JP2012086182A - 水処理方法および水処理装置 - Google Patents

水処理方法および水処理装置 Download PDF

Info

Publication number
JP2012086182A
JP2012086182A JP2010236130A JP2010236130A JP2012086182A JP 2012086182 A JP2012086182 A JP 2012086182A JP 2010236130 A JP2010236130 A JP 2010236130A JP 2010236130 A JP2010236130 A JP 2010236130A JP 2012086182 A JP2012086182 A JP 2012086182A
Authority
JP
Japan
Prior art keywords
water
membrane module
raw water
water treatment
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236130A
Other languages
English (en)
Inventor
Taishi Tateoka
大嗣 楯岡
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010236130A priority Critical patent/JP2012086182A/ja
Publication of JP2012086182A publication Critical patent/JP2012086182A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
膜擦過由来のろ過性能低下の抑制をすることができ、また省スペース化が可能であり、マンガンイオンを含有する原水を効率的に処理する水処理方法および装置を提供する。
【解決手段】
浸漬型の精密ろ過/限外ろ過膜モジュールの浸漬槽に微細気泡を導入する散気装置と、通常気泡を導入する散気装置と、原水に酸化剤を注入する酸化剤注入設備とを設け、マンガンイオンを含有する原水が浸漬槽内に供給されるときに酸化剤を注入した後、浸漬型の精密ろ過/限外ろ過膜モジュールで膜ろ過すると同時に微細気泡を浸漬槽内に導入し、次いで、通常気泡を導入して洗浄する。
【選択図】図1

Description

本発明は、原水中のマンガンイオンの除去が可能な浸漬型の精密ろ過膜または限外ろ過膜モジュールを用いた水処理方法及び水処理装置に関するものである。
従来から水道水や廃水中に含まれるマンガンは一定量を超えると人体に有害な影響を及ぼす生理学的な障害のみならず、独特の臭いや味が感じられるという味覚上の問題や、食器洗浄や洗濯用水、風呂用水などの生活用水とした場合、色々な生活用品の着色障害を引き起こす。そのため、日本の水道水質基準では、0.05mg/l以下と定められている。
原水中のマンガンを精密ろ過膜あるいは限外ろ過膜を用いて除去する場合、形態が懸濁態やコロイド状態であれば除去率が高いものの、地下水のように原水が還元状態の場合、マンガンはマンガンイオンとして多く存在しており、除去はほとんど期待できない。
このような問題を解決する手段として、マンガンイオンを含有する原水を酸化処理し、不溶化させた後、固液分離する方法が一般的である。例えば、原水を空気中の酸素で酸化させた後、オゾン酸化あるいは空気中の酸素より酸化力の強い酸化剤を添加し、次いで膜ろ過する方法が提案されている(特許文献1、2)。しかし、この方法ではろ過装置とは別に酸化槽を設ける必要があり、設置スペースが大きくなってしまう問題がある。
また、膜ろ過運転を行う場合、ろ過水量に伴って、膜表面や膜細孔内に堆積物が蓄積し、膜間差圧の上昇或いはろ過水量の低下が問題となってくる。ろ過性能を維持するための膜の洗浄方法として、膜の原水側に気泡を導入して膜表面膜を揺動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄や、膜のろ過方法とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔内に付着していた汚染物質を排除する逆圧洗浄等の物理洗浄が実用化されている。しかしながら、空気洗浄において、気泡径2mm以上の通常気泡で常時曝気してしまうと、膜同士及び原水中の固形物の影響により、膜の擦過がより早く進行し、短時間でろ過性能が低下する問題があった。とりわけ原水中のマンガンイオンを精密ろ過膜モジュールまたは限外ろ過膜モジュールの浸漬槽内で効率的に酸化するためには、浸漬槽内の水和二酸化マンガン粒子をマンガンイオンの酸化自触媒として所定量常時浮遊させる必要があり、常時曝気が必要であったが、水和二酸化マンガン粒子は高硬度であることから、膜擦過が著しく進行していた。
特開平11−253940号公報 特開2003−126874号公報
本発明は、浸漬型の精密ろ過膜や限外ろ過膜を用いた水処理方法および水処理装置において、膜擦過由来のろ過性能低下の抑制や省スペース化が可能であり、原水中のマンガンイオンを効率的に除去することができる水処理方法及び水処理装置を提供することを課題とする。
上記課題を解決するため、本発明の水処理方法および水処理装置は、次の特徴を有するものである。
(1)マンガンイオンを0.05mg/l以上含有する原水を浸漬型の精密ろ過/限外ろ過膜モジュールで膜ろ過する水処理方法において、原水に酸化剤を添加するとともに、ろ過工程時間の少なくとも一部に前記膜モジュールの下方から気泡径0.5mm未満の微細気泡を発生させ、ろ過工程終了後に前記膜モジュールの下方から気泡径2mm以上の通常気泡を発生して空気洗浄を実施する水処理方法。
(2)酸化剤が塩素系酸化剤である、(1)に記載の水処理方法。
(3)ろ過工程終了後に逆圧洗浄を実施する(1)または(2)に記載の水処理方法。
(4)逆圧洗浄の実施前、実施中、または実施後の少なくとも一部に空気洗浄を実施する(3)に記載の水処理方法。
(5)原水にアルカリ剤を添加する、(1)〜(4)のいずれかに記載の水処理方法。
(6)ろ過工程終了後、浸漬型の精密ろ過/限外ろ過膜モジュールの浸漬槽内の水の少なくとも一部を系外に排出した後に逆圧洗浄を実施し、次いで浸漬槽内を水で満たして前記膜モジュールの空気洗浄を行った後に浸漬槽内の水を少なくとも一部を系外に排出する、(1)〜(5)のいずれかに記載の水処理方法。
(7)マンガンイオンを0.05mg/l以上含有する原水を処理する浸漬型の精密ろ過/限外ろ過膜モジュールと、原水に酸化剤を添加する手段と、前記膜モジュールを浸漬させた浸漬槽内に原水を供給する手段と、原水を前記膜モジュールで吸引ろ過する手段と、浸漬槽内の前記膜モジュールの下方に気泡径0.5mm未満の微細気泡を導入する散気手段と、浸漬槽内の前記膜モジュールの下方に気泡径2mm以上の通常気泡を導入する散気手段と、を備える水処理装置。
(8)精密ろ過/限外ろ過膜モジュールを逆圧洗浄する手段をさらに備える、(7)に記載の水処理装置。
(9)原水にアルカリ剤を添加する手段をさらに備える、(7)または(8)に記載の水処理装置。
本発明の水処理方法および水処理装置によれば、膜擦過由来のろ過性能低下を抑制することができ、また省スペース化が可能であり、マンガンイオンを含有する原水を効率的に処理することが可能である。
本発明が適用される水処理装置の一例を示す装置概略図である。
以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
本発明の対象となる水処理装置は、例えば、図1に示すように、マンガンイオンを0.05mg/l以上含有する原水を貯留する原水タンク1と、原水を浸漬槽内に供給する原水ポンプ2と、原水供給時に開となる原水供給バルブ3と、浸漬型膜モジュールを水中に浸漬するための浸漬槽4と、原水を固液分離するための精密ろ過膜や限外ろ過膜などを備えた浸漬型膜モジュール5と、原水に酸化剤を注入するための酸化剤注入設備6と、膜ろ過時に開となるろ過バルブ7と、吸引ろ過するための吸引ポンプ8と、膜ろ過水を貯留するろ過水タンク9と、通常気泡生成時に開となる通常気泡バルブ10と、微細気泡生成時に開となる微細気泡バルブ11と、気泡生成時にエアを供給するためのコンプレッサー12と、膜モジュールの下方から通常気泡を供給するための通常気泡散気管13と、膜モジュールの下方から微細気泡を供給するための微細気泡散気管14と、排水工程時に開となる排水バルブ15と、膜ろ過水を逆圧洗浄水として浸漬型膜モジュール5へ導入するための逆洗ポンプ16と、逆圧洗浄時に開となる逆洗バルブ17とを備えている。
本発明において、処理対象とされる原水としては、0.05mg/L以上のマンガンイオンを含有するものであれば特に制限されず、地下水、河川水、湖沼水などが使用できる。
マンガンイオンの濃度を測定する方法としては、原水サンプルを孔径0.45μm以下の精密ろ過膜あるいは限外ろ過膜でろ過し、そのろ過水をフレームレス−原子吸光法やICP発光分光分析法(測定波長257.610nm)やICP質量分析法で測定する方法が挙げられる。
上述の水処理装置において、本発明の水処理方法のろ過工程は次のように実施される。
まず、原水供給バルブ3が開の状態で原水タンク1に貯留されている原水が原水ポンプによって浸漬槽4内に供給される際に酸化剤注入設備6によって原水に酸化剤を注入する。
ここで、酸化剤としては、取り扱いやすく、安価な次亜塩素酸や次亜塩素酸ナトリウム、次亜塩素酸カルシウム等の次亜塩素酸塩や二酸化塩素等の塩素系酸化剤が好ましく、原水中の第一鉄イオンやマンガンイオンや亜硝酸イオンやアンモニア等の還元性無機成分の濃度に応じて適宜注入量を制御するのが好ましい。
浸漬槽4内が原水で満たされた状態でろ過バルブ7、微細気泡バルブ11を開、通常気泡バルブ10、排水バルブ15、逆洗バルブ17を閉とし、吸引ポンプ8とコンプレッサー12を稼動させることで、微細気泡散気管14から気泡径0.5mm未満の微細気泡を発生させながら、浸漬型膜モジュール5の吸引ろ過が行われる。ろ過時間は原水水質や膜透過流束に応じて適宜設定するのが好ましいが、所定の膜ろ過差圧に到達するまでろ過時間を継続させてもよい。浸漬槽内での微細気泡の発生により、浸漬型膜モジュール5で固液分離された二酸化マンガンを含んだ粒子状の固体成分は浸漬槽4の底部に沈降することなく、浮遊した状態で原水中のマンガンイオンを酸化することができる。
まず、式(1)に示す反応により、マンガンイオンは二酸化マンガンに交換吸着される。マンガンイオンと接触した二酸化マンガンはMnO・MnOとなって、接触酸化力を失うが、式(2)の酸化剤(主に塩素系酸化剤)による酸化反応で、再活性化する。よってマンガンイオンを酸化するためには、交換吸着するための二酸化マンガンおよび二酸化マンガンを再活性化するための酸化剤の両方が必要となる。
Mn2++MnO・HO→MnO・MnO+2H (1)
MnO・MnO+HOCl+2HO→2(MnO・HO)+H+Cl (2)
また、原水にアルカリ剤を添加し、浸漬槽内のpHを7以上に制御したほうがマンガンイオンが酸化されやすいので好ましい。アルカリ剤としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等いずれでも構わない。
微細気泡の供給時間や送風量は原水中のマンガンイオン濃度や浸漬槽4内の二酸化マンガン濃度、ろ過時間などに応じて適宜設定すればよい。ろ過工程中常時発生させても良いし、マンガンイオンの酸化に十分な二酸化マンガン粒子を浮遊でき、原水中に第一鉄イオンが存在する場合、第一鉄イオンを酸化するための溶存酸素が確保できれば、間欠の稼動でもよい。
高硬度の二酸化マンガン粒子による膜の擦過を最小限に抑制するには、微細気泡の平均気泡径は0.5mm未満であることが必要である。気泡径が小さいほど、浮力が小さいため、水中での上昇速度が遅く、浸漬槽4内での旋回流はほとんど発生しないため、膜の擦過を最小限に抑制することができる。
なお、本発明に係る平均気泡径とは、散気管から30cm上方に存在する気泡径の平均値である。気泡が楕円の場合は、(長径+短径)/2とする。気泡径を測定する具体的な方法は、カメラを用いて散気管から30cm上方の位置が中心にくるように写真撮影し、撮影された画像中に存在する全ての気泡について気泡径を計測し、平均値を算出するする方法とする。また、微細気泡の気泡径は、微細気泡散気管14の気孔率や送風量によっては気泡同士が上昇していく過程で合一して大きくなる可能性があるため、合一を避けるよう、送風量に応じて、微細気泡散気管14の気孔率や本数等をあらかじめ調整しておいたほうが好ましい。
このように酸化処理とろ過を同時並行させることによって、効率的にマンガンイオンが酸化除去されたろ過水がろ過水タンク9に貯留される。
上記のろ過運転を継続すると、浸漬型膜モジュール5の膜表面や膜細孔内に析出した鉄やマンガンの酸化物やフミン酸などの有機物などが付着していき、ろ過水量の低下あるいは膜間差圧の上昇を引き起こすため、ろ過工程終了後に以下の洗浄工程を開始する。まず、原水供給ポンプ2、吸引ポンプ8、コンプレッサー12を停止して、原水供給バルブ3、ろ過水バルブ7、微細気泡バルブ11を閉にした後、逆洗バルブ17を開にして、逆洗ポンプ16を稼動させることでろ過水タンク9の膜ろ過水を用いた逆圧洗浄が行われる。こうすることで、鉄やマンガンの酸化物や有機物は膜表面から剥離する。
逆圧洗浄の時間は、特に制限するものではないが、5秒以上120秒以下の範囲内とするのが好ましい。1回の逆圧洗浄時間が5秒未満では、十分な洗浄効果が得られず、120秒を超えると浸漬型膜モジュール5の稼働効率が低くなったり、水回収率が低下したりする。
逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上2倍以下であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面に付着、堆積したファウリング物質を十分に除去することが難しい。逆圧洗浄の流束は高いほうが膜の洗浄効果が高くなるので好ましいが、高すぎると水回収率が低下すること、膜モジュール容器の破壊や膜の亀裂等の損傷が起こる問題が発生することから、そうならない範囲内に適宜設定する。
逆圧洗浄の頻度は、ろ過流束やろ過時間、原水水質に応じて適宜設定すればよく、特に制限するものではないが、数十分〜数時間に1回程度であることが好ましい。
なお、逆圧洗浄に用いる水は清澄水であれば何でもよく、膜ろ過水に限定されない。逆圧洗浄に用いる水には、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等の酸化剤あるいは亜硫酸ナトリウム、亜硫酸水素ナトリウム等の還元剤が添加されていたほうが洗浄効果が高くなるので好ましい。酸化剤は膜面に付着した有機物を分解し、還元剤は膜面に付着した酸化した鉄やマンガンを溶解できるので、膜が劣化しない程度の濃度になるよう、供給配管途中(図示なし)に適宜添加することが好ましい。前記酸化剤や還元剤の濃度が高い場合、ろ過再開時に2次配管内に残留していた酸化剤や還元剤がろ過水タンク9に流入するので、逆洗終了前に添加を止めるのが好ましい。
さらに、通常気泡バルブ10を開にして、コンプレッサー12から圧縮空気を送り込むことで、通常気泡散気管13から気泡径2mm以上の通常気泡を発生させ、浸漬型膜モジュール5の膜面を振動させる空気洗浄を、上述の逆圧洗浄の実施前、実施中、または実施後の少なくとも一部に実施することも好ましい。逆圧洗浄と空気洗浄の併用により膜面や膜細孔内に蓄積していたファウリング物質が剥離される。通常気泡散気管13からの通常気泡の供給時間やエア流量は浸漬型膜モジュール5の形状や膜の性能や汚染状況に応じて適宜設定すればよいが、膜の擦過を低減させるため、供給時間はできるだけ短いほうが好ましく、60秒以内に設定することが好ましい。膜表面に付着していた鉄やマンガンの酸化物や有機物をせん断力で効率的に剥離するためには、微細気泡の平均気泡径は水中での浮上速度が大きい2mm以上であることが好ましい。
通常気泡バルブ10、逆洗バルブ17を閉にし、コンプレッサー12、逆洗ポンプ16を停止して、上述の逆圧洗浄や空気洗浄が終了した後、排水バルブ15が開になることで、膜面や膜細孔内から剥離して、浸漬型膜モジュール5内で浮遊しているファウリング物質が系外に排出される排水工程が行われる。上述した通り、マンガンイオンの酸化には浸漬槽4内に二酸化マンガンを浮遊させる必要がある。排水工程で浸漬槽4内の水を全量排水した場合、再度時間をかけて二酸化マンガン粒子を生成させなければならないことから、マンガンイオンの酸化に支障をきたさない程度に一部を排水したほうが好ましい。なお排水工程は逆圧洗浄前や逆圧洗浄中に実施しても構わない。排水して膜1次側を空気にさらした後に逆圧洗浄を実施した場合、膜1次側に水圧がかからないため、ファウリング物質が膜表面から剥離しやすい利点がある。
排水工程終了後、排水バルブ15が閉、原水供給バルブ3が開となり、原水供給ポンプ2、酸化剤注入設備6が稼動して給水工程が行われ、浸漬型膜モジュール5を水中に浸漬した後、ろ過バルブ7と微細気泡バルブ11を開にし、吸引ポンプ8とコンプレッサー12を稼働することで、ろ過工程に戻り、上記工程を繰り返す。
浸漬型膜モジュール5を構成する分離膜の孔径としては、吸引圧で容易に所定のろ過水量を確保でき、浸漬槽4内の二酸化マンガン粒子を分離できれば特に限定しないが、所望の処理水の水質や水量によって、MF膜(精密ろ過膜)を用いたり、UF膜(限外ろ過膜)を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合はMF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いるのが好ましい。
分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。
分離膜の材質としても、特に限定しないが、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホンからなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。
浸漬型膜モジュール5のろ過動力としては、図1のような吸引ポンプ8で吸引ろ過する以外にも、浸漬槽4とろ過水タンク9の水位差を利用したサイフォンの原理で吸引ろ過しても構わない。
浸漬型膜モジュール5のろ過制御方法としては、定流束ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流束ろ過である方が好ましい。
通常気泡散気管13としては、形状は管状や板状など特に限定されるものではないが、材質は酸化力に強いステンレス鋼(SUS304,316)やセラミックス等で形成することが好ましい。散気孔の孔径は平均気泡径が2mm以上となるよう1mm以上が好ましい。設置位置は、気泡を直接膜面に接触させてより大きな力で膜を揺動、膜同士を接触させるため、気泡が直接膜面に接触するよう浸漬型膜モジュール5の真下にしたほうが好ましい。
微細気泡散気管14としては、形状は通常気泡散気管13と同様、特に限定されるものではないが、材質は酸化力に強く、散気孔を小さく加工できるポリウレタンやEPDM(エチレンプロピレンジエン三元共重合体)やシリコン等で形成することが好ましい。散気孔の孔径は平均気泡径が0.5mm未満となるよう数μm以上数十μm以下の範囲が好ましい。設置位置は、浸漬槽4内の二酸化マンガン粒子を浮遊させ、第一鉄イオンを酸化するための溶存酸素が確保できるよう浸漬槽4の下部にしたほうが好ましい。なお微細気泡を発生させる手段としては、上述の微細な孔から出す方法(微細管、多孔質板、散気膜)の他に、せん断流を利用したノズルから出す方法(二重円管ノズル、高速旋回ノズル)、圧力変動による気泡の崩壊や析出を利用する方法(キャビテーション、加圧溶解)などがあるが、いずれを採用しても構わない。
本発明の水処理方法により、膜擦過由来のろ過性能低下の抑制をすることができ、また省スペース化が可能であり、第一鉄イオンおよびマンガンイオンを含有する原水を効率的に処理することが可能でありながら、膜表面や膜細孔内に付着していたファウリング物質を効果的に除去できるので、定流量運転の場合、膜ろ過吸引圧が従来技術よりも長期間安定する。しかし、本発明であってもファウリング物質は完全には除去できず、膜ろ過吸引圧が吸引ポンプ8の吸引全揚程に到達したり、キャビテーションを引き起こす限界まで到達したりした場合、高濃度の薬品洗浄を実施する必要がある。ここで、洗浄に用いる薬品としては、膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1種類以上含有した方が、有機物に対して洗浄効果が高くなるので好ましく、また、シュウ酸、クエン酸、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウムを少なくとも1種類以上含有したほうが、鉄やマンガンの酸化物に対して洗浄効果が高くなるので好ましい。
(実施例1)
図1に示す装置を用い、第一鉄イオン0.5mg/l、マンガンイオン0.1mg/lを含有する地下水を処理した。浸漬型膜モジュール5には東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が25mの浸漬型膜モジュール1本を用いた。ろ過運転方式はろ過流束1.0m/dの定流量ろ過運転とし、ろ過水中の残留塩素濃度が0.5mg/lとなるよう、酸化剤注入設備6から次亜塩素酸ナトリウムを注入した。ろ過工程中、微細気泡散気管14より平均気泡径0.4mmの微細気泡を常時曝気させ、このときの送風量は0.5Nm/hであった。洗浄は、ろ過工程2時間毎に行った。洗浄の手順はまず、原水ポンプ2を停止し、原水供給バルブ3、ろ過バルブ7、微細気泡バルブ11を閉にしてろ過工程を停止した後、空気洗浄するため通常気泡バルブ10を開にして通常気泡散気管13から平均気泡径5mmの通常気泡を1分間発生させた。そのときの送風量は5.0Nm/hであった。また、通常気泡を発生させると同時に逆圧洗浄をするため、逆洗バルブ17を開にして逆洗ポンプ16を稼動させた。そのときの逆洗流束は1.0m/dとした。最後に、洗浄工程終了後、排水バルブ15から浸漬槽4内の水を1割排出し、ろ過工程を再開した。
その結果、第一鉄イオン0.05mg/l、マンガンイオン0.01mg/lのろ過水を得ることができ、水道水質基準を達成した。また、ろ過差圧は運転開始直後15kPaに対して、運転開始から6ヶ月後も35kPaと安定していた。
(比較例1)
ろ過工程中に微細気泡散気管14を用いず、通常気泡散気管13を用いて通常気泡で常時曝気させたこと以外は実施例1と全く同じにした。その結果、第一鉄イオン0.06mg/l、マンガンイオン0.03mg/lのろ過水を得ることができ、水道水質基準を達成した。しかし、ろ過差圧は運転開始直後15kPaに対して、運転開始から3ヶ月後には70kPaに達したため、一旦運転を停止し、次亜塩素酸ナトリウム3000mg/l溶液とクエン酸2%溶液で薬品洗浄した。その後運転を再開したが、膜外表面が擦過しており、運転再開から1ヶ月後にはろ過差圧が70kPaに達したため、浸漬型膜モジュール5を交換せざるを得なかった。
(比較例2)
洗浄工程時に通常気泡散気管13を用いず、微細気泡散気管14を用いて空気洗浄を行ったこと以外は実施例1と全く同じにした。その結果、第一鉄イオン0.05mg/l、マンガンイオン0.01mg/lのろ過水を得ることができ、水道水質基準を達成した。しかし、ろ過差圧は運転開始直後15kPaに対し、運転開始2週間後には70kPaに急上昇したため、薬品洗浄せざるを得なかった。
(比較例3)
ろ過工程中に微細気泡散気管14を用いず、曝気を実施しなかった以外は実施例1と全く同じにした。その結果、ろ過水の第一鉄イオンは0.08mg/lであったが、マンガンイオンは0.08mg/lであり、水道水質基準を達成できなかった。
1:原水タンク
2:原水ポンプ
3:原水供給バルブ
4:浸漬槽
5:浸漬型膜モジュール
6:酸化剤注入設備
7:ろ過バルブ
8:吸引ポンプ
9:ろ過水タンク
10:通常気泡バルブ
11:微細気泡バルブ
12:コンプレッサー
13:通常気泡散気管
14:微細気泡散気管
15:排水バルブ
16:逆洗ポンプ
17:逆洗バルブ

Claims (9)

  1. マンガンイオンを0.05mg/l以上含有する原水を浸漬型の精密ろ過/限外ろ過膜モジュールで膜ろ過する水処理方法において、原水に酸化剤を添加するとともに、ろ過工程時間の少なくとも一部に前記膜モジュールの下方から気泡径0.5mm未満の微細気泡を発生させ、ろ過工程終了後に前記膜モジュールの下方から気泡径2mm以上の通常気泡を発生して空気洗浄を実施する水処理方法。
  2. 酸化剤が塩素系酸化剤である、請求項1に記載の水処理方法。
  3. ろ過工程終了後に逆圧洗浄を実施する請求項1または2に記載の水処理方法。
  4. 逆圧洗浄の実施前、実施中、または実施後の少なくとも一部に空気洗浄を実施する請求項3に記載の水処理方法。
  5. 原水にアルカリ剤を添加する、請求項1〜4のいずれかに記載の水処理方法。
  6. ろ過工程終了後、浸漬型の精密ろ過/限外ろ過膜モジュールの浸漬槽内の水の少なくとも一部を系外に排出した後に逆圧洗浄を実施し、次いで浸漬槽内を水で満たして前記膜モジュールの空気洗浄を行った後に浸漬槽内の水の少なくとも一部を系外に排出する、請求項1〜5のいずれかに記載の水処理方法。
  7. マンガンイオンを0.05mg/l以上含有する原水を処理する浸漬型の精密ろ過/限外ろ過膜モジュールと、原水に酸化剤を添加する手段と、前記膜モジュールを浸漬させた浸漬槽内に原水を供給する手段と、原水を前記膜モジュールで吸引ろ過する手段と、浸漬槽内の前記膜モジュールの下方に気泡径0.5mm未満の微細気泡を導入する散気手段と、浸漬槽内の前記膜モジュールの下方に気泡径2mm以上の通常気泡を導入する散気手段と、を備える水処理装置。
  8. 精密ろ過/限外ろ過膜モジュールを逆圧洗浄する手段をさらに備える、請求項7に記載の水処理装置。
  9. 原水にアルカリ剤を添加する手段をさらに備える、請求項7または8に記載の水処理装置。
JP2010236130A 2010-10-21 2010-10-21 水処理方法および水処理装置 Pending JP2012086182A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236130A JP2012086182A (ja) 2010-10-21 2010-10-21 水処理方法および水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236130A JP2012086182A (ja) 2010-10-21 2010-10-21 水処理方法および水処理装置

Publications (1)

Publication Number Publication Date
JP2012086182A true JP2012086182A (ja) 2012-05-10

Family

ID=46258412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236130A Pending JP2012086182A (ja) 2010-10-21 2010-10-21 水処理方法および水処理装置

Country Status (1)

Country Link
JP (1) JP2012086182A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188781A (ja) * 2014-03-27 2015-11-02 株式会社クラレ 水処理装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN109647216A (zh) * 2019-01-18 2019-04-19 清华大学深圳研究生院 一种在线化学清洗陶瓷膜的系统和方法
CN114835299A (zh) * 2022-05-17 2022-08-02 哈尔滨工业大学 一种基于二氧化锰粉末强化低压超滤系统除锰的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188781A (ja) * 2014-03-27 2015-11-02 株式会社クラレ 水処理装置
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN109647216A (zh) * 2019-01-18 2019-04-19 清华大学深圳研究生院 一种在线化学清洗陶瓷膜的系统和方法
CN109647216B (zh) * 2019-01-18 2021-07-06 清华大学深圳研究生院 一种在线化学清洗陶瓷膜的系统和方法
CN114835299A (zh) * 2022-05-17 2022-08-02 哈尔滨工业大学 一种基于二氧化锰粉末强化低压超滤系统除锰的方法

Similar Documents

Publication Publication Date Title
JP6003646B2 (ja) 膜モジュールの洗浄方法
JP5453711B2 (ja) 外圧式中空糸膜モジュールの洗浄方法
JP6432914B2 (ja) 水処理方法および水処理装置
EP2554245A1 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP2004073950A (ja) 膜洗浄方法
CN115121124A (zh) 过滤膜的清洗方法及清洗装置、以及水处理系统
JP4867180B2 (ja) 浸漬型膜分離装置及びその薬品洗浄方法
JP2015155076A (ja) 分離膜モジュールの洗浄方法
JP2012086182A (ja) 水処理方法および水処理装置
JPWO2014157057A1 (ja) 中空糸膜モジュールの洗浄方法
JP2009006209A (ja) 中空糸膜モジュールの洗浄方法
JP5181987B2 (ja) 浸漬型膜モジュールの洗浄方法
JP2008029906A (ja) 造水方法および造水装置
JP4698274B2 (ja) 濾過膜の洗浄方法
JP2012086120A (ja) 浸漬型膜モジュールの薬品洗浄方法
TWI717743B (zh) 膜洗淨裝置及膜洗淨方法
JP2015020081A (ja) 膜モジュールの洗浄方法および膜モジュールの洗浄装置
JP2006081979A (ja) 膜洗浄方法
JP2001070763A (ja) 膜洗浄方法
WO2011108589A1 (ja) 多孔質膜モジュールの洗浄方法および造水装置
JP2001070764A (ja) 洗浄の方法
JP5251472B2 (ja) 膜モジュールの洗浄方法
JP2009274021A (ja) 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置
JP7120496B1 (ja) 濾過膜洗浄装置、水処理装置及び濾過膜洗浄方法
WO2022157926A1 (ja) 濾過膜の洗浄装置、水処理装置及び濾過膜の洗浄方法