WO2016132511A1 - 水処理システム及び方法 - Google Patents
水処理システム及び方法 Download PDFInfo
- Publication number
- WO2016132511A1 WO2016132511A1 PCT/JP2015/054622 JP2015054622W WO2016132511A1 WO 2016132511 A1 WO2016132511 A1 WO 2016132511A1 JP 2015054622 W JP2015054622 W JP 2015054622W WO 2016132511 A1 WO2016132511 A1 WO 2016132511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- desalting
- concentrated
- gypsum
- mixed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/73—After-treatment of removed components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/16—Evaporating by spraying
- B01D1/18—Evaporating by spraying to obtain dry solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/16—Evaporating by spraying
- B01D1/20—Sprayers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
- B01D53/502—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/80—Semi-solid phase processes, i.e. by using slurries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/46—Sulfates
- C01F11/464—Sulfates of Ca from gases containing sulfur oxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5281—Installations for water purification using chemical agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
- B01D2251/606—Carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/10—Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
- C02F1/12—Spray evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/16—Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
- C02F1/683—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F2001/5218—Crystallization
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/101—Sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/18—Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a water treatment system and method for discharged water generated in, for example, boiler plant and chemical plant equipment.
- discharged water is generated from, for example, a boiler, a reactor, a wet cooling tower of a condenser, a water treatment device, or the like.
- Various treatment apparatuses have been proposed to treat such discharged water, but all have a problem of increasing costs.
- it is characterized by neutralizing alkaline blow water by spraying cooling water (blow water) of a boiler cooling tower into a flue as a mist having a droplet diameter of 20 to 120 microns.
- cooling water cooling water
- Patent Document 2 proposes a wastewater treatment apparatus that increases the amount of wastewater that can be evaporated by spraying discharged water into the flue.
- Patent Document 1 wastewater can be treated easily and at low cost, but the amount of wastewater increases with respect to the heat energy (temperature, flow rate) of the exhaust gas, and the evaporation treatment is performed. There is a problem that processing cannot be performed when the required energy increases.
- exhaust gas discharged from boiler plants may contain trace amounts of harmful substances such as mercury in addition to nitrogen oxides and sulfur oxides. To prevent this, mercury countermeasures are necessary.
- waste water from a boiler, a reactor, a wet cooling tower of a condenser, a water treatment device, etc. is low-cost and accompanied by a decrease in boiler efficiency.
- efficient treatment technologies that take mercury emission countermeasures into consideration.
- an object of the present invention is to provide a water treatment system and method for discharged water generated in plant equipment.
- the first invention of the present invention for solving the above-mentioned problems is a wet desulfurization apparatus that removes sulfur oxides in boiler exhaust gas, and dehydration that separates gypsum from desulfurization effluent containing gypsum slurry from the wet desulfurization apparatus.
- a mercury removal unit that introduces separation water from the dehydration device, introduces a chelating agent, and immobilizes heavy metals in the separation water; and a solid component that separates solids in the separation water from the mercury removal unit.
- a spray-drying device for spray-drying using a part of the boiler exhaust gas, the spray-drying device having spray means for spraying the concentrated water salt-concentrated by the desalination treatment device. .
- a wet desulfurization device that removes sulfur oxides in boiler exhaust gas
- a dehydration device that separates gypsum from desulfurization effluent containing gypsum slurry from the wet desulfurization device, and separated water from the dehydration device.
- a mixing section for mixing with the discharged water generated in the plant equipment, a reaction tank for introducing the mixed water mixed in the mixing section and introducing a chelating agent to immobilize heavy metals in the separated water, and the reaction tank
- a solid-liquid separation unit for solid-liquid separation of the solid content in the mixed water from, a desalting apparatus for removing salt in the mixed water after the solid-liquid separation, and a concentrated water salt-concentrated in the desalting apparatus
- a spray-drying device that spray-drys using a part of the boiler exhaust gas.
- a third aspect of the present invention is the water treatment according to the first or second aspect, further comprising a membrane treatment unit that treats the separated water after separation by the solid-liquid separation unit with a membrane having monovalent selectivity.
- a membrane treatment unit that treats the separated water after separation by the solid-liquid separation unit with a membrane having monovalent selectivity.
- a fourth invention is the water treatment system according to any one of the first to third inventions, wherein the desalting apparatus removes divalent salt in the discharged water.
- the desalting apparatus supplies a scale inhibitor to mixed water containing divalent ions such as Ca ions.
- a first demineralizer installed on the downstream side of the supply unit, the scale inhibitor supply unit, and separating the mixed water into reclaimed water and concentrated water enriched with the Ca ions and the like; and the first demineralizer.
- a water treatment system comprising: a second desalting apparatus, which is installed on the downstream side of the separation unit and separates the concentrated water into reclaimed water and concentrated water in which the Ca ions and the like are concentrated.
- the desalting apparatus is further installed on a downstream side of the separation unit and a separation unit that separates the concentrated water from the second desalination device, and the concentration A water treatment system comprising a third demineralizer for separating water into reclaimed water and concentrated water enriched with the Ca ions and the like.
- the seventh invention is the water treatment system according to the fifth invention, further comprising an oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the mixed water introduced into the first desalting apparatus.
- the eighth invention is characterized in that, in the seventh invention, the value (X) of the oxidation-reduction potential in the mixed water measured by the oxidation-reduction potentiometer is ⁇ 0.69 V ⁇ X ⁇ 1.358 V. In the water treatment system.
- a wet desulfurization step for removing sulfur oxides in boiler exhaust gas
- a dehydration step for separating gypsum from desulfurization effluent containing gypsum slurry from the wet desulfurization step, and separated water from the dehydration step.
- a solid-liquid separation step for solid-liquid separation of the solid content in the separated water from the mercury removal step, and from the solid-liquid separation unit The separated water is mixed with the discharged water generated in the plant equipment, the desalinating process for removing the salt in the mixed water mixed in the mixing process, and the concentration obtained by concentrating the salt in the desalting process And a spray-drying step of spray-drying water using a part of the boiler exhaust gas.
- a tenth aspect of the present invention is a wet desulfurization step for removing sulfur oxides in boiler exhaust gas, a dehydration step for separating gypsum from desulfurization effluent containing gypsum slurry from the wet desulfurization step, and separated water from the dehydration step.
- a mixing step for mixing with the discharged water generated in the plant equipment, a precipitation step for introducing the mixed water mixed in the mixing step, and introducing a chelating agent to immobilize heavy metals in the separated water, and the precipitation step A solid-liquid separation step for solid-liquid separation of the solid content in the mixed water, a desalting treatment step for removing salt in the mixed water after the solid-liquid separation, and a concentrated water salt-concentrated in the desalting treatment step, And a spray drying step of spray drying using a part of the boiler exhaust gas.
- An eleventh aspect of the present invention is the water treatment according to the ninth or tenth aspect of the present invention, further comprising a membrane treatment step of treating the separated water after separation in the solid-liquid separation step with a membrane having monovalent selectivity. Is in the way.
- the twelfth invention is the water treatment method according to any one of the ninth to eleventh inventions, wherein the desalting treatment step removes divalent salt in the discharged water.
- a thirteenth aspect of the present invention is the scale inhibitor according to any one of the ninth to twelfth aspects, wherein the desalting treatment step supplies a scale inhibitor to mixed water containing divalent ions such as Ca ions.
- a first desalting step that is installed downstream of the supply step, the scale inhibitor supply step, and separates the mixed water into reclaimed water and concentrated water enriched with the Ca ions, and the like;
- a crystallization step for crystallization of gypsum from the concentrated water, a separation unit for separating the crystallized gypsum and the concentrated water from the first desalting step, provided downstream of the salt step;
- a water treatment method comprising: a second desalting step that is installed downstream of the separation unit and separates the concentrated water into reclaimed water and concentrated water in which the Ca ions and the like are concentrated.
- the desalting step is further provided on the downstream side of the separation step for separating the concentrated water from the second desalting step, and the concentration step.
- a water treatment method is characterized by comprising a third desalting step of separating water into reclaimed water and concentrated water enriched with the Ca ions and the like.
- the fifteenth invention is the water treatment method according to the ninth invention, further comprising an oxidation-reduction potential measuring step for measuring the oxidation-reduction potential of the mixed water introduced into the first desalting step.
- the value (X) of the redox potential in the mixed water measured in the redox potential measuring step is ⁇ 0.69 V ⁇ X ⁇ 1.358 V. It is in the water treatment method.
- the present invention it is not necessary to treat the waste water discharged in the plant equipment with the industrial waste water treatment equipment, and it is possible to eliminate waste water generated in the plant or to reduce the amount of waste water and to take measures against mercury discharge. It becomes.
- FIG. 1 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the first embodiment.
- FIG. 2 is a schematic diagram of the spray dryer according to the first embodiment.
- FIG. 3 is a configuration diagram illustrating an example of a desalting apparatus according to the present embodiment.
- FIG. 4 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment.
- FIG. 5 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment.
- FIG. 6 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment.
- FIG. 7 is a configuration diagram illustrating an example of another desalting apparatus according to the second embodiment.
- FIG. 1 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the first embodiment.
- FIG. 2 is a schematic diagram of the spray dryer according to the first embodiment.
- FIG. 3 is a configuration diagram illustrating an example of a desalting apparatus
- FIG. 8 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the third embodiment.
- FIG. 9 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the fourth embodiment.
- FIG. 10 is a photomicrograph of gypsum obtained by crystallization.
- FIG. 11 is a photomicrograph of gypsum obtained by crystallization.
- FIG. 12 is a schematic view of an example of a separation apparatus by the cold dry method.
- FIG. 13 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the fifth embodiment.
- FIG. 14 is a diagram showing a simulation result of the pH dependence of the amount of gypsum deposited.
- FIG. 15 is a diagram showing a simulation result of the pH dependency of the precipitated amount of calcium carbonate.
- FIG. 16 is a diagram showing a simulation result of the pH dependence of the silica precipitation amount.
- FIG. 1 is a schematic diagram of a water treatment system for discharged water generated in a plant facility according to the first embodiment.
- a water treatment system for discharged water generated in a plant facility according to the present embodiment includes an exhaust gas treatment system 18 for treating boiler exhaust gas (hereinafter referred to as “exhaust gas”) 12 from a boiler 11, and desulfurization.
- exhaust gas boiler exhaust gas
- the waste water 22 is mixed with the mixing unit 110 and the desalinating device 30 for removing the salt in the mixed water, and after the desalinating unit 30 is processed.
- a spray drying device 23 for spray drying the concentrated water 31 using a part 12a of the boiler exhaust gas 12.
- the exhaust gas treatment system 18 illustrated in FIG. 1 from the exhaust gas 12, nitrogen oxide (NO x ), A device that removes harmful substances such as sulfur oxide (SO x ) and mercury (Hg), a denitration device 13 that removes nitrogen oxides, an air preheater 14 that recovers the heat of the exhaust gas 12, and a post-heat recovery device A dust collector 15 that removes soot and dust in the exhaust gas 12, a wet desulfurization device 16 that removes sulfur oxides contained in the exhaust gas 12 after dust removal, and a chimney 17 that discharges the purified gas after desulfurization. I have.
- sulfur oxides contained in the exhaust gas 12 are removed by a desulfurization method using a lime / gypsum method.
- lime slurry (not shown) is supplied, and gypsum 32 is removed from the gypsum slurry, which is desulfurization waste water 41 discharged from the wet desulfurization device 16 via the discharge line L 31 by the dehydrator 42. It is separated. The separated water 43 separated by dewatering device 42 is returned as make-up water via line L 32 back to the wet desulfurization system 16.
- Reference numeral L 33 shows a slurry circulation line for circulating the desulfurized gypsum slurry.
- a dehydrating device 42 for separating gypsum 32 from desulfurization waste water 41 containing gypsum slurry from the wet desulfurization device 16 and separated water 43 from the dehydrating device 42 are introduced by a separation water line L 34 , and a chelating agent.
- 102 is a mercury removal unit that removes mercury in the separation water 43 and a solid-liquid separation unit that solid-liquid separates the solid content (heavy metal sludge) 104 in the separation water 43 from the reaction vessel 101.
- a chelating agent 102 is added to the reaction tank 101 by an adding device (not shown), and the chelating agent 102 is subjected to an adsorption treatment of mercury (Hg) in the separated water 43.
- the chelating agent 102 for example, a pH adjusting agent (alkali agent) for adjusting pH, a coagulant (for example, sulfuric acid band, PAC, iron salt, etc.), and a flocculant such as a polymer flocculant. You may make it add.
- Mercury in the separation water 43 forms an insoluble polymer complex by the chelating agent 102 which is a heavy metal scavenger, and agglomerates the polymers with, for example, a sulfuric acid band.
- the heavy metal (such as Hg) sludge 104 is separated by the solid-liquid separation unit 103, and the separated water from the solid-liquid separation unit 103 is discharged by the separated water discharge line L 35 and mixed with the discharged water 22 from the cooling tower 21.
- the water is mixed in the section 110 to obtain mixed water 111.
- the solid-liquid separation unit 103 for example, a coagulation sedimentation tank, a coagulation membrane separation tank, a membrane separation tank, a sand filtration tank, or the like can be used. If the separated water 43 after solid-liquid separation has a high water quality requirement, the water quality may be improved by passing a chelate resin.
- the pH adjuster has the separated water 43 as an alkali side, and for example, slaked lime Ca (OH) 2 , sodium hydroxide (NaOH), or the like can be used.
- a pH range for example, pH 7 in which a sulfate band can aggregate. To be near).
- the mercury removal unit has been described using the reaction tank 101, but the present invention is not limited to this, and for example, a gypsum crystallizer, a solidification tank, an ion exchange apparatus, or the like is used. Thus, mercury in the separated water 43 may be removed.
- the gypsum crystallizer takes in mercury as mercury sulfate (HgSO 4 ) and coprecipitates it when gypsum (CaSO 4 ) is produced, and removes mercury in the separated water 43.
- HgSO 4 mercury sulfate
- CaSO 4 gypsum
- HgS mercury sulfide
- Hg 2+ + S 2- ⁇ HgS ⁇ The immobilized mercury sulfide is removed in a coagulation sedimentation tank, a coagulation membrane separation tank, a membrane separation tank, a sand filtration tank, an activated carbon adsorption tank, or the like.
- the ion exchange device allows the separation water 43 to pass through the cation exchange resin and the anion exchange resin to adsorb Hg 2+ to the cation exchange resin, and to adsorb the mercury complex (HgCl 3 ⁇ , HgCl 4 2 ⁇ , HgS 2 2 ⁇ etc.) are adsorbed and removed.
- the solid-liquid separation part 103 becomes unnecessary. Moreover, when using a chelate resin tower, sludge is not generated. Similarly, the solid-liquid separation unit 103 is unnecessary.
- a chelating agent 102 is added and precipitated in the reaction tank 101 as the mercury removing unit, and the separation water 43 containing the precipitate is removed as heavy metal sludge 104 in the solid-liquid separation unit 103. ing. Thereafter, the separation water 43 from the solid-liquid separation unit 103 is mixed with the discharged water 22 generated in the plant facility by the mixing unit 110, and the salt content in the mixed water 111 is removed by the desalination treatment apparatus 30. I am doing so.
- the concentrated water 31 that has been salt-concentrated by the desalting apparatus 30 is introduced into the spray drying apparatus 23, where it is spray-dried using a part 12 a of the exhaust gas 12 from the boiler 11.
- the concentrated water 31 introduced into the spray-drying device 23 has the mercury in the separated water 43 obtained by separating the gypsum 32 from the desulfurization waste water 41 discharged from the wet desulfurization device 16 removed.
- the concentrated water 31 discharged from 30 is spray-dried, mercury elution of the spray-dried product is prevented.
- the mercury content in the gypsum 32 in the desalting apparatus 30 can be reduced.
- the mercury content of the spray-dried dry salt can be reduced by removing mercury from the desulfurization waste water 41 from the wet desulfurization apparatus 16.
- the gypsum 32 is separated from the wet desulfurization device 16 that removes sulfur oxides in the boiler exhaust gas 12 from the boiler 11 and the desulfurization waste water 41 that includes the gypsum slurry from the wet desulfurization device 16.
- a dehydrator 42 a mercury removal unit (for example, the reaction tank 101) that introduces the separation water 43 from the dehydration device 42, introduces the chelating agent 102 and immobilizes heavy metals in the separation water 43, and a mercury removal unit
- a solid-liquid separation unit 103 that solid-liquid separates the solid content (heavy metal sludge) 104 in the separated water 43 and a mixing unit that mixes the separated water 43 from the solid-liquid separation unit 103 with the discharged water 22 generated in the plant equipment.
- a desalting apparatus 30 for removing the salt content in the mixed water 111 mixed in the mixing unit 110, and a spraying means for spraying the concentrated water 31 concentrated with the salt in the desalting apparatus 30. So that comprises a spray-drying apparatus 23 to spray drying, the use some 12a of La flue gas 12.
- the spray drying device 23 sprays or sprays the concentrated water 31 and gas introduction means for introducing a part 12 a of the exhaust gas 12 through the branch line L 11 branched from the exhaust gas line L 10. Spraying means. Then, the concentrated water 31 sprayed by the heat of the part 12a of the introduced exhaust gas 12 is evaporated and dried.
- FIG. 2 is a schematic diagram of the spray drying apparatus according to the first embodiment.
- the spray drying device 23 of the present embodiment includes a spray nozzle 24 that sprays the discharged water 22 introduced from the cooling tower 21 through the introduction line L 21 into the spray drying device main body 23 a, An inlet 23b for introducing a part 12a of the exhaust gas 12 for drying the spray liquid 22a provided in the spray drying apparatus main body 23a, and an outlet 23b provided in the spray drying apparatus main body 23a.
- a drying region 25 for drying and an exhaust port 23c for discharging the exhaust gas 12b contributing to drying are provided.
- Reference numeral 26 denotes a solid material separated by the spray drying apparatus main body 23a, and V 1 and V 2 denote flow path opening / closing valves.
- the gas amount of part 12a of the exhaust gas 12 introduced into the spray drying device 23 and the liquid spray amount of the concentrated water 31 is shown.
- the gas temperature decreases by 200 ° C.
- the moisture concentration in the gas increases by 10%.
- the moisture concentration in the gas of the part 12a of the exhaust gas to be introduced before spraying is 9%
- the moisture concentration in the gas of the exhaust gas 12b contributing to drying after spraying is 19%, which is increased by about 10%.
- the decrease in the gas temperature of 200 ° C. is substantially equal to the temperature of the exhaust gas 12 after passing through the air preheater 14.
- the gas temperature of the exhaust gas 12 passing through the exhaust gas line L 10 is reduced by 200 ° C. because the air is preheated by the air preheater 14 and supplied to the boiler 11. There will be no temperature difference. That is, when the gas temperature at the inlet side of the air preheater 14 is 350 ° C., the gas temperature that has decreased after passing through the air preheater 14, the branch line L 11, and the gas feed line L 12 is spray dried. The gas temperature of the exhaust gas 12b that has contributed to drying by the apparatus 23 is similarly reduced by 200 ° C., so that the temperature is substantially equivalent.
- the concentrated water 31 discharged from the cooling tower 21 and discharged from the desalting apparatus 30 is introduced into the spray drying apparatus 23 via the spray nozzle 24, and the spray liquid 22 a is supplied to the exhaust gas 12. Since it is dried by the heat of the part 12a, it is not necessary to separately treat the discharged water 22 with an industrial waste water treatment facility, and it is possible to realize no drainage of the discharged water 22 generated in the plant.
- the discharge water 22 generated in the plant equipment will be described by taking blow drainage from the cooling tower 21 as an example.
- the present invention is not limited to this, and it is from a power plant or a chemical plant. It can be applied to discharged water in general.
- cooling water for example, condensate demineralizer regeneration drainage, condensate demineralizer pre-filtration
- Exhaust device regeneration wastewater, turbidity filtration device regeneration wastewater, makeup water treatment device regeneration wastewater, laboratory miscellaneous wastewater, desulfurization device wastewater, miscellaneous wastewater, sampling wastewater, domestic wastewater, ash waste water, lifting coal cleaning wastewater, etc. can do.
- non-steady-state wastewater other than the regularly generated wastewater include, for example, air preheater washing wastewater, gas gas heater (GGH) washing wastewater, chimney washing wastewater, chemical washing wastewater, startup wastewater, coal storage wastewater, and coal pier Examples include drainage and drainage such as tank yards.
- examples of the cooling water include bearing cooling water and condenser cooling water.
- the denitration device 13 installed in the exhaust gas treatment system 18 of the present embodiment is not essential, and the nitrogen oxide concentration and mercury concentration in the exhaust gas 12 from the boiler 11 are very small, or these are contained in the exhaust gas 12.
- the denitration apparatus 13 shown in FIG. 1 can be omitted.
- the drying back destination of the gas feed line L 12 contribution to exhaust gas 12b to from the spray drying apparatus 23, when the temperature drop is small, may be in the upstream side of the air preheater 14.
- the water treatment system of the mixed water 111 in which the discharged water 22 generated in the plant facility according to the present embodiment and the separated water 43 are mixed is present in the discharged water 22 from the cooling tower 21.
- a desalting apparatus 30 is provided in order to remove salt.
- the concentrated water 31 that has been desalted by the desalting treatment apparatus 30 is introduced into the spray drying apparatus 23 via the supply line L 21 .
- reference numeral L 24 is an introduction line for introducing the discharged water 22 into the desalting apparatus 30.
- FIG. 3 is a configuration diagram illustrating an example of a desalting apparatus according to the present embodiment.
- the desalting apparatus 30 ⁇ / b> A according to the present embodiment applies the scale inhibitor 74 to the mixed water 111 of the discharged water 22 containing divalent ions such as Ca ions and the separated water 43.
- a first desalting salt which is installed downstream of the scale inhibitor supply unit to be supplied and separates the discharged water 22 into reclaimed water 33a and concentrated water 31a enriched with the Ca ions and the like.
- the device 55A is provided downstream of the first desalination device 55A, and seed crystal gypsum 32a is supplied to the concentrated water 31a of the first desalination device 55A.
- the first desalting device 55A and the second desalting device 55B use reverse osmosis membrane devices (RO) provided with reverse osmosis membranes 55a and 55b.
- RO reverse osmosis membrane devices
- NF nanofiltration membrane
- ED electrodialyzer
- EDR polarity switching electrodialyzer
- EDI electroregenerative pure water device
- IEx ion exchange resin device
- CDl electrostatic desalting apparatus
- evaporator evaporator, and the like are also applicable as appropriate.
- the crystallization tank 61 includes a liquid cyclone 62 as a separation unit, and the separated gypsum 32 is dehydrated by a dehydrator 63.
- the liquid cyclone 62 that is a separation unit can be omitted. In this case, the bottom of the crystallization tank 61 and the dehydrator 63 are directly connected.
- the scale inhibitor 74 suppresses the formation of crystal nuclei in the mixed water 111 and is adsorbed on the surface of crystal nuclei (seed crystals, small-scale scales deposited exceeding the saturation concentration) contained in the discharged water 22. Thus, it has a function of suppressing crystal growth.
- the scale inhibitor 74 also has a function of dispersing particles in water such as precipitated crystals (preventing aggregation).
- the scale inhibitor 74 is, for example, a phosphonic acid scale inhibitor, a polycarboxylic acid scale inhibitor, and a mixture thereof. Examples of the scale inhibitor 74 include “FLOCON 260 (trade name, manufactured by BWA)”, but the present invention is not limited thereto.
- magnesium scale inhibitor when Mg ⁇ 2+> is contained in the discharged water 22, the scale inhibitor which prevents the scale (For example, magnesium hydroxide, magnesium carbonate, magnesium sulfate) containing magnesium in the discharged water 22 is used. it can. Hereinafter, it is referred to as “magnesium scale inhibitor”.
- magnesium scale inhibitors include polycarboxylic acid scale inhibitors. A specific example is “FLOCON295N (trade name)” manufactured by BWA.
- the first pH adjuster for introducing, for example, an acid or the like as the first pH adjuster 75A is provided. It is connected.
- An acid for example, sulfuric acid
- an alkali agent for example, calcium hydroxide or sodium hydroxide
- FIG. 14 is a simulation result of the pH dependence of the amount of gypsum deposited.
- FIG. 15 is a simulation result of the pH dependence of the calcium carbonate deposition amount.
- FIG. 16 is a simulation result of the pH dependence of the silica precipitation amount.
- the horizontal axis represents pH
- the vertical axis represents the amount of precipitation (mol) of gypsum, calcium carbonate, and silica, respectively.
- the simulation was performed using simulation software manufactured by OLI under the condition that 0.1 mol / L of each solid component was mixed in water and H 2 SO 4 as an acid and Ca (OH) 2 as an alkali were added.
- First pH adjustment mode (pH 10 or more)
- the pH in the mixed water 111 is measured by the pH meter 76 on the upstream side of the first desalting apparatus 55A, and is controlled so that the pH value becomes a predetermined pH of 10 or more. This is because, as shown in FIG. 16, silica is dissolved when the pH is 10 or more.
- a scale inhibitor (calcium scale inhibitor) 74 in an amount that suppresses adhesion between gypsum and calcium carbonate is supplied as a substance to be scaled to the reverse osmosis membrane 55a.
- Second pH adjustment mode (pH 10 or less)
- the pH in the mixed water 111 is measured by the pH meter 76 on the upstream side of the first desalting apparatus 55A, and is controlled so that the pH value becomes a predetermined pH of 10 or less. This is because, as shown in FIG. 16, silica is precipitated when the pH is 10 or less.
- the substances that scale to the reverse osmosis membrane 55a are gypsum, calcium carbonate, and silica, and an amount of the scale inhibitor 74 that suppresses all these adhesions is supplied.
- silica scale inhibitor 74 for silica there are two types of inhibitors: a calcium scale inhibitor and one that prevents silica from depositing as scale in the water to be treated (referred to as “silica scale inhibitor”). Is used.
- silica scale inhibitors include polycarboxylic acid scale inhibitors and mixtures thereof.
- FLOCON260 trade name, manufactured by BWA.
- Third pH adjustment mode (pH 6.5 or less)
- the pH in the mixed water 111 is measured by the pH meter 76 on the upstream side of the first desalting apparatus 55A, and controlled so that the pH value becomes a predetermined pH of 6.5 or less. To do. This is because, as shown in FIG. 15, calcium carbonate is dissolved when the pH is 6.5 or lower.
- a scale inhibitor (calcium scale inhibitor, silica scale inhibitor) 74 that suppresses the adhesion of gypsum and silica is supplied.
- Table 1 summarizes the first pH adjustment mode to the third pH adjustment mode.
- a scale inhibitor (calcium scale inhibitor) 74 is supplied to suppress the scale of gypsum and calcium carbonate ( ⁇ in the table), and the silica is dissolved. Therefore, it is not necessary to supply a scale inhibitor ( ⁇ in the table).
- a scale inhibitor (calcium scale inhibitor, silica scale inhibitor) 74 is supplied to suppress all scales of gypsum, calcium carbonate, and silica ( ⁇ in the table).
- scale inhibitor (calcium scale inhibitor, silica scale inhibitor) 74 is supplied to suppress the scale of gypsum and silica (O in the table), Since it is dissolved, the supply of the calcium scale inhibitor only needs to prevent the scale of only gypsum, so the supply amount is smaller than in the case of the second pH adjustment ( ⁇ in the table).
- the silica concentration in the concentrated water 31a after being concentrated by the first desalinator 55A is equal to or higher than a predetermined concentration, the ability of the silica scale inhibitor is limited. Therefore, when the silica concentration is a predetermined concentration (for example, 200 mg / L) or less, the first, second, or third pH adjustment step is performed, and when the silica concentration is a predetermined concentration (for example, 200 mg / L) or more. It is preferable to carry out the first pH adjustment step (silica dissolution).
- a second pH adjusting unit for introducing an acid that is the second pH adjusting agent 75B is connected to the crystallization tank 61.
- the introduction of the acid that is the second pH adjusting agent 75B may be connected to the upstream line of the crystallization tank 61.
- the first pH adjuster 75A is not limited to an acid.
- gelation of silicon oxide (SiO 2 ) can be prevented.
- calcium carbonate (CaCO 3 ) or magnesium hydroxide (Mg (OH) 2 ) may be precipitated.
- a scale inhibitor 74 is added to suppress the generation of scale.
- the first pH adjusting agent 75A supplied on the upstream side of the first and second desalting apparatuses 55A and 55B is acid or alkali.
- the second pH adjuster 75B supplied to the crystallization tank 61 is preferably an acid.
- the reason why the second pH adjusting agent 75B supplied to the crystallization tank 61 is limited to an acid is, for example, to invalidate the calcium-based scale inhibitor 74 and precipitate calcium as gypsum (CaSO 4 ). .
- scale inhibitor 74 if a carboxylic acid type, -COO - ⁇ Ca 2+ ⁇ - OOC- as in, and H + dissociation of the tip of the carboxyl group, -COO - is Ca It is bound to 2+ .
- pH is lowered to an acid state, as in —COOH Ca 2+ HOOC—
- H + at the tip of the carboxyl group does not dissociate, and at the same time, the bond between the carboxyl group and the calcium ion Ca 2+ is released.
- the ionic calcium concentration increases, becomes supersaturated, and calcium salts such as gypsum precipitate.
- the precipitation tank 53 and the filtration device 54 may be installed upstream of the supply portion of the scale inhibitor 74.
- An oxidation unit (not shown) that oxidizes by supplying an oxidant such as air may be installed upstream of the settling tank 53.
- a settling tank 53 and a filtration device 54 are installed between the hydrocyclone 62 and the second desalting device 55B.
- An acid or the like that is the third pH adjusting agent 75C is introduced into the flow path between the filtration device 54 and the second desalting device 55B.
- an acid or an alkali can be used similarly to the first pH adjusting agent 75A.
- the pH is 8
- the Na ion is 20 mg / L
- the K ion is 5 mg / L
- the Ca ion is 50 mg / L
- the Mg ion Is 15 mg / L
- HCO 3 ion is 200 mg / L
- Cl ion is 200 mg / L
- SO 4 ion is 120 mg / L
- PO 4 ion is 5 mg / L
- SiO 2 ion is 35 mg / L.
- Ca ions, Mg ions, SO 4 ions, and HCO 3 ions are high in concentration, and a scale (CaSO 4 , CaCO 3, etc.) is generated by the reaction of their presence.
- the solubility of calcium carbonate and metal hydroxide is low, and when calcium carbonate and metal hydroxide become supersaturated, calcium carbonate and metal hydroxide precipitate and precipitate at the bottom of the precipitation tank 53.
- the solubility of the metal hydroxide depends on the pH. The solubility of metal ions in water increases with acidity. Since the solubility of many metal hydroxides is low in the above pH range, the metal contained in the discharged water 22 is precipitated as a metal hydroxide at the bottom of the precipitation tank 53. Here, the deposit 53a is separately discharged from the bottom.
- the discharged water 22 that is the supernatant liquid in the settling tank 53 is discharged from the settling tank 53.
- An iron-based flocculant (for example, FeCl 3 ) 73 is added to the discharged discharged water 22, and solid contents such as calcium carbonate and metal hydroxide in the discharged water 22 are aggregated together with Fe (OH) 3 .
- the mixed water 111 is fed to the filtration device 54.
- the solid content aggregated together with Fe (OH) 3 is removed by the filtration device 54.
- the mixed water 111 is supplied after the alkali pretreatment and before flowing into the first demineralizer 55A.
- the treatment conditions in the precipitation tank 53, the addition amount of FeCl 3, and the like are appropriately set so that the Fe ion concentration therein is 0.05 ppm or less.
- the pretreatment can be omitted.
- ⁇ Scale inhibitor supply process> In the supply unit that supplies the scale inhibitor 74, a predetermined amount of the scale inhibitor 74 is supplied to the mixed water 111 from a tank (not shown). A control unit (not shown) adjusts so that the concentration of the scale inhibitor 74 becomes a predetermined value set according to the properties of the mixed water 111.
- the supply part of the pH adjusting agent 75 in the first pH adjusting step is a scale (gypsum, calcium carbonate) containing Ca by the scale inhibitor 74 with respect to the pH of the mixed water 111 on the inlet side of the first desalting apparatus 55A.
- a value for example, about pH 5.5
- the management measures the pH of the mixed water 111 on the inlet side of the first desalinator 55A.
- the first pH adjusting step is omitted.
- the mixed water 111 whose pH is adjusted is treated.
- the permeated water that has passed through the reverse osmosis membrane 55a of the first desalting apparatus 55A is recovered as reclaimed water 33a from which the salt content has been removed.
- the ions and the scale inhibitor 74 contained in the mixed water 111 cannot permeate the reverse osmosis membrane 55a. Therefore, the non-permeate side of the reverse osmosis membrane 55a becomes the concentrated water 31a having a high ion concentration.
- the concentrated water 31a of the first demineralizer 55A is fed toward the crystallization tank 61.
- the mixed water 111 is separated into treated water and concentrated water having a high ion concentration.
- silica when the pH is high, silica is present as ionic silica on the surface of the reverse osmosis membrane 55a. Specifically, in the case of 200 mg SiO 2 / L or more, for example, it can exist as ionic silica at a high pH.
- the first desalting apparatus 55A when the pH is low, it is precipitated as gel-like silica. Specifically, for example, at 200 mg SiO 2 / L or less, it can exist as ionic silica at a high pH. If the pH is low, the gelation can be suppressed (or the gelation time can be extended) by using the scale inhibitor 74 at 200 mg SiO 2 / L or less.
- magnesium ions (Mg 2+ ) precipitate as Mg (OH) 2 and MgSiO 3 crystals on the surface of the reverse osmosis membrane 55a at a high pH.
- precipitation is prevented by supplying the scale inhibitor 74 for Mg.
- the pH of the concentrated water 31a from the first desalinator 55A in the crystallization tank 61 is a value at which gypsum in the concentrated water 31a can be precipitated by reducing the function of the scale inhibitor 74. (For example, pH 4 or less).
- the concentrated water 31 a whose pH has been adjusted by the second pH adjusting agent 75 ⁇ / b> B is stored in the crystallization tank 61.
- the seed crystal supply unit adds the seed crystal seed gypsum 32 a to the concentrated water 31 a in the crystallization tank 61.
- the addition of the second pH adjuster 75B invalidates the function of the scale inhibitor 74 in the crystallization tank 61. For this reason, the gypsum 32 supersaturated in the crystallization tank 61 is crystallized.
- the gypsum 32 grows using the seed crystal gypsum 32a as a nucleus.
- a part of the gypsum 32 separated by the dehydrator 63 is used as the seed crystal gypsum 32a.
- the pH passing through the first desalting apparatus 55A may be set to the alkali side without performing the first pH adjustment by adding the first pH adjusting agent 75A.
- the purity of the gypsum 32 is somewhat lower than that in the case of adjusting the pH by adding an acid which is the first pH adjusting agent 75A. This is because calcium carbonate (CaCO 3 ) crystals are produced when the pH is on the alkali side. Therefore, so that the purity is lowered due to gypsum (CaSO 4) to calcium carbonate (CaCO 3) are mixed.
- the pH is adjusted to a predetermined value and the seed crystal gypsum 32a is added in the crystallization step, thereby containing water. High-purity gypsum 32 having a low rate can be deposited.
- the silica in the concentrated water 31a gels at a low pH, and reacts with Ca 2+ and Mg 2+ in the concentrated water 31a to form, for example, a reaction product of CaSiO 3 and MgSiO 3 and precipitate.
- FIGS. 10 and 11 are micrographs of gypsum obtained by crystallization.
- FIG. 10 shows an observation result when seed crystal gypsum 32a which is a seed crystal is added as a condition.
- FIG. 11 shows an observation result when seed crystal gypsum 32a which is a seed crystal is not added as a condition.
- the “average particle diameter” in the present invention is a particle diameter measured by a method (laser diffraction method) defined by JlSZ8825.
- the gypsum 32 having an average particle diameter of 10 ⁇ m or more, preferably 20 ⁇ m or more is separated from the concentrated water 31a by the liquid cyclone 62 which is a separation part.
- a part of the gypsum 32 collected by the dehydrator 63 adjacent to the hydrocyclone 62 serving as the separation unit is stored in a seed crystal tank (not shown) via a seed crystal circulation unit (not shown).
- a part of the collected gypsum 32 is supplied to the crystallization tank 61 as seed crystal gypsum 32a.
- acid treatment may be applied to the stored gypsum 32 in the seed crystal tank.
- the function of the adhesion scale inhibitor is reduced by acid treatment.
- the type of acid used here is not particularly limited, but sulfuric acid is optimal in consideration of power reduction in the second desalinator 55B.
- the gypsum 32 crystallized in the crystallization tank 61 has a wide particle size distribution, but since the gypsum 32 of 10 ⁇ m or more is separated and recovered from the concentrated water 31a by the liquid cyclone 62, a large gypsum can be used as a seed crystal. If a large seed crystal is added, a large amount of large gypsum can be crystallized. That is, it is possible to obtain high-quality gypsum with a high recovery rate.
- the large gypsum can be easily separated by the hydrocyclone 62, and the hydrocyclone 62 can be reduced in size and the power can be reduced. Large gypsum can be easily dehydrated by the dehydrating device 63, so that the dehydrating device 63 can be reduced in size and power can be reduced.
- the mixed water 111 and the concentrated water 31a come into contact with air and carbonate ions dissolve in the water.
- the mixed water 111 and the concentrated water 31a are adjusted in the pH region where the solubility of calcium carbonate is high in the first pH adjusting step and the second pH adjusting step.
- the carbonate ions in the concentrated water are reduced in the previous stage of the crystallization tank 61 or in the crystallization tank 61, and the calcium carbonate is below the saturation solubility.
- the pH is lowered by adding an acid as the pH adjusting agent 75, the carbonate ion concentration is low from the equilibrium formula (1) below.
- the crystallization tank 61 calcium carbonate is maintained at a concentration sufficiently lower than the saturation concentration, and calcium carbonate does not crystallize. For this reason, the recovered gypsum 32 contains almost no calcium carbonate. Thereby, the purity of the gypsum 32 becomes high.
