WO2012147715A1 - 膜モジュールの洗浄方法 - Google Patents

膜モジュールの洗浄方法 Download PDF

Info

Publication number
WO2012147715A1
WO2012147715A1 PCT/JP2012/060909 JP2012060909W WO2012147715A1 WO 2012147715 A1 WO2012147715 A1 WO 2012147715A1 JP 2012060909 W JP2012060909 W JP 2012060909W WO 2012147715 A1 WO2012147715 A1 WO 2012147715A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane module
membrane
water
chemical
chemical solution
Prior art date
Application number
PCT/JP2012/060909
Other languages
English (en)
French (fr)
Inventor
智宏 前田
谷口 雅英
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12776393.6A priority Critical patent/EP2703066A4/en
Priority to KR1020137028062A priority patent/KR20140031874A/ko
Priority to JP2012525795A priority patent/JP6003646B2/ja
Priority to CN201280019634.0A priority patent/CN103492054B/zh
Priority to MX2013012404A priority patent/MX2013012404A/es
Priority to US14/113,608 priority patent/US20140048483A1/en
Priority to AU2012248472A priority patent/AU2012248472A1/en
Publication of WO2012147715A1 publication Critical patent/WO2012147715A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/10Use of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for washing a membrane module, which is performed on a fresh water producing apparatus that obtains membrane filtrate by membrane filtering raw water with a membrane module having at least one of a microfiltration membrane and an ultrafiltration membrane.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • MF / UF membrane ultrafiltration membrane
  • examples include suspended substances, bacteria, protozoa, and colloidal substances.
  • RO membrane reverse osmosis membrane
  • NF membrane nanofiltration membrane
  • Patent Document 1 discloses hypochlorous acid in membrane filtered water for the purpose of decomposing and removing organic substances such as humic acid and microorganism-derived proteins adhering to the membrane surface and pores. Back pressure washing is performed by adding an oxidizing agent such as sodium.
  • Patent Document 2 discloses that chlorine water is allowed to flow back from the secondary side to the primary side, and then the chlorine water is brought into contact with the membrane for a certain period of time. Describes a cleaning method for discharging chlorine water.
  • Patent Document 3 describes a cleaning method in which a chemical solution is supplied to the primary side of the membrane module, and pressure is applied to transfer the chemical solution from the primary side to the secondary side.
  • a chemical solution is supplied to the primary side of the membrane module, and pressure is applied to transfer the chemical solution from the primary side to the secondary side.
  • a reducing agent such as sodium thiosulfate or sodium bisulfite.
  • the water recovery rate is lowered and the chemical cost is increased.
  • JP 2001-79366 A Japanese Patent Laid-Open No. 10-15365 Special table 2008-539054 gazette
  • the purpose of the present invention is to prevent the chemical solution from leaking and staying to the secondary side of the membrane module after the washing process while suppressing the reduction in water recovery rate and chemical cost in the membrane separation device for membrane filtration of raw water with the membrane module.
  • An object of the present invention is to provide a method for preventing and effectively cleaning a membrane module.
  • the present invention has one of the following configurations.
  • a membrane module cleaning method comprising at least one of a microfiltration membrane and an ultrafiltration membrane that obtains membrane filtration water by subjecting raw water to membrane filtration, and containing chemical solution-containing water on the primary side of the membrane module
  • the membrane module cleaning method of controlling the execution time of the chemical solution diffusion step based on the concentration of the chemical solution diffused to the secondary side of the membrane module during the chemical solution diffusion step.
  • the membrane module is a membrane module in a membrane separation device that separates at least a part of membrane filtrate water from the membrane module into a permeated water and a concentrated water by membrane filtration with a semipermeable membrane unit.
  • the method for cleaning a membrane module according to any one of 1) to (7). (9) The membrane module cleaning method according to any one of (1) to (8), wherein the chemical solution includes an oxidizing agent or a reducing agent. (10) The membrane module according to (1) to (9), wherein an execution time of the chemical solution diffusion step is controlled based on a redox potential value of water on the secondary side of the membrane module during the chemical solution diffusion step. Cleaning method.
  • a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane that obtains membrane filtration water by membrane filtration of raw water, and supply the membrane filtration water from the secondary side to the primary side of the membrane module
  • a reverse pressure washing unit that performs the membrane filtration, and a membrane supply unit that supplies the chemical solution to the water supplied to the primary side of the membrane module, and that is open when performing the membrane filtration and closed when performing the reverse pressure washing.
  • the fresh water generator comprising a chemical diffusion process execution time control unit for controlling the execution time of the chemical diffusion process, the based on. (12)
  • the present invention it is possible to prevent the chemical solution from leaking and staying on the secondary side of the membrane module after the washing step, and to effectively wash the membrane module while suppressing a reduction in water recovery rate and chemical cost.
  • One aspect of the desalination apparatus according to the present invention provided with a chemical concentration meter for measuring the chemical concentration of water on the secondary side of the MF / UF membrane module during the chemical diffusion step and provided with a line for circulating the chemical-containing water FIG.
  • the membrane filtration water of the MF / UF membrane module is separated into permeated water and concentrated water.
  • the fresh water generator is a raw water storage tank 1 that stores raw water, a raw water supply pump 2 that supplies raw water from the raw water storage tank 1, and raw water from the raw water storage tank 1.
  • Raw water supply line 3 that supplies the supply pump 2
  • raw water supply valve 4 that opens when the raw water is supplied
  • MF / UF membrane module 5 that filters raw water, and air vent that opens when back-pressure cleaning or air cleaning is performed
  • Valve 6 filtered water valve 7 that opens during filtration, filtered water storage tank 8 that stores MF / UF membrane filtered water, and MF / UF membrane filtered water is supplied to counter pressure the MF / UF membrane module 5
  • a drain valve 12 Open when dis
  • raw water stored in the raw water storage tank 1 with the air vent valve 6 and the raw water supply valve 4 open is supplied to the MF / UF membrane module 5 by the raw water supply pump 2.
  • the MF / UF membrane module 5 is pressure filtered by being supplied to the next side, opening the filtered water valve 7 and closing the air vent valve 6.
  • the filtration time is preferably set as appropriate according to the raw water quality and the filtration flux, but the filtration may be continued until a predetermined filtration differential pressure is reached.
  • the MF / UF membrane module 5 is periodically subjected to back-pressure washing that causes the membrane filtrate to flow backward from the direction opposite to the filtration direction.
  • This back pressure cleaning stops the raw water supply pump 2, closes the raw water supply valve 4 and the filtrate water valve 7, stops (interrupts) the filtration process of the MF / UF membrane module 5, and
  • the backwash valve 10 is opened and the backwash pump 9 is operated.
  • the drain valve 12 is opened, so that the waste water in the MF / UF membrane module 5 is discharged.
  • the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened.
  • the air vent valve 6 By closing the air vent valve 6, the process returns to the normal filtration step.
  • the back-pressure washing of the MF / UF membrane module 5 is periodically performed while the membrane filtration is continued, and the frequency is usually about once every 15 to 120 minutes.
  • the time for back pressure cleaning is not particularly limited, but is preferably in the range of 5 seconds to 120 seconds. When the back pressure cleaning time for one time is less than 5 seconds, a sufficient cleaning effect cannot be obtained, and when it exceeds 120 seconds, the operation efficiency of the MF / UF membrane module 5 is lowered.
  • the flux for backwashing is not particularly limited, but is preferably 0.5 times or more of the filtration flux. If the back pressure washing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently remove the dirt deposited on the membrane surface and pores. A higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but it is appropriately set within a range in which damage to the container or rupture of the MF / UF membrane module 5 does not occur.
  • the following treatment is performed on the MF / UF membrane module 5 before the above-described back pressure cleaning. That is, after the filtration operation for a predetermined time, the air vent valve 6 is opened, the filtered water valve 7 is closed, and the chemical liquid in the chemical liquid storage tank 15 is supplied to the raw water by the chemical liquid supply pump 16, while the water is supplied by the raw water supply pump 2 to the MF / Supplied to the primary side of the UF membrane module 5.
  • the raw water supply pump 2 and the chemical solution supply pump 16 are stopped, the raw water supply valve 4 is closed, and the chemical solution is supplied to the MF / UF membrane module 5.
  • a chemical solution diffusion process for diffusing from the secondary side to the secondary side is performed.
  • the chemical solution diffusion step is terminated.
  • Diffusion is a physical phenomenon in which ions, particles, heat, etc. are spontaneously scattered and spread by a gradient, and the chemical ions supplied to the primary side of the MF / UF membrane module 5 by the above treatment are pores of the membrane. And then transferred to the secondary side.
  • the backwash valve 10 is opened, the backwash pump 9 is operated, and the backwash process is performed in which backwashing is performed using MF / UF membrane filtrate.
  • the drain valve 12 is opened, so that the waste water in the MF / UF membrane module 5 is discharged. Thereafter, the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened. By closing the air vent valve 6, the process returns to the normal filtration step and the above-described steps are repeated.
  • the chemical solution-containing water supplied to the primary side of the MF / UF membrane module 5 diffuses from the primary side to the secondary side of the MF / UF membrane module 5 if the secondary side of the membrane is filled with water. A small amount may be used. However, from the viewpoint of decomposing the dirt component on the primary side of the MF / UF membrane module 5, it is preferable to fill the primary side of the MF / UF membrane module 5 with chemical solution-containing water.
  • the execution time of the chemical solution diffusion step is preferable to adjust the execution time of the chemical solution diffusion step according to the degree of contamination of the MF / UF membrane module 5 from the viewpoint of improving the cleaning recovery property and the operating rate.
  • the membrane module cleaning method of the present invention for example, based on the chemical concentration of the MF / UF membrane filtered water measured by the chemical concentration meter 17 installed on the secondary side of the MF / UF membrane module 5, Control the execution time.
  • the chemical solution-containing water supplied to the primary side of the MF / UF membrane module 5 diffuses from the primary side of the MF / UF membrane module 5 to the secondary side while decomposing the dirt components.
  • the degree of contamination of the MF / UF membrane module 5 When the degree of contamination of the MF / UF membrane module 5 is high, it takes time to decompose the contamination component, and the chemical solution does not quickly diffuse from the primary side to the secondary side of the MF / UF membrane module 5. Therefore, it takes time until the chemical concentration of the water on the secondary side of the MF / UF membrane reaches the set value, and the execution time of the chemical diffusion process becomes long.
  • the degree of contamination of the MF / UF membrane module 5 when the degree of contamination of the MF / UF membrane module 5 is low, the contamination component is quickly decomposed and the chemical solution is quickly diffused from the primary side to the secondary side of the MF / UF membrane module 5. Therefore, the chemical concentration of the water on the secondary side of the MF / UF membrane quickly becomes the set value, and the execution time of the chemical solution diffusion step is shortened.
  • the chemical concentration meter 17 measures the concentration of the chemical solution diffusing from the primary side to the secondary side of the MF / UF membrane module 5 during the chemical solution diffusing process, so that the secondary side of the MF / UF membrane module 5 is used as shown in FIG. It is installed at a position closer to the MF / UF membrane module 5 than the filtered water valve 7 and the backwash valve 10 of the pipe.
  • the chemical solution used in the chemical solution diffusion step may be any of acid, alkali, oxidizing agent, reducing agent, chelating agent, surfactant, etc., but it is more inorganic than organic chemicals from the viewpoint of wastewater treatment.
  • a chemical solution is preferred.
  • the chemical concentration meter 17 is appropriately selected according to the chemical used.
  • the chemical concentration meter 17 is a free chlorine concentration meter or a chloramine concentration meter that is measured using the DPD method, current method, absorptiometry method or the like. It is preferable to use it.
  • various chemical solutions are used in the cleaning of the MF / UF membrane module 5.
  • the pH and oxidation-reduction potential (ORP) values are adjusted according to the chemical concentration. It may be an indicator.
  • the total organic carbon (TOC) concentration may be used as an index of the chemical solution concentration.
  • the pH of the membrane filtered water (water on the secondary side of the MF / UF membrane) can be measured using a pH meter, and the execution time of the chemical solution diffusion step can be controlled by the pH.
  • the value obtained by subtracting the pH of the chemical solution-containing water from the pH of the MF / UF membrane filtered water during the chemical solution diffusion step is 1 to 3 for the same reason as when the acid is used. It is preferable to carry out the chemical solution diffusion step until it becomes, more preferably until it becomes 1 to 2.
  • hydrochloric acid As the acid, hydrochloric acid, sulfuric acid, nitric acid and the like can be used. Moreover, sodium hydroxide, potassium hydroxide, etc. can be used as an alkali.
  • concentration of acid and alkali in the chemical solution-containing water is preferably in the range of several tens mg / L to several thousand mg / L.
  • the redox potential (ORP) value in the membrane filtrate is measured using an oxidation-reduction potential (ORP) meter, and the chemical solution is diffused with the obtained redox potential (ORP) value. Control the execution time of the process.
  • ORP oxidation-reduction potential
  • the redox potential (ORP) value of the MF / UF membrane filtered water is too small, the oxidant is insufficient to oxidatively decompose the membrane surface and the internal dirt components, and the oxidant is MF / UF membrane module 5 It is preferable that the chemical solution diffusion process is continued without diffusing from the primary side to the secondary side. If the redox potential (ORP) value of MF / UF membrane filtered water is too large, the MF / UF membrane filtered water will contain a large amount of residual oxidant, especially if there is a semipermeable membrane unit in the subsequent stage. The residual oxidant may cause the semipermeable membrane to undergo oxidative degradation.
  • the oxidizing agent sodium hypochlorite, chlorine dioxide, hydrogen peroxide, chloramine and the like can be used, but sodium hypochlorite is preferable from the viewpoint of ease of use, cost and cleaning effect.
  • the oxidant concentration in the chemical solution-containing water is preferably 50 mg / L or more and 1000 mg / L or less. If the oxidant concentration is too low, all of the oxidant is consumed while being held in the MF / UF membrane module, and a sufficient cleaning effect cannot be obtained. If the oxidant concentration is too high, the cost of treating wastewater is high. This is because it becomes higher.
  • the reducing agent sodium bisulfite, sodium thiosulfate, sodium sulfite and the like can be used.
  • concentration of the reducing agent in the chemical solution-containing water is preferably 50 mg / L or more and 1000 mg / L or less. If the reducing agent concentration is too low, all the reducing agent is consumed while being held in the MF / UF membrane module, so that a sufficient cleaning effect cannot be obtained. If the reducing agent concentration is too high, the cost of treating waste water is high. This is because it becomes higher.
  • the liquid temperature of the chemical solution-containing water is preferably adjusted to 20 ° C. or higher and 40 ° C. or lower, and more preferably adjusted to 30 ° C. or higher and 40 ° C. or lower.
  • the liquid temperature is too low, the decomposition of the dirt component and the diffusion from the primary side to the secondary side of the MF / UF membrane module 5 do not proceed promptly.
  • the liquid temperature is too high, shrinkage deformation of the film may occur or the oxidizing agent may vaporize.
  • the liquid temperature may change during the chemical liquid diffusion process due to the influence of the outside air temperature or the like, it is preferable to adjust the temperature of the chemical liquid in the MF / UF membrane module 5 during the chemical liquid diffusion process.
  • Air cleaning is particularly suitable when dirt components adhere and accumulate on the membrane surface.
  • the air valve 13 is opened and the compressor 14 is compressed on the primary side of the MF / UF membrane module 5. This is done by feeding air and vibrating the membrane.
  • the pressure of the compressed air is preferably higher because the cleaning effect of the membrane is higher, but it is necessary to set it appropriately within a range where the membrane is not damaged.
  • the air cleaning may be performed during the back pressure cleaning or after the back pressure cleaning.
  • the desalinator is provided with a chemical solution-containing water circulation line 19 for circulating the chemical solution-containing water that has overflowed from the MF / UF membrane module 5, and the MF / UF membrane module 5 includes one of the membrane modules. It is also preferable to introduce a larger amount of chemical solution-containing water than the capacity on the secondary side, and again introduce and circulate the overflowed chemical solution-containing water to the primary side of the MF / UF membrane module 5 via the chemical solution-containing water circulation line 19.
  • the circulation cleaning with the chemical solution-containing water may be performed without discharging the raw water on the primary side of the MF / UF membrane module 5, but the primary of the MF / UF membrane module 5 so that the chemical solution-containing water is not diluted. It is preferable to carry out after discharging the raw water on the side. Moreover, you may use together with air washing
  • the chemical solution-containing water By circulating the chemical solution-containing water, it becomes easy to adjust the water temperature of the chemical solution-containing water to a constant temperature using the heating device 18, and it is easy to replenish the consumed chemical solution to a constant concentration. It is suitable. For example, when sodium hypochlorite is used, the free chlorine concentration of the chemical liquid water circulated by the free chlorine meter 21 installed in the chemical liquid water circulation line 19 is measured, and the chemical liquid is stored so that the set free chlorine concentration is obtained.
  • the chemical solution in the tank 15 can be appropriately supplied by the chemical solution supply pump 16.
  • the cleaning method of the present invention it is preferable to discharge the raw water on the primary side of the MF / UF membrane module 5 before performing the chemical solution diffusion step from the viewpoint that the chemical solution-containing water is not diluted.
  • the chemical solution-containing water can be discharged on the primary side of the MF / UF membrane module 5 so that the chemical solution does not easily remain in the MF / UF membrane module 5.
  • the collected chemical solution-containing water can be temporarily stored in a tank and reused for cleaning the MF / UF membrane module 5 again. If there are a plurality of MF / UF membrane modules, the collected chemical solution-containing water is used. It is also possible to transport and reuse it for cleaning of other series of MF / UF membrane modules.
  • an immersion membrane module that is immersed in a membrane soaking tank containing raw water and suction filtered with a pump, siphon, or the like may be used. Absent.
  • an external pressure type or an internal pressure type may be used, but an external pressure type is preferred from the viewpoint of simplicity of pretreatment.
  • the MF / UF membrane module 5 may be placed horizontally or vertically, but is preferably placed vertically from the viewpoint of ease of air cleaning.
  • the material of the MF / UF membrane constituting the MF / UF membrane module 5 is not particularly limited as long as it is a porous MF / UF membrane, but it is not limited to inorganic materials such as ceramics, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoro.
  • Ethylene copolymer polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene-ethylene copolymer
  • it contains at least one selected from the group consisting of a polymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, polyethersulfone and polyvinyl chloride, More preferably polyvinylidene fluoride (PVDF) in terms of strength and chemical resistance, polyacrylonitrile is more preferable from the viewpoint that a strong high stain resistance hydrophilic.
  • PVDF polyvinylidene fluoride
  • the pore diameter on the surface of the MF / UF membrane is not particularly limited, and may be an MF membrane or a UF membrane
  • the shape of the MF / UF membrane is not particularly limited. There are hollow fiber membranes, flat membranes, tubular membranes, monolith membranes, etc., but any of them may be used.
  • the filtration method may be either a full-volume filtration method or a cross-flow filtration method, but a full-volume filtration is preferred from the viewpoint of low energy consumption.
  • the filtration flow rate control method of the fresh water generator can be either constant flow filtration or constant pressure filtration, but it is constant flow filtration from the viewpoint of ease of control of the production water quantity of filtrate water. Is preferred.
  • the cleaning method of the present invention has a semipermeable membrane unit 22 on the downstream side of the MF / UF membrane module 5 as shown in FIG. 3, and supplies the MF / UF membrane filtered water to the semipermeable membrane unit 22. It can also be suitably implemented in a fresh water generator that separates permeated water and concentrated water.
  • the MF / UF membrane filtrate is supplied to the booster pump 23 via the intermediate tank (filtrated water storage tank 8), but the MF / UF membrane filtrate is not supplied via the intermediate tank.
  • the MF / UF membrane filtered water may be supplied to the semipermeable membrane unit 22 and separated into permeated water and concentrated water.
  • a semipermeable membrane is a semipermeable membrane that does not allow some components in the liquid mixture to be separated, for example, a solvent to pass through and does not allow other components to pass through.
  • NF membrane NF membrane
  • RO membrane reverse osmosis membrane
  • the membrane structure has a dense layer on at least one side of the membrane, an asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, and another layer on the dense layer of the asymmetric membrane.
  • a composite membrane having a very thin separation functional layer formed of a material can be used as appropriate.
  • the membrane form includes a hollow fiber membrane and a flat membrane.
  • the present invention can be carried out regardless of the film material, film structure and film form, and any of them is effective, but as typical films, for example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, There are composite membranes having a urea-based separation functional layer, and it is preferable to use a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane from the viewpoint of water production, durability, and salt rejection.
  • the semipermeable membrane unit 22 since the filtrate of the MF / UF membrane module 5 is concentrated, it is preferable to prevent scale precipitation due to concentration, and a scale inhibitor is added to the filtrate of the MF / UF membrane module 5. It is effective to add and supply to the semipermeable membrane unit 22.
  • a scale inhibitor is added to the filtrate of the MF / UF membrane module 5. It is effective to add and supply to the semipermeable membrane unit 22.
  • pH adjustment is performed on the downstream side of the MF / UF membrane module 5 and the upstream side of the semipermeable membrane unit 22 for removing boron or the like, the addition of the scale inhibitor can exert the effect of the addition. It is preferable to carry out on the upstream side of pH adjustment.
  • an in-line mixer is installed, or the chemical addition port is brought into direct contact with the flow of supply water. It is also preferable to prevent this.
  • the operating pressure of the semipermeable membrane unit 22 is usually 0.1 MPa to 15 MPa, and can be properly used depending on the type of supply water, the operation method, and the like.
  • water with low osmotic pressure such as brine or ultrapure water is used as supply water, it is used at a relatively low pressure.
  • seawater desalination, wastewater treatment, recovery of useful materials, etc. it is used at a relatively high pressure.
  • the semipermeable membrane unit 22 having a nanofiltration membrane or a reverse osmosis membrane is not particularly limited, but a hollow fiber membrane-like or flat membrane-like semipermeable membrane is used for easy handling. It is preferable to use a fluid pressure separating container filled with a fluid separation element (element) that is placed in the body.
  • a fluid separation element element
  • the fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
  • Toray Industries, Inc. reverse osmosis membrane element TM700 series and TM800 series can be mentioned. It is also preferable to configure a semipermeable membrane unit by connecting one or more fluid separation elements in series or in parallel.
  • the MF / UF membrane module 5 is a hollow fiber UF membrane made of polyvinylidene fluoride having a molecular weight cut off of 150,000 Da made by Toray Industries, Inc., and using one pressurized module (HFU-2020) having a membrane area of 72 m 2.
  • a fresh water generator shown in FIG. 1 was prepared. In this apparatus, the raw water supply valve 4 and the filtered water valve 7 are opened, the raw water supply pump 2 is operated, and raw water having a turbidity of 5 degrees and a TOC (Total Organic Carbon) concentration of 2 to 10 mg / L is supplied. The whole amount was filtered with a filtration flux of 3.0 m / d.
  • the raw water supply valve 4 and the filtrate water valve 7 are closed, the raw water supply pump 2 is stopped, the backwash valve 10, the air valve 13, and the air The vent valve 6 was opened, the backwash pump 9 was operated, and backpressure cleaning and air cleaning were simultaneously performed for 1 minute.
  • backwashing MF / UF membrane filtrate was used, the backwash flux was 3.3 m / d, and air was supplied from below the membrane module at 100 L / min. Thereafter, the backwash valve 10 and the air valve 13 were closed and the backwash pump 9 was stopped.
  • the drain valve 12 was opened, and the entire amount of water in the MF / UF membrane module 5 was discharged out of the system. Thereafter, the raw water supply valve 4 was opened, the raw water supply pump 2 was operated, and after supplying raw water into the MF / UF membrane module 5, the filtrate water valve 7 was opened, the air vent valve 6 was closed, and the flow returned to the filtration step. And the washing
  • the chemical solution containing the sodium hypochlorite solution in the chemical solution storage tank 15 added to the raw water is supplied to the primary side of the MF / UF membrane module to supply the chemical solution. After diffusing, washing with back pressure washing was performed.
  • the raw water supply pump 2 is temporarily stopped, the filtrate water valve 7 and the raw water supply valve 4 are closed, the filtration process of the MF / UF membrane module 5 is interrupted, and then the air vent valve 6 and the drain valve 12 are turned on. By opening, the water in the MF / UF membrane module 5 was discharged. Thereafter, the drain valve 12 is closed, and the sodium hypochlorite solution in the chemical liquid storage tank 15 is supplied to the raw water with the chemical liquid supply pump 16 while the air vent valve 6 and the raw water supply valve 4 are open.
  • the raw water supply pump 2 supplied the primary side of the MF / UF membrane module 5.
  • medical solution supply pump 16 was suitably adjusted so that the free chlorine concentration in chemical
  • the raw water supply pump 2 and the chemical solution supply pump 16 are stopped, the raw water supply valve 4 is closed, and the chemical solution is supplied to the primary of the MF / UF membrane module 5.
  • a chemical solution diffusing step for diffusing from the side to the secondary side was performed.
  • the chemical solution diffusion step was performed, and the chemical solution diffusion step was completed when the free chlorine concentration measured by the free chlorine concentration meter 17 provided in the secondary side pipe of the MF / UF membrane module 5 reached 5 mg / L.
  • the air vent valve 6 and the drain valve 12 were opened, and the chemical solution in the MF / UF membrane module 5 was discharged. Thereafter, the drain valve 12 was closed, the back washing valve 10 was opened, the back washing pump 9 was operated, and back pressure washing was performed for back pressure washing using MF / UF membrane filtrate. After completion of the backwash process, the drain valve 12 was opened, and the water in the MF / UF membrane module 5 was discharged out of the system. Thereafter, the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened. The air vent valve 6 was closed to return to the normal filtration step.
  • the TOC concentration of raw water fluctuated as 2 to 10 mg / L
  • the execution time of the chemical solution diffusion process fluctuated from 5 to 60 minutes depending on the TOC concentration fluctuation.
  • the filtration differential pressure of the MF / UF membrane module 5 was 70 kPa immediately after the start of operation, while it was between 90 and 100 kPa during the period, and stable operation was possible.
  • the filtration differential pressure of the MF / UF membrane module 5 was 70 kPa immediately after the start of operation. Further, during the period when the TOC concentration of the raw water was 2 to 5 mg / L, it was 90 to 100 kPa as in Example 1, and stable operation was possible. However, when the TOC concentration of the raw water was 5 to 10 mg / L, the filtration differential pressure increased to 180 kPa in a short period of 10 days, and the operation had to be stopped.
  • Raw water storage tank 2 Raw water supply pump 3: Raw water supply line 4: Raw water supply valve 5: MF / UF membrane module 6: Air vent valve 7: Filtration water valve 8: Filtration water storage tank 9: Backwash pump 10: Backwash valve 11: Backwash pipe 12: Drain valve 13: Air valve 14: Compressor 15: Chemical liquid storage tank 16: Chemical liquid supply pump 17: Chemical liquid concentration meter 18: Heating device 19: Chemical liquid containing water circulation line 20: Chemical liquid containing water circulation Line switching valve 21: Free chlorine meter 22: Semipermeable membrane unit 23: Booster pump

Abstract

 原水を膜ろ過して膜ろ過水を得る、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールの洗浄方法において、水回収率の低下や薬品コストを抑制しつつ、洗浄工程後に薬液が膜モジュールの2次側へ漏洩・滞留するのを防止し、効果的に膜モジュールを洗浄するために、薬液含有水を前記膜モジュールの1次側に供給し、薬液を前記膜モジュールの1次側から2次側へ拡散させる薬液拡散工程を行った後、前記膜モジュールの2次側から1次側へ膜ろ過水を逆圧洗浄させる逆洗工程を行い、かつ、前記薬液拡散工程時には、前記膜モジュールの2次側へ拡散した薬液の濃度に基づき、該薬液拡散工程の実施時間を制御する。

Description

膜モジュールの洗浄方法
 本発明は、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールで原水を膜ろ過して膜ろ過水を得る造水装置に対して行う、膜モジュールの洗浄方法に関するものである。
 近年、上下水道や廃水処理等の水処理用途において、膜によって原水中の不純物を分離除去して清澄な水に変換する膜ろ過法の普及が進んでいる。膜の除去対象物質は、膜の種類によって異なるが、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)(以下、これらを合わせてMF/UF膜という。)の場合は、一般的に縣濁物質、細菌、原虫、コロイド物質等が挙げられる。また、逆浸透膜(RO膜)やナノろ過膜(NF膜)(以下、これらを合わせて半透膜という。)の場合は、溶解性有機物、ウィルス、イオン物質等が挙げられる。
 MF/UF膜のろ過運転を行う場合、ろ過継続に伴い、膜表面や膜細孔径内にフミン質やタンパク質等の付着量が増大し、ろ過差圧が上昇することが問題となってくる。
 そこで、膜の1次側に気泡を導入し、膜を振動させ、膜同士を触れ合わせることにより、膜表面の付着物質を掻き落とす空気洗浄や、ろ過とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔径内に付着していた付着物質を除去する逆圧洗浄等の物理洗浄が実用化されている。さらに洗浄効果を高めるため、例えば特許文献1には、膜表面や膜細孔内に付着したフミン酸や微生物由来のタンパク質等の有機物を分解・除去を目的として、膜ろ過水に次亜塩素酸ナトリウム等の酸化剤を添加して逆圧洗浄を行うことが、特許文献2には、塩素水を2次側から1次側へ逆流させた後、塩素水と膜を一定時間接触させ、その後に塩素水を排出する洗浄方法が記載されている。また特許文献3には、薬液を膜モジュールの1次側に供給し、圧力を掛けて1次側から2次側に薬液を移送する洗浄方法が記載されている。しかし、これら洗浄方法では、洗浄工程後に膜モジュールの2次側配管に未反応の酸化剤が滞留し、膜ろ過水で十分に洗い流したり、チオ硫酸ナトリウムや亜硫酸水素ナトリウム等の還元剤で還元中和したりする必要があり、水回収率低下や薬品コストが高くなるといった問題があった。
特開2001-79366号公報 特開平10-15365号公報 特表2008-539054号公報
 本発明の目的は、原水を膜モジュールで膜ろ過する膜分離装置において、水回収率の低下や薬品コストを抑制しつつ、洗浄工程後に薬液が膜モジュールの2次側へ漏洩・滞留するのを防止し、効果的に膜モジュールを洗浄する方法を提供することにある。
 前記目的を達成するために、本発明は次のいずれかの構成をとる。
(1)原水を膜ろ過して膜ろ過水を得る、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールの洗浄方法であって、薬液含有水を前記膜モジュールの1次側に供給し、薬液を前記膜モジュールの1次側から2次側へ拡散させる薬液拡散工程を行った後、前記膜モジュールの2次側から1次側へ膜ろ過水を逆圧洗浄させる逆洗工程を行い、かつ、前記薬液拡散工程時には、前記膜モジュールの2次側へ拡散した薬液の濃度に基づき、該薬液拡散工程の実施時間を制御する膜モジュールの洗浄方法。
(2)前記薬液含有水を前記膜モジュールの1次側に供給する際の少なくとも一部、前記薬液拡散工程の際の少なくとも一部、または、前記薬液含有水を前記膜モジュールの1次側に供給する際および前記薬液拡散工程の際それぞれの少なくとも一部において、空気洗浄を実施する、前記(1)に記載の膜モジュールの洗浄方法。
(3)前記薬液拡散工程を行う前に、前記膜モジュールの1次側の原水を排出する、前記(1)または(2)に記載の膜モジュールの洗浄方法。
(4)前記逆洗工程を行う前に、前記膜モジュールの1次側の薬液含有水を排出する、前記(1)~(3)のいずれかに記載の膜モジュールの洗浄方法。
(5)前記膜モジュールの1次側から排出された薬液含有水を回収し、再利用する、前記(1)~(4)のいずれかに記載の膜モジュールの洗浄方法。
(6)前記膜モジュールの1次側の容量よりも多い薬液含有水を前記膜モジュールに導入してオーバーフローさせ、オーバーフローした薬液含有水を再び前記膜モジュールの1次側に導入する、前記(1)~(5)のいずれかに記載の膜モジュールの洗浄方法。
(7)前記薬液含有水を加温する、前記(1)~(6)のいずれかに記載の膜モジュールの洗浄方法。
(8)前記膜モジュールが、該膜モジュールによる膜ろ過水の少なくとも一部を次いで半透膜ユニットで膜ろ過して透過水と濃縮水とに分離する膜分離装置における膜モジュールである、前記(1)~(7)のいずれかに記載の膜モジュールの洗浄方法。
(9)前記薬液が、酸化剤または還元剤を含む、前記(1)~(8)のいずれかに記載の膜モジュール洗浄方法。
(10)前記薬液拡散工程時に、前記膜モジュールの2次側の水の酸化還元電位値を基に該薬液拡散工程の実施時間を制御する、前記(1)~(9)に記載の膜モジュールの洗浄方法。
(11)原水を膜ろ過して膜ろ過水を得る精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールと、前記膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄ユニットと、前記膜モジュールの1次側に供給される水に薬液を供給する薬液供給ユニットと、膜ろ過を行う際に開となり逆圧洗浄を行う際に閉となる、前記膜モジュールの2次側配管に設けられたろ過水弁およびろ過水配管と、膜ろ過を行う際に閉となり、逆圧洗浄を行う際に開となる、前記膜モジュールの2次側に設けられた逆洗弁および逆洗水配管と、前記ろ過水弁および前記逆洗弁よりも前記膜モジュールに近い2次側配管に設置された、前記膜モジュールの2次側における薬液濃度を測定する薬液濃度測定ユニットと、前記薬液濃度の測定結果に基づいて薬液拡散工程の実施時間を制御する薬液拡散工程実施時間制御ユニットと、を含む造水装置。
(12)前記膜モジュールの1次側に気体を供給する空気供給ユニットを含む、前記(11)に記載の造水装置。
(13)前記薬液供給ユニットによって薬液が供給されて前記膜モジュールの1次側に供給される水を加温する薬液含有水加温ユニットを含む、前記(11)または(12)に記載の造水装置。
(14)前記膜モジュールの1次側に薬液含有水循環ラインを含む、前記(11)~(13)のいずれかに記載の造水装置。
(15)前記膜モジュールにより得られた膜ろ過水の少なくとも一部を処理する半透膜ユニットを含む、前記(11)~(14)のいずれかに記載の造水装置。
 本発明によって、水回収率の低下や薬品コストを抑制しつつ、洗浄工程後に薬液が膜モジュールの2次側へ漏洩・滞留することを防止し、効果的に膜モジュールを洗浄することができる。
薬液拡散工程中のMF/UF膜モジュールの2次側の水の薬液濃度を測定する薬液濃度計を設けた、本発明に係る造水装置の一態様を示す概略フロー図である。 薬液拡散工程中のMF/UF膜モジュールの2次側の水の薬液濃度を測定する薬液濃度計を設けると共に、薬液含有水を循環するラインを設けた、本発明に係る造水装置の一態様を示す概略フロー図である。 薬液拡散工程中のMF/UF膜モジュールの2次側の水の薬液濃度を測定する薬液濃度計を設けると共に、MF/UF膜モジュールの膜ろ過水を透過水と濃縮水とに分離する半透膜ユニットを設けた、本発明に係る造水装置の一態様を示す概略フロー図である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 本発明に係る造水装置は、例えば図1に示すように、原水を貯留する原水貯留槽1と、原水貯留槽1から原水を供給する原水供給ポンプ2と、原水貯留槽1の原水を原水供給ポンプ2に供給する原水供給ライン3と、原水供給時に開となる原水供給弁4と、原水をろ過するMF/UF膜モジュール5と、逆圧洗浄や空気洗浄する場合に開となるエア抜き弁6と、ろ過時に開となるろ過水弁7と、MF/UF膜ろ過水を貯留するろ過水貯留槽8と、MF/UF膜ろ過水を供給してMF/UF膜モジュール5を逆圧洗浄する逆洗ポンプ9と、逆圧洗浄する時に開となる逆洗弁10と、ろ過水貯留槽8からMF/UF膜モジュール5にMF/UF膜ろ過水を供給する逆洗配管11と、MF/UF膜モジュール5の1次側の原水を排出する場合に開となる排水弁12と、圧縮空気をMF/UF膜モジュール5の下部に供給し空気洗浄する場合に開となる空気弁13と、圧縮空気の供給源であるコンプレッサー14と、薬液を貯留する薬液貯留槽15と、原水に薬液を供給する薬液供給ポンプ16と、薬液拡散工程中にMF/UF膜モジュール5のMF/UF膜ろ過水(MF/UF膜モジュールの2次側に存在する水)の薬液濃度を測定する薬液濃度計17と、薬液含有水を加温するために設置される加温装置18が設けられている。
 本造水装置において、通常のろ過工程では、エア抜き弁6と原水供給弁4が開の状態で原水貯留槽1に貯留されている原水が原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給され、ろ過水弁7を開、エア抜き弁6を閉とすることでMF/UF膜モジュール5の加圧ろ過が行われる。ろ過時間は原水水質やろ過流束に応じて適宜設定するのが好ましいが、所定のろ過差圧に達するまでろ過継続させても良い。
 所定時間のろ過運転後に定期的にMF/UF膜モジュール5にろ過方向とは逆方向から膜ろ過水を逆流させる逆圧洗浄を行う。この逆圧洗浄は、原水供給ポンプ2を停止し、原水供給弁4と、ろ過水弁7を閉じ、MF/UF膜モジュール5のろ過工程を停止(中断)してから、エア抜き弁6と逆洗弁10が開となり、逆洗ポンプ9が稼働することで行われる。逆洗工程終了後、排水弁12が開となることで、MF/UF膜モジュール5内の排水が排出される。その後、排水弁12を閉、エア抜き弁6と原水供給弁4が開の状態で原水が原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給され、ろ過水弁7を開、エア抜き弁6を閉とすることで、通常ろ過工程に戻る。
