WO2018179203A1 - 排ガス処理装置及び排ガス処理方法 - Google Patents

排ガス処理装置及び排ガス処理方法 Download PDF

Info

Publication number
WO2018179203A1
WO2018179203A1 PCT/JP2017/013198 JP2017013198W WO2018179203A1 WO 2018179203 A1 WO2018179203 A1 WO 2018179203A1 JP 2017013198 W JP2017013198 W JP 2017013198W WO 2018179203 A1 WO2018179203 A1 WO 2018179203A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
water
desulfurization
supply
exhaust gas
Prior art date
Application number
PCT/JP2017/013198
Other languages
English (en)
French (fr)
Inventor
鵜飼 展行
竹内 和久
嘉晃 伊藤
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to PCT/JP2017/013198 priority Critical patent/WO2018179203A1/ja
Publication of WO2018179203A1 publication Critical patent/WO2018179203A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to an exhaust gas treatment device and an exhaust gas treatment method, for example, an exhaust gas treatment device and an exhaust gas treatment method for desulfurizing combustion exhaust gas from a boiler or the like.
  • an exhaust gas treatment system for treating exhaust gas discharged from a boiler installed in a thermal power generation facility or the like.
  • the exhaust gas treatment system includes a denitration device that removes nitrogen oxides from exhaust gas from a boiler, an air heater that recovers the heat of exhaust gas that has passed through the denitration device, a dust collector that removes soot and dust in the exhaust gas after heat recovery, and after dust removal And a desulfurization device for removing sulfur oxides in the exhaust gas.
  • a desulfurization apparatus a wet desulfurization apparatus that removes sulfur oxide in the exhaust gas by bringing the lime absorbing liquid or the like into gas-liquid contact with the exhaust gas is generally used.
  • a desalination apparatus that obtains permeated water and concentrated water by subjecting water to be treated (seawater) to membrane separation with a nanofiltration (NF) membrane and a reverse osmosis (RO) membrane.
  • NF nanofiltration
  • RO reverse osmosis
  • An object of the present invention is to provide an exhaust gas treatment apparatus and an exhaust gas treatment method for concentrating moisture in a separation liquid of desulfurization waste water and establishing reduction in power of non-drainage treatment.
  • a first invention of the present invention for solving the above-mentioned problems is a flue gas desulfurization section that cleans combustion exhaust gas with a desulfurization treatment liquid and discharges desulfurization wastewater containing sulfate ions, and a solid content from the desulfurization wastewater.
  • a solid-liquid separation part for solid-liquid separation into a separation liquid of desulfurization waste water, and the separation liquid, permeated water having a sulfate ion concentration lower than the sulfate ion concentration of the separation liquid, and sulfate ions than the sulfate ion concentration of the separation liquid A membrane treatment unit having a separation membrane for membrane separation into concentrated water having a high concentration, a supply solution storage unit for storing the permeate as a supply solution, and a solution having an osmotic pressure higher than that of the permeate as a drive solution
  • a forward osmosis membrane device having a water selective permeable forward osmosis membrane disposed so as to partition the supply solution storage portion and the drive solution storage portion, and forward osmosis of the forward osmosis membrane
  • the driving solution is any one of the concentrated water, the desulfurization waste water, the separation liquid, a chemical solution for regeneration of the ion exchange device, and a regeneration waste water after regeneration of the ion exchange device. It is in the exhaust gas treatment apparatus characterized by being one.
  • the driving solution is any one of the concentrated water, the desulfurization waste water, and the separation liquid, and the driving for introducing the concentrated water into the driving solution storage unit.
  • the separation membrane has a characteristic that a permeability of chloride ions is higher than a permeability of sulfate ions in the desulfurization waste water. It is in the exhaust gas treatment device.
  • the fifth invention is an exhaust gas treatment apparatus according to any one of the first to fourth inventions, further comprising a dilution water supply unit for supplying dilution water for diluting the desulfurization waste water.
  • the dilution water supply unit is a makeup water supply unit that supplies makeup water to the flue gas desulfurization unit, and the makeup water supply unit supplies the supplementary water as the dilution water.
  • the exhaust gas treatment apparatus at least a part of water is supplied to the desulfurization waste water.
  • the dilution water supply unit supplies a part of the permeated water from the membrane treatment unit to the desulfurization waste water.
  • a supply solution line that supplies the permeated water as the supply solution to the supply solution storage unit includes a pressurizing unit that pressurizes the supply solution.
  • the ninth invention is a flue gas desulfurization step for washing combustion exhaust gas in a flue gas desulfurization section to discharge a desulfurization waste water containing sulfate ions, and a solid-liquid separation from the desulfurization waste water into a solid component and a separated liquid.
  • a treatment step the permeated water as a supply solution, a solution having an osmotic pressure higher than the permeated water as a driving solution, the supply solution and the driving solution through a forward osmosis membrane, and at least water of the supply solution
  • the driving solution is any one of the concentrated water, the desulfurization effluent, the separation liquid, a chemical solution for regeneration of the ion exchange device, and a regeneration effluent after regeneration of the ion exchange device. It is in the exhaust gas processing method characterized by being one.
  • the driving solution is any one of the concentrated water, the desulfurization waste water, and the separation liquid, and the forward osmosis membrane forwardly permeates the supply solution.
  • the exhaust gas treatment method includes a diluted drive solution returning step of returning the diluted drive solution diluted by moving water to the drive solution to the flue gas desulfurization step.
  • the solid content is separated from the desulfurization effluent to obtain a separation liquid of the desulfurization effluent, and this separation liquid is subjected to membrane separation of the sulfate ions by the membrane treatment unit to obtain the permeated water.
  • FIG. 1 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the second embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the second embodiment.
  • FIG. 5 is a schematic diagram of an exhaust gas treatment system according to a third embodiment.
  • FIG. 6 is a schematic diagram of another exhaust gas treatment system according to the third embodiment.
  • FIG. 7 is a schematic diagram of another exhaust gas treatment system according to the third embodiment.
  • FIG. 8 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 1 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the first embodiment.
  • FIG. 3 is
  • FIG. 9 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 11 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • FIG. 1 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the first embodiment.
  • the exhaust gas treatment apparatus 10A cleans the combustion exhaust gas G with a desulfurization treatment liquid (for example, an absorption liquid by a lime gypsum method) 11 and discharges a desulfurization waste water 12 containing sulfate ions.
  • the flue gas desulfurization unit 13, the solid-liquid separation unit 30 that separates the desulfurization waste water 12 into solid gypsum 31 that is a solid content and the desulfurization waste water separation liquid (hereinafter referred to as “separation liquid”) 12 A, and the gypsum 31 are separated.
  • a driving solution storage unit 18 that stores concentrated water 15 that is a high) high salt concentration solution as a driving solution (Draw Solution: DS) 15A, a supply solution storage unit 17 and a driving solution storage unit 18 are arranged to partition; Dilution in which water is transferred from the supply solution 14A to the driving solution 15A by the forward osmosis membrane (Forward Osmosis: FO) device 19 having the forward osmosis membrane 19a having a water selective permeability and the forward osmosis membrane 19a.
  • DS Driving Solution
  • FO Forward Osmosis
  • the flue gas desulfurization unit 13 cleans the combustion exhaust gas G containing a sulfur content discharged from, for example, a coal-fired power plant with the desulfurization treatment liquid 11. Further, flue gas desulfurization unit 13 through the desulfurization effluent discharge line L 1-1, the desulfurization effluent 12 as an exhaust gas absorbing wastewater containing sulfur generated by absorbing the combustion exhaust gas G to the desulfurized liquid 11 The liquid is discharged and supplied to the solid-liquid separator 30.
  • the desulfurization effluent 12 includes, for example, monovalent ion components such as sodium ions (Na + ) and chloride ions (Cl ⁇ ), such as calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and sulfur in combustion exhaust gas. Contains divalent ion components such as sulfate ions derived from min.
  • monovalent ion components such as sodium ions (Na + ) and chloride ions (Cl ⁇ ), such as calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and sulfur in combustion exhaust gas.
  • Contains divalent ion components such as sulfate ions derived from min.
  • the flue gas desulfurization unit 13 converts the sulfate ions in the desulfurization waste water 12 into the flue gas desulfurization unit 13 by using a desulfurization treatment liquid 11 in which a slurry containing calcium ions obtained by pulverizing limestone and the like in the desulfurization waste water 12 is dispersed. It is solidified and recovered as gypsum (CaSO 4 ).
  • the chloride ion and sulfate ion in the desulfurization waste water 12 are derived from the combustion exhaust gas G and makeup water (for example, see FIG. 4), and the calcium ion and the magnesium ion are limestone (calcium carbonate (calcium carbonate ( Derived from CaCO 3 )).
  • the solid-liquid separation unit 30 is connected to the desulfurization drainage discharge line L1-1 , and solid-liquid separates the solid content in the desulfurization drainage 12. Specifically, the solid-liquid separation unit 30 separates the desulfurization waste water 12 into a liquid separation liquid 12A and a solid component gypsum 31. The gypsum 31 generated by solid-liquid separation of the desulfurization waste water 12 in the solid-liquid separation unit 30 is discharged to the outside from the gypsum discharge line L 1-3 . A separation liquid 12A generated by solid-liquid separation of the desulfurization waste water 12 in the solid-liquid separation unit 30 is supplied to the membrane processing unit 16 via the separation liquid line L1-2 .
  • the solid-liquid separation unit 30 for example, a belt filter, a filter press, a liquid cyclone, a centrifuge, a decanter type centrifugal sedimentator, a gravity sedimentation basin, or the like is used.
  • the separation liquid 12A may be temporarily stored in a drain tank (not shown).
  • the separated liquid line L 1-2, the pressurizing pump P 1 for pressurizing the separated liquid 12A is installed, and supplies the separated liquid 12A to film processor 16 at a predetermined pressure.
  • a UF membrane ultrafiltration membrane
  • MF membrane for removing turbid components in the separation liquid 12A.
  • pre-treatment may be performed using a sand filtration or other removal unit.
  • the membrane treatment unit 16 membrane-separates the separation liquid 12A discharged from the flue gas desulfurization unit 13 and from which the gypsum 31 has been separated into permeated water 14 from which sulfate ions have been removed and concentrated water 15 from which sulfate ions have been concentrated.
  • the separation membrane 16a is provided.
  • the concentrated water 15 in which sulfate ions are concentrated here is a concentrated water (hereinafter simply referred to as a concentrated water 15) in which the ratio of sulfate ions to chloride ions ([SO 4 2 ⁇ ] / [Cl ⁇ ]) is larger than that of the separation liquid 12A. Also referred to as “concentrated water 15”.
  • the permeated water 14 from which sulfate ions have been removed is a permeated water (hereinafter, simply referred to as “permeate water”) whose ratio of sulfate ions to chloride ions ([SO 4 2 ⁇ ] / [Cl ⁇ ]) is smaller than that of the separation liquid 12A. Also referred to as “permeated water 14”.
  • the forward osmosis membrane device 19 includes a supply solution storage portion 17, a drive solution storage portion 18, and a water permeable forward osmosis membrane 19a.
  • the supply solution storage unit 17 is connected to a supply solution line L 2 for supplying the permeated water 14 as the supply solution 14A from the membrane processing unit 16, and stores the supply solution 14A.
  • the driving solution storage unit 18 is connected to the driving solution line L 3 for introducing the concentrated water 15 as the driving solution 15A from the membrane processing unit 16, and stores the driving solution 15A.
  • the water permselective forward osmosis membrane 19 a is arranged so as to partition the supply solution storage unit 17 and the drive solution storage unit 18.
  • the water permselective forward osmosis membrane 19a allows water molecules or water ions (hereinafter also referred to as “water molecules”) to flow from the supply solution 14A side, which is the permeated water 14, to the driving solution 15A, which is the concentrated water 15, by forward osmosis. It is a film
  • the forward osmosis action means that water moves through the forward osmosis membrane 19a from the supply solution 14A side having a relatively low salt concentration to the drive solution 15A side having a relatively high salt concentration.
  • a dilution drive solution return line L 4 for returning the diluted diluted drive solution 15B as a desulfurization treatment liquid is connected to the drive solution storage unit 18 of the forward osmosis membrane device 19. Then, the back as a desulfurized liquid 11 to the flue gas desulfurization unit 13 side end of the dilution drive solution return line L 4 is connected. Thereby, the dilution drive solution 15B is reused as the desulfurization treatment liquid 11.
  • a concentrated supply solution discharge line L 5 for discharging the concentrated concentrated supply solution 14B is connected to the supply solution storage unit 17 of the forward osmosis membrane device 19. Then, and in the no-waste water processing section 21 to which one end of the concentrated feed solution outlet line which L 5 is connected, to perform no wastewater treatment of the concentrate feed solution 14B.
  • the separation membrane 16a of the membrane treatment section 16 in the pretreatment stage permeation of sulfate ions, which are divalent ion components in the desulfurization waste water 12, from the viewpoint of selective membrane separation of sulfate ions and chloride ions. Those having a low rate characteristic are preferred. Further, the separation membrane 16a is preferably one having a characteristic of high permeability of chloride ions, which are monovalent ion components, from the viewpoint of preventing a decrease in the desulfurization performance of the flue gas desulfurization unit 13.
  • the transmittance of sulfate ions (hereinafter also simply referred to as “sulfate ion permeability”). Is preferably 50% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the transmittance of chloride ions (hereinafter simply referred to as “separation membrane 16a”).
  • the separation membrane 16a has a sulfate ion permeability in the desulfurization waste water 12 equal to or less than the chloride ion permeability, and the sulfate ion permeability is 50% or less and the chloride ion permeability. Is more preferably 50% or more, sulfate ion permeability is 20% or less, chloride ion permeability is more preferably 80% or more, sulfate ion permeability is 10% or less, chloride ion More preferably, the transmittance is 90% or more.
  • the separation membrane 16a for example, a nanofiltration (NF) membrane that removes divalent ions, an ion exchange membrane, electrodialysis, a dialysis membrane by diffusion dialysis, a separation membrane by electrophoresis, or the like is used.
  • NF nanofiltration
  • the separation membrane 16a from the viewpoint of efficiently removing sulfate ions in the permeated water 14, a nanofiltration (NF) membrane and a dialysis membrane by electrophoresis are preferable, and a nanofiltration membrane is more preferable.
  • the nanofiltration membrane for example, trade name: NTR7250 (manufactured by Nitto Denko Corporation), trade names: NF40HF, NF50 (manufactured by Dow Chemical Co., Ltd.) and the like can be used.
  • the forward osmosis membrane (semipermeable membrane) 19a used in the post-treatment stage forward osmosis membrane device 19 is not particularly limited in material, structure, etc., and may be any membrane that selectively permeates water molecules.
  • the permeate 14 from the membrane unit 16 is supplied via the feed solution line L 2 to the feed solution housing portion 17 as the feed solution 14A.
  • the concentrated water 15 from the membrane treatment unit 16 has a higher salt concentration than the permeated water 14, and the drive solution line L 3 is supplied to the drive solution storage unit 18 as a drive solution 15A that draws water through the forward osmosis membrane 19a. Is supplied through.
  • the driving solution 15A may be any solution as long as it has a high salt concentration and a higher ion concentration than the supply solution 14A.
  • the concentrated water 15 concentrated in the membrane treatment unit 16 is used, but the present invention is not limited to this.
  • the high salt concentration solution include a desulfurization drain 12, a desulfurization drain separation liquid 12 ⁇ / b> A, a chemical solution for regeneration of an ion exchange apparatus, and an ion exchange apparatus, in addition to the concentrated water 15 in which sulfate ions are concentrated in the membrane treatment unit 16. Any one of the reclaimed wastewater after the regeneration can be mentioned.
  • TDS Total Dissolved Solid
  • TDS represents the concentration of a solute dissolved in a solvent.
  • the TDS of the separation liquid 12A is 10,000 mg / L.
  • the material of the forward osmosis membrane 19a various known semipermeable membranes that can be used for forward osmosis can be used.
  • cellulose acetate, aromatic polyamide, aromatic sulfone, polyvinyl alcohol, polyamide, polyethyleneimine, polysulfone examples thereof include organic films such as polybenzimidazole and graphene.
  • inorganic films, such as a ceramic, an alumina, a zirconia, a zeolite, and a titania can be mentioned.
  • the membrane is not limited to these as long as it has a forward osmosis action.
  • Examples of the shape of the forward osmosis membrane 19a include a flat membrane, a hollow fiber membrane, a tubular membrane, a spiral type module using a flat membrane, a hollow fiber type module, and a cylindrical module.
  • a simplified flat membrane is drawn as the forward osmosis membrane 19a, but the present invention is not limited to this.
  • the forward osmosis treatment by the forward osmosis membrane device 19 is a high osmotic pressure having a higher solute concentration in the driving solution 15A than the supply solution 14A through the forward osmosis membrane 19a that does not pass through the solute and permeates only water molecules as the solvent.
  • This is a treatment in which a salt concentration solution is arranged and water molecules are collected in the driving solution 15A in the direction of the arrow through the forward osmosis membrane 19a. In this case, since water molecules are moved using the osmotic pressure difference, theoretically, the process does not require power.
  • the supply solution 14A is more than the osmotic pressure by a conventional reverse osmosis (RO) membrane device.
  • a high-pressure pump that is an essential device for increasing the pressure (for example, 7 MPa or more) is not necessary.
  • the supply solution 14A and the driving solution 15A are brought into contact with each other via the forward osmosis membrane 19a, and the water molecules in the supply solution 14A are moved to the driving solution 15A side by forward osmosis. Can be concentrated.
  • the diluted driving solution diluted with water molecules needs to be separated by a regenerating device. Since the driving solution 15B can be returned to the flue gas desulfurization section 13 as the desulfurization treatment liquid 11, so-called regeneration processing is not necessary, and energy required for regenerating the driving solution 15A can be reduced.
  • the liquid temperature inside the forward osmosis membrane device 19 is not particularly limited. However, in order to reduce the permeation resistance of the forward osmosis membrane 19a, for example, it is more preferably maintained at room temperature (for example, 25 to 30 ° C.) or higher. preferable.
  • FIG. 2 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the first embodiment.
  • the exhaust gas treatment device 10 ⁇ / b> B includes a pressurization pump P 2 as a pressurization device in the supply solution line L 2 of the permeated water 14 in the exhaust gas treatment device 10 ⁇ / b > A.
  • this pressurizing pump P 2 By installing this pressurizing pump P 2 , the permeated water 14 can be pressurized and water molecules can be moved efficiently. As a result, the concentration time of the supply solution 14A by forward osmosis can be shortened.
  • the non-drainage treatment unit 21 is not particularly limited as long as it is a facility that performs the non-drainage treatment of the concentrated supply solution 14B.
  • a spray drying apparatus that spray-drys the concentrated supply solution 14B using exhaust gas from a boiler,
  • a known non-drainage technology such as an evaporating and drying apparatus, a cement solidifying apparatus that solidifies using cement or fly ash, an ash solidifying apparatus, and an ash humidifying apparatus can be applied.
  • Desulfurization effluent 12 containing a sulfur which is discharged from the flue gas desulfurization unit 13 through the desulfurization effluent discharge line L 1-1 are sent to the solid-liquid separation unit 30, where it is dehydrated.
  • the desulfurization effluent 12 contains heavy metals such as mercury and halogen ions such as Cl ⁇ , Br ⁇ , I ⁇ and F ⁇ .
  • the solid-liquid separation unit 30 separates the solid component containing the gypsum 31 in the desulfurization waste water 12 and the liquid separation liquid 12A.
  • the desulfurization waste water 12 discharged from the flue gas desulfurization unit 13 is separated from the gypsum 31 by the solid-liquid separation unit 30.
  • the separated gypsum 31 is discharged to the outside of the system (hereinafter referred to as “outside system”).
  • separated liquid 12A is fed to the membrane unit 16 via a separate fluid line L 1-2.
  • the separation liquid 12A supplied to the membrane treatment unit 16 is membrane-separated into concentrated water 15 in which sulfate ions are concentrated and permeated water 14 in which sulfate ions are removed by the separation membrane 16a.
  • the permeated water 14 separated by the membrane treatment unit 16 is supplied to the supply solution storage unit 17 of the forward osmosis membrane device 19 through the supply solution line L 2 .
  • the concentrated water 15 separated from the membrane is supplied to the driving solution storage unit 18 of the forward osmosis membrane device 19 through the driving solution line L 3 .
  • the diluted drive solution 15B is introduced into the flue gas desulfurization unit 13 through the diluted drive solution return line L 4 and reused as the desulfurization treatment liquid 11. And after gypsum is removed in the flue gas desulfurization part 13, it is discharged
  • concentrated feed solution 14B is introduced to the non wastewater processing unit 21 via the concentrated feed solution outlet line L 5, it is treated here with no drainage of.
  • the water in the separation liquid 12A obtained by removing the gypsum 31 from the desulfurization waste water 12 is concentrated, first, in the membrane treatment unit 16, the low salt concentration permeated water 14, Separated into concentrated water 15 having a high salt concentration, this concentrated water 15 is used as a driving solution 15A for the forward osmosis membrane device 19, and water is drawn from the supply solution 14A, which is permeated water, by the forward osmosis membrane 19a. A concentrated feed solution 14B is obtained.
  • a concentrated supply solution 14B by forward osmosis action can be obtained, so a high-pressure pump for supplying pressurized water to the device like a reverse osmosis membrane device becomes unnecessary, It is possible to significantly reduce the operating cost of non-drainage treatment.
  • FIG. 3 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the second embodiment.
  • symbol is attached
  • the exhaust gas treatment device 10 ⁇ / b> C according to the present embodiment has a dilution water supply unit 26 that supplies dilution water 25 for diluting the desulfurization waste water 12 in addition to the configuration of the exhaust gas treatment device 10 ⁇ / b> A shown in FIG. 1. Is provided.
  • the concentration of divalent ion components such as sulfate ions serving as the scale components in the desulfurization waste water 12 is reduced. It is possible to prevent the scale from being deposited on the 16 separation membranes 16a.
  • the dilution water 25 is not particularly limited as long as it can reduce the concentration of the scale component in the separation liquid 12A.
  • process water, river water, pond water, and the like can be used.
  • the dilution water supply unit 26 supplies the dilution water 25 to the membrane treatment unit 16.
  • the dilution water supply unit 26 can dilute the separation liquid 12 ⁇ / b> A.
  • the dilution water 25 may be supplied to other than the membrane processing unit 16.
  • Dilution water supply unit 26, for example, may be supplied dilution water 25, such as the separation fluid line L 1-2 via the dilution water supply line L 7.
  • the diluting water supply line L 7 may be provided with a pre-processing unit for removing suspended solid in dilution water 25 as needed.
  • the other configuration is the same as that of the exhaust gas treatment apparatus 10A shown in FIG.
  • Desulfurization effluent 12 containing a sulfur which is discharged from the flue gas desulfurization unit 13 is supplied to the solid-liquid separating section 30 through the desulfurization effluent discharge line L 1-1, the gypsum 31 is separated, the separated liquid line L 1 -2 is supplied to the film processing unit 16.
  • Separating liquid 12A that is supplied to the film processing section 16 after being mixed with dilution water 25 supplied from the dilution water supply unit 26 via a diluting water supply line L 7, sulfate ions are enriched by the separation membrane 16a
  • the membrane is separated into concentrated water 15 and permeated water 14 from which sulfate ions have been removed.
  • concentration of the scale component is reduced by mixing the desulfurization waste water 12 with the dilution water 25, it is possible to prevent the scale from being deposited on the separation membrane 16a.
  • the separation liquid 12A is diluted with the dilution water 25
  • the concentration of the scale component in the desulfurization waste water 12 supplied to the membrane treatment unit 16 can be reduced. .
  • drain 12 is high, precipitation of the scale in the separation membrane 16a of the membrane process part 16 can be prevented.
  • FIG. 4 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the second embodiment.
  • the exhaust gas treatment device 10D supplies makeup water 28 to flue gas desulfurization unit 13 through the makeup water supply line L 8, the film processing section 16 through the makeup water branch line L 9
  • a replenishing water supply unit 27 that supplies at least a part of the replenishing water 28 as the dilution water 25 is provided. That is, the exhaust gas treatment apparatus 10D shown in FIG. 4 uses the makeup water supply unit 27 also as the dilution water supply unit 26 shown in FIG.
  • the makeup water supply unit 27 supplies at least a part of the makeup water 28 as the dilution water 25 to the membrane treatment unit 16 is shown.
  • Makeup water supply unit 27 may be supplied dilution water 25, such as the make-up water branch line L 9 and through to separate fluid line L 1-2.
  • the make-up water branch line L 9 may be provided with a pretreatment section for removing turbidity in the make-up water 28 as necessary.
  • Other configurations are the same as those of the exhaust gas treatment apparatus 10C shown in FIG.
  • Desulfurization effluent 12 containing a sulfur which is discharged from the flue gas desulfurization unit 13 is supplied to the solid-liquid separating section 30 through the desulfurization effluent discharge line L 1-1, the gypsum 31 is separated, the separated liquid line L 1 -2 is supplied to the film processing unit 16.
  • separation layer 16a membrane separation is performed into concentrated water 15 in which sulfate ions are concentrated and permeated water 14 in which sulfate ions are removed.
  • concentration of the scale component is reduced by mixing the separation liquid 12A with the dilution water 25 from the makeup water 28, it is possible to prevent the scale from being deposited on the separation membrane 16a.
  • the separation liquid 12A is diluted with a part of the dilution water 25 of the makeup water 28, the concentration of the scale component in the desulfurization waste water 12 supplied to the membrane treatment unit 16 is adjusted. It becomes possible to reduce. Thereby, even if the density
  • FIG. 5 is a schematic diagram of an exhaust gas treatment system according to a third embodiment.
  • symbol is attached
  • FIG. As shown in FIG.
  • the exhaust gas treatment system 100A according to the third embodiment, a boiler 111 for burning fuel F, provided Shukemuri path L 11 for discharging the exhaust gas G from a boiler 111, heat of exhaust gas G
  • An air heater AH that is a heat recovery device that collects
  • a dust collector 113 that is a dust removal device that removes dust in the exhaust gas G after heat recovery
  • a flue gas desulfurization unit that removes sulfur oxides contained in the exhaust gas G after dust removal 13
  • a solid-liquid separation unit 30 for removing the solid matter (gypsum) 31 from the desulfurization drainage (absorption liquid slurry in the case of the absorption liquid method) 12 discharged from the flue gas desulfurization unit 13, and the solid-liquid separation unit 30
  • Membrane processing unit 16 that separates separation liquid 12A into permeated water 14 and concentrated water 15, and permeated water 14 as supply solution 14A, concentrated water 15 as drive solution 15A, and water is moved by forward osmosis membrane 19a.
  • Concentrated supply solution 14 Exhaust gas and forward osmosis membrane (FO) device 19, for introducing a spray-drying apparatus 119 for spraying the concentrated feed solution 14B, a portion of the branch gas 112a from the exhaust gas G from the main flue L 11 in the spray-drying apparatus 119 to an introduction line L 12, is provided with a discharge gas feed line L 13 to the exhaust gas 112b back to the main flue L 11 after evaporating dry concentrated feed solution 14B in the spray-drying apparatus 119, a.
  • reference numeral 120 denotes a chimney that discharges the purified gas from the main flue L 11 .
  • the exhaust gas G is purified by the flue gas desulfurization unit 13, the desulfurization waste water 12 is separated into solid and liquid, and the separated separation liquid 12 A is separated into permeated water 14 and concentrated water 15 by the membrane treatment unit 16. Then, the permeated water 14 is used as the supply solution 14A of the forward osmosis membrane device 19, and the concentrated water 15 is concentrated as the concentrated supply solution 14B by the forward osmosis action by the forward osmosis membrane 19a. Since 14B is evaporated and dried using the branch gas 112a introduced in the spray dryer 119, the desulfurization drainage 12 from the flue gas desulfurization unit 13 can be stably discharged.
  • the air heater AH of the exhaust gas processing system 100A is a heat exchanger for recovering heat of the exhaust gas G supplied through the main flue L 11 from the boiler 111. Since the temperature of the exhaust gas G to be discharged is as high as about 300 ° C. to 400 ° C., for example, heat exchange is performed between the high temperature exhaust gas G and the combustion air at normal temperature by the air heater AH, and the temperature is increased by heat exchange. The combustion air thus supplied is supplied into the boiler 111.
  • the gas temperature of the branch gas 112a is high (for example, 300 ° C. to 400 ° C.)
  • spray drying of the desulfurized wastewater droplets can be performed efficiently.
  • the air heater AH includes a branch portion X of the exhaust gas introduction line L 12 that branches branch gas 112a, a merging portion Y back to Shukemuri path L 11 side by the exhaust gas delivery line L 13 emissions 112b
  • the present invention is not limited to this.
  • the dust collector 113 collects the dust in the exhaust gas G from the boiler 111 and removes it as dust ash 113a.
  • Examples of the dust collector 113 include, but are not particularly limited to, an inertial dust collector, a centrifugal dust collector, a filtration dust collector, an electric dust collector, and a cleaning dust collector.
  • the dust in the exhaust gas G is removed by the dust collector 113 as dust collection ash 113a.
  • the exhaust gas G from which the dust has been removed is introduced into the flue gas desulfurization section 13 and the sulfur content is removed by a desulfurization treatment by, for example, a wet lime gypsum method.
  • Desulfurization effluent 12 containing a sulfur which is discharged from the flue gas desulfurization unit 13 through the desulfurization effluent discharge line L 1-1 are sent to the solid-liquid separation unit 30, where it is dehydrated.
  • Separating liquid 12A gypsum 31 is separated is fed to the membrane unit 16 via a separate fluid line L 1-2.
  • the separation liquid 12A supplied to the membrane treatment unit 16 is membrane-separated into concentrated water 15 in which sulfate ions are concentrated and permeated water 14 in which sulfate ions are removed by the separation membrane 16a.
  • the permeate 14 is fed to the feed solution housing portion 17 from the film processing section 16 through the feed solution line L 2 as the feed solution 14A.
  • Concentrated water 15 is supplied to the driving solution housing portion 18 from the film processing section 16 through the drive solution line L 3 as a driving solution 15A. Since the supply solution 14 and the driving solution 15A come into contact with each other through the forward osmosis membrane 19a, the water in the supply solution 14A, which is the permeated water 14, is moved to the driving solution 15A on the concentrated water 15 side by the forward osmosis action. Therefore, the supply solution 14A is concentrated to become a concentrated supply solution 14B, and the drive solution 15A is diluted to become a diluted drive solution 15B.
  • the diluted diluted driving solution 15B is returned to the flue gas desulfurization section 13 side as the desulfurizing treatment liquid 11 through the diluted driving solution return line L 4. Used.
  • concentrated feed solution 14B enriched is introduced into the spray-drying apparatus 119 through the concentrated feed solution outlet line L 5, wherein the non-drainage process is performed.
  • the solid gypsum 31 is separated from the desulfurization effluent 12 to obtain a separation liquid 12A of the desulfurization effluent 12, and the separation liquid 12A is subjected to membrane separation of sulfate ions by the membrane treatment unit 16 to obtain the permeated water 14.
  • a concentrated supply solution 14B that is a concentrated liquid by the forward osmosis action can be obtained.
  • a pressurizing pump for obtaining pressurized water such as a reverse osmosis membrane device is not required, and the operation cost of the non-drainage treatment can be reduced.
  • FIG. 6 is a schematic diagram of another exhaust gas treatment system according to the third embodiment.
  • symbol is attached
  • another exhaust gas treatment system 100 ⁇ / b> B according to the third embodiment is configured to install solidification treatment equipment instead of installing the spray drying device 119 in the exhaust gas treatment system 100 ⁇ / b> A shown in FIG. 5.
  • another exhaust gas treatment system 100B according to Example 3 is provided in the concentrated supply solution discharge line L 5 in the exhaust gas treatment system 100A shown in FIG.
  • a solidifying agent 61 such as cement or calcium oxide (lime) is added from the solidifying agent supply unit 62 to obtain a kneaded product 63, and the kneaded product 63 is dried and cured, and then solidified to obtain a solidified product 65. And a solidifying part 64 to be provided.
  • the solidified material 65 is separately treated by landfill (the same applies hereinafter).
  • drainage can be eliminated by solidifying the concentrated supply solution 14B, which is a concentrated liquid, using a solidifying agent 61 such as cement.
  • FIG. 7 is a schematic diagram of another exhaust gas treatment system according to the third embodiment.
  • symbol is attached
  • another exhaust gas treatment system 100C according to the third embodiment is provided in the concentrated supply solution discharge line L 5 instead of installing the spray drying device 119 in the exhaust gas treatment system 100A shown in FIG.
  • the concentrated supply solution 14B is provided with a mixing tank 66 for mixing, for example, dust collection ash 113a, and an ash mixture 67 which is a humidified ash obtained by mixing the two is obtained.
  • drainage can be eliminated by subjecting the concentrated supply solution 14B, which is a concentrated solution, to ash mixing treatment using the dust collection ash 113a generated in the system system.
  • FIG. 8 is a schematic diagram illustrating an example of an exhaust gas treatment apparatus according to the fourth embodiment.
  • symbol is attached
  • the concentrated water 15 from the membrane treatment section 16 as in the first embodiment is not used as the driving solution 15A, and the higher salt concentration solution than the supply solution 14A is used. It is supplied via the drive-solution supply line L 21 to the drive solution housing portion 18 as a driving solution 15A from the driving solution supply unit 35.
  • any one of the desulfurization waste water 12, the separation liquid 12A of the desulfurization waste water, the chemical solution for regeneration of the ion exchange device, and the regeneration waste water after regeneration of the ion exchange device can be exemplified.
  • the concentrated water 15 separated by the membrane treatment unit 16 is returned to the flue gas desulfurization unit 13 via the concentrated water return line L 1-4 and reused as the desulfurization treatment liquid 11.
  • FIG. 9 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • the exhaust gas treatment apparatus 10 ⁇ / b> F instead of installing the drive solution supply unit 35 shown in FIG. 8, a branch is made from the desulfurization drainage discharge line L ⁇ b> 1-1.
  • a drive solution supply line L 31 for supplying the drive solution 15A as a drive solution 15A to the drive solution storage unit 18 is provided.
  • Diluted drive solution 15B discharged from the drive solution housing portion 18 is returned through a dilute drive solution return line L 32 similarly to the flue gas desulfurization unit 13 as in Example 1.
  • FIG. 10 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • a chemical solution 71 for regeneration of the ion exchange device is supplied as the driving solution 15A of the driving solution supply unit 35 shown in FIG.
  • the ion exchange apparatus using the ion exchange resin 70 needs to regenerate the ion exchange resin 70 when the adsorbed material becomes saturated.
  • the chemical solution 71 for regeneration it is necessary to prepare a chemical solution having a predetermined concentration (for example, 1.5 to 5% NaOH water, for example, 2 to 5% HCl water). Normally, the chemical solution 71 having the predetermined dilution concentration is stored or adjusted.
  • a chemical solution (for example, 10% NaOH water) 71A having a higher concentration than the chemical solution 71 having a predetermined dilution concentration is prepared. And it introduce
  • a chemical solution (5% NaOH water) 71 having a predetermined dilution concentration as a dilution driving solution can be adjusted.
  • the adjusted chemical solution (5% NaOH aqueous solution) 71 with a predetermined dilution concentration is introduced into the ion exchange resin 70 through the dilution line L 22 and is used here for ion exchange.
  • Reference numeral 72 denotes regenerated waste water after desorbing the adsorbate from the ion exchange resin 71.
  • FIG. 11 is a schematic diagram illustrating an example of another exhaust gas treatment apparatus according to the fourth embodiment.
  • the exhaust gas treatment apparatus 10H according to the present embodiment instead of the drive solution supply unit 35 shown in FIG. 8, the regenerated waste water 72 after regeneration of the ion exchange device is supplied as the drive solution 15A. .
  • the reclaimed waste water 72 containing desorbed ions during the regeneration of the ion exchange resin 70 contains a high concentration of desorbed ions. Therefore, the reproduction effluent 72 that contains this desorbed ions are introduced into the driving solution housing portion 18 as a driving solution 15A via the drive-solution supply line L 21. And the concentrated supply solution 14B is obtained by moving water molecules from the supply solution 14A of the permeated water 14 by forward osmosis. Since the regenerated waste water 72 contains a large amount of desorbed ions, it is introduced into the drive solution storage unit 18 as the drive solution 15A, and water molecules are moved from the supply solution 14A of the permeated water 14 by forward osmosis, thereby providing a concentrated supply solution. 14B can be obtained.
  • regenerated waste water 72 supplied as the driving solution 15A for example, boiler blow water, various equipment drain water, air heater washing waste water, dust collection equipment drainage, heat recovery equipment washing wastewater, chimney washing wastewater, analysis room wastewater, etc.
  • Those containing ions at a high concentration such as unsteady waste water can also be used.
  • the equipment for ion exchange for example, a pure water device (for example, a device for producing water to be supplied to a boiler), a condensate demineralizer (for example, desalted water obtained by condensing and recovering steam used in a boiler / turbine) Device) and the like, but is not limited thereto.
  • a pure water device for example, a device for producing water to be supplied to a boiler
  • a condensate demineralizer for example, desalted water obtained by condensing and recovering steam used in a boiler / turbine
  • the equipment for ion exchange for example, a pure water device (for example, a device for producing water to be supplied to a boiler), a condensate demineralizer (for example, desalted water obtained by condensing and recovering steam used in a boiler / turbine) Device) and the like, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treating Waste Gases (AREA)

Abstract

排ガス処理装置は、硫酸イオンを含有する脱硫排水12を排出する排煙脱硫部13と、脱硫排水12から固液分離した分離液12Aを、硫酸イオンが低減された透過水14と硫酸イオンが濃縮された濃縮水15とに膜分離する分離膜16aを有する膜処理部16と、透過水14を供給溶液14Aとして収容する供給溶液収容部17と、透過水14よりも高い浸透圧を有する濃縮水15を駆動溶液15Aとして収容する駆動溶液収容部18と、供給溶液収容部17と駆動溶液収容部18とを仕切るように配置され、水選択透過性の正浸透膜19aとを有する正浸透膜装置19と、水が正浸透により駆動溶液15A側に移動され、希釈された希釈駆動溶液15Bを排煙脱硫部13側に脱硫処理液11として戻す希釈駆動溶液戻しラインL4と、水が正浸透により供給溶液14Aから透過され、濃縮された濃縮供給溶液14Bを無排水化する無排水化処理部21と、を備える。

Description

排ガス処理装置及び排ガス処理方法
 本発明は、排ガス処理装置及び排ガス処理方法に関し、例えばボイラ等からの燃焼排ガスを脱硫処理する排ガス処理装置及び排ガス処理方法に関する。
 従来、火力発電設備等に設置されるボイラから排出される排ガスを処理するための排ガス処理システムが知られている。排ガス処理システムは、ボイラからの排ガスから窒素酸化物を除去する脱硝装置と、脱硝装置を通過した排ガスの熱を回収するエアヒータと、熱回収後の排ガス中の煤塵を除去する集塵機と、除塵後の排ガス中の硫黄酸化物を除去するための脱硫装置と、を備えている。脱硫装置としては、石灰吸収液等を排ガスと気液接触させて排ガス中の硫黄酸化物を除去する湿式の脱硫装置が一般的に用いられる。
 近年、排水規制強化のために、排ガス処理装置における無排水化が切望されており、安定して操業することができる無排水化を図る排ガス処理装置の出現が切望されている。本出願人は、先に無排水化を実施する設備として、脱硫排水(吸収液スラリー)から石膏を分離した分離液を乾燥する噴霧乾燥装置を用い、ボイラ排ガスを用いて脱硫排水の分離液を噴霧乾燥する技術を提案した(例えば特許文献1参照)。
 ところで、特許文献1の提案では、脱硫排水から石膏を分離した後、分離液をそのまま噴霧乾燥装置に導入して噴霧乾燥するので、噴霧乾燥に要する水分が多量となるので、脱硫排水の分離液を極力濃縮して、噴霧乾燥装置に導入する分離液を減容し、運転費を低減した無排水化処理技術の確立が望まれている。
 ここで、分離液の減容のための技術として、例えば被処理水(海水)をナノろ過(NF)膜及び逆浸透(RO)膜で膜分離して透過水及び濃縮水を得る脱塩装置が提案されている(例えば特許文献2参照)。特許文献2に記載の脱塩装置では、ナノろ過膜で膜分離した塩化物イオンを含有する透過水を逆浸透膜に流下して更に膜分離すると共に、ナノろ過膜で膜分離した濃縮水を脱塩装置の外部に排出する。これにより、被処理水中に含まれる塩分が除去された透過水と塩分が濃縮された濃縮水とが得られる。
特開2012-196638号公報 米国特許出願公開第2010/0163471号明細書
 しかしながら、特許文献2の提案では、ナノろ過膜で分離した透過水を逆浸透(RO)膜装置で濃縮処理するためには、高圧水とするための高圧ポンプが必須となり、濃縮水を得るために多大な動力が必要となり、運転費が嵩む、という問題がある。
 本発明は、脱硫排水の分離液の水分を濃縮し、無排水化処理の動力低減の確立を図る排ガス処理装置及び排ガス処理方法を提供することを目的とする。
 上述した課題を解決するための本発明の第1の発明は、燃焼排ガスを脱硫処理液により洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫部と、前記脱硫排水から固形分と脱硫排水の分離液とに固液分離する固液分離部と、前記分離液を、前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が低い透過水と前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が高い濃縮水とに膜分離する分離膜を有する膜処理部と、前記透過水を供給溶液として収容する供給溶液収容部と、前記透過水よりも高い浸透圧を有する溶液を駆動溶液として収容する駆動溶液収容部と、前記供給溶液収容部と前記駆動溶液収容部とを仕切るように配置された水選択透過性の正浸透膜とを有する正浸透膜装置と、前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され濃縮された濃縮供給溶液を、前記供給溶液収容部から排出する濃縮供給液排出ラインと、排出された前記濃縮供給溶液を無排水化する無排水化処理部と、を備えたことを特徴とする排ガス処理装置にある。
 第2の発明は、第1の発明において、前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つであることを特徴とする排ガス処理装置にある。
 第3の発明は、第1の発明において、前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液のいずれか一つであると共に、前記濃縮水を前記駆動溶液収容部に導入する駆動溶液ラインと、前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され希釈された希釈駆動溶液を前記排煙脱硫部に戻す希釈駆動溶液戻しラインを備えたことを特徴とする排ガス処理装置にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記分離膜は、前記脱硫排水中の硫酸イオンの透過率に対して塩化物イオンの透過率が高い特性を有することを特徴とする排ガス処理装置にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記脱硫排水を希釈する希釈水を供給する希釈水供給部を備えたことを特徴とする排ガス処理装置にある。
 第6の発明は、第5の発明において、前記希釈水供給部が、前記排煙脱硫部に補給水を供給する補給水供給部であり、前記補給水供給部は、前記希釈水として前記補給水の少なくとも一部を前記脱硫排水に供給することを特徴とする排ガス処理装置にある。
 第7の発明は、第5の発明において、前記希釈水供給部が、前記膜処理部からの前記透過水の一部を、前記脱硫排水に供給することを特徴とする排ガス処理装置にある。
 第8の発明は、第1乃至7のいずれか一つの発明において、前記透過水を前記供給溶液として前記供給溶液収容部に供給する供給溶液ラインに、前記供給溶液を加圧する加圧部を備えることを特徴とする排ガス処理装置にある。
 第9の発明は、燃焼排ガスを排煙脱硫部で洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫工程と、前記脱硫排水から固形分と分離液とに固液分離する固液分離工程と、前記分離液を、前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が低い透過水と前記分離液の硫酸イオン濃度よりも硫酸イオンが高い濃縮水とに分離膜によって膜分離する膜処理工程と、前記透過水を供給溶液とし、前記透過水よりも高い浸透圧を有する溶液を駆動溶液とし、前記供給溶液と前記駆動溶液とを正浸透膜を介し、前記供給溶液の水の少なくとも一部を、正浸透により前記駆動溶液側に移動せ、希釈された希釈駆動溶液と、濃縮された濃縮供給溶液とを得る正浸透工程と、前記濃縮供給溶液を無排水化する無排水化工程と、を含むことを特徴とする排ガス処理方法にある。
 第10の発明は、第9の発明において、前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つであることを特徴とする排ガス処理方法にある。
 第11の発明は、第9の発明において、前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液のいずれか一つであると共に、前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され希釈された前記希釈駆動溶液を前記排煙脱硫工程に戻す希釈駆動溶液戻し工程を、含むことを特徴とする排ガス処理方法にある。
 本発明によれば、脱硫排水から固形分を分離して脱硫排水の分離液とし、この分離液を膜処理部で硫酸イオンを膜分離して透過水とし、この透過水中の水分を濃縮する際、正浸透膜装置を用いることにより、正浸透作用による濃縮液を得ることができ、逆浸透膜装置のような加圧水とする加圧ポンプを不要とし、無排水化処理の運転費の低減を図ることができる。
図1は、実施例1に係る排ガス処理装置の一例を示す模式図である。 図2は、実施例1に係る他の排ガス処理装置の一例を示す模式図である。 図3は、実施例2に係る排ガス処理装置の一例を示す模式図である。 図4は、実施例2に係る他の排ガス処理装置の一例を示す模式図である。 図5は、実施例3に係る排ガス処理システムの概略図である。 図6は、実施例3に係る他の排ガス処理システムの概略図である。 図7は、実施例3に係る他の排ガス処理システムの概略図である。 図8は、実施例4に係る排ガス処理装置の一例を示す模式図である。 図9は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。 図10は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。 図11は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る排ガス処理装置の一例を示す模式図である。図1に示すように、本実施例に係る排ガス処理装置10Aは、燃焼排ガスGを脱硫処理液(例えば石灰石膏法による吸収液)11により洗浄して硫酸イオンを含有する脱硫排水12を排出する排煙脱硫部13と、脱硫排水12から固形分である石膏31と脱硫排水の分離液(以下「分離液」という)12Aとに固液分離する固液分離部30と、石膏31が分離された分離液12Aを、分離液12Aの硫酸イオン濃度よりも硫酸イオン濃度が低い透過水14と分離液12Aの硫酸イオン濃度よりも硫酸イオン濃度が高い濃縮水15とに膜分離する分離膜16aを有する膜処理部16と、透過水14を供給溶液(Feed Solution:FS)14Aとして収容する供給溶液収容部17と、透過水14よりも高い浸透圧を有する(イオン濃度が高い)高塩濃度溶液である濃縮水15を駆動溶液(Draw Solution:DS)15Aとして収容する駆動溶液収容部18と、供給溶液収容部17と駆動溶液収容部18とを仕切るように配置され、水選択透過性の正浸透膜19aとを有する正浸透膜(Forward Osmosis:FO)装置19と、正浸透膜19aの正浸透により、供給溶液14Aから駆動溶液15Aに水が移動され希釈された希釈駆動溶液15Bを排煙脱硫部13に戻す希釈駆動溶液戻しラインL4と、正浸透膜19aの正浸透により、供給溶液14Aから駆動溶液15Aに水が移動され濃縮された濃縮供給溶液14Bを、供給溶液収容部17から排出する濃縮供給液排出ラインL5と、排出された濃縮供給溶液14Bを無排水化する無排水化処理部21と、を備えるものである。
 排煙脱硫部13は、例えば石炭火力発電所などから排出される硫黄分を含む燃焼排ガスGを、脱硫処理液11で洗浄する。また、排煙脱硫部13は、脱硫排水排出ラインL1-1を介して、燃焼排ガスGを脱硫処理液11に吸収させることによって発生した硫黄分を含有する排ガス吸収排水としての脱硫排水12を排出して固液分離部30に供給する。この脱硫排水12は、例えばナトリウムイオン(Na+)及び塩化物イオン(Cl-)などの1価イオン成分、例えばカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)及び燃焼排ガス中の硫黄分に由来する硫酸イオンなどの2価イオン成分を含有する。
 排煙脱硫部13は、脱硫排水12に石灰石などを粉砕して水中に分散させたカルシウムイオンを含むスラリーを添加する脱硫処理液11により、脱硫排水12中の硫酸イオンを、排煙脱硫部13内で石膏(CaSO4)として固形化して回収する。なお、脱硫排水12中の塩化物イオン及び硫酸イオンは、燃焼排ガスG及び補給水(例えば図4参照)に由来し、カルシウムイオン及びマグネシウムイオンは、脱硫排水12に添加される石灰石(炭酸カルシウム(CaCO3))に由来する。
 固液分離部30は、脱硫排水排出ラインL1-1に接続され、脱硫排水12中の固形分を固液分離する。具体的には、固液分離部30は、脱硫排水12を液体成分の分離液12Aと固体成分の石膏31とに分離する。固液分離部30で脱硫排水12を固液分離して生成された石膏31は、石膏排出ラインL1-3から外部に排出される。固液分離部30で脱硫排水12を固液分離して生成された分離液12Aは、分離液ラインL1-2を介して、膜処理部16に供給される。ここで、固液分離部30としては、例えばベルトフィルタ、フィルタプレス、液体サイクロン、遠心分離機、デカンタ型遠心沈降機、重力式沈殿池等が用いられる。なお、分離液12Aは一時的に排水タンク(図示せず)に貯留するようにしてもよい。
 分離液ラインL1-2には、分離液12Aを加圧する加圧ポンプP1が設置され、所定の圧力で膜処理部16に分離液12Aを供給している。なお、固液分離部30と加圧ポンプP1との間の分離液ラインL1-2には、分離液12A中の濁質分を除去する例えばUF膜(限外ろ過膜)又はMF膜(精密ろ過膜)、砂ろ過等の除去部を用いて前処理するようにすればよい。
 膜処理部16は、排煙脱硫部13から排出され、石膏31が分離された分離液12Aを、硫酸イオンが除去された透過水14と、硫酸イオンが濃縮された濃縮水15とに膜分離する分離膜16aを備える。ここでの硫酸イオンが濃縮された濃縮水15とは、硫酸イオンと塩化物イオンとの比([SO4 2-]/[Cl-])が分離液12Aよりも大きい濃縮水(以下、単に「濃縮水15」ともいう)である。これに対し、硫酸イオンが除去された透過水14とは、硫酸イオンと塩化物イオンの比([SO4 2-]/[Cl-])が分離液12Aよりも小さい透過水(以下、単に「透過水14」ともいう)である。
 正浸透膜装置19は、供給溶液収容部17と駆動溶液収容部18と水選択透過性の正浸透膜19aとを備える。供給溶液収容部17は、透過水14を供給溶液14Aとして供給する供給溶液ラインL2が膜処理部16から接続され、供給溶液14Aを収容する。駆動溶液収容部18は、濃縮水15を駆動溶液15Aとして導入する駆動溶液ラインL3が膜処理部16から接続され、駆動溶液15Aを収容する。水選択透過性の正浸透膜19aは、供給溶液収容部17と駆動溶液収容部18とを仕切るように配置されている。
 ここで、水選択透過性の正浸透膜19aは、正浸透により水分子又は水イオン(以下「水分子」ともいう)を透過水14である供給溶液14A側から濃縮水15である駆動溶液15A側に透過させる機能を備える膜である。この正浸透膜19aの正浸透作用により、透過水14である供給溶液14A中の水が濃縮水15側に移動されるため、供給溶液14Aが濃縮され、濃縮供給溶液14Bとすることができる。ここで、正浸透作用とは、塩濃度が相対的に低い供給溶液14A側から、塩濃度が相対的に高い駆動溶液15A側に、正浸透膜19aを介して水が移動することをいう。
 正浸透膜装置19の駆動溶液収容部18には、希釈された希釈駆動溶液15Bを、脱硫処理液として戻す希釈駆動溶液戻しラインL4が接続されている。そして、希釈駆動溶液戻しラインL4の一端が接続される排煙脱硫部13側に脱硫処理液11として戻している。これにより、希釈駆動溶液15Bは脱硫処理液11として再利用される。
 また、正浸透膜装置19の供給溶液収容部17には、濃縮された濃縮供給溶液14Bを排出する濃縮供給溶液排出ラインL5が接続されている。そして、この濃縮供給溶液排出ラインL5の一端が接続される無排水化処理部21において、濃縮供給溶液14Bの無排水化処理を行うようにしている。
 ここで、前処理段階の膜処理部16の分離膜16aとしては、硫酸イオンと塩化物イオンとを選択的に膜分離する観点から、脱硫排水12中の2価イオン成分である硫酸イオンの透過率が低い特性を有するものが好ましい。また、分離膜16aとしては、排煙脱硫部13の脱硫性能の低下を防ぐ観点から、1価イオン成分である塩化物イオンの透過率が高い特性を有するものが好ましい。分離膜16aとしては、透過水14中のスケール成分となる硫酸イオンと塩化物イオンとを選択的に膜分離する観点から、硫酸イオンの透過率(以下、単に「硫酸イオン透過率」ともいう)が50%以下のものが好ましく、20%以下のものがより好ましく、10%以下のものが更に好ましい。また、分離膜16aとしては、排煙脱硫部13に返送される希釈駆動溶液15B中の塩化物イオン濃度を低減して脱硫性能の低下を防ぐ観点から、塩化物イオンの透過率(以下、単に「塩化物イオン透過率」ともいう)が10%以上のものが好ましく、20%以上のものがより好ましく、50%以上のものが更に好ましい。以上を考慮すると、分離膜16aとしては、脱硫排水12中の硫酸イオンの透過率が塩化物イオンの透過率以下のものが好ましく、硫酸イオン透過率が50%以下であって塩化物イオン透過率が50%以上のものがより好ましく、硫酸イオン透過率が20%以下であって塩化物イオン透過率が80%以上のものが更に好ましく、硫酸イオン透過率が10%以下であって塩化物イオン透過率が90%以上のものがより更に好ましい。分離膜16aとしては、例えば、2価のイオンを除去するナノろ過(NF:Nano Filtration)膜、イオン交換膜、電気透析、拡散透析による透析膜及び電気泳動による分離膜などが用いられる。分離膜16aとしては、これらの中でも、透過水14中の硫酸イオンを効率良く除去できる観点から、ナノろ過(NF)膜及び電気泳動による透析膜が好ましく、ナノろ過膜がより好ましい。ナノろ過膜としては、例えば、商品名:NTR7250(日東電工社製)、商品名:NF40HF及びNF50(ダウ・ケミカル社製)などを用いることができる。
 また、後処理段階の正浸透膜装置19で用いる正浸透膜(半透膜)19aは、材質、構造などが特に制限されるものではなく、水分子を選択的に透過する膜であればよい。ここで、膜処理部16からの透過水14は、供給溶液14Aとして供給溶液収容部17に供給溶液ラインL2を介して供給される。一方、膜処理部16からの濃縮水15は、透過水14と比べて高塩濃度であり、正浸透膜19aを介して水を引き抜く駆動溶液15Aとして駆動溶液収容部18に駆動溶液ラインL3を介して供給される。
 ここで、駆動溶液15Aとしては、供給溶液14Aと比較してイオン濃度が高い高塩濃度の溶液であれば、いずれでもよい。本実施例では、膜処理部16で濃縮された濃縮水15を用いているが、本発明はこれに限定されるものではない。この高塩濃度溶液としては、例えば膜処理部16で硫酸イオンが濃縮された濃縮水15以外に、脱硫排水12、脱硫排水の分離液12A、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つを挙げることができる。
 ここで、濃縮水15と透過水14との溶解性蒸発残留物(Total Dissolved Solid:TDS)について、検討する。TDSとは、溶媒中に溶解されている溶質の濃度を表す。脱硫排水12を膜処理部16で膜分離した場合にTDSを比較すると、脱硫排水12中を固液分離することで、懸濁物質を除去し分離液12Aを得る。分離液12AのTDSは10,000mg/Lとなる。この分離液12Aを膜処理部16で膜処理することで、濃縮水15のTDSは24,000mg/Lとなり、透過水14のTDSは1,200mg/Lとなり、濃度比は約20倍であった。
 また、正浸透膜19aの材質は、正浸透に用いることのできる種々公知の半透膜を使用できるが、例えば酢酸セルロース、芳香族ポリアミド、芳香族スルホン、ポリビニルアルコール、ポリアミド、ポリエチレンイミン、ポリスルホン、ポリベンゾイミダゾール、グラッフェン等の有機膜を挙げることができる。また、セラミック、アルミナ、ジルコニア、ゼオライト、チタニア等の無機膜を挙げることができる。なお、正浸透作用を呈する膜であればこれらに限定されるものではない。
 正浸透膜19aの形状は、例えば平膜、中空糸膜、管状膜、平膜を用いたスパイラル型モジュール、中空糸型モジュール、円筒型モジュール等を挙げることができる。なお、本実施例では、正浸透膜19aとして簡略化した平膜を描いているが、これに限定されない。
 正浸透膜装置19による正浸透処理とは、溶質を通さず溶媒である水分子のみを透過する正浸透膜19aを介して供給溶液14Aよりも駆動溶液15Aに溶質濃度の高い高浸透圧の高塩濃度溶液を配置し、正浸透膜19aを通して矢印の方向に水分子が駆動溶液15Aに回収される処理をいう。ここでは浸透圧差を利用して水分子の移動を行うために、理論的には動力が不要な処理となる。
 この結果、本実施例によれば、透過水14である供給溶液14Aの濃縮処理において逆浸透を利用していないので、従来のような逆浸透(RO)膜装置で供給溶液14Aを浸透圧以上(例えば7MPa以上)に昇圧するための必須装置である高圧ポンプは不要となる。
 すなわち、本実施例では、正浸透膜19aを介して供給溶液14Aと駆動溶液15Aとを接触させて、正浸透により供給溶液14A中の水分子を駆動溶液15A側に移動するため、供給溶液14Aを濃縮処理することができる。
 このように、正浸透処理では、浸透圧が相対的に低い供給溶液14Aから、浸透圧が相対的に高い高塩濃度溶液の駆動溶液15A側に、水分子が移動するので、浸透圧以上の圧力を供給溶液14A側に加える逆浸透(RO)膜を用いた逆浸透(RO)膜装置により供給溶液14Aを濃縮する場合と比べて、供給溶液14Aの濃縮に要するエネルギー(電力)を大幅に低減することができる。また、供給溶液14Aを濃縮するために用いる駆動溶液15Aは、膜処理部16から濃縮された濃縮液15を利用している。このため、高塩濃度溶液を準備するために要するエネルギーを低減できる。
 さらに、一般的な正浸透膜装置では、駆動溶液を再利用するために、水分子により希釈された希釈駆動溶液は再生装置により水を分離することが必要であるが、本実施例では、希釈駆動溶液15Bを排煙脱硫部13に脱硫処理液11として戻すことができるので、所謂再生処理が不要となり、駆動溶液15Aを再生処理するために要するエネルギーも低減できる。
 なお、正浸透膜装置19内部の液温は、特に限定されるものではないが、正浸透膜19aの透過抵抗を低減させるため、例えば常温(例えば25~30℃)以上に保持するのがより好ましい。
 図2は、実施例1に係る他の排ガス処理装置の一例を示す模式図である。図2に示すように、排ガス処理装置10Bは、排ガス処理装置10Aにおいて、透過水14の供給溶液ラインL2に加圧装置の加圧ポンプP2を配置している。この加圧ポンプP2を設置することにより、透過水14を加圧することができ、水分子の移動を効率よく行うことができる。この結果、正浸透による供給溶液14Aの濃縮時間を短縮することができる。
 無排水化処理部21は、濃縮供給溶液14Bを無排水化処理する設備であれば、特に限定されるものではなく、ボイラからの排ガスを用いて濃縮供給溶液14Bを噴霧乾燥する噴霧乾燥装置、蒸発乾燥装置、セメントやフライアッシュ等を用いて固化するセメント固化装置、灰固化装置、灰加湿装置等の公知の無排水化処理する技術を適用することができる。
 次に、排ガス処理装置10Aの全体動作について説明する。排煙脱硫部13から排出された硫黄分を含有する脱硫排水12は、脱硫排水排出ラインL1-1を介して固液分離部30に送られ、ここで脱水処理される。この脱硫排水12には、石膏の他、水銀等の重金属やCl-、Br-、I-、F-等のハロゲンイオンが含まれている。固液分離部30は、脱硫排水12中の石膏31を含む固体分と液体分の分離液12Aとを分離するものである。すなわち、排煙脱硫部13から排出された脱硫排水12は、固液分離部30により石膏31が分離される。分離した石膏31は、システム外部(以下、「系外」という)に排出される。一方、分離液12Aは分離液ラインL1-2を介して膜処理部16に送られる。
 膜処理部16に供給された分離液12Aは、分離膜16aによって硫酸イオンが濃縮された濃縮水15と硫酸イオンが除去された透過水14とに膜分離される。膜処理部16で膜分離された透過水14は、供給溶液ラインL2を介して正浸透膜装置19の供給溶液収容部17に供給される。また膜分離された濃縮水15は、駆動溶液ラインL3を介して正浸透膜装置19の駆動溶液収容部18に供給される。そして、正浸透膜19aを介して、駆動溶液15Aに供給溶液14Aから正浸透作用により水が引き抜かれて移動することで、供給溶液14Aは濃縮供給溶液14Bとなると共に、水が移動して希釈された駆動溶液15Aは希釈駆動溶液15Bとなる。
 この希釈駆動溶液15Bは希釈駆動溶液戻しラインL4を介して排煙脱硫部13に導入され、脱硫処理液11として再利用される。そして、排煙脱硫部13内で石膏が除去された後、排煙脱硫部13から脱硫排水12として排出される。また、濃縮供給溶液14Bは、濃縮供給溶液排出ラインL5を介して無排水化処理部21に導入され、ここで無排水化処理される。
 以上説明したように、本実施例によれば、脱硫排水12から石膏31を除いた分離液12A中の水分を濃縮する際、先ず、膜処理部16において、低塩濃度の透過水14と、高塩濃度の濃縮水15とに分離し、この高塩濃度の濃縮水15を正浸透膜装置19の駆動溶液15Aとして用い、正浸透膜19aにより透過水である供給溶液14Aから水を引き抜き、濃縮供給溶液14Bを得る。このように、正浸透膜装置19を用いることにより、正浸透作用による濃縮供給溶液14Bを得ることができるので、逆浸透膜装置のような加圧水を装置に供給するための高圧ポンプが不要となり、無排水化処理の運転費の大幅な低減を図ることができる。
 次に、実施例2に係る排ガス処理装置について説明する。図3は、実施例2に係る排ガス処理装置の一例を示す模式図である。実施例1の排ガス処理装置と重複する部材については、同一符号を付して重複する説明は省略する。図3に示すように、本実施例に係る排ガス処理装置10Cは、図1に示した排ガス処理装置10Aの構成に加えて、脱硫排水12を希釈する希釈水25を供給する希釈水供給部26を備える。この希釈水供給部26を設けて脱硫排水12を希釈水25で希釈することにより、脱硫排水12中のスケール成分となる硫酸イオンなどの2価イオン成分の濃度が低減されるので、膜処理部16の分離膜16aでのスケールの析出を防ぐことができる。ここで、希釈水25としては、分離液12A中のスケール成分の濃度を低減できるものであれば特に制限はなく、例えば、プロセス用水、河川水及び池水などを用いることができる。なお、図3に示す例では、希釈水供給部26が、希釈水25を膜処理部16に供給する例について示しているが、希釈水供給部26は、分離液12Aを希釈することができれば、希釈水25を膜処理部16以外に供給してもよい。希釈水供給部26は、例えば、希釈水供給ラインL7を介して分離液ラインL1-2などに希釈水25を供給してもよい。また、希釈水供給ラインL7には、必要に応じて希釈水25中の濁質を除去する前処理部を設けてもよい。その他の構成については、図1に示した排ガス処理装置10Aと同様のため説明を省略する。
 次に、排ガス処理装置10Cの全体動作について説明する。排煙脱硫部13から排出された硫黄分を含有する脱硫排水12は、脱硫排水排出ラインL1-1を介して固液分離部30に供給され、石膏31を分離し、分離液ラインL1-2を介して膜処理部16に供給される。膜処理部16に供給された分離液12Aは、希釈水供給ラインL7を介して希釈水供給部26から供給された希釈水25と混合された後、分離膜16aによって硫酸イオンが濃縮された濃縮水15と硫酸イオンが除去された透過水14とに膜分離される。ここでは、脱硫排水12が希釈水25と混合されることにより、スケール成分の濃度が低減されるので、分離膜16aでのスケールの析出を防ぐことができる。
 以上説明したように、本実施例によれば、分離液12Aを希釈水25によって希釈するので、膜処理部16に供給される脱硫排水12中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水12中のスケール成分の濃度が高い場合であっても、膜処理部16の分離膜16aでのスケールの析出を防ぐことができる。
 図4は、実施例2に係る他の排ガス処理装置の一例を示す模式図である。図4に示すように、排ガス処理装置10Dは、補給水供給ラインL8を介して排煙脱硫部13に補給水28を供給すると共に、補給水分岐ラインL9を介して膜処理部16に補給水28の少なくとも一部を希釈水25として供給する補給水供給部27を備える。すなわち、図4に示す排ガス処理装置10Dは、補給水供給部27を図3に示した希釈水供給部26としても用いるものである。なお、図4に示す例では、補給水供給部27が、補給水28の少なくとも一部を希釈水25として膜処理部16に供給する例について示しているが、補給水供給部27は、分離液12Aを希釈できれば補給水28の少なくとも一部を膜処理部16以外に供給してもよい。補給水供給部27は、例えば、補給水分岐ラインL9を介して分離液ラインL1-2などに希釈水25を供給してもよい。また、補給水分岐ラインL9には、必要に応じて補給水28中の濁質を除去する前処理部を設けてもよい。その他の構成については、図3に示した排ガス処理装置10Cと同様のため説明を省略する。
 次に、排ガス処理装置10Dの全体動作について説明する。排煙脱硫部13から排出された硫黄分を含有する脱硫排水12は、脱硫排水排出ラインL1-1を介して固液分離部30に供給され、石膏31を分離し、分離液ラインL1-2を介して膜処理部16に供給される。膜処理部16に供給された分離液12Aは、補給水分岐ラインL9を介して補給水供給部27から供給された補給水28の一部の希釈水25と混合された後、分離膜16aによって硫酸イオンが濃縮された濃縮水15と硫酸イオンが除去された透過水14とに膜分離される。ここでは、分離液12Aが補給水28からの希釈水25と混合されることにより、スケール成分の濃度が低減されるので、分離膜16aでのスケールの析出を防ぐことができる。
 以上説明したように、本実施例によれば、分離液12Aを補給水28の一部の希釈水25によって希釈するので、膜処理部16に供給される脱硫排水12中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水12中のスケール成分の濃度が高い場合であっても、膜処理部16の分離膜16aでのスケールの析出を防ぐことができる。しかも、排煙脱硫部13に供給する補給水28の少なくとも一部を用いて分離液12Aを希釈するので、既存設備に補給水分岐ラインL9を設けるだけで分離膜16aでのスケールの析出を防ぐことが可能となる。
 次に、実施例3に係る排ガス処理システムについて説明する。図5は、実施例3に係る排ガス処理システムの概略図である。実施例1の排ガス処理装置と重複する部材については、同一符号を付して重複する説明は省略する。なお、実施例2の構成を追加するようにしてもよい。図5に示すように、実施例3に係る排ガス処理システム100Aは、燃料Fを燃焼させるボイラ111と、ボイラ111からの排ガスGを排出する主煙道L11に設けられ、排ガスGの熱を回収する熱回収装置であるエアヒータAHと、熱回収後の排ガスG中の煤塵を除去する除塵装置である集塵機113と、除塵後の排ガスG中に含まれる硫黄酸化物を除去する排煙脱硫部13と、排煙脱硫部13から排出される脱硫排水(吸収液法の場合、吸収液スラリー)12から固形物(石膏)31を除去する固液分離部30と、固液分離部30からの分離液12Aを透過水14と濃縮水15とに膜分離する膜処理部16と、透過水14を供給溶液14Aとし、濃縮水15を駆動溶液15Aとして、正浸透膜19aにより水を移動して濃縮供給溶液14Bとする正浸透膜(FO)装置19と、濃縮供給溶液14Bを噴霧する噴霧乾燥装置119と、噴霧乾燥装置119に排ガスGからの一部の分岐ガス112aを主煙道L11から導入する排ガス導入ラインL12と、噴霧乾燥装置119で濃縮供給溶液14Bを蒸発乾燥した後の排出ガス112bを主煙道L11に戻す排出ガス送給ラインL13と、を備えている。なお、図5中、符号120は主煙道L11からの浄化ガスを排出する煙突を図示する。
 本システムにより、排ガスGが排煙脱硫部13で浄化されると共に、その脱硫排水12を固液分離し、分離した分離液12Aを、膜処理部16で透過水14と濃縮水15とに分離し、透過水14を正浸透膜装置19の供給溶液14Aとすると共に、濃縮水15を駆動溶液15Aとして、正浸透膜19aによる正浸透作用により、濃縮供給溶液14Bとして濃縮させ、この濃縮供給溶液14Bを噴霧乾燥装置119内で導入した分岐ガス112aを用いて蒸発乾燥するので、排煙脱硫部13からの脱硫排水12の無排水化を安定して実施することができる。
 ここで、排ガス処理システム100AのエアヒータAHは、ボイラ111から主煙道L11を介して供給される排ガスG中の熱を回収する熱交換器である。排出される排ガスGの温度は例えば300℃~400℃程度と高温であるため、このエアヒータAHにより高温の排ガスGと常温の燃焼用空気との間で熱交換を行い、熱交換により高温となった燃焼用空気は、ボイラ111内に供給される。
 このエアヒータAHへ流入する排ガスGを主煙道L11から排ガス導入ラインL12を介して分岐ガス112aとして分岐する場合には、分岐ガス112aのガス温度が高く(例えば300℃~400℃)、この高温排熱と濃縮供給溶液14Bを接触させることによって脱硫排水液滴の噴霧乾燥を効率よく行うことができる。実施例3では、エアヒータAHは、分岐ガス112aを分岐する排ガス導入ラインL12の分岐部Xと、排出ガス112bを排出ガス送給ラインL13により主煙道L11側に戻す合流部Yとの間に設置しているが、これに限定されるものではない。
 集塵機113は、ボイラ111からの排ガスG中の煤塵を捕集し、集塵灰113aとして除去するものである。集塵機113としては例えば慣性力集塵機、遠心力集塵機、ろ過式集塵機、電気集塵機、洗浄集塵機等が挙げられるが、特に限定されない。
 次に、排ガス処理システム100Aの全体動作について説明する。ボイラ111に燃料Fが導入されて燃焼による排ガスGはエアヒータAHで外部から導入される空気と熱交換した後、排ガスG中の煤塵が集塵機113で集塵灰113aとして除去される。煤塵が除去された排ガスGは排煙脱硫部13に導入され例えば湿式石灰石膏法等による脱硫処理により硫黄分が除去される。排煙脱硫部13から排出された硫黄分を含有する脱硫排水12は、脱硫排水排出ラインL1-1を介して固液分離部30に送られ、ここで脱水処理される。石膏31が分離された分離液12Aは分離液ラインL1-2を介して膜処理部16に送られる。膜処理部16に供給された分離液12Aは、分離膜16aによって硫酸イオンが濃縮された濃縮水15と硫酸イオンが除去された透過水14とに膜分離される。
 次いで、透過水14は、供給溶液14Aとして供給溶液ラインL2を介して膜処理部16から供給溶液収容部17に供給される。濃縮水15は、駆動溶液15Aとして駆動溶液ラインL3を介して膜処理部16から駆動溶液収容部18に供給される。そして、正浸透膜19aを介して供給溶液14と駆動溶液15Aとが接触するので、正浸透作用により、透過水14である供給溶液14A中の水が濃縮水15側の駆動溶液15Aに移動されるため、供給溶液14Aが濃縮され、濃縮供給溶液14Bとなると共に、駆動溶液15Aは希釈されて希釈駆動溶液15Bとなる。そして、希釈された希釈駆動溶液15Bは、希釈駆動溶液戻しラインL4を介して排煙脱硫部13側に脱硫処理液11として戻され、これにより、希釈駆動溶液15Bは脱硫処理液11として再利用される。一方、濃縮された濃縮供給溶液14Bは、濃縮供給溶液排出ラインL5を通って噴霧乾燥装置119に導入され、ここで、無排水化処理が行われる。
 本実施例によれば、脱硫排水12から固形分の石膏31を分離して脱硫排水12の分離液12Aとし、この分離液12Aを膜処理部16で硫酸イオンを膜分離して透過水14とし、この透過水14中の水分を濃縮する際、正浸透膜装置19を用いることにより、正浸透作用による濃縮液である濃縮供給溶液14Bを得ることができる。この濃縮水を得るために逆浸透膜装置のような加圧水を得るための加圧ポンプを不要とし、無排水化処理の運転費の低減を図ることができる。
 次に、実施例3に係る他の排ガス処理システムについて説明する。図6は、実施例3に係る他の排ガス処理システムの概略図である。実施例1の排ガス処理装置と重複する部材については、同一符号を付して重複する説明は省略する。図6に示すように、実施例3に係る他の排ガス処理システム100Bは、図5に示す排ガス処理システム100Aにおいて、噴霧乾燥装置119を設置する代わりに、固化処理設備を設置するものである。図6に示すように、実施例3に係る他の排ガス処理システム100Bは、図5に示す排ガス処理システム100Aにおいて、濃縮供給溶液排出ラインL5に設けられ、濃縮された濃縮供給溶液14Bに、例えばセメントや酸化カルシウム(ライム)等の固化剤61を固化剤供給部62から添加し、混練物63を得る混練槽60と、混練物63を乾燥及び養生しその後固化処理して固化物65とする固化部64と、を備えるものである。なお、固化物65は、別途埋立処分等で処理される(以下同様)。
 本実施例によれば、濃縮液である濃縮供給溶液14Bをセメント等の固化剤61を用いて固化処理することにより無排水化を図ることができる。
 次に、実施例3に係る他の排ガス処理システムについて説明する。図7は、実施例3に係る他の排ガス処理システムの概略図である。実施例1の排ガス処理装置と重複する部材については、同一符号を付して重複する説明は省略する。図7に示すように、実施例3に係る他の排ガス処理システム100Cは、図5に示す排ガス処理システム100Aにおいて、噴霧乾燥装置119を設置する代わりに、濃縮供給溶液排出ラインL5に設けられ、濃縮された濃縮供給溶液14Bに、例えば集塵灰113aを混合する混合槽66を備え、両者を混合した加湿灰である灰混合物67を得るものである。
 本実施例によれば、濃縮液である濃縮供給溶液14Bをシステム系内で発生した集塵灰113aを用いて灰混合処理することにより無排水化を図ることができる。
 図8は、実施例4に係る排ガス処理装置の一例を示す模式図である。実施例1の排ガス処理装置と重複する部材については、同一符号を付して重複する説明は省略する。図8に示すように、本実施例に係る排ガス処理装置10Eでは、駆動溶液15Aとして実施例1のような膜処理部16からの濃縮水15を用いず、供給溶液14Aよりも高塩濃度溶液を駆動溶液供給部35から駆動溶液15Aとして駆動溶液収容部18に駆動溶液供給ラインL21を介して供給している。この駆動溶液15Aとしては、脱硫排水12、脱硫排水の分離液12A、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つを挙げることができる。
 本実施例では、膜処理部16で分離された濃縮水15は、濃縮水戻りラインL1-4を介して排煙脱硫部13に戻されて、脱硫処理液11として再利用される。
 図9は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。図9に示すように、本実施例に係る排ガス処理装置10Fでは、図8に示す駆動溶液供給部35を設置する代わりに、脱硫排水排出ラインL1-1から分岐され、脱硫排水12の一部を駆動溶液15Aとして駆動溶液収容部18に供給する駆動溶液供給ラインL31を設置している。駆動溶液収容部18から排出される希釈駆動溶液15Bは、実施例1と同様に排煙脱硫部13に希釈駆動溶液戻しラインL32を介して戻している。
 図10は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。図10に示すように、本実施例に係る排ガス処理装置10Gでは、図8に示す駆動溶液供給部35の駆動溶液15Aとして、イオン交換装置の再生用の薬品液71を供給している。ここで、イオン交換樹脂70を用いたイオン交換装置は吸着物質が飽和となるとイオン交換樹脂70を再生処理する必要がある。この再生用の薬品液71は、所定の濃度の薬品液(例えば1.5~5%のNaOH水、例えば2~5%のHCl水)を準備する必要がある。通常は、この所定の希釈濃度の薬品液71を保管又は調整している。
 しかし、本実施例では、先ず所定の希釈濃度の薬品液71よりも高濃度の薬品液(例えば10%NaOH水)71Aを準備する。そして、駆動溶液供給部35から駆動液15Aとして駆動溶液収容部18に導入し、正浸透により透過水14の供給溶液14Aからの水分子の移動により、濃縮供給溶液14Bを得る。これと共に、希釈駆動液である所定希釈濃度の薬品液(5%NaOH水)71を調整することができる。調整された所定希釈濃度の薬品液(5%NaOH水)71は、イオン交換樹脂70に希釈ラインL22を介して導入され、ここでイオン交換に利用される。なお、符号72はイオン交換樹脂71から吸着物を脱離した後の再生排水である。この結果、薄い濃度の薬品液71を保管することがなく、再生用の薬品液71の保管量を減容化することができる。
 図11は、実施例4に係る他の排ガス処理装置の一例を示す模式図である。図11に示すように、本実施例に係る排ガス処理装置10Hでは、図8に示す駆動溶液供給部35の代わりに、イオン交換装置の再生後の再生排水72を駆動溶液15Aとして供給している。
 イオン交換樹脂70の再生時の脱離イオンを含む再生排水72は、高濃度の脱離イオンを含む。よって、この脱離イオンが含まれる再生排水72を、駆動溶液供給ラインL21を介して駆動溶液15Aとして駆動溶液収容部18に導入する。そして、正浸透により透過水14の供給溶液14Aから水分子を移動させることで、濃縮供給溶液14Bを得る。再生排水72は脱離イオンを多量に含んでいるので、駆動溶液15Aとして駆動溶液収容部18に導入し、正浸透により透過水14の供給溶液14Aから水分子を移動させることで、濃縮供給溶液14Bを得ることができる。なお、駆動溶液収容部18から排出される希釈駆動溶液15Bは、脱離イオンの不純物を含んでいるので、排出ラインL23を介して総合排水処理設備75へ送られここで処理される。ここで、駆動溶液15Aとして供給する再生排水72以外には、例えばボイラブロー水、各種機器ドレン水、エアヒータ洗浄排水、集塵設備線上排水、熱回収器洗浄排水、煙突洗浄排水、分析室排水等の非定常排水等の高濃度にイオンを含むものを用いることもできる。ここで、イオン交換する設備としては、例えば純水装置(例えばボイラに供給する水を製造する装置)、復水脱塩装置(例えばボイラ・タービンで使用した蒸気を凝縮回収した水を脱塩する装置)等を例示することができるが、これらに限定されるものではない。
 10A~10H 排ガス処理装置
 G 排ガス
 11 脱硫処理液
 12 脱硫排水
 12A 脱硫排水の分離液(分離液)
 13 排煙脱硫部
 14 透過水
 14A 供給溶液
 14B 濃縮供給溶液
 15 濃縮水
 15A 駆動溶液
 15B 希釈駆動溶液
 16a 分離膜(NF膜)
 16 膜処理部(NF装置)
 17 供給溶液収容部
 18 駆動溶液収容部
 19a 正浸透膜
 19 正浸透膜(FO)装置
 21 無排水化処理部
 30 固液分離部
 31 石膏
 35 駆動溶液供給部
 L1-1 脱硫排水排出ライン
 L1-2 分離液ライン
 L1-3 石膏排出ライン
 L1-4 濃縮水戻りライン
 L2 供給溶液ライン
 L3 駆動溶液ライン
 L4 希釈駆動溶液脱硫処理液戻しライン
 L5 濃縮供給溶液排出ライン

Claims (11)

  1.  燃焼排ガスを脱硫処理液により洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫部と、
     前記脱硫排水から固形分と脱硫排水の分離液とに固液分離する固液分離部と、
     前記分離液を、前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が低い透過水と前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が高い濃縮水とに膜分離する分離膜を有する膜処理部と、
     前記透過水を供給溶液として収容する供給溶液収容部と、前記透過水よりも高い浸透圧を有する溶液を駆動溶液として収容する駆動溶液収容部と、前記供給溶液収容部と前記駆動溶液収容部とを仕切るように配置された水選択透過性の正浸透膜とを有する正浸透膜装置と、
     前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され濃縮された濃縮供給溶液を、前記供給溶液収容部から排出する濃縮供給液排出ラインと、
     排出された前記濃縮供給溶液を無排水化する無排水化処理部と、を備えたことを特徴とする排ガス処理装置。
  2.  請求項1において、
     前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つであることを特徴とする排ガス処理装置。
  3.  請求項1において、
     前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液のいずれか一つであると共に、
     前記濃縮水を前記駆動溶液収容部に導入する駆動溶液ラインと、
     前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され希釈された希釈駆動溶液を前記排煙脱硫部に戻す希釈駆動溶液戻しラインを備えたことを特徴とする排ガス処理装置。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記分離膜は、前記脱硫排水中の硫酸イオンの透過率に対して塩化物イオンの透過率が高い特性を有することを特徴とする排ガス処理装置。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記脱硫排水を希釈する希釈水を供給する希釈水供給部を備えたことを特徴とする排ガス処理装置。
  6.  請求項5において、
     前記希釈水供給部が、前記排煙脱硫部に補給水を供給する補給水供給部であり、前記補給水供給部は、前記希釈水として前記補給水の少なくとも一部を前記脱硫排水に供給することを特徴とする排ガス処理装置。
  7.  請求項5において、
     前記希釈水供給部が、前記膜処理部からの前記透過水の一部を、前記脱硫排水に供給することを特徴とする排ガス処理装置。
  8.  請求項1乃至7のいずれか一つにおいて、
     前記透過水を前記供給溶液として前記供給溶液収容部に供給する供給溶液ラインに、前記供給溶液を加圧する加圧部を備えることを特徴とする排ガス処理装置。
  9.  燃焼排ガスを排煙脱硫部で洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫工程と、
     前記脱硫排水から固形分と分離液とに固液分離する固液分離工程と、
     前記分離液を、前記分離液の硫酸イオン濃度よりも硫酸イオン濃度が低い透過水と前記分離液の硫酸イオン濃度よりも硫酸イオンが高い濃縮水とに分離膜によって膜分離する膜処理工程と、
     前記透過水を供給溶液とし、前記透過水よりも高い浸透圧を有する溶液を駆動溶液とし、前記供給溶液と前記駆動溶液とを正浸透膜を介し、前記供給溶液の水の少なくとも一部を、正浸透により前記駆動溶液側に移動させ、希釈された希釈駆動溶液と、濃縮された濃縮供給溶液とを得る正浸透工程と、
     前記濃縮供給溶液を無排水化する無排水化工程と、を含むことを特徴とする排ガス処理方法。
  10.  請求項9において、
     前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液、イオン交換装置の再生用の薬品液、イオン交換装置の再生後の再生排水のいずれか一つであることを特徴とする排ガス処理方法。
  11.  請求項9において、
     前記駆動溶液が、前記濃縮水、前記脱硫排水、前記分離液のいずれか一つであると共に、
     前記正浸透膜の正浸透により、前記供給溶液から前記駆動溶液に水が移動され希釈された前記希釈駆動溶液を前記排煙脱硫工程に戻す希釈駆動溶液戻し工程を、含むことを特徴とする排ガス処理方法。
     
PCT/JP2017/013198 2017-03-30 2017-03-30 排ガス処理装置及び排ガス処理方法 WO2018179203A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013198 WO2018179203A1 (ja) 2017-03-30 2017-03-30 排ガス処理装置及び排ガス処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013198 WO2018179203A1 (ja) 2017-03-30 2017-03-30 排ガス処理装置及び排ガス処理方法

Publications (1)

Publication Number Publication Date
WO2018179203A1 true WO2018179203A1 (ja) 2018-10-04

Family

ID=63677309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013198 WO2018179203A1 (ja) 2017-03-30 2017-03-30 排ガス処理装置及び排ガス処理方法

Country Status (1)

Country Link
WO (1) WO2018179203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407369A (zh) * 2019-08-28 2019-11-05 陕西煤业化工技术研究院有限责任公司 一种耦合烟气净化处理的含盐废水处理系统及处理方法
WO2020241795A1 (ja) * 2019-05-31 2020-12-03 旭化成株式会社 原料液濃縮システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193789A (ja) * 1975-02-14 1976-08-17 Haiekishorihoho
JPS6377519A (ja) * 1986-09-19 1988-04-07 Chiyoda Chem Eng & Constr Co Ltd 排煙脱硫処理方法
JP2015128754A (ja) * 2014-01-08 2015-07-16 三菱重工業株式会社 水処理システム及び方法
WO2016132511A1 (ja) * 2015-02-19 2016-08-25 三菱重工業株式会社 水処理システム及び方法
JP2017039108A (ja) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション 排水処理方法及び排水処理設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193789A (ja) * 1975-02-14 1976-08-17 Haiekishorihoho
JPS6377519A (ja) * 1986-09-19 1988-04-07 Chiyoda Chem Eng & Constr Co Ltd 排煙脱硫処理方法
JP2015128754A (ja) * 2014-01-08 2015-07-16 三菱重工業株式会社 水処理システム及び方法
WO2016132511A1 (ja) * 2015-02-19 2016-08-25 三菱重工業株式会社 水処理システム及び方法
JP2017039108A (ja) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション 排水処理方法及び排水処理設備

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241795A1 (ja) * 2019-05-31 2020-12-03 旭化成株式会社 原料液濃縮システム
JPWO2020241795A1 (ja) * 2019-05-31 2021-12-09 旭化成株式会社 原料液濃縮システム
CN113891759A (zh) * 2019-05-31 2022-01-04 旭化成株式会社 原料液浓缩系统
JP7133711B2 (ja) 2019-05-31 2022-09-08 旭化成株式会社 原料液濃縮システム
CN110407369A (zh) * 2019-08-28 2019-11-05 陕西煤业化工技术研究院有限责任公司 一种耦合烟气净化处理的含盐废水处理系统及处理方法

Similar Documents

Publication Publication Date Title
KR101749159B1 (ko) 정 삼투 분리 방법
DK2367612T3 (en) IMPROVED SOLVENT REMOVAL
CN104843927B (zh) 脱硫废水零排放工艺及系统
AU2008366066B2 (en) Methods and systems for processing waste water
JP4737670B2 (ja) カルシウム及び硫酸を含む廃水の処理方法及びその装置
WO2013005369A1 (ja) 水浄化システム及び水浄化方法
CN106186499A (zh) 一种烟气湿法脱硫废水的零排放处理方法及装置
JP2018503514A (ja) 塩水濃縮
KR101924531B1 (ko) 삼투압 구동 멤브레인 공정들, 시스템들 및 유도 용질 복구 방법들
US20150175919A1 (en) Dewatering system for increasing the combined cycle efficiency of a coal powerplant
WO2018179203A1 (ja) 排ガス処理装置及び排ガス処理方法
JP2019107645A (ja) 排水処理方法
JP2013215686A (ja) 坑井からの随伴水処理方法および装置
WO2009107332A1 (ja) 排水処理装置および排水処理方法
JP2014184403A (ja) 水処理装置
CN211226645U (zh) 一种耦合烟气净化处理的含盐废水处理系统
JP2016188823A (ja) 汚染水の処理方法及び処理装置
JP6189422B2 (ja) 水処理システム
CN206069617U (zh) 一种烟气湿法脱硫废水的零排放处理装置
WO2019117121A1 (ja) 排水処理方法
WO2018124289A1 (ja) 排ガス処理装置及び排ガス処理方法
JP2020124668A (ja) 水処理システム及び水処理方法
JP2023127832A (ja) 浸透圧発電システム
JPH09122692A (ja) 有機酸含有廃水の処理方法
WO2022269229A1 (en) A system and method for recovering ammonia from an ammonia-containing liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP