WO2012169453A1 - 凝集促進剤 - Google Patents

凝集促進剤 Download PDF

Info

Publication number
WO2012169453A1
WO2012169453A1 PCT/JP2012/064355 JP2012064355W WO2012169453A1 WO 2012169453 A1 WO2012169453 A1 WO 2012169453A1 JP 2012064355 W JP2012064355 W JP 2012064355W WO 2012169453 A1 WO2012169453 A1 WO 2012169453A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
aggregation
polymer
reagent
measurement
Prior art date
Application number
PCT/JP2012/064355
Other languages
English (en)
French (fr)
Inventor
山本 直之
勤 増田
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to US14/123,899 priority Critical patent/US9797886B2/en
Priority to JP2013519479A priority patent/JP6107653B2/ja
Priority to CN201280027997.9A priority patent/CN103597352B/zh
Priority to EP12796593.7A priority patent/EP2720041B1/en
Priority to KR1020137032151A priority patent/KR20140043371A/ko
Publication of WO2012169453A1 publication Critical patent/WO2012169453A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to an aggregation promoter used in an immunoagglutination measurement method and an immunoaggregation measurement method using the same.
  • aggregation is caused by using an insoluble carrier such as latex in which an antigen or antibody that reacts with the substance to be measured is immobilized.
  • an insoluble carrier such as latex in which an antigen or antibody that reacts with the substance to be measured is immobilized.
  • an immunoaggregation promoter that makes it easier to cause aggregation based on an antigen-antibody reaction is usually used for the purpose of improving sensitivity.
  • Polyethylene glycol (PEG) or the like is well known as the immunoaggregation promoter, but PEG is salted out in a solution having a high salt concentration, so that there is a problem that the blank value increases and the measurement accuracy deteriorates. there were.
  • an object of the present invention is to provide an aggregation promoter that exhibits an aggregation promoting effect superior to conventional immune aggregation promoters, which enables highly sensitive immunoagglutination measurement.
  • an aggregation accelerator for immunoagglutination measurement comprising a polymer having a monomer unit represented by:
  • the polymer has a monomer unit represented by the general formula [1] and the following general formula [2]
  • R 4 represents a hydrogen atom or a methyl group
  • k represents an integer of 1 to 10
  • a reagent for an immunoagglutination measurement method comprising an aggregation promoter that is a copolymer having a monomer unit
  • An immunoagglutination measurement method characterized in that an antigen-antibody reaction is carried out by bringing an antibody or antigen against a measurement target substance into contact with the measurement target substance in the presence of the above-described aggregation promoter for immunoagglutination measurement method.
  • an antigen-antibody reaction is carried out by bringing an antibody or antigen against a measurement target substance into contact with the measurement target substance in the presence of the above-described aggregation promoter for immunoagglutination measurement method.
  • the immune aggregation promoter of the present invention has a stronger aggregation promoting effect than conventional immune aggregation promoters. Therefore, in an immunoagglutination measurement method such as an immunoturbidimetric method or an immunotrophic method using an agglutination of an antigen-antibody reaction product generated using a carrier such as a latex particle on which an antigen or antibody is immobilized, By using an immune aggregation promoter, aggregation due to an antigen-antibody reaction is likely to occur. As a result, highly sensitive measurement is possible.
  • the polymer used in the aggregation accelerator for immunoagglutination measurement of the present invention is any polymer having a monomer unit represented by the general formula [1]. It may be a homopolymer or a copolymer. Specific examples of the copolymer include those comprising a monomer unit represented by the general formula [1] and a monomer unit represented by the general formula [2].
  • the weight average molecular weight of the polymer used in the aggregation accelerator of the present invention is usually 50,000 to 3,000,000, preferably 100,000 to 3,000,000, more preferably 200,000 to 3,000,000.
  • the aggregation accelerator is a copolymer
  • its weight average molecular weight is usually 50,000 to 3,000,000, preferably 100,000 to 3,000,000, more preferably 200,000 to 3,000,000.
  • R 1 in the homopolymer general formula [1] having a monomer unit represented by the general formula [1] includes a hydrogen atom, a methyl group and the like, and a methyl group is preferable.
  • R 2 in the general formula [1] examples include a methyl group and an ethyl group, and a methyl group is preferable.
  • R 3 in the general formula [1] examples include a methyl group and an ethyl group, and a methyl group is preferable.
  • X in the general formula [1] represents —NH— or an oxygen atom, preferably an oxygen atom.
  • N in the general formula [1] usually represents an integer of 1 to 6, preferably an integer of 2 to 4, and more preferably an integer of 2 to 3.
  • M in the general formula [1] usually represents an integer of 1 to 3, preferably an integer of 1 to 2, and more preferably 1.
  • Preferred specific examples of the monomer unit represented by the general formula [1] include, for example, the following general formulas [1-1] to [1-8].
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • n an integer of 1 to 6
  • general formulas [1-1] to [1-4] are preferable, general formula [1-1], general formula [1-3], and general formula [1-4] are more preferable, and general formula [1- 1] is particularly preferable. More specifically, those represented by the following [1-1-1], [1-1-2], [1-3-1], and [1-4-1] are preferable.
  • (meth) acrylic acid derivative represented by the general formula [3] include N- [2- (dimethylamino) ethyl] methacrylic acid and N- [3- (dimethylamino) propyl] methacrylic acid.
  • N- [2- (dimethylamino) ethyl] methacrylic acid N Particularly preferred are-[4- (dimethylamino) butyl] methacrylic acid, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) propyl] methacrylamide and the like.
  • these (meth) acrylic acid derivatives commercially available products may be used, or those synthesized appropriately from (meth) acrylic acid by a conventional method or the like may be used.
  • halogen atom represented by X in the general formula [4] examples include fluorine, chlorine, bromine and iodine, and chlorine and bromine are particularly preferable.
  • carboxylic acid compound represented by the general formula [4] include, for example, chloroacetic acid, fluorinated acetic acid, bromoacetic acid, iodoacetic acid, chloropropionic acid, fluorinated propionic acid, bromopropionic acid, iodopropionic acid, chlorobutanoic acid. Fluorobutanoic acid, bromobutanoic acid, iodobutanoic acid and the like, bromoacetic acid, chloropropionic acid and chloroacetic acid are preferable, and chloroacetic acid is particularly preferable.
  • the amount of the carboxylic acid compound represented by the general formula [4] is usually 0.5 to 3 times mol, preferably 1 to 2 times mol of the (meth) acrylic acid derivative represented by the general formula [3]. Such an amount is sufficient.
  • reaction solvent at the time of reaction of the (meth) acrylic acid derivative represented by the general formula [3] and the carboxylic acid compound represented by the general formula [4] or a salt thereof for example, toluene, xylene, benzene, cyclohexane, n -Hydrocarbons such as hexane and n-octane, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isotanol, tert-butanol, dimethylformamide (DMF), water, etc.
  • DMF dimethylformamide
  • Alcohols are preferable, and methanol, ethanol, n-propanol, isopropanol and the like are particularly preferable.
  • the amount of the reaction solvent used is usually 100 to 300 mL with respect to a total amount of 50 g of the (meth) acrylic acid derivative represented by the general formula [3] and the carboxylic acid compound represented by the general formula [4] or a salt thereof. .
  • the reaction temperature between the (meth) acrylic acid derivative represented by the general formula [3] and the carboxylic acid compound represented by the general formula [4] or a salt thereof may be appropriately set according to the reaction solvent, etc.
  • the reaction time is 20 to 120 ° C, preferably 40 to 80 ° C, and the reaction time is usually 1 to 20 hours, preferably 5 to 12 hours.
  • the polymerization reaction in the method for producing a polymer having a monomer unit represented by the general formula [1] can be carried out by a method known per se such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like.
  • the polymerization initiator include azoisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (methyl 2-methylpropionate), 2,2′-azobis.
  • Azo compounds such as (2-methylbutyronitrile), peroxides such as benzoyl peroxide, lauroyl peroxide, potassium peroxodisulfate, and ammonium peroxodisulfate can be used.
  • the amount of the polymerization initiator used is usually 0.1 to 3% by weight based on the total weight of all monomers.
  • the polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon, the polymerization temperature is usually 40 to 120 ° C., preferably 50 to 70 ° C., and the polymerization time is 1 to 20 hours, preferably It may be performed for 0.5 to 5 hours.
  • the solvent used here in addition to the specific examples of the reaction solvent at the time of the reaction between the (meth) acrylic acid derivative represented by the general formula [3] and the carboxylic acid compound represented by the general formula [4] or a salt thereof, And water, and water is preferred.
  • the amount of the solvent used is usually 30 to 360 mL with respect to a total weight of 20 g of the polymer.
  • a homopolymer having a monomer unit represented by the general formula [1] for example, first, 1 mol of a (meth) acrylic acid derivative represented by the above general formula [3] and the above general formula [4]
  • the monomer is obtained by reacting 1 to 2 mol of the carboxylic acid compound or its salt in 500 to 1000 mL of ethanol at 40 to 80 ° C. for 5 to 12 hours. Thereafter, 10 g of the obtained monomer is dissolved in 50 to 100 mL of water, 1 to 30 mg of peroxide is added to the solution, and polymerization reaction is performed at 50 to 70 ° C. for 1 to 20 hours in an argon atmosphere. .
  • Copolymer having a monomer unit represented by the general formula [1] and a monomer unit represented by the general formula [2]
  • the content of the monomer unit represented by the general formula [1] in the copolymer is usually 50 mol%.
  • the amount is less than 100 mol%, preferably 50 to 95 mol%, more preferably 50 to 60 mol%.
  • the content of the monomer unit represented by the general formula [2] in the copolymer is usually more than 0 mol% and 50 mol% or less, preferably 5 to 50 mol%, more preferably 40 to 50 mol%.
  • R 4 in the general formula [2] represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • k is usually 1 to 10, preferably 4 to 8, and more preferably 6 to 8.
  • Specific examples of the monomer unit represented by the general formula [2] include, for example, the general formulas [2-1] to [2-2], and the general formula [2-1] is preferable.
  • the monomer unit represented by the general formula [1] is represented by [1-1-1], [1-1-2], [1-3-1] or [1-4-1].
  • a combination in which the monomer unit represented by the general formula [2] is [2-1-1] is more preferable, and the monomer unit represented by the general formula [1] is [1-1-1]
  • a combination in which the monomer unit represented by the general formula [2] is [2-1-1] is particularly preferable.
  • Vinyl compounds can be produced by polymerizing by a polymerization reaction according to a method known per se, for example, as described in JP-A-52-27713.
  • the monomer represented by the general formula [1 ′] include those according to the monomer unit represented by the general formula [1]. Further, the monomer represented by the general formula [1 ′] is a (meth) acrylic acid derivative represented by the general formula [3] in the method for producing a homopolymer having the monomer unit represented by the general formula [1]. And a carboxylic acid compound represented by the general formula [4] or a salt thereof.
  • vinyl compound represented by the general formula [2 ′] include, for example, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10- Undecenoic acid, 4-methyl-4-pentenoic acid, 5-methyl-5-hexenoic acid, 6-methyl-6-heptenoic acid, 7-methyl-7-octenoic acid, 8-methyl-8-nonenoic acid, 9- Examples include methyl-9-decenoic acid, 10-methyl-10-undecenoic acid and the like, and 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid and the like are preferable. Among them, 10-undecenoic acid is preferable. preferable.
  • these vinyl compounds commercially available products may be used, or those synthesized appropriately from halogenated alkyl compounds by a conventional method or the like may
  • the amount of the vinyl compound represented by the general formula [2 ′] is usually 1 to 100 mol%, preferably 3 to 100 mol%, more preferably 50 to 100 mol based on the monomer represented by the general formula [1 ′]. %.
  • the aggregation promoter of the present invention comprises a polymer having a monomer unit represented by the general formula [1] as described above.
  • a homopolymer having a monomer unit represented by the general formula [1], or a monomer unit represented by the general formula [1] and a monomer unit represented by the general formula [2] which comprises a copolymer having
  • the aggregation promoter is preferably used by being dissolved in a reagent used in an immunoturbidimetric method among immunoagglutination measurement methods, and among them, it is preferably used by being dissolved in a reagent for latex aggregation method using latex as a carrier. Particularly preferred.
  • the above-mentioned aggregation promoter of the present invention is usually 0.1 to 8 w / v%, preferably 0.1 to 4 w / v%, more preferably 0.1 to 2 w / v as the concentration in the reaction solution. It is added and used so that it may become v%. The concentration is preferably changed depending on the substance to be measured.
  • the substance to be measured is CRP or Fer
  • it is usually 0.1 to 8 w / v%, preferably 0.1 to 4 w / v%, more preferably 0.1 to
  • the substance to be measured is PSA
  • it is usually 0.1-7 w / v%, preferably 0.1-4 w / v%, more preferably 0.1-2 w / v%. It is preferable to be added and used.
  • the measurement target substance is measured based on aggregation derived from the antigen-antibody reaction, except that the aggregation promoter of the present invention coexists. What is necessary is just to carry out according to the operation method known per se, using various reagents used in the immunoagglutination measurement method known per se (immunoturbidimetric method, immunotrophic method, etc.).
  • the antibody or antigen against the measurement target substance may be brought into contact with the measurement target substance to cause an antigen-antibody reaction.
  • an antibody against the measurement target substance or a carrier carrying the antibody, or an antigen against the measurement target substance or a carrier carrying the antigen is brought into contact with the measurement target substance to carry out an antigen-antibody reaction.
  • the aggregation promoter of the present invention in the above method may be present at the concentration in the reaction solution as described above.
  • a specific method other than the coexistence of the aggregation promoter of the present invention for example, when using a method of measuring scattered light (a comparative method), for example, Kanbara Publishing Co., Ltd.
  • a method for measuring transmitted light for example, It may be performed according to the method described in Kanbara Publishing Co., Ltd., Clinical Laboratory Law Recommendation, 30th edition, 2nd edition, p.853-854 (1993).
  • a latex agglutination method for measuring the degree of agglutination of latex sensitized with an antibody or antigen against a substance to be measured based on changes in scattered light, transmitted light, etc., and measuring the substance to be measured based on the result when used, for example, it may be carried out in accordance with the method described in, for example, a new application example of immunoassay and its application to the development of diagnostic reagents and therapeutic agents (Management Education Publishers) p.103-187.
  • the buffer used during the reaction of the immunoaggregation measurement method of the present invention include, for example, conventional immunoturbidimetric methods such as Tris buffer, phosphate buffer, veronal buffer, borate buffer, Good buffer, etc.
  • the buffer used in the immuno-ratio brazing method include all, and the pH during the measurement reaction is not particularly limited as long as it does not suppress the antigen-antibody reaction, but is usually preferably selected from the range of 6 to 10.
  • the measurement in the immunoagglutination measurement method of the present invention is performed by measuring scattered light or transmitted light, and the measurement is performed by a biochemical general-purpose machine such as an automatic analyzer or a spectrophotometer, a laser neferometer, or the like. What is necessary is just to make it using a dedicated machine for the measurement of bran and the like.
  • the measurement target component that can be measured by the immunoagglutination measurement method of the present invention may be any component that can be measured using an antigen-antibody reaction.
  • a biological sample such as serum, plasma, urine, lymph, and cerebrospinal fluid
  • CRP C-reactive protein
  • immunoglobulin G IgG
  • immunoglobulin A IgA
  • immunoglobulin M IgM
  • immunoglobulin E IgE
  • ASO anti-streptridine O value
  • CRP CRP
  • Fer CMP
  • PSA CPP
  • CK-MB CRP
  • a monomer unit represented by the following general formula [2] may be used.
  • an aggregation accelerator comprising a copolymer having a monomer unit represented by the general formula [1] and a monomer unit represented by the following general formula [2] may be used.
  • a copolymer having a monomer unit represented by the general formula [1] and a monomer unit represented by the following general formula [2] may be used. preferable.
  • the reagent for the immunoagglutination measurement method of the present invention may be any as long as it contains the aggregation promoter of the present invention, and the content thereof is usually 0.1 to 10 w / vW / V%, preferably as the concentration in the reagent, 0.1 to 5 w / v%, more preferably 0.1 to 2 w / v%.
  • the concentration is preferably changed depending on the substance to be measured. For example, when the substance to be measured is CRP or Fer, it is usually 0.1 to 10 w / v%, preferably 0.1 to 5 w / v%, more preferably 0.1 to 1 w / v.
  • the substance to be measured is PSA, it is usually 0.1 to 10 w / v%, preferably 0.1 to 5 w / v%, more preferably 0.1 to 2 w / v%.
  • the measurement target component is an antigen
  • a suitable carrier for example, latex or the like
  • a suitable carrier for example, latex or the like
  • a buffer for example, Tris buffer, phosphate buffer, veronal buffer, borate buffer, Good buffer, etc.
  • stabilizer for example, albumin, globulin, water-soluble gelatin, Surfactants, saccharides, etc.
  • preservatives eg salicylic acid, benzoic acid, sodium azide, etc.
  • concentration may be used in a concentration range usually used in this field.
  • Examples of the measurement target in the reagent for immunoagglutination measurement method of the present invention include the same as those described in the section of the immunoagglutination measurement method of the present invention, and preferred ones are also the same.
  • Synthesis Example 1 Synthesis of polymers 1-3
  • Synthesis of N- [2- (carboxymethyldimethylamino) ethyl] methacrylic acid (monomer A) 297 g (4.5 mol) of potassium hydroxide was dissolved in 1.6 L of ethanol, and 426 g (4.5 mol) was added to the solution.
  • Chloroacetic acid manufactured by Wako Pure Chemical Industries, Ltd. was added, followed by stirring at room temperature for 2 hours. Next, crystals precipitated by the reaction were collected by filtration and washed with isopropanol.
  • the washed crystal was suspended in 1 L of isopropanol, and 475 g (3.0 mol) of N- [2- (dimethylamino) ethyl] methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the suspension. Then, the reaction was stirred for 12 hours under reflux. After completion of the reaction, insoluble matters were filtered off, the insoluble matters were washed with isopropanol, and the washing liquid was recovered. The filtrate and washing solution were mixed and dried under reduced pressure, and then acetone was added to the resulting residue to precipitate crystals.
  • Synthesis Example 2 Synthesis of Polymer 4 (1) Synthesis of N- (4-dimethylamino) butylmethacrylic acid 23 g (0.2 mol) of N- (4-dimethylamino) butanol (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 200 mL of chloroform, 25 g (0.24 mol) of methacrylic acid chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the solution under ice-cooling, and then reacted at room temperature with stirring for 1.5 hours. Next, the obtained reaction solution was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over magnesium sulfate. Thereafter, magnesium sulfate was filtered off, and the obtained filtrate was concentrated under reduced pressure to obtain 38 g of N- [4- (dimethylamino) butyl] methacrylic acid.
  • polymer 4 For polymer 4, the presence of methacrylic acid segment (0.84 ppm to 1.45 ppm) was confirmed by 1 H-NMR spectrum analysis, and the presence of carbonyl group (—C ⁇ O) (1725 cm ⁇ 1 ) was confirmed by IR spectrum analysis. did.
  • the physical properties of Polymer 4 were measured by GPC (SB-806M-HQ, manufactured by Shodex). As a result, the weight average molecular weight was 807,920 and the molecular weight distribution was 3.895.
  • Synthesis Example 3 Synthesis of polymer 5 (1) Synthesis of N- [3- (carboxymethyldimethylamino) propyl] acrylamide (monomer C) 198 g (3.0 mol) of potassium hydroxide was dissolved in 1 L of ethanol, and 284 g (3.0 mol) of chloroacetic acid (sum) After adding Koyo Pure Chemical Industries, Ltd., the mixture was stirred at room temperature for 2 hours. Next, crystals precipitated by the reaction were collected by filtration and washed with isopropanol.
  • Synthesis Example 4 Synthesis of polymer 6 (1) Synthesis of N- [3- (carboxymethyldimethylamino) propyl] methacrylamide (monomer D) 198 g (3.0 mol) of potassium hydroxide was dissolved in 1 L of ethanol and 284 g (3.0 mol) of chloroacetic acid ( After adding Wako Pure Chemical Industries, Ltd., the mixture was stirred at room temperature for 2 hours. Next, crystals precipitated by the reaction were collected by filtration and washed with isopropanol.
  • the polymer 6, 1 by H-NMR spectroscopy, the presence of methacrylic acid segment (1.10 ppm ⁇ 2.00 ppm), the IR spectrum analysis, an amide group (-NH-C O) ( 1640cm -1, 1540cm -1 ) was confirmed.
  • the physical properties of the polymer 6 were measured by GPC (SB-806M-HQ, manufactured by Shodex). As a result, the weight average molecular weight was 407,359 and the molecular weight distribution was 2.375.
  • Synthesis Example 5 Synthesis of Copolymer 1 22 g of monomer A obtained in Synthesis Example 1 and 1.8 g of 10-undecenoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in a mixed solvent of 50 mL of ion-exchanged water and 40 mL of DMF. Then, argon gas replacement for 30 minutes was performed. Next, 2 mL of 10% ammonium peroxodisulfate solution was added to this solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • the reaction solution was purified with a dialysis tube [Spectpore 2 (fractionated molecular weight: 12K to 14K, manufactured by Spectrum), ion-exchanged water; 5 L ⁇ 3 times]. After purification, the resulting polymer solution was freeze-dried to obtain 16.2 g of copolymer 1.
  • the copolymer 1 contains 40 mol% of monomer units derived from undecenoic acid (hereinafter abbreviated as monomer unit E).
  • Synthesis Example 6 Synthesis of Copolymer 2 22 g of monomer A obtained in Synthesis Example 1 and 7.4 g of 10-undecenoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in a mixed solvent of 50 mL of ion-exchanged water and 40 mL of DMF. Then, argon gas replacement for 30 minutes was performed. Next, 2 mL of 10% ammonium peroxodisulfate solution was added to this solution, and the mixture was stirred at 50 ° C. for 2 hours.
  • the reaction solution was purified with a dialysis tube [Spectpore 2 (fractionated molecular weight: 12K to 14K, manufactured by Spectrum), ion-exchanged water; 5 L ⁇ 3 times]. After purification, the polymer solution obtained was lyophilized to obtain 19.4 g of copolymer 2.
  • Copolymer 2 contains 5 mol% of monomer unit E.
  • copolymer 2 For copolymer 2, the presence of methacrylic acid segments (1.10 ppm to 2.00 ppm) and undecenoic acid segments (1.03 ppm) was determined by 1 H-NMR spectral analysis, and carbonyl groups (—C ⁇ O) (1725 cm) were determined by IR spectral analysis. -1 )) was confirmed.
  • the physical properties of Copolymer 2 were measured by GPC (SB-806M-HQ, manufactured by Shodex). As a result, the weight average molecular weight was 957,680 and the molecular weight distribution was 2.041.
  • Example 1 Measurement of CRP by latex immunoagglutination assay using polymers with different molecular weights as immune aggregation promoters
  • Preparation of anti-human CRP antibody sensitized (immobilized) latex reagent 4.5 mL of 50 mM borate buffer (pH 7.5) containing 1 mg / mL of anti-human CRP goat polyclonal antibody (produced by Oriental Yeast Co., Ltd.) Then, 0.5 mL of a 10 w / v% aqueous solution of polystyrene latex (manufactured by Nippon Paint Co., Ltd.) having a particle size of 0.12 ⁇ m was mixed and reacted at 7 ° C. overnight.
  • an anti-human CRP antibody-sensitized latex solution 2 was prepared in the same manner as described above using polystyrene latex (manufactured by Nippon Paint Co., Ltd.) having a particle size of 0.2 ⁇ m.
  • Sample Saline (0.85% NaCl) was used as a reagent blind measurement sample (blank).
  • Samples include LT / CRP-HS calibrator set HO (manufactured by Wako Pure Chemical Industries, Ltd., CRP concentrations of 0.2 mg / dL, 1.0 mg / dL, 4.0 mg / dL, 18.0 mg / dL, 35.0 mg / dL, respectively) Used).
  • Reagent first reagent 0.1 M Tris buffer solution containing 0.1% BSA and 1% NaCl, containing 0.4 w / v% of the polymer 1, polymer 2 or polymer 3 as an aggregation accelerator synthesized in Synthesis Example 1 ( pH 8.0) was prepared, and three kinds of first reagents were prepared.
  • the CRP concentration in the sample was measured using the BM-8 type automatic analyzer (manufactured by JEOL Ltd.) for the sample, the first reagent, and the second reagent under the following conditions.
  • Comparative Example 1 Measurement of CRP by Latex Immunoaggregation Measurement Method Using Conventional Immunoaggregation Promoter Instead of Polymers 1 to 3 in Example 1, polyethylene glycol 6,000 (PEG 6,000, manufactured by Wako Pure Chemical Industries, Ltd.) or A 0.1M Tris buffer solution (pH 8.0) containing 0.1% BSA and 1% NaCl containing MPC polymer (manufactured by NOF Corporation) as a flocculation promoter was used as the first reagent. Measured CRP by the same method as in Example 1. The results are shown in Table 1 together with the results of Example 1.
  • Example 2 Fer measurement by latex immunoagglutination assay using polymers with different molecular weights as immune aggregation promoters
  • Preparation of anti-human Fer antibody sensitized (immobilized) latex reagent 1 ml of 50 mM borate buffer (pH 7.5) containing 0.6 mg / mL of anti-human FerF polyclonal antibody (manufactured by Dako) and particle size of 0.3 1 ml of 50 mM borate buffer (pH 7.5) suspended so as to contain 2 w / v% of ⁇ m polystyrene latex (manufactured by Sekisui Chemical Co., Ltd.) was mixed and reacted at 25 ° C. for 2 hours.
  • Example 3 Measurement of PSA by latex immunoagglutination assay using polymers with different molecular weights as immune aggregation promoters
  • PSA10 manufactured by Wako Pure Chemical Industries, Ltd.
  • polystyrene latex (Sekisui Chemical Co., Ltd.) with a particle size of 0.28 ⁇ m 1 ml of 50 mM borate buffer solution (pH 7.1) suspended so as to contain 2 w / v%, and reacted at 25 ° C. for 2 hours. Thereafter, the entire amount of latex was separated from the suspension by centrifugation (45,000 g, 30 minutes), and washed with 2 mL of 50 mM borate buffer (pH 7.1).
  • an anti-human PSA antibody-sensitized latex solution 1 was suspended in 2 mL of 50 mM borate buffer solution (pH 7.3) containing 0.5 w / v% BSA.
  • 1 ml of 50 mM borate buffer (pH 7.1) containing 1.4 mg of anti-human PSA monoclonal antibody (clone No.
  • Anti-human PSA antibody-sensitized latex prepared by mixing 1 ml of 50 mM borate buffer (pH 7.1) suspended in latex (made by Sekisui Chemical Co., Ltd.) to contain 2 w / v% Solution 2) was obtained.
  • Sample A phosphate buffer (1 w / v% BSA, 10 mM phosphate buffer containing 0.85% NaCl) was used as a reagent blind measurement sample (blank).
  • the sample is a PSA calibrator set (manufactured by Wako Pure Chemical Industries, Ltd., with PSA concentrations of 5.0 ng / mL, 10.0 ng / mL, 39.8 ng / mL, 69.3 ng / mL, and 98.6 ng / mL, respectively) used.
  • Second reagent Suspend the anti-human PSA antibody-sensitized latex 1) and 2) prepared in (1) above in 2 mL each and 50 mL borate buffer (pH 7.5) containing 0.5 w / v% BSA in 16 mL. The mixture was used as the second reagent.
  • Example 4 Measurement of CRP by Latex Immunoaggregation Measurement Method Using Various Polymers as Immune Aggregation Accelerator 0.1% BSA containing 0.4 to 4% of polymer 4-6 as an aggregation accelerator instead of polymers 1-3 CRP was measured by the same method as in Example 1 except that 0.1 M Tris buffer (pH 8.0) containing 1% NaCl was used as the first reagent. The results are shown in Table 4.
  • Example 5 Measurement of Fer by Latex Immunoaggregation Measurement Method Using Various Polymers as Immune Aggregation Accelerator 0.1% BSA containing 0.4 to 4% of polymer 4-6 as an aggregation accelerator instead of polymers 1-3 Fer was measured by the same method as in Example 2 except that 0.1 M Tris buffer (pH 8.0) containing 1% NaCl was used as the first reagent. The results are shown in Table 5.
  • Example 6 Measurement of PSA by Latex Immunoaggregation Measurement Method Using Various Polymers as Immune Aggregation Accelerator 0.1% BSA containing 0.4 to 4% of polymer 4-6 as an aggregation accelerator instead of polymers 1-3 PSA was measured by the same method as in Example 3 except that 0.1 M HEPES-NaOH buffer (pH 7.0) containing 1% NaCl was used as the first reagent. The results are shown in Table 6.
  • Example 7 Measurement of CRP by latex immunoagglutination assay using copolymer as an immune aggregation promoter 0.1% BSA and 1 containing 0.4 w / v% of copolymer 1 or 2 as an aggregation promoter instead of polymers 1 to 3 CRP was measured by the same method as in Example 1 except that 0.1 M Tris buffer (pH 8.0) containing% NaCl was used as the first reagent. The results are shown in Table 7.
  • Example 8 Measurement of Fer by Latex Immunoaggregation Method Using Copolymer as Immune Aggregation Promoter 0.1% BSA and 1 containing 0.4 w / v% of copolymer 1 or 2 as an aggregation promoter instead of polymers 1 to 3 Fer was measured by the same method as in Example 2 except that 0.1MHEPES-NaOH buffer (pH 7.0) containing% NaCl was used as the first reagent. The results are shown in Table 8.
  • Example 9 Measurement of PSA by latex immunoagglutination assay using copolymer as an immune aggregation promoter 0.1% BSA and 1 containing 0.75 w / v% of copolymer 1 or 2 as an aggregation promoter instead of polymers 1 to 3 PSA was measured by the same method as in Example 3 except that 0.1 MHEPES-NaOH buffer (pH 7.0) containing% NaCl was used as the first reagent. The results are shown in Table 9.
  • Example 10 Measurement of CK-MB by latex immunoagglutination measurement using copolymer as an immune aggregation promoter
  • Anti-human CK-MB monoclonal antibody (clone MAK ⁇ CK-MB> M-7.4.5-IgG, manufactured by Roche) 0.8 mg / mL 50 mM borate buffer solution (pH 7.5) containing 1 ml and 50 mM borate buffer solution (pH 7.5) suspended in polystyrene latex (manufactured by Fujikura Kasei Co., Ltd.) having a particle size of 0.4 ⁇ m so as to contain 2 w / v%.
  • 50 mM borate buffer (pH 7.5) containing 0.8 mg of anti-human CK-MB monoclonal antibody (clone MAK ⁇ CK-MB> M-6.12.47-IgG, manufactured by Roche)
  • Sample Saline (0.85% NaCl) was used as a reagent blind measurement sample (blank).
  • Samples were diluted with CK-MB antigen (human-derived CK-MB, manufactured by Cliniqa) with phosphate buffer (containing 10 mM phosphate, 1 w / v% BSA, 0.85% NaCl), and each concentration was 5.2 ng / mL. 19.0 ng / mL, 47.9 ng / mL, 98.7 ng / mL and 204.3 ng / mL were used.
  • Reagent First Reagent A 0.1M HEPES-NaOH buffer solution (pH 7.0) containing 0.1% BSA and 1% NaCl containing 0.75 w / v% of polymer 1, copolymer 1 or copolymer 2 as an aggregation accelerator. 3 types of first reagents were prepared. Second reagent 2 mL each of the anti-human CK-MB antibody-sensitized latex solutions 1) and 2) prepared in (1) above, and 50 mL borate buffer solution (pH 7.5) containing 0.5 w / v% BSA 16 mL The second reagent was suspended and mixed in the solution.
  • CK-MB concentration in the sample was measured using the BM-8 type automatic analyzer (manufactured by JEOL Ltd.) with the sample, the first reagent and the second reagent under the following conditions. .
  • Comparative Example 4 Measurement of CK-MB by Latex Immunoaggregation Assay Using Conventional Immunoaggregation Accelerator Polyethylene glycol 6,000 (PEG6,000, manufactured by Wako Pure Chemical Industries, Ltd.) instead of polymer 1, copolymer 1 and copolymer 2 Or 0.1M HEPES-NaOH buffer (pH 7.0) containing 0.1% BSA and 1% NaCl containing 0.75% of MPC polymer (manufactured by NOF Corporation) as an aggregation accelerator. Except for the above, CK-MB was measured by the same method as in Example 10. The results are shown in Table 10 together with the results of Example 10.
  • Example 11 Measurement of CRP by Latex Immunoaggregation Measurement Method with Different Contents of Immunoaggregation Promoter Content 0.12 containing 0.24 w / v%, 0.32 w / v%, 0.56 w / v% or 0.72 w / v% of polymer 1 CRP was measured by the same method as in Example 1 except that 0.1 M Tris buffer (pH 8.0) containing% BSA and 1% NaCl was used as the first reagent. The results are shown in Table 11.
  • Example 12 Measurement of Fer by Latex Immunoaggregation Measurement Method with Different Content of Immunoaggregation Promoter
  • polymer 1 was 0.25 w / v%, 0.31 w / v%, 0.49 w / v% or 0.61 w / v Fer was measured by the same method as in Example 2 except that 0.1 M HEPES-NaOH buffer (pH 7.0) containing 0.1% BSA and 1% NaCl was used. The results are shown in Table 12.
  • Example 13 Measurement of PSA by latex immunoagglutination measurement method with different content of immune aggregation promoter Polymer 1 was 0.60 w / v%, 0.90 w / v%, 1.35 w / v% or 1.50 w / v as the first reagent.
  • % PSA was measured by the same method as in Example 3 except that 0.1 M HEPES-NaOH buffer (pH 7.0) containing 0.1% BSA and 1% NaCl was used. The results are shown in Table 13.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、従来の免疫凝集促進剤よりも優れた凝集促進効果を示す凝集促進剤の提供を課題とし、下記一般式[1] (式中、R1は水素原子又はメチル基を表し、R2及びR3はそれぞれ独立してメチル基又はエチル基を表し、Xは-NH-又は酸素原子を表し、nは1~6の整数を表し、mは1~3の整数を表す)で示されるモノマー単位を有するポリマーを含んでなる免疫凝集測定法用凝集促進剤、並びに、上記免疫凝集測定法用凝集促進剤の共存下で、測定対象物質測定対象物質に対する抗体又は抗原を、測定対象物質と接触させて抗原抗体反応を行わせる免疫凝集測定方法に関する。

Description

凝集促進剤
 免疫凝集測定法に用いられる凝集促進剤、並びにそれを用いた免疫凝集測定法に関する。
 例えば血清、血漿、尿等の生体由来試料中の測定対象物質の有無又は濃度を測定するために、測定対象物質と反応する抗原又は抗体を固定化したラテックス等の不溶性担体を用いて、生ずる凝集の度合いから測定対象物質の有無を確認することや濃度を測定することは、免疫凝集測定法として従来よりなされている。
 この免疫凝集法においては、感度の向上を目的として抗原抗体反応に基づく凝集をより生じさせやすくする免疫凝集促進剤が通常用いられる。該免疫凝集促進剤としては、ポリエチレングリコール(PEG)等がよく知られているが、PEGは、塩濃度の高い溶液中では塩析するため、ブランク値が高くなり測定精度が悪くなるという問題があった。
 そこで、このような問題を解決する免疫凝集促進剤としてメタクリロイルオキシエチルホスホリルコリン(MPC)含有ポリマーを用いることが考案されている(特許文献1)。
特開2002-365296
 現在、より高感度な測定を可能とする免疫凝集測定方法が求められており、該MPC含有ポリマーよりも強い凝集促進効果を示す免疫凝集促進剤の開発が望まれていた。上記状況に鑑み、本発明は、高感度な免疫凝集測定を可能とする、従来の免疫凝集促進剤よりも優れた凝集促進効果を示す凝集促進剤の提供を課題とする。
 上記問題を解決するために本発明者らが鋭意研究を重ねた結果、下記一般式[1]
Figure JPOXMLDOC01-appb-I000004
(式中、R1は水素原子又はメチル基を表し、R2及びR3はそれぞれ独立してメチル基又はエチル基を表し、Xは-NH-又は酸素原子を表し、nは1~6の整数を表し、mは1~3の整数を表す)で示されるモノマー単位を有するポリマーが、従来の免疫凝集促進剤よりも優れた凝集促進効果を示すことを見出し、本発明を完成するに至った。
 即ち、本発明は、
「下記一般式[1]
Figure JPOXMLDOC01-appb-I000005
(式中、R1、R2、R3、X、n及びmは上記と同じ)で示されるモノマー単位を有するポリマーを含んでなる免疫凝集測定法用凝集促進剤、
上記ポリマーが、上記一般式[1]で示されるモノマー単位と下記一般式[2]
Figure JPOXMLDOC01-appb-I000006
(式中、R4は水素原子又はメチル基を表し、kは1~10の整数を表す)で示されるモノマー単位を有するコポリマーである凝集促進剤を含んでなる免疫凝集測定法用試薬、並びに、上記免疫凝集測定法用凝集促進剤の共存下で、測定対象物質測定対象物質に対する抗体又は抗原を、測定対象物質と接触させて抗原抗体反応を行わせることを特徴とする免疫凝集測定方法」に関する。
 本発明の免疫凝集促進剤は、従来の免疫凝集促進剤と比較して、より強い凝集促進効果を有する。よって、抗原若しくは抗体を固定化したラテックス粒子等の担体を用いて生じさせた抗原抗体反応生成物の凝集を利用した免疫比濁法、免疫比ろう法等の免疫凝集測定法において、本発明の免疫凝集促進剤を用いることにより、抗原抗体反応による凝集を生じやすくする。その結果、高感度な測定を可能とする。
 本発明の免疫凝集測定法用凝集促進剤(以下、本発明の凝集促進剤と略記する場合がある)で用いられるポリマーとしては、一般式[1]で示されるモノマー単位を有するものであれば、ホモポリマーでもコポリマーでもよい。該コポリマーとしては、具体的には、例えば一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位とからなるものが挙げられる。
 本発明の凝集促進剤で用いられるポリマーの重量平均分子量は、通常50,000~3,000,000であり、100,000~3,000,000が好ましく、200,000~3,000,000がより好ましい。また、該凝集促進剤がコポリマーの場合、その重量平均分子量は、通常50,000~3,000,000であり、100,000~3,000,000が好ましく、200,000~3,000,000がより好ましい。
(1)一般式[1]で示されるモノマー単位を有するホモポリマー
 一般式[1]におけるR1としては、水素原子、メチル基等が挙げられるが、メチル基が好ましい。
 一般式[1]におけるR2としては、メチル基、エチル基等が挙げられるが、メチル基が好ましい。
 一般式[1]におけるR3としては、メチル基、エチル基等が挙げられるが、メチル基が好ましい。
 一般式[1]におけるXとしては、-NH-又は酸素原子を表し、酸素原子が好ましい。
 一般式[1]におけるnとしては、通常1~6の整数を表し、2~4の整数が好ましく、2~3の整数がより好ましい。
 一般式[1]におけるmとしては、通常1~3の整数を表し、1~2の整数が好ましく、1がより好ましい。
 一般式[1]で示されるモノマー単位の好ましい具体例としては、例えば下記一般式[1-1]~[1-8]が挙げられる。
Figure JPOXMLDOC01-appb-I000007
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000008
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000009
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000010
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000011
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000012
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000013
(式中、nは、1~6の整数を表す)
Figure JPOXMLDOC01-appb-I000014
(式中、nは、1~6の整数を表す)
中でも、一般式[1-1]~[1-4]が好ましく、一般式[1-1]、一般式[1-3]、一般式[1-4]がより好ましく、一般式[1-1]が特に好ましい。より具体的には、下記[1-1-1]、[1-1-2]、[1-3-1]、[1-4-1]で示されるものが好ましい。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
(2)一般式[1]で示されるモノマー単位を有するホモポリマーの製造方法
 一般式[1]で示されるモノマー単位を有するホモポリマーは、例えば下記一般式[3]
Figure JPOXMLDOC01-appb-I000019
(式中、R1、R2、R3、X及びnは上記と同じ)で示される(メタ)アクリル酸誘導体と、例えば下記一般式[4]
X-(CH 2)m-COOH   [4]
(式中、Xはハロゲン原子を表し、mは上記と同じ)で示されるカルボン酸化合物とを、適当な溶媒中で反応させ、得られたモノマーを、更に自体公知の重合反応により重合することにより製造することができる。
 一般式[3]で示される(メタ)アクリル酸誘導体の具体例としては例えば、N-〔2-(ジメチルアミノ)エチル〕メタアクリル酸、N-〔3-(ジメチルアミノ)プロピル〕メタアクリル酸、N-〔4-(ジメチルアミノ)ブチル〕メタアクリル酸、N-〔5-(ジメチルアミノ)ペンチル〕メタアクリル酸、N-〔6-(ジメチルアミノ)ヘキシル〕メタアクリル酸;N-〔2-(ジメチルアミノ)エチル〕アクリル酸、N-〔3-(ジメチルアミノ)プロピル〕アクリル酸、N-〔4-(ジメチルアミノ)ブチル〕アクリル酸、N-〔5-(ジメチルアミノ)ペンチル〕アクリル酸、N-〔6-(ジメチルアミノ)ヘキシル〕アクリル酸;N-〔2-(ジメチルアミノ)エチル〕アクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕アクリルアミド、N-〔4-(ジメチルアミノ)ブチル〕アクリルアミド、N-〔5-(ジメチルアミノ)ペンチル〕アクリルアミド、N-〔6-(ジメチルアミノ)ヘキシル〕アクリルアミド;N-〔2-(ジメチルアミノ)エチル〕メタクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕メタクリルアミド、N-〔4-(ジメチルアミノ)ブチル〕メタクリルアミド、N-〔5-(ジメチルアミノ)ペンチル〕メタクリルアミド、N-〔6-(ジメチルアミノ)ヘキシル〕メタクリルアミド;N-〔2-(エチルメチルアミノ)エチル〕メタアクリル酸、N-〔3-(エチルメチルアミノ)プロピル〕メタアクリル酸、N-〔4-(エチルメチルアミノ)ブチル〕メタアクリル酸、N-〔5-(エチルメチルアミノ)ペンチル〕メタアクリル酸、N-〔6-(エチルメチルアミノ)ヘキシル〕メタアクリル酸;N-〔2-(ジエチルアミノ)エチル〕メタアクリル酸、N-〔3-(ジエチルアミノ)プロピル〕メタアクリル酸、N-〔4-(ジエチルアミノ)ブチル〕メタアクリル酸、N-〔5-(ジエチルアミノ)ペンチル〕メタアクリル酸、N-〔6-(ジエチルアミノ)ヘキシル〕メタアクリル酸等が挙げられ、N-〔2-(ジメチルアミノ)エチル〕メタアクリル酸、N-〔4-(ジメチルアミノ)ブチル〕メタアクリル酸、N-〔3-(ジメチルアミノ)プロピル〕アクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕メタクリルアミド、N-〔2-(ジエチルアミノ)エチル〕メタアクリル酸、N-〔3-(ジエチルアミノ)プロピル〕メタアクリル酸、N-〔4-(ジエチルアミノ)ブチル〕メタアクリル酸、N-〔3-(ジエチルアミノ)プロピル〕アクリルアミド等が好ましく、中でも、N-〔2-(ジメチルアミノ)エチル〕メタアクリル酸、N-〔4-(ジメチルアミノ)ブチル〕メタアクリル酸、N-〔3-(ジメチルアミノ)プロピル〕アクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕メタクリルアミド等が特に好ましい。尚、これら(メタ)アクリル酸誘導体は、市販品を用いてもよいし、(メタ)アクリル酸から常法等により適宜合成したものを用いてもよい。
 一般式[4]におけるXで示されるハロゲン原子としては、例えばフッ素、塩素、臭素、ヨウ素等が挙げられ、塩素、臭素が特に好ましい。
 一般式[4]で示されるカルボン酸化合物の具体例としては、例えばクロロ酢酸、フッ化酢酸、ブロモ酢酸、ヨード酢酸、クロロプロピオン酸、フッ化プロピオン酸、ブロモプロピオン酸、ヨードプロピオン酸、クロロブタン酸、フッ化ブタン酸、ブロモブタン酸、ヨードブタン酸等が挙げられるが、ブロモ酢酸、クロロプロピオン酸、クロロ酢酸が好ましく、中でもクロロ酢酸が特に好ましいものとして挙げられる。
 一般式[4]で示されるカルボン酸化合物の使用量は、一般式[3]で示される(メタ)アクリル酸誘導体の、通常0.5~3倍モル、好ましくは1~2倍モルとなるような量であればよい。
 上記一般式[3]で示される(メタ)アクリル酸誘導体と一般式[4]で示されるカルボン酸化合物又はその塩との反応時における反応溶媒としては、例えばトルエン、キシレン、ベンゼン、シクロヘキサン、n-ヘキサン、n-オクタン等の炭化水素類、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソタノール、tert-ブタノール等のアルコール類、ジメチルホルムアミド(DMF)、水等が挙げられるが、アルコール類が好ましく、中でもメタノール、エタノール、n-プロパノール、イソプロパノール等が好ましい。尚、上記溶媒は2種以上を適宜混合して用いてもよい。用いられる反応溶媒の量は、一般式[3]で示される(メタ)アクリル酸誘導体と一般式[4]で示されるカルボン酸化合物又はその塩の総量50gに対して、通常100~300mLである。
 上記一般式[3]で示される(メタ)アクリル酸誘導体と一般式[4]で示されるカルボン酸化合物又はその塩との反応温度は、反応溶媒等に応じて適宜設定すればよいが、通常20~120℃、好ましくは40~80℃であり、反応時間は、通常1~20時間、好ましくは5~12時間である。
 一般式[1]で示されるモノマー単位を有するポリマーの製造方法における重合反応としては、例えば溶液重合、塊状重合、乳化重合、懸濁重合など自体公知の方法によって行うことができる。重合開始剤としては、例えばアゾイソブチロニトリル、2、2'-アゾビス(2、4-ジメチルバレロニトリル)、2、2'-アゾビス(2-メチルプロピオン酸メチル)、2、2'-アゾビス(2-メチルブチロニトリル)等のアゾ化合物、過酸化ベンゾイル、過酸化ラウロイル、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム等の過酸化物を用いることができるが、過酸化物が好ましく、中でもペルオキソ二硫酸アンモニウムが特に好ましい。重合開始剤の使用量は全モノマーの総重量に対して通常0.1~3重量%である。該重合反応においては、例えば窒素、アルゴン等の不活性ガス雰囲気下で行うのが好ましく、重合温度は通常40~120℃、好ましくは50~70℃で、重合時間は1~20時間、好ましくは0.5~5時間行えばよい。ここで用いられる溶媒としては、上記一般式[3]で示される(メタ)アクリル酸誘導体と一般式[4]で示されるカルボン酸化合物又はその塩との反応時における反応溶媒の具体例の他、水が挙げられ、中でも水が好ましい。用いられる溶媒の量は、ポリマーの総重量20gに対して、通常30~360mLである。
 一般式[1]で示されるモノマー単位を有するホモポリマーの具体的な製造方法としては、例えば、先ず、上記一般式[3]で示される(メタ)アクリル酸誘導体1molと、上記一般式[4]で示されるカルボン酸化合物又はその塩1~2molとを、エタノール500~1000mL中で、40~80℃で5~12時間反応させてモノマーを得る。その後、得られたモノマー10gを水50~100mLに溶解し、該溶液に1~30mgの過酸化物を添加し、アルゴン雰囲気下、50~70℃で1~20時間重合反応させることによりなされる。
(3)一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位を有するコポリマー
 該コポリマー中の一般式[1]で示されるモノマー単位の含有量は、通常50モル%以上100モル%未満であり、50~95モル%が好ましく、50~60モル%がより好ましい。また、該コポリマー中の一般式[2]で示されるモノマー単位の含有量は、通常0モル%超50モル%以下であり、5~50モル%が好ましく、40~50モル%がより好ましい。
 一般式[1]で示されるモノマー単位の具体例は上記(1)の一般式[1]で示されるモノマー単位を有するホモポリマーの項で述べたものと同じものが挙げられ、好ましいものも同じである。
 一般式[2]におけるR4としては、水素原子又はメチル基を表し、水素原子が好ましい。
 一般式[2]におけるkとしては、通常1~10であり、4~8が好ましく、6~8がより好ましい。
 一般式[2]で示されるモノマー単位の具体例としては、例えば一般式[2-1]~[2-2]が挙げられ、一般式[2-1]が好ましい。
Figure JPOXMLDOC01-appb-I000020
(式中、kは、上記と同じ。)
Figure JPOXMLDOC01-appb-I000021
(式中、kは、上記と同じ。)
中でも、下記[2-1-1]
Figure JPOXMLDOC01-appb-I000022
が好ましい。
 一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位の組合せとしては、例えば
Figure JPOXMLDOC01-appb-I000023
が挙げられ、好ましい組合せとしては、
Figure JPOXMLDOC01-appb-I000024
であり、中でも、一般式[1]で示されるモノマー単位が、[1-1-1]、[1-1-2]、[1-3-1]又は[1-4-1]で示されるものであって、一般式[2]で示されるモノマー単位が[2-1-1]である組合せがより好ましく、一般式[1]で示されるモノマー単位が[1-1-1]であって、一般式[2]で示されるモノマー単位が[2-1-1]である組合せが特に好ましい。
(4)一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位を有するコポリマーの製造方法
 一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位を有するコポリマーの製造方法としては、例えば下記一般式[1’]
Figure JPOXMLDOC01-appb-I000025
(式中、R1、R2、R3、X、n及びmは上記と同じ)で示されるモノマーと
一般式[2’]で示される
Figure JPOXMLDOC01-appb-I000026
(式中、R4は及びkは上記と同じ)ビニル化合物を、自体公知の、例えば特開昭52-27713号記載の方法に準じて重合反応により重合することにより製造することができる。
 一般式[1’]で示されるモノマーの具体例及び好ましい具体例としては、上記一般式[1]で示されるモノマー単位に準じたものが挙げられる。また、一般式[1’]で示されるモノマーは、上記一般式[1]で示されるモノマー単位を有するホモポリマーの製造方法の項における、一般式[3]で示される(メタ)アクリル酸誘導体と一般式[4]で示されるカルボン酸化合物又はその塩との反応により得られる。
 一般式[2’]で示されるビニル化合物の具体例としては、例えば4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸、4-メチル-4-ペンテン酸、5-メチル-5-ヘキセン酸、6-メチル-6-ヘプテン酸、7-メチル-7-オクテン酸、8-メチル-8-ノネン酸、9-メチル-9-デセン酸、10-メチル-10-ウンデセン酸等が挙げられるが、7-オクテン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸等が好ましく、中でも10-ウンデセン酸が好ましい。
 これらビニル化合物は、市販品を用いてもよいし、ハロゲン化アルキル化合物から常法等により適宜合成したものを用いてもよい。
 一般式[2’]で示されるビニル化合物の使用量は、一般式[1’]で示されるモノマーに対して通常1~100mol%、好ましくは、3~100mol%、より好ましくは、50~100mol%である。
 上記一般式[1’]で示されるモノマーと一般式[2’]で示されるビニル化合物との重合反応の態様としては、上記一般式[1]で示されるモノマー単位を有するポリマーの製造方法における重合反応と同じものが挙げられ、好ましいものも同じである。
 一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位を有するコポリマーの製造方法としては、具体的には、一般式[1’]で示されるモノマー1molと、上記一般式[2’]で示されるビニル化合物0.01~1molとを、水とDMFの混合溶液(容量比として1:2~2:1)50~100mLに溶解し、上記モノマーとビニル化合物の総重量に対して0.1~3重量%の過酸化物を添加し、アルゴン雰囲気下、50~70℃で1~20時間重合反応させることによりなされる。
(5)本発明の凝集促進剤、免疫凝集測定方法、免疫凝集測定法用試薬
 本発明の凝集促進剤は、上記の如き、一般式[1]で示されるモノマー単位を有するポリマーを含んでなるものであり、より具体的には、上記一般式[1]で示されるモノマー単位を有するホモポリマー、或いは、上記一般式[1]で示されるモノマー単位と一般式[2]で示されるモノマー単位を有するコポリマーを含んでなるものである。該凝集促進剤は、免疫凝集測定方法の中でも免疫比濁法で用いられる試薬に溶解させて用いられるのが好ましく、その中でもラテックスを担体に用いるラテックス凝集法用試薬に溶解させて用いられるのが特に好ましい。
 本発明の免疫凝集測定方法においては、上記本発明の凝集促進剤を、反応液中の濃度として、通常0.1~8w/v%、好ましくは0.1~4w/v%、より好ましくは0.1~2w/v%となるように添加して用いられる。また、該濃度は、測定対象物質により設定を変えるのが好ましく、例えば測定対象物質がCRPやFerの場合、通常0.1~8w/v%、好ましくは0.1~4w/v%、より好ましくは0.1~1w/v%となるように添加して用いられ、例えば測定対象物質がPSAの場合、通常0.1~7w/v%、好ましくは0.1~4w/v%、より好ましくは0.1~2w/v%となるように添加して用いられるのが好ましい。
 本発明の免疫凝集測定方法は、抗原抗体反応を行わせる際に、本発明の凝集促進剤を共存させて行う以外は、抗原抗体反応に由来する凝集等に基づいて測定対象物質の測定を行う自体公知の免疫凝集測定方法(免疫比濁法、免疫比ろう法等)に於いて用いられる各種試薬を用い、自体公知の操作法に準じて行えばよい。例えば、上記本発明の凝集促進剤の共存下で、測定対象物質に対する抗体又は抗原を、測定対象物質と接触させて抗原抗体反応を行わせることによりなされればよく、より具体的には、例えば上記本発明凝集促進剤の共存下で、測定対象物質に対する抗体又は抗体を担持した担体を、或いは、測定対象物質に対する抗原又は抗原を担持した担体を、測定対象物質と接触させて抗原抗体反応を行わせることによりなされればよい。上記方法における本発明の凝集促進剤は、上記した如き反応液中の濃度で共存させればよい。上記本発明の凝集促進剤を共存させる以外の具体的な方法としては、例えば散乱光を測定する方法(比ろう法)を用いる場合には、例えば金原出版株式会社,臨床検査法提要,第30版,第2刷,p.851-853(1993),等に記載された方法に準じて行えばよく、また、透過光を測定する方法(免疫比濁法)を用いる場合には、例えば同じく金原出版株式会社,臨床検査法提要,第30版,第2刷,p.853-854(1993)等に記載された方法に準じて行えばよい。更にまた、測定対象物質に対する抗体又は抗原を感作させたラテックスの凝集の程度を散乱光、透過光等の変化に基づいて測定しその結果に基づいて測定対象物質の測定を行うラテックス凝集法を用いる場合には、例えば免疫測定法の新しい活用事例と診断試薬・治療薬開発への応用(経営教育出版社)p.103-187等に記載された方法に準じて行えばよい。
 本発明の免疫凝集測定方法の反応時に用いられる緩衝剤としては、具体的には例えばトリス緩衝剤、リン酸緩衝剤、ベロナール緩衝剤、ホウ酸緩衝剤、グッド緩衝剤等通常免疫比濁法、免疫比ろう法に用いられている緩衝剤は全て挙げられ、測定反応時のpHとしては抗原抗体反応を抑制しない範囲であれば特に限定されないが、通常6~10の範囲から好ましく選択される。
 本発明の免疫凝集測定方法に於ける測定は、散乱光又は透過光を測定することによりなされ、その測定は、自動分析装置、分光光度計等の生化学汎用機や、レーザーネフェロメーター等の比ろう測定用専用機等を用いてなされればよい。
 本発明の免疫凝集測定方法により測定可能な測定対象成分は、抗原抗体反応を利用して測定可能なものであればよいが、例えば血清、血漿、尿、リンパ、髄液等の生体由来試料中に含まれる、例えばC反応性蛋白質(CRP)、免疫グロブリンG(IgG)、免疫グロブリンA(IgA)、免疫グロブリンM(IgM)、免疫グロブリンE(IgE)ASO(抗ストレプトリジンO価)、アルブミン、尿中微量アルブミン、プレアルブミン、補体C3、補体 C4、トランスフェリン、ハプトグロビン、リポプロテイン(a)(LP(a))、アポリポ蛋白A-I(ApoAI)、アポリポ蛋白A-II(ApoAII)、アポリポ蛋白B(ApoB)、アポリポ蛋白C-II(ApoCII)、アポリポ蛋白C-III(ApoCIII)、アポリポ蛋白E(ApoE)、リウマチ因子(RF)、前立腺特異抗原(PSA)、フェリチン(Fer)、β2マイクロアルブミン(β2m)、ミオグロビン(Mb)、ペプシノゲン(PG)、ヒアルロン酸(HA)、クレアチンキナーゼMBアイソザイム(CK-MB)、梅毒TP抗体、梅毒脂質抗体、ヘリコバクターピロリ抗原・抗体、HCV抗原・抗体、HBs抗原・抗体、HIV抗原・抗体、シスタチンC、マトリックスメタロプロティナーゼ-3(MMP-3)、KL-6、α-フェトプロテイン(AFP)、 癌胎児性抗原(CEA)、インスリン、C-ペプタイド等が挙げられ、中でも、CRP、Fer、PSA又はCK-MB等が好ましい。尚、CK-MBを測定対象とする場合には、一般式[1]で示されるモノマー単位と下記一般式[2]で示されるモノマー単位を有するコポリマーを含んでなる凝集促進剤を用いるのが好ましい。
 本発明の免疫凝集測定法用試薬は、上記本発明の凝集促進剤を含むものであればよいが、その含有量は、試薬中の濃度として、通常0.1~10w/vW/V%、好ましくは0.1~5w/v%、より好ましくは0.1~2w/v%である。また、該濃度は、測定対象物質により変えるのが好ましく、例えば測定対象物質がCRPやFerの場合、通常0.1~10w/v%、好ましくは0.1~5w/v%、より好ましくは0.1~1w/v%であり、例えば測定対象物質がPSAの場合、通常0.1~10w/v%、好ましくは0.1~5w/v%、より好ましくは0.1~2w/v%である。該試薬においては、その他に、例えば、測定対象成分が抗原の場合は、抗体若しくは該抗体を担持した適当な担体(例えばラテックス等)を、測定対象成分が抗体の場合は、抗原若しくは該抗原を担持した適当な担体(例えばラテックス等)を含んでいてもよい。また、該反応試薬中には、緩衝剤(例えばトリス緩衝剤、リン酸緩衝剤、ベロナール緩衝剤、ホウ酸緩衝剤、グッド緩衝剤等)、安定化剤(例えばアルブミン、グロブリン、水溶性ゼラチン、界面活性剤、糖類等)、防腐剤(例えばサリチル酸、安息香酸、アジ化ナトリウム等)、その他この分野で用いられているものであって、共存する試薬等の安定性を阻害したり、抗原抗体反応を阻害しないものを有していてもよい。またその濃度も、通常この分野で通常用いられる濃度範囲で用いればよい。
 本発明の免疫凝集測定法用試薬に於ける、測定対象としては、本発明の免疫凝集測定方法の項で記載したものと同じものが挙げられ、好ましいものも同じである。
 以下実施例によって本発明を説明するが、本発明はこれによって限定されるものでない。
合成例1.ポリマー1~3の合成
(1)N-〔2-(カルボキシメチルジメチルアミノ)エチル〕メタアクリル酸(モノマーA)の合成
 297g(4.5mol)の水酸化カリウムを1.6Lのエタノールに溶解し、該溶液に426g(4.5mol)のクロロ酢酸(和光純薬工業(株)製)を添加した後、室温で2時間攪拌反応させた。次いで、反応により析出した結晶を濾取し、イソプロパノールで洗浄した。更に、洗浄した結晶を1Lのイソプロパノールに懸濁し、該懸濁液に475g(3.0mol)のN-〔2-(ジメチルアミノ)エチル〕メタアクリル酸(和光純薬工業(株)製)を添加した後、還流下で12時間攪拌反応させた。反応終了後、不溶物を濾別し、該不溶物をイソプロパノールで洗浄し、該洗浄液を回収した。濾液と洗浄液を混合して減圧乾燥した後、得られた残渣にアセトンを添加して結晶を析出させた。その後、析出した結晶を濾取し、減圧乾燥して420gのN-〔2-(カルボキシメチルジメチルアミノ)エチル〕メタアクリル酸(以下、モノマーAと略記する)を得た。
Figure JPOXMLDOC01-appb-I000027
(2)ポリマー1~3の合成
 上記(1)で得たモノマーA(11g~22g)をイオン交換水(90mL~180mL)に溶解した後、5~30分間のアルゴンガス置換を行った。この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で1~2時間攪拌反応させた。反応終了後、該反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。上記操作を3回行い、得られたポリマー溶液をそれぞれ凍結乾燥し、9.4g~14.8gのポリマー1~3を得た。
 ポリマー1~3については、1H-NMRスペクトル分析により、メタクリル酸セグメント(0.84ppm~1.32ppm)の存在を、IRスペクトル分析により、カルボニル基(-C=O)(1725cm-1)の存在をそれぞれ確認した。
 ポリマー1~3の物性について、GPC(SB-806M-HQ、Shodex社製)で測定した結果を下記表に示した。
Figure JPOXMLDOC01-appb-I000028
合成例2.ポリマー4の合成
(1)N-(4-ジメチルアミノ)ブチルメタアクリル酸の合成
 23g(0.2mol)のN-(4-ジメチルアミノ)ブタノール(和光純薬工業(株)製)を200mLのクロロホルムに溶解し、氷冷下で該溶液に25g(0.24mol)のメタアクリル酸クロリド(和光純薬工業(株)製)を添加した後、室温で1.5時間攪拌しながら反応させた。次いで、得られた反応溶液を飽和重曹水及び飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。その後、硫酸マグネシウムを濾別し、得られた濾液を減圧濃縮して38gのN-〔4-(ジメチルアミノ)ブチル〕メタアクリル酸を得た。
(2)N-〔4-(カルボキシメチルジメチルアミノ)ブチル〕メタアクリル酸(モノマーB)の合成
 12g(0.21mol)の水酸化カリウムを150mLのエタノールに溶解し、該溶液に20g(0.21mol)のクロロ酢酸(和光純薬工業(株)製)を添加した後、室温で2時間攪拌して反応させた。次いで、反応により析出した結晶を濾取し、エタノールで洗浄した。その後、洗浄した結晶を50mLのエタノールに懸濁し、上記(1)で得た38g(0.2mol)のN-(4-ジメチルアミノ)ブチルメタアクリル酸を添加した後、還流下で12時間攪拌反応させた。反応終了後、不溶物を濾別し、エタノールで洗浄し、該洗浄液を回収した。濾液と洗浄液とを混合して減圧乾燥した後、得られた残渣にアセトンを添加して結晶を析出させた。その後、析出した不溶物を濾別し、減圧濃縮して26gのN-〔4-(カルボキシメチルジメチルアミノ)ブチル〕メタアクリル酸(以下モノマーBと略記する)を得た。
Figure JPOXMLDOC01-appb-I000029
(3)ポリマー4の合成
 上記(2)で得た25gのモノマーBを90mLのイオン交換水に溶解し、30分間のアルゴンガス置換を行った。この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で2時間攪拌反応させた。反応終了後、反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。精製後、得られたポリマー溶液を凍結乾燥し、17.2gのポリマー4を得た。
 ポリマー4については、1H-NMRスペクトル分析により、メタクリル酸セグメント(0.84ppm~1.45ppm)の存在を、IRスペクトル分析により、カルボニル基(-C=O)(1725cm-1)の存在をそれぞれ確認した。
ポリマー4の物性をGPC(SB-806M-HQ、Shodex社製)により測定した結果、重量平均分子量は807,920,分子量分布は3.895であった。
合成例3.ポリマー5の合成
(1)N-〔3-(カルボキシメチルジメチルアミノ)プロピル〕アクリルアミド(モノマーC)の合成
 198g(3.0mol)の水酸化カリウムを1Lのエタノールに溶解し、284g(3.0mol)のクロロ酢酸(和光純薬工業(株)製)を添加した後、室温で2時間攪拌反応させた。次いで、反応により析出した結晶を濾取し、イソプロパノールで洗浄した。その後、洗浄した結晶を400mLのイソプロパノールに懸濁し、該懸濁液に511g(3.0mol)のN-〔3-(ジメチルアミノ)プロピル〕アクリルアミド(和光純薬工業(株)製)を添加した後、還流下で12時間攪拌反応させた。反応終了後、不溶物を濾別し、イソプロパノールで洗浄し、該洗浄液を回収した。濾液と洗浄液とを混合して減圧乾燥した後、得られた残渣にアセトンを添加して結晶を析出させた。その後、析出した結晶を濾取し、減圧乾燥して565gのN-〔3-(カルボキシメチルジメチルアミノ)プロピル〕アクリルアミド〔以下モノマーCと略記する〕を得た。
Figure JPOXMLDOC01-appb-I000030
(2)ポリマー5の合成
 上記(1)で得た46gのモノマーCを90mLのイオン交換水に溶解し、30分間のアルゴンガス置換を行った。次いで、この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で2時間攪拌反応させた。反応終了後、反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。精製後、得られたポリマー溶液を凍結乾燥することで26.2gのポリマー5を得た。
 ポリマー5については、1H-NMRスペクトル分析により、メタクリル酸セグメント(1.13ppm~2.05ppm)の存在を、IRスペクトル分析により、アミド基(-NH-C=O)(1640cm-1,1540cm-1)の存在をそれぞれ確認した。
ポリマー5の物性をGPC(SB-806M-HQ、Shodex社製)により測定した結果、重量平均分子量は262,065、分子量分布は4.332であった。
合成例4.ポリマー6の合成
(1)N-〔3-(カルボキシメチルジメチルアミノ)プロピル〕メタアクリルアミド(モノマーD)の合成
 198g(3.0mol)の水酸化カリウムを1Lのエタノールに溶解し、284g(3.0mol)のクロロ酢酸(和光純薬工業(株)製)を添加した後、室温で2時間攪拌反応させた。次いで、反応により析出した結晶を濾取し、イソプロパノールで洗浄した。その後、洗浄した結晶を400mLのイソプロパノールに懸濁し、該懸濁液に511g(3.0mol)のN-〔3-(ジメチルアミノ)プロピル〕メタアクリルアミド(和光純薬工業(株)製)を添加した後、還流下で12時間攪拌反応させた。反応終了後、不溶物を濾別し、イソプロパノールで洗浄し、該洗浄液を回収した。濾液と洗浄液とを混合して減圧乾燥した後、得られた残渣にアセトンを添加して結晶を析出させた。その後、析出した結晶を濾取し、減圧乾燥して565gのN-〔3-(カルボキシメチルジメチルアミノ)プロピル〕メタアクリルアミド〔以下モノマーDと略記する〕を得た。
Figure JPOXMLDOC01-appb-I000031
(2)ポリマー6の合成
 上記(1)で得た21gのモノマーDを90mLのイオン交換水に溶解し、30分間のアルゴンガス置換を行った。次いで、この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で2時間攪拌反応させた。反応終了後、反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。精製後、得られたポリマー溶液を凍結乾燥することで。13.5gのポリマー6を得た。
 ポリマー6については、1H-NMRスペクトル分析により、メタクリル酸セグメント(1.10ppm~2.00ppm)の存在を、IRスペクトル分析により、アミド基(-NH-C=O)(1640cm-1,1540cm-1)の存在をそれぞれ確認した。
ポリマー6の物性をGPC(SB-806M-HQ、Shodex社製)により測定した結果、重量平均分子量は407,359、分子量分布は2.375であった。
合成例5.コポリマー1の合成
 上記合成例1で得た22gのモノマーAと1.8gの10-ウンデセン酸(和光純薬工業(株)製)を50mLのイオン交換水と40mLのDMFとの混合溶媒に溶解し、30分間のアルゴンガス置換を行った。次いで、この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で2時間攪拌反応させた。反応終了後、反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。精製後、得られたポリマー溶液を凍結乾燥することで16.2gのコポリマー1を得た。尚、コポリマー1はウンデセン酸由来のモノマー単位(以下、モノマー単位Eと略記する)を40モル%含む。
 コポリマー1については、1H-NMRスペクトル分析により、メタクリル酸由来のモノマー単位 (1.10ppm~2.00ppm)及びウンデセン酸由来のモノマー単位(1.03ppm)の存在を、IRスペクトル分析により、カルボニル基(-C=O)(1725cm-1)の存在をそれぞれ確認した。
コポリマー1の物性をGPC(SB-806M-HQ、Shodex社製)により測定した結果、重量平均分子量は658,206,分子量分布は2.216であった。
合成例6.コポリマー2の合成
 上記合成例1で得た22gのモノマーAと7.4gの10-ウンデセン酸(和光純薬工業(株)製)を50mLのイオン交換水と40mLのDMFとの混合溶媒に溶解し、30分間のアルゴンガス置換を行った。次いで、この溶液に2mLの10%-ペルオキソ二硫酸アンモニウム溶液を添加した後、50℃で2時間攪拌反応させた。反応終了後、反応液を透析チューブ[スペクトラポア2(分画分子量12K~14K、Spectrum社製),イオン交換水;5L×3回]で精製した。精製後、得られたポリマー溶液を凍結乾燥することで19.4gのコポリマー2を得た。尚、コポリマー2は、モノマー単位Eを5モル%含む。
 コポリマー2については、1H-NMRスペクトル分析により、メタクリル酸セグメント(1.10ppm~2.00ppm)及びウンデセン酸セグメント(1.03ppm)の存在を、IRスペクトル分析により、カルボニル基(-C=O)(1725cm-1)の存在をそれぞれ確認した。
コポリマー2の物性をGPC(SB-806M-HQ、Shodex社製)により測定した結果、重量平均分子量は957,680,分子量分布は2.041であった。
実施例1 分子量の異なるポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるCRPの測定
(1)抗ヒトCRP抗体感作(固定化)ラテックス試薬の調製
 抗ヒトCRP山羊ポリクローナル抗体(オリエンタル酵母工業(株)製)1mg/mLを含む50mMホウ酸緩衝液(pH7.5) 4.5mLと、粒径0.12μmのポリスチレンラテックス(日本ペイント(株)製)の10w/v%水溶液0.5mLとを混合し、7℃で一晩反応させた。その後、得られた懸濁液 5mLとウシ血清アルブミン(BSA)を2.5w/v%含有する50mMホウ酸緩衝液(pH7.5) 5mLとを混合し、7℃で2時間反応させた。次いで、遠心分離(45,000g、30分)により分離したラテックス全量を50mMホウ酸緩衝液(pH7.5) 5mLで洗浄し、BSAを0.5W/V%含有する50mMホウ酸緩衝液(pH7.5) 12.5mLに懸濁させ、該懸濁液を抗ヒトCRP抗体感作ラテックス溶液1)とした。また、上記と同様にして粒径0.2μmのポリスチレンラテックス(日本ペイント(株)製)を用いて調製したものを、抗ヒトCRP抗体感作ラテックス溶液2)とした。
(2)試料
 試薬盲検測定用試料(ブランク)には、生理食塩水(0.85%NaCl)を使用した。試料には、LT・CRP-HSキャリブレーターセットHO(和光純薬工業(株)製、CRP濃度がそれぞれ0.2 mg/dL、1.0 mg/dL、4.0 mg/dL、18.0 mg/dL、35.0mg/dLのもの)を使用した。
(3)試薬
第一試薬
 合成例1で合成した、ポリマー1、ポリマー2又はポリマー3を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を調製し、3種類の第一試薬を準備した。
第二試薬
 上記(1)で調製した抗ヒトCRP抗体感作ラテックス1) 12mL及び抗ヒトCRP抗体感作ラテックス2) 8mLを混合したものを第二試薬とした。
(4)測定方法
 上記試料、上記第一試薬及び上記第二試薬を下記条件でBM-8形自動分析装置(日本電子(株)製)を用いて、試料中のCRP濃度を測定した。
 試料   : 7.5μL(生理食塩水で5倍希釈)
 第一試薬 : 100μL
 第二試薬 : 25μL
 測定方法 : 2ポイントエンド法(34-65)
 主波長  : 596nm
 得られた結果を表1に示す。
比較例1 従来の免疫凝集促進剤を用いたラテックス免疫凝集測定法によるCRPの測定
 実施例1のポリマー1~3の代わりにポリエチレングリコール6,000(PEG6,000、和光純薬工業(株)製)又はMPCポリマー(日油(株)製)を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を第一試薬として用いた以外は、実施例1と同様の方法によりCRPを測定した。その結果を、実施例1の結果と併せて表1に示す。
Figure JPOXMLDOC01-appb-T000032
表1の結果より、CRP測定系においてポリマー1、2及び3はいずれも、従来品である比較例1のPEG6,000やMPCよりも高い凝集促進効果を示すことが判った。また、その効果はポリマーの分子量が高いほど優れた効果を示すことが判った。
実施例2 分子量の異なるポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるFerの測定
(1)抗ヒトFer抗体感作(固定化)ラテックス試薬の調製
 抗ヒトFer兎ポリクローナル抗体(Dako社製)0.6mg/mLを含む50mMホウ酸緩衝液(pH7.5) 1mlと、粒径0.3μmのポリスチレンラテックス(積水化学工業(株)製)を2w/v%含むように懸濁させた50mMホウ酸緩衝液(pH7.5) 1mlとを混合し、25℃で2時間反応させた。その後、得られた懸濁液 2mLとBSAを1.25w/v%含有する50mMホウ酸緩衝液(pH7.5) 2mLとを混合し、7℃で2時間反応させた。次いで、遠心分離(45,000g、30分)により分離したラテックス全量を50mMホウ酸緩衝液(pH7.5) 4mLで洗浄し、BSAを0.5w/v%含有する50mMホウ酸緩衝液(pH7.5) 20mLに懸濁したものを、抗ヒトFer抗体感作ラテックス溶液とした。
(2)試料
 試薬盲検測定試料(ブランク)には、生理食塩水(0.85%NaCl)を使用した。試料には、フェリチンキャリブレーターセット(和光純薬工業(株)製、Fer濃度が、それぞれ30 ng/mL、100 ng/mL 、200 ng/mL、500 ng/mL、1000 ng/mLのもの)を使用した。
(3)試薬
第一試薬
 合成例1で合成した、ポリマー1、ポリマー2又はポリマー3を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を調製し、3種類の第一試薬を準備した。
第二試薬
 上記(1)で調製した抗ヒトFer抗体感作ラテックス溶液を第二試薬とした。
(4)測定方法
 上記試料、上記第一試薬及び上記第二試薬を下記条件でBM-8形自動分析装置(日本電子(株)製)を用いて、試料中のFer濃度を測定した。
 試料   : 12.0μL(生理食塩水で2倍希釈)
 第一試薬 : 90μL
 第二試薬 : 30μL
 測定方法 : 2ポイントエンド法(35-59)
 主波長  : 694nm
 得られた結果を表2に示す。
比較例2 従来の免疫凝集促進剤を用いたラテックス免疫凝集測定法によるFerの測定
 実施例2のポリマー1~3の代わりにポリエチレングリコール6,000(PEG6,000, 和光純薬工業(株)製)又はMPCポリマー(日油(株)製)を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例2と同様の方法によりFerを測定した。
 その結果を、実施例2の結果と併せて表2に示す。
Figure JPOXMLDOC01-appb-T000033
表2の結果より、Fer測定系においてポリマー1、2及び3のいずれも、比較例2のPEG6,000やMPCよりも高い凝集促進効果を示すことが判った。また、その効果はCRP測定系と同様に、ポリマーの分子量が高いほど優れていることが判った。
実施例3 分子量の異なるポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるPSAの測定
(1)抗ヒトPSA抗体感作(固定化)ラテックス試薬の調製       
 抗ヒトPSAモノクローナル抗体(クローンNo.PSA10、和光純薬工業(株)製)0.6mg/mLを含む50mMホウ酸緩衝液(pH7.1) 1mlと、粒径0.28μmのポリスチレンラテックス(積水化学工業(株)製)を2w/v%含むように懸濁させた50mMホウ酸緩衝液(pH7.1) 1mlとを混合し、25℃で2時間反応させた。その後、該懸濁液から遠心分離(45,000g、30分)によりラテックス全量を分離し、50mMホウ酸緩衝液(pH7.1) 2mLで洗浄した。次いで、BSAを0.5w/v%含有する50mMホウ酸緩衝液(pH7.3) 2mLに懸濁したものを抗ヒトPSA抗体感作ラテックス溶液1)とした。
 また、上記と同様にして抗ヒトPSAモノクローナル抗体(クローンNo.PSA14、和光純薬工業(株)製)1.4mgを含む50mMホウ酸緩衝液(pH7.1) 1mlと、粒径0.15μmのポリスチレンラテックス(積水化学工業(株)製)を2w/v%含むように懸濁させた50mMホウ酸緩衝液(pH7.1) 1mlとを混合して調製したものを、抗ヒトPSA抗体感作ラテックス溶液2)とした。
(2)試料
 試薬盲検測定試料(ブランク)には、リン酸緩衝液(1w/v%BSA、0.85%NaCl含有10mMリン酸緩衝液)を使用した。試料には、PSAキャリブレーターセット(和光純薬工業(株)製、PSA濃度が、それぞれ5.0ng/mL、10.0ng/mL、39.8 ng/mL、69.3ng/mL、98.6ng/mLのもの)を使用した。
(3)試薬
第一試薬
 合成例1で合成した、ポリマー1、ポリマー2又はポリマー3を0.75w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を調製し、3種類の第一試薬を準備した。
第二試薬
 上記(1)で調製した抗ヒトPSA抗体感作ラテックス1)および2)をそれぞれ2mLずつ、BSAを0.5w/v%含有する50mMホウ酸緩衝液(pH7.5) 16mLに懸濁し混合したものを第二試薬とした。
(4)測定方法
 上記試料、上記第一試薬及び上記第二試薬を下記条件でBM-8形自動分析装置(日本電子(株)製)を用いて、試料中のPSA濃度を測定した。得られた結果を表3に示す。
 試料   : 18.0μL(生理食塩水で2倍希釈)
 第一試薬 : 90μL
 第二試薬 : 30μL
 測定方法 : 2ポイントエンド法(37-65)
 主波長  : 694nm
比較例3 従来の免疫凝集促進剤を用いたラテックス免疫凝集測定法によるPSAの測定
 実施例3のポリマー1~3の代わりにポリエチレングリコール6,000(PEG6,000, 和光純薬工業(株)製)又はMPCポリマー(日油(株)製)を凝集促進剤として0.75w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例3と同様の方法によりPSAを測定した。
その結果を、実施例3の結果と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000034
 表3の結果より、PSA測定系においてポリマー1、2及び3のいずれも、比較例3のPEG6,000やMPCよりも高い凝集促進効果を示すことが判った。また、その効果は、CRP測定系やFer測定系と同様、ポリマーの分子量が高いほど優れていることが判った。
実施例4 各種ポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるCRPの測定
 ポリマー1~3の代わりにポリマー4~6を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を第一試薬として用いた以外は、実施例1と同様の方法によりCRPを測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000035
表4の結果より、CRP測定系においてポリマー4、5及び6はいずれも、ポリマー1~3と同様、高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例5 各種ポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるFerの測定
 ポリマー1~3の代わりにポリマー4~6を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を第一試薬として用いた以外は、実施例2と同様の方法によりFerを測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000036
表5の結果より、Fer測定系においてもポリマー4、5及び6はいずれも、ポリマー1~3と同様、高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例6 各種ポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるPSAの測定
 ポリマー1~3の代わりにポリマー4~6を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1M HEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例3と同様の方法によりPSAを測定した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000037
表6の結果より、PSA測定系においてもポリマー4、5及び6はいずれも、ポリマー1~3と同様、高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例7 コポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるCRPの測定
 ポリマー1~3の代わりにコポリマー1又は2を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を第一試薬として用いた以外は、実施例1と同様の方法によりCRPを測定した。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000038
表7の結果より、CRP測定系においてコポリマー1および2はいずれも、ポリマー1~6と同様に高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例8 コポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるFerの測定
 ポリマー1~3の代わりにコポリマー1又は2を凝集促進剤として0.4w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例2と同様の方法によりFerを測定した。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000039
表8の結果より、Fer測定系においてもコポリマー1および2のいずれも、ポリマー1~6と同様に高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例9 コポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるPSAの測定
 ポリマー1~3の代わりにコポリマー1又は2を凝集促進剤として0.75w/v%含有した、0.1%BSA及び1%NaClを含む0.1MHEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例3と同様の方法によりPSAを測定した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000040
表9の結果より、PSA測定系においてもコポリマー1および2のいずれも、ポリマー1~6と同様に高い凝集促進効果を示すことが判った。また、従来品であるPEG6,000やMPCよりも高い凝集促進効果を示すことも判った。
実施例10 コポリマーを免疫凝集促進剤として用いたラテックス免疫凝集測定法によるCK-MBの測定
(1)抗ヒトCK-MB抗体感作(固定化)ラテックス試薬の調製
 抗ヒトCK-MBモノクローナル抗体(クローンMAK〈CK-MB〉M-7.4.5-IgG、Roche社製)0.8mg/mLを含む50mMホウ酸緩衝液(pH7.5) 1mlと、粒径0.4μmのポリスチレンラテックス(藤倉化成(株)製)を2w/v%含むように懸濁させた50mMホウ酸緩衝液(pH7.5) 1mlとを混合し、25℃で2時間反応させた。その後、遠心分離(45,000g、30分)により分離したラテックス全量を50mMホウ酸緩衝液(pH7.5) 2mLで洗浄した。次いで、BSAを0.5w/v%含有する50mMホウ酸緩衝液(pH7.5) 2mLに懸濁させ、抗ヒトCK-MB抗体感作ラテックス溶液1)とした。
 また、上記と同様の方法により、抗ヒトCK-MBモノクローナル抗体(クローンMAK〈CK-MB〉M-6.12.47-IgG、Roche社製)0.8mgを含む50mMホウ酸緩衝液(pH7.5) 1mlと、粒径0.4μmのポリスチレンラテックス(藤倉化成(株)製)を2w/v%含むように懸濁させた50mMホウ酸緩衝液(pH7.5) 1mlとを混合して調製したものを、抗ヒトCK-MB抗体感作ラテックス溶液2)とした。
(2)試料
 試薬盲検測定用試料(ブランク)には、生理食塩水(0.85%NaCl)を使用した。試料は、CK-MB抗原(ヒト由来CK-MB、Cliniqa社製)をリン酸緩衝液(10mMリン酸、1w/v%BSA、0.85%NaCl含有)で希釈し、濃度がそれぞれ5.2ng/mL、19.0ng/mL、47.9ng/mL、98.7ng/mL、204.3ng/mLとなるように調製したものを使用した。
(3)試薬
第一試薬
 ポリマー1、コポリマー1又はコポリマー2を凝集促進剤として0.75w/v%含有した、0.1%BSA及び1%NaClを含む0.1M HEPES-NaOH緩衝液(pH7.0)を調製し、3種類の第一試薬を準備した。
第二試薬
 上記(1)で調製した抗ヒトCK-MB抗体感作ラテックス溶液1)および2)をそれぞれ2mLずつ、BSAを0.5w/v%含有する50mMホウ酸緩衝液(pH7.5) 16mLに懸濁し混合したものを第二試薬とした。
(4)測定方法
 上記試料、上記第一試薬及び上記第二試薬を下記条件でBM-8形自動分析装置(日本電子(株)製)を用いて、試料中のCK-MB濃度を測定した。
 試料   : 12.0μL(生理食塩水で2倍希釈)
 第一試薬 : 90μL
 第二試薬 : 30μL
 測定方法 : 2ポイントエンド法(34-65)
 主波長  : 596nm
 得られた結果を表10に示す。
比較例4 従来の免疫凝集促進剤を用いたラテックス免疫凝集測定法によるCK-MBの測定
 ポリマー1、コポリマー1及びコポリマー2の代わりにポリエチレングリコール6,000(PEG6,000, 和光純薬工業(株)製)又はMPCポリマー(日油(株)製)を凝集促進剤として0.75%含有した、0.1%BSA及び1%NaClを含む0.1M HEPES-NaOH緩衝液(pH7.0)を第一試薬として用いた以外は、実施例10と同様の方法によりCK-MBを測定した。その結果を、実施例10の結果と併せて表10に示す。
Figure JPOXMLDOC01-appb-T000041
表10の結果より、CK-MB測定系においてポリマー2、コポリマー1および2のいずれにもこれらを添加することにより、比較例4のPEG6,000またはMPCよりも高い凝集促進効果を示すことが判った。更に、ホモポリマーであるポリマー2よりもコポリマーであるコポリマー1および2の方がより高い凝集促進効果を示すことも判った。
実施例11 免疫凝集促進剤の含量が異なるラテックス免疫凝集測定法によるCRPの測定
 ポリマー1を0.24w/v%、0.32w/v%、0.56w/v%又は0.72w/v%含有した、0.1%BSA及び1%NaClを含む0.1Mトリス緩衝液(pH8.0)を第一試薬として用いた以外は、実施例1と同様の方法によりCRPを測定した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000042
表11の結果から明らかな様に、CRP測定系におけるポリマー1は、その添加量が多ければ多いほど、凝集促進効果が高くなることが判った。
実施例12 免疫凝集促進剤の含量が異なるラテックス免疫凝集測定法によるFerの測定
 第一試薬として、ポリマー1を0.25w/v%、0.31w/v%、0.49w/v%又は0.61w/v%含有した、0.1%BSA及び1%NaClを含む0.1M HEPES-NaOH緩衝液(pH7.0)を用いた以外は、実施例2と同様の方法によりFerを測定した。その結果を表12に示す。
Figure JPOXMLDOC01-appb-T000043
表12の結果から明らかな様に、Fer測定系におけるポリマー1は、その添加量が多ければ多いほど、凝集促進効果が高くなることが判った。
実施例13 免疫凝集促進剤の含量が異なるラテックス免疫凝集測定法によるPSAの測定
 第一試薬として、ポリマー1を0.60w/v%、0.90w/v%、1.35w/v%又は1.50w/v%含有した、0.1%BSA及び1%NaClを含む0.1M HEPES-NaOH緩衝液(pH7.0)を用いた以外は、実施例3と同様の方法によりPSAを測定した。その結果を表13に示す。
Figure JPOXMLDOC01-appb-T000044
表13の結果から明らかな様に、PSA測定系におけるポリマー1は、その添加量が多ければ多いほど、凝集促進効果が高くなることが判った。

Claims (11)

  1. 下記一般式[1]
    Figure JPOXMLDOC01-appb-I000001
    (式中、R1は水素原子又はメチル基を表し、R2及びR3はそれぞれ独立してメチル基又はエチル基を表し、Xは-NH-又は酸素原子を表し、nは1~6の整数を表し、mは1~3の整数を表す)で示されるモノマー単位を有するポリマーを含んでなる免疫凝集測定法用凝集促進剤。
  2. 前記ポリマーが、下記一般式[1] 
    Figure JPOXMLDOC01-appb-I000002
    (式中、R1は水素原子又はメチル基を表し、R2及びR3はそれぞれ独立してメチル基又はエチル基を表し、Xは-NH-又は酸素原子を表し、nは1~6の整数を表し、mは1~3の整数を表す)で示されるモノマー単位と下記一般式[2]
    Figure JPOXMLDOC01-appb-I000003
    (式中、R4は水素原子又はメチル基を表し、kは1~10の整数を表す)で示されるモノマー単位を有するコポリマーである、請求項1記載の凝集促進剤。
  3. コポリマー中の一般式[1]で示されるモノマー単位の含有量が50モル%以上100モル%未満である、請求項2記載の凝集促進剤。
  4. ポリマーの重量平均分子量が、50,000~3,000,000である、請求項1記載の凝集促進剤。
  5. 一般式[1]におけるR2及びR3がいずれもメチル基である、請求項1記載の凝集促進剤。
  6. 一般式[1]におけるnが2~4であり、mが1である、請求項1記載の凝集促進剤。
  7. 一般式[2]におけるR4が水素原子であり、kが4~8である、請求項2記載の凝集促進剤。
  8. 請求項1記載の凝集促進剤を含んでなる免疫凝集測定法用試薬。
  9. 試薬が、C反応性タンパク質(CRP)、血清フェリチン(Fer)、前立腺特異抗原(PSA)又はクレアチンキナーゼ-MB(CK-MB)測定用である、請求項8記載の免疫凝集測定法用試薬。
  10. 請求項1記載の免疫凝集測定法用凝集促進剤の共存下で、測定対象物質に対する抗体又は抗原を、測定対象物質と接触させて抗原抗体反応を行わせることを特徴とする、免疫凝集測定方法。
  11. 測定対象物質が、C反応性タンパク質(CRP)、血清フェリチン(Fer)、前立腺特異抗原(PSA)又はクレアチンキナーゼ-MB(CK-MB)測定用である、請求項9記載の免疫凝集測定方法。
PCT/JP2012/064355 2011-06-07 2012-06-04 凝集促進剤 WO2012169453A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/123,899 US9797886B2 (en) 2011-06-07 2012-06-04 Agglutination enhancer
JP2013519479A JP6107653B2 (ja) 2011-06-07 2012-06-04 凝集促進剤
CN201280027997.9A CN103597352B (zh) 2011-06-07 2012-06-04 凝集促进剂
EP12796593.7A EP2720041B1 (en) 2011-06-07 2012-06-04 Agglutination enhancer
KR1020137032151A KR20140043371A (ko) 2011-06-07 2012-06-04 응집촉진제

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-127076 2011-06-07
JP2011127076 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169453A1 true WO2012169453A1 (ja) 2012-12-13

Family

ID=47296016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064355 WO2012169453A1 (ja) 2011-06-07 2012-06-04 凝集促進剤

Country Status (6)

Country Link
US (1) US9797886B2 (ja)
EP (1) EP2720041B1 (ja)
JP (1) JP6107653B2 (ja)
KR (1) KR20140043371A (ja)
CN (1) CN103597352B (ja)
WO (1) WO2012169453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031581A1 (ja) * 2017-08-10 2019-02-14 Jsr株式会社 免疫凝集の検出又は測定方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658620B1 (ko) * 2014-12-02 2016-09-23 주식회사 피플바이오 응집형-형성 폴리펩타이드의 응집형을 검출하는 방법
WO2018138264A2 (en) 2017-01-27 2018-08-02 Roche Diagnostics Gmbh Methods for modulating signal intensity in interaction assays
CN109633148B (zh) * 2018-12-27 2021-08-06 恩碧乐(杭州)生物科技有限公司 Kl-6检测乳胶凝集试剂
CN109856067A (zh) * 2019-01-11 2019-06-07 河北省医疗器械与药品包装材料检验研究院(河北省医疗器械技术审评中心) 一种c反应蛋白测定试剂盒
CN111848880A (zh) * 2019-04-28 2020-10-30 中科广化(重庆)新材料研究院有限公司 一种抗泥型两性聚羧酸减水剂及其制备方法
CN110204462A (zh) * 2019-04-28 2019-09-06 中科广化(重庆)新材料研究院有限公司 一种两性单体和两性型聚羧酸减水剂
WO2022154121A1 (ja) 2021-01-18 2022-07-21 富士フイルム和光純薬株式会社 ヘプシジンの吸着抑制剤、吸着抑制方法、標準品、試薬、キットおよび測定方法
CN114716603A (zh) * 2022-04-15 2022-07-08 深圳可孚生物科技有限公司 一种用于葡萄糖传感器的高分子膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227713A (en) 1975-08-25 1977-03-02 Nitto Chem Ind Co Ltd Process for preparation of unsaturated quaternary ammonium salt
JPS5847256A (ja) * 1981-09-14 1983-03-18 Mitsubishi Chem Ind Ltd 抗原抗体反応の測定法
JPH04122858A (ja) * 1990-09-14 1992-04-23 Sekisui Chem Co Ltd 免疫測定法
WO2002018953A1 (fr) * 2000-08-29 2002-03-07 Kyowa Medex Co.,Ltd Reactifs et methode d'immunoessai d'agglutination fortement reproductible
JP2002365296A (ja) 2001-06-05 2002-12-18 Wako Pure Chem Ind Ltd 免疫学的測定法用凝集促進剤
JP2007225343A (ja) * 2006-02-21 2007-09-06 Sanyo Chem Ind Ltd ラテックス凝集免疫測定用凝集促進剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581337A (en) * 1983-07-07 1986-04-08 E. I. Du Pont De Nemours And Company Polyether polyamines as linking agents for particle reagents useful in immunoassays
JPS63200065A (ja) * 1987-02-16 1988-08-18 Nitto Electric Ind Co Ltd 抗原抗体反応測定方法
US5100805A (en) * 1989-01-26 1992-03-31 Seradyn, Inc. Quantitative immunoassay system and method for agglutination assays
JP2000258419A (ja) * 1999-03-10 2000-09-22 Hitachi Chem Co Ltd 免疫測定試薬及び免疫測定法
CN101351707B (zh) * 2005-12-28 2014-03-26 积水医疗株式会社 凝集测量用试剂以及凝集测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227713A (en) 1975-08-25 1977-03-02 Nitto Chem Ind Co Ltd Process for preparation of unsaturated quaternary ammonium salt
JPS5847256A (ja) * 1981-09-14 1983-03-18 Mitsubishi Chem Ind Ltd 抗原抗体反応の測定法
JPH04122858A (ja) * 1990-09-14 1992-04-23 Sekisui Chem Co Ltd 免疫測定法
WO2002018953A1 (fr) * 2000-08-29 2002-03-07 Kyowa Medex Co.,Ltd Reactifs et methode d'immunoessai d'agglutination fortement reproductible
JP2002365296A (ja) 2001-06-05 2002-12-18 Wako Pure Chem Ind Ltd 免疫学的測定法用凝集促進剤
JP2007225343A (ja) * 2006-02-21 2007-09-06 Sanyo Chem Ind Ltd ラテックス凝集免疫測定用凝集促進剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Manual of Clinical Laboratory Medicine", 1993, KANEHARA & CO., LTD, pages: 851 - 853
"Manual of Clinical Laboratory Medicine", 1993, KANEHARA & CO., LTD., pages: 853 - 854
"New Case Example of Utilization of Immunoassay Method and Application to Diagnostic Reagent - Development of Therapeutic Agent", KEIEI KYOUIKU SYUPPANSYA, pages 103 - 187
See also references of EP2720041A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031581A1 (ja) * 2017-08-10 2019-02-14 Jsr株式会社 免疫凝集の検出又は測定方法

Also Published As

Publication number Publication date
EP2720041A1 (en) 2014-04-16
JP6107653B2 (ja) 2017-04-05
US20140113311A1 (en) 2014-04-24
US9797886B2 (en) 2017-10-24
KR20140043371A (ko) 2014-04-09
CN103597352B (zh) 2015-10-21
JPWO2012169453A1 (ja) 2015-02-23
EP2720041A4 (en) 2015-01-14
CN103597352A (zh) 2014-02-19
EP2720041B1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6107653B2 (ja) 凝集促進剤
US20080070319A1 (en) Fluorescent polymer fine particle set, fluorescence detecting complex member set, fluorescent polymer fine particle composition and fluorescence detecting method
US9465033B2 (en) Latex particles for agglutination assay
JP4577747B2 (ja) 免疫学的測定法用凝集促進剤
JPWO2018216628A1 (ja) タンパク質安定化剤及びタンパク質安定化試薬
JP5170806B2 (ja) 測定試薬用ラテックス粒子、感作ラテックス粒子及び免疫比濁法用測定試薬
JP2005106609A (ja) 免疫学的測定用試薬
JP4145403B2 (ja) 免疫学的活性物質測定用高分子/酵素結合体
JP6085983B2 (ja) ブロッキング剤、標的物質に対する抗原または抗体が固定化された担体、これを含む体外診断用試薬およびキット、並びに標的物質の検出方法
WO2022219967A1 (ja) 共重合体、抗体-共重合体コンジュゲート作成キット、抗体-共重合体コンジュゲート、抗原の濃縮方法、及び、抗原の検出方法
WO2019031581A1 (ja) 免疫凝集の検出又は測定方法
WO2019208672A1 (ja) 粒子、粒子の製造方法、アフィニティー粒子、及び、これを含む試薬及びキット、並びに標的物質の検出方法
US9383356B2 (en) Latex particles for particle agglutination assay
JP4716067B2 (ja) C−反応性蛋白質測定方法及び測定試薬
JPH07229900A (ja) 免疫学的診断試薬
EP1387168A2 (en) Physiologically active substance-measuring reagent and method for measuring physiologically active substance
US10557848B2 (en) Polymer microparticle for carrying physiologically active substance and method for preparing same
JP6051903B2 (ja) ラテックス凝集反応用凝集促進剤、標的物質の検出方法および標的物質の検出に用いるためのキット
JPS63278913A (ja) 含フッ素ポリマ−ラテックス及びその用途
JPH0954092A (ja) 免疫学的活性物質単量体、重合体および免疫学的活性物質測定試薬
JPH073424B2 (ja) 免疫学的診断試薬
JPH09124740A (ja) 免疫学的活性物質・酵素共重合体および免疫学的活性物質測定試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519479

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032151

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012796593

Country of ref document: EP