 MF/UF膜モジュール5の逆圧洗浄は、膜ろ過を続ける途中で定期的に行われ、その頻度は通常15分~120分に1回程度である。また、逆圧洗浄の時間は、特に制限するものではないが、5秒以上120秒以下の範囲内とするのが好ましい。1回の逆圧洗浄時間が5秒未満では、十分な洗浄効果が得られず、120秒を超えるとMF/UF膜モジュール5の稼働効率が低くなる。逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面および細孔内に付着堆積した汚れを十分に除去することが難しい。逆圧洗浄の流束は高い方が膜の洗浄効果が高くなるので好ましいが、MF/UF膜モジュール5の容器破損や膜破断等の損傷が起こらない範囲内で適宜設定する。
 ここで、本発明のMF/UF膜モジュール5の洗浄方法では、上述した逆圧洗浄の前に、MF/UF膜モジュール5に以下のような処理を施す。すなわち、所定時間のろ過運転後にエア抜き弁6を開き、ろ過水弁7を閉じ、原水に薬液貯留槽15の薬液を薬液供給ポンプ16で供給しながら、該水を原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給する。MF/UF膜モジュール5の1次側に薬液含有水が供給された後、原水供給ポンプ2と薬液供給ポンプ16を停止し、原水供給弁4を閉じ、薬液をMF/UF膜モジュール5の1次側から2次側へ拡散させる薬液拡散工程を行う。薬液拡散工程の実施中に、薬液が膜の1次側から2次側に拡散し、薬液濃度計17で測定される薬液濃度が設定値となると、薬液拡散工程を終了する。
 なお、薬液拡散工程時には膜に水頭圧以外の圧力を負荷しないことが好ましい。
 また、拡散とはイオン、粒子、熱などが勾配によって自発的に散らばり広がる物理現象であって、上記処理により、MF/UF膜モジュール5の1次側に供給された薬液イオンは膜の細孔を通過し、2次側へ移送される。
 薬液拡散工程終了後、逆洗弁10を開とし、逆洗ポンプ9を稼働させ、MF/UF膜ろ過水を用いた逆圧洗浄を行う逆洗工程を実施する。逆洗工程終了後、排水弁12が開となることで、MF/UF膜モジュール5内の排水が排出される。その後、排水弁12を閉、エア抜き弁6と原水供給弁4が開の状態で原水が原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給され、ろ過水弁7を開、エア抜き弁6を閉とすることで、通常ろ過工程に戻り、先述した工程を繰り返す。
 MF/UF膜モジュール5の1次側に供給される薬液含有水は、膜の2次側が水で満たされていれば、MF/UF膜モジュール5の1次側から2次側へ薬液が拡散するので少量であっても良い。しかし、MF/UF膜モジュール5の1次側の汚れ成分を分解するという観点からは、MF/UF膜モジュール5の1次側を薬液含有水で満たすことが好ましい。
 薬液拡散工程の実施時間は、洗浄回復性向上及び稼働率向上の観点から、MF/UF膜モジュール5の汚れ度合いに応じて調整することが好ましい。本発明の膜モジュールの洗浄方法では、例えばMF/UF膜モジュール5の2次側に設置された薬液濃度計17で測定されるMF/UF膜ろ過水の薬液濃度に基づいて、薬液拡散工程の実施時間を制御する。具体的には、MF/UF膜モジュール5の1次側に供給された薬液含有水が、汚れ成分を分解しながらMF/UF膜モジュール5の1次側から2次側に拡散する。MF/UF膜モジュール5の汚れ度合いが高い場合は、汚れ成分の分解に時間が掛かり、薬液がMF/UF膜モジュール5の1次側から2次側に速やかに拡散しない。そのため、MF/UF膜の2次側の水の薬液濃度が設定値となるまでに時間が掛かり、薬液拡散工程の実施時間が長くなる。一方、MF/UF膜モジュール5の汚れ度合いが低い場合は、汚れ成分の分解が速やかに行われ、薬液がMF/UF膜モジュール5の1次側から2次側に速やかに拡散される。そのため、MF/UF膜の2次側の水の薬液濃度が速やかに設定値となり、薬液拡散工程の実施時間が短くなる。
 薬液濃度計17は薬液拡散工程中にMF/UF膜モジュール5の1次側から2次側に拡散する薬液濃度を測定するため、図1のように、MF/UF膜モジュール5の2次側配管のろ過水弁7と逆洗弁10よりもMF/UF膜モジュール5に近い位置に設置する。
 薬液拡散工程に使用される薬液としては、酸やアルカリ、酸化剤や還元剤、キレート剤、界面活性剤等のいずれでもあっても構わないが、廃水処理の観点から有機系薬液よりも無機系薬液であることが好ましい。
 薬液濃度計17は、使用する薬液に応じて適宜選択する。例えば、次亜塩素酸ナトリウム、クロラミン等の塩素系薬液を用いる場合は、薬液濃度計17として、DPD法、電流法、吸光光度法等を用いて測定される遊離塩素濃度計やクロラミン濃度計を使用することが好ましい。MF/UF膜モジュール5の洗浄において、様々な薬液が使用されているが、一般的に酸やアルカリ、酸化剤や還元剤が多いことから、pHや酸化還元電位(ORP)値を薬液濃度の指標としても良い。また、有機系薬液を用いる場合は、全有機炭素(TOC)濃度を薬液濃度の指標としても良い。
 薬液として酸を用いる場合において、pH計を用いて膜ろ過水(MF/UF膜の2次側の水)のpHを測定し、pHで薬液拡散工程の実施時間を制御することができる。薬液として酸を用いる場合、薬液含有水のpHから薬液拡散工程中のMF/UF膜ろ過水のpHを差し引いた値が1~3になるまで、該薬液拡散工程を実施することが好ましく、1~2になるまで実施することがより好ましい。薬液含有水のpHから薬液拡散工程中のMF/UF膜ろ過水のpHを差し引いた値が3より大きい場合、薬液が、MF/UF膜モジュール5の1次側から2次側に拡散するに至っておらず、薬液拡散工程を継続することが好ましい。薬液含有水のpHから薬液拡散工程中のMF/UF膜ろ過水のpHを差し引いた値が1より小さい場合、MF/UF膜ろ過水のpH異常が懸念される。一方、薬液としてアルカリを用いる場合においても、酸を用いた場合と同様の理由で、薬液拡散工程中のMF/UF膜ろ過水のpHから薬液含有水のpHを差し引いた値が1~3になるまで、薬液拡散工程を実施することが好ましく、1~2になるまで実施することがより好ましい。
 酸としては、塩酸、硫酸、硝酸等が使用できる。また、アルカリとしては、水酸化ナトリウム、水酸化カリウム等が使用できる。薬液含有水中の酸およびアルカリの濃度としては数十mg/L~数千mg/Lの範囲が好ましい。
 薬液として
酸化剤や還元剤を用いる場合は、酸化還元電位(ORP)計を用いて膜ろ過水中の酸化還元電位(ORP)値を測定し、得られた酸化還元電位(ORP)値で薬液拡散工程の実施時間を制御する。薬液として酸化剤を用いる場合、薬液拡散工程中のMF/UF膜ろ過水(MF/UF膜の2次側の水)の酸化還元電位(ORP)値が300mV~600mVになるまで、薬液拡散工程を実施することが好ましく、300mV~400mVになるまで実施することがより好ましい。MF/UF膜ろ過水の酸化還元電位(ORP)値が小さすぎると、酸化剤が膜表面及び内部の汚れ成分を酸化分解するのが不十分であり、酸化剤がMF/UF膜モジュール5の1次側から2次側に拡散するに至っておらず、薬液拡散工程を継続することが好ましい。MF/UF膜ろ過水の酸化還元電位(ORP)値が大きすぎると、MF/UF膜ろ過水に残留酸化剤が多く含まれることとなり、特に後段に半透膜ユニットがある場合、膜ろ過水中の残留酸化剤によって、半透膜が酸化劣化してしまうおそれがある。
 酸化剤としては、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、クロラミン等が使用できるが、使用し易さ、コストおよび洗浄効果の観点から次亜塩素酸ナトリウムが好ましい。薬液含有水中の酸化剤濃度は、50mg/L以上1000mg/L以下が好ましい。酸化剤濃度が低すぎるとMF/UF膜モジュール内に保持している間に酸化剤が全て消費されてしまい洗浄効果が十分に得られず、酸化剤濃度が高すぎると排水を処理するコストが高くなるためである。
 還元剤としては、重亜硫酸ナトリウム、チオ硫酸ナトリウム、亜硫酸ナトリウム等が使用できる。薬液含有水中の還元剤濃度は、50mg/L以上1000mg/L以下が好ましい。還元剤濃度が低すぎるとMF/UF膜モジュール内に保持している間に還元剤が全て消費されてしまい洗浄効果が十分に得られず、還元剤濃度が高すぎると排水を処理するコストが高くなるためである。
 有機系薬液を用いる場合は、全有機炭素(TOC)計を用いて膜ろ過水中の全有機炭素(TOC)値を測定し、全有機炭素(TOC)値で薬液拡散工程の実施時間を制御しても構わない。
 本発明の洗浄方法では、図1に示すように、加温装置18を用いて、MF/UF膜モジュール5に供給される薬液含有水を加温することが好ましい。この際、薬液含有水の液温を20℃以上40℃以下に調整することが好ましく、30℃以上40℃以下に調整することがより好ましい。液温が低すぎると、汚れ成分の分解およびMF/UF膜モジュール5の1次側から2次側への拡散が速やかに進行しない。一方、液温が高すぎると、膜の収縮変形が起こったり酸化剤が気化したりするおそれがある。また、外気温等の影響で薬液拡散工程中に液温が変化する可能性がある場合には、薬液拡散工程中にMF/UF膜モジュール5内の薬液を温度調整することが好ましい。
 また、薬液接触により膜表面から浮き上がった汚れ成分を掻き取るといった観点から、薬液含有水をMF/UF膜モジュール5の1次側に供給する際や、薬液拡散工程中の少なくとも一部に空気洗浄を実施することが好ましい。もちろん、薬液含有水をMF/UF膜モジュール5の1次側に供給する際と薬液拡散工程中それぞれにおける少なくとも一部で、空気洗浄を実施してもよい。
 空気洗浄は、膜表面に汚れ成分が付着蓄積している場合に特に好適であるが、具体的には、空気弁13を開にしてMF/UF膜モジュール5の1次側にコンプレッサー14の圧縮空気を送り込み、膜を振動させて行う。圧縮空気の圧力は、高い方が膜の洗浄効果が高くなるので好ましいが、膜が損傷しない範囲内で適宜設定する必要がある。
 なお、空気洗浄は、逆圧洗浄の最中や逆圧洗浄後にも実施してもよい。
 また、図2に示すように、造水装置には、MF/UF膜モジュール5からオーバーフローした薬液含有水を循環させる薬液含有水循環ライン19を設け、MF/UF膜モジュール5に該膜モジュールの1次側の容量よりも多い薬液含有水を導入し、オーバーフローした薬液含有水を、薬液含有水循環ライン19経由で、再びMF/UF膜モジュール5の1次側に導入し循環させることも好ましい。
 薬液含有水による循環洗浄は、MF/UF膜モジュール5の1次側の原水を排出せずに実施しても構わないが、薬液含有水が希釈されないようにMF/UF膜モジュール5の1次側の原水を排出してから実施することが好ましい。また、空気洗浄と併用しても構わない。
 薬液含有水を循環させることで、加温装置18を用いて薬液含有水の水温を一定温度に調整するのが容易になり、また、消費された薬液を補充して一定濃度にすることが容易になり、好適である。例えば、次亜塩素酸ナトリウムを使用した場合、薬液含有水循環ライン19に設置された遊離塩素計21で循環する薬液含有水の遊離塩素濃度を測定し、設定した遊離塩素濃度となるように薬液貯留槽15の薬液を薬液供給ポンプ16で適宜供給することができる。
 本発明の洗浄方法においては、薬液拡散工程を行う前に、MF/UF膜モジュール5の1次側の原水を排出することが、薬液含有水が希釈されないという観点から好適である。
 また、薬液拡散工程後、逆洗工程を行う前に、MF/UF膜モジュール5の1次側の薬液含有水を排出することが、MF/UF膜モジュール5内に薬液が残留しにくいといった観点から好適である。ここで、排水されたMF/UF膜モジュール5の1次側の薬液含有水を回収して再利用することも好適である。回収した薬液含有水は、一旦タンクに溜めておき、再びMF/UF膜モジュール5の洗浄に再利用することも可能であり、MF/UF膜モジュールが複数系列ある場合は、回収した薬液含有水を移送して他系列のMF/UF膜モジュールの洗浄に再利用することも可能である。
 本発明におけるMF/UF膜モジュール5としては、図1のような加圧型膜モジュール以外にも、原水の入った膜浸漬槽に浸漬させてポンプやサイフォン等で吸引ろ過する浸漬型膜モジュールでも構わない。また加圧型膜モジュールの場合、外圧式でも内圧式であっても良いが、前処理の簡便さの観点から外圧式である方が好ましい。MF/UF膜モジュール5は横置きでも縦置きであっても良いが、空気洗浄の実施し易さの観点から縦置きである方が好ましい。
 MF/UF膜モジュール5を構成するMF/UF膜の材質としては、多孔質のMF/UF膜であれば特に限定しないが、セラミック等の無機素材、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレン-エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコール、ポリエーテルスルホンおよびポリ塩化ビニルからなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。MF/UF膜表面の細孔径については特に限定されず、MF膜であってもUF膜であっても構わず、0.001μm~10μmの範囲内で適宜選択することができる。
 MF/UF膜の形状としては、特に限定しない。中空糸膜、平膜、管状膜、モノリス膜等があるが、いずれでも構わない。
 ろ過方式は、全量ろ過方式、クロスフローろ過方式のどちらでも良いが、エネルギー消費が少ないという観点から全量ろ過である方が好ましい。
 ここで造水装置のろ過流量制御方法としては、定流量ろ過であっても定圧ろ過であっても差し支えはないが、ろ過水の生産水量の制御のし易さの点から定流量ろ過である方が好ましい。
 本発明の洗浄方法は、図3に示すような、MF/UF膜モジュール5の下流側に半透膜ユニット22を有し、MF/UF膜のろ過水を半透膜ユニット22に供給して透過水と濃縮水とに分離する造水装置においても、好適に実施できる。なお、図3では中間タンク(ろ過水貯留槽8)を介して、MF/UF膜ろ過水が昇圧ポンプ23に供給されているが、中間タンクを介さず、MF/UF膜ろ過水を昇圧ポンプ23に供給し、MF/UF膜ろ過水を半透膜ユニット22に供給して透過水と濃縮水とに分離しても構わない。
 半透膜とは、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない、半透性を有する膜であり、ナノろ過膜(NF膜)や逆浸透膜(RO膜)を包含する。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材がよく使用される。またその膜構造は膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜などを適宜使用できる。膜形態には中空糸膜、平膜がある。本発明は、これら膜素材、膜構造や膜形態によらず実施することができいずれも効果があるが、代表的な膜としては、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合膜などがあり、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称膜、ポリアミド系の複合膜を用いることが好ましい。
 半透膜ユニット22においては、MF/UF膜モジュール5のろ過水が濃縮されるため、濃縮によるスケール析出を防止することが好ましく、MF/UF膜モジュール5のろ過水に対してスケール防止剤を添加し、半透膜ユニット22に供給することが有効である。なお、ホウ素除去等のためなどに、MF/UF膜モジュール5の下流側かつ半透膜ユニット22の上流側でpH調整を行う場合、スケール防止剤の添加は、その添加効果を発揮できるように、pH調整よりも上流側で実施することが好ましい。また、薬品(スケール防止剤)を添加した直後にはインラインミキサーを設けたり、薬品の添加口を供給水の流れに直接接触したりするなどして、添加口近傍での急激な濃度やpH変化を防止することも好ましい。
 半透膜ユニット22の運転圧力は通常0.1MPa~15MPaであり、供給水の種類、運転方法などで適宜使い分けられる。かん水や超純水など浸透圧の低い水を供給水とする場合には比較的低圧で、海水淡水化や廃水処理、有用物の回収などの場合には比較的高圧で使用される。
 また、本発明において、ナノろ過膜または逆浸透膜を備えた半透膜ユニット22としては、特に制約はないが、取り扱いを容易にするため中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に充填したものを用いることが好ましい。流体分離素子は、平膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的である。市販品としては、東レ(株)製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これら流体分離素子を1本でも、また複数本を直列あるいは並列に接続して半透膜ユニットを構成することも好ましい。
 以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
 <実施例1>
MF/UF膜モジュール5には、東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で、膜面積72mの加圧型モジュール(HFU-2020)1本を用いて、図1に示す造水装置を用意した。この装置において、原水供給弁4とろ過水弁7を開き、原水供給ポンプ2を稼働させ、濁度が5度、TOC(Total Organic Carbon:全有機炭素)濃度が2~10mg/Lの原水を、ろ過流束3.0m/dで全量ろ過した。
 この間、MF/UF膜モジュール5については、30分のろ過工程の後、原水供給弁4とろ過水弁7を閉じ、原水供給ポンプ2を停止すると共に、逆洗弁10と空気弁13とエア抜き弁6を開き、逆洗ポンプ9を稼働させ、逆圧洗浄と空気洗浄とを同時に1分間行った。なお、逆圧洗浄においては、MF/UF膜ろ過水を用い、逆洗流束を3.3m/dとし、また空気洗浄においては、膜モジュール下方から100L/minで空気を供給した。その後、逆洗弁10と空気弁13を閉じ、逆洗ポンプ9を停止すると同時に、排水弁12を開き、MF/UF膜モジュール5内の水を系外に全量排出した。その後、原水供給弁4を開き、原水供給ポンプ2を稼働し、原水をMF/UF膜モジュール5内に供給後、ろ過水弁7を開き、エア抜き弁6を閉じ、ろ過工程に戻った。そして、30分のろ過工程の度に、先述した洗浄工程を繰り返した。
 また1日1回、先述の洗浄工程の代わりに、薬液貯留槽15内の次亜塩素酸ナトリウム溶液を原水に添加した薬液含有水をMF/UF膜モジュールの1次側に供給して薬液を拡散させてから逆圧洗浄を行う洗浄を実施した。
 具体的には、一旦、原水供給ポンプ2を停止し、ろ過水弁7と原水供給弁4を閉じ、MF/UF膜モジュール5のろ過工程を中断した後、エア抜き弁6と排水弁12を開とすることで、MF/UF膜モジュール5内の水を排出した。その後、排水弁12を閉じ、エア抜き弁6と原水供給弁4が開の状態で、原水に薬液貯留槽15内の次亜塩素酸ナトリウム溶液を薬液供給ポンプ16で供給しながら、該水を、原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給した。なお、薬液含有水中の遊離塩素濃度が500mg/Lとなるように薬液供給ポンプ16の添加量を適宜調整した。MF/UF膜モジュール5の1次側が薬液含有水で満たされた後、原水供給ポンプ2と薬液供給ポンプ16を停止し、原水供給弁4を閉じ、薬液をMF/UF膜モジュール5の1次側から2次側に拡散させる薬液拡散工程を実施した。薬液拡散工程を実施し、MF/UF膜モジュール5の2次側配管に設けた遊離塩素濃度計17で測定される遊離塩素濃度が5mg/Lとなった時点で、薬液拡散工程を終了した。薬液拡散工程終了後、エア抜き弁6と排水弁12を開とし、MF/UF膜モジュール5内の薬液を排出した。その後、排水弁12を閉じ、逆洗弁10を開とし、逆洗ポンプ9を稼働させ、MF/UF膜ろ過水を用いた逆圧洗浄を行う逆圧洗浄を実施した。逆洗工程終了後、排水弁12を開にし、MF/UF膜モジュール5内の水を系外に排出した。その後、排水弁12を閉、エア抜き弁6と原水供給弁4が開の状態で原水を原水供給ポンプ2によってMF/UF膜モジュール5の1次側に供給し、ろ過水弁7を開、エア抜き弁6を閉とすることで、通常ろ過工程に戻した。
 以上のような工程を3ヶ月間繰り返した結果、原水のTOC濃度は2~10mg/Lと大きく変動し、TOC濃度変動に応じて薬液拡散工程の実施時間が5~60分間と変動したが、MF/UF膜モジュール5のろ過差圧は、運転開始直後が70kPaであったのに対し、期間中90~100kPaの間を推移し、安定運転できた。
 <比較例1>
 薬液浸漬時間(実施例1の薬液拡散工程の時間に相当)を10分に固定して運転したこと以外は、実施例1と全く同じとするよう試みた。
 その結果、MF/UF膜モジュール5のろ過差圧は運転開始直後が70kPaであった。また、原水のTOC濃度が2~5mg/Lの期間は、実施例1と同様に、90~100kPaを推移し、安定運転できた。しかし、原水のTOC濃度が5~10mg/Lの期間は、10日間と短い期間で180kPaまでろ過差圧が上昇し、運転を停止せざるを得なかった。
1:原水貯留槽
2:原水供給ポンプ
3:原水供給ライン
4:原水供給弁
5:MF/UF膜モジュール
6:エア抜き弁
7:ろ過水弁
8:ろ過水貯留槽
9:逆洗ポンプ
10:逆洗弁
11:逆洗配管
12:排水弁
13:空気弁
14:コンプレッサー
15:薬液貯留槽
16:薬液供給ポンプ
17:薬液濃度計
18:加温装置
19:薬液含有水循環ライン
20:薬液含有水循環ライン切替弁
21:遊離塩素計
22:半透膜ユニット
23:昇圧ポンプ

Claims (15)

  1. 原水を膜ろ過して膜ろ過水を得る、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールの洗浄方法であって、薬液含有水を前記膜モジュールの1次側に供給し、薬液を前記膜モジュールの1次側から2次側へ拡散させる薬液拡散工程を行った後、前記膜モジュールの2次側から1次側へ膜ろ過水を逆圧洗浄させる逆洗工程を行い、かつ、前記薬液拡散工程時には、前記膜モジュールの2次側へ拡散した薬液の濃度に基づき、該薬液拡散工程の実施時間を制御する膜モジュールの洗浄方法。
  2. 前記薬液含有水を前記膜モジュールの1次側に供給する際の少なくとも一部、前記薬液拡散工程の際の少なくとも一部、または、前記薬液含有水を前記膜モジュールの1次側に供給する際および前記薬液拡散工程の際それぞれの少なくとも一部において、空気洗浄を実施する、請求項1に記載の膜モジュールの洗浄方法。
  3. 前記薬液拡散工程を行う前に、前記膜モジュールの1次側の原水を排出する、請求項1または2に記載の膜モジュールの洗浄方法。
  4. 前記逆洗工程を行う前に、前記膜モジュールの1次側の薬液含有水を排出する、請求項1~3のいずれかに記載の膜モジュールの洗浄方法。
  5. 前記膜モジュールの1次側から排出された薬液含有水を回収し、再利用する、請求項1~4のいずれかに記載の膜モジュールの洗浄方法。
  6. 前記膜モジュールの1次側の容量よりも多い薬液含有水を前記膜モジュールに導入してオーバーフローさせ、オーバーフローした薬液含有水を再び前記膜モジュールの1次側に導入する、請求項1~5のいずれかに記載の膜モジュールの洗浄方法。
  7. 前記薬液含有水を加温する、請求項1~6のいずれかに記載の膜モジュールの洗浄方法。
  8. 前記膜モジュールが、該膜モジュールによる膜ろ過水の少なくとも一部を次いで半透膜ユニットで膜ろ過して透過水と濃縮水とに分離する膜分離装置における膜モジュールである、請求項1~7のいずれかに記載の膜モジュールの洗浄方法。
  9. 前記薬液が、酸化剤または還元剤を含む、請求項1~8のいずれかに記載の膜モジュール洗浄方法。
  10. 前記薬液拡散工程時に、前記膜モジュールの2次側の水の酸化還元電位値を基に該薬液拡散工程の実施時間を制御する、請求項1~9に記載の膜モジュールの洗浄方法。
  11. 原水を膜ろ過して膜ろ過水を得る精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールと、前記膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄ユニットと、前記膜モジュールの1次側に供給される水に薬液を供給する薬液供給ユニットと、膜ろ過を行う際に開となり逆圧洗浄を行う際に閉となる、前記膜モジュールの2次側配管に設けられたろ過水弁およびろ過水配管と、膜ろ過を行う際に閉となり、逆圧洗浄を行う際に開となる、前記膜モジュールの2次側に設けられた逆洗弁および逆洗水配管と、前記ろ過水弁および前記逆洗弁よりも前記膜モジュールに近い2次側配管に設置された、前記膜モジュールの2次側における薬液濃度を測定する薬液濃度測定ユニットと、前記薬液濃度の測定結果に基づいて薬液拡散工程の実施時間を制御する薬液拡散工程実施時間制御ユニットと、を含む造水装置。
  12. 前記膜モジュールの1次側に気体を供給する空気供給ユニットを含む、請求項11に記載の造水装置。
  13. 前記薬液供給ユニットによって薬液が供給されて前記膜モジュールの1次側に供給される水を加温する薬液含有水加温ユニットを含む、請求項11または12に記載の造水装置。
  14. 前記膜モジュールの1次側に薬液含有水循環ラインを含む、請求項11~13のいずれかに記載の造水装置。
  15. 前記膜モジュールにより得られた膜ろ過水の少なくとも一部を処理する半透膜ユニットを含む、請求項11~14のいずれかに記載の造水装置。
PCT/JP2012/060909 2011-04-25 2012-04-24 膜モジュールの洗浄方法 WO2012147715A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12776393.6A EP2703066A4 (en) 2011-04-25 2012-04-24 PROCESS FOR CLEANING A MEMBRANE MODULE
KR1020137028062A KR20140031874A (ko) 2011-04-25 2012-04-24 막 모듈의 세정 방법
JP2012525795A JP6003646B2 (ja) 2011-04-25 2012-04-24 膜モジュールの洗浄方法
CN201280019634.0A CN103492054B (zh) 2011-04-25 2012-04-24 膜组件的洗涤方法
MX2013012404A MX2013012404A (es) 2011-04-25 2012-04-24 Procedimiento para limpiar un modulo de membrana.
US14/113,608 US20140048483A1 (en) 2011-04-25 2012-04-24 Method for cleaning membrane module
AU2012248472A AU2012248472A1 (en) 2011-04-25 2012-04-24 Method for cleaning membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096746 2011-04-25
JP2011-096746 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147715A1 true WO2012147715A1 (ja) 2012-11-01

Family

ID=47072234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060909 WO2012147715A1 (ja) 2011-04-25 2012-04-24 膜モジュールの洗浄方法

Country Status (9)

Country Link
US (1) US20140048483A1 (ja)
EP (1) EP2703066A4 (ja)
JP (1) JP6003646B2 (ja)
KR (1) KR20140031874A (ja)
CN (1) CN103492054B (ja)
AU (1) AU2012248472A1 (ja)
CL (1) CL2013003081A1 (ja)
MX (1) MX2013012404A (ja)
WO (1) WO2012147715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171922A (ja) * 2013-03-06 2014-09-22 Suido Kiko Kaisha Ltd 膜の洗浄方法
CN104418472A (zh) * 2013-09-11 2015-03-18 三菱丽阳株式会社 含有机物污水的处理装置以及处理方法
CN106103349A (zh) * 2013-12-02 2016-11-09 东丽株式会社 水处理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2957335B1 (en) * 2014-06-16 2020-05-27 EMD Millipore Corporation Single-pass filtration systems and processes
EP4144434B1 (en) * 2014-06-16 2024-04-17 EMD Millipore Corporation Single-pass filtration systems and processes
WO2015195452A2 (en) 2014-06-16 2015-12-23 Emd Millipore Corporation Single-pass filtration systems and processes
WO2015195453A2 (en) 2014-06-16 2015-12-23 Emd Millipore Corporation Methods for increasing the capacity of flow-through processes
KR102064888B1 (ko) 2014-06-25 2020-01-10 이엠디 밀리포어 코포레이션 밀집한 나권형 필터 엘리먼트, 모듈 및 시스템
US10350518B2 (en) 2014-08-29 2019-07-16 Emd Millipore Corporation Processes for filtering liquids using single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
KR102235952B1 (ko) 2014-08-29 2021-04-07 이엠디 밀리포어 코포레이션 잔류물의 재순환을 이용한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템
ES2734098T3 (es) * 2014-11-27 2019-12-04 Toray Industries Método de producción de agua
WO2016132511A1 (ja) * 2015-02-19 2016-08-25 三菱重工業株式会社 水処理システム及び方法
KR101633314B1 (ko) * 2015-02-27 2016-06-24 국민대학교산학협력단 역삼투 담수화 장치 및 방법
KR101730402B1 (ko) 2015-03-26 2017-05-11 울산과학기술원 폴리아마이드 분리막을 재활용한 한외여과막의 제조방법
IL265378B (en) 2016-09-15 2022-07-01 Fluence Water Israel Ltd Water desalination system in the container
JP6940962B2 (ja) * 2017-03-09 2021-09-29 オルガノ株式会社 中空糸膜装置の洗浄方法、限外ろ過膜装置、超純水製造装置及び中空糸膜装置の洗浄装置
CN111056657A (zh) * 2019-12-26 2020-04-24 中冶南方工程技术有限公司 悬浮型外压式膜澄清池水处理系统及方法
CN111646545A (zh) * 2020-06-10 2020-09-11 金科环境股份有限公司 可反洗滤芯-纳滤饮用水深度净化系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122460A (ja) * 1995-10-30 1997-05-13 Japan Organo Co Ltd 膜モジュールの洗浄方法
JP2008539054A (ja) * 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション 膜フィルターのための化学洗浄
JP2009112929A (ja) * 2007-11-05 2009-05-28 Metawater Co Ltd 膜ろ過装置の移動式洗浄装置
JP2010234238A (ja) * 2009-03-31 2010-10-21 Daicen Membrane Systems Ltd 魚介類の養殖用水の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924842B2 (ja) * 1977-03-14 1984-06-12 株式会社トクヤマ イオン交換膜電気透析装置の洗浄方法
JPH06320159A (ja) * 1993-05-07 1994-11-22 Brother Ind Ltd 電解水生成器
US5403479A (en) * 1993-12-20 1995-04-04 Zenon Environmental Inc. In situ cleaning system for fouled membranes
JPH07313850A (ja) * 1994-05-30 1995-12-05 Kubota Corp 浸漬型セラミック膜分離装置の逆洗方法
JP3194679B2 (ja) * 1994-11-22 2001-07-30 ダイセル化学工業株式会社 濾過膜モジュールの洗浄方法
EP0768112A1 (de) * 1995-10-16 1997-04-16 Christ AG Verfahren und Vorrichtung zur Reinwasserherstellung
JP3198923B2 (ja) * 1996-07-04 2001-08-13 栗田工業株式会社 膜の洗浄方法
JP2000254459A (ja) * 1999-03-05 2000-09-19 Sumitomo Heavy Ind Ltd 固液分離エレメントの洗浄方法及び固液分離装置
JP2001079366A (ja) * 1999-09-10 2001-03-27 Asahi Kasei Corp 膜を洗浄する方法
JP3897591B2 (ja) * 2001-12-19 2007-03-28 三菱レイヨン株式会社 分離膜モジュール及びモジュールアセンブリ
US7060136B1 (en) * 2002-03-28 2006-06-13 Nalco Company Method of monitoring membrane cleaning processes
US7220358B2 (en) * 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
WO2005092799A1 (en) * 2004-03-26 2005-10-06 U.S. Filter Wastewater Group, Inc. Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP4548081B2 (ja) * 2004-10-05 2010-09-22 株式会社日立プラントテクノロジー 中空糸膜の洗浄方法
JP2006281121A (ja) * 2005-04-01 2006-10-19 Ngk Insulators Ltd 清澄水の膜ろ過運転方法
DE102005035044A1 (de) * 2005-07-27 2007-02-01 Koch Membrane Systems Gmbh Verfahren zum Rückspülen von Kapillarmembranen einer Membrananlage
WO2007037985A2 (en) * 2005-09-23 2007-04-05 Max Rudolf Junghanns Systems and methods for treating water
JP2007130523A (ja) * 2005-11-08 2007-05-31 Kobelco Eco-Solutions Co Ltd 水処理システムにおける膜洗浄方法
CN101116797A (zh) * 2006-08-03 2008-02-06 东丽纤维研究所(中国)有限公司 一种平板膜的化学清洗方法
JP5049623B2 (ja) * 2007-03-26 2012-10-17 株式会社神鋼環境ソリューション 飲料水製造用膜分離装置及びその運転方法
JP5512978B2 (ja) * 2008-03-14 2014-06-04 東洋エンジニアリング株式会社 排水の処理方法および排水処理装置
JP2010104919A (ja) * 2008-10-30 2010-05-13 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
WO2010096047A2 (en) * 2008-11-20 2010-08-26 Alion Science And Technology Filter cleaning method
JP5343655B2 (ja) * 2009-03-27 2013-11-13 東レ株式会社 膜モジュールの運転方法
EP2468684A4 (en) * 2009-08-21 2014-05-21 Toray Industries PROCESS FOR PRODUCING FRESH WATER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122460A (ja) * 1995-10-30 1997-05-13 Japan Organo Co Ltd 膜モジュールの洗浄方法
JP2008539054A (ja) * 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション 膜フィルターのための化学洗浄
JP2009112929A (ja) * 2007-11-05 2009-05-28 Metawater Co Ltd 膜ろ過装置の移動式洗浄装置
JP2010234238A (ja) * 2009-03-31 2010-10-21 Daicen Membrane Systems Ltd 魚介類の養殖用水の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171922A (ja) * 2013-03-06 2014-09-22 Suido Kiko Kaisha Ltd 膜の洗浄方法
CN104418472A (zh) * 2013-09-11 2015-03-18 三菱丽阳株式会社 含有机物污水的处理装置以及处理方法
CN106103349A (zh) * 2013-12-02 2016-11-09 东丽株式会社 水处理方法

Also Published As

Publication number Publication date
EP2703066A4 (en) 2014-12-03
CL2013003081A1 (es) 2014-02-28
AU2012248472A1 (en) 2013-11-14
JPWO2012147715A1 (ja) 2014-07-28
CN103492054A (zh) 2014-01-01
JP6003646B2 (ja) 2016-10-05
US20140048483A1 (en) 2014-02-20
EP2703066A1 (en) 2014-03-05
MX2013012404A (es) 2014-05-13
KR20140031874A (ko) 2014-03-13
CN103492054B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6003646B2 (ja) 膜モジュールの洗浄方法
WO2012057188A1 (ja) 造水方法および造水装置
JP5804228B1 (ja) 水処理方法
JP2011125822A (ja) 膜モジュールの洗浄方法および造水装置
JP2012239948A (ja) ろ過材の洗浄方法および水処理装置
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
CN115121124A (zh) 过滤膜的清洗方法及清洗装置、以及水处理系统
WO2013111826A1 (ja) 造水方法および造水装置
KR20130137004A (ko) 침지막 엘리먼트의 약품 세정 방법
JP2015155076A (ja) 分離膜モジュールの洗浄方法
WO2016171105A1 (ja) 逆浸透膜洗浄方法及び逆浸透膜洗浄装置
JP2014171926A (ja) 淡水化方法及び淡水化装置
JP2012086182A (ja) 水処理方法および水処理装置
WO2011108589A1 (ja) 多孔質膜モジュールの洗浄方法および造水装置
JP2009240903A (ja) 膜ろ過方法
WO2019025242A1 (en) PROCESS FOR CLEANING A MEMBRANE COMPRISING THE DRYING OF THE MEMBRANE
WO2013047466A1 (ja) 膜モジュールの洗浄方法
JP2009082858A (ja) 濾過膜の洗浄方法
JP2015020081A (ja) 膜モジュールの洗浄方法および膜モジュールの洗浄装置
JP5251472B2 (ja) 膜モジュールの洗浄方法
JP2009274021A (ja) 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置
JP7325694B1 (ja) 濾過膜洗浄装置
JP2002028453A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
JP2011083656A (ja) 膜モジュールの洗浄方法および膜ろ過装置
JP2003135936A (ja) 水処理方法および水処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012525795

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/012404

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137028062

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113608

Country of ref document: US

Ref document number: 2012776393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012248472

Country of ref document: AU

Date of ref document: 20120424

Kind code of ref document: A