- the solubility of the salt containing a metal is high in an acidic region. Even if the metal remains in the mixed water 111 even after the pretreatment (precipitation tank 53), the pH of the concentrated water 31a of the first demineralizer 55A is reduced as described above in the first pH adjustment step. If it is, the hydroxide containing a metal will not precipitate in the crystallization process. Further, when the mixed water 111 has a property containing a large amount of Fe ions, since the Fe concentration is reduced through the pretreatment described above, the hydroxide containing Fe (OH) 3 in the crystallization tank 61 is reduced. Almost no precipitation occurs.
- the crystallization speed generally decreases, so the residence time in the crystallization tank 61 becomes longer.
- the pH is adjusted so as to reduce the function of the scale inhibitor 74, and the seed crystal concentration is increased to ensure an appropriate crystallization rate.
- Concentrated water 31a containing gypsum 32 is discharged from the crystallization tank 61 and fed to the liquid cyclone 62 as a separation unit, and the gypsum 32 is separated from the discharged concentrated water 31a.
- the gypsum 32 having an average particle size of 10 ⁇ m or more settles at the bottom of the hydrocyclone 62, and the gypsum having a small particle size remains in the supernatant.
- the gypsum 32 settled on the bottom of the hydrocyclone 62 is transferred to the dehydrator 63 and further dehydrated and collected.
- the recovery step the high-purity gypsum 32 having a low moisture content and no impurities can be separated and recovered at a high recovery rate.
- the separated liquid 64 separated by the dehydrating device 63 may be supplied to the spray drying device 23 and spray dried.
- the separation liquid 64 is introduced into the concentrated water 31a discharged from the hydrocyclone 62, and is treated together with the concentrated water 31a by the second desalting device 55B.
- the liquid cyclone 62 that is a separation unit When the liquid cyclone 62 that is a separation unit is omitted as a modification of the present embodiment, concentrated water on the sedimentation side is discharged from the bottom of the crystallization tank 61. In the concentrated water at the bottom of the crystallization tank 61, a large crystallized gypsum 32 has settled. If the concentrated water mainly containing the large gypsum 32 is dehydrated by the dehydrator 63, the high-purity gypsum 32 can be recovered. Further, since the moisture content of the gypsum 32 is low, it is not necessary to increase the volume of the dehydrator 63.
- the supernatant-side concentrated water 31 a discharged from the hydrocyclone 62 is fed to the settling tank 53 and the filtration device 54.
- the gypsum 32 and calcium carbonate remaining in the concentrated water after the separation step and the metal hydroxide remaining in the concentrated water are removed in the same steps as the precipitation tank 53 and the filtration device 54 described above.
- the concentrated water 31a discharged from the filtration device 54 is supplied to the second desalting device 55B. Before flowing into the second desalinator 55B, the scale inhibitor 74 may be additionally added to the concentrated water 31a.
- an acid or alkali as the pH adjuster 75 may be supplied to the concentrated water 31a.
- the concentrated water 31a from the first desalting apparatus 55A is processed.
- the water that has passed through the reverse osmosis membrane 55b of the second desalting apparatus 55B is recovered as recycled water 33b as permeated water.
- the concentrated water 31b of the second desalting apparatus 55B is introduced into the spray drying apparatus 23 where it is spray dried.
- the recycled water 33b can be further recovered from the concentrated water 31a on the supernatant liquid side after the gypsum 32 is crystallized, so that the water recovery rate is further improved.
- the concentrated water 31a from the first desalting apparatus 55A has a low ion concentration because the gypsum 32 has been removed by the treatment in the crystallization tank 61. For this reason, since the 2nd desalination apparatus 55B can make an osmotic pressure low compared with the case where the gypsum 32 is not removed, required motive power is reduced.
- An evaporator (not shown) may be installed. In the evaporator, water is evaporated from the concentrated water, and ions contained in the concentrated water are precipitated as a solid and recovered as a solid. Since water is collected upstream of the evaporator and the amount of concentrated water is significantly reduced, a compact evaporator can be obtained, and the energy required for evaporation can be reduced.
- the "desalting / crystallizing device" having a crystallization tank 61 for crystallizing gypsum 32 after the first desalting device 55A and a liquid cyclone 62 for separating the crystallized gypsum 32 is used.
- the present invention is not limited to this.
- the gypsum 32 crystallized in the crystallization tank 61 of the desalting apparatus 30 is discharged through the gypsum discharge line L 22 as shown in FIG. 1, and the recycled water 33 (33a, 33b) is Through the reclaimed water supply line L 23 , the separated water 43 is joined to a return line L 32 that returns to the wet desulfurization device 16 and used as makeup water for gypsum slurry used in the wet desulfurization device 16.
- FIG. 12 shows an outline of an example of a separation apparatus by the cold dry method.
- the desalination apparatus using the cold dry method adds mixed water 111 to calcium hydroxide (Ca (OH) 2 ) 92 in an addition tank 91 and calcium carbonate (CaCO 3 ) in a settling tank 93. 94 is settled and removed.
- sodium carbonate (NaCO 3 ) 96 is added in the addition tank 95, and calcium carbonate (CaCO 3 ) 94 is precipitated in the sedimentation tank 97 and removed.
- an iron-based flocculant (for example, FeCl 3 ) 73 is added to agglomerate suspended solids (for example, floating solids such as gypsum, silica, calcium carbonate, magnesium hydroxide).
- agglomerate suspended solids for example, floating solids such as gypsum, silica, calcium carbonate, magnesium hydroxide.
- OPUS Optimized Pretreatment and Unique Separation
- Method (Veolia) or water to be treated is removed by chemical softening means or ion exchange resin, for example, Ca and Mg, then acid is added to adjust pH to the acid side, and CO 2 gas is separated. Thereafter, the pH can be adjusted to the alkali side to prevent ionization and precipitation, and a HERO (High Efficiency Reverse Osmosis) method (GE) or the like, which is treated with a reverse osmosis membrane, can be exemplified.
- HERO High Efficiency Reverse Osmosis
- the “RO membrane” is used as the membrane separation means, but the “NF membrane” may be used as the separation membrane.
- the NF membrane can be supplied to desulfurized makeup water in a desulfurization unit.
- the supply destination of the reclaimed water is preferable to use the supply destination of the reclaimed water as, for example, feed water for the cooling tower. This is because the NF film cannot remove the scale inhibitor 74.
- the water treatment system of this embodiment can efficiently separate divalent metals (for example, calcium salt, magnesium salt, etc.), sulfate ions, and carbonate ions contained in the mixed water 111.
- divalent metals for example, calcium salt, magnesium salt, etc.
- sulfate ions for example, calcium salt, magnesium salt, etc.
- carbonate ions contained in the mixed water 111.
- the RO membrane when used, it is possible to remove barium salt and strontium salt in addition to calcium salt and magnesium salt.
- the amount of waste water that can be spray-dried (before concentration) can be remarkably increased by concentrating the mixed water 111 using a desalting apparatus 30A as shown in FIG.
- FIG. 4 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment.
- a precipitation tank 53 and a filtration apparatus 54 are installed on the upstream side of the first desalination apparatus 55A, and the metal content in the mixed water 111 is used as a metal hydroxide to obtain a calcium content. Is precipitated and removed as calcium carbonate, but the present invention may not be provided with this pretreatment.
- a first desalting apparatus 55A, a crystallization tank 61, a liquid cyclone 62, and a second desalting apparatus 55B are installed.
- the scale inhibitor 74 is added on the upstream side of the desalting devices 55A and 55B. ing.
- an acid for example, sulfuric acid etc.
- an alkali agent sodium hydroxide, calcium hydroxide, etc.
- Examples of the mixed water 111 to be processed by such a simplified desalting apparatus 30B include discharged water having a low carbonate ion concentration. Further, the present invention can also be applied to discharged water having a low concentration of scale components such as Ca 2+ and Mg 2+ .
- the pH adjusting agent 75 includes an acid and an alkali agent.
- Examples of the acid used for lowering the pH include general pH adjusters such as hydrochloric acid, sulfuric acid, and citric acid.
- common pH adjusters such as sodium hydroxide and calcium hydroxide, can be illustrated, for example.
- FIG. 5 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment. Further, as in the desalting apparatus 30C shown in FIG. 5, a third desalting apparatus 55C is further installed downstream of the concentrated water side of the second desalting apparatus 55B to perform a three-stage desalting process. You may do it. If the 3rd desalination apparatus 55C provided with the reverse osmosis membrane 55c is installed, since the reclaimed water 33c can further be collect
- FIG. 6 is a configuration diagram illustrating an example of another desalting apparatus according to the present embodiment.
- a deaeration unit 50 that is a carbon dioxide separation unit that separates carbon dioxide is provided on the upstream side of the addition tank 52.
- the deaeration unit 50 is a deaeration tower or a separation membrane provided with a filler that diffuses carbon dioxide.
- the mixed water 111 before flowing into the deaeration unit 50 is adjusted to a low pH.
- Carbonic acid in the mixed water 111 is in an equilibrium state according to its pH.
- the pH is as low as 6.5 or lower, the mixed water 111 exists mainly in the state of HCO 3 ⁇ and CO 2 .
- the mixed water 111 containing CO 2 flows into the deaeration unit 50. CO 2 is removed from the mixed water 111 in the deaeration unit 50.
- a third desalinator 55C is further installed downstream of the second desalinator 55B on the concentrated water side to perform a three-stage desalting process.
- FIG. 7 is a schematic diagram of a water treatment system according to the present embodiment.
- symbol is attached
- the water treatment system according to the present embodiment is provided with an oxidation-reduction potential (ORP) meter 130 that measures the oxidation-reduction potential in the mixed water 111 introduced into the first desalination apparatus 55A. Yes.
- ORP oxidation-reduction potential
- the oxidizing agent 132 is supplied from the oxidizing agent supply unit 131.
- mercury is removed from the separated water 43 separated from the desulfurization drainage before the mixing in the mixing unit 110, mercury may remain in the separated water 43 in some cases.
- this residual mercury takes various forms, it can be removed by the RO membrane in the ionic state and does not permeate to the permeate side, but in the case of metallic mercury, it is nonpolar and liquid. Permeates the RO membrane. Therefore, by controlling the value of the oxidation-reduction potential in the mixed water 111 within a predetermined range, the form of mercury is converted into an ionic state and removed by the RO membrane.
- the value (X) of the oxidation-reduction potential in the mixed water 111 measured by the oxidation-reduction potentiometer 130 is in the range of ⁇ 0.69 V ⁇ ORP value (X) ⁇ 1.358 V. .
- the lower limit value of the ORP value (X) varies depending on the coexisting substances, and the lower limit value of the ORP is ⁇ 0.69 V or higher, preferably 0.2680 V or higher, more preferably 0.6125 V or higher, more preferably 0.796 V. is there. Most of the salts in the wastewater are Cl ⁇ and SO 4 2 ⁇ . Hg (l) is oxidized to Hg 2 Cl 2 (solid) at +0.2680 V or higher and Hg 2 SO 7 (solid) at +0.6125 V or higher.
- the waste water contains S 2 ⁇ , I ⁇ and Br ⁇ , but the amount is smaller than that of Cl ⁇ and SO 4 2 ⁇ .
- +0.798 V is required to oxidize Hg (l) to Hg 2 2+ .
- Rationale of 1.358V upper limit value Cl - because the standard electrode potential of the oxidation of the Cl 2 is + 1.3583V.
- the upper limit value is at least +1.3583 V or less, preferably +0.89 V or less.
- the oxidizing agent 132 is introduced by ORP control so that mercury does not reduce.
- mercury is not metal mercury but is maintained as mercury oxide, and chlorine gas, which is a repellent substance for the RO membrane, is maintained in the form of chloride ions. Therefore, it is possible to operate without removing the mercury while removing the mercury.
- air as the oxidizing agent 132.
- air By using air as the oxidant 132, it is possible to oxidize under mild conditions while suppressing damage to the RO membrane.
- a solid-liquid separation device 133 is installed on the upstream side of the first desalting device 55A, and solidified mercury (for example, mercury chloride (HgCl 2 ) or the like in the mixed water 111). ) May be separated.
- solidified mercury for example, mercury chloride (HgCl 2 )
- HgCl 2 mercury chloride
- FIG. 8 is a schematic diagram of a water treatment system according to the present embodiment.
- the water treatment system according to this embodiment includes a UF (Ultrafiltration Membrane) membrane 122 on the downstream side of the solid-liquid separation unit 103 from which the heavy metal sludge 104 is separated and on the upstream side of the mixing unit 110.
- the solid-liquid separation unit 103 removes and separates mercury, and then desalting with a membrane.
- the film for this film treatment is preferably an NF film 121a.
- a portion of permeate 123 NF membrane 121a as return water 123a sends back with the response to the wet desulfurization system 16 lines L 36, concentrate 124 NF membranes 121a, introduction line L 24 side by the concentrate line L 25
- the mixed water 110 is mixed with the discharged water 22 from the cooling tower 21 to obtain mixed water 111.
- multivalent ions for example, Ca 2+ , Mg 2+ , SO 4 2 ⁇
- monovalent ions for example, Na + on the permeate 123 side
- Cl ⁇ can be concentrated.
- the salt contained in the waste water from the wet desulfurization apparatus 16 is mainly calcium chloride (CaCl 2 ). Therefore, by the membrane separation by the NF membrane 121a having monovalent selectivity, the concentrated liquid 124 concentrates the gypsum raw material (for example, Ca 2+ , SO 4 2 ⁇ ) in the latter stage gypsum crystallization, while the first stage in the latter stage. Cl ⁇ serving as a load on the RO membrane of the desalting apparatus 55A can be reduced.
- the concentration of soluble evaporation residue (Total Dissolved Solid (s); TDS) supplied to the first desalting apparatus 55A in the subsequent stage can be reduced and the concentration rate can be increased.
- the concentrated water 31a from the 1st desalination apparatus 55A can be reduced.
- the spray drying device 23 for spray drying concentrated water can be downsized.
- a scale inhibitor may be added in order to prevent clogging of the desalting apparatus by the NF membrane 121a.
- the polyvalent ions can be selectively concentrated by further desalting with the NF membrane 121a.
- concentration rate of the RO membrane in the first desalinator 55 ⁇ / b> A is increased, and the spray dryer 23 is downsized.
- the deliquescent materials are mainly CaCl 2 and MgCl 2 , but these divalent cations (Ca 2+ , Mg 2+ ) and chloride ions Cl ⁇ can be separated by the NF membrane 121a. The problem of deliquescence of dry salt in the drying device 23 is reduced.
- the concentrated water 124 of the NF membrane 121a is rich in multivalent ions, and gypsum can be collected by the crystallization apparatus, concentrated by RO after crystallization, and the RO concentrated water can be spray dried by the spray drying apparatus 23.
- FIG. 9 is a schematic diagram of a water treatment system according to the present embodiment.
- the water treatment system according to the present embodiment includes a wet desulfurization device 16 that removes sulfur oxide in the boiler exhaust gas 12 from the boiler 11, and a desulfurization that includes gypsum slurry from the wet desulfurization device 16.
- the amount of water introduced into the first desalinator 55A increases, so the salt concentration decreases and the load on the RO membrane can be reduced.
- FIG. 13 is a schematic diagram of a water treatment system according to the present embodiment.
- symbol is attached
- the water treatment system according to the present embodiment adds the chelating agent 102 to the concentrated water 31 supplied to the spray drying device 23.
- a chelating agent 102 for immobilizing heavy metal remaining in the concentrated water 31 is added to the line L 21 for supplying the concentrated water 30 from the desalting treatment device 30 to the spray drying device 23. It is added from the part.
- the chelating agent 102 is mixed into the concentrated water 30 before being supplied to the spray drying device 23, so that the dry salt in the exhaust gas 12 b generated by the spray drying device 23 is sufficiently contained in the chelating agent 102. Mixed.
- the solid content 141 separated by the solid content separator 140 is then landfilled as it is.
- the temperature (T 1 ) of the exhaust gas 12b at the end of drying of the spray dryer 23 is maintained at 200 ° C. or lower, preferably 150 ° C. or lower.
- the temperature of the spray droplet during drying in the spray drying device 23 is about 80 ° C., and the temperature does not increase any more. For this reason, the temperature at the start of drying is not limited.
- the inlet temperature (T 2 ) of the branched exhaust gas 18a to the spray dryer 23 is, for example, about 350 ° C. Therefore, either or both of the evaporation amount of the dehydrated filtrate droplets and the flow rate of the branched exhaust gas 12a are changed, and the temperature (T 1 ) of the exhaust gas 12b is maintained at 200 ° C. or lower, preferably 150 ° C. or lower. Thus, there is no deterioration of the chelating agent 102, and elution of heavy metals when the solid content 141 is landfilled is eliminated.
- drying with the spray drying device 23 prevents elution of heavy metals such as mercury from the solid content 141. be able to.
- a coagulant may be added together with the chelating agent 102.
- a flocculant a coagulant that forms solid nuclei and a polymer flocculant that increases flocs of the solid can be used.
- examples of the coagulant include a sulfuric acid band, iron chloride, and PAC.
- examples of the polymer flocculant include “Takifloc (trade name; manufactured by Taki Chemical Co., Ltd.) anionic, nonionic, cationic, and amphoteric”, “Epofloc L-1 (trade name); Etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Treating Waste Gases (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Medicinal Chemistry (AREA)
Abstract
ボイラ排ガス12中の硫黄酸化物を除去する湿式脱硫装置16と、石膏スラリーを含む脱硫排水41から石膏32を分離する脱水装置42と、脱水装置42からの分離水43を導入し、キレート剤102を投入して分離水43中の重金属を固定化する反応槽101と、分離水43中の重金属スラッジ104を固液分離する固液分離部103と、固液分離部103からの分離水43を、プラント設備内で発生する排出水22と混合する混合部110と、混合部110で混合された混合水111中の塩分を除去する脱塩処理装置30と、脱塩処理装置30で塩分濃縮した濃縮水31を噴霧する噴霧手段を有し、ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を備える。
Description
本発明は、例えばボイラプラントや化学プラント設備内で発生する排出水の水処理システム及び方法に関するものである。
例えば発電プラントや化学プラントのプロセスプラント内においては、例えばボイラ、反応器、復水器の湿式冷却塔、水処理装置等から排出水が発生する。こうした排出水を処理するために種々の処理装置が提案されているが、何れもコストが高くなる問題がある。こうした問題を解決するために、ボイラの冷却塔の冷却水(ブロー水)を液滴直径20ミクロンから120ミクロンの霧として煙道中に噴霧することによってアルカリ性のブロー水を中和させることを特徴とする排水処理装置付ボイラの提案がある(特許文献1)。
また、排出水を煙道内に噴霧することにより蒸発処理可能な排水の量を高めた排水処理装置の提案がある(特許文献2)。
しかしながら、特許文献1の発明によれば容易かつ低コストで排水を処理可能であるが、排ガスの熱エネルギ(温度、流量)に対して、排水の量が増加し、それを蒸発処理するために必要なエネルギが大きくなると処理できなくなる、という問題がある。
また、特許文献2の発明によれば、濃縮装置により、排水量の低減は可能であるが、濃縮装置では、ボイラで発生した蒸気の一部を抽気するので、蒸気タービンの出力の低下が発生する、という問題がある。
さらに、ボイラプラントから排出される排ガスには、窒素酸化物や硫黄酸化物の他に水銀等の有害物質が微量に含まれることがあるので、他のプラント設備内の排水と混合して水処理するには、水銀対策が必要となる。
よって、例えば発電プラントや化学プラントのプロセスプラント設備において発生する、例えばボイラ、反応器、復水器の湿式冷却塔、水処理装置等からの排出水を低コストでしかもボイラ効率の低下を伴うことなく、水銀排出対策を考慮した効率的な処理技術の出現が切望されている。
本発明は、前記問題に鑑み、プラント設備内で発生する排出水の水処理システム及び方法を提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫装置と、前記湿式脱硫装置からの石膏スラリーを含む脱硫排水から石膏を分離する脱水装置と、前記脱水装置からの分離水を導入し、キレート剤を投入して分離水中の重金属を固定化する水銀除去部と、前記水銀除去部からの分離水中の固形分を固液分離する固液分離部と、前記固液分離部からの分離水を、プラント設備内で発生する排出水と混合する混合部と、前記混合部で混合された混合水中の塩分を除去する脱塩処理装置と、前記脱塩処理装置で塩分濃縮した濃縮水を噴霧する噴霧手段を有し、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥装置と、を備えることを特徴とする水処理システムにある。
第2の発明は、ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫装置と、前記湿式脱硫装置からの石膏スラリーを含む脱硫排水から石膏を分離する脱水装置と、前記脱水装置からの分離水を、プラント設備内で発生する排出水と混合する混合部と、前記混合部で混合された混合水を導入し、キレート剤を投入して分離水中の重金属を固定化する反応槽と、前記反応槽からの混合水中の固形分を固液分離する固液分離部と、前記固液分離後の混合水中の塩分を除去する脱塩処理装置と、前記脱塩処理装置で塩分濃縮した濃縮水を噴霧する噴霧手段を有し、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥装置と、を備えることを特徴とする水処理システムにある。
第3の発明は、第1又は2の発明において、前記固液分離部で分離後の分離水に対し、1価選択性を有する膜で処理する膜処理部を有することを特徴とする水処理システムにある。
第4の発明は、第1乃至3のいずれか一つの発明において、前記脱塩処理装置が、前記排出水中の2価の塩分を除去することを特徴とする水処理システムにある。
第5の発明は、第1乃至3のいずれか一つの発明において、前記脱塩処理装置が、Caイオン等の2価のイオンを含む混合水に対して、スケール防止剤を供給するスケール防止剤供給部と、前記スケール防止剤供給部の下流側に設置され、前記混合水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第1の脱塩装置と、前記第1の脱塩装置の下流側に設けられ、前記濃縮水から石膏を晶析させる晶析槽と、この晶析した石膏と、前記第1の脱塩装置からの濃縮水とを分離する分離部と、前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第2の脱塩装置と、を有することを特徴とする水処理システムにある。
第6の発明は、第5の発明において、前記脱塩処理装置が、さらに前記第2の脱塩装置からの濃縮水を分離する分離部と、前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第3の脱塩装置を有することを特徴とする水処理システムにある。
第7の発明は、第5の発明において、前記第1の脱塩装置に導入する混合水の酸化還元電位を計測する酸化還元電位計を備えることを特徴とする水処理システムにある。
第8の発明は、第7の発明において、前記酸化還元電位計で計測する前記混合水中の酸化還元電位の値(X)が、-0.69V<X<1.358Vであることを特徴とする水処理システムにある。
第9の発明は、ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫工程と、前記湿式脱硫工程からの石膏スラリーを含む脱硫排水から石膏を分離する脱水工程と、前記脱水工程からの分離水を導入し、キレート剤を投入して分離水中の重金属を固定化する水銀除去工程と、前記水銀除去工程からの分離水中の固形分を固液分離する固液分離工程と、前記固液分離部からの分離水を、プラント設備内で発生する排出水と混合する混合工程と、前記混合工程で混合された混合水中の塩分を除去する脱塩処理工程と、前記脱塩処理工程で塩分濃縮した濃縮水を、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥工程と、を有することを特徴とする水処理方法にある。
第10の発明は、ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫工程と、前記湿式脱硫工程からの石膏スラリーを含む脱硫排水から石膏を分離する脱水工程と、前記脱水工程からの分離水を、プラント設備内で発生する排出水と混合する混合工程と、前記混合工程で混合された混合水を導入し、キレート剤を投入して分離水中の重金属を固定化する沈殿工程と、前記沈殿工程の混合水中の固形分を固液分離する固液分離工程と、前記固液分離後の混合水中の塩分を除去する脱塩処理工程と、前記脱塩処理工程で塩分濃縮した濃縮水を、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥工程と、を備えることを特徴とする水処理方法にある。
第11の発明は、第9又は10の発明において、前記固液分離工程で分離後の分離水に対し、1価選択性を有する膜で処理する膜処理工程を有することを特徴とする水処理方法にある。
第12の発明は、第9乃至11のいずれか一つの発明において、前記脱塩処理工程が、前記排出水中の2価の塩分を除去することを特徴とする水処理方法にある。
第13の発明は、第9乃至12のいずれか一つの発明において、前記脱塩処理工程が、Caイオン等の2価のイオンを含む混合水に対して、スケール防止剤を供給するスケール防止剤供給工程と、前記スケール防止剤供給工程の下流側に設置され、前記混合水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第1の脱塩工程と、前記第1の脱塩工程の下流側に設けられ、前記濃縮水から石膏を晶析させる晶析工程と、この晶析した石膏と、前記第1の脱塩工程からの濃縮水とを分離する分離部と、前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第2の脱塩工程と、を有することを特徴とする水処理方法にある。
第14の発明は、第13の発明において、前記脱塩処理工程が、さらに前記第2の脱塩工程からの濃縮水を分離する分離工程と、前記分離工程の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第3の脱塩工程を有することを特徴とする水処理方法にある。
第15の発明は、第9の発明において、前記第1の脱塩工程に導入する混合水の酸化還元電位を計測する酸化還元電位計測工程を備えることを特徴とする水処理方法にある。
第16の発明は、第15の発明において、前記酸化還元電位計測工程で計測する前記混合水中の酸化還元電位の値(X)が、-0.69V<X<1.358Vであることを特徴とする水処理方法にある。
本発明によれば、プラント設備内で排出する排出水を工業排水処理設備で処理する必要がなくなり、プラント内で発生する排出水の無排水化若しくは排水量の低減を図ると共に、水銀排出対策が可能となる。
以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
図1は、実施例1に係るプラント設備内で発生する排出水の水処理システムの概略図である。
図1に示すように、本実施例に係るプラント設備内で発生する排出水の水処理システムは、ボイラ11からのボイラ排ガス(以下「排ガス」という)12を処理する排ガス処理システム18と、脱硫排水41中の水銀を水銀除去部で固定化した後、排出水22と混合部110で混合し、この混合水中の塩分を除去する脱塩処理装置30と、脱塩処理装置30で処理した後の濃縮水31を、前記ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を具備するものである。
図1に示すように、本実施例に係るプラント設備内で発生する排出水の水処理システムは、ボイラ11からのボイラ排ガス(以下「排ガス」という)12を処理する排ガス処理システム18と、脱硫排水41中の水銀を水銀除去部で固定化した後、排出水22と混合部110で混合し、この混合水中の塩分を除去する脱塩処理装置30と、脱塩処理装置30で処理した後の濃縮水31を、前記ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を具備するものである。
図1に例示される排ガス処理システム18は、例えば石炭を燃料として使用する石炭焚きボイラ11や重油を燃料として使用する重油焚きボイラ11等の場合、排ガス12から、窒素酸化物(NOx)、硫黄酸化物(SOx)、水銀(Hg)等の有害物質を除去する装置であり、窒素酸化物を除去する脱硝装置13、排ガス12の熱を回収する空気予熱器14と、熱回収後の排ガス12中の煤塵を除去する集塵器15と、除塵後の排ガス12中に含まれる硫黄酸化物を除去する湿式脱硫装置16と、脱硫後の浄化された浄化ガスを排出する煙突17とを備えている。
本実施例では、湿式脱硫装置16として、石灰・石膏法による脱硫方法により、排ガス12中に含有する硫黄酸化物の除去を図っている。この硫黄酸化物の除去の際、石灰スラリー(図示せず)を供給し、湿式脱硫装置16から排出ラインL31を介して排出される脱硫排水41である石膏スラリーから脱水装置42により石膏32を分離している。そして、脱水装置42で分離された分離水43は、湿式脱硫装置16に戻しラインL32を介して補給水として戻している。なお、符号L33は脱硫の石膏スラリーを循環させるスラリー循環ラインを図示する。
本実施例では、湿式脱硫装置16からの石膏スラリーを含む脱硫排水41から石膏32を分離する脱水装置42と、前記脱水装置42からの分離水43を分離水ラインL34により導入し、キレート剤102を投入して分離水43中の水銀を除去する水銀除去部である反応槽101と、反応槽101からの分離水43中の固形分(重金属スラッジ)104を固液分離する固液分離部103と、を備えており、キレート剤102の添加により分離水43中の水銀(Hg)の固定化を図っている。
反応槽101には、キレート剤102が図示しない添加装置により添加され、キレート剤102に分離水43中の水銀(Hg)吸着処理している。
この反応槽101には、キレート剤102とともに、例えばpHを調整するpH調整剤(アルカリ剤)や、凝結剤(例えば硫酸バンド、PAC、塩鉄等)や、高分子凝集剤等の凝集剤を添加するようにしてもよい。
分離水43中の水銀は、重金属捕集剤であるキレート剤102により不溶性高分子錯体を形成し、例えば硫酸バンド等で高分子同士を凝集させている。
この反応槽101には、キレート剤102とともに、例えばpHを調整するpH調整剤(アルカリ剤)や、凝結剤(例えば硫酸バンド、PAC、塩鉄等)や、高分子凝集剤等の凝集剤を添加するようにしてもよい。
分離水43中の水銀は、重金属捕集剤であるキレート剤102により不溶性高分子錯体を形成し、例えば硫酸バンド等で高分子同士を凝集させている。
その後、固液分離部103で重金属(Hg等)スラッジ104を分離し、固液分離部103からの分離水は、分離水排出ラインL35により排出され、冷却塔21からの排出水22と混合部110で混合し、混合水111としている。
固液分離部103は、例えば凝集沈殿槽、凝集膜分離槽、膜分離槽、砂ろ過槽等を用いることができる。この固液分離後の分離水43をさらに、水質要求が高い場合には、キレート樹脂を通過させることにより、水質改善を図るようにしてもよい。
pH調整剤は、分離水43をアルカリ側とするものであり、例えば消石灰Ca(OH)2、水酸化ナトリウム(NaOH)等を用いることができ、例えば硫酸バンドが凝集可能なpH域(例えばpH7付近)となるように調整するようにしている。
図1の実施例では、水銀除去部として、反応槽101を用いて説明したが、本発明はこれに限定されるものではなく、例えば石膏晶析装置、固形化槽、イオン交換装置等を用いて分離水43中の水銀を除去するようにしてもよい。
石膏晶析装置は、石膏(CaSO4)生成時に水銀を硫酸水銀(HgSO4)として取り込み共沈させ、分離水43中の水銀を除去するものである。
沈殿装置は、分離水43に例えば硫化鉄、硫化ナトリウム等を添加し、下記反応により硫化水銀(HgS)として固定化するものである。
Hg2++S2-→HgS↓
なお、固定化された硫化水銀は、凝集沈殿槽や凝集膜分離槽、膜分離槽、砂ろ過槽、活性炭吸着槽等で除去する。
Hg2++S2-→HgS↓
なお、固定化された硫化水銀は、凝集沈殿槽や凝集膜分離槽、膜分離槽、砂ろ過槽、活性炭吸着槽等で除去する。
イオン交換装置は、分離水43を陽イオン交換樹脂と、陰イオン交換樹脂とに各々通過させ、陽イオン交換樹脂にHg2+を吸着させると共に、陰イオン交換樹脂に水銀錯体(HgCl3-、HgCl4
2-、HgS2
2-等)を吸着させて、除去するようにしている。
なお、沈殿装置を用いる場合には、既に沈殿装置で分離されるため固液分離部103は不要となる。また、キレート樹脂塔を用いる場合には、スラッジは発生しない。同様に固液分離部103は不要となる。
本実施例では、この水銀除去部として、キレート剤102を添加して反応槽101で沈殿し、この沈殿物を含む分離水43を固液分離部103において、重金属スラッジ104として水銀等を除去している。その後、固液分離部103からの分離水43を、プラント設備内で発生する排出水22と混合部110で混合させ、この混合された混合水111中の塩分を脱塩処理装置30で除去するようにしている。
そして、脱塩処理装置30で塩分濃縮した濃縮水31は、噴霧乾燥装置23に導入され、ここで、ボイラ11からの排ガス12の一部12aを用いて噴霧乾燥処理される。
この結果、噴霧乾燥装置23に導入される濃縮水31は、湿式脱硫装置16より排出される脱硫排水41から石膏32を分離した分離水43中の水銀が除去されているので、脱塩処理装置30から排出する濃縮水31を噴霧乾燥する際に、噴霧乾燥物の水銀溶出防止がなされる。また、脱塩処理装置30における石膏32中への水銀の含有量の低減を図ることができる。
この結果、湿式脱硫装置16からの脱硫排水41から水銀を除去することで、噴霧乾燥された乾燥塩の水銀含有量を低減できる。
本実施例に係る水処理システムでは、ボイラ11からのボイラ排ガス12中の硫黄酸化物を除去する湿式脱硫装置16と、湿式脱硫装置16からの石膏スラリーを含む脱硫排水41から石膏32を分離する脱水装置42と、脱水装置42からの分離水43を導入し、キレート剤102を投入して分離水43中の重金属を固定化する水銀除去部(例えば反応槽101)と、水銀除去部からの分離水43中の固形分(重金属スラッジ)104を固液分離する固液分離部103と、固液分離部103からの分離水43を、プラント設備内で発生する排出水22と混合する混合部110と、混合部110で混合された混合水111中の塩分を除去する脱塩処理装置30と、脱塩処理装置30で塩分濃縮した濃縮水31を噴霧する噴霧手段を有し、ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を備えるようにしている。
この結果、脱硫排水41中から水銀を除去することで、後段の脱塩処理装置30の石膏晶析工程で生成する石膏、噴霧乾燥装置23での噴霧乾燥工程での噴霧乾燥塩中の水銀含有量を低減できる。これに伴い、噴霧乾燥塩の水銀の溶出量も低減できる。
噴霧乾燥装置23は、図1に示すように、排ガスラインL10から分岐した分岐ラインL11を介して排ガス12の一部12aが導入されるガス導入手段と、濃縮水31を散布又は噴霧する噴霧手段とを具備している。そして、導入される排ガス12の一部12aの熱により散布された濃縮水31を蒸発乾燥させている。
また、本実施例では、空気予熱器14へ流入する排ガス12の一部12aを排ガスラインL10から分岐ラインL11を介して分岐しているので、排ガス12の温度が高く(350~400℃)、濃縮水31の噴霧乾燥を効率よく行うことができる。なお、乾燥に寄与した排ガス12bは、ガス送給ラインL12を介して空気予熱器14と集塵器15との間の排ガスラインL10中に返送されている。なお、乾燥に寄与した排ガス12bは、空気予熱器14の後流側、集塵器15の前流側の一箇所又は複数箇所に返送するようにしてもよい。
図2は、実施例1に係る噴霧乾燥装置の概略図である。図2に示すように、本実施例の噴霧乾燥装置23は、噴霧乾燥装置本体23a内に、導入ラインL21を介して冷却塔21から導入される排出水22を噴霧する噴霧ノズル24と、噴霧乾燥装置本体23aに設けられ、噴霧液22aを乾燥する排ガス12の一部12aを導入する導入口23bと、噴霧乾燥装置本体23a内に設けられ、排ガス12の一部12aにより排出水22を乾燥する乾燥領域25と、乾燥に寄与した排ガス12bを排出する排出口23cとを具備するものである。なお、符号26は噴霧乾燥装置本体23aで分離された固形物、V1及びV2は流路開閉バルブを図示する。
ここで、噴霧乾燥装置23へ導入する排ガス12の一部12aのガス量、濃縮水31の液噴霧量のバランスの一例を示す。
導入する排ガス12の一部12aのガス量を1000m3/Hあたり、濃縮水31の液量100kg/Hを噴霧ノズル24から噴霧すると、ガス温度は200℃低下する。
また、ガス中の水分濃度が10%増加する。例えば噴霧前の導入する排ガスの一部12aのガス中の水分濃度が9%の場合、噴霧後の乾燥に寄与した排ガス12bのガス中の水分濃度が19%となり、約10%上昇する。
この200℃のガス温度の低下は、空気予熱器14通過後の排ガス12の温度と略同等となる。
導入する排ガス12の一部12aのガス量を1000m3/Hあたり、濃縮水31の液量100kg/Hを噴霧ノズル24から噴霧すると、ガス温度は200℃低下する。
また、ガス中の水分濃度が10%増加する。例えば噴霧前の導入する排ガスの一部12aのガス中の水分濃度が9%の場合、噴霧後の乾燥に寄与した排ガス12bのガス中の水分濃度が19%となり、約10%上昇する。
この200℃のガス温度の低下は、空気予熱器14通過後の排ガス12の温度と略同等となる。
ただし、噴霧乾燥装置23への排ガス12の一部12aのバイパス量は、約5%程度であるため、バイパスした乾燥に寄与した排ガス12bが排ガスラインL10に戻った場合に、水分増加は10%/20=0.5%程度となる。
また、排ガスラインL10を通過する排ガス12のガス温度は、空気予熱器14で空気を余熱してボイラ11に供給するので、同様に200℃下げることとなるので、バイパスして戻ったときの温度差はないものとなる。すなわち、空気予熱器14の入り口側のガス温度が350℃の場合、空気予熱器14を通過して低下したガス温度と、分岐ラインL11と、ガス送給ラインL12を経由して噴霧乾燥装置23で乾燥に寄与した排ガス12bのガス温度は、同じく200℃低下するので、略同等の温度となる。
本実施例によれば、冷却塔21から排出され、脱塩処理装置30から排出される濃縮水31を噴霧乾燥装置23の内部に噴霧ノズル24を介して導入し、噴霧液22aを排ガス12の一部12aの熱で乾燥するので、排出水22を工業排水処理設備で別途処理する必要がなくなり、プラント内で発生する排出水22の無排水化を実現することができる。
本実施例では、プラント設備内で発生する排出水22として、冷却塔21からのブロー排水を例にして説明するが、本発明はこれに限定されるものではなく、発電プラント又は化学プラントからの排出水全般に適用することができる。
ここで、石炭火力発電所、油火力発電所の排水事例としては、定常的に発生する排出水として、冷却水以外としては、例えば復水脱塩装置再生排水、復水脱塩装置前置ろ過器再生排水、除濁ろ過装置再生排水、補給水処理装置再生排水、分析室雑排水、脱硫装置排水、雑排水、サンプリング排水、生活排水、灰捨余水、揚運炭設備洗浄排水等を例示することができる。この定常的に発生する排水以外の非定常時の排水としては、例えば空気予熱器洗浄排水、ガスガスヒータ(GGH)洗浄排水、煙突洗浄排水、化洗排水、起動排水、貯炭場排水、揚炭桟橋排水、タンク類ヤード等排水等を例示することができる。また、冷却水としては、冷却塔冷却水以外に、例えば軸受冷却水、復水器冷却水等を例示することができる。
なお、本実施例の排ガス処理システム18で設置している脱硝装置13は必須のものではなく、ボイラ11からの排ガス12中の窒素酸化物濃度や水銀濃度が微量、あるいは、排ガス12中にこれらの物質が含まれない場合には、図1で示す脱硝装置13を省略することも可能である。
また、噴霧乾燥装置23からの乾燥に寄与した排ガス12bのガス送給ラインL12の戻し先を、温度低下が少ない場合には、空気予熱器14の前流側にするようにしてもよい。
本実施例によれば、例えば発電プラントや化学プラントのプロセスプラント設備において発生する各種の排出水を低コストでしかもボイラ効率の低下を伴うことなく、効率的に処理することができるものとなる。
本実施例に係るプラント設備内で発生する排出水22と分離水43とが混合した混合水111の水処理システムは、図1に示すように、冷却塔21からの排出水22中に存在する塩分を除去するために、脱塩処理装置30を有している。そして、脱塩処理装置30で脱塩された後の濃縮水31を噴霧乾燥装置23に供給ラインL21を介して導入している。なお、図1中、符号L24は排出水22を脱塩処理装置30に導入する導入ラインである。
次に、混合水111の水処理システムについて図1及び図3を用いて説明する。
図3は、本実施例に係る脱塩処理装置の一例を示す構成図である。
図3に示すように、本実施例に係る脱塩処理装置30Aは、Caイオン等の2価のイオンを含む排出水22と分離水43との混合水111に対して、スケール防止剤74を供給するスケール防止剤供給部と、前記スケール防止剤供給部の下流側に設置され、前記排出水22を再生水33aと前記Caイオン等が濃縮された濃縮水31aとに分離する第1の脱塩装置55Aと、前記第1の脱塩装置55Aの下流側に設けられ、前記第1の脱塩装置55Aの濃縮水31aに種晶石膏32aを供給して、前記第1の脱塩装置55Aからの濃縮水31aから前記石膏32を晶析させる晶析槽61と、前記晶析した石膏32と第1の脱塩装置55Aからの濃縮水31aとを分離する分離部である液体サイクロン62と、この液体サイクロン62の下流側に設置され、濃縮水31aを再生水33bと前記Caイオン等が濃縮された濃縮水31bとに分離する第2の脱塩装置55Bと、を有し、2段の脱塩処理装置で脱塩を行っている。
図3は、本実施例に係る脱塩処理装置の一例を示す構成図である。
図3に示すように、本実施例に係る脱塩処理装置30Aは、Caイオン等の2価のイオンを含む排出水22と分離水43との混合水111に対して、スケール防止剤74を供給するスケール防止剤供給部と、前記スケール防止剤供給部の下流側に設置され、前記排出水22を再生水33aと前記Caイオン等が濃縮された濃縮水31aとに分離する第1の脱塩装置55Aと、前記第1の脱塩装置55Aの下流側に設けられ、前記第1の脱塩装置55Aの濃縮水31aに種晶石膏32aを供給して、前記第1の脱塩装置55Aからの濃縮水31aから前記石膏32を晶析させる晶析槽61と、前記晶析した石膏32と第1の脱塩装置55Aからの濃縮水31aとを分離する分離部である液体サイクロン62と、この液体サイクロン62の下流側に設置され、濃縮水31aを再生水33bと前記Caイオン等が濃縮された濃縮水31bとに分離する第2の脱塩装置55Bと、を有し、2段の脱塩処理装置で脱塩を行っている。
図3に示す実施例においては、第1の脱塩装置55A及び第2の脱塩装置55Bは逆浸透膜55a、55bを備えた逆浸透膜装置(RO)を用いている。この逆浸透膜装置の代わりに、例えばナノ濾過膜(NF)、電気透析装置(ED)、極性転換式電気透析装置(EDR)、電気再生式純水装置(EDI)、イオン交換樹脂装置(IEx)、静電脱塩装置(CDl)、蒸発器等も適宜適用可能である。
晶析槽61は、分離部である液体サイクロン62を備えており、分離された石膏32は、脱水装置63により脱水される。なお、本実施例の変形例として、分離部である液体サイクロン62は省略可能である。この場合、晶析槽61の底部と脱水装置63とが直接接続される構成とされる。
スケール防止剤74とは、混合水111中で結晶核の生成を抑制するとともに、排出水22中に含まれる結晶核(種結晶や飽和濃度を超えて析出した小径のスケール等)の表面に吸着して、結晶成長を抑制する機能を有するものである。
また、スケール防止剤74は、析出した結晶等の水中の粒子を分散させる(凝集を防止する)機能も有する。スケール防止剤74は、例えばホスホン酸系スケール防止剤、ポリカルボン酸系スケール防止剤、及びこれらの混合物等である。スケール防止剤74の例として、例えば「FLOCON260(商品名、BWA社製)」が挙げられるが、本発明はこれに限定されるものではない。
また、スケール防止剤74は、析出した結晶等の水中の粒子を分散させる(凝集を防止する)機能も有する。スケール防止剤74は、例えばホスホン酸系スケール防止剤、ポリカルボン酸系スケール防止剤、及びこれらの混合物等である。スケール防止剤74の例として、例えば「FLOCON260(商品名、BWA社製)」が挙げられるが、本発明はこれに限定されるものではない。
また、排出水22中にMg2+が含まれる場合、排出水22中でマグネシウムを含むスケール(例えば、水酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム)が析出することを防止するスケール防止剤を用いることができる。以下では、「マグネシウムスケール防止剤」と称する。
マグネシウムスケール防止剤としては、ポリカルボン酸系スケール防止剤等がある。具体例としては、BWA社製「FLOCON295N(商品名)」が挙げられる。
マグネシウムスケール防止剤としては、ポリカルボン酸系スケール防止剤等がある。具体例としては、BWA社製「FLOCON295N(商品名)」が挙げられる。
本実施例では、第1の脱塩装置55Aの上流側の流路にスケール防止剤74を供給した後に、第1のpH調整剤75Aである例えば酸等を導入する第1のpH調整部が接続されている。
第1のpH調整剤75Aとして、酸(例えば硫酸)又はアルカリ剤(例えば水酸化カルシウムや水酸化ナトリウム)が供給される。
ここで、図14~図16を参照して、排出水22中での石膏、シリカ、及び炭酸カルシウムの析出挙動を説明する。
図14は、石膏析出量のpH依存性のシミュレーション結果である。図15は、炭酸カルシウム析出量のpH依存性のシミュレーション結果である。図16は、シリカ析出量のpH依存性のシミュレーション結果である。これらの図において、横軸はpH、縦軸はそれぞれ、石膏、炭酸カルシウム及びシリカの析出量(mol)である。シミュレーションはOLI社製シミュレーションソフトを用い、水中に各固体成分が0.1mol/Lずつ混合され、酸としてH2SO4、アルカリとしてCa(OH)2が添加される条件で行った。
図14は、石膏析出量のpH依存性のシミュレーション結果である。図15は、炭酸カルシウム析出量のpH依存性のシミュレーション結果である。図16は、シリカ析出量のpH依存性のシミュレーション結果である。これらの図において、横軸はpH、縦軸はそれぞれ、石膏、炭酸カルシウム及びシリカの析出量(mol)である。シミュレーションはOLI社製シミュレーションソフトを用い、水中に各固体成分が0.1mol/Lずつ混合され、酸としてH2SO4、アルカリとしてCa(OH)2が添加される条件で行った。
図14より、石膏析出のpH依存性はなく、全pH領域で析出することが理解できる。しかし、カルシウムスケール防止剤が添加されると、高pH領域では石膏は水中に溶解した状態で存在する。図15より、炭酸カルシウムはpH5を超えると析出する。図16より、シリカはpH10以上となると水中に溶解する傾向がある。
よって、混合水111中の石膏(硫酸カルシウム)、シリカ、及び炭酸カルシウムの析出挙動を考慮して、以下のような第1pH調整~第3pH調整を行うようにしている。
1)第1pH調整態様(pH10以上)
第1pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が10以上の所定のpHとなるように制御する。
これは、図16に示すように、シリカはpH10以上となると溶解することとなるからである。
この第1pH調整の場合には、逆浸透膜55aにスケーリングする物質としては石膏と炭酸カルシウムの付着を抑制する量のスケール防止剤(カルシウムスケール防止剤)74を供給する。
第1pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が10以上の所定のpHとなるように制御する。
これは、図16に示すように、シリカはpH10以上となると溶解することとなるからである。
この第1pH調整の場合には、逆浸透膜55aにスケーリングする物質としては石膏と炭酸カルシウムの付着を抑制する量のスケール防止剤(カルシウムスケール防止剤)74を供給する。
2)第2pH調整態様(pH10以下)
第2pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が10以下の所定のpHとなるように制御する。
これは、図16に示すように、シリカはpH10以下となると析出することとなるからである。
この第2pH調整の場合には、逆浸透膜55aにスケーリングする物質としては石膏と炭酸カルシウムとシリカとなり、これら全ての付着を抑制する量のスケール防止剤74を供給する。
第2pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が10以下の所定のpHとなるように制御する。
これは、図16に示すように、シリカはpH10以下となると析出することとなるからである。
この第2pH調整の場合には、逆浸透膜55aにスケーリングする物質としては石膏と炭酸カルシウムとシリカとなり、これら全ての付着を抑制する量のスケール防止剤74を供給する。
ここで、シリカのスケール防止剤74としては、カルシウムスケール防止剤、及び、被処理水中でシリカがスケールとして析出することを防止するもの(「シリカスケール防止剤」と称する)の二種類の防止剤を用いる。シリカスケール防止剤としては、ポリカルボン酸系スケール防止剤及びこれらの混合物等がある。具体例としては、FLOCON260(商品名、BWA社製)が挙げられる。
3)第3pH調整態様(pH6.5以下)
第3pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が6.5以下の所定のpHとなるように制御する。
これは、図15に示すように、炭酸カルシウムはpH6.5以下となると溶解することとなるからである。
この第3pH調整の場合には、逆浸透膜55aに付着する物質としては石膏とシリカの付着を抑制する量のスケール防止剤(カルシウムスケール防止剤、シリカスケール防止剤)74を供給する。
第3pH調整態様は、混合水111中のpHを第1の脱塩装置55Aの前流側で、pH計76で計測し、pHの値が6.5以下の所定のpHとなるように制御する。
これは、図15に示すように、炭酸カルシウムはpH6.5以下となると溶解することとなるからである。
この第3pH調整の場合には、逆浸透膜55aに付着する物質としては石膏とシリカの付着を抑制する量のスケール防止剤(カルシウムスケール防止剤、シリカスケール防止剤)74を供給する。
表1は、第1pH調整態様~第3pH調整態様をまとめたものである。
表1に示すように、pH10以上の場合には、石膏、炭酸カルシウムのスケールを抑制するために、スケール防止剤(カルシウムスケール防止剤)74が供給され(表中○)、シリカは溶解しているので、スケール防止剤の供給は不要となる(表中×)。
また、pH10以下で6.5以上の場合には、石膏、炭酸カルシウム、シリカの全てのスケールを抑制するために、スケール防止剤(カルシウムスケール防止剤、シリカスケール防止剤)74が供給される(表中○)。
また、pH6.5以下の場合には、石膏、シリカのスケールを抑制するために、スケール防止剤(カルシウムスケール防止剤、シリカスケール防止剤)74が供給される(表中○)、炭酸カルシウムは溶解しているので、カルシウムスケール防止剤の供給は、石膏のみのスケールを防止するだけでよいので、第2pH調整の場合よりも少ない供給量となる(表中×)。
第1の脱塩装置55Aで濃縮された後の濃縮水31a中のシリカ濃度が所定濃度以上となると、シリカスケール防止剤の能力に限界がある。そこで、シリカ濃度が所定濃度(例えば200mg/L)以下の場合には、第1または第2または第3pH調整工程を実施するようにし、シリカ濃度が所定濃度(例えば200mg/L)以上の場合には、第1pH調整工程(シリカ溶解)を実施するのが好ましい。
また、晶析槽61に第2のpH調整剤75Bである酸を導入する第2のpH調整部が接続されている。第2のpH調整剤75Bである酸の導入は、晶析槽61の前流のラインに接続される構成としても良い。
このように、第1のpH調整剤75Aは酸に限定されるものではない。例えばアルカリ側に維持することで、酸化ケイ素(SiO2)のゲル化を防止することができる。一方で、アルカリ側とすると、炭酸カルシウム(CaCO3)や水酸化マグネシウム(Mg(OH)2)が析出する場合がある。このために、スケール防止剤74を添加して、スケールの生成抑止を行うものとする。
よって、第1及び第2の脱塩装置55A、55Bの上流側で供給する第1のpH調整剤75Aは酸又はアルカリとするのが好ましい。
また、晶析槽61に供給する第2のpH調整剤75Bは酸とするのが好ましい。ここで、晶析槽61へ供給する第2のpH調整剤75Bを酸に限定する理由は、例えばカルシウム系のスケール防止剤74を無効化し、カルシウムを石膏(CaSO4)として析出せしめるためである。
なお、スケール防止剤74は、カルボン酸系であれば、-COO-・・・Ca2+・・・-OOC-のように、カルボキシル基の先端のH+が解離し、-COO-がCa2+に結合している。pHを低下させ酸の状態とすると、-COOH Ca2+ HOOC-のように、カルボキシル基の先端のH+が解離せず、同時にカルボキシル基とカルシウムイオンCa2+との結合が外れる。これにより、イオン状のカルシウム濃度が増加、過飽和となり、石膏等のカルシウム塩が析出することとなる。
本実施例の水処理システムにおいて、スケール防止剤74の供給部の上流において、沈殿槽53及びろ過装置54が設置されても良い。また、沈殿槽53の上流に空気などの酸化剤を供給して酸化する酸化部(図示せず)が設置されていても良い。
また、液体サイクロン62と第2の脱塩装置55Bとの間に、同様に、沈殿槽53及びろ過装置54が設置される。ろ過装置54と第2の脱塩装置55Bとの間の流路に、第3のpH調整剤75Cである酸等を導入する。
この第3のpH調整剤75Cの場合も、第1のpH調整剤75Aと同様に、酸又はアルカリを用いることができる。
この第3のpH調整剤75Cの場合も、第1のpH調整剤75Aと同様に、酸又はアルカリを用いることができる。
図3に示す水処理システムを用いて、混合水111を処理する方法を以下で説明する。
ここで、本発明で処理する冷却塔21からの排出水22の性状の一例としては、pHが8、Naイオンが20mg/L、Kイオンが5mg/L、Caイオンが50mg/L、Mgイオンが15mg/L、HCO3イオンが200mg/L、Clイオンが200mg/L、SO4イオンが120mg/L、PO4イオンが5mg/L、SiO2イオンが35mg/Lであり、これらの内でも、Caイオン、Mgイオン、SO4イオン、HCO3イオン濃度が高く、これらの存在の反応によりスケール(CaSO4、CaCO3等)が生成することとなる。
〈前処理工程〉
先ず、沈殿槽53及びろ過装置54において、排出水22中の金属イオンが金属水酸化物として粗除去される。
排出水22が、強い酸性を示す場合、沈殿槽53の上流側に隣接する添加槽52で排出水22にアルカリ剤(例えばCa(OH)2)71及びポリマー(例えばアニオン系ポリマー(三菱重メカトロシステムズ(株)製、商品名:ヒシフロックH3O5))72が投入され、沈殿槽53内のpHはアルカリ性(例えばpH:8.5~11)のpH領域に管理される。
先ず、沈殿槽53及びろ過装置54において、排出水22中の金属イオンが金属水酸化物として粗除去される。
排出水22が、強い酸性を示す場合、沈殿槽53の上流側に隣接する添加槽52で排出水22にアルカリ剤(例えばCa(OH)2)71及びポリマー(例えばアニオン系ポリマー(三菱重メカトロシステムズ(株)製、商品名:ヒシフロックH3O5))72が投入され、沈殿槽53内のpHはアルカリ性(例えばpH:8.5~11)のpH領域に管理される。
このpH領域では炭酸カルシウム及び金属水酸化物の溶解度は低く、炭酸カルシウム及び金属水酸化物が過飽和となると、炭酸カルシウム及び金属水酸化物が析出して沈殿槽53の底部に沈殿する。
また、金属水酸化物の溶解度はpHに依存する。金属イオンの水への溶解度は酸性になるほど高くなる。上記のpH領域では多くの金属水酸化物の溶解度が低いため、排出水22に含有される金属は沈殿槽53の底部に金属水酸化物として沈殿する。ここで、沈殿物53aは別途底部から排出処理される。
また、金属水酸化物の溶解度はpHに依存する。金属イオンの水への溶解度は酸性になるほど高くなる。上記のpH領域では多くの金属水酸化物の溶解度が低いため、排出水22に含有される金属は沈殿槽53の底部に金属水酸化物として沈殿する。ここで、沈殿物53aは別途底部から排出処理される。
沈殿槽53内の上澄み液である排出水22が沈殿槽53から排出される。排出された排出水22に対し、鉄系凝集剤(例えばFeCl3)73が添加され、排出水22中の炭酸カルシウムや金属水酸化物等の固形分がFe(OH)3とともに凝集する。
混合水111はろ過装置54に送給される。ろ過装置54によりFe(OH)3とともに凝集した固形分が除去される。
混合水111はろ過装置54に送給される。ろ過装置54によりFe(OH)3とともに凝集した固形分が除去される。
Feは金属類の中で、酸性で水酸化物として析出しやすい。多量のFeイオンを含む混合水111を第1の脱塩装置55Aに流入させると、第1の脱塩装置55A内でFeを含むスケールが発生し、また、晶析槽61で鉄水酸化物等が沈殿する。このため、本実施例では、第1の脱塩装置55A内でのスケール発生防止を考慮して、アルカリの前処理後であって第1の脱塩装置55Aに流入する前において、混合水111中のFeイオン濃度が0.05ppm以下になるように、沈殿槽53での処理条件及びFeCl3添加量等が適宜設定される。なお、混合水111の水質によっては、上記前処理を省略することができる。
〈スケール防止剤供給工程〉
スケール防止剤74を供給する供給部においては、図示しないタンクから所定量のスケール防止剤74を混合水111に供給する。図示しない制御部は、スケール防止剤74の濃度が混合水111の性状に応じて設定された所定値となるように調整する。
スケール防止剤74を供給する供給部においては、図示しないタンクから所定量のスケール防止剤74を混合水111に供給する。図示しない制御部は、スケール防止剤74の濃度が混合水111の性状に応じて設定された所定値となるように調整する。
〈第1のpH調整工程〉
第1のpH調整工程のpH調整剤75の供給部は、第1の脱塩装置55Aの入り口側での混合水111のpHを、スケール防止剤74によりCaを含むスケール(石膏、炭酸カルシウム)の析出が抑制される値(例えばpH5.5程度)に管理する。管理は、第1の脱塩装置55Aの入り口側での混合水111のpHを計測する。
なお、第1のpH調整部を設けない変形例では、この第1のpH調整工程は省略される。
第1のpH調整工程のpH調整剤75の供給部は、第1の脱塩装置55Aの入り口側での混合水111のpHを、スケール防止剤74によりCaを含むスケール(石膏、炭酸カルシウム)の析出が抑制される値(例えばpH5.5程度)に管理する。管理は、第1の脱塩装置55Aの入り口側での混合水111のpHを計測する。
なお、第1のpH調整部を設けない変形例では、この第1のpH調整工程は省略される。
〈上流側分離工程〉
第1の脱塩装置55Aにおいて、pHが調整された混合水111が処理される。第1の脱塩装置55Aの逆浸透膜55aを通過した透過水は、塩分が除去された再生水33aとして回収される。
第1の脱塩装置55Aにおいて、pHが調整された混合水111が処理される。第1の脱塩装置55Aの逆浸透膜55aを通過した透過水は、塩分が除去された再生水33aとして回収される。
この上流側分離工程においては、混合水111に含まれるイオン及びスケール防止剤74は逆浸透膜55aを透過することができない。従って、逆浸透膜55aの非透過側はイオン濃度が高い濃縮水31aとなる。第1の脱塩装置55Aの濃縮水31aは、晶析槽61に向かって送給される。例えば静電脱塩装置等他の脱塩装置を用いた場合も、混合水111は処理水と、イオン濃度が高い濃縮水とに分離される。
ここで、第1の脱塩装置55Aにおいて、高pHの場合には、逆浸透膜55aの表面では、シリカは、イオン状シリカで存在することとなる。
具体的には、例えば200mgSiO2/L以上の場合では、高pHであればイオン状シリカとして存在できる。
これに対し、第1の脱塩装置55Aにおいて、低pHの場合には、ゲル状シリカとして析出することとなる。
具体的には、例えば200mgSiO2/L以下では、高pHであればイオン状シリカとして存在できる。
低pHであれば、200mgSiO2/L以下ではスケール防止剤74を使用すればゲル化を抑制(またはゲル化する時間の延長)することが可能となる。
具体的には、例えば200mgSiO2/L以上の場合では、高pHであればイオン状シリカとして存在できる。
これに対し、第1の脱塩装置55Aにおいて、低pHの場合には、ゲル状シリカとして析出することとなる。
具体的には、例えば200mgSiO2/L以下では、高pHであればイオン状シリカとして存在できる。
低pHであれば、200mgSiO2/L以下ではスケール防止剤74を使用すればゲル化を抑制(またはゲル化する時間の延長)することが可能となる。
また、第1の脱塩装置55Aにおいて、高pHの場合には、逆浸透膜55aの表面では、カルシウムイオン(Ca2+)は、CaCO3結晶として析出しうるが、Ca用スケール防止剤74を供給することで析出を防止する。
また、第1の脱塩装置55Aにおいて、高pHの場合には、逆浸透膜55aの表面では、マグネシウムウムイオン(Mg2+)は、高pHでMg(OH)2、MgSiO3結晶として析出しうるが、Mg用スケール防止剤74を供給することで析出を防止する。
〈第2のpH調整工程〉
図示しない制御部において、晶析槽61内の第1の脱塩装置55Aからの濃縮水31aのpHを、スケール防止剤74の機能が低減されて、濃縮水31a中の石膏が析出可能な値(例えばpH4以下)に管理する。
図示しない制御部において、晶析槽61内の第1の脱塩装置55Aからの濃縮水31aのpHを、スケール防止剤74の機能が低減されて、濃縮水31a中の石膏が析出可能な値(例えばpH4以下)に管理する。
〈晶析工程〉
第2のpH調整剤75BによりpHが調整された濃縮水31aが、晶析槽61に貯留される。種結晶供給部を設置する場合は、種結晶供給部は晶析槽61内の濃縮水31aに種結晶の種晶石膏32aを添加する。
第2のpH調整剤75Bの添加により、晶析槽61内においてスケール防止剤74の機能を無効化する。このため、晶析槽61内で過飽和になっている石膏32が晶析する。この晶析工程で種結晶として種晶石膏32aを別途投入する場合は、投入された種晶石膏32aを核として石膏32が結晶成長する。
ここで、種晶石膏32aは、脱水装置63で分離された石膏32の一部を用いる。
第2のpH調整剤75BによりpHが調整された濃縮水31aが、晶析槽61に貯留される。種結晶供給部を設置する場合は、種結晶供給部は晶析槽61内の濃縮水31aに種結晶の種晶石膏32aを添加する。
第2のpH調整剤75Bの添加により、晶析槽61内においてスケール防止剤74の機能を無効化する。このため、晶析槽61内で過飽和になっている石膏32が晶析する。この晶析工程で種結晶として種晶石膏32aを別途投入する場合は、投入された種晶石膏32aを核として石膏32が結晶成長する。
ここで、種晶石膏32aは、脱水装置63で分離された石膏32の一部を用いる。
この種晶石膏32aを供給する場合には、第1のpH調整剤75Aの添加による第1のpH調整を行わずに、第1の脱塩装置55Aを通過するpHはアルカリ側としてもよい。この場合の石膏32の純度は第1のpH調整剤75Aである酸を添加してpHを調整する場合よりも幾分低下する。これは、pHをアルカリ側とすると、炭酸カルシウム(CaCO3)の結晶が生成する。このため、石膏(CaSO4)に炭酸カルシウム(CaCO3)が混入するため純度が低下することとなる。
本実施例のように、第2のpH調整剤75Bとして酸を添加する第2のpH調整工程において、pHを所定値に調整して晶析工程で種晶石膏32aを添加することにより、含水率が低い高純度の石膏32を析出させることができる。
なお、濃縮水31a中のシリカは、低pHでゲル化し、濃縮水31a中のCa2+、Mg2+と反応して例えばCaSiO3、MgSiO3の反応物を形成し析出する。
ここで、図10、11は、晶析で得られた石膏の顕微鏡写真である。図10は、条件として種結晶である種晶石膏32aを添加した場合の観察結果である。図11は、条件として種結晶である種晶石膏32aを添加しない場合の観察結果である。
図10に示すように、種晶石膏32aを添加した場合では、大きい石膏が析出した。一般に、析出した石膏が大きい程含水率が低くなる。平均粒径が10μm以上、好ましくは20μm以上であれば、十分に含水率が低下した石膏が得られる。ここで、本発明における「平均粒径」とは、JlSZ8825で規定される方法(レーザ回折法)により計測される粒径である。
図10、11の結果から、第2のpH調整工程でpHを所定値に調整して晶析工程で種結晶を添加することにより、含水率が低い高純度の石膏を析出させることができる。種結晶の添加量が多い(晶析槽61内での種結晶濃度が高い)ほど、石膏32の析出速度が増大する。種結晶である種晶石膏32aの添加量は、晶析槽61内での滞留時間及びスケール防止剤74の濃度、pHに基づいて適宜設定される。
また、分離部である液体サイクロン62により、平均粒径10μm以上好ましくは20μm以上の石膏32が濃縮水31aから分離される。分離部である液体サイクロン62に隣接される脱水装置63で回収された石膏32の一部が、図示しない種結晶循環部を経由して、種結晶タンク(図示せず)に貯留される。回収された石膏32は、その一部が種晶石膏32aとして晶析槽61に供給される。
ここで、種結晶タンクにおいて、貯留された石膏32に酸処理が施されるようにしてもよい。脱水装置63で分離された石膏32にはスケール防止剤74が付着している場合には、酸処理により付着スケール防止剤の機能が低減される。ここで用いられる酸の種類は特に限定されないが、第2の脱塩装置55Bでの動力低減を考慮すると硫酸が最適である。
晶析槽61で晶析する石膏32は幅広い粒径分布を有するが、液体サイクロン62で10μm以上の石膏32を濃縮水31aから分離回収するので、大きい石膏を種結晶として利用できる。大きい種結晶を入れれば、大きい石膏を多く晶析させることができる。つまり、高品質の石膏を高い回収率で得ることが可能となる。また、大きい石膏は液体サイクロン62での分離が容易となり、液体サイクロン62を小型化できるとともに、動力を低減させることにも繋がる。大きい石膏は脱水装置63での脱水が容易となり脱水装置63を小型化できるとともに、動力を低減させることにも繋がる。
ここで、図3の水処理システムでは逆浸透膜装置以外は開放系であるため、混合水111や濃縮水31aが空気と接触して水中に炭酸イオンが溶解する。しかし、上述のように、第1のpH調整工程や第2のpH調整工程で炭酸カルシウムの溶解度が高いpH領域に混合水111や濃縮水31aが調整されている。晶析槽61の前段階、もしくは晶析槽61で濃縮水中の炭酸イオンは低減されており、炭酸カルシウムは飽和溶解度以下となっている。更に、pH調整剤75として酸を添加することによりpHが低い領域となるので、下記(1)の平衡式から炭酸イオン濃度が低い環境となっている。このため晶析槽61内では炭酸カルシウムは飽和濃度よりも十分に低い濃度で維持され、炭酸カルシウムは晶析しない。このため、回収される石膏32には炭酸カルシウムがほとんど含有されない。これにより石膏32の純度が高いものとなる。
CO2+H2O⇔H2CO3⇔HCO3
-+H+⇔CO3
2-+2H+…(1)
また、酸性領域では金属を含む塩の溶解度が高い。前処理(沈殿槽53)を経ても混合水111に金属が残留した場合であっても、第1のpH調整工程で第1の脱塩装置55Aの濃縮水31aのpHが上記のように低減されていれば、晶析工程で金属を含む水酸化物は析出することはない。また、混合水111が多量のFeイオンを含む性状である場合は、上述の前処理を経てFe濃度が低減されているため、晶析槽61でのFe(OH)3を含む水酸化物がほとんど沈殿しないものとなる。
このように、本実施例の水処理方法及び水処理システムを用いれば、冷却塔21から排出される排出水22を含む混合水111中の炭酸カルシウムや金属水酸化物等の不純物をほとんど含まない高純度の石膏32を有価物として分離回収することができる。
ここで、平均粒径が10μm以上、好ましくは20μm以上と大きい石膏32を晶析させるような場合、一般的には晶析速度が低下するので晶析槽61内での滞留時間が長くなる。本実施例では、スケール防止剤74の機能を低減させるようにpHを調整するとともに、種結晶濃度を上げて、適切な晶析速度が確保される。
〈回収工程〉
石膏32を含む濃縮水31aが晶析槽61から排出され、分離部である液体サイクロン62に送給され、排出された濃縮水31aから石膏32を分離する。平均粒径10μm以上の石膏32は液体サイクロン62底部に沈降し、小さい粒径の石膏は上澄液に残留する。液体サイクロン62底部に沈降した石膏32は、脱水装置63に移されて、更に脱水されて回収される。回収工程により、含水率が低く不純物を含まず高純度である石膏32を高い回収率で分離回収することができる。本実施例では種結晶を添加して晶析させているため、平均粒径10μm以上の石膏32が主として析出し、小径の石膏の割合は少なくなる。ここで、脱水装置63で分離した分離液64は、噴霧乾燥装置23に供給して噴霧乾燥するようにしてもよい。
石膏32を含む濃縮水31aが晶析槽61から排出され、分離部である液体サイクロン62に送給され、排出された濃縮水31aから石膏32を分離する。平均粒径10μm以上の石膏32は液体サイクロン62底部に沈降し、小さい粒径の石膏は上澄液に残留する。液体サイクロン62底部に沈降した石膏32は、脱水装置63に移されて、更に脱水されて回収される。回収工程により、含水率が低く不純物を含まず高純度である石膏32を高い回収率で分離回収することができる。本実施例では種結晶を添加して晶析させているため、平均粒径10μm以上の石膏32が主として析出し、小径の石膏の割合は少なくなる。ここで、脱水装置63で分離した分離液64は、噴霧乾燥装置23に供給して噴霧乾燥するようにしてもよい。
また、噴霧乾燥装置23に供給して噴霧乾燥する以外に、この分離液64を液体サイクロン62の排出された濃縮水31aに導入させ、濃縮水31aと共に第2の脱塩装置55Bで処理するようにしても良い。
本実施例の変形例として分離部である液体サイクロン62を省略する場合、晶析槽61の底部から沈降側の濃縮水が排出される。晶析槽61底部の濃縮水中には、晶析した大きい石膏32が沈降している。主として大きい石膏32を含む濃縮水を脱水装置63で脱水すれば、高純度の石膏32が回収できる。また、石膏32の含水率が低いために脱水装置63の容積を大きくする必要はない。
〈下流側分離工程〉
液体サイクロン62から排出された上澄み側の濃縮水31aは、沈殿槽53及びろ過装置54に送給される。前述した沈殿槽53及びろ過装置54と同様の工程で、分離工程後の濃縮水中に残留する石膏32及び炭酸カルシウム、及び、濃縮水に残留していた金属水酸化物が除去される。
液体サイクロン62から排出された上澄み側の濃縮水31aは、沈殿槽53及びろ過装置54に送給される。前述した沈殿槽53及びろ過装置54と同様の工程で、分離工程後の濃縮水中に残留する石膏32及び炭酸カルシウム、及び、濃縮水に残留していた金属水酸化物が除去される。
ろ過装置54から排出された濃縮水31aは、第2の脱塩装置55Bに送給される。第2の脱塩装置55Bに流入する前に、濃縮水31aにスケール防止剤74が追加添加されても良い。
また、スケール防止剤74を添加した後に、濃縮水31aにpH調整剤75である酸またはアルカリを供給してもよい。
第2の脱塩装置55Bにおいて、第1の脱塩装置55Aからの濃縮水31aが処理される。第2の脱塩装置55Bの逆浸透膜55bを通過した水は、透過水として再生水33bとして回収される。第2の脱塩装置55Bの濃縮水31bは、噴霧乾燥装置23に導入され、ここで噴霧乾燥される。
第2の脱塩装置55Bが設置されると、石膏32を晶析させた後の上澄み液側の濃縮水31aから更に再生水33bを回収することができるので、水回収率がさらに向上する。
第1の脱塩装置55Aからの濃縮水31aは、晶析槽61での処理により石膏32が除去されているのでイオン濃度が低くなっている。このため、第2の脱塩装置55Bは石膏32を除去しない場合に比べて浸透圧を低くすることができるため、必要な動力が低減される。
また、蒸発器(図示せず)が設置されても良い。蒸発器において濃縮水から水が蒸発され、濃縮水に含まれていたイオンが固体として析出し、固体として回収される。蒸発器の上流側で水が回収され濃縮水量が著しく減量されるため、コンパクトな蒸発器とすることが出来、蒸発に必要なエネルギを小さくすることができる。
また、蒸発器(図示せず)が設置されても良い。蒸発器において濃縮水から水が蒸発され、濃縮水に含まれていたイオンが固体として析出し、固体として回収される。蒸発器の上流側で水が回収され濃縮水量が著しく減量されるため、コンパクトな蒸発器とすることが出来、蒸発に必要なエネルギを小さくすることができる。
本実施例では、脱塩処理装置としては、冷却塔21の排出水22と分離水43との混合水111中に、スケール防止剤74を導入した後脱塩する第1の脱塩装置55Aと、第1の脱塩装置55Aの後に石膏32を晶析させる晶析槽61と、晶析した石膏32を分離する液体サイクロン62とを有する「脱塩・晶析装置」を用いているが、本発明はこれに限定されるものではない。
ここで、脱塩処理装置30の晶析槽61で晶析処理された石膏32は、図1に示すように、石膏排出ラインL22を介して排出され、再生水33(33a、33b)は、再生水供給ラインL23を介して、分離水43を湿式脱硫装置16に戻す戻しラインL32へ合流し、湿式脱硫装置16で用いる石膏スラリーの補給水として利用するようにしている。
図3に示すような「脱塩・晶析装置」以外の脱塩処理装置として、他の実施例として、図12に示すコールドライム法を用いた分離装置としてもよい。
図12に、コールドライム法による分離装置の一例の概略を示す。
図12に示すように、コールドライム法による脱塩処理装置は、混合水111を添加槽91において水酸化カルシウム(Ca(OH)2)92を添加し、沈降槽93で炭酸カルシウム(CaCO3)94を沈降させて、除去する。
次いで、添加槽95において炭酸ナトリウム(NaCO3)96を添加し、沈降槽97で炭酸カルシウム(CaCO3)94を沈降させ、除去する。
その後、鉄系凝集剤(例えばFeCl3)73を添加して懸濁性固形分(例えば石膏、シリカ、炭酸カルシウム、水酸化マグネシウム等の浮遊性固形物)を凝集させる。その後、図3に示す操作と同様に、第1の脱塩装置55Aで処理する際に、スケール防止剤74及びpH調整剤75を導入して膜分離処理する。
図12に、コールドライム法による分離装置の一例の概略を示す。
図12に示すように、コールドライム法による脱塩処理装置は、混合水111を添加槽91において水酸化カルシウム(Ca(OH)2)92を添加し、沈降槽93で炭酸カルシウム(CaCO3)94を沈降させて、除去する。
次いで、添加槽95において炭酸ナトリウム(NaCO3)96を添加し、沈降槽97で炭酸カルシウム(CaCO3)94を沈降させ、除去する。
その後、鉄系凝集剤(例えばFeCl3)73を添加して懸濁性固形分(例えば石膏、シリカ、炭酸カルシウム、水酸化マグネシウム等の浮遊性固形物)を凝集させる。その後、図3に示す操作と同様に、第1の脱塩装置55Aで処理する際に、スケール防止剤74及びpH調整剤75を導入して膜分離処理する。
その他、処理対象水の脱ガス・遊離油分除去後、化学的軟化手段(Chemical Softening)を行い、金属等の浮遊固体粒子をろ過した後、逆浸透膜で処理するOPUS(Optimized Pretreatment and Unique Separation)法(Veolia社)や、処理対象水を化学的軟化手段やイオン交換樹脂により、例えばCa、Mgを除去し、ついで酸を添加してpHを酸側に調整し、CO2ガスを分離し、その後、pHをアルカリ側に調整してイオン化し析出防止を図り、逆浸透膜で処理するHERO(High Efficiency Reverse Osmosis)法(GE社)等を例示することができる。
また、本実施例の第1及び第2の脱塩装置55A、55Bでは、膜分離手段として、「RO膜」を用いているが、「NF膜」を分離膜として用いてもよい。
このNF膜を用いる場合には、RO膜と同様に、2価のイオンは除去できるものの、1価のイオンは完全に除去できるものではないので、例えば脱硫装置の脱硫補給水へ供給することができず、再生水の供給先を例えば冷却塔の給水として利用するのが好ましいものとなる。これはNF膜では、スケール防止剤74も除去できないからである。
このNF膜を用いる場合には、RO膜と同様に、2価のイオンは除去できるものの、1価のイオンは完全に除去できるものではないので、例えば脱硫装置の脱硫補給水へ供給することができず、再生水の供給先を例えば冷却塔の給水として利用するのが好ましいものとなる。これはNF膜では、スケール防止剤74も除去できないからである。
本実施例の水処理システムにより、混合水111中に含まれる2価の金属(例えばカルシウム塩、マグネシウム塩等)や、硫酸イオン、炭酸イオンを効率よく分離できる。また、RO膜を用いる場合には、カルシウム塩、マグネシウム塩以外に、バリウム塩、ストロンチウム塩も除去することが可能となる。
本実施例によれば、図3に示すような脱塩処理装置30Aを用いて、混合水111を濃縮することで噴霧乾燥できる排水量(濃縮前)を著しく増加できることとなる。例えば、脱塩晶析装置を用いることで、その再生水の回収率が95%であれば、100/(100-95)=20倍の排水を無排水化できることとなる。
図4は、本実施例に係る他の脱塩処理装置の一例を示す構成図である。図3に示す脱塩処理装置30Aでは、第1の脱塩装置55Aの前流側に沈殿槽53、ろ過装置54を設置して混合水111中の金属分を金属水酸化物として、カルシウム分を炭酸カルシウムとして沈殿除去しているが、本発明はこの前処理を設けないようにしてもよい。
図4に示すように、本実施例の脱塩処理装置30Bでは、第1の脱塩装置55A、晶析槽61、液体サイクロン62及び第2の脱塩装置55Bを設置し、第1及び2の脱塩装置55A、55Bの前流側でスケール防止剤74を各々添加して、第1及び第2の脱塩装置55A、55Bの逆浸透膜55a、55bへのスケールの付着の防止を図っている。なお、pH調整剤75としては、酸(例えば硫酸等)、アルカリ剤(水酸化ナトリウム、水酸化カルシウム等)を添加するようにしている。
混合水111の種類によっては、前処理を不要とし、脱塩処理装置の構成の簡略化を図るようにしている。
図4に示すように、本実施例の脱塩処理装置30Bでは、第1の脱塩装置55A、晶析槽61、液体サイクロン62及び第2の脱塩装置55Bを設置し、第1及び2の脱塩装置55A、55Bの前流側でスケール防止剤74を各々添加して、第1及び第2の脱塩装置55A、55Bの逆浸透膜55a、55bへのスケールの付着の防止を図っている。なお、pH調整剤75としては、酸(例えば硫酸等)、アルカリ剤(水酸化ナトリウム、水酸化カルシウム等)を添加するようにしている。
混合水111の種類によっては、前処理を不要とし、脱塩処理装置の構成の簡略化を図るようにしている。
このような、簡略化された脱塩処理装置30Bで処理する混合水111としては、例えば炭酸イオン濃度が低い排出水を例示することができる。また、Ca2+やMg2+などのスケール成分の濃度が低い排出水にも適用することができる。
ここで、pH調整剤75としては、酸、アルカリ剤がある。pHを下げる場合に用いる酸としては、例えば塩酸、硫酸、クエン酸等の一般的なpH調整剤を例示することができる。また、pHを上げる場合に用いるアルカリ剤としては、例えば水酸化ナトリウム、水酸化カルシウム等の一般的なpH調整剤を例示することができる。
ここで、pH調整剤75としては、酸、アルカリ剤がある。pHを下げる場合に用いる酸としては、例えば塩酸、硫酸、クエン酸等の一般的なpH調整剤を例示することができる。また、pHを上げる場合に用いるアルカリ剤としては、例えば水酸化ナトリウム、水酸化カルシウム等の一般的なpH調整剤を例示することができる。
図5は、本実施例に係る他の脱塩処理装置の一例を示す構成図である。
また、図5に示す脱塩処理装置30Cのように、第2の脱塩装置55Bの濃縮水側の下流に、さらに第3の脱塩装置55Cを設置し、三段階の脱塩処理をするようにしてもよい。
逆浸透膜55cを備えた第3の脱塩装置55Cが設置されると、濃縮水31bから更に再生水33cを回収することができるので、更に水回収率が97%に向上するものとなる。なお、第2の脱塩装置55Bと、第3の脱塩装置55Cとの間には、図3に示す沈殿槽53、ろ過装置54の前処理手段、スケール防止剤74及びpH調整剤75を添加するものであるが、図5においては、これを省略して図示している。
また、図5に示す脱塩処理装置30Cのように、第2の脱塩装置55Bの濃縮水側の下流に、さらに第3の脱塩装置55Cを設置し、三段階の脱塩処理をするようにしてもよい。
逆浸透膜55cを備えた第3の脱塩装置55Cが設置されると、濃縮水31bから更に再生水33cを回収することができるので、更に水回収率が97%に向上するものとなる。なお、第2の脱塩装置55Bと、第3の脱塩装置55Cとの間には、図3に示す沈殿槽53、ろ過装置54の前処理手段、スケール防止剤74及びpH調整剤75を添加するものであるが、図5においては、これを省略して図示している。
図6は、本実施例に係る他の脱塩処理装置の一例を示す構成図である。
また、図6に示す脱塩処理装置30Dのように、添加槽52の前流側において、炭酸ガスを分離する炭酸ガス分離部である脱気部50が設けられている。この脱気部50は具体的に、二酸化炭素を気散する充填剤を備える脱気塔、または、分離膜である。
また、図6に示す脱塩処理装置30Dのように、添加槽52の前流側において、炭酸ガスを分離する炭酸ガス分離部である脱気部50が設けられている。この脱気部50は具体的に、二酸化炭素を気散する充填剤を備える脱気塔、または、分離膜である。
図6の脱塩処理装置30Dでは、脱気部50に流入する前の混合水111が、低pHに調整される。混合水111中の炭酸は、そのpHに応じて平衡状態となっている。pHが6.5以下と低い場合には、混合水111中では主としてHCO3
-及びCO2の状態で存在する。CO2を含んだ混合水111が脱気部50に流入する。CO2は、脱気部50において混合水111から除去される。
本実施例では、図5と同様に、第2の脱塩装置55Bの濃縮水側の下流に、さらに第3の脱塩装置55Cを設置し、三段階の脱塩処理をしている。
次に、実施例2に係る水処理システムについて説明する。図7は、本実施例に係る水処理システムの概略図である。実施例1の水処理システムと重複する部材については、同一符号を付して重複する説明は省略する。
図7に示すように、本実施例に係る水処理システムは、第1の脱塩装置55Aに導入する混合水111中の酸化還元電位を計測する酸化還元電位(ORP)計130を設置している。
そして、第1の脱塩装置55Aに導入される混合水111の酸化還元電位の値が所定値の範囲外である場合には、酸化剤供給部131から酸化剤132を供給するようにしている。
混合部110で混合される前段階において、脱硫排水から分離した分離水43から水銀を除去しているが、分離水43は水銀が残留する場合がある。
図7に示すように、本実施例に係る水処理システムは、第1の脱塩装置55Aに導入する混合水111中の酸化還元電位を計測する酸化還元電位(ORP)計130を設置している。
そして、第1の脱塩装置55Aに導入される混合水111の酸化還元電位の値が所定値の範囲外である場合には、酸化剤供給部131から酸化剤132を供給するようにしている。
混合部110で混合される前段階において、脱硫排水から分離した分離水43から水銀を除去しているが、分離水43は水銀が残留する場合がある。
この残留した水銀は、様々な形態をとるので、イオン状態の場合にはRO膜での除去が可能となり、透過水側へ透過しないものの、金属水銀の場合には無極性でかつ液状であり、RO膜を透過する。
よって、混合水111中の酸化還元電位の値を所定範囲内に制御することで、水銀の形態を転換させてイオン状態として、RO膜で除去するようにしている。
よって、混合水111中の酸化還元電位の値を所定範囲内に制御することで、水銀の形態を転換させてイオン状態として、RO膜で除去するようにしている。
ここで、酸化還元電位計130で計測する混合水111中の酸化還元電位の値(X)が、-0.69V<ORP値(X)<1.358Vの範囲となるよう制御するのが好ましい。
これは、ORP値(X)が「1.358V」を超える場合には、塩化物Cl-が塩素ガス(Cl2)となり、好ましくないからである。
また、ORP値(X)の下限値は、共存物質により異なり、ORPの下限値を-0.69V以上、望ましくは0.2680V以上、さらに望ましくは0.6125V以上、更に望ましくは0.796Vである。排水中の塩類は、Cl-、SO4 2-が大部分である。
Hg(l)は+0.2680V以上でHg2Cl2(固体)に、+0.6125V以上でHg2SO7(固体)に酸化される。なお、排水中には、S2-、I-、Br-も含まれるが、Cl-、SO4 2-に比較して少量である。
また、一方で、不純物がまったく含まれない場合は、Hg(l)をHg2 2+に酸化するには、+0.798Vが必要となる。
また、ORP値(X)の下限値は、共存物質により異なり、ORPの下限値を-0.69V以上、望ましくは0.2680V以上、さらに望ましくは0.6125V以上、更に望ましくは0.796Vである。排水中の塩類は、Cl-、SO4 2-が大部分である。
Hg(l)は+0.2680V以上でHg2Cl2(固体)に、+0.6125V以上でHg2SO7(固体)に酸化される。なお、排水中には、S2-、I-、Br-も含まれるが、Cl-、SO4 2-に比較して少量である。
また、一方で、不純物がまったく含まれない場合は、Hg(l)をHg2 2+に酸化するには、+0.798Vが必要となる。
上限値の1.358Vの根拠はCl-からCl2への酸化の標準電極電位が+1.3583Vであるからである。一方で、Cl-からClO-になる反応は+0.89Vであるので、上限値は、少なくとも+1.3583V以下、望ましくは+0.89V位下とするのがよい。
よって、水銀が還元しないような状況となるように、ORP制御によって、酸化剤132を投入するようにしている。
この結果、水銀は金属水銀ではなく、酸化水銀に維持され、RO膜の忌避物質である塩素ガスは塩化物イオンの形態に維持される。よって、水銀を除去しつつRO膜を損傷することがない運転が可能となる。
この結果、水銀は金属水銀ではなく、酸化水銀に維持され、RO膜の忌避物質である塩素ガスは塩化物イオンの形態に維持される。よって、水銀を除去しつつRO膜を損傷することがない運転が可能となる。
ここで、酸化剤132としては、空気を用いることが好ましい。酸化剤132として空気を用いることで、RO膜への損傷をおさえつつマイルドな条件での酸化が可能となる。
また、酸化剤132を供給した後、第1の脱塩装置55Aの前流側で、固液分離装置133を設置し、混合水111中の固形化した水銀(例えば塩化水銀(HgCl2)等)を分離するようにしてもよい。これにより、固形化した水銀(例えば塩化水銀(HgCl2)等)がRO膜表面に付着することが防止され、脱塩処理能力の低下を抑制することができる。
次に、実施例3に係る水処理システムについて説明する。図8は、本実施例に係る水処理システムの概略図である。実施例1の水処理システムと重複する部材については、同一符号を付して重複する説明は省略する。
図8に示すように、本実施例に係る水処理システムは、重金属スラッジ104を分離した固液分離部103の後流側で、混合部110の前流側において、UF(Ultrafiltration Membrane)膜122と、NF膜(ナノ濾過膜)121aを有するNF膜装置121とを備える。
図8に示すように、本実施例に係る水処理システムは、重金属スラッジ104を分離した固液分離部103の後流側で、混合部110の前流側において、UF(Ultrafiltration Membrane)膜122と、NF膜(ナノ濾過膜)121aを有するNF膜装置121とを備える。
本実施例では、キレート剤102の添加によって、固液分離部103で水銀を除去・分離したのち、膜による脱塩を行うようにしている。この膜処理の膜はNF膜121aとするのが好ましい。
NF膜121aの透過液123の一部を返送水123aとして湿式脱硫装置16に返送ラインL36にて返送するとともに、NF膜121aの濃縮液124を、濃縮液ラインL25により導入ラインL24側に送り、冷却塔21からの排出水22と混合部110で混合し、混合水111とする。
NF膜121aの透過液123の一部を返送水123aとして湿式脱硫装置16に返送ラインL36にて返送するとともに、NF膜121aの濃縮液124を、濃縮液ラインL25により導入ラインL24側に送り、冷却塔21からの排出水22と混合部110で混合し、混合水111とする。
NF膜121aで脱塩処理することで、濃縮液124側に多価イオン(例えばCa2+、Mg2+、SO4
2-)を濃縮し、透過液123側に一価イオン(例えばNa+、Cl-)を濃縮することができる。
ここで、湿式脱硫装置16からの排水に含まれる塩は塩化カルシウム(CaCl2)が主である。よって、一価選択性を有するNF膜121aによる膜分離により、濃縮液124は後段の石膏晶析で石膏の原料(例えばCa2+、SO4 2-)を濃縮する一方で、後段の第1の脱塩装置55AのRO膜の負荷となるCl-を低減することができる。
ここで、湿式脱硫装置16からの排水に含まれる塩は塩化カルシウム(CaCl2)が主である。よって、一価選択性を有するNF膜121aによる膜分離により、濃縮液124は後段の石膏晶析で石膏の原料(例えばCa2+、SO4 2-)を濃縮する一方で、後段の第1の脱塩装置55AのRO膜の負荷となるCl-を低減することができる。
これにともない、後段の第1の脱塩装置55Aに供給する溶解性蒸発残留物(Total dissolved solid(s);TDS)濃度を低減し、濃縮率を高くすることができる。
これにより、第1の脱塩装置55Aからの濃縮水31aを低減させることができる。この結果、濃縮水を噴霧乾燥するための噴霧乾燥装置23を小型化にすることができる。
これにより、第1の脱塩装置55Aからの濃縮水31aを低減させることができる。この結果、濃縮水を噴霧乾燥するための噴霧乾燥装置23を小型化にすることができる。
なお、NF膜121aによる脱塩装置の目詰まりを防止するため、スケールインヒビターを添加するようにしてもよい。
本実施例によれば、分離水43をキレート剤102で処理した水銀処理後、さらにNF膜121aにより脱塩処理することで、多価イオンを選択的に濃縮することができ、これにより、第1の脱塩装置55AでのRO膜での濃縮率を高め、噴霧乾燥装置23の小型化に繋がる。
潮解性のある物質は主に、CaCl2、MgCl2であるが、NF膜121aによりこの2価カチオン(Ca2+、Mg2+)と塩化物イオンCl-を分離することができるので、噴霧乾燥装置23での乾燥塩の潮解性の問題は低減される。
NF膜121aの濃縮水124は多価イオンがリッチ状態となり、晶析装置で石膏を回収、晶析後にROで濃縮し、そのRO濃縮水を噴霧乾燥装置23で噴霧乾燥することができる。
次に、実施例4に係る水処理システムについて説明する。図9は、本実施例に係る水処理システムの概略図である。実施例1の水処理システムと重複する部材については、同一符号を付して重複する説明は省略する。
図9に示すように、本実施例に係る水処理システムは、ボイラ11からのボイラ排ガス12中の硫黄酸化物を除去する湿式脱硫装置16と、前記湿式脱硫装置16からの石膏スラリーを含む脱硫排水41から石膏32を分離する脱水装置42と、前記脱水装置42からの分離水43を、プラント設備内で発生する排出水22と混合する混合部110と、前記混合部110で混合された混合水111を導入し、キレート剤102を投入して分離水43中の重金属を固定化する反応槽101と、前記反応槽101からの混合水111中の固形分(重金属スラッジ)104を固液分離する固液分離部103と、前記固液分離後の混合水111中の塩分を除去する脱塩処理装置30と、前記脱塩処理装置30で塩分濃縮した濃縮水31を噴霧する噴霧手段を有し、前記ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を備えるものである。
冷却塔21からの排出水22を分離水43と混合することで、冷却塔21の排出水22中に含まれる不純物に対し、キレート剤102を用いて除去することができる。
図9に示すように、本実施例に係る水処理システムは、ボイラ11からのボイラ排ガス12中の硫黄酸化物を除去する湿式脱硫装置16と、前記湿式脱硫装置16からの石膏スラリーを含む脱硫排水41から石膏32を分離する脱水装置42と、前記脱水装置42からの分離水43を、プラント設備内で発生する排出水22と混合する混合部110と、前記混合部110で混合された混合水111を導入し、キレート剤102を投入して分離水43中の重金属を固定化する反応槽101と、前記反応槽101からの混合水111中の固形分(重金属スラッジ)104を固液分離する固液分離部103と、前記固液分離後の混合水111中の塩分を除去する脱塩処理装置30と、前記脱塩処理装置30で塩分濃縮した濃縮水31を噴霧する噴霧手段を有し、前記ボイラ排ガス12の一部12aを用いて噴霧乾燥する噴霧乾燥装置23と、を備えるものである。
冷却塔21からの排出水22を分離水43と混合することで、冷却塔21の排出水22中に含まれる不純物に対し、キレート剤102を用いて除去することができる。
実施例1の処理システムと異なり、第1の脱塩装置55Aに導入される導入水量が増大するので、塩濃度が下がり、RO膜への負荷の軽減を図ることができる。
次に、実施例5に係る水処理システムについて説明する。図13は、本実施例に係る水処理システムの概略図である。実施例1の水処理システムと重複する部材については、同一符号を付して重複する説明は省略する。
図13に示すように、本実施例に係る水処理システムは、噴霧乾燥装置23に供給する濃縮水31中に、キレート剤102を添加するものである。
本実施例では、脱塩処理装置30からの濃縮水30を噴霧乾燥装置23へ供給するラインL21に、濃縮水31中に残留する重金属を固定化するキレート剤102を、図示しないキレート剤添加部から添加するものである。
図13に示すように、本実施例に係る水処理システムは、噴霧乾燥装置23に供給する濃縮水31中に、キレート剤102を添加するものである。
本実施例では、脱塩処理装置30からの濃縮水30を噴霧乾燥装置23へ供給するラインL21に、濃縮水31中に残留する重金属を固定化するキレート剤102を、図示しないキレート剤添加部から添加するものである。
本実施例では、噴霧乾燥装置23へ供給する前に、濃縮水30中へキレート剤102を混合することで、噴霧乾燥装置23で生成する排出ガス12b中の乾燥塩はキレート剤102が十分に混合される。
この固形分分離機140で分離された固形分141は、その後そのまま埋立処理される。
ここで、キレート剤102を添加する場合には、その耐熱温度以下で扱う必要がある。このため、噴霧乾燥装置23の乾燥終了時の排出ガス12bの温度(T1)を200℃以下、好ましくは150℃以下に維持する。
なお、噴霧乾燥装置23での乾燥中の噴霧液滴の温度は80℃程度となりそれ以上温度上昇しない。このため、乾燥開始時の温度は限定されるものではない。なお、噴霧乾燥装置23への分岐排ガス18aの入口温度(T2)は例えば350℃程度である。よって、脱水濾液の液滴の蒸発量又は分岐排ガス12aの導入流量のいずれか一方又は両方を変化させ、排出ガス12bの温度(T1)を200℃以下、好ましくは150℃以下に維持することで、キレート剤102の劣化が無く、固形分141を埋立処理する際の、重金属の溶出が解消される。
本実施例によれば、濃縮水30中の重金属を固定化するキレート剤102を添加した後、噴霧乾燥装置23で乾燥することで、固形分141からの例えば水銀等の重金属の溶出を防止することができる。
また、キレート剤102と共に、さらに凝集剤を添加するようにしてもよい。
この凝集剤としては、固形物の核を形成する凝結剤及び、固形物のフロックを増大させる高分子凝集剤を用いることができる。
この凝集剤としては、固形物の核を形成する凝結剤及び、固形物のフロックを増大させる高分子凝集剤を用いることができる。
ここで、凝結剤としては、例えば硫酸バンド、塩化鉄、PAC等を挙げることができる。また、高分子凝集剤としては、例えば「タキフロック(商品名;多木化学社製)アニオン系、ノニオン系、カチオン系、両性系)」、「エポフロックL-1(商品名);ジコー社製」等を挙げることができる。
11 ボイラ
12 ボイラ排ガス(排ガス)
18 排ガス処理システム
21 冷却塔
22 排出水
23 噴霧乾燥装置
30 脱塩処理装置
31(31a~31c) 濃縮水
33(33a~33c) 再生水
55A~55C 第1~3の脱塩装置
61 晶析槽
62 液体サイクロン
74 スケール防止剤
75 pH調整剤
101 反応槽
102 キレート剤
103 固液分離部
104 重金属スラッジ
110 混合部
111 混合水
12 ボイラ排ガス(排ガス)
18 排ガス処理システム
21 冷却塔
22 排出水
23 噴霧乾燥装置
30 脱塩処理装置
31(31a~31c) 濃縮水
33(33a~33c) 再生水
55A~55C 第1~3の脱塩装置
61 晶析槽
62 液体サイクロン
74 スケール防止剤
75 pH調整剤
101 反応槽
102 キレート剤
103 固液分離部
104 重金属スラッジ
110 混合部
111 混合水
Claims (16)
- ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
前記湿式脱硫装置からの石膏スラリーを含む脱硫排水から石膏を分離する脱水装置と、
前記脱水装置からの分離水を導入し、キレート剤を投入して分離水中の重金属を固定化する水銀除去部と、
前記水銀除去部からの分離水中の固形分を固液分離する固液分離部と、
前記固液分離部からの分離水を、プラント設備内で発生する排出水と混合する混合部と、
前記混合部で混合された混合水中の塩分を除去する脱塩処理装置と、
前記脱塩処理装置で塩分濃縮した濃縮水を噴霧する噴霧手段を有し、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥装置と、を備えることを特徴とする水処理システム。 - ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
前記湿式脱硫装置からの石膏スラリーを含む脱硫排水から石膏を分離する脱水装置と、
前記脱水装置からの分離水を、プラント設備内で発生する排出水と混合する混合部と、
前記混合部で混合された混合水を導入し、キレート剤を投入して分離水中の重金属を固定化する反応槽と、
前記反応槽からの混合水中の固形分を固液分離する固液分離部と、
前記固液分離後の混合水中の塩分を除去する脱塩処理装置と、
前記脱塩処理装置で塩分濃縮した濃縮水を噴霧する噴霧手段を有し、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥装置と、を備えることを特徴とする水処理システム。 - 請求項1又は2において、
前記固液分離部で分離後の分離水に対し、1価選択性を有する膜で処理する膜処理部を有することを特徴とする水処理システム。 - 請求項1乃至3のいずれか一つにおいて、
前記脱塩処理装置が、前記排出水中の2価の塩分を除去することを特徴とする水処理システム。 - 請求項1乃至3のいずれか一つにおいて、
前記脱塩処理装置が、
Caイオン等の2価のイオンを含む混合水に対して、スケール防止剤を供給するスケール防止剤供給部と、
前記スケール防止剤供給部の下流側に設置され、前記混合水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第1の脱塩装置と、
前記第1の脱塩装置の下流側に設けられ、前記濃縮水から石膏を晶析させる晶析槽と、
この晶析した石膏と、前記第1の脱塩装置からの濃縮水とを分離する分離部と、
前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第2の脱塩装置と、を有することを特徴とする水処理システム。 - 請求項5において、
前記脱塩処理装置が、さらに前記第2の脱塩装置からの濃縮水を分離する分離部と、
前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第3の脱塩装置を有することを特徴とする水処理システム。 - 請求項5において、
前記第1の脱塩装置に導入する混合水の酸化還元電位を計測する酸化還元電位計を備えることを特徴とする水処理システム。 - 請求項7において、
前記酸化還元電位計で計測する前記混合水中の酸化還元電位の値(X)が、
-0.69V<X<1.358Vであることを特徴とする水処理システム。 - ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫工程と、
前記湿式脱硫工程からの石膏スラリーを含む脱硫排水から石膏を分離する脱水工程と、
前記脱水工程からの分離水を導入し、キレート剤を投入して分離水中の重金属を固定化する水銀除去工程と、
前記水銀除去工程からの分離水中の固形分を固液分離する固液分離工程と、
前記固液分離部からの分離水を、プラント設備内で発生する排出水と混合する混合工程と、
前記混合工程で混合された混合水中の塩分を除去する脱塩処理工程と、
前記脱塩処理工程で塩分濃縮した濃縮水を、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥工程と、を有することを特徴とする水処理方法。 - ボイラ排ガス中の硫黄酸化物を除去する湿式脱硫工程と、
前記湿式脱硫工程からの石膏スラリーを含む脱硫排水から石膏を分離する脱水工程と、
前記脱水工程からの分離水を、プラント設備内で発生する排出水と混合する混合工程と、
前記混合工程で混合された混合水を導入し、キレート剤を投入して分離水中の重金属を固定化する沈殿工程と、
前記沈殿工程の混合水中の固形分を固液分離する固液分離工程と、
前記固液分離後の混合水中の塩分を除去する脱塩処理工程と、
前記脱塩処理工程で塩分濃縮した濃縮水を、前記ボイラ排ガスの一部を用いて噴霧乾燥する噴霧乾燥工程と、を備えることを特徴とする水処理方法。 - 請求項9又は10において、
前記固液分離工程で分離後の分離水に対し、1価選択性を有する膜で処理する膜処理工程を有することを特徴とする水処理方法。 - 請求項9乃至11のいずれか一つにおいて、
前記脱塩処理工程が、前記排出水中の2価の塩分を除去することを特徴とする水処理方法。 - 請求項9乃至12のいずれか一つにおいて、
前記脱塩処理工程が、
Caイオン等の2価のイオンを含む混合水に対して、スケール防止剤を供給するスケール防止剤供給工程と、
前記スケール防止剤供給工程の下流側に設置され、前記混合水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第1の脱塩工程と、
前記第1の脱塩工程の下流側に設けられ、前記濃縮水から石膏を晶析させる晶析工程と、
この晶析した石膏と、前記第1の脱塩工程からの濃縮水とを分離する分離部と、
前記分離部の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第2の脱塩工程と、を有することを特徴とする水処理方法。 - 請求項13において、
前記脱塩処理工程が、さらに前記第2の脱塩工程からの濃縮水を分離する分離工程と、
前記分離工程の下流側に設置され、前記濃縮水を再生水と前記Caイオン等が濃縮された濃縮水とに分離する第3の脱塩工程を有することを特徴とする水処理方法。 - 請求項9において、
前記第1の脱塩工程に導入する混合水の酸化還元電位を計測する酸化還元電位計測工程を備えることを特徴とする水処理方法。 - 請求項15において、
前記酸化還元電位計測工程で計測する前記混合水中の酸化還元電位の値(X)が、
-0.69V<X<1.358Vであることを特徴とする水処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580075773.9A CN107207286A (zh) | 2015-02-19 | 2015-02-19 | 水处理系统以及方法 |
EP15882613.1A EP3260423A4 (en) | 2015-02-19 | 2015-02-19 | Water treatment system and method |
PCT/JP2015/054622 WO2016132511A1 (ja) | 2015-02-19 | 2015-02-19 | 水処理システム及び方法 |
US14/780,896 US20160367936A1 (en) | 2015-02-19 | 2015-02-19 | Water treatment system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054622 WO2016132511A1 (ja) | 2015-02-19 | 2015-02-19 | 水処理システム及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132511A1 true WO2016132511A1 (ja) | 2016-08-25 |
Family
ID=56689339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054622 WO2016132511A1 (ja) | 2015-02-19 | 2015-02-19 | 水処理システム及び方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160367936A1 (ja) |
EP (1) | EP3260423A4 (ja) |
CN (1) | CN107207286A (ja) |
WO (1) | WO2016132511A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106430387A (zh) * | 2016-10-21 | 2017-02-22 | 四川苏源环保工程有限公司 | 火电厂废水低温余热浓缩系统及浓缩方法 |
CN108117210A (zh) * | 2016-11-29 | 2018-06-05 | 中国石油化工股份有限公司 | 一种烟气脱硫废液的处理方法及处理装置 |
CN108529818A (zh) * | 2018-04-11 | 2018-09-14 | 嘉兴市金宇达染整有限公司 | 一种染整排废综合处理系统 |
WO2018179203A1 (ja) * | 2017-03-30 | 2018-10-04 | 三菱重工エンジニアリング株式会社 | 排ガス処理装置及び排ガス処理方法 |
CN110104717A (zh) * | 2019-06-13 | 2019-08-09 | 华能安源发电有限责任公司 | 利用旁路烟气蒸发脱硫废水并稳定循环浆液的方法及系统 |
CN110436549A (zh) * | 2019-09-10 | 2019-11-12 | 合众思(北京)环境工程有限公司 | 一种脱硫废水高浓度浓盐水蒸发工艺 |
CN113582399A (zh) * | 2021-08-18 | 2021-11-02 | 陕西金禹科技发展有限公司 | 一种利用废气co2除硬度的方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170326498A1 (en) * | 2016-05-11 | 2017-11-16 | General Electric Company | Sulfite Preconditioning Systems And Methods To Reduce Mercury Concentrations In Waste Water |
CN106830479A (zh) * | 2017-01-11 | 2017-06-13 | 中国华能集团清洁能源技术研究院有限公司 | 利用烟道气和电渗析的脱硫废水零排放处理系统及方法 |
US10072214B1 (en) * | 2017-02-15 | 2018-09-11 | American Peat Technology, Llc | Mechanical demoisturizing of partially-decomposed organic material |
JP2018171583A (ja) | 2017-03-31 | 2018-11-08 | 三菱日立パワーシステムズ株式会社 | 無排水化排ガス処理システム及び無排水化排ガス処理方法 |
WO2019071279A1 (en) * | 2017-10-03 | 2019-04-11 | Clean Air Nurseries Intellectual Property Holdings (Pty) Ltd | SYSTEM AND METHOD FOR TREATING WATER |
CN108275744A (zh) * | 2017-12-29 | 2018-07-13 | 广州市瀚碧环保工程技术有限责任公司 | 一种脱硫废水处理系统 |
CN109019966A (zh) * | 2018-08-19 | 2018-12-18 | 华电电力科学研究院有限公司 | 一种燃煤电厂脱硫废水再利用的处理装置及处理工艺 |
TWI661994B (zh) * | 2018-09-06 | 2019-06-11 | 臺灣塑膠工業股份有限公司 | 廢氣與廢水之共同處理方法 |
CN109396162B (zh) * | 2018-12-18 | 2024-01-16 | 杭州秀澈环保科技有限公司 | 一种垃圾飞灰的节能处理工艺 |
CN209639466U (zh) * | 2018-12-31 | 2019-11-15 | 湖北加德科技股份有限公司 | 双气流旋风闪蒸干燥装置 |
CN110143688B (zh) * | 2019-04-24 | 2020-11-24 | 常州润成环境科技有限公司 | 纳滤浓缩液处理方法 |
CN110143696A (zh) * | 2019-06-10 | 2019-08-20 | 聚光科技(杭州)股份有限公司 | 一种废水处理系统 |
CN110436671B (zh) * | 2019-08-30 | 2024-05-14 | 中冶赛迪工程技术股份有限公司 | 一种烧结湿式脱硫废水的零排放处理方法和系统 |
CN110542625A (zh) * | 2019-09-10 | 2019-12-06 | 上海丰信环保科技有限公司 | 一种判断水处理剂阻硅的反渗透阻垢垢性能的评价方法 |
CN110776231A (zh) * | 2019-09-25 | 2020-02-11 | 减一污泥处理技术(江苏)有限公司 | 一种污泥减量耦合强化脱氮除磷材料的制备方法 |
US20210317026A1 (en) * | 2020-04-09 | 2021-10-14 | Unm Rainforest Innovations | Mineral Recovery Enhanced Desalination (MRED) Process for Desalination and Recovery of Commodity Minerals |
JP2021168606A (ja) * | 2020-04-15 | 2021-10-28 | 株式会社大貴 | 排泄物処理材及びその製造方法 |
CN111888831A (zh) * | 2020-06-24 | 2020-11-06 | 刘发业 | 一种废硫酸的回收处理装置及其应用 |
CN111928286B (zh) * | 2020-08-14 | 2021-09-14 | 西安热工研究院有限公司 | 一种适应多工况的脱硫废水零排放处理方法及系统 |
US11667544B2 (en) | 2021-01-06 | 2023-06-06 | Effluent Free Desalination Corporation | Sustainable and circular water demineralization with zero waste discharge |
CN117000216B (zh) * | 2023-10-07 | 2023-12-08 | 国能龙源环保有限公司 | 螯合剂、燃煤电厂脱硫废水的工业化处理系统及处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311897A (ja) * | 1997-05-09 | 1998-11-24 | Hitachi Ltd | 廃液処理方法及び設備 |
JP2000317262A (ja) * | 1999-05-17 | 2000-11-21 | Mitsubishi Heavy Ind Ltd | 排煙脱硫排水の処理方法 |
WO2012128257A1 (ja) * | 2011-03-22 | 2012-09-27 | 三菱重工業株式会社 | 排ガス処理システム及び方法、脱硫排水からの脱水濾液の噴霧乾燥装置及び方法 |
JP2013244455A (ja) * | 2012-05-25 | 2013-12-09 | Mitsubishi Rayon Co Ltd | 廃水処理装置及び廃水処理方法 |
WO2015001678A1 (ja) * | 2013-07-05 | 2015-01-08 | 三菱重工業株式会社 | 水処理システム及び方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2914145C3 (de) * | 1979-04-07 | 1982-02-04 | Hager & Elsässer GmbH, 7000 Stuttgart | Verfahren zur Verringerung des Brauchwasserbedarfs und Abwasseranfalls von thermischen Kraftwerken |
WO2007132477A1 (en) * | 2006-05-11 | 2007-11-22 | Raman Ahilan | A pretreatment process for the saline water feeds of desalination plants |
US8632742B2 (en) * | 2007-12-07 | 2014-01-21 | Nalco Company | Methods of controlling mercury emission |
WO2009152148A1 (en) * | 2008-06-11 | 2009-12-17 | The Regents Of The University Of California | Method and system for high recovery water desalting |
EP2703066A4 (en) * | 2011-04-25 | 2014-12-03 | Toray Industries | PROCESS FOR CLEANING A MEMBRANE MODULE |
-
2015
- 2015-02-19 CN CN201580075773.9A patent/CN107207286A/zh active Pending
- 2015-02-19 WO PCT/JP2015/054622 patent/WO2016132511A1/ja active Application Filing
- 2015-02-19 US US14/780,896 patent/US20160367936A1/en not_active Abandoned
- 2015-02-19 EP EP15882613.1A patent/EP3260423A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10311897A (ja) * | 1997-05-09 | 1998-11-24 | Hitachi Ltd | 廃液処理方法及び設備 |
JP2000317262A (ja) * | 1999-05-17 | 2000-11-21 | Mitsubishi Heavy Ind Ltd | 排煙脱硫排水の処理方法 |
WO2012128257A1 (ja) * | 2011-03-22 | 2012-09-27 | 三菱重工業株式会社 | 排ガス処理システム及び方法、脱硫排水からの脱水濾液の噴霧乾燥装置及び方法 |
JP2013244455A (ja) * | 2012-05-25 | 2013-12-09 | Mitsubishi Rayon Co Ltd | 廃水処理装置及び廃水処理方法 |
WO2015001678A1 (ja) * | 2013-07-05 | 2015-01-08 | 三菱重工業株式会社 | 水処理システム及び方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3260423A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106430387A (zh) * | 2016-10-21 | 2017-02-22 | 四川苏源环保工程有限公司 | 火电厂废水低温余热浓缩系统及浓缩方法 |
CN108117210A (zh) * | 2016-11-29 | 2018-06-05 | 中国石油化工股份有限公司 | 一种烟气脱硫废液的处理方法及处理装置 |
WO2018179203A1 (ja) * | 2017-03-30 | 2018-10-04 | 三菱重工エンジニアリング株式会社 | 排ガス処理装置及び排ガス処理方法 |
CN108529818A (zh) * | 2018-04-11 | 2018-09-14 | 嘉兴市金宇达染整有限公司 | 一种染整排废综合处理系统 |
CN110104717A (zh) * | 2019-06-13 | 2019-08-09 | 华能安源发电有限责任公司 | 利用旁路烟气蒸发脱硫废水并稳定循环浆液的方法及系统 |
CN110104717B (zh) * | 2019-06-13 | 2021-09-14 | 华能安源发电有限责任公司 | 利用旁路烟气蒸发脱硫废水并稳定循环浆液的方法及系统 |
CN110436549A (zh) * | 2019-09-10 | 2019-11-12 | 合众思(北京)环境工程有限公司 | 一种脱硫废水高浓度浓盐水蒸发工艺 |
CN113582399A (zh) * | 2021-08-18 | 2021-11-02 | 陕西金禹科技发展有限公司 | 一种利用废气co2除硬度的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3260423A4 (en) | 2018-09-26 |
US20160367936A1 (en) | 2016-12-22 |
CN107207286A (zh) | 2017-09-26 |
EP3260423A1 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6298296B2 (ja) | 水処理システム及び方法 | |
WO2016132511A1 (ja) | 水処理システム及び方法 | |
JP6072251B2 (ja) | 水処理システム及び方法 | |
JP6038318B2 (ja) | 水処理システム及び方法、冷却設備、発電設備 | |
WO2016147414A1 (ja) | 水処理システム及び発電設備 | |
JP6005282B2 (ja) | 水処理方法及び水処理システム | |
WO2017022113A1 (ja) | 水処理システム、発電プラント及び水処理システムの制御方法 | |
CN113800690A (zh) | 基于电渗析技术的电厂脱硫废水零排放处理工艺与系统 | |
CN104860461A (zh) | 一种脱硫废水零排放制备NaCl工业盐的方法及装置 | |
WO2014163094A1 (ja) | 水処理システム | |
JP5968524B2 (ja) | 水処理方法及び水処理システム | |
JPH10137540A (ja) | 排煙脱硫装置からの排水処理方法 | |
CN105621775A (zh) | 一种新型脱硫废水零排放处理装置及方法 | |
EP4317085A1 (en) | Waste water volume reduction process | |
JP6189422B2 (ja) | 水処理システム | |
CN208265942U (zh) | 一种浓盐废水雾化浓缩循环结晶零排放系统 | |
WO2018124289A1 (ja) | 排ガス処理装置及び排ガス処理方法 | |
CN108275822A (zh) | 一种浓盐废水雾化浓缩循环结晶零排放系统及工艺 | |
EP4317084A1 (en) | High-performance pretreatment system for desulfurized wastewater for reverse osmosis membrane | |
JPH0436728B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14780896 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882613 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015882613 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |