WO2012165472A1 - 光情報記録媒体用記録膜および光情報記録媒体、並びに上記記録膜の形成に用いられるスパッタリングターゲット - Google Patents
光情報記録媒体用記録膜および光情報記録媒体、並びに上記記録膜の形成に用いられるスパッタリングターゲット Download PDFInfo
- Publication number
- WO2012165472A1 WO2012165472A1 PCT/JP2012/063917 JP2012063917W WO2012165472A1 WO 2012165472 A1 WO2012165472 A1 WO 2012165472A1 JP 2012063917 W JP2012063917 W JP 2012063917W WO 2012165472 A1 WO2012165472 A1 WO 2012165472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording film
- optical information
- recording
- recording medium
- film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/087—Oxides of copper or solid solutions thereof
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24306—Metals or metalloids transition metal elements of groups 3-10
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24308—Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/2432—Oxygen
Definitions
- the present invention relates to a recording film for an optical information recording medium, an optical information recording medium, and a sputtering target useful for forming the recording film.
- Optical information recording media can be broadly classified into read only memories (ROMs), recordable memories (recordables), and rewritable memories (RWs) according to recording and reproduction methods.
- the write-once type optical disc has a recording layer which is changed by laser beam irradiation, and a hole forming method of forming recording marks such as holes and pits locally in a recording film mainly by the recording method, recording It is roughly classified into a phase change system in which a film is phase-changed, an interlayer reaction system in which a plurality of recording films are reacted, and a system in which a compound constituting the recording film is decomposed.
- a recording film containing a low melting point metal such as Sn or Bi is disclosed as a recording film of a hole-opening system (for example, Patent Document 1), and holes are opened in the recording layer by heating of a laser beam. It is used that changes occur in the mark and the space by changing the optical path length of As a phase change recording film, for example, a Te-O-Pd recording layer is disclosed (for example, Patent Documents 2 and 3), and the crystal structure of the recording film is changed by the irradiation of a laser beam. Recording is performed as the optical constant changes.
- the recording film of the interlayer reaction system two recording layers to be grounded, for example, In-O- (Ni, Mn, Mo) of the first recording layer, and Se-Te-O- (Ti of the second recording layer) And the like, which change the recording film due to the reaction with Pd, Zr) and change the optical constant, and the like are disclosed (for example, Patent Document 4).
- a recording film of a system for decomposing a compound constituting a recording film a recording film using an oxide or nitride having a low decomposition temperature is disclosed (for example, Patent Document 5), and the oxide is heated by heating. Recording is performed by disassembling.
- the optical information recording medium it is important whether or not recording is possible by the irradiated laser light, and specifically, recording is possible with practical recording power (high recording sensitivity
- the recording signal has sufficient signal amplitude for reproduction (having a high degree of modulation), high accuracy of the recording signal (showing a low jitter value), and the like. Furthermore, it is also important to have sufficient reflectivity for reproduction.
- the recording material disclosed as the prior art it is difficult to satisfy these required characteristics with a single recording material (single-layer film), and it is essential to form a laminated structure.
- a single recording material single-layer film
- ZnS ⁇ and ⁇ are formed above and below the recording film to increase the modulation.
- a dielectric layer such as SiO 2 also needs to be provided, and the number of layers constituting the optical disc increases.
- a plurality of recording films are required, so that the number of layers constituting the optical disc is increased, and there is a problem that the productivity is lowered.
- the hole-piercing method the reflectance of the recording film itself is high, and a large degree of modulation can be ensured, so the number of layers constituting the optical disc can be reduced. , Need further improvement.
- the present invention has been made in view of such circumstances, and an object thereof is to reduce the number of layers of the optical information recording medium while reducing the number of layers of the optical information recording medium.
- Recording film for an optical information recording medium capable of satisfying all of the following requirements, having a low jitter value, and having a sufficiently high reflectance for reproduction, and enhancing the productivity, and a light comprising the recording film:
- the present invention provides the following recording film for an optical information recording medium, an optical information recording medium, and a sputtering target.
- a recording film for an optical information recording medium in which recording is performed by laser beam irradiation, Mn and at least one element (X group element) selected from the group (X group) consisting of Bi, Ag, Co, Cu, In, Sn, and Zn; and oxygen (O) A recording film for an optical information recording medium, characterized in that at least a part of Mn and at least a part of an X group element are oxidized.
- the X group element is Bi and Cu
- the atomic ratio (%) of Bi to the total of Mn, Bi and Cu is 10% or more and 50% or less, and with respect to the total of Mn, Bi and Cu
- the X group element is Bi and In
- the atomic ratio (%) of Bi to the total of Mn, Bi and In is 20% or more and less than 40%
- the total of Mn, Bi and In The recording film for an optical information recording medium according to (1), wherein the atomic ratio (%) of In is more than 20% and 40% or less.
- the X group element is Ag and In
- the atomic ratio (%) of Mn to the total of Mn, Ag and In is 30% or more and 50% or less
- the total of Mn, Ag and In is 30% or more and 50% or less.
- the X group elements are Bi, Cu, and Co, and the atomic ratio (%) of Mn to the total of Mn, Bi, Cu, and Co is 20% to 40%, and Mn, Bi, and Cu
- the atomic ratio (%) of Cu to the sum of Mn and Co is 10% or more and 35% or less
- the atomic ratio (%) of Bi to the total of Mn, Bi, Cu, and Co is 10% or more and 30% or less
- An optical information recording medium comprising the recording film according to any one of (1) to (8).
- An optical information recording medium comprising the recording film according to any one of (1) to (8), and further comprising a dielectric layer on and / or below the recording film.
- a sputtering target for forming the recording film for an optical information recording medium Containing Mn and at least one element (X group element) selected from the group (X group) consisting of Bi, Ag, Co, Cu, In, Sn, and Zn, with the balance being an unavoidable impurity Sputtering target characterized by
- the present invention it is possible to achieve a high modulation factor and a low jitter value even with a practical relatively low recording laser power, and for an optical information recording medium having a sufficiently high reflectance when used as an optical information recording medium. It is possible to provide a recording film (in particular, a recording film for a write-once optical information recording medium), and an optical information recording medium (particularly, a write-once optical information recording medium) provided with the recording film.
- FIG. 1 shows No. 1 in Table 1.
- 10 is a graph showing the relationship between the refractive index and the reflectance (reflectance of the recording film single layer) in 1 to 14.
- FIG. 10 is a graph showing the relationship between the refractive index and the reflectance (reflectance of the recording film single layer) in 1 to 14.
- Mn is a very useful element for increasing the refractive index of the recording film itself; and for the improvement of the above-mentioned properties, it is a group consisting of Bi, Ag, Co, Cu, In, Sn, and Zn.
- At least a part of Mn and at least a part of the group X elements are oxidized means that at least a part of the metal elements constituting the present invention is oxidized. Do. For example, in the case where two or more types of elements are contained as the X group element, it means that all of the two or more types of elements are at least partially oxidized.
- “at least a part” means that Mn and an X group element (all X group elements when including two or more X group elements as described above) are oxidized in a state where the stoichiometric composition ratio is satisfied. It does not necessarily have to be the case, and it is an effect including an embodiment in which the composition is oxidized to a degree lower than the stoichiometric composition ratio.
- the oxide be oxidized so as to satisfy the stoichiometric composition ratio, and more preferably, the peroxide is more than the stoichiometric ratio. It is recommended to be present in the state, which further reduces the decomposition temperature, thereby further improving the recording performance.
- the recording film for an optical information recording medium of the present invention is a recording film for an optical information recording medium on which recording is performed by laser light irradiation, and Mn and Bi, Ag, Co, Cu, In, Sn, and At least a part of Mn and at least a part of an X group element are oxidized by containing at least one element (X group element) selected from the group consisting of Zn (X group) and oxygen (O)
- the recording film can be represented by a Mn—X group element —O.
- the group X element is at least one element selected from the above group X, and may contain two or more.
- the contents of Mn and the X group element contained in the recording film can be changed depending on the composition constituting the recording film, and a suitable range can be appropriately selected so that desired characteristics are exhibited.
- the atomic ratio (%) of metal elements in all the metal elements (excluding oxygen) constituting the recording film may be simply referred to as the metal ratio.
- the metal ratio the atomic ratio (%) of Mn to all the metal elements (Mn + Bi) may be referred to as the Mn ratio.
- recording is possible with a low recording power (the recording power is 9.0 mW or less when the recording power is measured by the method described in the examples described later in detail), and the degree of modulation is high. (Having a degree of modulation of at least 0.4 when the degree of modulation is measured by the method described in the examples described later in detail), having a low jitter value (described in the examples described in detail later)
- the jitter value is measured by the method of (1), one satisfying all of the jitter values of 6.5% or less may be referred to as being excellent in recording sensitivity (recording characteristics).
- the optical information recording medium of the present invention satisfies all the above requirements.
- the recording film for an optical information recording medium of the present invention contains Mn, and at least a part of Mn is oxidized. As a result, it is possible to obtain an optical information recording medium which is excellent in recording sensitivity and excellent in reflection characteristics.
- Mn is an element selected by the basic experiments of the present inventors as a useful element for increasing the refractive index of the recording film itself (recording film single layer) to secure high reflectance.
- the basic experiment which led to selection of Mn will be described with reference to Table 1.
- Table 1 shows a sample (recording film single layer) in which recording films (20 nm in thickness) of various compositions shown in Table 1 were formed on a glass substrate (0.7 mm in thickness).
- the result of measuring the refractive index (synonymous with the optical constant) using M-2000U is shown.
- Table 1 also shows the results of measuring the reflectance of the recording film single layer using a spectrophotometer for the above-mentioned sample.
- FIG. The figure which plotted the relationship between a refractive index and a reflectance about 1-4 (Bi-Mn-O) is shown.
- the result of Mn ratio 20% (No. 1), 40% (No. 2), 60% (No. 3), 80% (No. 4) is shown sequentially from the left side.
- FIG. 5 to 9 In-Mn-O
- the above-mentioned reflectance (reflectance of the recording film itself) when using Bi (No. 1 to 4), In (No. 5 to 9), Ag (No. 11 to 14) as an X group element
- the preferable metal ratio of Mn for securing the same level of reflectance also changes depending on the type of the X group element.
- the reflectance shown in Table 1 indicates the reflectance of the recording film itself and does not indicate the reflectance of the optical information recording medium, it is not possible to determine a suitable Mn ratio or the like in the recording film from this result. From the results in Table 1, it can be seen that the reflectance of the recording film can be changed depending on the type of X group element, and the preferable ratio of the X group element to secure the predetermined reflectance (ratio of X group element to all metal elements) May be changed.
- the recording film for an optical information recording medium of the present invention comprises at least one element (X group element) selected from the group (X group) consisting of Bi, Ag, Co, Cu, In, Sn, and Zn together with the above-mentioned Mn. And at least a part of the group X element is oxidized. As a result, it is possible to obtain an optical information recording medium which is excellent in recording sensitivity and excellent in reflection characteristics.
- the X group element may be added singly or in combination of two or more.
- the recording film for the optical information recording medium of the present invention contains oxygen (O) as an essential component in addition to the above-mentioned metal elements (Mn and the X group element).
- This oxygen is a component useful for mark formation at the time of recording, and contains an amount necessary for at least a part of Mn and at least a part of the group X element to be present as an oxide in the recording film. Need to be When two or more X group elements are contained (for example, X1 group elements, X2 group elements), it is necessary that at least a part of all the X group elements contained in the recording film be present as an oxide. (Eg, present as an oxide of a group X1 element, an oxide of a group X2 element).
- the preferable ratio of oxygen (O) contained in the recording film is different depending on the kind of X group element, the metal ratio in the recording film, etc., it is generally based on all components (all metal elements + O) constituting the recording film. It is preferable that the atomic ratio (%) be controlled generally in the range of 50 to 60%.
- the ratio of oxygen (O) contained in the recording film can be controlled by appropriately adjusting the oxygen flow rate and the like under sputtering conditions at the time of film formation, and the oxygen ratio is determined based on the oxygen flow rate and the like. be able to.
- the preferable ratio (atomic ratio) of (Bi + O) to all elements (Mn + Bi + O) constituting the recording film is preferably less than 80%, This improves the reflection characteristics.
- the oxide recording film (Mn-Bi-O) containing Mn and Bi is disclosed also in Patent Document 5 mentioned above, the recording film of the present invention means all the elements constituting the recording film ( The preferred range of (Bi + O) to Mn + Bi + O) is different.
- Patent Document 5 it is described that the optical information recording medium in which the data is reliably recorded / reproduced is realized by controlling the above-mentioned range to 80% or more, but the examination results of the present inventors According to the patent document 5, it was found that when the above range was controlled to 80% or more, the ratio of Mn in all the metal elements (Mn ratio) becomes small, so that the reflection characteristic is deteriorated.
- a recording film single-layer film with a thickness of 200 nm to 400 nm is formed on a Si substrate (0.5 mm in thickness), and a fully automatic X-ray fluorescence spectrometer "RIX-3000" manufactured by Rigaku Denki Co., Ltd.
- the amount of each element in the recording film was measured.
- a Rh single layer film, a Bi single layer film, and an Mn single layer film are respectively formed on a Si substrate using a Rh tube as a tube.
- a standard curve was created for each element, and the sensitivity correction coefficient of each element was measured. For O, the sensitivity correction coefficient was measured using Bi 2 O 3 powder.
- O amount (atomic%) Total element content (atomic%)-[Cu content (atomic%) + Bi content (atomic%) + Mn (atomic%)]
- the recording power, the jitter value, and the degree of modulation were measured in the same manner as the method described in the examples described later.
- Table 2 also shows, for reference, the results obtained by performing the same measurement as described above for the oxide recording film (Mn-Bi-Cu-O) further containing Cu.
- the ratio of (Bi + O) in all components (Mn + Bi + O) constituting the recording film is as high as 80% or more, and as a result, the Mn ratio is as small as 13% So that the preferred Mn ratio in the Mn—Bi recording film is more than 20% and not more than 60%.
- the recording power, the jitter value and the degree of modulation are good, the reflectance decreases.
- the preferred ratio of (Bi + O) to the total components (Mn + Bi + O) is less than 80%, and as a result, the Mn ratio in Table 2 in which the Mn ratio is controlled within the preferred range of the present invention.
- the Mn ratio in Table 2 in which the Mn ratio is controlled within the preferred range of the present invention. In 2 and 3, not only the above-mentioned recording sensitivity was excellent, but also the light reflectance was high.
- the recording film for an optical information recording medium for example, a binary recording film comprising two types of metal elements excluding oxygen (O): Mn-Bi-O, Mn-In-O, Mn-Cu-O, Mn-Ag-O, etc .; Ternary recording film consisting of three types of metal elements excluding oxygen (O): Mn-Bi-Cu-O, Mn-Bi-In-O, Mn- Examples thereof include Ag-In-O and the like; quaternary recording films in which metal elements excluding oxygen (O) are four types: Mn-Bi-Cu-Co-O and the like.
- a recording film containing at least Bi or Ag in order to exhibit desired properties more effectively.
- Examples of such an embodiment include one containing Bi or Ag alone or both in the recording film, and there is no limitation on types such as binary system, ternary system, quaternary system and the like.
- the preferable contents of Mn and X group elements may differ depending on the composition of the recording film, the type of the dielectric film, the oxidation state of the metal, etc., as shown using Table 1 above. Although it is difficult to determine in the above, it is preferable to control, for example, as follows, in consideration of the characteristics of Mn (the sputtering rate is slow compared to other elements, etc.) and the like.
- the preferable content of O (oxygen) contained in the recording film may also differ depending on the composition of the recording film, the type of dielectric film, the amount of metal oxides, etc., and is suitably selected so as to obtain desired characteristics. It is preferable to control the
- the preferable atomic ratio (%) of Mn to the total of Mn and Bi is more than 20% and 60% or less, and more preferable atomic ratio ( %) Is 30% or more and 50% or less.
- the reflectance is lowered.
- the preferable O (oxygen) amount (atomic%) contained in the recording film is 1.1 times or more and 1.65 times or less the total of Mn and Bi. is there. If the amount of O is less than 1.1 times, the amount of oxides involved in decomposition is small and good recording characteristics can not be obtained. On the other hand, if it exceeds 1.65 times, the desired reflectance can not be obtained.
- the preferable atomic ratio (%) of Mn to the total of Mn and In is more than 20% and 80% or less, and more preferable atom The ratio (%) is 30% or more and 60% or less.
- the reflectance is lowered.
- the preferable atomic ratio (%) of Mn to the total of Mn and Cu is more than 10% and 80% or less, and more preferable atom The ratio (%) is 20% or more and 60% or less.
- the reflectance is lowered.
- the preferable atomic ratio (%) of Bi to the total of Mn, Bi and Cu is 10% or more and 50% or less
- the more preferable atomic ratio is 10% or more and 40% or less
- the more preferable atomic ratio (%) is 20% or more and 40% or less.
- the atomic ratio (%) of Mn to the total of Mn, Bi and Cu is 20% or more and 40% or less
- the more preferable atomic ratio (%) is 30% or more and 40% or less.
- the preferable O (oxygen) amount (atomic%) contained in the recording film is 1.3 or more times the total of Mn, Bi, and Cu. If the amount of O is less than 1.3 times, the amount of oxides involved in decomposition is small, and good recording characteristics can not be obtained.
- the preferable atomic ratio (%) of Bi to the total of Mn, Bi and In is 20% or more and less than 40%. It is. When the lower limit and the upper limit deviate from the above values, the reflectance is lowered. Furthermore, the atomic ratio (%) of In to the total of Mn, Bi and In is more than 20% and 40% or less. When the lower limit and the upper limit deviate from the above values, the reflectance is lowered.
- the preferable atomic ratio (%) of Mn to the total of Mn, Ag and In is 30% or more and 50% or less More preferable atomic ratio (%) is 30% or more and 40% or less.
- the reflectance is lowered.
- the atomic ratio (%) of In to the total of Mn, Ag and In is 30% or more and 50% or less
- the preferable atomic ratio is 30% or more and less than 50%
- the more preferable atomic ratio (%) is 30% or more and 40% or less.
- the group X element is Bi, Cu, and Co
- the atomic ratio (%) of Mn to the total of Mn, Bi, Cu, and Co is 20% or more and 40% or less.
- the atomic ratio (%) of Cu to the total of Mn, Bi, Cu and Co is 10% or more and 35% or less
- the atomic ratio (%) of Bi to the total of Mn, Bi, Cu and Co is 10% Above, it is 30% or less.
- the recording film for the optical information recording medium of the present invention has been described above.
- the present invention also encompasses an optical information recording medium provided with the above recording film.
- the configuration of the optical information recording medium is not particularly limited, and a commonly used configuration can be applied.
- an optical information recording medium provided with the above-mentioned recording film and a derivative layer above and / or below the above-mentioned recording layer can be mentioned.
- an optical adjustment layer may be provided on the optical information recording medium.
- the derivative layer is not particularly limited as long as it is generally used for an optical information recording medium, and examples thereof include In 2 O 3 , SnO, SiO 2 , ZnS-SiO 2 , ZnO, TiO 2 , Al 2 O 3 and the like. Or a nitride such as TiN, TaN, NbN, InN, or AlN. Alternatively, it may be composed of both the oxide and the nitride.
- the dielectric film layer has the function of confining the oxygen released by the decomposition of the oxide constituting the recording film, which makes it possible to more efficiently change the form at the time of mark formation, which is high at the time of recording. It becomes possible to give a modulation degree.
- high durability can be imparted to an accelerated test (held for 96 hours in an environment with a temperature of 80 ° C. and a relative humidity of 85%) usually performed to evaluate the reliability of the optical information recording medium.
- the interference of light can be controlled by adjusting the film thickness of the dielectric layer, and it is also possible to provide a reflectance according to the purpose.
- the film thickness of the recording film (in the case where the recording film is used as a single layer and the dielectric layer, the optical adjustment layer and the like are not provided) is preferably in the range of about 10 to 100 nm. If the film thickness of the recording film is too thin, the transmittance increases due to the incidence of the recording laser light, and light absorption can not be effectively performed, and the thickness of the portion changed by recording is small, so the modulation degree is small. Become. On the other hand, if the film thickness of the recording film is too thick, productivity will be lowered. More preferably, it is 15 to 50 nm.
- the thickness of the dielectric layer is preferably in the range of 2 to 30 nm.
- the film thickness of the dielectric layer is too thin, the change in shape of the recording layer is suppressed, and the modulation degree is reduced. More preferably, it is 5 to 20 nm.
- the recording film of the present invention is preferably formed by sputtering.
- an optical information recording medium having a uniform composition can be obtained. Specifically, it contains Mn and at least one element (X group element) selected from the group (X group) consisting of Bi, Ag, Co, Cu, In, Sn, and Zn, with the balance: unavoidable.
- X group element selected from the group (X group) consisting of Bi, Ag, Co, Cu, In, Sn, and Zn, with the balance: unavoidable.
- an oxide sputtering target in which at least a part of Mn or an X group element is oxidized may be used.
- a sputtering target consisting of an X group element or an oxide sputtering target in which at least a part of the X group element is oxidized a sputtering target consisting only of Mn or an oxide sputtering target in which at least a part of Mn is oxidized
- a desired recording film by performing simultaneous discharge using these.
- the composition of the sputtering target specifically, one having the same composition as the above-mentioned recording film can be mentioned.
- low melting point metals such as Bi, In, Sn, and Zn can be used as oxides because film formation can be performed with high power.
- it is included.
- Ag, Cu, and Co are preferably contained as metals, which makes it possible to improve the density of the sputtering target, and the durability in high power film formation can be enhanced.
- sputtering conditions when forming by the sputtering method using the above-mentioned sputtering target, for example, Ar flow rate: 10 to 100 sccm and oxygen flow rate: 10 to 100 sccm can be mentioned.
- Ar flow rate 10 to 100 sccm
- oxygen flow rate 10 to 100 sccm
- gas pressure is, for example, in the range of 0.1 to 1.0 Pa
- the sputtering power is, for example, in the range of 0.5 to 20 W / cm 2
- the optical information recording medium of the present invention is characterized in that it comprises the above-mentioned recording film, and preferably further comprises a dielectric layer. Aside from the above recording film, a configuration known in the field of optical information recording media can be adopted.
- optical disc As an optical information recording medium (optical disc), one having a recording film laminated on a substrate having a groove for guiding a laser formed thereon and further laminating a light transmission layer thereon is mentioned.
- the material of the substrate for example, polycarbonate resin, norbornene resin, cyclic olefin copolymer, amorphous polyolefin and the like can be mentioned.
- a polycarbonate and ultraviolet-ray cured resin can be used as said light transmissive layer.
- the material of the light transmission layer has a high transmittance to a laser for recording and reproduction and a small light absorptivity.
- the thickness of the substrate is, for example, 0.5 to 1.2 mm.
- the thickness of the light transmission layer may be, for example, 0.1 to 1.2 mm.
- the recording film of the present invention shows high reflectance and shows excellent recording characteristics by the recording film alone, but in order to further increase the reflectance as an optical disc as needed, it is between the substrate and the recording film Furthermore, an optical adjustment layer may be provided.
- the material of the optical adjustment layer include Ag, Au, Cu, Al, Ni, Cr, Ti and the like and alloys thereof.
- the optical disc may have a single-layer optical disc in which a recording film and a light transmission layer are formed one by one, or a two or more optical disc in which a plurality of recording films and a light transmission layer are stacked. It may be.
- an ultraviolet curing resin or the like is provided between the recording film group including the recording film and the optical adjustment layer or the dielectric layer laminated as necessary and the other recording film group. It may have a transparent intermediate layer.
- the feature of the present invention resides in that the recording film (preferably, a dielectric layer) described above is adopted, and other than the recording film and the dielectric layer, a substrate, a light transmission layer, an optical adjustment layer, a transparent intermediate
- the method of forming the layer and the like is not particularly limited, and the layer may be formed by a commonly used method to manufacture an optical information recording medium.
- a CD, a DVD, or a BD can be mentioned.
- a BD can be used to record and reproduce data by irradiating a recording film with a blue laser beam having a wavelength of about 380 nm to 450 nm, preferably about 405 nm.
- a specific example is -R.
- a polycarbonate substrate (thickness: 1.1 mm, diameter: 12 cm, track pitch: 0.32 ⁇ m, groove depth: 25 nm) is used as a substrate for an optical disk, and DC magnetron sputtering is performed on the substrate.
- recording films of various compositions shown in Table 3 were formed.
- the film thickness of the recording film was 40 nm.
- the recording film is a Bi oxide target when it contains Bi, a Cu oxide target when it contains Cu, a Co metal target when it contains Co, a Mn metal target when it contains Mn, an In metal when it contains In When the target contains Ag, it is formed by performing multi-source sputtering by simultaneous discharge using an Ag metal target.
- the sputtering conditions for forming the recording film were Ar flow rate: 10 sccm, oxygen flow rate: 20 sccm, gas pressure: 0.4 Pa, DC sputtering power: 100 to 200 W, and substrate temperature: room temperature.
- Ar flow rate 10 sccm
- oxygen flow rate 20 sccm
- gas pressure 0.4 Pa
- DC sputtering power 100 to 200 W
- substrate temperature room temperature.
- at least one part of the added metal element will be oxidized about all the examples of Table 3.
- the component composition of the formed recording film was determined by ICP emission analysis.
- an In 2 O 3 film was formed to a thickness of 10 nm as a protective film (dielectric layer) on the upper and lower sides of the recording film by DC magnetron sputtering.
- the target is an In 2 O 3 target, and sputtering conditions for forming a dielectric layer are Ar flow rate: 10 sccm, oxygen flow rate: 15 sccm, gas pressure: 0.4 Pa, DC sputtering power: 100 to 200 W, substrate temperature: room temperature And
- an ultraviolet ray curable resin (“BRD-864” manufactured by Nippon Kayaku Co., Ltd.) is applied as a light transmission layer on the dielectric layer formed on the recording film by spin coating, and then ultraviolet rays are applied.
- a light transmission layer having a thickness of about 0.1 mm was formed to obtain an optical disk.
- optical disk evaluation apparatus “ODU-1000” manufactured by Pulstec Industrial Co., Ltd. was used, the recording laser center wavelength was 405 nm, and a lens with an NA (numerical aperture) of 0.85 was used.
- NA number of the optical aperture
- the reflectance shown below was determined from the return light intensity of the laser light of the unrecorded part of the optical disk by irradiating the laser onto the track using the above-mentioned apparatus.
- the modulation degree and the jitter value were measured using a multi-signal of 2 T to 8 T signal at recording power of 2 mW to 20 mW under the condition of linear velocity: 4.92 m / s and reference clock: 66 MHz.
- the degree of modulation is a value obtained by dividing the difference between the maximum reflectance and the minimum reflectance of the recording portion by the maximum reflectance.
- the jitter value is a value indicating the standard deviation of the error value from the reference clock of the 2T to 8T signal.
- the degree of modulation (rate of change of reflectance) at the recording power (in the present embodiment, this is referred to as recording power) at which the jitter is minimized was calculated from the following equation (1).
- the recording power is 9.0 mW or less
- the minimum value of the jitter value is 6.5% or less
- the modulation degree is 0.40 or more.
- Degree of modulation (rate of change of reflectance) [(Reflectance of unrecorded part)-(reflectance of recorded part)] / (reflectance of unrecorded part) ... (1)
- the reflectivity (reflectance in the disc state) of the optical disc manufactured as described above using the above-mentioned "ODU-1000" manufactured by Pulstec Industrial Co., Ltd., the SUM2 level measurement result of the commercially available BD-RE disc Based on this, it was calculated assuming that the SUM 2 level 320 mV was 16% in reflectance. In this example, the one having a reflectance of 9% or more was regarded as a pass.
- the recording film contains Mn, an X group element, and O
- an example in which the Mn ratio in all the metal elements and the X group element ratio do not satisfy the preferable range of the present invention No. 1, For 2, 6, 10, 12 to 14, 23 to 25
- any of the above-mentioned characteristics such as the reflectance decreased.
- No. 1 which does not contain Mn. No. 35 is no.
- the reflectance decreased compared to 37 and 38.
- the present invention it is possible to achieve a high modulation factor and a low jitter value even with a practical relatively low recording laser power, and for an optical information recording medium having a sufficiently high reflectance when used as an optical information recording medium. It is possible to provide a recording film (in particular, a recording film for a write-once optical information recording medium), and an optical information recording medium (particularly, a write-once optical information recording medium) provided with the recording film. Further, according to the present invention, it is possible to provide a sputtering target useful for the formation of the recording film.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Physical Vapour Deposition (AREA)
Abstract
光情報記録媒体の層数を低減しながら、所定の要求特性をすべて満足し、生産性を高めることのできる光情報記録媒体用記録膜を提供する。本発明は、レーザー光の照射により記録が行われる光情報記録媒体用記録膜であって、Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と;酸素(O)と、を含み、Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化されている光情報記録媒体用記録膜に関する。
Description
本発明は、光情報記録媒体用の記録膜、光情報記録媒体、および当該記録膜の形成に有用なスパッタリングターゲットに関するものである。
光情報記録媒体(光ディスク)は、記録再生方式により、読み出し専用型のROM(Read Only Memory)、追記型のR(Recordable)、および書き換え可能型のRW(Rewritable)に大別することができる。このうち追記型の光ディスクはレーザー光の照射によって変化する記録層を有しており、記録方式により、主に、記録膜に孔やピットなどの記録マークを局所的に形成させる孔開け方式、記録膜を相変化させる相変化方式、複数の記録膜を反応させる層間反応方式、記録膜を構成する化合物を分解させる方式に大別される。
上記のうち孔開け方式の記録膜としては、SnやBiなどの低融点金属を含む記録膜が開示されており(例えば特許文献1)、レーザー光の加熱によって記録層に孔が開き、反射光の光路長が変化することでマークとスペース部に変化が生じることを利用している。また、相変化型の記録膜としては、例えばTe-O-Pd記録層が開示されており(例えば特許文献2および3)、レーザー光の照射により記録膜の結晶構造が変化し、それに伴って光学定数が変化することにより記録が行われる。また、層間反応方式の記録膜としては、接地する2つの記録層、例えば第一記録層のIn-O-(Ni、Mn、Mo)と、第二記録層のSe-Te-O-(Ti、Pd、Zr)との間の反応により記録膜が変化し、光学定数が変化するものなどが開示されている(例えば特許文献4)。また、記録膜を構成する化合物を分解する方式の記録膜として、分解温度の低い酸化物や窒化物などを用いた記録膜が開示されており(例えば特許文献5)、酸化物などを加熱により分解することで記録が行なわれる。
光情報記録媒体に求められる要求特性としては、照射されるレーザー光により記録が可能かどうかが重要であり、具体的には、実用的な記録パワーで記録が可能であること(高記録感度を有すること)、記録信号が再生に十分な信号振幅を有すること(高い変調度を有すること)、記録信号の正確性が高いこと(低いジッター値を示すこと)などが挙げられる。更に、再生に十分な反射率を有することも重要である。
しかし、従来技術として開示されている記録材料は、これらの要求特性を記録材料単体(単層膜)で満たすことが難しく、積層構造とすることが必須であった。例えば前記相変化方式では、記録膜単独での反射率が低いため、光ディスク状態での反射率を高めるために反射膜が必要であり、かつ変調度を増加させるため、記録膜の上下にZnS-SiO2などの誘電体層も設ける必要があり、光ディスクを構成する層数が多くなる。また、前記層間反応方式でも複数の記録膜が必要であることから、光ディスクを構成する層数が多くなり、生産性が低下するという問題がある。これに対し、前記孔開け方式は、記録膜自体の反射率が高く、且つ、大きな変調度も確保できるため、光ディスクを構成する層の数を低減できるが、より高い記録感度を達成するにあたっては、更なる改善が必要である。
本発明はこの様な事情に鑑みてなされたものであって、その目的は、光情報記録媒体の層数を低減しながら上記要求特性(低い記録パワーで記録が可能であること、高い変調度を有すること、低いジッター値を有すること、再生に十分な高い反射率を有すること)をすべて満足し、生産性を高めることのできる光情報記録媒体用記録膜と、当該記録膜を備えた光情報記録媒体、および当該記録膜の形成に有用なスパッタリングターゲットを提供することにある。
本発明は、以下の光情報記録媒体用記録膜、光情報記録媒体及びスパッタリングターゲットを提供する。
(1)レーザー光の照射により記録が行われる光情報記録媒体用記録膜であって、
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と;酸素(O)と、を含み、
Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化されていることを特徴とする光情報記録媒体用記録膜。
(1)レーザー光の照射により記録が行われる光情報記録媒体用記録膜であって、
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と;酸素(O)と、を含み、
Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化されていることを特徴とする光情報記録媒体用記録膜。
(2)前記X群元素がBiであり、MnとBiの合計に対するMnの原子比(%)が20%超、60%以下である(1)に記載の光情報記録媒体用記録膜。
(3)前記X群元素がInであり、MnとInの合計に対するMnの原子比(%)が20%超、80%以下である(1)に記載の光情報記録媒体用記録膜。
(4)前記X群元素がCuであり、MnとCuの合計に対するMnの原子比(%)が10%超、80%以下である(1)に記載の光情報記録媒体用記録膜。
(5)前記X群元素がBiおよびCuであり、MnとBiとCuの合計に対するBiの原子比(%)が10%以上、50%以下であり、且つ、MnとBiとCuの合計に対するMnの原子比(%)が20%以上、40%以下である(1)に記載の光情報記録媒体用記録膜。
(6)前記X群元素がBiおよびInであり、MnとBiとInの合計に対するBiの原子比(%)が20%以上、40%未満であり、且つ、MnとBiとInの合計に対するInの原子比(%)が20%超、40%以下である(1)に記載の光情報記録媒体用記録膜。
(7)前記X群元素がAg、およびInであり、MnとAgとInの合計に対するMnの原子比(%)が30%以上、50%以下であり、且つ、MnとAgとInの合計に対するInの原子比(%)が30%以上、50%以下である(1)に記載の光情報記録媒体用記録膜。
(8)前記X群元素がBi、Cu、およびCoであり、MnとBiとCuとCoの合計に対するMnの原子比(%)が20%以上、40%以下であり、MnとBiとCuとCoの合計に対するCuの原子比(%)が10%以上、35%以下であり、且つ、MnとBiとCuとCoの合計に対するBiの原子比(%)が10%以上、30%以下である(1)に記載の光情報記録媒体用記録膜。
(9)(1)~(8)のいずれか一つに記載の記録膜を備えた光情報記録媒体。
(10)(1)~(8)のいずれか一つに記載の記録膜を備え、且つ、前記記録膜の上および/または下に誘電体層を備えた光情報記録媒体。
(11)前記記録膜の膜厚が10~100nmであり、前記誘電体層の膜厚が2~30nmである(10)に記載の光情報記録媒体。
(12)(1)~(8)のいずれか一つに記載の光情報記録媒体用記録膜を形成するためのスパッタリングターゲットであって、
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と、を含み、残部:不可避的不純物であることを特徴とするスパッタリングターゲット。
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と、を含み、残部:不可避的不純物であることを特徴とするスパッタリングターゲット。
本発明によれば、実用的な比較的低い記録レーザーパワーであっても高い変調度および低いジッター値を達成でき、しかも光情報記録媒体としたときの反射率も十分に高い光情報記録媒体用記録膜(特には、追記型光情報記録媒体用記録膜)、および当該記録膜を備えた光情報記録媒体(特には、追記型光情報記録媒体)を提供することができる。
また、本発明によれば、上記記録膜の形成に有用なスパッタリングターゲットを提供することができる。
本発明者らは、上記特性を備えた光情報記録媒体用記録膜を提供するため、検討を重ねてきた。その結果、Mnは、記録膜自体の屈折率を増加させるのに極めて有用な元素であること;更に上記特性の向上には、Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)を併用することが不可欠であること;更に酸素(O)を添加し、記録膜中に含まれるMnの少なくとも一部、およびX群元素の少なくとも一部が酸化された無機酸化物を形成させれば、当該無機酸化物が入射するレーザー光の熱によって分解されて規定のマークを形成し、記録できることを見出し、本発明を完成した。
ここで「Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化された」とは、本発明を構成する金属元素はすべて、当該金属元素の少なくとも一部が酸化されていることを意味する。例えば、X群元素として二種類以上の元素を含む場合は、当該二種類以上の元素のいずれもが、少なくとも一部酸化されていることを意味する。
また「少なくとも一部」とは、MnおよびX群元素(上記のとおり二種類以上のX群元素を含むときはすべてのX群元素)が、化学量論組成比を満足するような状態で酸化されている必要は必ずしもなく、化学量論組成比を下回る程度に酸化されている態様も含む趣旨である。ただし、無機酸化物の分解による記録性能を有効に発揮させるには、化学量論組成比を満足するように酸化されていることが好ましく、より好ましくは化学量論比を超えて過酸化物の状態で存在することが推奨され、これにより分解温度を一層低減できるため、記録性能が更に向上する。
すなわち、本発明の光情報記録媒体用記録膜は、レーザー光の照射により記録が行われる光情報記録媒体用記録膜であって、Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と;酸素(O)と、を含み、Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化されているところに特徴があり、上記記録膜は、Mn-X群元素-Oで表わすことができる。X群元素は上記のX群から選択される少なくとも一種の元素であり、二種以上が含まれていても良い。上記記録膜に含まれるMnおよびX群元素の含有量は、上記記録膜を構成する組成によって変化し得、所望の特性が発揮されるように適宜好適な範囲を選択することができる。
本明細書では、記録膜を構成する全金属元素(酸素を除く)中の金属元素の原子比(%)を単に金属比と呼ぶ場合がある。例えば記録膜がMnおよびBiを含み、Mn-Bi-Oで表わされる場合、全金属元素(Mn+Bi)に対するMnの原子比(%)をMn比と呼ぶ場合がある。
本発明では、低い記録パワーで記録が可能であること(詳細には後記する実施例に記載の方法により記録パワーを測定したとき、記録パワーが9.0mW以下であること)、高い変調度を有すること(詳細には後記する実施例に記載の方法により変調度を測定したとき、変調度が0.4以上であること)、低いジッター値を有すること(詳細には後記する実施例に記載の方法によりジッター値を測定したとき、ジッター値が6.5%以下であること)のすべてを満足するものを記録感度(記録特性)に優れると呼ぶ場合がある。
また本発明では、再生に十分な高い反射率を有すること(詳細には後記する実施例に記載の方法により反射率を測定したとき、反射率が4%以上であること)を反射特性に優れると呼ぶ場合がある。本発明の光情報記録媒体は、上記要件をすべて満足するものである。
以下、詳細に説明する。
(Mnについて)
本発明の光情報記録媒体用記録膜は、Mnを含有し、且つ、Mnの少なくとも一部が酸化されているものである。これにより、記録感度に優れると共に、反射特性も優れた光情報記録媒体が得られる。
本発明の光情報記録媒体用記録膜は、Mnを含有し、且つ、Mnの少なくとも一部が酸化されているものである。これにより、記録感度に優れると共に、反射特性も優れた光情報記録媒体が得られる。
本発明においてMnは、記録膜自体(記録膜単層)の屈折率を増加させて高い反射率を確保するのに有用な元素として、本発明者らの基礎実験により選択された元素である。以下、Mnを選択するに至った基礎実験について、表1を参照しながら説明する。
表1には、ガラス基板(厚さ0.7mm)上に表1に示す種々の組成の記録膜(厚さ20nm)を成膜した試料(記録膜単層)について、ウームラ社製のエリプソメトリーM-2000Uを用いて屈折率(光学定数と同義)を測定した結果を示している。表1には、上記試料について、分光光度計を用いて記録膜単層の反射率を測定した結果も併記している。参考のため、図1に、試料No.1~4(Bi-Mn-O)について、屈折率と反射率の関係をプロットした図を示す。図1では、左側から順に、Mn比=20%(No.1)、40%(No.2)、60%(No.3)、80%(No.4)の結果をそれぞれ示している。また、図1に、No.5~9(In-Mn-O)及びNo.10~14(Ag-Mn-O)について、屈折率と反射率の関係をプロットした図も併せて示す。
表1および図1より、Bi-Mn-Oの試料No.1~4では、Mn量の増加によって屈折率が増加し、それに比例して記録膜単層の反射率も増加することが分かる。同様の傾向は、Biの代わりにInを含むIn-Mn-Oの試料No.5~9、およびBiの代わりにAgを含むAg-Mn-Oの試料No.11~14でも見られた。これに対し、Mnを含まない試料No.10では、屈折率が低く反射率も低かった。
表1より、X群元素としてBi(No.1~4)、In(No.5~9)、Ag(No.11~14)を用いたときの上記反射率(記録膜自体の反射率)はそれぞれ異なっており、同程度の反射率(例えば単層の反射率30%以上)を確保するためのMnの好ましい金属比も、X群元素の種類によって変化することが読み取れる。具体的には、上記反射率を達成するための好ましいMn比率は、X群元素=Biの場合はMn比を約20%以上、X群元素=Inの場合はMn比を約40%以上、X群元素=Agの場合はMn比を約30%以上とすることが有効である。
表1に示す反射率は、記録膜自体の反射率を示し、光情報記録媒体の反射率を示すものでないため、この結果から、記録膜中の好適なMn比などを決定することはできないが、表1の結果より、X群元素の種類によって記録膜の反射率が変化し得ること、所定の反射率を確保するための、好ましいX群元素の比(全金属元素に対するX群元素の比)も変化し得ることが推察される。
(X群元素について)
本発明の光情報記録媒体用記録膜は、上記Mnと共に、Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)を含み、且つ、X群元素の少なくとも一部が酸化されているものである。これにより、記録感度に優れると共に、反射特性も優れた光情報記録媒体が得られる。
本発明の光情報記録媒体用記録膜は、上記Mnと共に、Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)を含み、且つ、X群元素の少なくとも一部が酸化されているものである。これにより、記録感度に優れると共に、反射特性も優れた光情報記録媒体が得られる。
すなわち、本発明者らの検討結果によれば、Mnのみでは十分な記録感度が得られず、Mnと、上記X群元素の少なくとも一種とを併用させることにより、所望の特性を達成できることが判明した。X群元素は、単独で添加しても良いし、二種以上を併用しても良い。
上記X群元素との併用によって記録感度と反射特性が改善される理由は詳細には不明であるが、例えばX群元素のうちBiおよびAgは、これら元素の酸化物の分解温度が低く、レーザー光照射によって分解され易くなるため、記録特性が向上すると思料される。また、CoおよびCuは記録膜への吸収性付与のため添加する。記録膜に吸収性を付与することでレーザー光を効率的に吸収できるようになり、記録に必要なレーザーパワーを低パワー側にシフトさせることが可能となる。また、In、Sn、およびZnは、無色透明の酸化物を形成するため、透過率を制御することが可能となる。その結果、単層構造のBD-R用記録膜に対して必要な透過率を付与できるだけでなく、誘電体層や光透過層などが積層された多層構造のBD-Rを作製する場合、BD-R全体に対して必要な透過率を付与することが可能になると共に、記録特性にも優れた光情報記録媒体が得られるようになる。X群元素の添加による上記作用を有効に発揮させるためには、記録膜の組成に応じて、X群元素の含有量を適切に制御することが好ましく、これにより、記録感度と反射特性の双方に優れた光情報記録媒体が得られる。
更に本発明の光情報記録媒体用記録膜は、上記金属元素(MnおよびX群元素)の他に、酸素(O)も必須成分として含むものである。この酸素は、記録時のマーク形成に有用な成分であり、記録膜中に、Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化物として存在するために必要な量が含まれていることが必要である。ここでX群元素を二種類以上含むとき(例えばX1群元素、X2群元素)は、記録膜中に含まれるすべてのX群元素の少なくとも一部が酸化物として存在していることが必要である(例えばX1群元素の酸化物、X2群元素の酸化物として存在する)。記録膜中に含まれる酸素(O)の好ましい比率は、X群元素の種類、記録膜中の金属比などによっても相違するが、おおむね、記録膜を構成する全成分(全金属元素+O)に対する原子比(%)が、おおむね、50~60%の範囲内に制御されていることが好ましい。記録膜中に含まれる酸素(O)の比率は、成膜時のスパッタリング条件における酸素流量などを適切に調整することによって制御することができ、当該酸素流量などに基づき、酸素の比率を決定することができる。
例えば、記録膜がMnおよびBiを含むMn-Bi-Oの場合、記録膜を構成する全ての元素(Mn+Bi+O)に対する(Bi+O)の好ましい比率(原子比)は80%未満であることが好ましく、これにより、反射特性が向上する。なお、前述した特許文献5にも、MnおよびBiを含む酸化物記録膜(Mn-Bi-O)が開示されているが、本発明の記録膜とは、記録膜を構成する全ての元素(Mn+Bi+O)に対する(Bi+O)の好ましい範囲が相違している。すなわち、上記特許文献5では、上記範囲を80%以上に制御することにより、データが確実に記録/再生される光情報記録媒体を実現した旨記載されているが、本発明者らの検討結果によれば、特許文献5のように上記範囲を80%以上に制御したものは、全金属元素中に占めるMnの比率(Mn比)が小さくなるため、反射特性が低下することが判明した。
表2には、特許文献5に記載の記録膜の組成を模擬して全金属元素中のMn比およびBi比が種々異なるMn-Bi-O(No.1~5)を用い、上記特許文献5に記載の方法と同様にして反射率および記録膜に含まれる各元素の含有量を測定した結果を示している。
詳細には、Si基板(厚さ0.5mm)上に厚さ200nmから400nmの記録膜単層膜を成膜し、理学電機株式会社製の全自動蛍光X線測定装置「RIX-3000」を用いて記録膜中の各元素量を測定した。各元素量の精度を高めるため、管球としてRh管球を用い、Cu単層膜、Bi単層膜、Mn単層膜(膜厚はいずれも200nm)をそれぞれ、Si基板上に成膜して各元素ごとに標準曲線を作成し、各元素の感度補正係数を測定した。Oについては、Bi2O3粉末を用いて感度補正係数を測定した。このようにして測定された感度補正係数から、記録膜中のCu量(原子%)、Bi量(原子%)、Mn量(原子%)を補正して決定した。更に下式に基づき、O量(原子%)を決定した。
O量(原子%)
=全元素量(原子%)-[Cu量(原子%)+Bi量(原子%)+Mn(原子%)]
O量(原子%)
=全元素量(原子%)-[Cu量(原子%)+Bi量(原子%)+Mn(原子%)]
更に後記する実施例に記載の方法と同様にして、記録パワー、ジッター値、および変調度を測定した。
表2には、参考のため、更にCuを含む酸化物記録膜(Mn-Bi-Cu-O)について、上記と同様の測定を行なった結果を併記している。
表2より、前述した特許文献5のように、記録膜を構成する全成分(Mn+Bi+O)中に占める(Bi+O)の比率が80%以上と高く、その結果、Mn比が13%と小さい(後記するように、Mn-Bi記録膜中の好ましいMn比は20%超、60%以下である)表2のNo.1では、記録パワー、ジッター値、および変調度は良好であるが、反射率が低下することが分かる。
これに対し、全成分(Mn+Bi+O)中に占める(Bi+O)の好ましい比率が80%未満であり、その結果、Mn比が本発明の好ましい範囲内に制御された表2のNo.2および3では、上記の記録感度に優れると共に、光反射率も高かった。
同様の傾向は、更にCuを含む(Mn-Bi-Cu-O)の記録膜を用いたときにも見られた。すなわち、表2より、前述した特許文献5のように記録膜を構成する全成分(Mn+Bi+Cu+O)中に占める(Bi+O)の比率が80%以上と高く、その結果、Mn比が19%と小さく本発明の好ましいMn比を満足しない表2のNo.5では、記録パワー、ジッター値、および変調度は良好であるが、反射率が低下したのに対し、記録膜を構成する全成分(Mn+Bi+Cu+O)中に占める(Bi+O)の比率が80%未満と低く、その結果、Mn比が本発明の好ましい範囲内に制御された表2のNo.4では、記録感度および反射特性に極めて優れていた。
本発明に係る光情報記録媒体用記録膜の具体的構成として、例えば、酸素(O)を除く金属元素が2種類からなる二元系記録膜:Mn-Bi-O、Mn-In-O、Mn-Cu-O、Mn-Ag-Oなど;酸素(O)を除く金属元素が3種類からなる三元系記録膜:Mn-Bi-Cu-O、Mn-Bi-In-O、Mn-Ag-In-Oなど;酸素(O)を除く金属元素が4種類からなる四元系記録膜:Mn-Bi-Cu-Co-Oなどが例示される。
所望とする特性を一層有効に発揮させるためには、X群元素のなかでも、特に少なくともBiまたはAgを含む記録膜の使用が好ましい。このような態様として、記録膜中にBiまたはAgを単独で、または両方含むものが挙げられ、二元系、三元系、四元系などの種類は問わない。
上記記録膜について、MnおよびX群元素の好ましい含有量は、前記表1を用いて示したように、記録膜の組成、誘電膜の種類、金属の酸化状態などによっても相違し得、一義的に決定することは困難であるが、Mnの特性(他の元素に比べてスパッタレートが遅いなど)などを考慮し、例えば、以下のように制御することが好ましい。同様に記録膜中に含まれるO(酸素)の好ましい含有量も、記録膜の組成、誘電膜の種類、金属の酸化物量などに応じて相違し得、所望の特性が得られるように適宜適切に制御することが好ましい。
記録膜として、X群元素=Biを含むMn-Bi-Oを用いる場合、MnとBiの合計に対するMnの好ましい原子比(%)は20%超、60%以下であり、より好ましい原子比(%)は30%以上、50%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
上記記録膜(Mn-Bi-O)において、記録膜中に含まれる好ましいO(酸素)量(原子%)は、MnとBiの合計に対して1.1倍以上、1.65倍以下である。O量が1.1倍未満では、分解に関わる酸化物量が少なく、良好な記録特性が得られず、一方、1.65倍を超えると所望の反射率を得ることができない。
また、記録膜として、X群元素=Inを含むMn-In-Oを用いる場合、MnとInの合計に対するMnの好ましい原子比(%)は20%超、80%以下であり、より好ましい原子比(%)は30%以上、60%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
また、記録膜として、X群元素=Cuを含むMn-Cu-Oを用いる場合、MnとCuの合計に対するMnの好ましい原子比(%)は10%超、80%以下であり、より好ましい原子比(%)は20%以上、60%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
また、記録膜として、X群元素=BiおよびCuを含むMn-Bi-Cu-Oを用いる場合、MnとBiとCuの合計に対するBiの好ましい原子比(%)は10%以上、50%以下、より好ましい原子比は10%以上、40%以下であり、さらに好ましい原子比(%)は20%以上、40%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。更に、MnとBiとCuの合計に対するMnの原子比(%)は20%以上、40%以下であり、より好ましい原子比(%)は30%以上、40%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
上記記録膜(Mn-Bi-Cu-O)において、記録膜中に含まれる好ましいO(酸素)量(原子%)は、MnとBiとCuの合計に対して1.3倍以上である。O量が1.3倍未満では、分解に関わる酸化物量が少なく、良好な記録特性が得られない。
また、記録膜として、X群元素=BiおよびInを含むMn-Bi-In-Oを用いる場合、MnとBiとInの合計に対するBiの好ましい原子比(%)は20%以上、40%未満である。下限および上限が上記値を外れると、反射率が低下するようになる。更に、MnとBiとInの合計に対するInの原子比(%)は20%超、40%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
また、記録膜として、X群元素=AgおよびInを含むMn-Ag-In-Oを用いる場合、MnとAgとInの合計に対するMnの好ましい原子比(%)は30%以上、50%以下であり、より好ましい原子比(%)は30%以上、40%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。更に、MnとAgとInの合計に対するInの原子比(%)は30%以上、50%以下であり、好ましい原子比は30%以上、50%未満であり、さらに好ましい原子比(%)は30%以上、40%以下である。下限および上限が上記値を外れると、反射率が低下するようになる。
本発明の好ましい実施形態において、前記X群元素がBi、Cu、およびCoであり、MnとBiとCuとCoの合計に対するMnの原子比(%)が20%以上、40%以下であり、MnとBiとCuとCoの合計に対するCuの原子比(%)が10%以上、35%以下であり、且つ、MnとBiとCuとCoの合計に対するBiの原子比(%)が10%以上、30%以下である。
以上、本発明の光情報記録媒体用記録膜について説明した。
本発明には、上記記録膜を備えた光情報記録媒体も包含される。光情報記録媒体の構成は特に限定されず、通常用いられる構成を適用することができる。本発明では、例えば、上記記録膜と、上記記録層の上および/または下に誘導体層を備えた光情報記録媒体が挙げられる。そのほか、光情報記録媒体には光学調整層などを設けても良い。
上記誘導体層としては、光情報記録媒体に通常用いられるものであれば特に限定されず、例えば、In2O3、SnO、SiO2、ZnS-SiO2、ZnO、TiO2、Al2O3などの酸化物から構成されていても良いし、TiN、TaN、NbN、InN、AlNなどの窒化物から構成されていても良い。あるいは、上記酸化物と窒化物の両方から構成されていても良い。上記誘電膜層は、記録膜を構成する酸化物の分解によって放出される酸素を閉じ込める作用があり、それにより、マーク形成時の形態変化をより効率的に行うことが可能になり、記録時に高変調度を与えることができるようになる。更に、光情報記録媒体の信頼性を評価するために通常行なわれる加速試験(温度80℃、相対湿度85%の環境下で96時間保持)に対して高い耐久性を付与することができる。また、誘電体層の膜厚を調整することにより光の干渉を制御することができ、目的に応じた反射率を付与することも可能となる。
ここで、上記記録膜の膜厚(記録膜を単層で使用し、誘電体層や光学調整層等を設けない場合)は、おおむね、10~100nmの範囲内であることが好ましい。上記記録膜の膜厚が薄すぎると、記録レーザー光の入射によって透過率が高くなり、光吸収を効果的に行なうことができないほか、記録によって変化する箇所の厚みが小さいために変調度が小さくなる。一方、上記記録膜の膜厚が厚すぎると生産性が低下するようになる。より好ましくは、15~50nmである。
また、上記誘電体層の膜厚は、おおむね、2~30nmの範囲内であることが好ましい。上記誘電体層の膜厚が薄すぎると、記録層の形態変化が抑制されるため、変調度が低下する。より好ましくは、5~20nmである。
本発明の記録膜は、スパッタリング法で形成することが好ましい。スパッタリング法によれば、均一な組成の光情報記録媒体が得られる。具体的には、Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と、を含み、残部:不可避的不純物(製造時に不可避に混入する不可避不純物)のスパッタリングターゲットを用い、O2ガスを導入して反応性スパッタリングを行うことにより、所定比率の酸素(O)を含む記録膜を成膜することができる。上記スパッタリングターゲットとして、MnまたはX群元素の少なくとも一部が酸化された酸化物スパッタリングターゲットを用いても良い。あるいは、例えば、X群元素からなるスパッタリングターゲットまたはX群元素の少なくとも一部が酸化された酸化物スパッタリングターゲット;Mnのみから構成されるスパッタリングターゲットまたはMnの少なくとも一部が酸化された酸化物スパッタリングターゲットを用い、これらを同時放電を行なうことによって所望とする記録膜を形成することもできる。
なお、スパッタリングターゲットの組成として、具体的に、上述した記録膜と同一組成のものが挙げられる。
なお、スパッタリングターゲットの組成として、具体的に、上述した記録膜と同一組成のものが挙げられる。
なお、生産性などを考慮すると、上記金属スパッタリングターゲットまたは酸化物スパッタリングターゲットにおいて、Bi、In、Sn、およびZnなどの低融点金属は、高パワーでの成膜を可能とするため、酸化物として含まれていることが好ましい。また、Ag、Cu、Coは、金属として含まれていることが好ましく、これにより、スパッタリングターゲットの密度を向上させることが可能となり、高パワー成膜時の耐久性が高められるようになる。
また、上記スパッタリングターゲットを用い、スパッタリング法で形成するときの好ましいスパッタリング条件としては、例えば、Ar流量:10~100sccm、酸素流量:10~100sccmとすることが挙げられる。また、スパッタリング法におけるその他の条件は、汎用されるスパッタリング条件を採用することができ、ガス圧を例えば0.1~1.0Paの範囲、スパッタ電力を例えば0.5~20W/cm2の範囲に制御することが挙げられる。
本発明の光情報記録媒体は、上記記録膜を備えている点に特徴を有しており、好ましくは更に誘電体層を備えているものである。上記記録膜のほかは、光情報記録媒体の分野に公知の構成を採用することができる。
光情報記録媒体(光ディスク)として、その構造が、レーザーのガイド用の溝が刻まれた基板上に記録膜が積層され、更にその上に光透過層を積層したものが挙げられる。
例えば、前記基板の素材としては、ポリカーボネート樹脂、ノルボルネン系樹脂、環状オレフィン系共重合体、非晶質ポリオレフィンなどが挙げられる。また、前記光透過層としては、ポリカーボネートや紫外線硬化樹脂を用いることができる。光透過層の材質としては記録再生を行うレーザーに対して高い透過率を持ち、光吸収率が小さいことが好ましい。前記基板の厚さは、例えば0.5~1.2mmとすることが挙げられる。また前記光透過層の厚さは、例えば0.1~1.2mmとすることが挙げられる。
本発明の記録膜は、高い反射率を示し、記録膜単独で優れた記録特性を示すものであるが、必要に応じて光ディスクとしての反射率をより高めるべく、基板と記録膜との間に更に光学調整層を設けてもよい。前記光学調整層の素材としては、Ag、Au、Cu、Al、Ni、Cr、Ti等やそれらの合金などが例示される。
尚、光ディスクの層構成としては、記録膜および光透過層がそれぞれ1層ずつ形成された1層光ディスクであっても良いし、記録膜および光透過層が複数積層された2層以上の光ディスクであっても良い。
前記記録膜を複数備える場合には、記録膜と必要に応じて積層される光学調整層や誘電体層からなる記録膜群と別の記録膜群との間に、例えば紫外線硬化樹脂等からなる透明中間層を有していてもよい。
本発明の特徴は、前述した記録膜(好ましくは、更に誘電体層)を採用した点にあり、この記録膜や誘電体層以外の、基板や光透過層、更には光学調整層や透明中間層などの形成方法については特に限定されず、通常行われている方法で形成して、光情報記録媒体を製造すればよい。
光情報記録媒体としてCD、DVD、またはBDが挙げられ、例えば波長が約380nmから450nm、好ましくは約405nmの青色レーザー光を記録膜に照射し、データの記録および再生を行うことが可能なBD-Rが具体例として挙げられる。
以下、実施例を挙げて本発明をより具体的に説明するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で適宜変更を加えて実施することも可能であり、それらは本発明の技術的範囲に包含される。
(1)光ディスクの作製
光ディスク用基板として、ポリカーボネート基板(厚さ:1.1mm、直径:12cm、トラックピッチ:0.32μm、溝深さ:25nm)を用い、上記基板上に、DCマグネトロンスパッタリング法により、表3に示す種々の組成の記録膜を形成した。記録膜の膜厚は40nmとした。上記記録膜は、Biを含むときはBi酸化物ターゲット、Cuを含むときはCu酸化物ターゲット、Coを含むときはCo金属ターゲット、Mnを含むときはMn金属ターゲット、Inを含むときはIn金属ターゲット、Agを含むときはAg金属ターゲットを用い、同時放電による多元スパッタリングを行って形成した。
光ディスク用基板として、ポリカーボネート基板(厚さ:1.1mm、直径:12cm、トラックピッチ:0.32μm、溝深さ:25nm)を用い、上記基板上に、DCマグネトロンスパッタリング法により、表3に示す種々の組成の記録膜を形成した。記録膜の膜厚は40nmとした。上記記録膜は、Biを含むときはBi酸化物ターゲット、Cuを含むときはCu酸化物ターゲット、Coを含むときはCo金属ターゲット、Mnを含むときはMn金属ターゲット、Inを含むときはIn金属ターゲット、Agを含むときはAg金属ターゲットを用い、同時放電による多元スパッタリングを行って形成した。
上記記録膜形成のためのスパッタリング条件は、Ar流量:10sccm、酸素流量:20sccm、ガス圧:0.4Pa、DCスパッタリングパワー:100~200W、基板温度:室温とした。なお、本実施例の成膜条件によれば、表3の全例について、添加した金属元素の少なくとも一部は酸化されたものとなる。
成膜した記録膜の成分組成は、ICP発光分析により測定して求めた。
次に、上記記録膜の上下に保護膜(誘電体層)として、DCマグネトロンスパッタリング法により、In2O3膜を10nmの厚さで成膜した。ターゲットはIn2O3ターゲットを用い、誘電体層形成のためのスパッタリング条件は、Ar流量:10sccm、酸素流量:15sccm、ガス圧:0.4Pa、DCスパッタリングパワー:100~200W、基板温度:室温とした。
次いで、記録膜の上に形成された誘電体層の上に、光透過層として紫外線硬化性樹脂(日本化薬社製「BRD-864」)をスピンコート法により塗布した後、紫外線を照射して膜厚約0.1mmの光透過層を成膜し、光ディスクを得た。
(2)光ディスクの評価
上記のようにして作製した光ディスクについて、以下のようにして記録パワー、ジッター値、および変調度を測定した。
上記のようにして作製した光ディスクについて、以下のようにして記録パワー、ジッター値、および変調度を測定した。
本実施例では、光ディスク評価装置としてパルステック工業社製「ODU-1000」を用い、記録レーザー中心波長は405nmとし、NA(開口数):0.85のレンズを用いた。下記に示す反射率は、上記装置を用い、レーザーをトラック上に照射し、光ディスクにおける未記録部分のレーザー光の戻り光強度から求めた。
上記光ディスク評価装置を用いて、線速:4.92m/s、基準クロック:66MHzの条件で、記録パワー2mWから20mWで2Tから8T信号のマルチシグナルを用い、変調度とジッター値を測定した。このうち変調度は、記録部の最大反射率と最小反射率の差を、最大反射率で割った値である。また、ジッター値は、2Tから8T信号の基準クロックからの誤差値の標準偏差を示す値である。
このジッターが最小となる記録パワー(本実施例では、これを記録パワーとする。)での変調度(反射率の変化率)を下記式(1)から算出した。本実施例では、記録パワーが9.0mW以下であり、上記ジッター値の最小値が6.5%以下であり、且つ、この変調度が0.40以上のものを合格とした。
変調度(反射率の変化率)
=[(未記録部分の反射率)-(記録部分の反射率)]/(未記録部分の反射率)・・・ (1)
変調度(反射率の変化率)
=[(未記録部分の反射率)-(記録部分の反射率)]/(未記録部分の反射率)・・・ (1)
更に、上記のようにして作製した光ディスクの反射率(ディスク状態での反射率)について、前述したパルステック工業社製「ODU-1000」を用い、市販のBD-REディスクのSUM2レベル測定結果に基づき、SUM2レベル320mVを反射率16%と仮定して算出した。本実施例では、反射率が9%以上のものを合格とした。
これらの結果を表3に併記する。表3中、「測定不可」とは、評価装置のトラッキングがかからず、測定ができなかった例である。
表3より、記録膜中にMn、X群元素、およびOを含み、且つ、全金属元素中に占めるMn比およびX群元素比が本発明の好ましい範囲を満足する例(表3のNo.3~5、7~9、15~22、26~33、および36~38)はいずれも、変調度が高く、実用的な記録レーザーパワーでの記録感度に優れていると共に、反射特性も良好であることがわかる。
これに対し、純BiからなるNo.11では、記録パワーが低下し、反射率も低下した。また、純AgからなるNo.34では、装置のトラッキングがかからず、記録パワーおよびジッター値を測定できず、変調度も高くなって反射率も低下した。
また、記録膜中にMn、X群元素、およびOを含む例であっても、全金属元素中に占めるMn比およびX群元素比が本発明の好ましい範囲を満足しない例(No.1、2、6、10、12~14、23~25)は、反射率など上記特性のいずれかが低下した。
また、Mnを含まないNo.35は、No.37や38に比べて反射率が低下した。
本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2011年5月31日出願の日本特許出願(特願2011-122910)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2011年5月31日出願の日本特許出願(特願2011-122910)に基づくものであり、その内容はここに参照として取り込まれる。
本発明によれば、実用的な比較的低い記録レーザーパワーであっても高い変調度および低いジッター値を達成でき、しかも光情報記録媒体としたときの反射率も十分に高い光情報記録媒体用記録膜(特には、追記型光情報記録媒体用記録膜)、および当該記録膜を備えた光情報記録媒体(特には、追記型光情報記録媒体)を提供することができる。
また、本発明によれば、上記記録膜の形成に有用なスパッタリングターゲットを提供することができる。
また、本発明によれば、上記記録膜の形成に有用なスパッタリングターゲットを提供することができる。
Claims (12)
- レーザー光の照射により記録が行われる光情報記録媒体用記録膜であって、
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と;酸素(O)と、を含み、
Mnの少なくとも一部、およびX群元素の少なくとも一部が酸化されていることを特徴とする光情報記録媒体用記録膜。 - 前記X群元素がBiであり、MnとBiの合計に対するMnの原子比(%)が20%超、60%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がInであり、MnとInの合計に対するMnの原子比(%)が20%超、80%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がCuであり、MnとCuの合計に対するMnの原子比(%)が10%超、80%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がBiおよびCuであり、MnとBiとCuの合計に対するBiの原子比(%)が10%以上、50%以下であり、且つ、MnとBiとCuの合計に対するMnの原子比(%)が20%以上、40%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がBiおよびInであり、MnとBiとInの合計に対するBiの原子比(%)が20%以上、40%未満であり、且つ、MnとBiとInの合計に対するInの原子比(%)が20%超、40%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がAg、およびInであり、MnとAgとInの合計に対するMnの原子比(%)が30%以上、50%以下であり、且つ、MnとAgとInの合計に対するInの原子比(%)が30%以上、50%以下である請求項1に記載の光情報記録媒体用記録膜。
- 前記X群元素がBi、Cu、およびCoであり、MnとBiとCuとCoの合計に対するMnの原子比(%)が20%以上、40%以下であり、MnとBiとCuとCoの合計に対するCuの原子比(%)が10%以上、35%以下であり、且つ、MnとBiとCuとCoの合計に対するBiの原子比(%)が10%以上、30%以下である請求項1に記載の光情報記録媒体用記録膜。
- 請求項1~8のいずれかに記載の記録膜を備えた光情報記録媒体。
- 請求項1~8のいずれかに記載の記録膜を備え、且つ、前記記録膜の上および/または下に誘電体層を備えた光情報記録媒体。
- 前記記録膜の膜厚が10~100nmであり、前記誘電体層の膜厚が2~30nmである請求項10に記載の光情報記録媒体。
- 請求項1~8のいずれかに記載の光情報記録媒体用記録膜を形成するためのスパッタリングターゲットであって、
Mnと;Bi、Ag、Co、Cu、In、Sn、およびZnよりなる群(X群)から選択される少なくとも一種の元素(X群元素)と、を含み、残部:不可避的不純物であることを特徴とするスパッタリングターゲット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/115,547 US9214181B2 (en) | 2011-05-31 | 2012-05-30 | Recording film for optical information recording medium, optical information recording medium, and sputtering target used to form said recording film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-122910 | 2011-05-31 | ||
JP2011122910A JP5662874B2 (ja) | 2011-05-31 | 2011-05-31 | 光情報記録媒体用記録膜および光情報記録媒体、並びに上記記録膜の形成に用いられるスパッタリングターゲット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012165472A1 true WO2012165472A1 (ja) | 2012-12-06 |
Family
ID=47259324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063917 WO2012165472A1 (ja) | 2011-05-31 | 2012-05-30 | 光情報記録媒体用記録膜および光情報記録媒体、並びに上記記録膜の形成に用いられるスパッタリングターゲット |
Country Status (4)
Country | Link |
---|---|
US (1) | US9214181B2 (ja) |
JP (1) | JP5662874B2 (ja) |
TW (1) | TWI513600B (ja) |
WO (1) | WO2012165472A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI521505B (zh) | 2012-06-04 | 2016-02-11 | Sony Corp | Information media |
JP6376438B2 (ja) * | 2013-05-31 | 2018-08-22 | 日立金属株式会社 | Cu−Mn合金スパッタリングターゲット材およびその製造方法 |
JP6450229B2 (ja) * | 2015-03-20 | 2019-01-09 | デクセリアルズ株式会社 | Mn−Zn−Mo−O系スパッタリングターゲット及びその製造方法 |
TWI722142B (zh) | 2016-04-08 | 2021-03-21 | 日商新力股份有限公司 | 光記錄媒體及其製造方法、光記錄媒體用記錄層 |
JP6860990B2 (ja) * | 2016-07-27 | 2021-04-21 | デクセリアルズ株式会社 | Mn−Zn−O系スパッタリングターゲット及びその製造方法 |
JP6661000B2 (ja) * | 2018-06-07 | 2020-03-11 | 株式会社神戸製鋼所 | 記録層、光情報記録媒体及びスパッタリングターゲット |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004284018A (ja) * | 2002-03-08 | 2004-10-14 | Ricoh Co Ltd | 光記録媒体 |
JP2006256309A (ja) * | 2004-05-13 | 2006-09-28 | Tdk Corp | 光記録媒体 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3638152B2 (ja) | 1996-09-09 | 2005-04-13 | 松下電器産業株式会社 | 光学的情報記録媒体とその製造方法、光学的情報記録・再生方法及び光学的情報記録・再生装置 |
JP2002225433A (ja) * | 2001-02-01 | 2002-08-14 | Ricoh Co Ltd | 錫系光記録媒体 |
JP2003326848A (ja) | 2002-05-10 | 2003-11-19 | Ricoh Co Ltd | 追記型光記録媒体 |
DE602004013508D1 (de) | 2003-10-08 | 2008-06-19 | Matsushita Electric Ind Co Ltd | Informationsaufzeichnungsmedium, Herstellungsverfahren und Sputtertarget hierzu |
JP2005135568A (ja) | 2003-10-08 | 2005-05-26 | Matsushita Electric Ind Co Ltd | 情報記録媒体とその製造方法、およびスパッタリングターゲット |
US7399511B2 (en) | 2004-04-22 | 2008-07-15 | Tdk Corporation | Optical recording medium |
US7952984B2 (en) | 2004-04-22 | 2011-05-31 | Tdk Corporation | Optical recording medium and method of recording and reproducing of optical recording medium |
EP1993847B1 (en) | 2006-03-10 | 2011-10-26 | Ricoh Company, Ltd. | Optical recording medium |
-
2011
- 2011-05-31 JP JP2011122910A patent/JP5662874B2/ja active Active
-
2012
- 2012-05-30 WO PCT/JP2012/063917 patent/WO2012165472A1/ja active Application Filing
- 2012-05-30 US US14/115,547 patent/US9214181B2/en active Active
- 2012-05-31 TW TW101119545A patent/TWI513600B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004284018A (ja) * | 2002-03-08 | 2004-10-14 | Ricoh Co Ltd | 光記録媒体 |
JP2006256309A (ja) * | 2004-05-13 | 2006-09-28 | Tdk Corp | 光記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
JP2012250372A (ja) | 2012-12-20 |
TWI513600B (zh) | 2015-12-21 |
US20140093672A1 (en) | 2014-04-03 |
JP5662874B2 (ja) | 2015-02-04 |
TW201318884A (zh) | 2013-05-16 |
US9214181B2 (en) | 2015-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4969625B2 (ja) | 光情報記録媒体 | |
WO2013183277A1 (ja) | 記録層、情報記録媒体およびターゲット | |
WO2012165472A1 (ja) | 光情報記録媒体用記録膜および光情報記録媒体、並びに上記記録膜の形成に用いられるスパッタリングターゲット | |
TWI457922B (zh) | A recording layer for optical information recording media, an optical information recording medium, and a sputtering target | |
TW200307938A (en) | Optical recording medium and method for optically recording data in the same | |
KR20040063839A (ko) | 광기록 매체 | |
US8158233B2 (en) | Optical information recording medium, method of manufacturing the same, and sputtering target | |
JP6447830B2 (ja) | 光記録媒体用透過型記録層、および光記録媒体 | |
TWI449039B (zh) | A recording layer for optical information recording medium, and an optical information recording medium | |
JP2004296055A (ja) | 光記録再生方法及び光記録媒体 | |
JP5760464B2 (ja) | 光情報記録媒体 | |
JP5399836B2 (ja) | 光情報記録媒体用記録層、光情報記録媒体およびスパッタリングターゲット | |
TWI541800B (zh) | 光學資訊記錄媒體 | |
WO2010055865A1 (ja) | 光情報記録媒体用記録層、光情報記録媒体およびスパッタリングターゲット | |
JP5276557B2 (ja) | 光情報記録媒体用記録層および光情報記録媒体 | |
JP7130447B2 (ja) | 光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲット | |
WO2021117470A1 (ja) | 光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲット | |
JP2005129192A (ja) | 光記録媒体 | |
TWI668318B (zh) | 記錄層、光訊息記錄介質、濺射靶 | |
US8119215B2 (en) | Optical recording medium and method for manufacturing the same | |
JP2005125726A (ja) | 光記録媒体 | |
JP2004241103A (ja) | 光記録媒体およびその製造方法 | |
JP2012020530A (ja) | 光情報記録媒体用記録層、光情報記録媒体、およびスパッタリングターゲット | |
JP2007226914A (ja) | 光学反射体及び光情報記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12792644 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14115547 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12792644 Country of ref document: EP Kind code of ref document: A1 |