記のように複数台の電動機の中に誤配線の電動機が含まれている場合の問題を解決することができない。そもそも、特許文献1は同期電動機を対象にしたものであり、誘導電動機の誤配線については言及されていない。
 そこで、本発明の解決課題は、互いに並列に接続され、かつ機械的に結合された複数台の誘導電動機のうち少なくとも1台の電動機の相順が誤配線であることを検出可能とした電力変換器の制御装置、及び、この制御装置を備えた電気車を提供することにある。
 上記課題を解決するため、請求項1に係る電力変換器の制御装置は、半導体スイッチング素子の動作により直流電圧を変換して得た三相交流電圧を、互いに並列に接続されて機械的に結合された複数台の誘導電動機に供給してこれらの誘導電動機を運転する電力変換器の制御装置において、
 前記電力変換器の出力電流を検出する電流検出手段と、
 前記電流検出手段による電流検出値を電流指令値に一致させるような電圧指令値を生成する電流制御手段と、
 前記電圧指令値の振幅を演算する電圧指令振幅演算手段と、
 サンプリング周期ごとに前記誘導電動機の一次周波数とその時の前記電圧指令値の振幅との組み合わせを記憶する記憶手段と、
 前記記憶手段の記憶情報に基づいて前記電圧指令値の振幅の増加分を前記一次周波数の増加分で除算した値を演算し、その除算結果が所定の基準値を下回るときに、複数台の前記誘導電動機の中に前記電力変換器に対して相順が誤配線された誘導電動機が少なくとも1台存在することを判定して故障信号を出力する勾配検出手段と、
を備えたものである。
 請求項2に係る電力変換器の制御装置は、半導体スイッチング素子の動作により直流電圧を変換して得た三相交流電圧を、互いに並列に接続されて機械的に結合された複数台の誘導電動機に供給してこれらの誘導電動機を運転する電力変換器の制御装置において、
 前記電力変換器の出力電流を検出する電流検出手段と、
 前記電力変換器の出力電圧を検出する電圧検出手段と、
 前記電流検出手段による電流検出値を電流指令値に一致させるような電圧指令値を生成する電流制御手段と、
 前記電圧検出手段による電圧検出値の振幅を演算する電圧検出値振幅演算手段と、
 サンプリング周期ごとに前記誘導電動機の一次周波数とその時の前記電圧検出値の振幅との組み合わせを記憶する記憶手段と、
 前記記憶手段の記憶情報に基づいて前記電圧指令値の振幅の増加分を前記一次周波数の増加分で除算した値を演算し、その除算結果が所定の基準値を下回るときに、複数台の前記誘導電動機の中に前記電力変換器に対して相順が誤配線された誘導電動機が少なくとも1台存在することを判定して故障信号を出力する勾配検出手段と、
を備えたものである。
 また、請求項3に係る電気車は、請求項1または請求項2に記載した制御装置が前記電力変換器と共に車両に搭載され、前記電力変換器により車輪駆動用の複数台の誘導電動機を運転することを特徴とする。
 また、請求項4に係る電気車は、請求項3に係る電気車において、前記車両が最も低いトルク性能の力行ノッチで運転されているときに、前記勾配検出手段が前記故障信号を出力することを特徴とする。
 また、請求項5に係る電気車は、請求項3に係る電気車において、前記車両の速度が所定値以下のときに、前記勾配検出手段が前記故障信号を出力することを特徴とする。
 また、請求項6に係る電気車は、請求項3に係る電気車において、前記車両が最も低いトルク性能の力行ノッチで運転されているときであって、かつ前記車両の速度が所定値以下のときに、前記勾配検出手段が前記故障信号を出力することを特徴とする。
 本発明によれば、互いに並列に接続され、かつ機械的に結合されている複数台の誘導電動機の中で、電力変換器に対して相順が誤配線された誘導電動機が少なくとも1台存在することを、一次周波数の増加分に対する電圧指令値または電圧検出値の振幅の増加分の比に基づいて確実に検出することができる。
本発明の実施形態が適用される誘導電動機の駆動システムを示すブロック図である。 誘導電動機のT形等価回路を示す図である。 複数台の誘導電動機を並列接続した場合の等価回路を示す図である。 1台の誘導電動機の正常配線時と誤配線時とにおいて、二次側インピーダンスの大きさの計算例を比較した図である。 複数台の誘導電動機が正常配線されている場合と誤配線された1台の誘導電動機を含む場合とにおいて、複数台の誘導電動機の合成インピーダンスの大きさの計算例を比較した図である。 特許文献1に記載された従来技術のブロック図である。 図6における誤配線検出部の構成を示すブロック図である。 図6における誤配線検出部の動作説明図である。
 以下、図に沿って本発明の実施形態を説明する。
 図1は、本発明の実施形態が適用される誘導電動機の駆動システムを示しており、請求項1に係る発明に相当する。図1において、インバータ等の電力変換器10には直流電源20が接続されており、電力変換器10内の半導体スイッチング素子の動作により、直流電源20の直流電圧が三相交流電圧に変換されて誘導電動機群40に供給されている。
 誘導電動機群40は、互いに並列に接続され、かつ機械的に結合された複数台(例えば4台)の誘導電動機41によって構成されている。
 ここで、電力変換器10の制御装置は以下のように構成されている。
 すなわち、すべり周波数(すべり角周波数)指令値ωse と誘導電動機群40の回転速度検出値ωreとが一次周波数演算手段50により加算され、一次周波数(一次角周波数)ωが生成される。この一次周波数ωは、積分手段60により積分されてベクトル制御に必要な角度θが演算されると共に、記憶手段110にも入力されている。
 また、電力変換器10の出力側には電流検出手段30が設けられ、三相の電流検出値i,i,iが座標変換手段70に入力されている。座標変換手段70では、電流検出値i,i,iを角度θに基づいて二相量のd軸電流検出値i、q軸電流検出値iに変換し、電流制御手段90に出力する。
 電流制御手段90は、d軸電流検出値iをd軸電流指令値i に一致させ、q軸電流検出値iをq軸電流指令値i に一致させるようなd軸電圧指令値v 及びq軸電圧指令値v を演算して出力する。なお、d軸電流指令値i 及びq軸電流指令値i は、図示されていない上位コントローラから与えられている。
 座標変換手段80は、d軸電圧指令値v 及びq軸電圧指令値v を角度θに基づいて三相の電圧指令値に変換し、この電圧指令値を電力変換器10に与える。電力変換器10は、半導体スイッチング素子のスイッチング動作により、上記電圧指令値に従った三相交流電圧を生成して誘導電動機群40に供給する。
 電流制御手段90から出力されたd軸電圧指令値v 及びq軸電圧指令値v は、電圧指令振幅演算手段100にも入力されている。電圧指令振幅演算手段100は、数式1により電圧指令値の振幅v を演算して記憶手段110に記憶させる。
Figure JPOXMLDOC01-appb-M000001
 記憶手段110は、一定の間隔でサンプリングされた一次周波数ω及び電圧指令値の振幅v を記憶している。例えば、k回目のサンプリング周期で得られた一次周波数をω(k)、電圧指令値の振幅をv (k)とすると、これらのω(k)とv (k)との組み合わせが記憶手段110に記憶される。
 勾配検出手段120は、新たに得られたk回目のデータであるω(k),v (k)と前回のデータであるω(k-1),v (k-1)とを用いて、数式2により、一次周波数の増加分に対する電圧指令値の振幅の増加分の比(Δv /Δω)を求める。
Figure JPOXMLDOC01-appb-M000002
 そして、勾配検出手段120は、上記の比(Δv /Δω)が所定の基準値を下回った場合に、誘導電動機群40の中で少なくとも1台の誘導電動機41の相順が電力変換器10の出力相に対して二相誤配線であることを検出する。誘導電動機群40の相順が電力変換器10の出力相に対して二相誤配線であるとは、例えば、電力変換器10の出力相U-V-Wに対し、誘導電動機41の入力相がU-W-Vの相順で接続されているような状態をいう。勾配検出手段120は、少なくとも1台の誘導電動機41の相順が電力変換器10の出力相に対し二相誤配線であることを検出すると、故障信号を生成し、電力変換器10に出力する。故障信号を受け取った電力変換器10は、全ての半導体スイッチング素子をオフ(全ゲートオフ)することにより、誘導電動機群40への電力供給を停止する。
 次に、図1に示す構成により、誘導電動機41の二相誤配線を検出可能な理由について述べる。
 誘導電動機のベクトル制御では、電力変換器の出力周波数(一次周波数)で回転する座標系(d-q軸座標系)を用いて解析する。このため、仮に電力変換器の三相出力のうち二相が誤配線されて入力相の相順が入れ替わっている誘導電動機は、等価的に回転子側が逆回転しているものとして解析する。この場合、誘導電動機の一次周波数ωの極性を正とすると、回転速度ωreの極性は負になるが、すべり周波数の極性は正になる。誤配線された誘導電動機のすべり周波数をωse2とすると、ωse2,ωre,ωの関係は数式3のようになり、すべり周波数ωse2が回転速度ωreの2倍程度までになることがわかる。
[数3]
   ωse2=ωre+ω
 図2は、誘導電動機41のT形等価回路である。このT形等価回路は、一次抵抗R、一次側漏れインダクタンスL、二次側漏れインダクタンスL、励磁インダクタンスM及び二次抵抗Rによって表される。図示するように、電力変換器から誘導電動機41にd軸電圧v,q軸電圧v(図中、vdqにて表す)が印加され、この電圧によって、d軸電流i,q軸電流i(図中、idqにて表す)が流入すると考えることができる。
 なお、図3は、図1のように複数台の誘導電動機41が互いに並列に接続されている場合の等価回路である。
 ここで、誘導電動機41の電圧方程式を複素ベクトル形式で表すと、数式4となる。
Figure JPOXMLDOC01-appb-M000003
 数式4において、vdq:電力変換器10による印加電圧、φdq:二次磁束ベクトル、idq:電流ベクトル、ω:一次周波数、σL:漏れインダクタンス(M/L(L+L)にほぼ等しい値をとる)である。
 いま、印加電圧vdqから一次抵抗R及び漏れインダクタンスσLにおける電圧降下を差し引いた二次磁束φdqによって発生する誘起電圧をedqとおくと、一次側のdq軸電流idqと誘起電圧edqとの関係は、数式5のようになる。なお、数式5では微分項を無視しており、定常状態を考慮している。
Figure JPOXMLDOC01-appb-M000004
 数式5は、一次電流idqと誘起電圧edqとの関係を表しており、両辺を一次電流idqによって除算することにより、誘導電動機の二次側のインピーダンスZを得ることができる。
 次に、一次周波数が2.5[Hz]~10[Hz](誘導電動機の回転速度が16[rad/s]~63[rad/s]に相当)まで増加した場合における、1台の正常配線された誘導電動機及び相順が誤配線された誘導電動機の二次側インピーダンスZの大きさの計算例を、図4に示す。なお、電動機定数は、定格電圧200[V]、定格出力7.5[kW]のベクトル制御用誘導電動機の定数を用いている。
 相順が誤配線された誘導電動機では、前述した数式3のように回転速度と一次周波数との合計値がすべり周波数となっている。すなわち、すべり周波数が一定のもとでは回転速度が上昇するにつれて一次周波数が低下するため、数式5から求められる二次側のインピーダンスZは、図4に示すように、回転速度が上昇しても低い値にとどまっている。
 また、誘導電動機全体としての合成インピーダンスの大きさは、一次周波数が上昇するにつれて二次側インピーダンスが支配的となる。図5は、並列接続された複数台(例えば4台)の誘導電動機がすべて正しい相順で正常に配線されている場合と、複数台の誘導電動機のうち1台の相順が二相誤配線されている場合の合成インピーダンスの計算結果を示している。
 図5によれば、全ての誘導電動機が正常配線されている場合に比べて誤配線の誘導電動機を含む場合では、回転速度に対する合成インピーダンスの傾きが減少していることがわかる。
 一方、電力変換器10の制御装置は電流制御を行っているため、図3に示すように、複数台の誘導電動機41に対して電流源として振舞っている。従って、同一の電流指令値に基づく電流を各誘導電動機41に流すと、図5に示したようなそれぞれの場合に対応する合成インピーダンスの大きさに比例する振幅の電圧が、電力変換器10の出力端に現れることになる。
 このため、図1に示した如く、記憶手段110に一次周波数ωと電圧指令の振幅v とを記憶させておく。勾配検出手段120が数式2の演算を行って一次周波数ωの増加分(回転速度の増加分)に対する電圧指令の振幅v の増加分の比(Δv /Δω)を検出する。この比が所定の基準値を下回ったこと、言い換えれば回転速度に対する合成インピーダンスの変化分が所定の基準値を下回ったことに基づいて、少なくとも1台の誘導電動機41の相順の誤配線を検出することができる。
 こうして誘導電動機41の誤配線を検出した場合には、勾配検出手段120から故障信号を出力させて電力変換器10の運転停止等の処理を実行すれば良い。
 上記実施形態では、誤配線の検出に電圧指令値の振幅を用いているが、電圧検出値の振幅を用いても良い。すなわち、図示されていないが、請求項2に記載するように、電力変換器10の出力電圧を電圧検出手段により検出し、その電圧検出値の振幅を図1の電圧指令振幅演算手段100に代わる電圧検出値振幅演算手段により演算する。これと共に、この電圧検出値の振幅と一次周波数との組み合わせを記憶手段110に記憶させる。
 そして、勾配検出手段120では、一次周波数の増加分に対する電圧検出値の振幅の増加分の比を演算し、この比が所定の基準値を下回ったときに誘導電動機41の相順の誤配線を検出するものである。
 なお、本発明は、車両に搭載された1台の可変電圧可変周波数インバータ(VVVFインバータ)等の電力変換器により、車輪駆動用の複数台の誘導電動機を運転する電気車としても実現可能である。
 電気車では、車両の組立や整備・点検時に電気機器および機器間配線の取り外しと取付けが行われる場合がある。そして、車両または電気機器の組立後には、電気車を力行1ノッチで起動し、低速度から徐々に加速するなどの走行試験が実施される。このような走行試験によって、各電気機器が正常に動作することを確認することができる。力行1ノッチは、最も低いトルク性能が割り当てられた力行ノッチである。
 したがって、本発明を電気車に適用する場合、車両が力行1ノッチで運転されているときに、誘導電動機41の誤配線を検出するのが良い。また、車両が所定の速度(例えば、力行1ノッチで加速できる最高速度)以下のときに、誘導電動機41の誤配線を検出するようにしても良い。さらに、車両が力行1ノッチで運転されているときであって、かつ車両が所定の速度以下のときに、誘導電動機41の誤配線を検出するようにしても良い。
 このようにすれば、車両または電気機器の組立後の早い段階で、誘導電動機41の誤配線を検出することができる。

Claims (6)

  1.  半導体スイッチング素子の動作により直流電圧を変換して得た三相交流電圧を、互いに並列に接続されて機械的に結合された複数台の誘導電動機に供給してこれらの誘導電動機を運転する電力変換器の制御装置において、
     前記電力変換器の出力電流を検出する電流検出手段と、
     前記電流検出手段による電流検出値を電流指令値に一致させるような電圧指令値を生成する電流制御手段と、
     前記電圧指令値の振幅を演算する電圧指令振幅演算手段と、
     サンプリング周期ごとに前記誘導電動機の一次周波数とその時の前記電圧指令値の振幅との組み合わせを記憶する記憶手段と、
     前記記憶手段の記憶情報に基づいて前記電圧指令値の振幅の増加分を前記一次周波数の増加分で除算した値を演算し、その除算結果が所定の基準値を下回るときに、複数台の前記誘導電動機の中に前記電力変換器に対して相順が誤配線された誘導電動機が少なくとも1台存在することを判定して故障信号を出力する勾配検出手段と、
     を備えたことを特徴とする電力変換器の制御装置。
  2.  半導体スイッチング素子の動作により直流電圧を変換して得た三相交流電圧を、互いに並列に接続されて機械的に結合された複数台の誘導電動機に供給してこれらの誘導電動機を運転する電力変換器の制御装置において、
     前記電力変換器の出力電流を検出する電流検出手段と、
     前記電力変換器の出力電圧を検出する電圧検出手段と、
     前記電流検出手段による電流検出値を電流指令値に一致させるような電圧指令値を生成する電流制御手段と、
     前記電圧検出手段による電圧検出値の振幅を演算する電圧検出値振幅演算手段と、
     サンプリング周期ごとに前記誘導電動機の一次周波数とその時の前記電圧検出値の振幅との組み合わせを記憶する記憶手段と、
     前記記憶手段の記憶情報に基づいて前記電圧指令値の振幅の増加分を前記一次周波数の増加分で除算した値を演算し、その除算結果が所定の基準値を下回るときに、複数台の前記誘導電動機の中に前記電力変換器に対して相順が誤配線された誘導電動機が少なくとも1台存在することを判定して故障信号を出力する勾配検出手段と、
     を備えたことを特徴とする電力変換器の制御装置。
  3.  請求項1または請求項2に記載した電力変換器の制御装置が前記電力変換器と共に車両に搭載され、前記電力変換器により車輪駆動用の複数台の誘導電動機を運転することを特徴とする電気車。
  4.  前記車両が最も低いトルク性能の力行ノッチで運転されているときに、前記勾配検出手段が前記故障信号を出力することを特徴とする請求項3に記載の電気車。
  5.  前記車両の速度が所定値以下のときに、前記勾配検出手段が前記故障信号を出力することを特徴とする請求項3に記載の電気車。
  6.  前記車両が最も低いトルク性能の力行ノッチで運転されているときであって、かつ前記車両の速度が所定値以下のときに、前記勾配検出手段が前記故障信号を出力することを特徴とする請求項3に記載の電気車。
PCT/JP2014/076560 2013-12-20 2014-10-03 電力変換器の制御装置及び電気車 WO2015093128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14871585.7A EP3086465A1 (en) 2013-12-20 2014-10-03 Electric vehicle and device for controlling power converter
KR1020167015113A KR20160084856A (ko) 2013-12-20 2014-10-03 전력변환기의 제어장치 및 전기차
CN201480066964.4A CN105814789A (zh) 2013-12-20 2014-10-03 功率转换器的控制装置及电动车
US15/177,338 US9654031B2 (en) 2013-12-20 2016-06-08 Power system, power converter controlling apparatus, and electric vehicle having the power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263143A JP6159659B2 (ja) 2013-12-20 2013-12-20 電力変換器の制御装置及び電気車
JP2013-263143 2013-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/177,338 Continuation US9654031B2 (en) 2013-12-20 2016-06-08 Power system, power converter controlling apparatus, and electric vehicle having the power system

Publications (1)

Publication Number Publication Date
WO2015093128A1 true WO2015093128A1 (ja) 2015-06-25

Family

ID=53402485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076560 WO2015093128A1 (ja) 2013-12-20 2014-10-03 電力変換器の制御装置及び電気車

Country Status (7)

Country Link
US (1) US9654031B2 (ja)
EP (1) EP3086465A1 (ja)
JP (1) JP6159659B2 (ja)
KR (1) KR20160084856A (ja)
CN (1) CN105814789A (ja)
TW (1) TWI646769B (ja)
WO (1) WO2015093128A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533132B2 (ja) * 2015-09-14 2019-06-19 株式会社日立製作所 電気車の制御装置
JP6725298B2 (ja) * 2016-04-04 2020-07-15 東海旅客鉄道株式会社 電車用電力変換制御装置
JP6143988B1 (ja) * 2016-09-05 2017-06-07 三菱電機株式会社 モータ制御装置
JP6936159B2 (ja) * 2017-01-31 2021-09-15 東海旅客鉄道株式会社 架線電圧推定装置及び鉄道車両
WO2018203393A1 (ja) * 2017-05-02 2018-11-08 三菱電機株式会社 電動機の制御装置、及び、電動パワーステアリングシステム
DK3714541T3 (da) * 2017-11-20 2022-10-31 Linak As Bestemmelse af en elektrisk strøm, der bevæger sig igennem en elektrisk motor ud af en flerhed af elektriske motorer
JP6854925B2 (ja) * 2017-12-28 2021-04-07 三菱電機株式会社 電気車制御装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265487A (ja) * 1990-03-13 1991-11-26 Hitachi Ltd 誘導電動機の制御装置
JPH0916233A (ja) 1995-06-30 1997-01-17 Mitsubishi Electric Corp サーボ制御システムの異常検出・診断方法および自動適正化方法
JP2000032616A (ja) 1998-07-08 2000-01-28 Toyota Motor Corp 電動機の誤接続検出装置
JP2007318955A (ja) 2006-05-29 2007-12-06 Nidec-Shimpo Corp 電気モータの駆動方法及び駆動制御装置
JP2008253008A (ja) 2007-03-29 2008-10-16 Mitsubishi Electric Corp 電力変換装置および電源誤接続判定方法
JP2009005478A (ja) * 2007-06-21 2009-01-08 Toyo Electric Mfg Co Ltd 誘導機制御装置
JP2010213557A (ja) 2009-03-12 2010-09-24 Sanyo Denki Co Ltd 誤配線検出機能を備えた三相同期電動機の制御装置
WO2012172647A1 (ja) * 2011-06-14 2012-12-20 株式会社安川電機 多軸モータ駆動システム及び多軸モータ駆動装置
JP2014023282A (ja) * 2012-07-18 2014-02-03 Toshiba Corp 電気車制御装置
JP2014230467A (ja) * 2013-05-27 2014-12-08 東洋電機製造株式会社 誘導電動機制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737828B2 (en) * 2001-07-19 2004-05-18 Matsushita Electric Industrial Co., Ltd. Washing machine motor drive device
JP4774975B2 (ja) * 2005-12-15 2011-09-21 トヨタ自動車株式会社 電動機の制御装置
MX2010003444A (es) * 2007-09-27 2010-04-21 Mitsubishi Electric Corp Controlador de maquina electrica rotatoria.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265487A (ja) * 1990-03-13 1991-11-26 Hitachi Ltd 誘導電動機の制御装置
JPH0916233A (ja) 1995-06-30 1997-01-17 Mitsubishi Electric Corp サーボ制御システムの異常検出・診断方法および自動適正化方法
JP2000032616A (ja) 1998-07-08 2000-01-28 Toyota Motor Corp 電動機の誤接続検出装置
JP2007318955A (ja) 2006-05-29 2007-12-06 Nidec-Shimpo Corp 電気モータの駆動方法及び駆動制御装置
JP2008253008A (ja) 2007-03-29 2008-10-16 Mitsubishi Electric Corp 電力変換装置および電源誤接続判定方法
JP2009005478A (ja) * 2007-06-21 2009-01-08 Toyo Electric Mfg Co Ltd 誘導機制御装置
JP2010213557A (ja) 2009-03-12 2010-09-24 Sanyo Denki Co Ltd 誤配線検出機能を備えた三相同期電動機の制御装置
WO2012172647A1 (ja) * 2011-06-14 2012-12-20 株式会社安川電機 多軸モータ駆動システム及び多軸モータ駆動装置
JP2014023282A (ja) * 2012-07-18 2014-02-03 Toshiba Corp 電気車制御装置
JP2014230467A (ja) * 2013-05-27 2014-12-08 東洋電機製造株式会社 誘導電動機制御装置

Also Published As

Publication number Publication date
US9654031B2 (en) 2017-05-16
JP2015119600A (ja) 2015-06-25
TWI646769B (zh) 2019-01-01
TW201531008A (zh) 2015-08-01
CN105814789A (zh) 2016-07-27
EP3086465A1 (en) 2016-10-26
JP6159659B2 (ja) 2017-07-05
US20160285395A1 (en) 2016-09-29
KR20160084856A (ko) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6159659B2 (ja) 電力変換器の制御装置及び電気車
US8853981B2 (en) Driving apparatus for multiplex-winding motor
US8283881B2 (en) Methods, systems and apparatus for synchronous current regulation of a five-phase machine
JP4022630B2 (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
US8593093B2 (en) Electric motor control apparatus
KR102108911B1 (ko) 드라이브 시스템 및 인버터 장치
EP3163743B1 (en) Motor drive device
EP3252942A1 (en) Inverter control device and motor drive system
KR20090060952A (ko) 영구자석 모터의 위치 센서리스 제어장치
EP3544174B1 (en) Rotating electric-machine-control apparatus and electric power steering apparatus equipped with said rotating-electric-machine control apparatus
JP4295059B2 (ja) 直流電圧検出回路の故障診断装置およびモータ制御システム
EP3910782A1 (en) Power conversion device
JP5959349B2 (ja) 電気車制御装置および車両駆動システム
JP2017028966A (ja) 電流センサ異常診断装置
JP2002233180A (ja) 電力変換装置
CN113169694A (zh) 旋转电机的控制装置和电动车辆的控制装置
CN107615641B (zh) 感应电机的功率转换装置、二次时间常数测量方法和速度控制方法
KR101904374B1 (ko) 모터 구동장치 및 이를 구비하는 전기 차량
JP6422796B2 (ja) 同期機制御装置及び駆動システム
US20230412097A1 (en) Systems and methods for control of multi-phase machines
WO2008026269A1 (fr) Appareil de conversion de puissance
WO2020003807A1 (ja) モータ制御装置
JP2020178508A (ja) インバータ装置及びインバータ装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015113

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014871585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871585

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE